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A. Introduction 

1. Photocatalysis – photophysical aspects 

 With the commencement of industrialization at the end of the 18th century, greenhouse 

gas emissions have increased drastically worldwide.[1] This is mainly caused by the combustion 

of fossil fuels such as coal or oil, to generate electricity or to power any class of engines, and 

the accompanying release of carbon dioxide. In this context, a name often mentioned is that of 

the Italian chemist Giacomo Ciamician (1857 – 1922). He was a real visionary of his time and 

aware of the finiteness of these sources and the associated environmental pollution. Therefore, 

he suggested the sunlight as the sole, infinite energy source.[2] A closer look into the actual 

energy from the sun that strikes the surface of the earth, underpins his statement. Given the fact 

that the world energy consumption in 2018 was estimated to be 161 PWh,[3] this could be cov-

ered within only a single hour by solar energy, as continuously 173 PW reach earth.[4] Until 

now, however, this is unquestionably utopian, even though mankind developed highly capable 

solar cells to transform sunlight directly into electrical energy, as well as options, to exploit 

energy from secondary sources, such as wind or waves. Since particularly the former is in-

creasingly to be found in private households, this is nevertheless driving the prospective geta-

way from fossil fuels.[5] 

 Exemplary for chemical transformations mediated by visible light is the nature herself. 

Since the beginning of time, plants use photosynthesis to generate carbohydrates and oxygen 

from carbon dioxide and water, solely driven through solar energy. Transferring this process 

to a laboratory scale, however, proved to be challenging. This begins with the fact that most 

organic molecules do not absorb in the visible, but rather in the ultraviolet (UV) light range. 

The excitation spectrum of the sun reveals only roughly 3% in this region, and is, consequently, 

inefficient.[6] Moreover, UV irradiation is very high in energy, which often causes unselective 

chemical transformations and leads to numerous inadvertent side products. Realizing that com-

plexes, applied for the conversion of solar energy into an electrochemical potential, may also 

function as photocatalysts for chemical transformations, coined the last century as photochem-

istry experienced a remarkable upswing.[6b] With these, it was feasible to conduct photoreac-

tions with solely visible light in conventional lab glassware.[7] Therefore, common transfor-

mations which are making use of harsh reaction conditions or stoichiometric amounts of toxic 

reagents are replaced progressively.[8] This process was further improved by the development 

of energy-saving light-emitting diodes (LEDs) and became particularly interesting for industry 
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through implementation of micro-reactors, as flow conditions entail numerous advantages, 

such as improved mass transfer or cooling process.[9] Therefore, visible light photoredox chem-

istry has emerged as one of the most powerful tools for a variety of chemical transfor-

mations.[10] 

There are different types of photocatalysts and photosensitizers, i.e. organic and inor-

ganic semiconductors being the most durable,[11] organic dyes which are comparatively cheap 

and increasingly used,[12] and transition metal-based complexes.[13] The latter are, due to their 

versatility and high chemical stability, very prominent. They consist of copper,[14] cobalt,[15] 

and other non-noble metals,[16] but also expensive noble metals like ruthenium and iridium,[17] 

which are the most frequently used. One of the first discovered, very well studied pyridyl com-

plex, based on ruthenium, is [Ru(bpy)3]
2+ (bpy = 2,2’-bipyridine).[18] To understand the func-

tion of this photocatalyst, a brief overview of the mechanisms of catalytic processes and the 

underlying photophysical principals is provided in the following.  

The task of a photocatalyst, in general, is to absorb in the visible light range and make 

the solar energy accessible to molecules, thus initiating a variety of reactions. This can be ac-

complished in several different manners, of which an outline is given in Scheme 1. After getting 

excited through visible light irradiation, the easiest way to interact with molecules is via sensi-

tization (Scheme 1, middle), which means that an energy-transfer (ET) towards a substrate 

takes place. Whereas this molecule is now in an excited electronic state, therefore high in en-

ergy, and may undergo various reactions, such as [2+2] cycloaddition or isomerization,[19] the 

catalyst reaches its ground-state again.  

Other pathways imply single-electron transfers (SET), also known as photoinduced 

electron transfers (PET). Here, a distinction has to be made between oxidative and reductive 

quenching of the catalyst. Whereas for the oxidative cycle at first an electron is donated from 

the catalyst to an acceptor molecule (Scheme 1, left side, E1/2
III/II* = -0.81 V),[20] at the reductive 

cycle a donor gets oxidized by the catalyst (right side, E1/2
II*/I = 0.77 V). Since the phrase cat-

alyst implies, that only sub-stoichiometric amounts are necessary, and it is not consumed dur-

ing the reaction,[21] the ground-state has to be reached again. The RuIII species has a comparable 

high oxidation potential (E1/2
III/II = 1.29 V) and is, therefore, reduced by a donor to its ground-

state. RuI, on the other hand, has a very high reduction potential (E1/2
II/I = -1.33 V) and falls 

back to RuII through oxidation by an acceptor molecule. Due to the outstanding properties of 

RuI a sacrificial electron donor, such as NEt3 or other higher molecular substrates, is often used. 

While this is certainly adverse given the atom economy, one aims for photoredox-neutral 
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transformations. It implies that an oxidation/reduction through the catalyst leads to an interme-

diate, which itself is subsequently reduced/oxidized to give back the catalyst in its ground-

state.[22] 

 

 

Scheme 1: Reaction pathways of [Ru(bpy)3]2+. Oxidative quenching cycle on the left-hand side, reduc-

tive quenching cycle on the right-hand side and sensitization pathway in the middle. 

 After this brief overview of possible reaction pathways of an excited transition-metal 

based pyridyl complex, the underlying photophysical aspects are discussed in the following 

exemplary on [Ru(bpy)3]
2+ (1, Scheme 2). Since this catalyst has an absorption-maxima at 

452 nm, through visible light irradiation an electron is excited via metal to ligand charge-trans-

fer (MLCT) from the fully occupied t2g orbital into the ligand-centered singlet π* (S1) orbital. 

This directly undergoes inter-system crossing (ISC) to obtain the lower-energy triplet π* (T1) 

state and, therefore, the excited catalyst [Ru(bpy)3]*
2+ (2). A decisive characteristic of a pho-

tocatalyst is the excited-state lifetime, which must be sufficient for the catalyst to interact with 

molecules. Otherwise, it would directly fall back to its ground state via photoluminescence or 

vibrational relaxation. Since the direct decay to its ground-state, however, is spin-forbidden, 

the excited state lifetime for 2 is in a comparable high range of 1100 ns.[20] Therefore, 2 is long-

lived enough, to interact with other substrates. Whereas for the oxidative quenching cycle the 

electron from π* (T1) is shifted to the lowest unoccupied molecule orbital (LUMO) of the sub-

strate, for the reductive quenching cycle an electron from the highest occupied molecule orbital 

(HOMO) of the substrate is donated to the metal-centered t2g orbital of the catalyst. As already 

discussed, [Ru(bpy)3]
3+ (3) and [Ru(bpy)2]

+ (4) exhibit a very high oxidation or reduction po-

tential, respectively. Therefore, the ground state 1 is straightforwardly obtained via a second 

single electron transfer.[10a,23]  
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Scheme 2: Jablonski diagram of a visible light-excitation of [Ru(bpy)3]2+ (1) and subsequent quenching 

via SET. 

 Apart from photoredox pathways, there is the possibility of a sensitization mechanism, 

of which Dexter energy transfer and Förster resonance energy transfer (FRET) are the most 

common. The underlying photophysical processes are depicted in Scheme 3. In case of physical 

contact between photocatalyst and substrate, i.e. if the orbitals are overlapping, a Dexter elec-

tron-transfer can occur (left side). This implies a two-electron transfer, i.e. the electron from 

π* (T1) is shifted to the LUMO of the substrate, whereas an electron from its HOMO is trans-

ferred to the t2g orbital of the catalyst, giving back its ground state 1. The Förster resonance 

energy-transfer can occur, if on the one hand a suitable substrate and photocatalyst are closer 

than 10 nm to each other, and on the other hand, the emission spectrum of the catalyst overlaps 

with the absorption spectrum of the substrate (right side). If this is the case, an electron is 

shifted from the HOMO to the LUMO through the relaxation energy of π* (T1) which funnels 

a vibrational mode of the substrate.[24] 
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Scheme 3: Jablonski diagram of catalyst-quenching via Dexter energy-transfer (left) and Förster en-

ergy-transfer (right). 

 Besides [Ru(bpy)3]
2+ (1) there are numerous other transition metal-based photocata-

lysts, bearing different characteristics. Therefore, depending on the substrates and striven 

chemical transformations, the catalyst must be chosen accordingly. Table 1 shows further metal 

complexes used in this work, along with their decisive properties, i.e. excited state lifetimes, 

reduction potentials and excitation as well as emission wavelengths. 

Table 1: Transition metal-based fac-Ir(ppy)3 (5), [Ir(ppy)(dtb-bpy)]+ (6) and [Cu(dap)2]+ (7) and their 

corresponding relevant photoredox properties. a 

 

E1/2 (C+/C*) [V] -1.73 -0.96 -1.43 

E1/2 (C*/C-) [V] +0.31 +0.66  

E1/2 (C+/C) [V] +0.77 +1.21 +0.62 

E1/2 (C/C-) [V] -2.19 -1.51  

excited-state lifetime τ [ns] 1900 557 260 

excitation λmax [nm] 375 -  

emission λmax [nm] 494 b 581 670 c 

references [25] [26] [27] 

aUnless otherwise noted, potentials were measured in acetonitrile at room temperature and are relative 

to the saturated calomel electrode. bDetermined in ethanol/methanol (1:1) glass at 77 K. cDetermined in 

DCM.   
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2. Recent advancements in photocatalytic flow chemistry 

 As already stated, the development of flow reactors has contributed significantly to in-

creasing the scope of photochemical applications in the industry. While there has lately been 

tremendous progress, only a small part will be reflected in this chapter. To gain a deeper insight, 

it is redirected to more detailed reviews covering this topic.[9,28]  

 The implementation of flow reactions requires special equipment, which ranges from 

inexpensive self-made reactors of perfluorinated polymer tubes wrapped around a light source 

to pricy glass plates with etched channels.[28e] However, they all have one in common: the 

reagent mixtures are flushed through tubes of very small diameters. This unique construction 

opens up new possibilities for performing reactions in a two-phase fashion, i.e. using two im-

miscible solvents,[29] a liquid/gas[30] or liquid/solid system, or even triphasic systems.[28d] Het-

erogeneous catalysts have also permanently been installed within tubes, allowing for flow sys-

tems with continuous catalyst recycling.[28b] 

Compared to batch setups, the undisputed advantages are inter alia temporal and safety 

aspects as well as enhanced scalability. The small diameters of the tubes lead to an improved 

mixing and mass transfer. Therefore, reactions proceed many times faster, while simultane-

ously the total amount of hazardous or explosive compounds within the reaction unit is dimin-

ished. Besides, the resulting large surface-to-volume ratios allow for a superior heat transfer, 

which is especially important for exothermal reactions and those that need to be heated. More-

over, translating small scale reactions to a big scale is facilitated, since the same setup can be 

utilized and several flow reactors can be connected in series.[28b] The arguably most important 

aspect for successfully scaling up visible light-driven reactions, however, is the enhanced irra-

diation of the reaction mixture. A closer look into the Bouguer-Lambert-Beer law (Eq. 1) re-

veals why this is so important: 

 

𝐴 = 𝑙𝑜𝑔10  
𝐼0

𝐼
=  𝜀 ∙ 𝑐 ∙ 𝑙 (Eq. 1) 

 

The absorbance (A) is the product of the molar extinction coefficient (ε) as well as 

concentration (c) of the light-absorbing molecules and the optical path length (l).[28c] Due to 

these correlations, an upscaling in batch setup by enlarging the reaction vessel is hampered, as 

the transmittance of light attenuates when distancing from the light source, i.e. when the liquid 

medium becomes thicker. A graphical illustration is given in Figure 1, with various concentra-

tions of [Ru(bpy)3]
2+ (1) representing the light-absorbing species. Due to its exceptional high 
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extinction coefficient of ε = 14,600 M-1.cm-1,[20a] at common concentrations of 0.25 mM and 

0.10 mM, the transmittance is halved already at path lengths of 1 mm or 2 mm, respectively. 

Hence, there are two possibilities to circumvent the attenuation of light intensity: decreasing 

either the concentration of the light-absorbing species which may be disadvantageous for some 

reactions, or the path length, being the most convenient option. Flow reactors follow the last 

principle, as they usually exhibit tubes with very thin inner diameters. This promises a largely 

homogeneous light transmittance.  

 

 

Figure 1: Light transmittance as a function of the optical path length. [Ru(bpy)3]2+ was used as light-

absorbing species (ε = 14,600 M-1*cm-1). Transmission = 10(-ε*c*l).[28e] 

Not only the assembly of micro reactors has been improved over time, inasmuch as the 

tubes are getting, on the one hand, smaller and may even be found on microchips and, on the 

other hand, bigger for large scale purposes, but also the light sources have changed. From con-

ventional compact fluorescence light bulbs (CFL) to LEDs, recently an operational simple 

24 W laser-driven flow process in a continuous stirred 100 mL tank reactor was presented by 

Wittenberger et al.[31] Thorough optimization of catalyst concentration, liquid depth, and laser 

configuration allowed them to decrease the catalyst loading while having simultaneously a tre-

mendous reaction time acceleration for a visible light-mediated C-N coupling towards 10 

(Scheme 4). Moreover, this setup allowed the authors to perform the reaction on a kilogram 

scale at throughput rates of 48 g/h, therefore, furnishing 1.54 kg product 10 (85% yield, 99.5% 

purity) within 32 h.  
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Scheme 4: Visible light-mediated C-N coupling towards 10 in a 100 mL continuous stirred tank reactor 

employing an optic laser as light source. 

That performing reactions in a flow setup not only have time-related advantages but 

may also entail positive impacts in yield was demonstrated amongst others by Reiser et al. on 

a deoxygenative cyclization of 12 (Table 2).[32] Although this reaction provides in a 0.1 mmol 

batch setup full conversion and 70% product 13 within 20 h (entry 1), upscaling to 1.0 mmol 

proved to be disadvantageous as the reaction time increased to 7 d to achieve full conversion. 

Moreover, also a deterioration of yield to 54% was obtained (entry 2). Only when a micro 

reactor system was employed, the reaction time could be reduced to 28 h while furnishing 73% 

product 13 (entry 3).  

Table 2: Photocatalyzed deoxygenative cyclization of 12 under batch and flow conditions. 

 

Entry Setup Scale [mmol] Time Conversion [%] Yield [%] 

1 batch 0.1 20 h 100 70 

2 batch 1.0  7 d 100 54 

3 flow 1.0 28 h 100 73 
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 Another example worth mentioning is the pioneering work from Stephenson et al. Since 

fluorination is especially important for medicinal applications, the production of those, how-

ever, limited and expensive, a cost-efficient upscaling is highly desirable.[33] This was achieved 

by employing [Ru(bpy)3]
+ (1, 0.1 mol%) as catalyst and the in-situ generated trifluoromethyl 

source 17, obtained from readily available trifluoroacetic anhydride (TFAA, 15) and pyridine 

N-oxide 16 (Scheme 5).[34] Whereas in previous studies a 100 g scale in batch was due to se-

verely increased reaction times and deterioration of yield inconvenient,[34a] a transfer to flow 

setup allowed them to even run this reaction on a kilogram scale.[34b] This was demonstrated 

on the trifluoromethylation of 1.2 kg pyrrole 14 furnishing 0.98 kg (50% yield, 81% purity) of 

product 18 within 48 h (Scheme 5). The customized flow reactor employed consists of a PFA 

tubing with a total volume of 150 mL, which was wrapped around a cylinder hosting three blue 

LEDs in the middle. Despite the energy efficiency of LEDs, they present a considerable heat 

source, wherefore the reactor was immersed into water. Noteworthy, another major benefit is 

the ability to mix the reactive reagents only shortly before entering the reactor. In this case, 

TFAA (15) was blended with the other substrates via a T-mixer, accordingly. 

 

 

Scheme 5: Trifluoromethylation of pyrrole 14 in a flow reactor. 

 Pursuing this principle enables elegantly the safe operation with chlorine, which is oth-

erwise frequently shunned in laboratories. Kappe et al.[35] and Ryu et al.[36] presented a flow-

process for the photochlorination of alkenes through on-demand generated Cl2. Exemplary for 

such a reaction is the chlorination of cyclohexane (19), depicted in Scheme 6. Aqueous solu-

tions of HCl and NaOCl are firstly combined generating chlorine gas which is further mixed 

via a T-piece with the alkene 19. These gas/liquid phases are subsequently transferred to a 
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glass-made flow reactor and irradiated with UV-light. After exiting the reactor, the solution is 

quenched by aqueous Na2SO3 furnishing the product 20 in 94% yield after a residence time of 

only 1 min. Both the in situ generation of chlorine and the closed flow system as well as the 

subsequent quenching contribute to secure handling and minimizing of safety hazards.  

 

 

Scheme 6: Photochlorination of 19 in flow through in situ generated chlorine. 

 Gilmore et al. established another very valuable liquid/gas flow reaction, i.e. the syn-

thesis of the antimalarial drug artemisinin (23, Scheme 7) from crude extracts of Artemisia 

annua leaves.[37] The advantage of this procedure is that not only a previous, arduous purifica-

tion of the starting materials is circumvented, but the plant extract also contains both the arte-

misinin precursor dihydroartemisinic acid (DHAA, 21) and chlorophyll, which is exploited as 

photocatalyst for the generation of singlet oxygen. A solution of DHAA (21), chlorophyll and 

trifluoroacetic acid in toluene is blended via a T-mixer with pure oxygen before being flushed 

through a cooled microreactor (Scheme 7). Upon visible light irradiation, 1O2 is generated, 

which undergoes reaction with 21 towards allylic hydroperoxide 22. This intermediate is fur-

ther converted in the presence of the strong acid TFA to the target molecule 23 via a Hock 

cleavage.  

 

 

Scheme 7: Photochemical synthesis of artemisinin 23 from crude plant extract. 
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 One more interesting feature flow systems offer is automatization.[28b] In very small 

scale reactions, numerous conditions in view of residence time, temperature, etc., as well as 

various substrates can be screened in a short time while being directly analyzed on-line. The 

advantages are obvious: it saves a lot of time and chemicals, which is for instance especially 

valuable if scarcely available precursors for pharmaceutical applications are employed.[38] This, 

however, has so far found only little use in photoredox chemistry, yet has very high potential 

and could become even more important in the future.[28b] 

Despite all the advantages mentioned, flow reactors also have some apparent drawbacks 

and limitations. These are partially high prices of the reactors themselves as well as the pump 

system. Due to the small diameters of the tubes, clogging through precipitation may occur dur-

ing the reaction. Besides, a translation from batch setup to flow is not as trivial and requires 

somewhat more effort. All things considered, however, one can say that the advantages out-

weigh these drawbacks. 

 The flow reactor system used in the present work consists of a glass-made plate which 

is irradiated from above with 8 high-power blue LEDs (λ = 455 nm). Temperature control is 

ensured by a water-cooled aluminum block, the glass cartridge is inserted in (Figure 2). The 

flow rates can be adjusted via a syringe pump. 

 

 

Figure 2: Micro reactor system employed in this work.  
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B. Recyclable Photocatalysts 

1. Introduction 

In the year 1835, Berzelius coined the term ‘catalysis’, derived from the Greek words 

kata and lyein, which means ‘down’ and ‘loosen’, respectively.[1] With this, he concluded that 

there is something beyond chemical affinity, i.e. the property of a substance to take part in a 

reaction whereby remaining unchanged itself. Catalysis only emerged as a tool for complex 

chemical reactions in the 20th century,[2] even though it has been applied for a long time.[3] 

 In view of photochemistry, transition metal-based catalysts are still very popular due to 

their versatility and chemical stability. Their scarcity and, therefore, high price, however, se-

verely impedes the applicability on large-scale for the industry as the typical catalyst loading 

is 1 mol%. For this, it is highly desirable to invent recyclable versions of those. This would not 

only reduce the arising expenses but also prevent contamination of the products with potentially 

toxic complexes, which is particularly important concerning drug synthesis.  

 A distinction is to be made between heterogeneous and homogenous catalysis.[4] Ho-

mogeneous catalysts are usually located in the same phase as the reagents, which typically 

results in high reaction rates. However, a recovery of these is sometimes not feasible or in-

volves a great deal of time and effort and is, therefore, too expensive to be considered for 

industrial applications. Contrary to that, heterogeneous catalysts are found in a different phase 

than the reagents. Typically, the catalytic species is present in its solid state to promote reac-

tions in a gaseous or liquid phase, which has the advantage of an easy recovery. This is reflected 

in the fact, that more than 90% of the chemical transformations in the industry are heterogene-

ously catalyzed.[5] Despite all these advantages, heterogeneity is considered critical in photo-

chemistry due to its limitations in mass transfer and photon propagation. 

Nonetheless, there are numerous successful examples of both homogeneously and het-

erogeneously operating recyclable transition metal-based photocatalysts. Using iridium and ru-

thenium as the basis, in this chapter, a brief overview is given over various synthesis and recy-

cling strategies and reactions performed. Since a crucial criterion to function as a recyclable 

catalyst is that the reactivity is still given after several successive reaction runs, this will also 

be considered.  
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1.1. Homogeneously operating recyclable transition metal-based photocatalysts 

Due to their high catalytic activity and simultaneous high cost, a lot of effort was invested 

in the development of recyclable versions of homogeneously operating iridium- and ruthenium-

based photocatalysts and to date, various strategies have been established. As this usually 

means to properly functionalize an existing catalyst, it is associated with a time-consuming 

synthetical effort.  

An easy to implement and therefore very appealing recycling approach, however, was 

presented by Rueping et al.[6] Taking advantage of the solubility of the positively charged com-

plex [Ir(ppy)2(bpy)]+ (6) in ionic liquids, they conceived a process to perform visible light-

mediated E/Z-isomerizations of trans-stilbene (24) and derivatives in a two-phase system 

(Scheme 8). Without the need of pre-functionalization, [Ir(ppy)2(bpy)]PF6 was dissolved in 

bmim/BF4, whereas trans-stilbene (24) was accordingly dissolved in toluene. Owing to the 

two-phase nature, the catalyst-containing layer could easily be separated after a reaction and 

thus, reused for eight consecutive runs without any loss in reactivity. This system was improved 

even further by transferring it to a two-phase flow system with continuous recycling. For this, 

the substrates were dissolved in n-pentane and the catalyst in bmim/BF4 and both phases were 

passed through a microreactor by two individual pumps. The layers were continuously sepa-

rated, and, whereas the catalyst was directly reused, the product was collected separately. With 

this, quantitative conversions on a 1.8 g scale could be achieved at flowrates up to 10-20 mL/h. 

However, as attractive as this system is, it is only suitable for substrates soluble, and reactions 

proceeding in non-polar solvents such as pentane or toluene which drastically limits its applica-

bility. 

 

 

Scheme 8: Visible light-mediated E/Z-isomerization of trans-stilbene (24) and other selected examples 

with their respective recovery rate in [%] and Z/E ratios after chromatographic purification.  
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Another method that has emerged as a very common and appealing strategy is to tag a 

photosensitizer to soluble polymers.[7] Catalysts modified in this way provide homogeneity, 

wherefore the light penetration is not disturbed, and, since the polarity is altered, they simulta-

neously allow for exclusive recycling methods which are presented in the following. 

The first soluble polymer-tagged photocatalyst was established by Bergbreiter et al.[8] A 

[Ru(bpy)3]
2+ complex was equipped with up to six polyisobutylene (PIB) chains and, although 

the attachment of PIB onto the bpy-ligands was unselective and led therefore also to unevenly 

substituted complexes, the behavior in solutions was similarly for all of them. For clarity, no 

differentiation is made between the derivatives and they are referred to as [Ru(PIB-bpy)3]Cl2 

(30). Thanks to its high lipophilicity and the resulting solubility in non-polar solvents, the cat-

alyst could be employed to promote free radical polymerizations of acrylates 32 in heptane 

(Scheme 9). The products 33 precipitate and can easily be separated by filtration while the 

catalyst remains in the heptane phase. This allows for a reusage by simply adding fresh starting 

material. The effectiveness of this method was reflected in the low Ru contamination of the 

products of 1.9 ppm, which corresponds to less than 1% Ru leaching. In contrast, performing 

the reaction with [Ru(bpy)3]
2+ in heptane/DMF and subsequent precipitation of product by add-

ing excess MeOH led to a contamination of 48.4 ppm, corresponding to 30% Ru leaching. 

However, already in the third consecutive run, the yield dropped from 82 to 70%, which was 

addressed to the degradation of the complex.  

 

 

Scheme 9: Free radical polymerizations catalyzed by [Ru(PIB-bpy)3]Cl2 (30). 

 However, the catalyst 30 with only one PIB chain per ligand, which proved to be suffi-

cient for it to be soluble in heptane and ensure phase-selectivity, was later used for more chal-

lenging reactions in the same group (Scheme 10).[9] Contrary to the free radical polymeriza-

tions, precipitation of products and therefore a solid/liquid separation was no longer conceiva-

ble. Instead, they made use of a DCM/MeCN solvent mixture to ensure the solubility of both 
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the catalyst and substrates in a single phase. After the reaction, the solvents were evaporated, 

and the catalyst was recovered via a liquid/liquid extraction from heptane and acetonitrile. This 

procedure was applied to the reactions depicted in Scheme 10. Although the oxidative C-C 

bond cleavage of 34 was originally run in pure acetonitrile,[10] this method functioned very well 

and showed as excellent catalytic activity as pristine [Ru(bpy)3]Cl2 (Scheme 10, a). Moreover, 

outstanding recyclability was evident, and the catalyst could be reused for at least five runs 

without any loss in activity. To avoid the extraction step, a heptane/THF/MeCN (1:4:1, v/v/v) 

solvent mixture was successfully employed, which has the advantage that after adding water 

the phases separate and the catalyst containing heptane-phase could be simply separated and 

directly reused in a following run. Furthermore, a [2 + 2] cycloaddition of 36 established by 

Yoon et al.[11] was performed (b). Even though high conversions were obtained, due to the 

change in solvent polarity by using DCM/MeCN (9:1) instead of pure MeCN, the product 37a 

was afforded in an average of 42% yield within 5 runs, but also the undesired reductive cy-

clization product 37b was obtained in an average of 39% per cycle. However, the recyclability 

was satisfactory showing no loss in activity within five consecutive runs. Attempts towards a 

third reaction, i.e. a conversion of alcohol 38 to bromide 39 remained unsuccessful, as the 

transformation suffered from the change in polarity, thus exhibiting the limitations of this sys-

tem (c). It should be further noted that the leaching of Ru of the well-performing reactions was 

determined to be roughly 1% in the third runs, respectively.  

 

 

Scheme 10: Application of [Ru(PIB-bpy)3]Cl2 (30) in various visible light-mediated reactions. 
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Reiser et al. followed this concept of using soluble polymers and established the first re-

cyclable version of a homogeneously operating fac-Ir(ppy)3 by tagging one of its ligands with 

a PIB chain, forming fac-Ir(PIB-ppy)(ppy)2 (40, Scheme 11).[12] Instead of precipitating reac-

tion products or using homogeneous reaction mixtures and a subsequent liquid/liquid extrac-

tion to recover the catalyst as in the aforementioned examples, the hydrophobic catalyst was 

dissolved in heptane, whereas the reactants were placed in acetonitrile. Since these two solvents 

form a thermomorphic system, they show full miscibility at elevated temperatures (85 – 90 °C), 

however, they separate again after cooling down. This strategy allows conducting reactions in 

only one phase while simultaneously ensure easy separation of the catalyst after a reaction. 

With this, deiodation of 41 and deiodation/cyclization reactions of 43 were performed, while 

the catalyst was recycled for at least ten times without any greater loss in reactivity (Scheme 

11, a and b). Moreover, a flow system with continuous catalyst recycling was invented to per-

form an E/Z-isomerization of 45 (c). Once again, the catalyst performed remarkably well al-

lowing for effective reuse for at least 30 times without any loss in reactivity and hardly any 

leaching of Ir into the reaction mixture. Not only is this reaction feasible in a one-phase system 

at elevated temperatures, but also without heating and, therefore, in a two-phase fashion. This 

is especially valuable for reactions suffering from high temperatures. In the first cycle, though, 

the iridium leaching was determined to be 2.6%, however, it declined in course of further runs 

to below 0.1%. This comparable high value in the beginning was addressed to a small amount 

of shorter PIB chains present in their PIB source Glissopal® and the accompanying lower lip-

ophilicity of the resulting complexes.  

 

 

Scheme 11: Application of PIB tagged iridium catalyst 40 in various visible light-mediated reactions.  
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 Considering previous examples of photocatalysts tagged with a soluble polymer as a 

basis, the group of Duan presented both a recyclable polyalkylated [Ru(bpy)3]
2+ [13] as well as 

a recyclable polyalkylated fac-Ir(ppy)3 complex.[14] They aimed to circumvent the issues aris-

ing from PIB, such as the unevenly distributed chain length and the accompanied catalyst leach-

ing, or the partially unselective substitution. Therefore, catalysts with a well-defined and con-

sistent structure were established. The dinonylmethyl-substituted catalyst [Ru((DNM)2bpy)3]
2+ 

(47) was effectively employed for perfluoromethylations of various coumarins 48 using a 1:1 

mixture of DCM/MeCN as solvent (Scheme 12). However, the reaction time had to be in-

creased threefold to obtain the same yields as with non-immobilized [Ru(bpy)3]
2+. Through 

recovery by liquid/liquid extraction from heptane/MeCN, the catalyst could be reused with 

evident recyclability as the yield for 50d only dropped from 66% in the first to 51% in the sixth 

run. After the last cycle, however, only 57% of the catalyst could be recovered, as determined 

by ICP measurement.  

 

 

Scheme 12: Dinonylmethyl-substituted [Ru((DNM)2bpy)3]2+ (47) and its application for visible light-

mediated perfluoroalkylations of various coumarins 48 and recyclability test. 

The heptadecanyl-alkylated fac-Ir(hdppy)3 (51) on the other hand was employed for the 

synthesis of 3-trifluoromethyl-4-phenyl coumarins 55 and 3-difluoroacetyl-4-phenyl couma-

rins 56 (Scheme 13).[14] Taking advantage of the fact that DMF and heptane form a thermo-

morphic solvent system, they followed the same recycling strategy as conceived from Reiser 

et al.[12] which was presented before. Again, excellent recyclability was achieved and no de-

crease in activity was observed within five consecutive runs for both trifluoromethyl- and 
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difluoroacetyl-substituted coumarins 55a and 56a. The recovered catalyst in the last cycles was 

determined to be 79% and 83%, respectively. 

 

 

Scheme 13: Application of polyalkylated fac-Ir(hdppy)3 (51) for visible light-mediated coumarin-de-

rivative synthesis and its recyclability performance. 

In contrast to all previously presented recycling strategies, a different approach was 

followed by Kappe et al.[15] whose group merged photoredox chemistry with organic solvent 

nanofiltration. More precisely, several [Ru(bpy)3]
2+ complexes (1) were anchored to a 2nd gen-

eration PAMAM dendrimer (64). Therefore, one ligand of 1 was equipped with an aldehyde 

functionalization and thus linked to one of the dendrimers 16 terminal amino groups (Scheme 

14). This led to dendrimer units with an average of 14.7 ruthenium atoms (determined by ICP). 

Thanks to this macromolecular photosensitizer 57, a continuous catalyst recycling in a flow-

setup through a size-exclusion membrane - as these are only permeable for the products formed 

- could be realized. The catalytic performance of G2-PAMAM(Ru)16 with chloride or hex-

afluorophosphate as counter anion, respectively, was tested utilizing an Appel reaction 

(Scheme 14, a), a reductive opening of chalcone epoxide 60 (b) and a reduction of azide 62 (c). 

Thanks to its solubility in acetonitrile and acetone/DMF, it showed activities as excellent as 

the non-immobilized parent complex 1. However, the recycling proved to be challenging as 

several problems occurred. These were for the continuous-flow Appel reaction that pressures 

beyond the limits of the membrane should have been applied. This was most likely caused by 

the too low solubility of the catalyst in the solvent mixture and therefore, it partially stuck to 
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the membrane which decreased the catalytic activity. The reductive opening of the chalcone 

epoxide 60 as well as the azide reduction towards 61, on the other hand, make use of an excess 

of formic acid, which degraded the dendrimeric structure and a drop of 70% in yield was ob-

served already after the second run. Only when they switched to hydrazine hydrate as a reduc-

ing agent for the azide reduction this issue could be circumvented (c, lower pathway). Although 

the yield decreased from 99% to about 50% when changing the conditions, excellent recycla-

bility is given and after five runs no decrease in catalytic activity was observed. 

 

 

Scheme 14: [Ru(bpy)3]2+ attached on PAMAM and its application as recyclable photocatalyst via size 

exclusion. 
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1.2. Heterogeneously operating recyclable transition metal-based photocatalysts 

Although homogeneously operating catalysts have the advantage of higher activity, a lot 

of effort has to be put into the development of proper recycling strategies. Heterogeneous pho-

tocatalysts, on the other hand, fight against mass transfer resistance and photon propagation 

hindrance. Nonetheless, they offer a more convincing recovery technique through simple fil-

tration or centrifugation. This makes them particularly valuable for industrial applications and 

more and more examples are currently sprouting, some of which are presented hereafter. 

Next to the incorporation of iridium and ruthenium-based photocatalysts into metal-or-

ganic frameworks (MOFs), which has experienced huge upsurge recently,[16] the most predom-

inant technique is to link the photosensitizer to solid supports or insoluble polymeric resins. 

This idea already arose in the year 1980 when Spiro et al. were able to coat an n-type SnO2 

grafted glass with roughly 1000 layers of a -SiCl3 functionalized [Ru(bpy)3]
2+ complex.[17] As 

photoredox chemistry was not yet established at that time, only photoelectrochemical experi-

ments were performed. Thenceforth, other examples followed, however, were only considered 

lately to be employed as recyclable photoredox catalyst. One of the first exemplars was pre-

sented by Huang et al.[18] In the course of their studies, one ligand of [Ru(bpy)3]
2+ (1) was 

equipped with an aldehyde to be attached to amine-functionalized mesoporous silica nanopar-

ticles affording a ruthenium loading of 0.11 mmol/g. With this, an easy oxidation of thioanisole 

was conducted, resulting in 89% conversion compared to 98% with the non-immobilized par-

ent complex 1. A recovery through filtration and reusage of the catalyst revealed only a slight 

decline in activity over five consecutive runs, inasmuch as the conversion dropped to 82%. 

Unfortunately, the only information about the leaching given is that ‘it can be ignored’.  

Similar to that, a [Ru(bpy)3]
2+ photocatalyst with terminal -Si(OH)3 groups was covalently 

attached to mesoporous organosilica to be used for water oxidation in presence of IrOx and 

S2O8
2-.[19] However, no further experiments were performed. 

Yet another silica-bound ruthenium complex was introduced by Francis et al.[20] Likewise, 

commercially available amine-functionalized silica beads were used as solid support for 

[Ru(bpy)3]
2+ complexes decorated with carboxylic acids. With this easy to prepare catalyst 65, 

intramolecular visible light-mediated cyclizations of 66 were performed (Scheme 15). Note-

worthy, the heterogeneous catalyst afforded thanks to a loading of 0.033 mmol/g ruthenium 

the same yield as the non-immobilized version. Being easily recovered by vacuum filtration, it 

could be reused for at least eight consecutive reaction runs towards 67a without any loss in 
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activity. Moreover, this way the purification of products was facilitated, as precipitation from 

water/ethanol proved to be sufficient and no subsequent column chromatography was needed.  

 

 

Scheme 15: Application of silica-bound photocatalyst 65 for intramolecular cyclizations. 

 Following a slightly different approach, Bhaumik and Zhao et al. presented in the same 

year another RuII complex incorporated into silica.[21] This was achieved by equipping 

[Ru(bpy)3]
2+ with six terminal -Si(OEt)3 groups and reacting them with TEOS and CTAB. 

Having a somewhat higher loading of 0.0495 mmol/g, this catalyst performed well for various 

transformations, such as dehalogenations of alkyl halides, or Appel reactions.  

Following up on this idea, in the course of his Ph.D. thesis, P. Kohls conceived a silica-

bound iridium catalyst.[22] This was realized through click reactions between azide-functional-

ized silica and [Ir(ppy)2(dtbbpy)]PF6 equipped with a terminal alkyne. Although substitution 

of the non-immobilized catalyst with the silica-bound version 68 proved to be very promising 

for the deoxygenation reaction performed, the recyclability was poor and the yield dropped 

from 92 to 29% already in the second run (Scheme 16). This might be addressed to a catalyst 

decomposition, as through filtration only 72% of the employed particles could be recovered 

after the first cycle.  

 

 

Scheme 16: Silica-bound IrIII catalyst 68 and its application for a deoxygenation reaction. 

 The same IrIII complex tagged with a vinyl group was only lately anchored to another 

silica support, i.e. thiol-functionalized mesocellular silica foams (MCFs), via a thiol-ene reac-

tion.[23] Thanks to the 3D pore structure and the high transparency, the resulting [Ir(ppy)2(bpy)-
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MCFs] with a loading of 0.14 mmol/g, performed as well as its homogeneous parent complex 

6, affording almost quantitative product formation for the reductive depolymerization of oxi-

dized lignin compounds 71 (Scheme 17). Besides, after a reaction, the catalyst was allowed to 

settle down and the supernatant was decanted. By adding fresh starting materials, a consecutive 

run could directly be performed. This way, six consecutive cycles were conducted with scarcely 

any loss in activity and only less leaching (the loading of the particles dropped to 0.13 mmol/g 

after the recyclability test). 

 

 

Scheme 17: Depolymerization of oxidized lignin β-O-4 model compounds 71 with silica-bound iridium 

catalyst. 

 A special kind of solid support offers TiO2 which was targeted as such by Jain et al.[24] 

Nanocrystalline TiO2 grafted with hydroxy groups served as an anchor for a RuII polyazine 

complex to perform visible light-mediated oxidative cyanations of tertiary amines 75 (Scheme 

18). It has not only been established that after filtration, the catalyst 74 can be reused for at 

least eight times without a significant loss in activity, but also that the TiO2 proved to have a 

synergistic effect in this transformation. This could be demonstrated by control experiments 

towards 76a, since solely TiO2 as catalyst afforded no product at all and merely the non-im-

mobilized RuII polyazine gave less yield (90%) than the combination of both (96%). Through-

out moderate to excellent yields were obtained for various tertiary amines and ICP measure-

ments revealed no detectable leaching of ruthenium evincing the robustness of the particles. 
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Scheme 18: Visible light-mediated cyanation catalyzed by TiO2 immobilized ruthenium polyazine 74. 

An unusual procedure towards a solid support is the immobilization of an IrIII complex 

on pyridine-modified nanoporous polydivinylbenzene (PDVB), established by Shen et al.[25] 

Therefore, PDVB, which was obtained from divinylbenzene and various amounts of 4-vi-

nylpyridine, was chelated with [Ir(ppy)2Cl]2 to generate heterogeneous catalysts 77 with irid-

ium contents up to 7.54 wt%. Its catalytic activity was tested on cyclization reactions between 

N,N-dimethylanilines 78 and maleimides 79 (Scheme 19, a). As the results were comparable 

to those with [Ir(ppy)2(dtbbpy)]PF6 (6),[26] and no leaching of iridium was detectable by ICP, 

the catalyst was recovered by centrifugation and submitted to various consecutive reaction 

runs. Only a slight decline in yield was obtained within four cycles. Recently, this catalyst was 

also successfully applied in the same group for other visible light-mediated reactions, such as 

Beckmann rearrangements of 81 (b), conversion of aldoximes 83 to nitriles (c) or the reaction 

of carboxylic acids towards their corresponding anhydrides.[27]  
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Scheme 19: Application of PDVB anchored iridium photocatalyst 77 in various visible light-mediated 

reactions. 

 Besides the immobilization strategies presented before, heterogeneous catalysts can not 

only be obtained via post-grafting of pre-functionalized transition-metal based complexes but 

also through polymerization and cross-linking. An effective method for heterogenization of 

active metal centers is directing to porous organic polymers,[28] and is still a great deal of inter-

est for ruthenium and iridium based photocatalysts as new publications are emerging.[29] One 

of the first examples was established by Lin et al. in 2011.[30] Via alkyne trimerization reactions 

employing modified [Ru(bpy)3]
2+ or [Ir(ppy)2(bpy)]+ as fundamental building blocks, porous 

cross-linked polymers (PCPs) 87 and 88 were obtained (Scheme 20). They show high thermal 

and chemical stability and exhibit great surface areas in the range of 1348 and 1547 m2/g. De-

spite the low catalyst loadings of 4.5 and 2.2 wt% for Ir-PCP (88) and Ru-PCP (87), respec-

tively, their catalytic activity is exceptional for photocatalytic aza-Henry reactions of N-aryltet-

rahydroisoquinolines 89 affording the same or even higher yields compared to their homoge-

neous versions. Through filtration, the catalyst was recovered and could be reused for at least 

five consecutive runs without loss in activity and any leaching of Ir or Ru. Moreover, Ru-PCP 

(87) was successfully employed for other reactions such as the α-arylation of bromomalonate 

and the oxyamination of 3-phenylpropanal.[30]  
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Scheme 20: Cross-linkage of ruthenium and iridium complexes and their application in photochemical 

aza-Henry reactions. 

As the low catalyst loadings may be disadvantageous, the same group further improved 

this protocol and established a cross-linked polymer from a modified RuII complex to obtain 

loadings as high as 96 wt%.[31] This could be realized by omitting the crosslinker 86 and in-

stalling only two bpy ligands in the RuII complex instead, with respectively two alkynyl groups 

at 4 and 4’- or 5 and 5’- position. Via oxidative Eglinton coupling reactions, the resulting po-

lymers exhibited surface areas of 15 or 198 m2/g, respectively. Despite the almost non-porous 

nature, both polymers performed well in an aza-Henry reaction between various N-aryltetrahy-

droisoquinolines 89 and nitromethane as well as aerobic oxidative coupling reactions of amines 

and photocatalytic dehalogenation of benzyl bromoacetate. Since even non-porous cross-linked 

polymers with surface areas between 2.7 and 2.9 m2/g were highly reactive for visible light-

mediated reactions,[32] they proposed a light-harvesting mechanism. That means that Ru chro-

mophores inside the polymer can collect the photon energy by excitation of the 3MLCT state 

which subsequently migrates through Dexter triplet to triplet energy transfer to the surface, 

where the photochemical transformation takes place at.  

Another strategy towards cross-linked polymers to heterogenize an IrIII complex was 

conceived by Kobayashi et al.[33] An [Ir(ppy)2(dtbbpy)]PF6 photocatalyst, whose ppy-ligands 

were equipped with one vinyl group each (91), was brought to a polymerization reaction with 

acrylate 93 and cross-linker 92 (Scheme 21). As a first test reaction, i.e. a cross-dehydrogena-

tive coupling (CDC) of N-phenyltetrahydroisoquinoline with diethyl phosphite, revealed an 

iridium leaching of 0.9%, the particles 94 were re-submitted to the same polymerization reac-

tion. Although the additional polymer-layer slightly decreased the Ir loading and thus led to 

prolonged reaction times, the leaching could be diminished to 0.3%. Having the optimized 
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catalyst in hand, the substrate scope was extended by submitting various phosphites or phos-

phine oxides 95 to the CDC reaction. The particles were found to be successfully recyclable 

for at least four times having only slight deterioration in product formation towards 96a. 

 

 

Scheme 21: Heterogenization of iridium complex 91 via polymerization and its application for visible 

light-mediated aza-Henry reactions. 

Only recently, Han et al. developed cross-linked polymers bearing [Ir(ppy)2(bpy)]+ 

moieties via oxidative coupling reactions, comprising sizes of 100 – 200 nm, surface areas 

between 76 and 97 m2/g, and iridium contents up to 17 wt%.[34] A comparison between the 

cationic polycarbazole networks with (98) and without CF3 (99) substitution revealed that the 

fluorinated moiety is beneficial towards photochemical reactions and affords up to 28% higher 

yields (Scheme 22). This was tested for photocatalytic oxidation of sulfides 100 (a), hydrox-

ylation of arylboronic acids 103 (b) and aza-Henry reactions between N-aryltetrahydroisoquin-

olines 89 and various nucleophiles. The catalyst 98 was easily recovered via centrifugation and 

reused in a fresh reaction solution with only a slight decrease in catalytic activity, as the con-

version for reaction (a) dropped continuously from 99 to 90% within five runs. 
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Scheme 22: Synthesis of heterogeneous iridium complexes 98 and 99 via cross-linking and application 

as catalyst in visible light-mediated reactions. 
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2. Immobilization of transition metal-based photocatalysts on 

Nafion  

2.1. Introduction 

As discussed in the previous chapter, transition metal catalysts based on iridium or ru-

thenium are usually very expensive and it is therefore highly desirable to develop recyclable 

versions of these. One fact, however, withheld before: due to its ionic nature, [Ru(bpy)3]Cl2 (1) 

offers a special kind of immobilization without the need of previous functionalization, i.e. the 

non-covalent attachment on solid supports via electrostatic interactions. Following this idea, in 

2011 Choi et al. used Nafion-coated silica as solid support.[35] They have demonstrated that 

Nafion, a perfluoronic scaffold with terminal sulfonic acid groups, is a beneficial support com-

pared to silica itself since the electrostatic attraction of sulfonate groups is superior. The im-

mobilized catalyst is stable in most commonly used organic solvents, only in DMF minor leach-

ing of ruthenium was observed. To prove the catalytic performance, visible light-driven free 

radical polymerizations of various acrylates were performed. Through recovery by centrifuga-

tion, the particles could be reused for at least five cycles without any greater loss in activity. 

Amara and coworkers found, that for photochemical oxidations via singlet oxygen, 

[Ru(bpy)3]Cl2 which is electrostatically immobilized on silica particles increases the reactivity 

almost ten times compared to its pristine parent complex 1.[36] This was addressed to the so-

caused localized higher concentrations of reactive species, i.e., in this case, singlet oxygen.  

Based on this immobilization strategy, Li et al. used sulfonic acid-functionalized re-

duced graphene oxide as a solid support to perform visible light-mediated reductive dehalo-

genation reactions of 2-bromoacetophenone.[37] Again, the catalyst performed well and only a 

slight decrease in the activity was obtained within five consecutive runs. 

In this chapter, the idea of immobilizing [Ru(bpy)3]Cl2 (1) on Nafion via electrostatic 

interactions to obtain an easily accessible recyclable photocatalyst was pursued further. The 

catalyst was tested for its stability in different solvents, followed by the conduction of various 

photochemically driven reactions to prove its reactivity and recyclability. Moreover, a flow-

system was developed to scale reactions up, to improve the recyclability, and simultaneously 

decrease the reaction time. 
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2.2. Immobilization strategy 

Already in the course of my master thesis, we started to investigate this concept using 

commercially available Nafion® SAC-13 (105) as solid support.[38] Elemental analysis and 

additional titration with 0.1 M NaOH of this resin revealed 0.15 mmol/g free accessible sul-

fonic acid groups, which therefore corresponds to the maximal possible loading of [Ru(bpy)3]
2+ 

(1). The immobilization strategy is shown in Scheme 23. At first, Nafion (105) is deprotonated 

by treatment with 2 M NaCl to give the corresponding sodium salt 106.[39] For the final ionic 

exchange, 106 is stirred with different amounts of [Ru(bpy)3]Cl2 (1) in various solvents to ex-

amine which combination gives both the highest loading and best incorporation.  

 

 

Scheme 23: Immobilization of [Ru(bpy)3]Cl2 (1) onto Nafion® SAC-13 (105). 

Since in the aforementioned literature examples the immobilization was performed in 

aqueous media, the first approach was employing water as solvent and 2.0 equiv [Ru(bpy)3]Cl2 

(1). With regard to the maximal possible loading, 24% of the free sulfonic acids were occupied 

and therefore an incorporation of 12% was achieved (Table 3, entry 1). Examination of other 

solvents revealed that MeCN gave the highest ruthenium loading. Although the incorporation 

could be increased to 85% using 0.68 equiv [Ru(bpy)3]Cl2 (1), the loading simultaneously de-

creased to 58% (entry 6). Therefore, we decided to proceed with employing 1.0 equiv of the 

catalyst to be immobilized, resulting in a loading of 67%, or rather 0.101 mmol/g, and an in-

corporation of 67% (entry 5). 
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Table 3: Different catalyst loadings and solvents tested for immobilization. 

entry solvent equiv. [Ru(bpy)3]Cl2 
a loading Ru [mmol/g], (%) b incorporation Ru [%] b 

1 H2O 2.0 0.036, (24) 12 

2 MeOH 2.0 0.074, (49) 25 

3c DCM 2.0 0.096, (64) 32 

4 MeCN 2.0 0.102, (68) 34 

5 
 

1.0 0.101, (67) 67 

6 
 

0.68 0.087, (58) 85 

aCorresponding to 0.15 mmol/g sulfonic acid groups. bDetermined by ICP-OES. c [Ru(bpy)3](BF4)2 was 

used.  

Having the immobilized catalyst 107 in hand, we further explored its stability in com-

monly used organic solvents by stirring 10 mg of the particles for 16 h at room temperature in 

the respective solvent. We found that the higher the dipole moment or the more polar the sol-

vents are, the higher the leaching is into the supernatant solvent (Figure 3). Moreover, the elec-

trostatically bound catalyst suffers when adding small amounts of strong acids such as trifluoro-

acetic acid yet remains unimpaired in the presence of bases like NEt3. This is especially advan-

tageous since the latter is often used as a sacrificial electron donor in reactions making use of 

the reductive quenching cycle of the catalyst.  

 

  

Figure 3: Leaching of ruthenium in [%] into various commonly used organic solvents. 
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2.3. Application of immobilized catalyst in photochemical reactions 

To test the photocatalytic performance of 107, an irreversible E/Z-isomerization of 

readily available E-stilbene (24), developed in the group of Rueping, was performed (Table 

4).[6] Through an energy transfer of an excited photocatalyst, the double bond of 24 is broken, 

forming a biradical species 108 which is isomerized to product 25 via intersystem crossing. An 

advantage of this reaction is its feasibility in non-polar solvents like heptane or DCM. Since 

the particles proved to be insufficiently dispersible in heptane, we continued with DCM. To 

our delight employing Nafion-Ru(bpy)3Cl (107) resulted in only a small deviation from the 

homogeneous catalyst 1 for the generated Z/E-ratio (93:7 compared to 84:16, entry 1 and 3) 

and only minimal leaching of ruthenium was observed (< 0.4%). Driven by these promising 

results the catalyst was recovered by centrifugation and reused in several consecutive runs. 

Within five cycles only a negligible loss in activity was obtained (entry 3 – 7).  

Table 4: Photochemical E/Z-isomerization of stilbene 24. 

 

Entry Run Time [h] Catalyst Z/E ratioa Leaching [%]b 

1c - 8 [Ru(bpy)3]Cl2 (1) 93:7 - 

2 - 16 - 15:85 - 

3 1 8 Nafion-Ru(bpy)3Cl (107) 84:16 0.33 

4 2 8 88:12 0.35 

5 3 8 86:14 0.31 

6 4 8 89:11 0.27 

7 5 8 80:20 0.30 

The reactions were performed on a 0.2 mmol scale, using E-stilbene (24, 0.2 mmol, 1.0 equiv), catalyst 

(3.0 mol%) and DCM (2 mL). The reactions were irradiated with a blue LED (λ = 455 nm) under an 

oxygen atmosphere for the indicated time.  aRatio determined by GC-FID. bLeaching determined by 

ICP-OES. cReaction was performed in MeCN. 

 

To further explore the potential of the immobilized catalyst 107, an ATRA reaction 

between hexenol 109 and diethyl bromomalonate 110 was conducted (Scheme 24).[40] Since 

no byproducts are formed, such transformations captivate through their excellent atom eco-

nomy. Contrary to the photochemical isomerization of stilbene, this conversion is not triggered 

via an energy transfer but rather a single electron transfer (SET) of the photocatalyst promotes 

the reaction by exploiting its oxidative quenching cycle. Upon excitation with visible light, the 
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photocatalyst can directly transfer a single electron to the bromomalonate 110 causing a 

mesolysis of the C-Br bond towards the carbon-centered radical 112 and bromide. The former 

subsequently undergoes addition to hexenol 109. The so caused intermediate 113 is oxidized 

to the carbocation 114 which is nucleophilically attacked by the bromide forming the desired 

product 111. Therefore, it is a redox-neutral transformation without the need for an external 

electron donor. In this case, however, the Lewis acid LiBr is required to facilitate the C-Br 

mesolysis by coordination to the diethyl bromomalonate 110. 

 

 

Scheme 24: Photochemical ATRA reaction between 109 and 110 and its corresponding reaction mech-

anism. 

Following the literature conditions afforded 83% yield (Table 5, entry 1). We were 

pleased to see that once again a substitution of the homogeneously operating catalyst 1 with 

Nafion-Ru(bpy)3Cl (107) gave only a slightly diminished reaction outcome of 68% (entry 2), 

which is most likely caused by its heterogeneity and the consequent disturbance of the light 

transmission. Interestingly, the reaction mixture became dark over time and, although the par-

ticles could be recovered and the leaching of ruthenium was very low (2.4%, entry 2), they kept 

the dark color, which may be an indication for the deactivation of the photocatalyst. This was 

confirmed when we attempted a consecutive run since no reaction could be observed.  
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Table 5: Visible light-mediated ATRA reaction between hexenol 109 and diethyl bromomalonate 110. 

 

Entry Catalyst Run Yield [%] a Leaching Ru [%] b 

1 [Ru(bpy)3]Cl2 (1) - 83 c - 

2 Nafion-Ru(bpy)3Cl (107) 1 68 2.4 

3  2 n.r. - 

The reactions were performed on a 0.25 mmol scale using hex-5-en-1-ol (109, 0.25 mmol, 1.0 equiv), 

bromomalonate 110 (0.50 mmol, 2.0 equiv), catalyst (2.5 µmol, 1.0 mol%), LiBr (0.50 mmol, 

2.0 equiv) and MeCN (1.0 mL). The reactions were irradiated by a blue LED (λ = 455 nm) for 24 h 

under a nitrogen atmosphere. aYields determined by 1H-NMR using 1,3,5-trimethoxybenzene as inter-

nal standard. bLeaching determined by ICP-OES. cIsolated yield.  

Astonished by this result, as the inactivity could not be addressed to the ruthenium 

leaching, we searched for other possible explanations. To investigate if this catalyst degrada-

tion arises from exploiting its oxidative quenching cycle, another ATRA reaction between hex-

enol 109 and perfluoroiodooctane 115 was performed (Scheme 25).[40b] Due to the comparable 

high reduction potential of 115 (- 1.32 V vs SCE),[40b] the transformation can only be mediated 

through the reductive quenching cycle of [Ru(bpy)3]Cl2 (RuII/RuI = - 1.33 V vs SCE)[41]. Re-

markably, substoichiometric amounts of sodium ascorbate as sacrificial electron donor are suf-

ficient to complete the reaction. This can be explained by the fact that once the RuI species is 

formed, the C-I bond of 115 can be heterolytically cleaved forming the corresponding radical 

117. This adds to hexenol 109 and the formed intermediate 118 is oxidized by the excited 

catalyst Ru*II to 119 and, therefore, initiates a propagation mechanism. 

 

 

Scheme 25: ATRA reaction between 109 and 115 and its corresponding reaction mechanism. 
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To our delight, the immobilized catalyst 107 performed as well as the homogeneous 

[Ru(bpy)3]Cl2 (1) and afforded almost quantitative yields (99% and 97%, entry 1 and 3). More-

over, this time the catalyst remained active after the first cycle and could be reused for several 

runs, however, the yield continuously decreased from 97% in the first run to even no reaction 

in the fifth run (entry 3 – 7). In terms of catalyst coloring, the opposite of the previous reaction 

was observed: instead of turning dark, the catalyst bleached and became almost completely 

white after the last run. Just like before, this observation is not because of the ruthenium leach-

ing, which was only very little in the first run (1.3%, entry 3), but rather due to a potential 

catalyst degradation. 

Table 6: Visible light-mediated ATRA reaction between hexenol 109 and perfluoroiodooctane 115. 

 

Entry Catalyst Run Yield [%] a Leaching Ru [%]b 

1 [Ru(bpy)3]Cl2 (1) - 99 (95)c - 

2 - - n.r. - 

3 Nafion-Ru(bpy)3Cl (107) 1 97 1.3 

4  2 78 - 

5  3 60 - 

6  4 20 - 

7  5 n.r. - 

The reactions were performed on a 0.25 mmol scale using 5-hexen-1-ol (109, 0.25 mmol, 1.0 equiv), 

perfluoroiodooctane 115 (0.33 mmol, 1.3 equiv), sodium ascorbate (88 µmol, 0.35 equiv), catalyst 

(2.5 µmol, 1.0 mol%), MeOH (1.5 mL) and MeCN (2.0 mL). The reactions were irradiated by a blue 

LED (λ = 455 nm) for 0.5 h under a nitrogen atmosphere. aYield determined by 1H-NMR using 1,3,5-

trimethoxybenzene as internal standard. bLeaching determined by ICP-OES. cIsolated yield.  

 

Combining these findings, it seems like electron transfers impair the photocatalyst more 

than energy transfers do. Whereas exploiting the oxidative quenching cycle colors the complex 

brownish, which suggests a catalyst degradation, and, therefore, no recyclability is given, the 

reductive quenching cycle brightens the catalyst and the reactivity decreases more slowly. To 

exclude that this coloring arises from the different irradiation times, 10 mg of the immobilized 

catalyst 107 were dispersed in MeCN and irradiated for 24 h, however without any visible 

impact.  
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 Therefore, we decided to focus on reactions taking advantage of the reductive quench-

ing cycle. A prominent example of this is the visible light driven aza-Henry reaction established 

by Stephenson et al. (Table 7).[42] Since N-phenyltetrahydroisoquinoline (89a) acts as the elec-

tron donor itself to initiate the reaction via a SET to the excited catalyst, and nitromethane 

(120) functions as both solvent and nucleophile, no other chemicals are needed for this trans-

formation. Although the reaction would even proceed with only light,[43] the catalyst acceler-

ates the product formation (83% with catalyst, 30% without catalyst after 4 h, entry 1 and 2). 

Also in this case, Nafion-Ru(bpy)3Cl (107) performed well, however, a slight and continuous 

decrease in yield from 72% in the first run to 59% in the fifth run (entry 3 – 7) was observed. 

Most importantly, the leaching of ruthenium remained in a low range between 1.8 to 2.8% per 

run. 

Table 7: Photocatalyzed Aza-Henry reaction between 89a and 120. 

 

Entry Catalyst Run Conversion [%]a Yield [%]a Leaching [%]b 

1 [Ru(bpy)3]Cl2 (1) - 98 83c - 

2 - - 34 30 - 

3 Nafion-Ru(bpy)3Cl (107) 1 86 72 1.8 

4  2 79 66 2.2 

5  3 76 64 2.8 

6  4 74 62 2.4 

7  5 71 59 2.3 

The reactions were performed on a 0.25 mmol scale using N-phenyltetrahydroisoquinoline (89a, 

0.25 mmol, 1.0 equiv), nitromethane (120, 1.0 mL, excess) and catalyst (1.0 mol%). The reaction was 

irradiated for 4 h at room temperature open to air. aYield determined by 1H-NMR using 1,3,5-trimetho-

xybenzene as internal standard. bLeaching determined by ICP-OES. cIsolated yield. 

 

Next, we decided to perform a reaction established in our group, i.e. the decarboxylation 

of N-(acyloxy)phthalimide 121a, which reacts with crotonate 122a to the product 123aa (Table 

8).[44] This transformation is especially attractive, since the furnished substances may be further 

converted to potentially bioactive amino acids and pipecolic acid derivatives (for detailed re-

action mechanism and further transformations see chapter C). Therefore, the reaction would 

benefit from low catalyst leaching to reduce its contamination with the ruthenium complex 1. 

As expected, employing 107 as catalyst gave almost the same reaction outcome as its 
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homogeneous version 1 (entry 1 and 3). Although a decline in yield from 48% in the first to 

36% in the fifth run could be observed (entry 3 – 7), the leaching of ruthenium into the solvent 

mixture was reasonably low (2.9 to 3.8%). 

Table 8: Photochemical decarboxylation towards 123aa. 

 

Entry Catalyst Run Yield [%]a Leaching Ru [%]b 

1 [Ru(bpy)3]Cl2 (1) - 51 - 

2 - - n.r. - 

3 Nafion-Ru(bpy)3Cl (107) 1 48 3.8 

4  2 46 3.5 

5  3 47 2.9 

6  4 43 3.2 

7  5 36 3.0 

The reactions were performed on a 0.2 mmol scale using N-(acyloxy)phthalimide 121a (0.20 mmol, 

1.0 equiv), crotonate 122a (2.0 mmol, 10 equiv), Hantzsch ester (0.20 mmol, 1.0 equiv) and photocata-

lyst (2.0 mol%) in acetone/MeOH (3:1, 2 mL). The reaction was irradiated for 5 h with a blue LED (λ 

= 455 nm) at room temperature under a nitrogen atmosphere. aYield determined by 19F-NMR using 1,4-

bis(trifluoromethyl)benzene as an internal standard. bLeaching determined by ICP-OES. 
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2.4. Development of a two-phase flow process 

Prompted by the auspicious results obtained for the photochemical E/Z-isomerization 

of stilbene 24, we envisioned to conduct this reaction in a flow system. As discussed in chap-

ter A, this would bring along several advantages such as improved mixing, better mass transfer 

and easy control of the residence time to decrease the reaction time.[45] Therefore, we built a 

flow reactor similar to that of the Rueping group.[46] An actual representation is shown in Figure 

4. A column (1) was equipped with a glass rod that was surrounded by a mixture of 60 mg 

Nafion-Ru(bpy)3Cl (107) and 2.5 g silica (2). The irradiation was ensured by 2 x 8 high power 

blue LEDs (4) and cooling was provided by a stream of N2 (5). The substrate 24 was dissolved 

in DCM, saturated with oxygen and transferred to a syringe. The flow rates could be adjusted 

using a syringe pump (6). As can be seen further, irradiation causes the characteristic pink 

photoluminescence (3). 

 

 

Figure 4: Setup of photochemical flow-reactor. 

 In the next step, the most suitable flow rates were evaluated. In Table 9, the residence 

time in the reactor, the Z/E-ratios of 25, and how much faster the reaction proceeds compared 

to a similar batch setup, are given. Starting with a flow rate of 1 mL/h (equal to 0.1 mmol/h), 

1 

2 
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4 
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the same Z/E-ratio as in batch was achieved (88:12, entry 1). However, due to the slow flow 

rate, the cooling was insufficient for the low boiling DCM causing a break inside the column. 

This was not the case at four times the speed and an even better Z/E-ratio of 93:7 was obtained 

(entry 2). This excellent outcome could be maintained up to 20 mL/h (2 mmol/h), which accel-

erates the conversion by 80 times compared to a similar batch reaction (entry 8). However, 

from 30 mL/h it started to drop (entry 9). Conducting the control experiment at 10 mL/h with-

out catalyst, almost no product was formed (entry 6). 

Table 9: Evaluation of the best reaction conditions for the E/Z-isomerization of trans-stilbene (24) in a 

flow process. 

 

Entry Flow rate [mL/h] Residence time [min]a X times fasterb Z/E ratioc 

1 1 120 4 88:12 

2 4 30 16 93:7 

3 6 20 24 93:7 

4 8 15 32 92:8 

5 10 12 40 92:8 

6d 10 12 - 10:90 

7 16 7.5 64 90:10 

8 20 6 80 90:10 

9 30 4 120 86:14 

10 40 3 160 83:17 

11 50 2.4 200 78:22 

Reactions were performed on a 0.20 mmol scale using trans-stilbene (24, 0.20 mmol, 1.0 equiv), cata-

lyst 107 (60 mg, 6.0 µmol, 3.0 mol%) and oxygen saturated DCM (2 mL, 0.1 M). aBased on a dead 

volume of 2 mL. bCompared to batch reactions with reaction times of 8 h. cDetermined by 1H-NMR. 
dWithout catalyst. 

Encouraged by the outstanding catalytic performance, we employed this set-up for an 

upscaling to 6.0 mmol (1.06 g E-stilbene (24)) at a flow rate of 20 mL/h. The substrate was 

collected in 1 mmol fractions to determine the respective Z/E-ratios via 1H-NMR as well as the 

leaching of ruthenium via ICP-OES. The results are depicted in Figure 5. As can be seen, 

throughout the whole reaction process, the Z/E-ratio remains at constant high levels (88:12 to 

91:9). Noteworthy, no ruthenium leaching at all could be detected. Since the catalyst loading 
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in this reaction corresponds to the amount usually employed in a 0.2 mmol batch reaction, it 

was theoretically recycled 30 times, which leads to a turnover number of 900.  

 

Figure 5: Photochemical E/Z-isomerization of trans-stilbene (24) in a flow process. The reaction pa-

rameters are as follows: 6 mmol trans-stilbene (24, 1.0 equiv), 6 µmol Nafion-Ru(bpy)3Cl (107, 

0.001 mol%) which was ground with 2.5 g silica, and 60 mL DCM, saturated with O2. The flow rate 

was set to 20 mL/h (2 mmol/h). 

Driven by this excellent outcome, we were faced with the question of whether we can 

also increase the activity of the catalyst in other reactions by applying this flow-process. There-

fore, the ATRA reaction between hexenol 109 and perfluoroiodooctane 115 was chosen (Table 

10). Once again, the amount of catalyst was adjusted to a 0.2 mmol scale to get a comparison 

to the batch system previously presented. With this, the reaction was performed twice, on a 

1.0 mmol and 1.5 mmol scale, corresponding to a theoretical catalyst recycling of five or eight 

times, respectively. We were very pleased to see that yields of 87% or rather 78% could be 

achieved. Given the fact that in the batch setup the catalyst could only be recycled four times 

with a total yield of 64% (see above, Table 6), this is a remarkable improvement. It should also 

be noted that after the reaction the catalyst lost its characteristic red/orange color and, therefore, 

remained inactive. This may also be the explanation for the drop in yield when the reaction 

was upscaled from 1.0 mmol to 1.5 mmol.  
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Table 10: ATRA reaction between hexenol 109 and perfluoroiodooctane 115 in a flow process. 

 

Entry Flow rate [mL/h] Scale [mmol] Catalyst recyclinga Yield [%]b 

1 40 1.0 5.0 x 87 

2 40 1.5 7.5 x 78 

The reaction was performed using 5-hexen-1-ol (109, 1.0 equiv), perfluoroiodooctane 115 (1.3 equiv), 

sodium ascorbate (0.35 equiv), Nafion-Ru(bpy)3Cl (107, 2.5 µmol) and MeOH/MeCN (4:3, 0.125 M) 
aBased on a 0.25 mmol scale. bDetermined by 1H-NMR using 1,3,5-trimethoxybenzene as internal 

standard.  

At the same time, the group of Amara researched a similar topic and only recently pub-

lished a continuous-flow system using [Ru(bpy)3]Cl2 (1) electrostatically bound to silica as 

catalyst.[47] Comparing batch and flow-process, 1,5-dihydroxynaphthalene was photo-oxidized 

to juglone. Just like in our studies, the flow-process accelerates the reaction, and no leaching 

at all was obtained. However, since SiO2 was used as solid support, the catalyst loading was 

determined to be only 0.003 mmol/g. Using Nafion instead may further improve their results 

due to the higher catalyst density which proved to be an important aspect of this oxidation 

process. 
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2.5. Immobilization of an iridium-based catalyst 

To circumvent the issues [Ru(bpy)3]
2+ (1) brings along for reactions implying an elec-

tron transfer and thus, make the system of anchoring catalysts on a solid support via electro-

static interactions even more attractive, the IrIII catalyst 6 depicted in Figure 6 should have been 

immobilized.  

 

 

Figure 6: [Ir(ppy)2(dtb-bpy)]PF6 (6). 

Although the immobilization itself worked quite well using DCM as solvent - the loading of 

iridium on Nafion has not been determined, however, the particles turned yellowish, gained in 

weight and were stable in DCM - the ionic bond between Nafion and the iridium catalyst proved 

to be considerable weak. In two different reactions performed, the yields of the first runs were 

comparable to the literature outcome using a homogeneous catalyst, respectively. Unfortu-

nately, the solution turned yellow and it seemed that the complete iridium catalyst leached into 

the solution which is reflected in the drastically decreased yield in the second runs. Notably, 

this leaching was not observed, when only irradiating the catalyst in the solvent. Therefore, this 

idea was not pursued any further. 
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2.6. Conclusion 

A very simple and therefore attractive method to immobilize [Ru(bpy)3]Cl2 (1) onto 

Nafion® SAC-13 (105) was further investigated. In addition to previously presented reactions, 

i.e. the polymerization of various acrylates or the photooxidation of 1,5-dihydroxynaphthalene 

(see above), the photochemical E/Z-isomerization of stilbene 24 in batch and flow-process was 

successfully conducted. Moreover, since non-polar solvents like DCM or heptane could be 

utilized the leaching of ruthenium was reduced to a minimum. However, the step towards more 

difficult reactions proved to be challenging, since in the case of exploiting the oxidative 

quenching cycle for an ATRA reaction the catalyst darkened and no recyclability was given. 

On the other hand, using its reductive quenching cycle bleached the catalyst, however, the 

particles could be recovered and reused for at least four consecutive cycles.  
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3. Magnetic nanoparticles as solid support for transition metal-

based photocatalysts 

3.1. Introduction 

Despite the excellent results achieved by immobilizing [Ru(bpy)3]Cl2 (1) onto Nafion® 

SAC-13 (105), there was still some room for improvement. Although especially the flow pro-

cess is very convincing and thus may also be applied for several other reactions, in batch set 

up the recovery of the particles via centrifugation is time-consuming and, therefore, unpersua-

sive. For this reason, we conceived a strategy to use magnetic nanoparticles as solid support as 

these already found application as such for various other catalysts.[48] 

Magnetic nanoparticles consist of a metal or metal oxide core and are, depending on 

their size, ferromagnetic, or superparamagnetic.[49] Due to their easy synthesis, low toxicity 

and decent magnetic saturation, iron oxide particles, above all Magnetite (Fe3O4), are one of 

the most commonly used nanoparticles. To increase their stability in solvents, which is espe-

cially important in biomedical applications, a widely used method is to coat the particles with 

polymeric surfactants or inorganic materials such as gold or silica.[50] However, a coating in-

creases the weight of the particles and is, therefore, accompanied by a decrease in their mag-

netization. For instance, Simard in his group reported the incorporation of [Ru(bpy)3]Cl2 (1) in 

magnetic nanoparticles as a dye for biomedical application. For this, they firstly coated super-

paramagnetic Fe3O4 with a 12 nm silica shell to prevent any luminescence quenching originat-

ing from the dark-colored magnetic core. In a second silica layer, the dye was enclosed via a 

reverse microemulsion method. Already the first silica shell, however, led to a drop of the 

magnetization from 53 to 10 emu/g.[51]  

Since the recovery of the particles would benefit from higher magnetization, especially 

when it comes to building up large polymer scaffolds, for our studies we focused on ferromag-

netic carbon-coated magnetic nanobeads (Co/C). They are synthesized via a large scale reduc-

ing flame-spray pyrolysis and not only have a superior magnetization of 158 emu/g but also 

show an exceptional thermal and chemical stability thanks to their carbon layer.[52] Moreover, 

the graphene-like outer shell allows for covalent functionalization via diazonium chemistry. 

With this, various recyclable catalysts have been synthesized, for instance for hydrogenations 

through encapsulated palladium,[53] or through an immobilized Noyori-type ruthenium cata-

lyst.[54] S. Fernandes developed a procedure to coat amine-functionalized Co/C nanoparticles 

in the course of her Ph.D. thesis, showing excellent stability in solvents as well as a high 
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magnetization of 140 emu/g (~ 50 nm silica shell).[55] This value not only exceeds the magnet-

ization of the uncoated magnetite nanoparticles but is also at least twice as high as the silica-

coated versions established by Simard et al. (12 mm silica shell, 10 emu/g)[51] and Kim et al. 

(1.5 mm silica shell, 64 emu/g)[56] and offers, therefore, an exceptional support for the photo-

catalyst to be installed.  

Employing magnetic nanoparticles as solid support for photocatalysts was so far mainly 

focused on semiconductors such as TiO2,
[57] MoS2,

[58] or graphitic carbon nitride,[59] which 

were applied for water purification by photodegradation of dyes. Although semiconductors can 

already be easily recovered by nature through filtration or centrifugation, their magnetic sup-

port facilitates this process and thus paves the way for applications in large scale.  

Only recently, Wang et al. came up with the idea of anchoring eosin Y on Fe3O4 via an 

ionic exchange.[60] Therefore, the nanoparticles were coated with silica and subsequently 

equipped with a terminal ammonium salt. A simple stirring of these particles in a solution of 

eosin Y in acetone/water afforded the heterogenized photocatalyst with a loading of 

0.10 mmol/g. With this, oxidative CDC reactions between N-aryltetrahydroisoquinolines 89 

and various nucleophiles were performed affording moderate to excellent yields. Moreover, a 

recyclability test on N-phenyltetrahydroisoquinoline (89a) and nitromethane (120) proved that 

it is re-usable for at least eight consecutive runs without a loss in catalytic activity, as the yield 

only dropped from 92% in the first to 89% in the last cycle.  

This chapter encloses the immobilization of different transition metal-based photocata-

lysts on magnetic Co/C nanoparticles and their subsequent application in various visible light-

mediated photoreactions.  
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3.2. Magnetic nanoparticles as non-covalent solid support  

3.2.1. Synthesis of particles 

Following the same concept as in the previous chapter, i.e. immobilizing positively 

charged [Ru(bpy)3]
2+

 (1) on Nafion® via electrostatic interactions, the aim was to employ car-

bon-coated ferromagnetic cobalt nanoparticles (Co/C) as solid support.i Therefore, we envi-

sioned to establish a similar scaffold to Nafion®, more precisely to functionalize the magnetic 

nanoparticles with terminal sulfonic acid groups. The first impediment to be overcome, how-

ever, is the dark nature of the particles, which usually causes luminescence quenching. As 

demonstrated by the group of Simard, a previous coating of the particles with silica can effec-

tively suppress this effect.[51a] Hence, a procedure established by S. Fernandes within our group 

was followed (Scheme 26).[55] To increase on the one hand the stability of the silica-coated 

nanoparticles 127 and, on the other hand, to improve the size control of the silica layer, at first 

amino-functionalized particles 126 were synthesized via diazonium chemistry. Subsequent 

treatment with TEOS in presence of catalytic amounts of ammonia gave the desired particles 

127. Notably, the nanobeads became four times as heavy as at the beginning, which suggests a 

considerable enlargement of the surface area. 

 

 

Scheme 26: Synthesis of silica-coated Co/C nanoparticles 127. 

The next step was to generate the sulfonic acid scaffold by adopting a literature-known 

procedure, where silica-coated cobalt spinel ferrite (CoFe2O4) nanoparticles have been used as 

solid support.[61] Therefore, the particles 127 were firstly polymerized with (3-mercaptopro-

pyl)trimethoxysilane (128) furnishing thiol functionalized particles 129. These were then fur-

ther oxidized to the corresponding sulfonic acid 130 (Scheme 27). Elemental analysis revealed 

3.8 mmol sulfur per gram MNPs, of which the amount of free accessible sulfonic acid groups 

was determined to be 1.8 mmol per gram MNPs via titration with 0.1 M NaOH. This value 

represents the maximal possible loading for [Ru(bpy)3]Cl2 (1) to be immobilized. 

 
i This topic was investigated in the Bachelor thesis of Lisa Uhlstein. 
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Scheme 27: Functionalization of silica-coated nanoparticles 127 with terminal sulfonic acid groups. 

 For the final steps, the sulfonic acid groups of 130 were firstly transferred to their cor-

responding sodium salt by treatment with a brine solution until the pH value of the supernatant 

remained neutral (Scheme 28). The subsequent immobilization was realized by simply stir the 

catalyst 1 along with the sodium form of the particles 130 under various conditions. Performing 

the reaction at room temperature in methanol gave only a poor loading of 0.076 mmol/g (de-

termined by ICP-OES). Replacing the solvent with water, however, increased the loading to 

0.463 mmol/g, corresponding to 25.7% of the maximal possible value. Elevated temperatures 

led to no improvement (80 °C, 0.406 mmol/g). It should be further noted that the particles 131 

exhibit a light brown discoloration, which suggests that the catalyst is sufficiently shielded 

from the magnetic core. 

 

 

Scheme 28: Immobilization of [Ru(bpy)3]Cl2 (1) onto sulfonic acid functionalized Co/C-NP 130. 

 To get a first insight into the behavior of MNP-Ru(bpy)3Cl (131), i.e. the strength of 

the ionic bond in solvents commonly used in photoredox chemistry, 5.0 mg of 131 were stirred 

for 16 h at room temperature in 1 mL of the respective solvent. The particles were magnetically 

collected, and the supernatant was submitted to ICP-OES. In accordance with the previous 

chapter, the same trend could be observed, i.e. the more polar the solvent, the higher the leach-

ing of ruthenium (Figure 7). Moreover, the dispersibility proved not to be satisfactory in both 

heptane and DCM. Unfortunately, compared to Nafion-Ru(bpy)3Cl (107), the values are about 

twice as high and even reach up to 16% in DMF. This may be due to the remarkable higher 

loading (0.10 mmol/g compared to 0.46 mmol/g) and the accompanying steric repulsion. An-

other explanation could be that the catalyst is electrostatically attached to the silica scaffold, 

whose binding is less strong as to sulfonates.  
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Figure 7: Leaching of ruthenium in [%] into various commonly used organic solvent/-mixtures. 
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3.2.2. Application of the immobilized catalyst in photochemical reactions 

To test the catalytic performance of the recyclable catalyst 131, the previously described 

photochemical E/Z-isomerization of trans-stilbene (24) was performed.[6] We were very 

pleased to see that the reaction worked just as decent as with the homogeneous catalyst 1 (Table 

11, entry 2). To ensure that there is no disturbance arising from the nanoparticles themselves, 

silica-coated MNP 127 (5.0 mg) were added to a reaction mixture which was set up as de-

scribed in the literature (entry 3). Although no impact in yield was observed in this case, in-

creasing the amount of 127 to 13.5 mg turned out to be disadvantageous, inasmuch as the Z/E-

ratio decreased to 70:30 (entry 4). To ensure that the graphene layer or the silica scaffold them-

selves are not photochemically active, the reaction was performed with only silica-coated MNP 

127. As expected, scarcely any product formation took place (entry 6).  

Table 11: Photochemical isomerization of trans-stilbene 24 employing 131 as catalyst. 

 

Entry Catalyst Z/E-ratioa Leaching [%]b 

1 [Ru(bpy)3]Cl2 (1, 3.0 mol%) 93:7 - 

2 MNP-Ru(bpy)3Cl (131, 3.0 mol%) 89:11 8.0 

3 MNP 127 (5.0 mg) + 1 (3.0 mol%) 92:8 - 

4 MNP 127 (13.5 mg) + 1 (3.0 mol%) 70:30 - 

5c no photocatalyst 15:85 - 

6 MNP 127 (5.0 mg) without photocatalyst 7:93 - 

Unless otherwise noted, the reaction was performed on a 0.20 mmol scale using trans-stilbene 

(0.20 mmol, 1.0 equiv), catalyst (3.0 mol%) and MeCN (2 mL). The reactions were irradiated with a 

blue LED (λ = 455 nm) under an oxygen atmosphere for 8 h. aRatio determined by GC-FID. bLeaching 

determined by ICP-OES. cIrradiation for 16 h.  

 In Figure 8 the immobilized catalyst MNP-Ru(bpy)3Cl (131) is depicted while a) dis-

persed in MeCN, b) irradiated by blue light and c) magnetically collected. Notably, during 

irradiation, the catalyst exhibited the typical pink luminescence, which is once again an indi-

cation that the transition metal complex is sufficiently shielded from the magnetic core.  
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Figure 8: Immobilized catalyst 131 a) dispersed in MeCN, b) irradiated by blue light, c) magnetically 

collected. 

 To test the recyclability of the catalyst, 3.0 mol% 131, corresponding to 13.5 mg, were 

employed in the E/Z-isomerization of 24. Once the reaction was completed, the particles were 

magnetically collected, the supernatant decanted, and the catalyst was submitted to another run. 

The ratio was determined by GC-FID. Unfortunately, in the course of the recycling runs the 

conversion deteriorated and already in the third cycle only a ratio of 65:35 was obtained (Table 

12, entry 3). This was attributed to the leaching of ruthenium, as this proved to be significantly 

high for the single runs (6 – 10%), and the accompanying worse catalyst-to-nanoparticle ratio.  

In order to circumvent this issue, the isomerization was performed employing merely 

1.0 mol% of the catalyst. Although the reaction time had to be increased to 16 h and the leach-

ing was again very high (between 8% and 16%), much to our delight the particles could be 

recovered and reused for several consecutive reaction runs. Only from run five, the Z/E-ratio 

dropped from 87:13 to 68:32. 

Table 12: Nafion-Ru(bpy)3Cl (131) catalyzed photochemical isomerization of 24. 

Entry Run Time [h] Amount of catalyst [mol%] Z/E-ratioa Leaching [%]b 

1 1 8 3.0 (13.5 mg) 89:11 8 

2 2 79:21 6 

3 3 65:35 10 

4 1 16 1.0 (4.5 mg) 87:13 16 

5 2 87:13 11 

6 3 87:13 13 

7 4 87:13 10 

8 5 68:32 8 

Unless otherwise stated, the reactions were performed on a 0.20 mmol scale using trans-stilbene (24, 

0.20 mmol, 1.0 equiv), catalyst 131 (1.0 – 3.0 mol%) and MeCN (2 mL) under an oxygen atmosphere. 

Irradiation was ensured by a blue LED (λ = 455 nm). aRatio determined by GC-FID. bLeaching deter-

mined by ICP-OES. 

a) b) c) 
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 The potential of catalyst 131 was further explored by conducting a visible light-medi-

ated aza-Henry reaction (Table 13).[42] N-phenyltetrahydroisoquinoline (89a) is oxidized 

through the excited photocatalyst, allowing a nucleophilic attack by nitroethane (132), which 

acts as both a reactant and solvent. After conducting the blank experiments, i.e. MNP 127 and 

homogeneous [Ru(bpy)3]Cl2 (1), solely MNP 127, and without catalyst (entry 2 – 4), the par-

ticles 131 were submitted to the reaction. Although they performed well in the first run, a tre-

mendous ruthenium leaching of 18% was observed (entry 5). This was most likely the reason 

for the decline in yield from 77% to 44% in the following run (entry 6). Even if the leaching 

of ruthenium decreased to 3.5%, the yield also continuously dropped to 12% in the fifth run 

(entry 9) which corresponds to the reaction outcome without catalyst (entry 4).  

Table 13: Photochemical aza-Henry reaction between N-phenyltetrahydroisoquinoline (89a) and ni-

troethane (132). 

 

Entry Run Catalyst Conversion [%]a Yield [%]a Leaching [%]b 

1 - [Ru(bpy)3]Cl2 (1) 100 85 (72c) - 

2 - MNP 127 (5.0 mg) + 1 80 77 - 

3 - no catalyst 21 16 - 

4 - MNP 127 (5 mg) w/o catalyst 12 12 - 

5 1 MNP-Ru(bpy)3Cl (131) 82 77 18 

6 2 48 44 3.5 

7 3 52 46 5.6 

8 4 38 32 4.2 

9 5 14 12 3.9 

Unless otherwise noted, the reaction was performed under air using N-phenyltetrahydroisoquinoline 

(89a, 0.25 mmol, 1.0 equiv), nitroethane (132, 1 mL) and catalyst (1 mol%). Irradiation was ensured by 

a blue LED (λ = 455 nm) for 5.5 h. aDetermined by 1H-NMR using 1,3,5-trimethoxy benzene as an 

internal standard. bDetermined by ICP-OES. cIsolated yield.  
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3.3. Magnetic nanoparticles as covalent solid support 

3.3.1. Synthesis of particles 

The next logical step for reducing the leaching was to attach the photocatalyst cova-

lently to the magnetic nanoparticles. Since we already had the thiol functionalized particles 129 

in hand, the idea was to immobilize a RuII complex, which is equipped with a terminal alkene 

(134) on them via a thiol-ene reaction (Scheme 29).  

 

 

Scheme 29: Retrosynthesis of the recyclable photocatalyst 133 via thiol-ene reaction. 

 Since the complex 134 initially conceived may cause issues in the thiol-ene reaction we 

decided to synthesize the photocatalyst 137, which ensures a sufficient distance of the terminal 

alkene from the aromatic system. To do so, Ru(bpy)2Cl2 (135)[62] was complexed with the lig-

and 136 to give the desired catalyst in excellent yields (95%, Scheme 30). The ligand 136 was 

prepared from 4,4’-dimethyl-2,2’-dipyridyl and allyl bromide within one step following a lit-

erature-known procedure.[63] 

 

 

Scheme 30: Synthesis of allyl substituted ruthenium-based photocatalyst 137. 

With the starting materials 129 and 137 in hand, several immobilization attempts via a 

thiol-ene reaction have been made. More precisely, AIBN was employed as radical initiator 

using heat and ultrasonication to promote the transformation. Although the reaction between 

the free ligand 136 and mercaptosilane 128 is known to proceed,[63] we had no success in fol-

lowing this procedure and no reaction took place. This may be elucidated by the fact that there 

is a limitation in the solvent applied as the catalyst is not soluble in chloroform, which is the 
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one of choice in the previously mentioned reaction. Instead, acetonitrile was used. Further ef-

forts such as changing the solvent to DCM or acetone remained fruitless.  

Therefore, we followed another literature procedure, synthesizing the complex 138 de-

picted in Figure 9.[19] This was realized by complexing Ru(bpy)2Cl2 (135) with the correspond-

ing ligand, which was obtained through a thiol-ene reaction between the precursor 136 and (3-

mercaptopropyl)trimethoxysilane (128). With this, the aim was to directly attach the catalyst 

on silica-coated nanoparticles 127, however, without success. 

 

 

Figure 9: RuII complex attached to (3-mercaptopropyl)trimethoxysilane. 

 Since various attempts to immobilize a RuII complex via thiol-ene reaction on magnetic 

nanoparticles remained fruitless, we changed our strategy. As has already been demonstrated 

in literature examples, copper(I)-catalyzed azide-akyne cycloadditions (CuAAC) have great 

potential to even build up large polymer scaffolds and thus allow for the immobilization of 

complex structures.[64] This is why we aspired to apply this to our system. Therefore, we con-

ceived to equip the magnetic nanoparticles with an azide functionalization and the catalyst 

accordingly with an alkyne moiety. The overall synthesis is shown in Scheme 31. To begin 

with, the silica-coated MNP 127 were reacted with (3-azidopropyl)trimethoxysilane (139) fur-

nishing 140. Elemental analysis revealed a loading of 14.7 mmol/g N, corresponding to ap-

proximately 4.9 mmol/g azide. Previous attempts towards employing (3-azidopropyl)triethox-

ysilane instead did not lead to satisfactory results regarding polymerization degree and azide 

loading. Due to the sterically demanding catalyst to be installed, however, only the external 

azide groups might be occupied, lowering the maximal possible catalyst loading, yet being 

easier accessible for substrates in subsequent photoreactions. The photosensitizer, on the other 

hand, was synthesized via complexation between Ru(bpy)2Cl2 (135) and hexyne tagged bipyr-

idine ligand 141. The latter was obtained by reacting lithiated 4,4’-dimethyl-2,2’-bipyridine 

with (6-iodohex-1-yn-yl)trimethylsilane.  

 Having both starting materials in hand, a CuAAC was conducted in DCM using Cu(I)I 

and DIPEA as a catalytic system. To our delight, after three days the mixture lost its 
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characteristic reddish color caused by the ruthenium complex and turned almost colorless, 

which suggests an excellent immobilization degree. And indeed, ICP-OES revealed a loading 

of 0.45 mmol/g ruthenium for the final catalyst 143.  

 

 

Scheme 31: Synthesis of covalently immobilized ruthenium catalyst 143 via CuAAC. 

 When the catalyst was employed for the photochemical driven E/Z-isomerization of 

stilbene 24, however, no catalytic activity was obtained. Moreover, the typical bright pink pho-

toluminescence caused by irradiation was not visible, as this was the case for the electrostati-

cally immobilized catalyst 131 (see above). Astonished about this outcome, we searched for a 

possible rationalization. Since the bare catalyst 142, as well as the bare catalyst 142 and addi-

tional silica-coated MNP 127, proved to be active for this reaction, the explanation had to be 

found in the immobilization step. To exclude an exchange of the catalyst's counterion, the par-

ticles were treated with a saturated aqueous KPF6 solution. Thereupon, the mixture turned 

bright red indicating the leaching of the ruthenium complex 142. A reason for this might be the 
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basic conditions the immobilization takes place at, consequently deprotonating the remaining 

hydroxy groups of the silica shell. These may act as counterions and therefore bind the catalyst 

electrostatically and capture it inside the polymer which makes it no longer available for pho-

tochemical reactions. A solution for this could have been a previous end-capping of the hy-

droxy groups by treatment with HMDS. If this was done, however, the click reaction did not 

work anymore, as this might have also affected the azide functionalization.  

 To overcome the aforementioned issues, we switched to a modified version of fac-

Ir(ppy)3, equipped with a terminal alkyne group. This complex is not only uncharged but also 

opens the way to further photoreactions which are not feasible with the ruthenium-based cata-

lyst. In contrast to the synthesis of fac-Ir(ppy)2(PIB-ppy) (40), which is the first recyclable 

version of this photosensitizer,[12] the route via an on-complex modification of fac-Ir(ppy)2(Me-

ppy) only led to non-, mono- and twofold-alkylated derivatives which could not be separated 

from each other. For this reason, we followed the inverted strategy, i.e. firstly tag the 4-Me-

ppy ligand with hexyne by reacting lithiated 4-methyl-2-phenylpyridine with (6-iodohex-1-yn-

1-yl)trimethylsilane to give 145 followed by the reaction with [Ir(ppy)2(MeOH)2]OTf (144). 

Subsequent cleavage of the TMS protection group with TBAF furnished the final hexyne-

tagged catalyst 146 in moderate yield (50%, Scheme 32). 

 

 

Scheme 32: Synthesis of alkyne tagged IrIII complex 146. 

 The click reaction towards the immobilized catalyst MNP-Ir(ppy)3 (147) was performed 

straightforward employing Cu(I)I and DIPEA as a catalytic system (Scheme 33). Washing and 

drying gave slightly greenish particles. However, when these particles were to be used for a 

reaction performed in DMF, this proved to be disadvantageous as apparently the silica polymer 

entirely degraded. Since this may be caused by hydrolysis, the TMS end-capping of the free 

hydroxy groups using HMDS evidenced to be crucial. In fact, the particles obtained were even 

stable in concentrated hydrochloric acid or sulfuric acid. It should be further noted that the end-

capping of the free hydroxy groups should only be performed after the CuAAC, as the 
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immobilization did not work anymore if it was done beforehand. ICP-OES revealed a loading 

of 0.236 mmol/g iridium, corresponding to an overall incorporation of 86% of the utilized IrIII 

complex 146.  

 

 

Scheme 33: Immobilization of 146 onto magnetic nanoparticles 140 via click chemistry. 

In Figure 10 the immobilized catalyst 147 is depicted dispersed in 1.5 mL MeCN (left-

hand side) and magnetically collected (right-hand side). A noteworthy aspect is the color of the 

particles. Starting from black Co/C nanoparticles 124, the color changed to greenish upon silica 

coating and immobilization of the yellow iridium complex. This suggests that the catalyst is 

sufficiently shielded from the magnetic core, which is an important aspect to be employed in 

photochemical reactions.  

 

 

Figure 10: Catalyst 147 (4.5 mg) dispersed in 1.5 mL MeCN (left-hand side) and magnetically col-

lected (right-hand side). 
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3.3.2. Application of the immobilized catalyst in photochemical reactions 

 To prove its photocatalytic performance as well as recyclability the immobilized cata-

lyst 147 was applied for an E/Z-isomerization of the pinacol ester 148 which was originally 

developed by Gilmour et al. (Table 14).[65] Similar to the isomerization of stilbene (24, see 

above), the reaction is triggered via an energy transfer from the excited catalyst to break the 

double bond, forming the biradical intermediate 150. This transformation would particularly 

benefit from its easy recovery and low iridium leaching into the reaction mixture, since apart 

from the removal of the catalyst no further workup is required. Additionally, based on this 

isomerization an anti-tumor natural product can successfully be synthesized as has been 

demonstrated.[65] To ensure that there is no disturbance arising from the nanoparticles, 127 was 

added to a reaction mixture which was set up as described in the literature without any impact 

in the reaction outcome (entry 2). Moreover, to exclude any background reactions originating 

from the graphene-like coating or the silica shell of the nanoparticles, respectively, the reaction 

was performed with only silica-coated MNP 127 resulting in hardly any conversion (entry 3). 

To our delight, employing the immobilized catalyst 147 in this reaction gave the same Z/E-

ratio as the homogeneous fac-Ir(ppy)3 (5, entry 1 and 5). Noteworthy, the catalyst could be 

reused in seven successive runs without any loss in reactivity and hardly any leaching of irid-

ium into the reaction mixture (2.5% combined leaching over 7 runs, entry 5). Only from run 8, 

the Z/E-ratio decreased continuously from 93:7 to 59:41 in the tenth run (entry 6 – 8).  
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Table 14: Photochemical E/Z-isomerization of 148. 

 
Entry Catalyst Run Z/E ratioa Leaching [Ir]/%b 

1 fac-Ir(ppy)3 (5) - 93:7 - 

2 fac-Ir(ppy)3 (5) + MNP 127 (3 mg)  92:8  

3 MNP 127 (3 mg)  19:81  

4 no catalyst  20:80  

5 MNP-Ir(ppy)3 (147) 1-7 93:7 2.5 (combined) 

6  8 82:18  

7  9 65:35 1.5 (combined) 

8  10 59:41  

The reactions were performed on a 0.10 mmol scale in MeCN (1.5 mL) at room temperature under a 

nitrogen atmosphere. Irradiation took place for 16 h by a blue LED (λ = 455 nm). aRatio determined by 
1H-NMR integration of the crude reaction mixture. bLeaching determined by ICP-OES. 

 

Besides, we performed a [2+2] cycloaddition of 151 invented by Weaver et al. (Table 

15).[66] The reaction is based on isomerization of the double bond, which increases the ring 

strain of the alkene (153) and, therefore, drives the cycloaddition. The products obtained may 

act as a building block for biologically relevant molecules.[67] Also, for this reaction the immo-

bilized catalyst 147 performed well, however, the yield deteriorated in the course of the recy-

clability test from 80 to 54% within five runs (entries 5-9). Having only a little iridium leaching 

– approximately 4.8% combined leaching within 5 runs – into the reaction mixture, the decline 

was rather addressed to the deactivation of the catalyst.[68] This is especially noticeable in this 

example due to the generally very low catalyst loading of 0.125 mol%.  
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Table 15: Photochemical [2+2] cycloaddition of 151. 

 

Entry Catalyst Run Yield / %a Leaching [Ir]/%b 

1 fac-Ir(ppy)3 (5) - 80c - 

2 fac-Ir(ppy)3 (5) + MNP 127 (3 mg)  80c - 

3 MNP 127 (3 mg)  n.r. - 

4 no catalyst  n.r. - 

5 MNP-Ir(ppy)3 (147) 1 80 3.0 

6  2 77 1.8 

7  3 75 <0.1 

8  4 70 <0.1 

9  5 54 <0.1 

The reaction was performed on a 0.6 mmol scale in DMF (3 mL). Irradiation was ensured by a blue 

LED (λ = 455 nm) for 24 h at room temperature under a nitrogen atmosphere. aYield determined by 1H-

NMR using 4-nitro benzaldehyde as internal standard. bLeaching determined by ICP-OES. 
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3.4. Conclusion 

It has been demonstrated that carbon-coated Co/C nanoparticles 124 represent a competitive 

solid support for various transition metal-based photocatalysts, convincing through their easy 

recovery. Whereas attaching [Ru(bpy)3]Cl2 (1) via electrostatic interactions led to high catalyst 

loadings and show overall good reactivity in the photochemical isomerization of trans-stilbene 

(24) and an aza-Henry reaction, the leaching or ruthenium was almost twice as high as this was 

the case for Nafion-Ru(bpy)3Cl (107). Since various attempts to anchor the catalyst covalently 

to the nanoparticles remained fruitless, the issues were addressed to the ionic nature of the 

ruthenium catalyst. Therefore, we switched to an iridium-based photosensitizer, i.e. modified 

fac-Ir(ppy)3. With this, the covalent attaching via click chemistry worked well, and the catalyst 

147 exhibited excellent catalytic performance and recyclability in an isomerization reaction as 

well as a [2+2] cycloaddition. Notably, the leaching of the reactive species could be reduced to 

a minimum, which is especially important for drug synthesis. 
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4. Graphitic carbon nitrides as novel photoredox catalysts 

4.1. Introduction 

Due to their chemical stability and versatility, iridium- and ruthenium-based photocata-

lysts dominate the field of photoredox chemistry. However, they are very expensive and despite 

great efforts towards immobilizing them have been made, one is still looking for potent alter-

natives. One cost-efficient and capable replacement would be for example using copper-based 

photocatalysts like [Cu(dap)2]Cl,[69] Cu(dap)Cl2,
[70] or [Cu(dmp)2Cl]Cl,[71] of which the latter 

is particularly appealing due to its readily available and inexpensive ligand. Other attractive 

substitutes depict organic dyes or semiconductors, which find their application more and more 

in photoredox chemistry.[72] Inorganic semiconductors, such as TiO2, ZnO, or organic, metal-

free semiconductors like graphitic carbon nitrides (g-CNs), are in general heterogeneously op-

erating catalysts. This makes them easily recoverable from reaction mixtures via centrifugation 

or filtration.[73] Due to their thermal and chemical stability, g-CNs in particular represent an 

especially valuable alternative to transition metal-based catalysts.[74] Graphitic carbon nitrides 

are easily prepared in gram scale via thermolysis of nitrogen-rich precursors such as urea,[75] 

melamine,[76] amitrole[77] or guanidine[46] at ~550 °C. The accompanying self-polymerization 

affords structures in a 2D fashion, the most stable allotrope of which, g-C3N4 (154), is shown 

in Figure 11. Due to this special arrangement, which is driven by van der Waals forces, the 

layers are stacked in a graphene-like fashion, giving the particles their name.  

 

 

Figure 11: Graphitic carbon nitride unit g-C3N4 (154). 

Concerning its structure, one has to distinguish between bulky graphitic carbon nitride 

(g-C3N4) and mesoporous graphitic carbon nitrides (mpg-C3N4). Whereas g-C3N4 exhibits only 

small surface areas about 10 m2/g, by introducing controlled porosity, mpg-C3N4 can attain 

surface areas in the range of 400 m2/g, which is required to enhance its catalytic perfor-

mance.[74,78]  
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 Another important aspect to be suitable as a catalyst for photochemically driven reac-

tions, is an appropriate band gap and band position. In case of mpg-C3N4, the band gap is 

2.7 eV, which shifts its absorption maxima to 420 nm.[74] Moreover, the particles are well com-

parable in terms of their redox potentials to conventional transition metal-based catalysts such 

as [Ru(bpy)3]
2+ (1), fac-Ir(ppy)3 (5) and [Cu(dap)2]

+ (7), as can be seen in Figure 12. Through 

visible light irradiation, an electron is shifted from the valence band (VB) to the conductivity 

band (CB), forming an electron-hole pair. Whereas the free electron can be used for photore-

duction processes, photooxidation can take place at the valence band.[74]  

 

 

Figure 12: Comparison between well-established transition metal-based photocatalysts and mpg-C3N4. 

All measurements were performed in acetonitrile at room temperature unless otherwise noted. 154 was 

determined in aqueous solution. A = acceptor, D = donor. References: [Cu(dap)2]+: [69e]; fac-Ir(ppy)3: 
[79]; [Ir(ppy)2(dtbbpy)]+: [80]; [Ru(bpy)3]2+: [41,81]; mpg-C3N4: [74]. 

 Graphitic carbon nitrides have found broad application, for instance as catalyst for wa-

ter splitting,[82] degradation of pollutants,[83] or for biomedical purposes,[84] however, were only 

lately considered as potential photoredox catalyst.[85] The group of Blechert presented an early 

example for exploiting the photoreduction cycle of mpg-C3N4 to promote radical cyclizations. 

Their model reaction and the corresponding reaction mechanism are depicted in Scheme 34.[86] 

The activation of the bromomalonate 155 and the subsequent transformation towards the prod-

uct 156 is already known to proceed when exploiting the reductive quenching cycle of 

[Ru(bpy)3]Cl2 (1), using NEt3 as sacrificial electron donor and DMF as solvent.[80a] When these 

conditions were applied using mpg-C3N4 as photocatalyst, full conversion was obtained even 

in the absence of NEt3, however, the brominated side product 157 was also formed in a ratio 

of almost 1:1. This suggests that for mpg-C3N4 on the one hand no sacrificial electron donor is 

needed, and that the reaction mechanism disagrees with the one postulated, on the other. More-

over, they found that THF is crucial for the reaction to proceed in high yields, to give almost 
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selectively the desired product 156, and to accelerate the reaction. Therefore, a mechanism was 

proposed in which upon visible light irradiation of mpg-C3N4, an electron is transferred from 

the valence band to the conductivity band. This electron, in turn, is used to trigger a mesolysis 

of the C-Br bond of 155, forming the carbon-centered radical 158, which rapidly undergoes 

cyclization towards 159. Subsequent hydrogen abstraction from THF (160) affords the desired 

product 156 and the THF radical 161 which is oxidized by mpg-C3N4 to the cation 162. Traces 

of MeOH or EtOH act as nucleophile forming the ether scaffold 163. The process was further 

improved by the development of a flow reactor, in which the substrates are flushed through an 

irradiated FEP tube, charged with mpg-C3N4 (2.5 wt%), silica gel and glass beads. This way, 

various bromomalonates were transferred to their cyclization products in moderate to excellent 

yields (58 – 89%) in 0.04 mmol scales. Moreover, the authors claim to only have a marginal 

loss in reactivity after 60-70 reaction cycles.  

 

 

Scheme 34: Graphitic carbon nitride photocatalyzed radical cyclization of bromomalonate 155. 

 Only recently, Niu et al. established a protocol for graphitic carbon nitride catalyzed 

Meerwein hydration reactions (Scheme 35).[87] Again, the reaction makes use of the high re-

duction potential of mpg-C3N4, transferring an electron to the aryldiazonium salt 164, and 

causes, therefore, the release of nitrogen and BF4
-. The formed radical 167 adds to alkene 165, 

leading to the corresponding intermediate 168, which is subsequently oxidized by the valence 

band of mpg-C3N4 to the carbocation 169. A final nucleophilic attack from water affords the 

desired product 166. Notably, instead of using potentially toxic solvents such as DMF or 
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DMSO, in this reaction water acts as both solvent and reagent. Although all transformations 

were performed employing a 250 W xenon lamp, the authors have shown that the reaction also 

proceeds with sunlight as the sole energy source within the same time. Moreover, by increasing 

the reaction time from 4 h to 7 h, they were even able to scale the reaction to 10 mmol without 

any impact in yield. A recyclability test proved to be successful and has shown that the catalytic 

performance decreases only slightly within five consecutive runs, i.e. the yield dropped from 

76% in the first run to 66% in the last one.  

 

 

Scheme 35: Visible light-induced Meerwein hydration reaction catalyzed by mpg-C3N4. 

 Based on a similar reaction mechanism, Blechert et al. demonstrated trifluoromethyla-

tions of (hetero)arenes 170 via the reductive activation of triflyl chloride 171 through visible 

light irradiated mpg-C3N4 (Scheme 36).[88] The so caused release of SO2 and cleavage of Cl- 

generates a CF3-radical. This radical attacks to different (hetero)arenes 170, forming upon SET 

to the valence band of mpg-C3N4 and subsequent hydrogen abstraction the desired products. 

These are for example trifluoromethylated benzene 172a, caffeine 172c or tryptophane 172d. 

Similarly, König et al. recently also performed trifluoromethylations and even installed two 

different functionalities via two- and three-component reactions on hetereo(arenes).[89]  
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Scheme 36: Trifluoromethylations of arenes 170 catalyzed by mpg-C3N4 and selected examples with 

their respective yields. (Het)Ar-H = heteroaryl. 

Lotsch and König et al. impressively demonstrated on the photocatalytic synthesis of 

vinyl sulfones that the functionalization of graphitic carbon nitrides can have a huge impact on 

the reaction outcome.[90] Based on previous literature examples,[91] where Eosin Y was used as 

a visible light catalyst for sulfonylations, the organic dye was replaced by various graphitic 

carbon nitrides to perform reactions as depicted in Scheme 37. They found that compared to 

pristine mpg-C3N4, cyanamide-functionalized carbon nitride (NCN-CNx) gives twice as high 

yields and, therefore, as much as eosin Y does. Moreover, as shown by Zhao et al. through the 

introduction of cyano groups in mpg-C3N4, the band gap could be drastically narrowed 

(2.29 eV), thus shifting the absorbance maximum to 590 nm.[92] Therefore, irradiation with 

green light (520 nm) was sufficient to generate the same results, rendering the reaction even 

more valuable. It is assumed that also the mechanism is well comparable to that of the homo-

geneously operating catalyst. More precisely, the reaction proceeds via reductive quenching, 

initiated by the oxidation of the sulfinate salt 173 through visible light-excited NCN-CNx. The 

short-living radical 176 adds to the alkene 174 whereas NCN-CNx is oxidized to its ground 

state by nitrobenzene (178) which itself is reduced to 179. A subsequent electron transfer to 

177 affords the desired product 175. A final recyclability test exhibited that the catalytic activ-

ity only decreased slightly within four cycles, affording 75% yield in the first and 67% in the 

fourth run.  
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Scheme 37: NCN-CNx catalyzed sulfonylation reactions. 

In this chapter, the potential of mesoporous graphitic carbon nitrides was further ex-

plored. Therefore, the semiconductors were contrasted to well-established transition metal-

based photocatalysts, such as [Ru(bpy)3]Cl2 (1) or [Cu(dap)2]Cl (7) in various photochemically 

driven reactions. Moreover, different modified graphitic carbon nitrides were compared to each 

other by examination of their photocatalytic performance as well as recyclability. More pre-

cisely, mpg-C3N5, possessing a higher nitrogen content than the common mpg-C3N4 (154), 

mesoporous graphitic C3N5 particles doped with silver (mpg-C3N5/Ag) and mesoporous gra-

phitic C3N4 particles doped with silver (mpg-C3N4/Ag) were employed.ii Introducing more ni-

trogen to graphitic carbon nitrides leads to smaller band gaps (~2.20 eV for mpg-C3N5)
[93] and 

therefore enhances the visible-light absorption.[94] Doping the carbon nitrides with silver, on 

the other hand, improves the photocatalytic activity since the charge separation efficiency is 

improved and the recombination of electron-hole pairs is impeded.[95] 

 

  

 
ii The particles were provided by Dr. Manoj Gawande from the Regional Centre of Advanced Technologies and 

Materials in the Czech Republic. 
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4.2. Application of graphitic carbon nitrides in photochemical reactions 

 Whereas mainly mpg-C3N4 (154) has been employed as photoredox catalyst (see pre-

vious chapter), the other aforementioned mesoporous graphitic carbon nitrides are largely un-

explored and have so far only found application for water splitting[96] or degradation of organic 

pollutants.[97] To investigate their photocatalytic activity, the reaction between TMS protected 

methylaniline 181 and cyclohexenol 182 originally developed by Nishibayashi and coworkers, 

employing an iridium-based photocatalyst, was conducted.[98] Rueping and his group slightly 

modified this reaction by adding CsF and using MeOH instead of DCM as solvent so that it 

performs well with mpg-C3N4 as catalyst (Table 16).[46] To our delight, not only mpg-C3N4 

provided high yields for this transformation (85%, entry 1), but also all other carbon nitrides 

exhibited a sufficiently strong oxidation potential as well as activity to promote this reaction 

(entry 2 – 4). Whereas mpg-C3N4/Ag afforded the same yield as the non-silver doped parent 

carbon nitride (entry 2), the mpg-C3N5 and mpg-C3N5/Ag gave slightly diminished yields of 

79% and 75%, respectively (entry 3 – 4).  

Table 16: Carbon nitride catalyzed desilylative addition towards 183. 

 

Entry Catalyst Yield [%]a 

1 mpg-C3N4  85 (80)b 

2 mpg-C3N4/Ag  85 

3 mpg-C3N5  79 

4 mpg-C3N5/Ag 75 

The reactions were performed using 181 (0.13 mmol, 1.30 equiv), 182 (0.10 mmol, 1.00 equiv), CsF 

(0.20 mmol, 2.00 equiv), carbon nitride (10 mg) and MeOH (1 mL). Irradiation with blue LED (λ = 

455 nm) for 17 h at room temperature under nitrogen atmosphere. aYield determined by 1H-NMR using 

1,3,5-trimethoxybenzene as internal standard. bIsolated yield. 

 

Since all presented carbon nitrides proved to be photochemically active, we proceeded 

with an ATRA reaction between hexenol 109 and perfluoroiodooctane 115 that has already 

been shown before to operate satisfactorily with immobilized versions of [Ru(bpy)3]Cl2 (Table 

17).[40b] Contrary to the photocatalytic desilylative addition, the reaction exploits the reductive 

quenching cycle of the catalyst using sodium ascorbate as sacrificial electron donor. To our 

delight, mpg-C3N4, as well as mpg-C3N4/Ag, performed well providing almost the same yields 
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as the transition metal-based catalyst 1 (entry 3 and 5). It should be noted that the heterogeneous 

nature of the particles is likely the reason for prolonged reaction time, i.e. 3 h instead of 30 min. 

Furthermore, the addition of sodium ascorbate accelerates the transformation (entry 3-4) which 

indicates that carbon nitrides behave similarly to [Ru(bpy)3]Cl2 (1). Only mpg-C3N5 and mpg-

C3N5/Ag could not compete. Whereas mpg-C3N5 has hardly shown any product formation (5%, 

entry 6), its relative endowed with silver still attained 63% yield (entry 7), impressively demon-

strating that altering the surface can have a drastic effect.  

Table 17: Photochemical ATRA reaction between hexenol 109 and perfluoroiodooctane 115 employing 

carbon nitrides as catalytic species. 

 

Entry Catalyst Time [h] Yield [%]a 

1 [Ru(bpy)3]Cl2 (1, 1.0 mol%) 0.5 99 (95)b 

2 - 0.5 n.r. 

3 mpg-C3N4 (5 mg) 3 92 

4c mpg-C3N4 (5 mg) 3 54 

5 mpg-C3N4/Ag (5 mg) 3 97 

6 mpg-C3N5 (5 mg) 3 5 

7 mpg-C3N5/Ag (5 mg) 3 63 

Standard reaction conditions: hexenol 109 (0.25 mmol, 1.00 equiv), perfluoroiodooctane 115 

(0.325 mmol, 1.30 equiv), MeCN (2.0 mL), MeOH (1.5 mL), sodium ascorbate (88 µmol, 0.35 equiv) 

and catalyst were irradiated with a blue LED (λ = 455 nm) at room temperature under nitrogen atmos-

phere for the indicated time. aYield determined by 1H-NMR using 1,3,5-trimethoxybenzene as internal 

standard. bIsolated yield. cReaction was performed without sodium ascorbate. 

 

For a valuable recyclable catalyst, it is essential to not only have a convincing recovery, 

which is inherently given for heterogeneous operating catalysts, but also a persuasive activity 

in successive runs. Driven by the auspicious result obtained in the former ATRA reaction, the 

next logical step was to test the recyclability of both mpg-C3N4 and mpg-C3N4/Ag for this 

transformation. The results for 10 consecutive runs are depicted in Figure 13. As can be seen, 

mpg-C3N4 afforded throughout very high yields ranging from 82 – 95%. Although mpg-

C3N4/Ag attained slightly higher conversions in the first five cycles, its reactivity continuously 

dropped from the sixth run to 43% in the tenth which suggests that these particles are not as 

stable as the undoped parent carbon nitrides. Also, the fluctuations in the reaction outcomes, 

most likely due to the heterogeneous nature, are very conspicuous as the yield of a run is hardly 
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the same as the previous one and partially deviates as much as 20%. Nevertheless, these find-

ings are very pleasant particularly in comparison with the immobilized Nafion-Ru(bpy)3Cl 

(107) which turned out to be completely inactive for this reaction already in the fifth run (see 

chapter 2.3).  

 

 

Figure 13: Recyclability test of mpg-C3N4 and mpg-C3N4/Ag. The reaction parameters for a single run 

are as follows: hexenol 109 (0.25 mmol, 1.00 equiv), perfluoroiodooctane 115 (0.325 mmol, 

1.30 equiv), MeCN (2.0 mL), MeOH (1.5 mL), sodium ascorbate (88 µmol, 0.35 equiv) and carbon 

nitride (5 mg) were irradiated with a blue LED (λ = 455 nm) at room temperature under nitrogen at-

mosphere for 3 h. 

 

 Furthermore, the associated ATRA reaction originally making use of the oxidative 

quenching cycle of [Ru(bpy)3]Cl2 (1), i. e. the reaction between diethyl bromomalonate (110) 

and hexenol 109, was conducted employing mpg-C3N4 as catalyst (Table 18).[40b] Although it 

is known that the semiconductor is capable of reducing bromomalonates,[86] we were very 

grateful to see that the particles also performed exceptionally well in this case and gave the 

same yield as [Ru(bpy)3]Cl2 (1) only by increasing the reaction time from 8 to 24 h (entry 2). 

Moreover, the particles were recovered and reused twice without any loss in reactivity (entry 

3 – 4). In contrast to Nafion-Ru(bpy)3Cl (107), which remained inactive after a single run, these 

particles proved to be much more durable and are not limited to a non-polar environment but 

can also be employed in solvents such as DMSO without negative effects.  
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Table 18: Carbon nitride catalyzed ATRA reaction between hexenol 109 and diethyl bromomalo-

nate (110). 

 

Entry Catalyst Run Yield [%]a 

1b [Ru(bpy)3]Cl2 (1, 1.0 mol%) - 98c 

2 mpg-C3N4 (10 mg) 1 95 

3  2 94 

4  3 95 

Standard reaction conditions: hex-5-en-1-ol (109, 0.25 mmol, 1.00 equiv), diethyl bromomalonate (110, 

0.30 mmol, 1.20 equiv), LiBr (25 µmol, 10 mol%), catalyst and DMSO (1.0 mL) were irradiated for 

24 h under nitrogen atmosphere at room temperature. aYields determined by 1H-NMR using 4-nitro-

benzaldehyde as internal standard. b8 h reaction time. cLiterature reported yield.[40b]  

 

To examine further possible advantages of these graphitic carbon nitrides a more chal-

lenging ATRA reaction between styrene (184) and perfluoroiodooctane 115 established within 

our group was conducted (Table 19).[70c] What makes this transformation special is that it solely 

proceeds with [Cu(dap)2]Cl (7) as catalytically active species due to its unique characteristic to 

undergo an inner sphere catalytic cycle, other prominent catalysts such as [Ru(bpy)3]Cl2 (1) or 

fac-Ir(ppy)3 (5) are not capable of. It was therefore not surprising that a first test reaction using 

mpg-C3N4 as catalyst resulted in no reaction (entry 2). Also, when the solvent was changed to 

MeCN/MeOH (entry 3) or when sodium ascorbate was added (entry 4), as this proved to be 

advantageous in the former transformation, only traces of product could be obtained. The ad-

dition of CuCl2 also led to no conversion of the starting material (entry 5). Therefore, the reac-

tion was not further investigated, and it can be stated that graphitic carbon nitrides have no 

beneficial properties to promote this reaction. 
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Table 19:Photochemical ATRA reaction between styrene (184) and perfluoroiodooctane 115. 

 

Entry Catalyst Deviation from standard conditionsa Yield [%]b 

1 [Cu(dap)2]Cl (7) green LED (λ = 530 nm) used, 16 h 82 (78)c 

2 mpg-C3N4 (5 mg) - n.r. 

3 mpg-C3N4 (5 mg) MeCN/MeOH (4:3) used as solvent, 24 h  n.r. 

4 mpg-C3N4 (5 mg) MeCN/MeOH (4:3), Na-asc (0.35 equiv), 24 h traces 

5 mpg-C3N4 (5 mg) addition of CuCl2 (1.0 equiv), 24 h n.r. 

aStandard reaction conditions: styrene (184, 0.25 mmol, 1.00 equiv), perfluoroiodooctane (115, 

0.50 mmol, 2.00 equiv), catalyst (1.0 mol%) and dry MeCN (1.5 mL) were irradiated by a blue LED (λ 

= 455 nm) at room temperature under nitrogen atmosphere. bYield determined by 1H-NMR using 4-

nitrobenzaldehyde as internal standard. cIsolated yield. 

 

 For this reason, another similar ATRA reaction between styrene (184) and p-toluenesul-

fonyl chloride (186) was performed, which was established by Stephenson et al. (Table 20).[40b] 

It is not limited to being catalyzed only by [Cu(dap)2]Cl (7), but also other complexes such as 

[Ru(bpy)3]Cl2 (1) are capable of. Whereas both provide very high yields between 80% and 

96% (entry 1 – 2),[70b] a substitution with mpg-C3N4 resulted in a drastically decreased reaction 

outcome of 16% (entry 3). Adding a base to trap traces of HCl that may occur during the reac-

tion, extending the reaction time from 24 h to 48 h, or increasing the catalyst loading, showed 

only little effect (entry 4 – 6). Besides, employing the silver doped graphitic carbonitride mpg-

C3N4/Ag or the nitrogen-doped versions mpg-C3N5 and mpg-C3N5/Ag led to no improvement 

(entry 7 – 8). Since the reduction potential of the graphitic carbon nitrides should be sufficient 

to generate the toluolsulfonyl radical (Ered = -0.94 V vs SCE)[70b] via mesolysis of the S-Cl 

bond upon an electron transfer from the catalyst, this result is fairly unforeseen. Noteworthy, 

in no case full conversion of starting material was observed, suggesting that something could 

be formed in the course of the reaction, which impacts the activity of the catalyst.  

  



B. Recyclable Photocatalysts 

 

74 

 

Table 20:Visible light-mediated ATRA reaction between styrene (184) and sulfonyl chloride 186. 

 

Entry Catalyst Deviation from standard conditionsa Yield [%]b 

1 [Cu(dap)2]Cl (7) green LED (λ = 530 nm) was used 96 (94)c 

2 [Ru(bpy)3]Cl2 (1)  80 

3 mpg-C3N4 (5 mg)  16 

4 mpg-C3N4 (5 mg) Na2CO3 (1.0 equiv) was added 12 

5 mpg-C3N4 (5 mg) 48 h reaction time 21 

6 mpg-C3N4 (10 mg) 0.25 mmol scale, 48 h reaction time 12 

7 mpg-C3N4/Ag (5 mg)  12 

8 mpg-C3N5 (5 mg)  17 

9 mpg-C3N5/Ag (5 mg)  16 

aStandard reaction conditions: styrene (184, 0.50 mmol, 1.00 equiv), tosyl chloride (186, 0.50 mmol, 

1.00 equiv), catalyst (1.0 mol%) and dry MeCN (2.0 mL) were irradiated for 24 h with a blue LED (λ 

= 455 nm) at room temperature under nitrogen atmosphere. bYield determined by 1H-NMR using 4-

nitrobenzaldehyde as internal standard. cIsolated yield. 

 

 To investigate whether these issues arise from styrene (184) or activated alkenes in 

general, we conducted the same reaction using octene 188 as trapping reagent instead (Table 

21).[70b] Noteworthy, employing [Cu(dap)2]Cl (7) as catalyst for inactivated alkenes requires 

the presence of stoichiometric amounts of Na2CO2, whereas [Ru(bpy)3]Cl2 (1) suffers from the 

addition of a base, as has been demonstrated in our group.[70b]. Unfortunately, mpg-C3N4 pro-

vided for this transformation only 36% yield, even after 3 d of irradiation (entry 5). Interest-

ingly, a crude 1H-NMR revealed a complete consumption of tosyl chloride 186, however, with-

out the formation of by-products. This suggests that the tosyl chloride was either transferred to 

an easily volatile compound or underwent a reaction with the carbon nitride. Taking into ac-

count that the particles did not increase in weight and were still active for a consecutive reaction 

run (entry 6), the former is considered more likely. Without the addition of Na2CO3, no con-

version of starting material took place (entry 4). 
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Table 21: Visible light-mediated ATRA reaction between 1-octene (188) and sulfonyl chloride 186. 

 

Entry Catalyst Deviation from standard conditionsa Yield [%]b 

1 [Cu(dap)2]Cl (7) green LED (λ = 530 nm) was used 84 (80)c 

2 mpg-C3N4 (10 mg) 72 h reaction time 36 

3 mpg-C3N4  run 2 with recovered particles from entry 2 35 

4 mpg-C3N4 (10 mg) without Na2CO3 n.r. 

aStandard reaction conditions: octene 188 (0.50 mmol, 2.00 equiv), tosyl chloride (186, 0.25 mmol, 

1.00 equiv), catalyst (1.0 mol%), Na2CO3 (0.25 mmol, 1.00 equiv) and dry MeCN (2.0 mL) were irra-

diated for 48 h with a blue LED (λ = 455 nm) at room temperature under nitrogen atmosphere. bYield 

determined by 1H-NMR using 4-nitrobenzaldehyde as internal standard. cIsolated yield. 

 

 The oxidation of N-aryltetrahydroisoquinolines 89 to their corresponding iminium cat-

ions (191) and the subsequent trapping by nucleophiles is already reported to operate well using 

mpg-C3N4 (154) as catalyst under an oxygen atmosphere (Scheme 38, upper pathway).[99] 

Therefore, we wondered whether it is also possible to generate the corresponding radical 193, 

which itself acts as nucleophile (lower pathway). As reported by our group,[100] this can be 

achieved photochemically under oxygen-free conditions using [Ru(bpy)3]Cl2 (1) as catalyst. 

Moreover, the successful coupling of the generated α-amino radicals 193 to Michael acceptors 

194 was demonstrated, leading to potential immunosuppressive agents. The addition of TFA 

and additional heating to 50 °C proved to severely accelerate the reaction as well as increase 

the yields.[101] Whereas Nafion-Ru(bpy)3Cl (107) cannot be employed in this reaction due to 

the high leaching caused by the strong acid, graphitic carbon nitride is very durable and, there-

fore, may be a powerful recyclable alternative to the conventional [Ru(bpy)3]Cl2 (1). 

 

 

Scheme 38: Photochemical activation of N-aryltetrahydroisoquinolines 89 under oxygen (upper path-

way) and oxygen-free (lower pathway) conditions. 
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With this in mind, we started our investigations using N-phenyltetrahydroisoquinoline 

(89a) and methyl vinyl ketone (196) as model substrates (Table 22). Following the literature 

conditions[101] afforded 79% isolated yield (entry 1). To our delight, exchanging [Ru(bpy)3]Cl2 

(1) by mpg-C3N4 (154) worked fine and provided 53% yield (entry 2). Since 1H-NMR revealed 

only 85% conversion of starting material, the reaction time was increased to 18 h, which re-

sulted in a partial decomposition of the product and led to deteriorated yields (20%, entry 3). 

Increasing the catalyst loading from 10 mg to 20 mg (entry 4) or employing the originally re-

ported conditions,[100] i.e. without TFA, prolonged reaction time and at room temperature, did 

not lead to any improvements (entry 5). 

Table 22: Photochemically driven addition of N-phenyltetrahydroisoquinoline (89a) to methyl vinyl 

ketone (196). 

 

Entry Catalyst Deviation from standard conditionsa Yield [%]b 

1 [Ru(bpy)3]Cl2 (1, 2 mol%) - 79c 

2 mpg-C3N4 (10 mg) - 53 

3 mpg-C3N4 (10 mg) 18 h reaction time 20 

4 mpg-C3N4 (20 mg) - 45 

5 mpg-C3N4 (10 mg) no TFA, 18 h reaction time, at rt 30 

aStandard reaction conditions: N-phenyltetrahydroisoquinoline (89a, 0.25 mmol, 1.0 equiv), methyl vi-

nyl ketone (196, 0.50 mmol, 2.0 equiv), TFA (0.25 mmol, 1.0 equiv), catalyst and dry MeCN (1 mL) 

were irradiated with a blue LED (λ = 455 nm) for 5 h at 50 °C under nitrogen atmosphere. bYield de-

termined by 1H-NMR using 4-nitrobenzaldehyde as internal standard. cIsolated yield.   
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4.3. Conclusion 

To conclude, different graphitic carbon nitrides were tested for their photochemical re-

activity as well as their recyclability in various reactions. Whereas for a desilylative addition 

all particles were found to be reactive, mpg-C3N5 and mpg-C3N5/Ag were outperformed by 

mpg-C3N4 and its silver doped relative mpg-C3N4/Ag in two ATRA reactions tested. Besides, 

they showed great recyclability and could be reused for at least 10 or 6 consecutive runs, re-

spectively, with only negligible loss in reactivity. Although graphitic carbon nitrides have great 

potential and may be considered as an alternative to transition metal-based catalysts, when it 

comes to more challenging photochemical conversions a simple substitution of the photocata-

lyst proved to be difficult and might require further optimization. Amongst others, this was 

demonstrated by Rueping et al., as for their decarboxylative and desilylative additions it was 

not possible to simply exchange the iridium-based catalyst, but a base was required for the 

reaction to proceed with mpg-C3N4.
[46] Moreover, the extremely short fluorescence lifetime of 

roughly 2 ns[102] could also play a crucial role, as this might not be sufficient to promote some 

visible light-mediated reactions.  
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C. Photochemical Decarboxylations 

1. Introduction 

 Carboxylic acids are widespread in nature. Ranging from simple compounds such as 

formic acid or fatty acids and amino acids, to more complex structures such as pipecolic acid 

(198), which is present in plants and animals, abietic acid (199), occurring in trees, or biotin 

(vitamin H, 200), playing a crucial role in metabolic processes (Figure 14). 

 

 

Figure 14: Various carboxylic acids occurring in nature. 

Due to their easy accessibility and low price, carboxylic acids became a target for or-

ganic chemists to perform decarboxylations with a long time ago.[1] As early as 1848, Kolbe 

presented the first electrolytic decarboxylation using valeric acid and butyric acid.[2] This stra-

tegy, the so-called Kolbe electrolysis, gives rise to the corresponding homocoupling products 

or – in case multiple carboxylic acids are present – hetero coupling products and carbon dioxide 

as the sole byproduct. Other prominent examples include the Hundsdiecker reaction, i.e. to 

decarboxylate the silver or mercury salt of a carboxylic acid by treatment with elemental bro-

mine, which results in the formation of a C-Br bond.[3] In 1983 the Barton decarboxylation was 

invented, opening up the way to UV light-driven decarboxylations. In presence of DCC and 

DMAP, the carboxylic acid 201 is coupled with the hydroxypyridinethione 202 to give the 

corresponding thioxypyridinyl 203 (Scheme 39).[4] The latter is then treated with tributyltin 

hydride and AIBN as radical initiator, which is triggered by heat or UV light irradiation to give 

the decarboxylated alkene 204.  

 

 

Scheme 39: Schematic representation of the Barton decarboxylation. 
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Next to the decarboxylation via benzophenone oxime esters through UV light irradia-

tion, invented by Tsuchiya et al.,[5] in 1988 Okada presented the first photosensitized decar-

boxylation with visible light via N-(acyloxy)phthalimides.[6] For this, stoichiometric amounts 

of both tert-butylthiol as hydrogen source and 1,6-bis(dimethyl-amino)pyrene (BDMAP) as 

photosensitizer were needed to generate the corresponding alkene, carbon dioxide, and 

phthalimide. Due to the unpleasant atom economy, further improvements were made in the 

same group until they developed a protocol in which catalytic amounts of [Ru(bpy)3]Cl2 (1) 

could be employed as photosensitizer along with BNAH as sacrificial electron donor.[7] More-

over, following the same procedure, decarboxylative Michael additions were established by 

exchanging the hydrogen source tert-butylthiol for a coupling partner such as methyl vinyl 

ketone (196, Scheme 40).[8] As can be seen, the excited ruthenium catalyst is reduced by BNAH 

(206), and has, therefore, a sufficiently high reduction potential to transfer an electron to the 

N-(acyloxy)phthalimide 205. Upon the so caused extrusion of carbon dioxide and phthalimide 

(209), the radical 213 is formed, which undergoes a subsequent Michael-like addition with 

methyl vinyl ketone (196). Hence, the desired product 207 could be isolated in 68%, however, 

also the unwanted reduced product 208 was obtained in 18%. This was successfully suppressed 

by increasing the amount of the alkene 196 from 1.0 equiv to 1.9 equiv.  

 

 

Scheme 40: First visible light-mediated decarboxylative Michael addition. 

 Based on these research results, many studies on photocatalytic decarboxylations fol-

lowed. Among others the group of Overman was a pioneer in this field, establishing the 
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synthesis of (-)aplyviolene, where decarboxylation plays a crucial role.[9] However, due to the 

high reduction potentials of the starting materials, the reductive quenching cycle of 

[Ru(bpy)3]Cl2 (1) had to be exploited in basically every example in which the decarboxylation 

takes place via N-(acyloxy)phthalimides.[10] Only in 2013, our group was the first reporting the 

synthesis of (spiro)anellated furans by exploiting the oxidative quenching cycle of 

[Ir(ppy)2(dtbbpy)]PF6 (6) and thus improving the atom economy by overcoming the need for a 

sacrificial electron donor (Scheme 41).[11] 

 

 

Scheme 41: First decarboxylative cyclization exploiting the oxidative quenching cycle of a photocata-

lyst. 

 Taking advantage of the fact that the electron-acceptor strength of N-(acyloxy)phthali-

mides can be increased via hydrogen bonding,[12] Glorius and coworkers demonstrated the de-

carboxylative alkylation of various styrenes exploiting the oxidative quenching cycle of a pho-

tocatalyst in the presence of water or alcohols (Scheme 42).[13] A SET from the excited catalyst 

to the N-(acyloxy)pthalimide 218 causes the cleavage of CO2 and phthalimide (209). The gen-

erated radical 222 rapidly undergoes a reaction with styrene 219 to form 223, which is subse-

quently oxidized from the catalyst to the carbocation 224. Noteworthy, closing the catalytic 

cycle requires the formed alcoholate or hydroxy anion to act as nucleophile, generating an 

alcohol or ether scaffold to afford the product 220. 
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Scheme 42: Visible light-mediated decarboxylative alkylation of styrenes. 

 Similar to this research, Song and his group established the decarboxylative alkylation 

of silyl enol ethers 218 (Scheme 43).[14] Taking into account that the reaction proceeds via the 

same mechanism as presented before, and because TMS is a good leaving group, this bears the 

advantage that the cation which is formed during the reaction (224) would not have to be 

trapped by a nucleophile, but the catalytic cycle is closed by TMS cleavage, furnishing various 

ketones 226. 

 

 

Scheme 43: Visible light-mediated decarboxylative alkylation of silyl enol ethers. 

 Only recently Fu et al. further developed this protocol by omitting the iridium-based 

catalyst and using a combination of PPh3 and NaI as catalytic active species instead.[15] Re-

markably, not only additions to silyl enol ethers were presented, but also Minisci-type alkyla-

tions, even in an enantioselective fashion by employing chiral phosphoric acids as auxiliary.  

 Building on these techniques, starting from readily available L-glutamic acid (227) we 

established the photochemical synthesis of various unnatural amino acids and their subsequent 

transformation to pipecolic acid derivatives. The complete sequence is shown in Scheme 44. 

Protecting the α-carboxylic acid of 227 by derivatization to an oxazolidinone or hydantoin, and 

activating the γ-carboxylic acid by forming an active ester with phthalimide made L-glutamic 
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acid an ideal, yet affordable starting material (228). Exploiting different quenching cycles of 

[Ru(bpy)3]Cl2 (1) and fac-Ir(ppy)3 (5) for photochemical decarboxylation a variety of intermo-

lecular coupling partners (upper pathway), as well as intramolecular reactions (lower pathway), 

were tested with moderate to excellent yields. Moreover, the chiral information is retained in 

all products and a successful upscaling to 4.0 mmol was demonstrated.iii 

 

 

Scheme 44: Photochemical decarboxylation of L-glutamic acid derivatives followed by intermolecular 

reactions towards pipecolic acid derivatives (upper) and intramolecular reactions (lower).  

 
iii The project was developed in collaboration with S. Budde. The individual contributions are indicated. 
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2. Synthesis of starting materials 

As already mentioned, for both intermolecular and intramolecular reactions, readily 

available L-glutamic acid (227) served as basis. Starting with the synthesis of N-

(acyloxy)phthalimides 121a and 121b, respectively, suitable for intermolecular reactions, over-

all three reaction steps had to be conducted (Scheme 45). Upon amine protection as tert-

butoxycarbonyl (Boc) or toluenesulfonyl (Ts), the α-carboxylic acid was converted to an oxa-

zolidinone derivative through treatment with paraformaldehyde in presence of catalytic 

amounts of acid. The oxazolidinone functionalization bears the advantage that it protects the 

carboxylic acid during the following reaction steps. At the same time the group can easily be 

removed again under mild reaction conditions to obtain the corresponding amino acid. The 

final reaction to the active esters with N-hydroxyphthalimide led to the desired starting mate-

rials TsGluOxNPhth 121a and BocGluOxNPhth 121b. 

 

 

Scheme 45: Synthesis of N-(acyloxy)phthalimides 121a and 121b suitable for intermolecular reactions. 

 The synthetic steps towards the N-(acyloxy)phthalimides for intramolecular reactions 

are depicted in Scheme 46.iv For this, two different routes were explored. In case the final 

compound should be functionalized with a benzyl group (pathway A), at first, the hydantoin 

232 is formed, followed by esterification with methanol and subsequent benzylation (233). 

After coupling with propargyl derivative 234 or 3,3-dimethylallylbromid (238), respectively, 

an ensuing hydrolysis of the methyl ether and activation with N-hydroxyphthalimide provided 

the starting materials 237a and 239. Reacting L-glutamic acid (227) with phenyl isocyanate, 

on the other hand, gave directly rise to phenyl substituted hydantoin 236 (pathway B). Esteri-

fication with methanol and alkylation with propargyl 234 led to intermediate 235, which was 

hydrolyzed to the free carboxylic acid and finally activated with N-hydroxyphthalimide to give 

the desired N-(acyloxy)phthalimide 237b. Overall, the yields were in a very high range between 

60% and 93%.  

 
iv Starting materials for intramolecular reactions were synthesized by S. Budde.  
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Scheme 46: Synthesis of different N-(acyloxy)phthalimides suitable for intramolecular reactions. 
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3. Photochemical reactions  

3.1. Intermolecular reactions exploiting the reductive quenching cycle of catalyst 

With these substances in hand, we started our investigations towards the best reaction 

conditions for the intermolecular pathway exploiting the reductive quenching cycle of 

[Ru(bpy)3]Cl2 (1).v Therefore, fluorinated crotonate ester 122a served as model reaction part-

ner for activated L-glutamic acid 121a, forming the coupling product 123aa (Table 23).  

Table 23: Investigation of the best reaction conditions for exploiting the reductive quenching cycle of 

catalyst. 

 

Entry Solvent Deviation from standard reaction conditionsa Yield [%]b 

1 THF/H2O (3:1) 15 mol% Hantzsch ester, 1.0 equiv DIPEA 15 

2 Acetone/H2O (6:1) - 43 

3 Acetone/H2O (3:1) - 51 

4 THF/H2O (3:1) 10 equiv 122a 35 

5 Acetone/H2O (3:1) 10 equiv 122a 71 (68)c 

6 MeCN (dry) no 45 

7 Acetone/H2O (3:1) 2.0 equiv Hantzsch ester 68 

8 Acetone/H2O (3:1) 1.2 equiv 122a 20 

9 Acetone/H2O (3:1) 2.0 equiv Hantzsch ester, 10 equiv 122a 30 

10 DMF no  17 

11 Acetone/H2O (3:1) 2 mol% [Ir(dtbbpy)(ppy)2]PF6 (6) 37 

12 Acetone/H2O (3:1) 0.5 mol% [Ru(bpy)3]Cl2 (1) 4 

13 Acetone/H2O (3:1) 0.5 mol% [Ru(bpy)3]Cl2 (1), 16 h irradiation 42 

14 Acetone/H2O (3:1) 1 equiv LiBr 23 

15 MeCN (dry) 2 mol% fac-Ir(ppy)3 (5), no Hantzsch ester n.r. 

aStandard reaction conditions: 121a (0.20 mmol, 1.0 equiv), 122a (1.0 mmol, 5.0 equiv), Hantzsch ester 

(0.20 mmol, 1.0 equiv), [Ru(bpy)3]Cl2 (1, 2.0 mol%), solvent (2 mL), N2 atmosphere, irradiation with 

blue LED (λ = 455 nm) for 5. bYields determined by 19F-NMR using 1,4-di(trifluoro)methylbenzene as 

internal standard. cIsolated yield.  

  

 
v Optimization reactions for the reductive quenching cycle were performed by S. Budde. 
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Employing 2.0 mol% [Ru(bpy)3]Cl2 (1) as photocatalyst, 1.0 equiv Hantzsch ester as 

sacrificial electron donor, acetone/water (3:1) as solvent and 10 equiv alkene gave the best 

results for the test substrate 123aa (71%, Table 23, entry 5). Lower catalyst loadings (entry 12 

and 13), lower substrate concentration (entry 3 and 8) and other solvent systems (entry 4, 6 and 

10) proved to impair the reaction. It should be noted that using fac-Ir(ppy)3 (5) as catalyst, 

exploiting its oxidative quenching cycle, did not lead to any conversion of the starting material 

(entry 15). 

 Next, we explored the capability of this reaction by testing various alkenes (Table 24).vi 

As already stated, fluorinated crotonate 122a gave 68% isolated yield (entry 1). When employ-

ing the corresponding acrylate 122b and Boc-protected N-(acyloxy)phthalimide 121b the yield 

dropped to 60%. As shown below, the variation of the protecting group from Boc to Ts does 

not affect the reaction outcome (entry 6 – 7). Thus, it can be concluded that primary alkenes 

are slightly less reactive than secondary ones. Whereas the Boc-protection of hydroxycyclo-

pentenone 122d turned out to be a good leaving group, forming product 123ad in good yields 

(50%, entry 4), TBDMS (122e) is not, and only the addition product 123ae was obtained (en-

try 5). Besides, the yield dropped to 36% which is due to the more sterically demanding pro-

tecting group compared to Boc. Furthermore, enol acetate 122f proved to be a good coupling 

partner and gave the same yield for both Boc- and Ts-protected starting material (entry 6 – 7). 

Interestingly, enol acetate 122f behaved like silyl enol ethers,[14] forming upon acetate cleavage 

the ketone 123af and 123bf, respectively.  

 

  

 
vi Entries 1-3 were performed by S. Budde.  
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Table 24: Substrate scope exploiting the reductive quenching cycle of [Ru(bpy)3]Cl2 (1). 

 

Entry Substrate  Product  Yield [%]a 

1 
 

122a 

 

123aa 68 

2 
 

122b 

 

123bb 60 

3 

 

122c 

 

123ac 46 

4 

 

122d 

 

123ad 50 

5 

 

122e 

 

123ae 36 

6 

 

122f 

 

123bf 45 

7 

 

122f 

 

123af 45 

Unless otherwise noted, the reaction conditions are as follows: N-(acyloxy)phthalimide 121a or 121b 

(0.20 mmol, 1.0 equiv), alkene 122 (2.0 mmol, 10 equiv), Hantzsch ester (0.20 mmol, 1.0 equiv) and 

[Ru(bpy)3]Cl2 (1, 2.0 mol%) were dissolved in acetone/water (3:1, 2 mL) and irradiated with a blue 

LED (λ = 455 nm) for 5 h at room temperature under N2 atmosphere. aIsolated yields are given. bThe 

amount of alkene 122 was reduced to 5.0 equiv (1.0 mmol). 

 

 Although these reaction conditions allow for a reasonable variety of coupling partners 

and unique reaction products, only moderate yields were obtained on average. As a result of 

the numerous components contained, it is difficult to adopt the conditions for the individual 

substrates. In other words, one has to fight against the bad solubility of Hantzsch ester and most 
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alkenes other than crotonate 122a or acrylate 122b. This is why only half the amount of the 

alkene was utilized, i.e. 5 equiv. In addition, the need for Hantzsch ester as a sacrificial electron 

donor renders the reaction workup tedious due to multiple overlapping spots on TLC. However, 

attempts towards finding an appropriate substitute as electron donor were not successful and 

resulted in lower yields. 

 The proposed reaction mechanism is depicted in Scheme 47. First, RuII is transferred to 

its excited singlet state via visible light irradiation to abstract an electron from Hantzsch es-

ter 240. Having a sufficiently high reduction potential (E1/2
II/I = -1.33 V vs. SCE),[16] an electron 

is transferred to the N-(acyloxy)phthalimide 121 causing the extrusion of phthalimide and CO2. 

This gives rise to a carbon-centered radical 244 which is trapped by an alkene 122. The result-

ing radical intermediate 245, in turn, abstracts a hydrogen atom from the Hantzsch ester radical 

242 to form the desired product 123.  

 

 

Scheme 47: Proposed reaction mechanism exploiting the reductive quenching cycle of [Ru(bpy)3]Cl2. 
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3.2. Intermolecular reactions exploiting the oxidative quenching cycle of catalyst 

Driven by the work of F. Glorius,[13] Q. Song,[14] and our group,[11] we envisioned to 

perform this decarboxylative alkylation by exploiting the oxidative quenching cycle of the pho-

tocatalyst. This would make an additional sacrificial electron donor redundant and therefore 

not only make the reaction more environmentally benign, but also lead to more easily tunable 

reaction conditions. However, in the literature precedent, closing the catalytic cycle inevitably 

introduces a hydroxy or alcoholate anion, forming an alcohol or ether scaffold, respectively 

(see above, Scheme 42). Additionally, exploiting the oxidative quenching cycle using croto-

nate 122a as a substrate led to no product formation. Therefore, we decided to trap the radical 

generated by decarboxylation with enol acetates or silyl enol ethers, as shown by Q. Song.[14] 

Doing so, the catalytic cycle is closed by cleaving the acetate or silane, respectively, forming 

a ketone. Therefore, various reactions based on N-(acyloxy)phthalimide 121b and 1-phenylvi-

nyl acetate (122f) or the corresponding silyl enol ether 122g were screened to establish the best 

parameters (Table 25). When the same conditions were applied as in the research of Q. Song, 

employing [Ir(ppy)2(dtbbpy)](PF6) (6) as catalyst,[14] the same yield as with the reductive 

quenching cycle was obtained (47%, entry 1). Only when the N-(acyloxy)phthalimide 121b 

was set as limiting factor and the silyl compound 122g was used as trapping reagent, the yield 

could be increased to 70% (entry 4). Using PPh3 and NaI as the photoredox active species[15a] 

did not lead to any improvement (entry 5). Screening of different transition metal-based pho-

tocatalysts revealed that fac-Ir(ppy)3 (5) provided the best results for both Ac and TMS leaving 

group (entry 9 – 10). Noteworthy, solely for the enol acetate 122f the catalyst loading could be 

reduced to 1 mol% without any negative impact (entry 14). The reaction did not proceed neither 

without photocatalyst or light, nor in the presence of oxygen (entry 16 – 18). 
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Table 25: Investigation of best reaction conditions for exploiting the oxidative quenching cycle of var-

ious photocatalysts. 

 

Entry Photocatalyst Lg equiv 121b equiv 122 Yield [%]a 

1 [Ir(ppy)2(dtbbpy)](PF6) (6) Ac 1.5 1.0 47 

2 [Ir(ppy)2(dtbbpy)](PF6) (6) Ac 1.0 5.0 47 

3 [Ir(ppy)2(dtbbpy)](PF6) (6) TMS 1.5 1.0 61 

4 [Ir(ppy)2(dtbbpy)](PF6) (6) TMS 1.0 5.0 70 

5b PPh3  and NaI TMS 1.0 2.0 37 

6 [Ru(bpy)3]Cl2 (1) Ac 1.0 5.0 - 

7 [Cu(dap)2]Cl (7) Ac 1.0 5.0 - 

8 [Cu(dap)Cl2] Ac 1.0 5.0 - 

9 fac-Ir(ppy)3 (5) Ac 1.0 5.0 80 

10 fac-Ir(ppy)3 (5) TMS 1.0 5.0 79 

11 fac-Ir(ppy)3 (5) TMS 1.0 2.0 67 

12 fac-Ir(ppy)3 (5) TMS 1.5 1.0 25 

13c fac-Ir(ppy)3 (5) TMS 1.0 5.0 57 

14c fac-Ir(ppy)3 (5) Ac 1.0 5.0 80 (76)d 

15c fac-Ir(ppy)3 (5) Ac 1.0 3.0 73 

16 - Ac 1.0 5.0 n.r. 

17e fac-Ir(ppy)3 (5) Ac 1.0 5.0 n.r. 

18f fac-Ir(ppy)3 (5) Ac 1.0 5.0 n.r. 

Standard reaction conditions: 0.20 mmol scale, photocatalyst (2.5 mol%), H2O (5.0 mmol, 25 equiv), 

dry MeCN (2 mL), N2 atmosphere, rt, 18 h, blue LED (λ = 455 nm). aYield determined by 1H-NMR 

using 1,3,5-trimethoxybenzene as internal standard. bPPh3 (20 mol%) and NaI (1.5 equiv) were used as 

catalytic active species; no water was added.[15a] c1.0 mol% catalyst was used. dIsolated yield. eWithout 

light. fWithout degassing, under air. 

 

 Having established a protocol for the oxidative quenching cycle, different enol acetates 

and silyl enol ethers were investigated (Table 26). In case silyl enol ethers were employed, the 

catalyst loading was increased from 1.0 to 2.5 mol%. We found that electron-rich enol acetates 

122h – 122k (entry 2 – 5) and electron-rich silyl enol ether 122o (entry 9) were well tolerated. 

Excellent yields were obtained with moderately electron-deficient enol acetates 122l and 122m 

(entry 6 – 7). To our delight, sterically more demanding enol acetate 122n (entry 8) and various 



C. Photochemical Decarboxylations 

 

98 

 

heterocycles, which were unreactive in the literature paragon,[14] proved to be very good cou-

pling partners and gave moderate to excellent yields (entry 10 – 12). Solely very electron-

deficient silyl enol ethers (entry 13 – 14) and alkyl substitution in the enol acetates (entry 15 – 

17) were not tolerated and no product formation was observed, indicating that an adjacent ar-

omatic system is crucial for stabilizing the resulting radical.  

Table 26: Investigation of different enol acetates and silyl enol ethers for decarboxylative alkylation 

exploiting the oxidative quenching cycle of fac-Ir(ppy)3 (5).vii 

 

Entry Substrate  Product  Yield [%]a 

1 

 

122f 

 

123bf 76 

2 

 

122h 

 

123bh 71 

3 

 

122i 

 

123bi 74 

4 

 

122j 

 

123bj 66 

5 

 

122k 

 

123bk 65 

6 

 

122l 

 

123bl 83 

7 

 

122m 

 

123bm 80 

 
vii Enol acetates from entries 2 – 8 and 15 – 16 were kindly provided by T. Föll. 
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8 

 

122n 

 

123bn 61 

9b 

 

122o 

 

123bo 73 

10b 

 

122p 

 

123bp 83 

11b 

 

122q 

 

123bq 40 

12b 

 

122r 

 

23br 74 

13 

 

122s -  n.r. 

14 

 

122t -  n.r. 

15 
 

122u -  n.r. 

16 

 

122v -  n.r. 

17 
 

122w -  n.r. 

Standard reaction conditions: 121b (0.20 mmol, 1.0 equiv), 122 (1.0 mmol, 5 equiv), fac-Ir(ppy)3 (5, 

1.0 mol%), H2O (5.0 mmol, 25 equiv), dry MeCN (2 mL, c = 0.1 M), N2 atmosphere, rt, 18 h, blue LED 

(λ = 455 nm). aIsolated yields are given. bSilyl enol ether (1.0 mmol, 5.0 equiv) and fac-Ir(ppy)3 

(2.5 mol%) were used. 

 

 The proposed reaction mechanism depicted in Scheme 48 is an adapted version of the 

proposal from F. Glorius et al.[13] and Q. Song et al.[14] Through visible light irradiation, the 

IrIII complex is transferred to its excited state and is, therefore, able to directly trigger a single-

electron transfer to N-(acyloxy)phthalimide 121 - it should be noted that the presence of water 

is crucial for the reaction to proceed by decreasing the reduction potential of the active ester 

through hydrogen bonding.[12] Upon N-O mesolysis of phthalimide (209) and subsequent 
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decarboxylation, the carbon-centered radical 248 is furnished, which is trapped by a silyl enol 

ether or enol acetate 122, respectively. In comparison to the reductive quenching cycle, the 

formed radical intermediate 249 is not trapped by hydrogen, but rather a single electron transfer 

towards the oxidized photocatalyst takes place forming the oxidized species 250. The latter is 

transferred to the final product 123 by hydrolysis and the concurrent cleavage of the leaving 

group. 

 

Scheme 48: Proposed mechanism for the photochemical decarboxylative alkylation following the oxi-

dative quenching cycle of fac-Ir(ppy)3 (5). 
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3.3. Reaction upscaling 

Prompted by these excellent results, our next aim was to increase the scale for the reac-

tion between BocGluOxNPhth 121b and 1-phenylvinyl acetate (122f) to synthetically useful 

amounts (Table 27). As reported by Q. Song et al.,[14] for their system the yield drastically 

dropped from 90% to 44% when the reaction was scaled from 0.20 mmol to 1.5 mmol. This 

was explained by the formation of a side product, i.e. the decarboxylative protonation of the N-

(acyloxy)phthalimide. The same was true for our reaction system when the scale was increased 

to 1.0 mmol in a batch setup and even after 5 days of irradiation merely a yield of 55% was 

obtained (entry 1). Only when a flow-system was applied, the formation of the byproduct was 

suppressed and after some optimization, regarding concentration and flowrate, the same yield 

as in the batch setup was attained (80%, entry 5). To our delight, we were able to transform 

4.0 mmol (1.62 g) in excellent yield (78% NMR yield, 73% (971 mg) isolated yield, entry 6). 

As transition metal-based catalysts in large quantities are quite expensive and unsustainable 

even at a loading of 1.0 mol%, we switched to recyclable fac-Ir(PIB-ppy)(ppy)2 (40), originally 

established by our group.[17] Therefore, half the amount of acetonitrile was replaced with hep-

tane as an additional solvent, generating a two-phase system. Since the catalyst is only soluble 

in non-polar solvents it is easily recovered after a reaction by separation of the two phases. 

Despite the very high yield in the first run (85%, entry 7), the reaction outcome decreased 

continuously to 50% within three runs (entry 8 – 9). ICP-OES revealed an overall leaching of 

only 12% iridium into the reaction mixture, which is why the decline was rather attributed to 

the catalyst getting poisoned by acetic acid, formed as a result of the acetate cleavage, and the 

additional deactivation during the reaction.[18] Moreover, in previous studies a similar complex, 

i.e. [Ir(PIB-dtb-bpy)(ppy)2]BArF, was employed as a homogeneously operating recyclable 

photocatalyst for visible light-mediated decarboxylation reactions.[19] In this case, the reaction 

time had to be increased from 16 h to 96 h within five cycles to ensure a constant yield, which 

also suggests the deactivation of the iridium catalyst. 
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Table 27: Optimization of reaction up-scaling. 

 

Entry Photocatalyst Scale [mmol] Conditionsa Yield [%]b 

1 fac-Ir(ppy)3 (5) 1.0 batch, 5 d reaction time 55 

2c fac-Ir(ppy)3 (5) 0.20 c = 0.1 M, 1 mL/h 30 

3c fac-Ir(ppy)3 (5) 0.20 c = 0.05 M, 1 mL/h 42 

4c fac-Ir(ppy)3 (5) 0.20 c = 0.05 M, 0.5 mL/h flowrate 71 

5d fac-Ir(ppy)3 (5) 0.20 c = 0.05 M, 0.5 mL/h flowrate 80 

6d fac-Ir(ppy)3 (5) 4.0 c = 0.05 M, 0.5 mL/h flowrate 78(73)e 

7f fac-Ir(PIB-ppy)(ppy)2 (40) 0.20 batch, run 1, 18 h 85 

8f  0.20 batch, run 2, 18 h 70 

9f  0.20 batch, run 3, 18 h 50 

aStandard reaction conditions: 121b (1.0 equiv), 122f (5.0 equiv), photocatalyst (1.0 mol%), H2O 

(25 equiv), dry MeCN (0.1 M), N2 atmosphere, rt, 18 h, blue LED (λ = 455 nm). bYield determined by 
1H-NMR using 4-nitrobenzaldehyde as internal standard. cMicro reactor was used. d2 micro reactors in 

series were used. eIsolated yield. fTwo-phase system was used, MeCN/heptane = 1:1 (2 mL, c = 0.1 M). 

 

In summary, we developed a protocol to scale the reaction successfully to synthetically 

useful amounts with the aid of a micro-reactor, having no forfeits in yields compared to a batch 

setup. This up-scaling is particularly important when it comes to possible applications, such as 

the processing of pipecolic acid derivatives which is discussed later on. 
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3.4. Intramolecular reactions 

Besides the auspicious results obtained, another part of this research was to investigate 

intramolecular reactions starting with submitting the compounds 237a and 237b to photoreac-

tions (Scheme 49).viii Since exploiting the oxidative quenching cycle of fac-Ir(ppy)3 (5) led to 

no product formation, we focused on the reductive quenching cycle of [Ru(bpy)3]Cl2 (1), using 

DIPEA as sacrificial electron donor. To our delight, both starting materials provided the six-

exo dig (251) and seven-endo dig (252) cyclization products as two inseparable isomers in a 

ratio of 2:1 in excellent yields.  

 

 

Scheme 49: Intramolecular decarboxylative cyclization reactions. 

Furthermore, the starting material 239 was tested for its reactivity (Scheme 50). Ex-

ploiting the oxidative quenching cycle of fac-Ir(ppy)3 (5, upper pathway) provided the insepa-

rable cyclization products 253 and 254 in a ratio of 1:1 and an overall yield of 75%. Via a 

dehydration reaction of the former, only the unsaturated product can be obtained, which would 

therefore allow for further functionalization. Moreover, by opening the hydantoin via hydra-

tion, pipecolic acid derivatives could be furnished. Applying the reductive quenching cycle of 

[Ru(bpy)3]Cl2 (1) instead (lower pathway), utilizing DIPEA as sacrificial electron donor, the 

products 255 and 254 were formed in a ratio of 1:1 in almost the same yield as before (73%). 

In this case, the latter was successfully reduced via hydrogenation to the saturated isomer 255, 

and thus only one product was furnished. 

 
viii Reactions towards 251 and 252 and towards 253 were performed by S. Budde.  
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Scheme 50: Intramolecular reactions starting from 239, exploiting both oxidative (upper) and reductive 

(lower) quenching cycle of photocatalysts. 
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4. Synthesis of pipecolic acid derivatives 

To prove the importance of our application we established the synthesis of C-6 substi-

tuted pipecolic acid derivatives, which are particularly interesting due to their potential bioac-

tivity.[20] The full synthesis was demonstrated on the basis of two examples, i.e. the phenyl-

substituted photoreaction product 123bf from the up-scaling process and the thiophen-substi-

tuted photoreaction product 123bp (Scheme 51). In the first step, the oxazolidinone protection 

group was removed by treating the starting materials with 1 M aqueous NaOH to form the free 

acids 230a and 230b. Since the direct conversion to the imine 256 was unsuccessful due to 

multiple side reactions, we decided to go via the esterification products 257a and 257b. Doing 

so, the imine formation was achieved by treatment with TFA and could be in situ reduced to 

the desired products 231a and 231b, respectively, in overall reasonable yields. Benefitting from 

the chiral center, which is preserved from the initial L-glutamic acid, high diastereomeric ratios 

of 6:1 were obtained. Whereas only the synthesis of the phenyl-substituted pipecolic acid is 

known so far,[21] we were able to successfully establish a pipecolic acid derivative comprising 

an additional heterocycle. Moreover, these reaction steps can be extended to various photore-

action products, providing different novel C-6-substituted pipecolic acid derivatives, which 

could be tested for their biological activity.  

 

 

Scheme 51: Synthesis of pipecolic acid derivatives from photoreaction products 123bf and 123bp. 
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5. Conclusion 

In summary, a protocol for the visible light-mediated synthesis of novel amino acid 

derivatives from cheap and readily available L-glutamic acid was developed. Whereas exploit-

ing the reductive quenching cycle of [Ru(bpy)3]Cl2 (1) only led to moderate yields, but pro-

vided a reasonable variety of coupling partners, more success has been achieved with the oxi-

dative quenching cycle of fac-Ir(ppy)3 (5). For this, various enol acetates and silyl enol ethers 

served as radical trapping reagents, forming ketones as photoreaction products. Furthermore, 

its successful upscaling and transformation to pipecolic acid derivatives containing a phenyl or 

thiophene moiety, respectively, was demonstrated, which makes the reaction especially valua-

ble.  
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D. Summary / Zusammenfassung 

1. Summary 

The present work opens with a short overview of photochemical processes and the un-

derlying photophysical aspects of transition metal-based photocatalysts. Furthermore, recent 

advancements in photocatalytic flow chemistry are covered, using pertinent examples.  

The chapter “Recyclable Photocatalysts” deals with the heterogenization of ruthenium- 

and iridium-based photocatalysts, their application, and recycling. Initially, Nafion, a perfluo-

ronic resin with terminal sulfonic acid groups, which is commonly used as an ionic exchanger, 

served as solid support to electrostatically attach [Ru(bpy)3]
2+. The easy to prepare immobilized 

catalyst was successfully employed in a batch process for various photochemical transfor-

mations, such as E/Z-isomerization of stilbene, or ATRA reactions. Its heterogeneous nature 

allowed on the one hand for recovery via centrifugation and, depending on the reaction, subse-

quent reuse for at least five times without greater loss in activity. On the other hand, a solid-

phase flow system was realized, greatly improving the yield and reaction times for the E/Z-

isomerization. To circumvent the time-consuming centrifugation step in batch reactions and, 

therefore, improve this system even further, carbon-coated magnetic cobalt (Co/C) nanoparti-

cles were conceived as non-covalent solid support for the ruthenium(II) complex. Even though 

the recovery of the catalyst was facilitated, as applying an external magnet was sufficient to 

separate the particles from the reaction mixture, they exhibited high leaching of ruthenium. 

Therefore, the immobilization strategy was streamlined by covalently attach derivatives of 

[Ru(bpy)3]
2+ and fac-Ir(ppy)3. Whereas an immobilized version of the former proved to be 

inactive, the heterogenized iridium(III) complex was effectively employed for the E/Z-isomer-

ization of a pinacol ester as well as a [2+2] cycloaddition. The catalyst revealed high activity 

as well as recyclability, inasmuch 5 – 10 consecutive runs were feasible without any greater 

losses in activity. Noteworthy, the leaching of iridium was decreased to a minimum. In the 

following section, novel graphitic carbon nitrides were tested for their photochemical perfor-

mance in various transformations, mainly ATRA reactions. The particles were compared to 

other well-established transition metal-based photocatalysts, such as [Cu(dap)2]
+.  

 The chapter “Photochemical Decarboxylations” details results on the visible light-me-

diated decarboxylation of modified, cheap, and readily available L-glutamic acid. After opti-

mization of the reaction parameters, various intermolecular - employing alkenes as coupling 

partners - as well as intramolecular reactions were conducted. Therefore, the reductive and 
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oxidative quenching cycles of [Ru(bpy)3]
2+ and fac-Ir(ppy)3 were exploited. A reaction upscal-

ing to synthetically useful amounts, i.e. 4.0 mmol, was achieved via a flow process. The ensu-

ing synthesis of unnatural amino acids and their transformation to potentially bioactive pipe-

colic acid derivatives was demonstrated in two examples. Noteworthy, the chiral information 

of the L-glutamic acid is conserved throughout all steps, providing products with high diastere-

omeric ratios.  
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2. Zusammenfassung 

 Die vorliegende Arbeit beginnt mit einem kurzen Überblick über photochemische Pro-

zesse und die zugrunde liegenden photophysikalischen Aspekte von Photokatalysatoren auf 

Übergangsmetallbasis. Des Weiteren werden die jüngsten Fortschritte in der photokatalyti-

schen Durchflusschemie anhand einschlägiger Beispiele behandelt. 

 Das Kapitel „Recyclable Photocatalysts“ befasst sich mit der Heterogenisierung von 

Photokatalysatoren auf Ruthenium- und Iridiumbasis, sowie deren Anwendung und Recycling. 

Zu Beginn diente Nafion, ein perfluoronisches Harz mit endständigen Sulfonsäuregruppen, 

welches normalerweise als Ionenaustauscher Verwendung findet, als fester Träger zur elektro-

statischen Anbringung von [Ru(bpy)3]
2+. Der leicht herzustellende, immobilisierte Katalysator 

wurde erfolgreich im Batchprozess für verschiedenste Transformationen, wie der E/Z-Isome-

risierung von Stilben oder ATRA Reaktionen eingesetzt. Seine heterogene Natur ermöglichte 

einerseits die Rückgewinnung mittels Zentrifugation, und, je nach Reaktion, eine anschlie-

ßende mindestens fünfmalige Wiederverwendung ohne größeren Aktivitätsverlust. Anderer-

seits konnte ein Festphasen-Durchflusssystem realisiert werden, welches sowohl die Ausbeute 

als auch die Reaktionszeiten der E/Z-Isomerisierung stark verbesserte. Um den zeitintensiven 

Zentrifugationsschritt in Batchprozessen zu umgehen und damit das System noch weiter zu 

verbessern, wurden kohlenstoffbeschichtete magnetische Kobaltnanopartikel (Co/C) als nicht-

kovalenter, fester Träger für den Ruthenium(II)-Komplex konzipiert. Obwohl so zwar die 

Rückgewinnung des Katalysators erleichtert wurde, da das Aufbringen eines externen Magne-

ten ausreichte, um die Partikel von der Reaktionsmischung zu trennen, wiesen sie jedoch ein 

hohes Rutheniumleaching auf. Daher wurde die Immobilisierungsstrategie optimiert, indem 

Derivate von [Ru(bpy)3]
2+ und fac-Ir(ppy)3 kovalent angebracht wurden. Während sich eine 

immobilisierte Variante des ersteren als inaktiv erwies, wurde der heterogenisierte Iridium(III)-

Komplex erfolgreich zur E/Z-Isomerisierung eines Pinakolesters sowie einer [2+2] Cycloaddi-

tion angewendet. Dabei wies der Katalysator eine sehr hohe Aktivität sowie Recyclingfähigkeit 

auf, da 5 – 10 aufeinanderfolgende Reaktionen ohne größere Aktivitätsverluste möglich waren. 

Bemerkenswerterweise wurde das Iridiumleaching auf ein Minimum reduziert. Im darauf fol-

genden Abschnitt wurden neue graphitische Kohlenstoffnitride auf ihre photochemische Leis-

tungsfähigkeit in verschiedenen Transformationen, hauptsächlich ATRA Reaktionen, getestet. 

Dabei wurden die Partikel mit anderen etablierten Photokatalysatoren auf Übergangsmetallba-

sis, wie z. B. [Cu(dap)2]
+, verglichen.  
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 Das Kapitel „Photochemical Decarboxylations“ beschreibt die Ergebnisse der durch 

sichtbares Licht vermittelten Decarboxylierung von modifizierter, kostengünstiger und leicht 

verfügbarer L-Glutaminsäure. Nach Optimierung der Reaktionsparameter, wurden verschie-

dene intermolekulare Reaktionen mit Alkenen als Kopplungspartner, sowie intramolekulare 

Reaktionen durchgeführt. Dazu wurden der reduktive sowie oxidative Quenching-Zyklus von 

[Ru(bpy)3]
2+ und fac-Ir(ppy)3 genutzt. Eine Hochskalierung der Reaktion auf synthetisch nütz-

liche Mengen, sprich 4.0 mmol, wurde durch einen Flussprozess erreicht. Die anschließende 

Synthese unnatürlicher Aminosäuren und deren Umwandlung zu potenziell bioaktiven Deriva-

ten der Pipecolinsäure wurde anhand zweier Beispiele demonstriert. Bemerkenswerterweise 

bleibt die chirale Information der L-Glutaminsäure in allen Schritten erhalten und liefert so 

Produkte mit hohen Diastereomerenverhältnissen.  
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E. Experimental Part 

1. General information 

Nafion® SAC-13 was purchased from Sigma Aldrich. Carbon coated cobalt nanoparticles 

(Co/C) were obtained from Prof. W. J. Stark from the ETH Zurich, Switzerland. Prior to use, 

they were washed according to the general procedure (see below). They were dispersed by the 

aid of an ultrasound bath (Sonorex RK 255 H-R, Bandelin) and recovered with the help of a 

commercially available neodymium-based magnet (15 x 30 mm). Graphitic carbon nitrides 

(mpg-C3N4, mpg-C3N5, g-C3N4/Ag and g-C3N5/Ag) were obtained from Dr. Manoj Gawande 

from the Regional Centre of Advanced Technologies and Materials in the Czech Republic. All 

other chemicals were used as received or purified according to the ‘purification of common 

laboratory chemicals’ if necessary.[1] Elemental microanalysis (EA) was performed by the Mi-

cro Analytical Laboratory of the University of Regensburg using a Vario MICRO cube or Ti-

trino plus 848. Samples for the inductively coupled plasma optical emission spectrometry (ICP-

OES) were measured on Spectroblue FMX36. IR spectroscopy measurements were performed 

on an Agilent Cary 630 FTIR spectrometer equipped with a Diamond Single Reflection Ac-

cessory. Analytical thin-layer chromatography was performed on Merck TLC aluminum sheets 

silica gel 60 F 254. Reactions were monitored by TLC and visualized by a short-wave UV lamp 

and stained with a solution of potassium permanganate or vanillin. Flash column chromatog-

raphy was performed using Merck flash silica gel 60 (0.040-0.063 mm). The blue light irradi-

ation in batch processes was performed using a CREE XP-E LED (3 W, λmax = 450 – 465 nm) 

or, in case the LED plate was used (see below), OSRAM Oslon SSl 80 LDCQ7P-1U3U 

(1.12 W, λmax = 455 nm). In flow processes, 8 OSRAM OSLON Black Series LD H9GP LEDs 

(λ = 455±10 nm) were employed. Green light irradiation was ensured by CREE XP-E LED 

(3 W, λmax = 520 – 535 nm). NMR spectra were recorded on Bruker Avance 300 and Bruker 

Avance 400 spectrometers. All spectra were recorded in CDCl3 or commercially available deu-

terated solvents. Chemical shifts are reported as δ, parts per million, relative to the signal of 

the solvent. Coupling constants J are given in Hertz (Hz). The following notations indicate the 

multiplicity of the signals: s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, 

quint = quintet, sept = septet, and m = multiplet. Chiral gas chromatography was performed on 

a Fisons GC 8000. CP-Chirasil-Dex CB (25 m x 0.25 mm, 0.25 m film, injection temperature 

140 °C, detector temperature 140 °C, P = 100 kPa He gas) was used as chiral stationary phase. 

Mass spectra were recorded at the Central Analytical Laboratory at the Department of 



E. Experimental Part 

 

114 

 

Chemistry of the University of Regensburg on a Varian MAT 311A, Finnigan MAT 95, Ther-

moquest Finnigan TSQ 7000 or Agilent Technologies 6540 UHD Accurate-Mass Q-TOF 

LC/MS. The yields reported are referred to the isolated compounds unless otherwise stated.  

 

General procedure for washing Co/C nanoparticles 124 

Prior to use, the carbon-coated cobalt nanoparticles (Co/C) 124 were washed five times for 

24 h in a HClconc/H2Omillipore mixture (1:1). To remove any residual acid the particles were mag-

netically collected and washed with Millipore water until the pH of the decanted solution was 

neutral. Subsequently, the particles were washed with acetone (3x) and diethyl ether (2x) and 

dried at 50 °C under vacuum. Elemental microanalysis [%]: C, 4.50; H, traces; N, 0. 

 

General sample preparation for ICP-OES for ruthenium  

To determine the leaching of ruthenium the samples were prepared by evaporating the solvent 

of the reaction mixture and boiling the residue for 10 min in 2.4 mL HClconc and 0.8 mL HNO3. 

Subsequently, the mixture was filtered through a 0.2 µm syringe filter, diluted to 10 mL with 

Millipore water, giving a 32% solution of aqua regia, which was measured in the ICP apparatus. 

To determine the loading of MNP-Ru(bpy)3Cl, 5 mg of the particles were boiled for 

10 min in 2.4 mL HClconc and 0.8 mL HNO3. The particles were magnetically collected, the 

supernatant was decanted, and the procedure was repeated. The combined supernatants were 

diluted with Millipore water to a total of 10 mL leading to a 64% solution of aqua regia. 5 mL 

of this solution were filtered through a 0.2 µm and diluted to 10 mL to give a 32% aqua regia 

solution which was measured in the ICP apparatus. 

 

General sample preparation for ICP-OES for iridium 

For the ICP-OES analysis, the procedure from Reiser et al. was adopted.[2] After evaporation 

of the reaction solvent, the residue was dissolved in concentrated HNO3 and boiled for about 

3 min until the evolution of nitrous gases stopped. Subsequently, 2 mL concentrated H2SO4 

was added and the mixture was again boiled for about 2 min, followed by the addition of an-

other 2 mL of concentrated HNO3 and boiling for about 2 min. After cooling to room temper-

ature, the sample was diluted to a total volume of 10 mL, filtered through a 0.2 µm syringe 

filter, and measured in the ICP apparatus. 
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Catalyst synthesis 

The photocatalysts fac-Ir(ppy)3 (5)[3]
 and [Cu(dap)2]Cl (7)[4] were synthesized following the 

literature procedures. The spectra are in agreement with the literature.  

 

Setup for photochemical reactions 

All photochemical reactions in batch were conducted using either 

 

- Irradiation system invented by Dr. Peter Kreitmeier: 

 

 

 

 

 

 

 

 

 

 

 

or 

 

- LED plate with water-cooled aluminum block: 

 

 

The equipment used for the single reactions is indicated.  
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2. Chapter B: Recyclable Photocatalysts 

2.1. Immobilization of photocatalysts on Nafion 

 

Nafion-Ru(bpy)3Cl (107) 

Following a literature procedure,[5] Nafion® 

SAC-13 (105) firstly had to be transferred to 

its corresponding sodium salt 106. This was 

achieved by charging a glass filter frit with 

Nafion® SAC-13 (105) and passing a 2 M 

aqueous solution of NaCl through until the pH remained neutral. Subsequently, the particles 

were washed with water followed by drying in vacuo at 150 °C for 5 h. For immobilization, 

Nafion 106 (115 mg, 17.2 µmol (based on -SO3Na), 1.00 equiv) and [Ru(bpy)3]Cl2 (1, 26 mg, 

34.4 µmol, 2.00 equiv) were dissolved in MeCN (1 mL) and stirred for 24 h at room tempera-

ture. Afterwards, the particles were filtered and washed with MeCN until the washing solution 

remained colorless. Drying in vacuo afforded the product as orange solid (120 mg). 

ICP-OES: loading [Ru]: 0.102 mmol/g; corresponds to 68% of maximal possible loading. 

 

The reaction was also performed using various conditions: 

(1)  Nafion 106 (115 mg, 17.2 µmol (-SO3Na), 1.00 equiv) and [Ru(bpy)3]Cl2 (1, 13 mg, 

17.2 µmol, 1.00 equiv) were dissolved in MeCN (1 mL). 

ICP-OES: loading [Ru]: 0.101 mmol/g; corresponds to 67% of maximal possible loading. 

(2)  Nafion 106 (115 mg, 17.2 µmol (-SO3Na), 1.00 equiv) and [Ru(bpy)3]Cl2 (1, 8.8 mg, 

11.7 µmol, 0.68 equiv) were dissolved in MeCN (1 mL). 

ICP-OES: loading [Ru]: 0.087 mmol/g; corresponds to 58% of maximal possible loading. 

(3)  Nafion 106 (115 mg, 17.2 µmol (-SO3Na), 1.00 equiv) and [Ru(bpy)3](BF4)2 (32.5 mg, 

34.4 µmol, 2.00 equiv) were dissolved in DCM (1 mL). 

ICP-OES: loading [Ru]: 0.096 mmol/g; corresponds to 64% of maximal possible loading. 

(4)  Nafion 106 (115 mg, 17.2 µmol (-SO3Na), 1.00 equiv) and [Ru(bpy)3]Cl2 (1, 26 mg, 

34.4 µmol, 2.00 equiv) were dissolved in MeOH (1 mL). 

ICP-OES: loading [Ru]: 0.074 mmol/g; corresponds to 49% of maximal possible loading. 

(5)  Nafion 106 (115 mg, 17.2 µmol (-SO3Na), 1.00 equiv) and [Ru(bpy)3]Cl2 (1, 26 mg, 

34.4 µmol, 2.00 equiv) were dissolved in H2O (1 mL). 

ICP-OES: loading [Ru]: 0.036 mmol/g; corresponds to 24% of maximal possible loading.  
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2.2. Photochemical reactions employing photocatalyst on Nafion 

 

(Z)-1,2-diphenylethene (25) [6] 

 

Literature conditions 

A 10 mL Schlenk tube was charged with (E)-1,2-diphenylethene (24, 36 mg, 

0.20 mmol, 1.00 equiv), [Ru(bpy)3]Cl2 (1, 3.8 mg, 6.0 µmol, 3.0 mol%) and 

MeCN (2 mL). The reaction mixture was irradiated with a blue LED (λ = 

455 nm) under an oxygen-atmosphere for 8 h at room temperature. The crude Z/E-ratio was 

determined by GC-FID to be 93:7. Subsequent purification was achieved by flash silica column 

chromatography (hexanes / EtOAc, 19:1) to give the product as colorless oil (29 mg, 

0.160 mmol, 80%). Spectral data are in agreement with those reported in literature.[6] 

1H-NMR (400 MHz, CDCl3): δ 7.29 – 7.16 (m, 10H), 6.61 (s, 2H); 13C-NMR: (101 MHz, 

CDCl3): δ 137.28, 130.29, 128.91, 128.24, 127.12. 

 

Recycling conditions 

A 10 mL Schlenk tube was charged with (E)-1,2-diphenylethene (24, 36 mg, 

0.20 mmol, 1.00 equiv), Nafion-Ru(bpy)3Cl (107, 59 mg, 6.0 µmol, 3.0 mol%) 

and DCM (2 mL). The reaction mixture was irradiated with a blue LED (λ = 

455 nm) under an oxygen atmosphere for 8 h at room temperature. Subsequently, the reaction 

mixture was transferred to a test tube with the aid of DCM (1 mL) and centrifuged for 3 min. 

The supernatant was decanted and DCM (4 mL) was added to the residue. Again, the mixture 

was centrifuged, and the supernatant was decanted. This step was repeated one more time and 

the DCM layers were combined. The Z/E-ratio was determined by GC-FID and the leaching of 

ruthenium into the solvent by ICP-OES. The catalyst, on the other hand, was transferred to a 

Schlenk tube with the help of DCM (2 mL) and reused in a subsequent run.   

 

All following runs were set up equally to the first run without changing any reaction parame-

ters. The result for each reaction run is given in the main part.  
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Diethyl 2-(2-bromo-6-hydroxyhexyl)malonate (111) [7] 

 

Literature conditions 

A Schlenk tube was charged with 5-hexen-1-ol (109, 30 µL, 

0.25 mmol, 1.00 equiv), diethyl 2-bromomalonate (110, 85 µL, 

0.50 mmol, 2.00 equiv), LiBr (43 mg, 0.50 mmol, 2.00 equiv), 

[Ru(bpy)3]Cl2 (1, 1.9 mg, 2.5 µmol, 1.0 mol%) and MeCN (1.0 mL). The tube was sealed with 

a screw-cap and degassed by three freeze-pump-thaw cycles. The screw-cap was replaced with 

a Teflon sealed inlet for a glass rod, through which irradiation with a blue LED (λ = 455 nm) 

took place from above while allowing for magnetic stirring from below. After 24 h the reaction 

mixture was transferred to a separation funnel with the aid of EtOAc (5 mL) and H2O (5 mL). 

The phases were separated, and the aqueous layer was extracted with EtOAc (2 x 5 mL). The 

combined organic layers were dried over Na2SO4 and the solvent was evaporated. After puri-

fication with flash silica column chromatography (hexanes / EtOAc, 4:1), the pure product was 

obtained as colorless oil (70.6 mg, 0.208 mmol, 83%). The spectra are in accordance with those 

reported in literature.[7a] 

1H-NMR (300 MHz, CDCl3): δ 4.34 – 4.12 (m, 4H), 4.08 – 3.94 (m, 1H), 3.78 (dd, J = 10.2, 

4.2 Hz, 1H), 3.65 (t, J = 6.1 Hz, 2H), 2.46 (ddd, J = 14.9, 10.2, 3.1 Hz, 1H), 2.24 (ddd, J = 14.9, 

10.6, 4.3 Hz, 1H), 2.00 – 1.82 (m, 2H), 1.68 – 1.45 (m, 5H), 1.38 – 1.18 (m, 7H); 13C-NMR: 

(75 MHz, CDCl3): δ 168.95, 168.77, 62.53, 61.71, 61.64, 54.65, 50.52, 39.09, 37.79, 31.89, 

23.72, 14.04, 14.00. 

 

Recycling conditions 

A Schlenk tube was charged with 5-hexen-1-ol (109, 30 µL, 

0.25 mmol, 1.00 equiv), diethyl 2-bromomalonate (110, 85 µL, 

0.50 mmol, 2.00 equiv), LiBr (43 mg, 0.50 mmol, 2.00 equiv), 

Nafion-Ru(bpy)3Cl (107, 25 mg, 2.5 µmol, 1.0 mol%) and MeCN (1.0 mL). The tube was 

sealed with a screw-cap and degassed by three freeze-pump-thaw cycles. The screw-cap was 

replaced with a Teflon sealed inlet for a glass rod, through which irradiation with a blue LED 

(λ = 455 nm) took place from above while allowing for magnetic stirring from below. After 

24 h the reaction mixture was transferred to a test tube with the aid of MeCN (2 mL) and cen-

trifuged for 3 min. The catalyst settled whereas the LiBr remained on top of the catalyst. There-

fore, the Lewis acid could be decanted and MeCN (4 mL) was added to the remaining solid. 



E. Experimental Part 

 

119 

 

After centrifuging again, the supernatant was decanted. This step was repeated once again, the 

organic layers were combined and the solvent evaporated. 1,3,5-trimethoxybenzene was added as 

internal standard and the crude mixture was submitted to 1H-NMR to determine the yield (68%). The 

leaching of ruthenium was determined by ICP-OES to be 2.4%.  

The catalyst was dried in vacuo and re-used in a second reaction run, however, remained 

inactive.  

 

 

5-iodo-6-perfluorooctylhexanol (116) [7b] 

 

Literature conditions 

A 5 mL vial equipped with a magnetic stirring bar was charged with 

5-hexen-1-ol (109, 30 µL, 0.25 mmol, 1.00 equiv), heptadecafluoro-

1-iodooctane (115, 86 µL, 0.33 mmol, 1.30 equiv), sodium ascorbate (17 mg, 88 µmol, 

0.35 equiv), [Ru(bpy)3]Cl2 (1, 1.9 mg, 2.5 µmol, 1.0 mol%), MeOH (1.5 mL) and MeCN 

(2.0 mL). The vial was capped with a rubber septum and the mixture was degassed by nitrogen 

sparging for 10 min. After irradiation for 0.5 h with a blue LED (λ = 455 nm) at room temper-

ature, the solvent was evaporated and purification was achieved with flash silica column chro-

matography (hexanes / EtOAc, 4:1) to give the pure product as a white solid (154 mg, 

0.238 mmol, 95%). The analytical spectra are in accordance with literature.[7b]  

1H-NMR (300 MHz, CDCl3): δ 4.39 – 4.24 (m, 1H), 3.65 (t, J = 6.0 Hz, 2H), 3.03 – 2.62 (m, 

2H), 1.91 – 1.71 (m, 2H), 1.68 – 1.47 (m, 5H).13C-NMR: (75 MHz, CDCl3): δ 62.48, 41.64 (t, 

J = 20.6 Hz), 40.04, 31.51, 26.02, 20.48. 

 

Recycling conditions 

A 5 mL vial equipped with a magnetic stirring bar was charged with 

5-hexen-1-ol (109, 30 µL, 0.25 mmol, 1.00 equiv), heptadecafluoro-

1-iodooctane (115, 86 µL, 0.33 mmol, 1.30 equiv), sodium ascorbate (17 mg, 88 µmol, 

0.35 equiv), Nafion-Ru(bpy)3Cl (107, 25 mg, 2.5 µmol, 1.0 mol%), MeOH (1.5 mL) and 

MeCN (2.0 mL). The vial was capped with a rubber septum and the mixture was degassed by 

nitrogen sparging for 10 min. After irradiation for 0.5 h with a blue LED (λ = 455 nm) at room 

temperature, the reaction mixture was transferred to a test tube with the aid of MeCN (2 mL) 

and centrifuged. The supernatant was decanted and the remaining solid was dispersed in MeCN 
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(2 mL) and centrifuged again. After decantation of the supernatant, this step was repeated one 

more time and the organic phases were combined. The solvents were evaporated and 4-nitro-

benzaldehyde was added as internal standard for 1H-NMR.  

The recovered catalyst was dried and re-used in a second reaction run, setting all pa-

rameters as before. The yields of the single runs are given in the main part.  

 

 

1-(nitromethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (90a)[8] 

 

Literature conditions 

A Schlenk tube was charged with 2-phenyl-1,2,3,4-tetrahydroisoquino-

line[9] (89a, 52 mg, 0.25 mmol, 1.00 equiv), [Ru(bpy)3]Cl2 (1, 1.9 mg, 

2.5 µmol, 1.0 mol%) and nitromethane (120, 1.0 mL). The tube was sealed 

with a Teflon sealed inlet for a glass rod to ensure irradiation with a blue LED (λ = 455 nm) 

from above while allowing for magnetic stirring from below. Without degassing and opened 

to air the mixture was irradiated for 4 h at room temperature after which full consumption of 

starting material was obtained. Purification by flash silica column chromatography (hexanes / 

EtOAc, 9:1) afforded the pure product as yellow solid (55.8 mg, 0,208 mmol, 83%). The ana-

lytical data is in accordance with literature.[10] 

1H-NMR (300 MHz, CDCl3): δ 7.17 – 6.96 (m, 6H), 6.90 – 6.77 (m, 2H), 6.75 – 6.63 (m, 1H), 

5.40 (t, J = 7.2 Hz, 1H), 4.71 (dd, J = 11.8, 7.8 Hz, 1H), 4.41 (dd, J = 11.8, 6.6 Hz, 1H), 3.60 – 

3.37 (m, 2H), 2.93 (ddd, J = 16.4, 8.4, 5.9 Hz, 1H), 2.63 (dt, J = 16.3, 5.0 Hz, 1H). 

 

Recycling conditions 

A Schlenk tube was charged with 2-phenyl-1,2,3,4-tetrahydroisoquino-

line[9] (89a, 52 mg, 0.25 mmol, 1.00 equiv), Nafion-Ru(bpy)3Cl (107, 

25 mg, 2.5 µmol, 1.0 mol%) and nitromethane (1.0 mL). The tube was 

sealed with a Teflon sealed inlet for a glass rod to ensure irradiation with a blue LED (λ = 

455 nm) from above while allowing for magnetic stirring from below. Without degassing and 

opened to air the mixture was irradiated for 4 h at room temperature. Subsequently, the reaction 

mixture was transferred to a test tube with the aid of MeNO2 (3 mL) and centrifuged. The 

supernatant was decanted and the remaining solid was dispersed in MeNO2 (4 mL) and again 

centrifuged. After decanting the supernatant this step was repeated one more time and the 
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organic phases were combined and evaporated. 1,3,5-trimethoxybenzene was added as internal 

standard for 1H-NMR and crude NMR was submitted to determine the yield. 

The catalyst was dried and reused in a second run without changing any reaction pa-

rameters. The yields of the single reaction runs are given in the main part.  

 

 

2,2,2-trifluoroethyl 3-methyl-5-((S)-5-oxo-3-tosyloxazolidin-4-yl)pentanoate (123aa)  

 

Literature conditions 

A Schlenk tube was charged with 1,3-dioxoisoindolin-2-yl (S)-3-(5-

oxo-3-tosyloxazolidin-4-yl)propanoate*** (121a, 91.7 mg, 

200 µmol, 1.00 equiv), 2,2,2-trifluoroethyl E-but-2-enolate (122a, 

336 mg, 2.00 mmol, 10.0 equiv), diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate 

(Hantzsch ester, 240, 50.6 mg, 200 µmol, 1.00 equiv), [Ru(bpy)3]Cl2 (1, 3.00 mg, 4.00 µmol, 

2.0 mol%) and MeOH and water (3:1, 2.00 mL, 0.1 M). The Schlenk tube was sealed with a 

plastic screw-cap and the mixture was degassed by three freeze-pump-thaw cycles. The screw-

cap was replaced by a Teflon sealed inlet for a glass rod through which irradiation by a blue 

LED (λ = 455 nm) was ensured from above while the reaction was magnetically stirred from 

below. After 5 h of irradiation, the LED was switched off and the reaction mixture was trans-

ferred to a separation funnel. EtOAc (5 mL) and water (5 mL) were added. The phases were 

separated, and the aqueous layer was extracted with EtOAc (3x 5 mL). The combined organic 

phases were washed with 10 mL brine and dried over Na2SO4. After evaporation of the solvent, 

1,4-bis(trifluoromethyl)benzene was added as internal standard and the yield was determined 

by crude 19F-NMR (51% yield). The pure product was isolated by S. Budde during his optimi-

zation studies (see chapter C).  

 

 Recycling conditions 

A Schlenk tube was charged with 1,3-dioxoisoindolin-2-yl (S)-3-(5-

oxo-3-tosyloxazolidin-4-yl)propanoate (121a, 91.7 mg, 200 µmol, 

1.00 equiv), 2,2,2-trifluoroethyl E-but-2-enolate (122a, 336 mg, 

2.00 mmol, 10.0 equiv), diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate 

(Hantzsch ester, 240, 50.6 mg, 200 µmol, 1.00 equiv), Nafion-Ru(bpy)3Cl (107, 40 mg, 

 
*** For starting material synthesis and further details see chapter C – photochemical decarboxylations. 
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4.00 µmol, 2.0 mol%) and MeOH and water (3:1, 2.00 mL, 0.1 M). The Schlenk tube was 

sealed with a plastic screw-cap and the mixture was degassed by three freeze-pump-thaw cy-

cles. The screw-cap was replaced by a Teflon sealed inlet for a glass rod through which irradi-

ation by a blue LED (λ = 455 nm) was ensured from above while the reaction was magnetically 

stirred from below. After 5 h of irradiation the LED was switched off and the reaction mixture 

was transferred to a test tube with the aid of MeOH (2 mL). The mixture was centrifuged, the 

supernatant was decanted and the remaining solid was dispersed in MeOH (4 mL). After cen-

trifuging and decanting the supernatant again, this step was repeated one more time and the 

organic phases were combined. The solvents were evaporated and 1,4-bis(trifluoromethyl)ben-

zene was added as internal standard. The yields were determined by crude 19F-NMR. 

The catalyst was dried and reused in a second run without changing the reaction param-

eters. The yields of the single runs are given in the main part.   
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2.3. Reaction upscaling employing photocatalyst on Nafion 

 

(Z)-1,2-diphenylethene (25) [6] 

 

 

Setup 

 

 

A column (1) with a glass filter frit was charged with a mixture of Nafion-Ru(bpy)3Cl (107, 

60 mg, 6.0 µmol) and silica (2.5 g) which was ground before. In the middle was placed a glass 

rod (2) to enlarge the surface area and to ensure the light penetration by reducing the depth of 

the silica-catalyst layer. The column was flushed with oxygen saturated DCM (dead volume of 

column = 2.0 mL). The irradiation was realized by 2 x 8 high power blue (λ = 455 nm) LEDs 

(4) and cooling was guaranteed by a stream of nitrogen (5). The substrate(s) were flushed 

through the column with the aid of a syringe pump (6) and collected in a vial.  

 This setup was used for both investigation of the best reaction conditions and up-scal-

ing.  

1 2 3 

4 

4 

5 

6 
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Investigation of best reaction conditions 

To evaluate the best reaction conditions for the photochemical Z/E-isomerization, the reaction 

was conducted several times on a 0.20 mmol scale. Therefore, a 10 mL Schlenk tube was 

charged with (E)-1,2-diphenylethene (24, 36 mg, 0.20 mmol, 1.00 equiv) and DCM (2 mL). 

The mixture was saturated with oxygen by sparging oxygen through it for 3 min. Subsequently, 

the reaction mixture was transferred to a 2.0 mL syringe and flushed through the column with 

the aid of a syringe pump while being irradiated from the outside. To rinse the column the 

syringe was charged with DCM (2.5 mL), which was flushed through. The fractions were col-

lected, the solvent was evaporated, and the Z/E-ratio was determined by integrating the crude 

1H-NMR peaks.  

 

 

 

Upscaling of reaction 

For upscaling, the same reaction setup as before was used. A 100 mL Schlenk flask was 

charged with (E)-1,2-diphenylethene (24, 1.082 g, 6.00 mmol, 1.00 equiv) and DCM (60 mL). 

The reaction mixture was saturated with oxygen by sparging oxygen through it for 10 min. 

Subsequently, a 20 mL syringe was charged with a third of the reaction solution and flushed 

through the column (flow rate: 20 mL/h) while being irradiated from the outside. The syringe 

was recharged two times with the reaction mixture and the column was finally rinsed with 

additional DCM (4 mL). The product was collected in 1.0 mmol or 10 mL fractions, respec-

tively. The solvent was evaporated, and the Z/E-ratio was determined by integration of crude 

1H-NMR integrals. The leaching of ruthenium was determined by ICP-OES. The results are 

given in the main part.  
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5-iodo-6-perfluorooctylhexanol (116) [7b] 

 

 

Setup 

The same setup as for the Z/E-isomerization was used, except that the column was purged with 

a stream of nitrogen for 10 min before flushing the reaction mixture through. Moreover, less 

immobilized catalyst was used for both following reactions, i.e. Nafion-Ru(bpy)3Cl (107, 

25 mg, 2.5 µmol). 

 

Reaction upscaling 

1.0 mmol: A 25 mL Schlenk flask was charged with 5-hexen-1-ol (109, 120 µL, 1.00 mmol, 

1.00 equiv), heptadecafluoro-1-iodooctane (115, 343 µL, 1.30 mmol, 1.30 equiv), sodium 

ascorbate (69 mg, 0.35 mmol, 0.35 equiv), MeOH (6.0 mL) and MeCN (12 mL). The reaction 

mixture was degassed by nitrogen sparging for 10 min and transferred to a 20 mL syringe. The 

mixture was flushed through the column (flow rate: 40 mL/h) while being irradiated from the 

outside. Subsequently, the column was rinsed with MeCN (4 mL) and the fractions were com-

bined. The solvents were evaporated, 4-nitrobenzaldehyde was added as internal standard and 

the yield was determined by 1H-NMR (87%). 

 

1.5 mmol: A 25 mL Schlenk flask was charged with 5-hexen-1-ol (109, 180 µL, 1.50 mmol, 

1.00 equiv), heptadecafluoro-1-iodooctane (115, 515 µL, 1.95 mmol, 1.30 equiv), L-ascorbate 

(104 mg, 0.53 mmol, 0.35 equiv), MeOH (9.0 mL) and MeCN (18 mL). The reaction mixture 

was degassed by nitrogen sparging for 10 min and transferred to a 20 mL syringe. The mixture 

was flushed through the column (flow rate: 40 mL/h) while irradiated from the outside. Subse-

quently, the column was rinsed with MeCN (4 mL) and the fractions were combined. The sol-

vents were evaporated, 4-nitrobenzaldehyde was added as internal standard and the yield was 

determined by 1H-NMR (78%).   
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2.4. Non-covalent immobilization of photocatalysts on magnetic nanoparticles 

 

4-(2-Aminoethyl)phenyl functionalized Co/C nanoparticles (126) [11] 

A 50 mL round bottom flask was charged with Co/C nanobeads 

(124, 500 mg), HClconc (0.5 mL), 4-(2-aminoethyl)aniline (125, 

66 µL, 500 µmol) and H2O (15 mL). After sonication for 15 min, 

the mixture was cooled to 0 °C and a solution of NaNO2 (52 mg, 750 µmol) in H2O (15 mL) 

was dropwise added. After stirring for 30 min at 0 °C, the mixture was sonicated for another 

30 min at room temperature. Subsequently, the particles were magnetically collected, the solu-

tion decantated, followed by washing with 1 M NaOH (3 x 5 mL), H2O (3 x 5 mL), acetone (2 

x 5 mL) and diethyl ether (2 x 5 mL). The particles were dried in vacuo to yield 505 mg of 126. 

IR (neat): 3421, 2920, 2819, 1622, 1548, 1369, 1073, 812 cm-1; elemental microanalysis [%]: 

C, 4.95; H, 0.12; N, 0.13. 

 

 

Silica-coated Co/C nanoparticles (127) [12] 

In a 250 mL round bottom flask, 4-(2-aminoethyl)phenyl functionalized 

Co/C nanoparticles 126 (100 mg) and ammonia solution (25%, 20 mL) 

were sonicated in EtOH (200 mL) for 30 min at room temperature. Tetra-

ethyl orthosilicate (400 µL, 376 mg, 1.80 mmol) was added and the mix-

ture was sonicated for another 2 h at room temperature. Afterwards, the particles were mag-

netically collected and the supernatant decanted. The particles were washed with EtOH (5 x 

15 mL) and dried in vacuo yielding 233 mg of silica-coated Co/C nanoparticles 127. 

IR (neat): 3230, 2117, 1636, 1062, 947, 734 cm-1; elemental microanalysis [%]: C, 2.97; 

H, 1.03; N, 1.05. 

 

 

Thiol-functionalized Co/C nanoparticles (129) 

Following a modified literature procedure,[13] a 10 mL pressure 

tube was charged with silica-coated Co/C nanoparticles 127 

(50 mg), (3-mercaptopropyl)trimethoxysilane (128, 200 µL, 

1.1 mmol), H2O (2.0 mL) and ethanol (2.0 mL). The reaction mixture was sonicated for 15 min 

at room temperature followed by stirring at 80 °C for 16 h. Subsequently, the particles were 
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magnetically collected, and the supernatant was decanted. Washing with H2O (3 x 3 mL) and 

acetone (3 x 3 mL) and drying in vacuo gave the thiol-functionalized Co/C nanoparticles 129 

(150 mg). 

IR (neat): 2926, 1438, 1342, 1305, 1025, 794, 686 cm-1 

 

 

Sulfonic acid-functionalized Co/C nanoparticles (130)  

Modifying a literature procedure,[13] in a 10 mL Schlenk flask 

thiol-functionalized Co/C nanoparticles 129 (120 mg) were 

stirred in H2O2 (30%, 4 mL) for 5 h at room temperature. After 

collecting the particles magnetically, the supernatant was decanted and they were washed with 

H2O (2 x 3 mL), H2SO4 (1 M, 2 x 3 mL) followed by H2O (5 x 3 mL). Drying in vacuo gave 

the sulfonic acid-functionalized Co/C nanoparticles 130 as slightly grey solid (123 mg). 

IR (neat): 3220, 2933, 2110, 1640, 1457, 1412, 1297, 1077, 1025, 738, 690 cm-1; elemental 

microanalysis [%]: C, 15.06; H, 3.37; S, 12.25; corresponds to: loading (S): 3.8 mmol/g; titra-

tion with 1 M NaOH revealed: loading of (-SO3H): 1.80 mmol/g. 

 

 

MNP-Ru(bpy)3Cl (131) 

For deprotonation, the sulfonic acid-functionalized 

Co/C nanoparticles 130 (20 mg, 36 µmol (-SO3H), 

1.00 equiv) were placed in a pressure tube and treated 

with brine (6 x 2 mL). The particles were washed with 

water (3 x 2 mL) and dried in vacuo to give the corresponding sodium salt. Subsequently, these 

nanoparticles and [Ru(bpy)3]Cl2 (1, 45 mg, 60 µmol, 1.67 equiv) were dispersed in water 

(2.25 mL) by sonication in an ultrasonic bath for 30 min and subsequently stirred for 24 h at 

room temperature. The particles were magnetically collected, the supernatant was decanted, 

and they were washed with water until the supernatant remained colorless. Drying in vacuo 

gave the product as slightly brownish solid (23 mg). 

IR (neat): 3258, 2937, 2117, 1737, 1651, 1446, 1413, 1349, 1301, 1092, 1029, 913, 731, 686; 

ICP-OES: loading [Ru]: 0.463 mmol/g.  

The reaction was also performed with (1) heating to 85 °C (loading [Ru]: 0.406 mmol/g) and 

(2) using MeOH as solvent (loading [Ru]: 0.076 mmol/g).  
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2.5. Photochemical reactions employing electrostatically bound catalyst 

 

Literature conditions 

 

(Z)-1,2-diphenylethene (25) [6] 

A Schlenk tube was charged with (E)-1,2-diphenylethene (24, 36 mg, 

0.20 mmol, 1.00 equiv), [Ru(bpy)3]Cl2 (1, 3.8 mg, 6.0 µmol, 3.0 mol%) and 

MeCN (2 mL). The tube was sealed with a Teflon inlet for a glass rod to ensure 

irradiation from above with a blue LED (λ = 455 nm) while allowing for magnetic stirring from 

below. A balloon filled with oxygen was attached and the reaction mixture was irradiated with 

a blue LED (λ = 455 nm) under an oxygen-atmosphere for 8 h at room temperature. The Z/E-

ratio was determined by GC-FID to be 93:7. 

 

The reaction was performed under the same conditions and (1) adding silica-coated magnetic 

nanoparticles 127 (5.0 mg); (2) without [Ru(bpy)3]Cl2 (1) but with silica-coated MNP 127 

(5.0 mg) and (3) without any catalyst. The results for the single experiments are given in the 

main part. 

 

 

1-(1-nitroethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (90b)[8] 

A Schlenk tube was charged with 2-phenyl-1,2,3,4-tetrahydroisoquinoline[9] 

(89a, 52 mg, 0.25 mmol, 1.00 equiv), [Ru(bpy)3]Cl2 (1, 1.9 mg, 2.5 µmol, 

1.0 mol%) and nitroethane (132, 1.0 mL). The tube was sealed with a Teflon 

sealed inlet for a glass rod to ensure irradiation with a blue LED (λ = 455 nm) from above while 

allowing for magnetic stirring from below. Without degassing and opened to air the mixture 

was irradiated for 5.5 h at room temperature after which full consumption of starting material 

was obtained (as judged by TLC). Purification by flash silica column chromatography (hexanes 

/ EtOAc, 9:1) afforded the pure product as yellow solid (51 mg, 0.181 mmol, 72%). The ana-

lytical data is in accordance with literature.[8] The ratio of diastereomers is 2:1. 

1H-NMR (300 MHz, CDCl3): major diastereomer: δ 5.14 – 4.99 (m, 1H), 3.65 – 3.51 (m, 2H), 

1.55 (d, J = 6.7 Hz, 3H); minor diastereomer: δ 4.95 – 4.85 (m), 3.89 – 3.78 (m), 1.71 (d, J = 

6.8 Hz); overlap signals: δ 7.32 – 7.10 (m), 7.03 – 6.99 (m), 6.86 – 6.80 (m), 5.30 – 5.23 (m), 

3.12 – 3.02 (m), 2.97 – 2.84 (m); 13C-NMR: (75 MHz, CDCl3): major diastereomer: δ  147.82, 
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134.57, 130.96, 128.27, 127.31, 127.16,125.08, 118.26, 114.35, 84.39, 61.69, 41.59, 25.32, 

15.35; minor diastereomer: δ 148.10, 133.74, 132.76, 128.39, 128.07, 127.68, 126.20, 125.55, 

117.72, 113.41, 87.91, 60.10, 42.49, 25.69, 16.38.  

 

The reaction was also performed (1) adding silica-coated magnetic nanoparticles 127 (5.0 mg); 

(2) without [Ru(bpy)3]Cl2 (1) but with silica-coated MNP 127 (5.0 mg) and (3) without any 

catalyst. 

 

 

Recycling conditions 

 

(Z)-1,2-diphenylethene (25) [6] 

A Schlenk tube was charged with (E)-1,2-diphenylethene (24, 36 mg, 

0.20 mmol, 1.00 equiv), MNP-[Ru(bpy)3]Cl (131, 13.5 mg, 6.0 µmol, 

3.0 mol%, or 4.5 mg, 2.0 µmol, 1.0 mol%) and MeCN (2 mL). The tube was 

sealed with a Teflon sealed inlet for a glass rod to ensure irradiation from above with a blue 

LED (λ = 455 nm) while allowing for magnetic stirring from below. A balloon filled with ox-

ygen was attached and the mixture was irradiated for 8 h (with 3.0 mol% catalyst loading) or 

16 h (with 1.0 mol% catalyst loading), respectively. Subsequently, the catalyst was magneti-

cally collected, the supernatant was decanted, and the particles were dispersed in MeCN (2 mL) 

again, magnetically collected and the supernatant decanted. These steps were repeated one 

more time. The organic phases were combined, and the solvent evaporated. The Z/E-ratio was 

determined by integrating the signals of the crude 1H-NMR.  

The catalyst was directly reused in a second reaction run applying the same reaction 

parameters as before. The Z/E-ratios of the single runs employing 3.0 or 1.0 mol% catalyst 

loading, respectively, are given in the main part.  

 

 

1-(1-nitroethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (90b)[8] 

A Schlenk tube was charged with 2-phenyl-1,2,3,4-tetrahydroisoquinoline[9] 

(89a, 52 mg, 0.25 mmol, 1.00 equiv), Nafion-Ru(bpy)3Cl (131, 5.4 mg, 

2.5 µmol, 1.0 mol%) and nitroethane (132, 1.0 mL). The tube was sealed with 

a Teflon sealed inlet for a glass rod to ensure irradiation with a blue LED (λ = 455 nm) from 
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above while allowing for magnetic stirring from below. Without degassing and opened to air 

the mixture was irradiated for 5.5 h at room temperature after which the catalyst was magneti-

cally collected and the supernatant decanted. The particles were dispersed in DCM, magneti-

cally collected and the supernatant decanted. These steps were repeated one more time and the 

organic phases were combined. The solvents were evaporated and 1,3,5-trimethoxy benzene 

was added as internal standard for 1H-NMR.  

The catalyst was dried and reused in a second reaction run without changing the reaction 

parameters. The yields of the single runs are given in the main part.  
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2.6. Covalent immobilization of photocatalysts on magnetic nanoparticles 

 

4-(but-3-en-1-yl)-4'-methyl-2,2'-bipyridine (136)  

The reaction was performed modifying a literature known procedure.[14] 

4,4’-dimethyl-2,2’-bipyridine (550 mg, 2.99 mmol, 1.00 equiv) was dis-

solved in dry THF (30 mL) and cooled to 0 °C. LDA, freshly prepared by 

adding nBuLi (1.6 M in heptane, 1.87 mL, 2.99 mmol, 1.00 equiv) to a solu-

tion of diisopropylamine (453 µL, 326 mg, 3.22 mmol, 1.08 equiv) in dry THF (8 mL) was 

added. The mixture turned immediately dark red/brownish. After stirring for 1 h at 0 °C, allyl 

bromine (258 µL, 361 mg, 2.99 mmol, 1.00 equiv) dissolved in THF (3 mL) was slowly added, 

whereupon the mixture turned yellowish. The mixture was allowed to warm to room tempera-

ture overnight. Afterwards, water (2 mL) was added and THF was evaporated. The product 

was extracted with Et2O (3 x 5 mL) and the combined organic layers were dried over MgSO4. 

Purification was achieved by flash silica column chromatography (hexanes / EtOAc, 5:1) to 

give the pure compound as colorless oil (640 mg, 186 mmol, 95%). The spectra are in accord-

ance with those reported in literature.[15] 

1H-NMR (400 MHz, CDCl3): δ 8.54 (dd, J = 9.8, 5.0 Hz, 2H), 8.23 (dd, J = 4.6, 1.5 Hz, 2H), 

7.12 (td, J = 4.4, 3.8, 1.6 Hz, 2H), 5.91 – 5.76 (m, 1H), 5.10 – 4.94 (m, 2H), 2.79 (dd, J = 8.8, 

6.8 Hz, 2H), 2.48 – 2.43 (m, 2H), 2.42 (s, 3H); 13C-NMR (101 MHz, CDCl3): δ 156.20, 156.04, 

151.80, 149.02, 148.94, 148.13, 137.17, 124.66, 123.93, 122.02, 121.30, 115.61, 34.85, 34.32, 

21.18. 

 

 

Bis-(2,2’-bipyridine)(4-(but-3-en-1-yl)-4'-methyl-2,2'-bipyridine) ruthenium(II) bishex-

afluorophosphate (137) [15] 

Modifying a literature known procedure,[15] 

[Ru(bpy)2]Cl2
[16]

 (100 mg, 192 µmol, 1.00 equiv) and lig-

and 136 (43.1 mg, 192 µmol, 1.00 equiv) were dissolved in 

H2O (6.70 mL) and MeOH (13.3 mL) and heated to 85 °C 

for 24 h. The solvents were evaporated to give a bright red 

solid, which was dissolved in less DMF (1 mL). The pure catalyst was precipitated with a sat-

urated aqueous solution of KPF6, filtrated and washed with H2O. After drying over high vacuo, 
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the product was obtained as bright red solid (170 mg, 183 µmol, 95%). The analytical data is 

in accordance with the literature.[15] 

1H-NMR (300 MHz, CD2Cl2): δ 8.49 – 8.38 (m, 4H), 8.27 – 8.24 (m, 2H), 8.11 – 7.99 (m, 4H), 

7.76 – 7.64 (m, 4H), 7.55 – 7.38 (m, 6H), 7.28 – 7.22 (m, 2H), 5.96 – 5.75 (m, 1H), 5.12 – 4.99 

(m, 2H), 2.82 (d, J = 0.6 Hz, 1H), 2.58 (s, 3H), 2.53 – 2.38 (m, 3H); 13C-NMR (75 MHz, 

CD2Cl2): δ 157.29, 157.20, 156.79, 156.63, 154.65, 151.66, 151.56, 151.39, 150.88, 150.67, 

138.32, 136.94, 129.34, 128.58, 128.37, 125.48, 124.76, 124.59, 116.47, 34.89, 34.07, 21.52. 

 

 

(3-azidopropyl)trimethoxysilane (139) [17] 

A flame dried 100 mL Schlenk flask was charged with NaN3 (910 mg, 

14.0 mmol, 1.40 equiv), tetrabutylammonium bromide (644 mg, 

2.00 mmol, 0.20 equiv) and dry MeCN (40 mL). 3-chloropropyltrimethoxysilane (1.82 mL, 

1.99 g, 1.00 equiv) was added and the mixture was refluxed for 24 h under nitrogen atmos-

phere. Afterwards, the solvent was evaporated under reduced pressure, diethyl ether (10 mL) 

was added and the suspension was filtered and washed with additional diethyl ether (2 x 

10 mL). The solvent was removed under reduced pressure yielding the pure product 139 as 

colorless oil. The spectra are in accordance with those reported in literature.[18] 

1H-NMR (400 MHz, CDCl3): δ 3.57 (s, 9H), 3.26 (t, J = 6.9 Hz, 2H), 1.77 – 1.65 (m, 2H), 0.75 

– 0.62 (m, 2H); 13C-NMR (101 MHz, CDCl3): δ 53.74, 50.58, 22.45, 6.33. 

 

 

Azide-functionalized Co/C nanoparticles (140) 

In a 10 mL Schlenk tube silica-coated Co/C nanoparticles 127 

(20 mg) were dispersed in H2O (1 mL) and EtOH (0.5 mL). Am-

monia solution (25%, 25 µL) was added and the mixture was ul-

trasonicated for 5 min. A solution of (3-azidopropyl)trimethoxysilane (139, 100 mg, 487 µmol) 

in EtOH (0.5 mL) was added within 1 h with the aid of a syringe pump under vigorous stirring. 

During this time the solution became cloudy. The mixture was allowed to stir for 18 h at room 

temperature. The particles were magnetically collected, the supernatant decantated and subse-

quently washed with acetone (5 x 3 mL). After drying in vacuo 100 mg of slightly gray azide-

functionalized Co/C nanoparticles 140 were obtained.  

IR (neat): 2937, 2874, 2087, 1450, 1346, 1275, 1237, 1185, 1085, 1006, 775, 693 cm-1; ele-

mental microanalysis [%]: C, 18.69; H, 3.26; N, 20.58 – loading (N): 14.7 mmol/g. 
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6-(trimethylsilyl)hex-5-yn-1-ol [19] 

Under a nitrogen-atmosphere, hex-7-yn-ol (1.50 mL, 1.50 g, 

15.28 mmol, 1.00 equiv) was dissolved in dry and degassed THF 

(45 mL) and cooled to -78 °C. nBuLi (1.6 M in hexanes, 21.0 mL, 33.62 mmol, 2.20 equiv) and 

DMAP (396 mg, 3.24 mmol, 0.21 equiv) were added and the mixture was stirred for 1 h at 

- 78 °C. Afterwards, TMSCl (7.18 mL, 6.14 g, 56.55 mmol, 3.70 equiv) was added and the 

cooling bath was removed. After stirring for 2 h at room temperature the mixture was quenched 

with HCl (1 M, 15 mL). Subsequently, EtOAc (50 mL) was added, the phases were separated, 

and the aqueous phase was extracted with EtOAc (3 x 25 mL). The combined organic phases 

were washed with sat. NaOCO3 (50 mL), brine (50 mL) and dried over Na2SO4. Purification 

was achieved by flash silica column chromatography (hexanes / EtOAc, 4:1). The pure product 

was obtained as colorless oil (2.26 g, 13.27 mmol, 87%). The spectra are in accordance with 

those reported in literature.[20] 

1H-NMR (300 MHz, CDCl3): δ 3.67 (td, J = 6.3, 0.7 Hz, 1H), 2.26 (t, J = 6.7 Hz, 1H), 1.72 – 

1.53 (m, 1H), 0.14 (s, 2H); 13C-NMR (75 MHz, CDCl3): δ 107.01, 84.64, 62.23, 31.64, 24.73, 

19.47, 0.00. 

 

 

(6-iodohex-1-yn-1-yl)trimethylsilane  

The reaction was performed following an adopted literature procedure.[21] 

A 50 mL round bottom flask was charged with 6-(trimethylsilyl)hex-5-

yn-1-ol (1.00 g, 5.87 mmol, 1.00 equiv), imidazole (759 mg, 11.2 mmol, 2.40 equiv), tri-

phenylphosphine (2.77 g, 10.6 mmol, 1.80 equiv), Et2O (15 mL) and MeCN (10.5 mL). The 

mixture was cooled to 0 °C and iodine (3.54 g, 14.0 mmol, 2.40 equiv) was added. After stir-

ring for 2 h at 0 °C the mixture was transferred to a separation funnel with the aid of Et2O 

(100 mL) and washed with sat. aq. Na2S2O3 until the organic phase was colorless. The organic 

phase was dried over Na2SO4. Purification was achieved by flash silica column chromatog-

raphy (pure hexanes). The product was obtained as colorless oil (1.12 g, 4.00 mmol, 68%).The 

1H-NMR spectra is in accordance with literature.[22] 

1H-NMR (400 MHz, CDCl3): δ 3.22 (t, J = 6.9 Hz, 2H), 2.26 (t, J = 7.0 Hz, 2H), 2.00 – 1.88 

(m, 2H), 1.69 – 1.59 (m, 2H), 0.15 (s, 9H); 13C-NMR (101 MHz, CDCl3): δ 106.41, 85.23, 

32.42, 29.21, 18.84, 6.20, 0.15. 
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4-methyl-4'-(7-(trimethylsilyl)hept-6-yn-1-yl)-2,2'-bipyridine (141) 

A 25 mL Schlenk flask was charged with 4,4’-dimethyl-2,2’-bi-

pyridine (250 mg, 1.36 mmol, 1.00 equiv) and dry and degassed 

THF (10 mL). The mixture was cooled to 0 °C and freshly pre-

pared LDA (from diisopropylamine (206 µL, 148 mg, 1.47 mmol, 

1.08 equiv) and nBuLi (1.6 M, 848 µL, 1.36 mmol, 1.00 equiv) in THF (4 mL)) was added after 

which the mixture turned immediately black. After stirring for 1 h at 0 °C, (6-iodohex-1-yn-1-

yl)trimethylsilane (380 mg, 1.36 mmol, 1.00 equiv) dissolved in THF (1.5 mL) was slowly 

added and the mixture was allowed to warm to room temperature overnight. Water (5 mL) was 

added and THF was evaporated. DCM (10 mL) was added and the organic phase was washed 

with water (2 x 5 mL) followed by brine (1 x 5 mL). The organic phase was dried over Na2SO4, 

filtrated and the solvent was evaporated. Purification by flash silica column chromatography 

(hexanes / EtOAc, 5:1) gave the pure compound as colorless oil (431 mg, 1.28 mmol, 94%). 

1H-NMR (300 MHz, CDCl3):
 δ 8.55 (t, J = 4.9 Hz, 2H), 8.22 (s, 2H), 7.21 – 7.05 (m, 2H), 2.70 

(t, J = 7.7 Hz, 2H), 2.44 (s, 3H), 2.22 (t, J = 6.8 Hz, 2H), 1.76 – 1.66 (m, 2H), 1.51 (s, 4H), 0.13 

(s, 9H); 13C-NMR (75 MHz, CDCl3): δ 155.96, 152.43, 148.84, 148.76, 147.97, 124.47, 

123.74, 121.85, 121.10, 107.14, 84.41, 35.21, 29.75, 28.26, 28.22, 21.04, 19.59, 0.00; Rf (hex-

anes / EtOAc, 4:1) = 0.5; IR (neat): 3053, 3008, 2937, 2863, 2177, 1595, 1554, 1461, 1420, 

1379, 1245, 1107, 1055, 842, 760, 701 cm-1; HRMS (EI-MS) m/z calculated for C21H27N2Si 

([M-H]-) 335.19380, found 335.19362. 
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Bis-(2,2’-bipyridine)(4-methyl-4'-(7-(trimethylsilyl)hept-6-yn-1-yl)-2,2'-bipyridine) ru-

thenium(II) bishexafluorophosphate 

A 50 mL round bottom flask was charged with 

[Ru(bpy)2]Cl2
[16] (100 mg, 192 µmol, 1.0 equiv), 

4-methyl-4'-(7-(trimethylsilyl)-hept-6-yn-1-yl)-

2,2'-bipyridine (141, 67.9 mg, 202 mmol, 

1.05 equiv), MeOH (13.3 mL) and H2O 

(6.7 mL) and the mixture was stirred for 4.5 h at 85 °C. Subsequently, the solvents were evap-

orated, and the residue was re-dissolved in DMF (1 mL). The catalyst was precipitated with a 

saturated aqueous KPF6 solution, filtrated and washed with water. Drying over high vacuo gave 

the pure product as bright red solid (253 mg, 147 µmol, 77%).  

1H-NMR (300 MHz, CD3OD): δ 8.51 – 8.40 (m, 4H), 8.32 – 8.22 (m, 2H), 8.12 – 7.98 (m, 

4H), 7.77 – 7.65 (m, 4H), 7.55 – 7.38 (m, 6H), 7.29 – 7.18 (m, 2H), 2.90 – 2.78 (m, 2H), 2.57 

(s, 3H), 2.24 – 2.12 (m, 2H), 1.95 (t, J = 2.6 Hz, 1H), 1.80 – 1.65 (m, 2H), 1.64 – 1.42 (m, 4H); 

13C-NMR (101 MHz, CD3OD): δ 158.37, 158.29, 157.91, 157.75, 156.08, 152.41, 152.36, 

152.29, 151.86, 151.60, 151.37, 138.72, 129.52, 128.71, 128.65, 128.61, 126.16, 125.38, 

125.25, 108.27, 84.74, 35.86, 30.46, 29.32, 29.16, 20.94, 20.01, 0.00; IR (neat): 2930, 2169, 

2117, 1618, 1446, 1312, 1245, 831, 760 cm-1; HRMS (ESI-MS) m/z calculated for 

C41H44N6RuSi ([M-2(PF6)]
2+) 372.1231, found 372.1234. 

 

 

Bis-(2,2’-bipyridine)(4-(hept-6-yn-1-yl)-4’-methyl-2,2’-bipyridine) ruthenium(II) bishex-

afluorophosphate (142) 

Bis-(2,2’-bipyridine)(4-methyl-4'-(7-(trimethylsi-

lyl)-hept-6-yn-1-yl)-2,2'-bipyridine) ruthenium(II) 

bishexafluorophosphate (100 mg, 96 µmol, 

1.00 equiv) and K2CO3 were dissolved in MeOH 

(4 mL) and stirred for 16 h at room temperature. 

MeOH was evaporated and the residue was re-dissolved in DCM (10 mL) and extracted with 

H2O (3 x 5 mL). Evaporation of the solvent gave the pure product as bright red solid (93 mg, 

96 µmol, 100%). 

1H-NMR (400 MHz, CD2Cl2):
 δ 8.66 (d, J = 8.2 Hz, 4H), 8.56 (d, J = 10.3 Hz, 2H), 8.09 (t, J 

= 7.9 Hz, 4H), 7.86 – 7.77 (m, 4H), 7.60 (dd, J = 11.6, 5.8 Hz, 2H), 7.47 (q, J = 7.0 Hz, 4H), 
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7.36 – 7.27 (m, 2H), 2.88 – 2.80 (m, 2H), 2.57 (s, 3H), 2.22 (t, J = 6.6 Hz, 2H), 1.74 (q, J = 7.5 

Hz, 2H), 1.64 – 1.45 (m, 4H), 0.07 (s, 9H); 13C-NMR (75 MHz, CD2Cl2): δ 156.12, 156.03, 

155.62, 155.46, 154.29, 150.43, 150.34, 150.17, 149.65, 149.45, 137.13, 128.12, 127.26, 

127.16, 124.30, 123.44, 83.59, 67.48, 34.36, 28.64, 27.52, 27.30, 20.29, 17.34; IR (neat): 3288, 

2926, 2113, 1618, 1446, 1312, 1264, 1025, 831, 760 cm-1; HRMS (ESI-MS) m/z calculated 

for C38H36N6Ru ([M-2(PF6)]
2+) 336.1033, found 336.1037. 

 

 

MNP-Ru(bpy)2(hexyne-bpy)(PF6)2 (143) 

A Schlenk tube was charged with 

azide-functionalized nanoparti-

cles 140 (22 mg), CuI (2.0 mg, 

11 µmol, 60 mol%) and RuII 

complex 142 (21 mg, 18 µmol, 

1.00 equiv). The tube was evacu-

ated and backfilled with nitrogen three times. Subsequently, dry and degassed DCM (1 mL) 

and DIPEA (4.5 mg, 5.9 µL, 35 µmol, 2.00 equiv) were added and the mixture was allowed to 

stir for 3 d at room temperature, after which it lost its characteristic red color and turned slightly 

orange instead. The particles were magnetically collected, the supernatant decanted and they 

were washed with DCM (3 x 3 mL) until the supernatant remained colorless. The MNP were 

dried over high vacuo to give the product as slightly brownish solid (39 mg). 

The loading of catalyst, based on recovered non-immobilized RuII complex 142, was deter-

mined to be 0.45 mmol/g. 

IR (neat): 2933, 2870, 2091, 1748, 1446, 1409, 1346, 1088, 1010, 779, 693 cm-1. 

 

 

2-phenyl-4-(7-(trimethylsilyl)hept-6-yn-1-yl)pyridine (145) 

In a 50 mL Schlenk flask 4-methyl-2-phenylpyridine[22] (250 mg, 

1.48 mmol, 1.00 equiv) was dissolved in dry and degassed THF 

(8 mL). Freshly prepared LDA solution (diisopropylamine 

(270 µL, 1.92 mmol, 1.30 equiv) and nBuLi (1.6 M in hexanes, 

1.10 mL, 1.77 mmol, 1.20 equiv) dissolved in THF (3 mL)) was added at -78 °C. The mixture 

turned immediately red. After stirring for 30 min at -78 °C, (6-iodohex-1-yn-1-yl)trimethyl-
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silane (414 mg, 1.48 mmol, 1.00 equiv), dissolved in THF (4 mL) was dropwise added and the 

mixture was allowed to warm to room temperature over night, after which it turned colorless. 

H2O (10 mL) was added and THF was evaporated on the rotary evaporator. The product was 

extracted with EtOAc (3 x 10 mL) and the combined organic phases were washed with brine 

(1 x 10 mL) and dried over Na2SO4. Purification was achieved by flash silica column chroma-

tography (hexanes / EtOAc, 5:1). The product 145 was obtained as colorless oil (398 mg, 

1.24 mmol, 84%).  

1H-NMR (400 MHz, CDCl3):
 δ 8.59 (d, J = 5.0 Hz, 1H), 8.08 – 7.92 (m, 2H), 7.56 (s, 1H), 

7.53 – 7.46 (m, 2H), 7.46 – 7.39 (m, 1H), 7.09 (dd, J = 5.0, 1.4 Hz, 1H), 2.76 – 2.65 (m, 2H), 

2.25 (t, J = 7.0 Hz, 2H), 1.77 – 1.68 (m, 2H), 1.63 – 1.55 (m, 2H), 1.53 – 1.45 (m, 2H), 0.15 (s, 

9H); 13C-NMR (75 MHz, CDCl3): δ 157.25, 152.16, 149.28, 139.33, 128.69, 128.54, 126.81, 

122.25, 120.71, 107.07, 84.47, 35.20, 29.73, 28.19, 19.59, 0.00; Rf (hexanes / EtOAc, 4:1) = 

0.5; IR (neat): 3056, 2937, 2859, 2173, 1603, 1554, 1476, 1405, 1249, 1074, 1029, 992, 835, 

760, 693 cm-1; HRMS (EI-MS) m/z calculated for C21H26NSi ([M-H]-) 320.18290, found 

320.18311. 

 

 

Bis(2-phenylpyridine-C2,N)((2-phenyl-4-(7-(trimethylsilyl)hept-6-yn-1-yl)pyridine))iri-

dium 

The catalyst was prepared by modifying a literature 

known procedure.[23] In a 50 mL round bottom flask 

[Ir(ppy)2Cl]2
[3a] (200 mg, 186 µmol, 1.00 equiv) was 

dissolved in DCM (18.5 mL). AgOTf (101 mg, 

391 µmol, 2.10 equiv) dissolved in MeOH (9 mL) was 

dropwise added and the mixture was stirred for 18 h in the dark. After filtering through a short 

plug of Celite® with the aid of DCM (20 mL) the solvent was evaporated to give 

[Ir(ppy)2(MeOH)2](OTf) (144, 265 mg, 372 µmol, 100%) as a green solid which was used 

without further purification. 

A 20 mL Schlenk flask was charged with [Ir(ppy)2(MeOH)2](OTf) (144, 265 mg, 372 µmol, 

1.00 equiv), 2-phenyl-4-(7-(trimethylsilyl)hept-6-yn-1-yl)pyridine (145, 359 mg, 1.12 mmol, 

3.00 equiv), MeOH (7.5 mL) and EtOH (7.5 mL). Subsequently, the mixture was degassed by 

N2 sparging for 5 min and heated to reflux for 24 h. Celite® (1.5 g) was added and the mixture 

was stirred for another 5 min. The mixture was filtration through a short plug of Celite® and 

washed with MeOH (25 mL), followed by hexanes (25 mL). The product was eluted with the 
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aid of DCM (20 mL). Evaporation of the solvent gave the pure product (140 mg, 171 µmol, 

46%) as bright yellow solid. 

1H-NMR (300 MHz, CDCl3):
 δ 7.89 – 7.76 (m, 2H), 7.72 – 7.59 (m, 4H), 7.56 – 7.44 (m, 4H), 

7.39 (d, J = 5.7 Hz, 1H), 6.98 – 6.76 (m, 11H), 6.70 (dd, J = 5.8, 1.8 Hz, 1H), 2.64 (t, J = 7.8 Hz, 

2H), 2.24 (t, J = 6.9 Hz, 2H), 1.76 – 1.38 (m, 6H), 0.16 (s, 9H); 13C-NMR (75 MHz, CDCl3): 

δ 166.42, 165.97, 161.29, 160.92, 151.37, 146.80, 146.40, 143.57, 143.52, 143.48, 136.89, 

136.82, 135.63, 129.57, 129.44, 123.64, 123.42, 122.10, 121.66, 119.42, 118.46, 107.06, 84.41, 

35.15, 29.51, 28.33, 28.14, 19.56, 0.00; IR (neat): 3034, 2930, 2855, 2169, 2110, 1737, 1580, 

1469, 1409, 1301, 1245, 1156, 1059, 1029, 839, 753 cm-1; HRMS (EI-MS) m/z calculated for 

C43H42
191IrN3Si ([M]+) 819.27484, found 819.27569. 

 

 

Bis(2-phenylpyridine-C2,N)(4-(hept-6-yn-1-yl)-2-phenylpyridine)iridium (146) 

A Schlenk tube was charged with bis(2-phenylpyridine-

C2,N)((2-phenyl-4-(7-(trimethylsilyl)hept-6-yn-1-yl)pyridi-

ne))iridium (100 mg, 122 µmol, 1.00 equiv) and THF 

(1 mL). The mixture was cooled to 0 °C and TBAF (1 M in 

THF, 159 µL, 159 µmol, 1.30 equiv) was added. After stir-

ring for 1 h at room temperature, DCM (10 mL) was added and the organic phase was extracted 

with H2O (1 x 10 mL). To get rid of the excess TBAF, DCM was evaporated, the crude mixture 

was dispersed in MeOH (5 mL) and filtered over a short plug of Celite® which was then 

washed with MeOH (20 mL) followed by hexanes (20 mL) The product was eluted with DCM 

(50 mL). Evaporation of the solvent gave the pure product 146 as bright yellow solid (84 mg, 

112 µmol, 92%).  

1H-NMR (300 MHz, CDCl3):
 δ 7.87 – 7.76 (m, 2H), 7.72 – 7.58 (m, 4H), 7.58 – 7.45 (m, 4H), 

7.39 (d, J = 5.7 Hz, 1H), 6.96 – 6.75 (m, 11H), 6.70 (dd, J = 5.7, 1.8 Hz, 1H), 2.72 – 2.57 (m, 

2H), 2.20 (td, J = 6.8, 2.6 Hz, 2H), 1.91 (t, J = 2.6 Hz, 1H), 1.71 – 1.43 (m, 6H); 13C-NMR 

(75 MHz, CDCl3): δ 166.69, 166.23, 161.57, 161.52, 161.17, 151.54, 147.07, 146.65, 143.81, 

143.75, 143.72, 137.14, 137.07, 135.87, 129.83, 129.70, 123.88, 123.67, 122.38, 121.90, 

119.68, 119.65, 118.73, 84.33, 68.51, 35.38, 29.71, 28.32, 28.14, 18.31; IR (neat): 3288, 3084, 

2930, 2855, 2113, 1707, 1599, 1469, 1409, 1297, 1260, 1156, 1103, 1059, 1029, 880, 820, 

753 cm-1; HRMS (EI-MS) m/z calculated for C40H34
191IrN3 ([M]+) 747.23532, found 

747.23742. 
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Bis(2-phenylpyridine-C2,N)(4-(hept-6-yn-1-yl)-2-phenylpyridine)iridium @ azide-func-

tionalized Co/C nanoparticles (147) 

A Schlenk tube was charged with az-

ide-functionalized Co/C nanopar-

ticles (140, 100 mg, 363 µmol (N3), 

9.08 equiv), bis(2-phenylpyridine-

C2,N)(4-(hept-6-yn-1-yl)-2-phenyl-

pyridine)iridium (146, 30 mg, 

40 µmol, 1.00 equiv) and CuI (5.7 mg, 30 µmol, 0.75 equiv). The tube was evacuated and 

backfilled with nitrogen three times. Dry and degassed MeCN (2 mL) and DIPEA (10.3 mg, 

13.6 µL, 80 µmol, 2.00 equiv) were added. The mixture was allowed to stir for 48 h at room 

temperature. Subsequently, the particles were magnetically collected, the supernatant decanted 

and washed with MeCN (5 x 3 mL). Drying in vacuo afforded the greenish immobilized cata-

lyst (120 mg). Since these particles are not stable against moisture, the free hydroxy groups 

were end-capped with TMS. Therefore, a Schlenk flask was charged with the particles and 

dried for 8 h at 75 C under high vacuo. Subsequently, the flask was cooled with a liquid nitro-

gen bath and HMDS (1 mL) was added under vacuo. The mixture was slowly warmed to room 

temperature followed by heating to 75 °C for 18 h. Afterwards, the excess HMDS was evapo-

rated to give the end-capped immobilized catalyst 147 (125 mg). 

ICP-OES measurement revealed a loading of 0.236 mmol/g [Ir], which corresponds to an 

incorporation of 86% of the [Ir]. IR (neat): 2937, 2095, 1580, 1472, 1413, 1346, 1260, 1185, 

1092, 1014, 798, 753, 693 cm-1. 
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2.7. Photochemical reactions employing covalently bound catalyst 

 

Literature conditions 

 

(Z)-4,4,5,5-tetramethyl-2-(2-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (149)[24] 

A 5 mL vial was charged with (E)-4,4,5,5-tetramethyl-2-(2-phenylprop-1-en-

1-yl)-1,3,2-dioxaborolane[24] (148, 24 mg, 0.10 mmol, 1.00 equiv), fac-

Ir(ppy)3 (5, 0.7 mg, 1.0 µmol, 1.0 mol%) and MeCN (1.5 mL). The vial was 

sealed with a rubber septum and degassed by sparging N2 for 15 min. The 

mixture was placed on a blue LED plate (λ = 455 nm) and irradiated for 16 h. Afterwards, the 

catalyst was removed by filtration over a short silica plug with the aid of Et2O (5 mL). Evapo-

ration of the solvent furnished the product 149 as slightly yellow oil (24 mg, 0.10 mmol, 100%; 

Z:E, 94:6). The analytical spectra are in agreement with the literature.[25] 

1H-NMR (300 MHz, CDCl3):
 δ 7.33 – 7.27 (m, 5H), 5.48 (q, J = 1.4 Hz, 1H), 2.22 (d, J = 1.4 

Hz, 3H), 1.15 (s, 12H); 13C-NMR (75 MHz, CDCl3): δ 157.68, 143.14, 127.59, 127.45, 82.99, 

27.75, 24.63. 

 

The reaction was also performed (1) without catalyst, (2) with fac-Ir(ppy)3 (5, 0.7 mg, 

1.0 µmol, 1.0 mol%) and silica-coated MNP 127 (3 mg), and (3) with only silica-coated MNP 

127 (3 mg). The results for the single experiments are given in the main part.  

 

 

(5aR,5bR,10aS,10bS)-5a,5b-bis(4-fluorophenyl)tetradecahydrocyclobuta[1,2:3,4]di[7]-

annulene (152)[26] 

A 5 mL vial was charged with 1-(4-fluorophenyl)cyclohept-1-ene[26] (151, 

114.2 mg, 600 µmol, 1.00 equiv), fac-Ir(ppy)3 (5, 0.5 mg, 0.75 µmol, 

0.125 mol%) and MeCN (1.2 mL). The vial was sealed with a rubber septum 

and the mixture was degassed by N2 sparging for 10 min. The mixture was 

placed on a blue LED plate (λ = 455 nm) to ensure irradiation and magnetic stirring from be-

low. After 24 h of irradiation, the product precipitated as white solid which was filtered and 

washed with additional MeCN (5 mL) to give the pure compound 152 (91 mg, 240 µmol, 80%) 

after drying in vacuo. The analytical spectra are in agreement with the literature.[26]  
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1H-NMR (400 MHz, CDCl3): δ 7.80 – 7.63 (m, 2H), 7.22 – 7.09 (m, 2H), 7.11 – 6.93 (m, 4H), 

2.95 – 2.73 (m, 2H), 2.10 – 1.94 (m, 2H), 1.92 – 1.80 (m, 2H), 1.79 – 1.62 (m, 4H), 1.57 – 1.41 

(m, 4H), 1.31 – 1.13 (m, 4H), 0.90 – 0.75 (m, 2H), 0.42 (dt, J = 13.4, 3.8 Hz, 2H); 13C-NMR 

(101 MHz, CDCl3): δ 160.70 (d, J = 244.1 Hz), 140.25 (d, J = 3.5 Hz), 129.83 (d, J = 7.3 Hz), 

129.18 (d, J = 7.2 Hz), 115.07 (d, J = 20.8 Hz), 114.16 (d, J = 20.4 Hz), 55.72 , 47.53 , 41.88 , 

28.02 , 27.75 , 26.83 , 26.58; 19F-NMR (377 MHz, CDCl3): δ -118.63. 

 

Since an additional solid may disturb the heterogeneous catalyst, the reaction was also per-

formed using DMF as solvent. In this case, the product did not precipitate, which is why the 

solvent had to be evaporated after the reaction. To get rid of the photocatalyst, the solid residue 

was suspended in MeCN and filtered, yielding the pure product 152 in the same amount as with 

MeCN as solvent (90 mg, 237 µmol, 79%). 

 The reaction was also performed (1) without catalyst, (2) with fac-Ir(ppy)3 (5, 0.5 mg, 

0.75 µmol, 0.125 mol%) and silica-coated MNP 127 (3 mg), and (3) with only silica-coated 

MNP 127 (3 mg). The results of the single experiments are given in the main part.  

 

 

Recycling conditions 

 

(Z)-4,4,5,5-tetramethyl-2-(2-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (149)[24] 

A 5 mL vial was charged with (E)-4,4,5,5-tetramethyl-2-(2-phenylprop-1-en-

1-yl)-1,3,2-dioxaborolane[24] (148, 24 mg, 0.10 mmol, 1.00 equiv), immobi-

lized catalyst 147 (4.2 mg, 1.0 µmol, 1.0 mol%) and MeCN (1.5 mL). The vial 

was sealed with a rubber septum and degassed by sparging N2 for 15 min. The 

mixture was placed on a blue LED plate (λ = 455 nm) to ensure irradiation and magnetic stir-

ring from below. After 16 h, the catalyst 147 was magnetically collected and the reaction mix-

ture was decanted. The particles were washed with additional MeCN (2 mL). The organic lay-

ers were combined, and the solvent was evaporated. 4-nitrobenzaldehyde was added as an in-

ternal standard and the yield was determined by 1H-NMR. The catalyst 147, on the other hand, 

was directly used in the next run. All following catalyst runs were set up equally to the first 

run, all reaction parameters were kept constant. 
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(5aR,5bR,10aS,10bS)-5a,5b-bis(4-fluorophenyl)tetradecahydrocyclo-

buta[1,2:3,4]di[7]annulene (152)[26] 

A 5 mL vial was charged with 1-(4-fluorophenyl)cyclohept-1-ene[26] (151, 

114.2 mg, 600 µmol, 1.00 equiv), immobilized catalyst 147 (3.2 mg, 

0.75 µmol, 0.125 mol%) and DMF (1.2 mL). The vial was sealed with a rub-

ber septum and the mixture was degassed by N2 sparging for 10 min. The 

mixture was placed on a blue LED (λ = 455 nm) plate to ensure irradiation and magnetic stir-

ring from below. After 24 h, the catalyst 147 was collected with an external magnet and the 

reaction mixture was decanted. The particles were washed with additional DMF (2 mL). The 

organic layers were combined, and the solvent was evaporated. 4-nitrobenzaldehyde was added 

as an internal standard and the yield was determined by 1H-NMR. The catalyst, on the other 

hand, was directly used in the next run. All following catalyst runs were set up equally to the 

first run; all reaction parameters were kept constant. 
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2.8. Photochemical reactions employing graphitic carbon nitrides as catalyst 

 

3-((methyl(phenyl)amino)methyl)cyclohexan-1-one (183)[27] 

A 5 mL vial was charged with N-methyl-N-((trimethylsilyl)-methyl)ani-

line[28] (181, 25.1 mg, 130 µmol, 1.30 equiv), cyclohex-2-en-1-one (182, 

9.6 mg, 9.7 µL, 100 µmol, 1.00 equiv), CsF (30.4 mg, 200 µmol, 

2.00 equiv), the respective mesoporous graphitic carbon nitride (10 mg) and 

MeOH (1.0 mL). The vial was sealed with a rubber septum and the mixture was degassed by 

nitrogen sparging for 10 min. Afterwards, the vial was placed on a blue LED plate (λ = 455 nm) 

to ensure irradiation as well as magnetic stirring from below. After irradiation for 17 h at room 

temperature, the reaction mixture was filtered, and the solvent was evaporated. 1,3,5-tri-

methoxybenzene was added as internal standard and the yield was determined via 1H-NMR. 

Subsequent purification was achieved by flash silica column chromatography (hexanes / 

EtOAc, 9:1) to obtain the product as colorless oil (17.4 mg, 80 µmol, 80%; mpg-C3N4 was 

employed as catalyst). The analytical spectrum is in accordance with the literature.[27,29] 

1H-NMR (300 MHz, CDCl3): δ 7.27 – 7.19 (m, 2H), 6.78 – 6.61 (m, 3H), 3.31 – 3.23 (m, 2H), 

2.97 (s, 3H), 2.53 – 2.18 (m, 4H), 2.15 – 2.03 (m, 2H), 2.02 – 1.91 (m, 1H), 1.74 – 1.56 (m, 

1H), 1.49 – 1.34 (m, 1H). 

 

 

5-iodo-6-perfluorooctylhexanol (116) [7b] 

A 5 mL vial equipped with a magnetic stirring bar was charged with 

5-hexen-1-ol (109, 30 µL, 0.25 mmol, 1.00 equiv), heptadecafluoro-

1-iodooctane (115, 86 µL, 0.325 mmol, 1.30 equiv), sodium ascorbate (17 mg, 88 µmol, 

0.35 equiv), the respective carbon nitride (5 mg), MeOH (1.5 mL) and MeCN (2.0 mL). The 

vial was capped with a rubber septum and the mixture was degassed by nitrogen sparging for 

10 min. After irradiation for 3 h with a blue LED (λ = 455 nm) at room temperature, the reac-

tion mixture was transferred to a test tube with the aid of MeCN (2 mL) and centrifuged. The 

supernatant was decanted and the remaining solid was dispersed in MeCN (2 mL) and centri-

fuged again. After decantation of the supernatant, this step was repeated one more time and the 

organic phases were combined. The solvents were evaporated and 1,3,5-trimethoxybenzene 

was added as internal standard for 1H-NMR.  
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The recovered catalyst was used in a second reaction run and all parameters were set as 

before. The yields of the single reaction runs are given in the main part.  

 

 

Diethyl 2-(2-bromo-6-hydroxyhexyl)malonate (111) [7] 

A 5 mL vial was charged with 5-hexen-1-ol (109, 30 µL, 

0.25 mmol, 1.00 equiv), diethyl 2-bromomalonate (110, 51 µL, 

0.30 mmol, 1.20 equiv), LiBr (2.2 mg, 25 µmol, 10 mol%), mpg-

C3N4 (154, 10 mg) and DMSO (1.0 mL). The vial was sealed with a rubber septum and the 

reaction mixture was degassed by nitrogen sparging for 10 min. The reaction was placed on a 

blue LED plate (λ = 455 nm) and irradiated for 24 h at room temperature while magnetically 

stirred from below. Subsequently, the reaction mixture was transferred to a test tube with the 

aid of H2O (2 mL) and centrifuged. The supernatant was decanted and the remaining solid was 

dispersed in H2O (3 mL), centrifuged and the supernatant was decanted again. These steps were 

repeated one more time and the aqueous phases were combined and extracted with EtOAc (3 

x 5 mL). The organic phases were combined and extracted with brine (1 x 5 mL), dried over 

Na2SO4 and the solvent was evaporated. 4-nitrobenzaldehyde was added as internal standard 

and the yield was determined by 1H-NMR. 

The catalyst was dried and reused in a consecutive reaction run. The yields of the single 

runs are given in the main part.  

 

 

(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluoro-1-iododecyl)benzene (185)[30] 

A 5 mL vial equipped with a magnetic stirring bar was charged with hepta-

decafluoro-1-iodooctane (115, 273 mg, 132 µmol, 0.50 mmol, 2.00 equiv), 

[Cu(dap)2]Cl (7, 2.2 mg, 2.5 µmol, 1.0 mol%) and dry MeCN (1.0 mL). The 

vial was sealed with a rubber septum and the reaction mixture was degassed by nitrogen sparg-

ing for 10 min. Styrene (184, 26 mg, 29 µL, 0.25 mmol, 1.00 equiv) was added and the mixture 

was irradiated for 16 h with a green LED (λ = 530 nm) at room temperature. Afterwards, the 

solvent was evaporated, and the residue was purified by flash silica column chromatography 

(hexanes) to give the pure compound as white solid (126 mg, 0.194 mmol, 78%). The analyti-

cal data is in accordance with literature.[30] 

1H-NMR (300 MHz, CDCl3): δ 7.46 – 7.41 (m, 2H), 7.37 – 7.25 (m, 3H), 5.46 (dd, J = 9.6, 5.2 

Hz, 1H), 3.44 – 3.04 (m, 2H). 
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The reaction was also performed by irradiating with a blue LED (λ = 455 nm) using 

mpg-C3N4 (154, 5 mg) instead of [Cu(dap)2]Cl in (1) MeCN (1.0 mL), (2) in MeOH (1.5 mL) 

and MeCN (2.0 mL), (3) in MeOH (1.5 mL) and MeCN (2.0 mL) with the addition of sodium 

ascorbate (17.3 mg, 88 µmol, 0.35 equiv) and (4) in MeCN (1.0 mL) with the addition of CuCl2 

(33.6 mg, 0.25 mmol, 1.00 equiv). In all cases, no reaction or only traces of product were ob-

tained. 

 

 

1-((2-chloro-2-phenylethyl)sulfonyl)-4-methylbenzene (187)[31] 

A 5 mL vial equipped with a magnetic stirring bar was charged with 4-

methylbenzenesulfonyl chloride (186, 95.3 mg, 0.50 mmol, 1.00 equiv), 

[Cu(dap)2]Cl (7, 4.4 mg, 5 µmol, 1.0 mol%) and dry MeCN (2.0 mL). 

The vial was sealed with a rubber septum and the mixture was degassed by nitrogen sparging 

for 10 min. Styrene (184, 52.1 mg, 57.2 µL, 0.50 mmol, 1.00 equiv) was added and the mixture 

was irradiated with a green LED (λ = 530 nm) for 24 h at room temperature while magnetically 

stirred from below. Subsequently, the solvent was evaporated, and the crude residue was puri-

fied by flash silica column chromatography (hexanes / EtOAc, 5:1) to afford the pure product 

as white solid (139 mg, 0.472 mmol, 94%). The analytical data is in accordance with litera-

ture.[32] 

1H-NMR (300 MHz, CDCl3): δ 7.63 (d, J = 8.3 Hz, 2H), 7.32 – 7.19 (m, 7H), 5.33 (t, J = 6.9 

Hz, 1H), 4.02 – 3.77 (m, 2H), 2.41 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 144.94, 138.61, 

136.21, 129.81, 129.11, 128.93, 128.20, 127.17, 64.15, 55.15, 21.67. 

 

The reaction was also performed using various mesoporous graphitic carbon nitrides (5 

– 10 mg). Except for irradiating with a blue LED (λ = 455 nm) the reaction parameters were 

kept the same. After evaporation of the solvent, 4-nitrobenzaldehyde was added as internal 

standard to determine the yield by 1H-NMR. The yields for the single reactions are given in the 

main part. 

 

 

1-((2-chlorooctyl)sulfonyl)-4-methylbenzene (189)[31] 

A Schlenk tube was charged with 4-methylbenzenesulfonyl-chlo-

ride (186, 47.7 mg, 0.25 mmol, 1.00 equiv), Na2CO3 (26.5 mg, 
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0.25 mmol, 1.00 equiv), [Cu(dap)2]Cl (7, 2.2 mg, 2.5 µmol, 1.0 mol%) and dry MeCN 

(1.0 mL). The Schlenk tube was sealed with a screw-cap and degassed by three freeze-pump-

thaw cycles. Oct-1-ene (188, 56.1 mg, 78.5 µL, 2.00 equiv) was added and the screw-cap was 

replaced by a Teflon-sealed inlet for a glass rod to ensure irradiation with a green LED (λ = 

530 nm) from above while being magnetically stirred from below. After irradiation for 48 h at 

room temperature, the mixture was transferred to a separation funnel and was saturated with 

brine (10 mL). The aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined 

organic phases were dried over Na2SO4. The solvent was evaporated, and the crude residue 

was purified by flash silica column chromatography (hexanes / EtOAc, 4:1) to afford the pure 

product as colorless oil (60.6 mg, 0.20 mmol, 80%). The analytical data is in accordance with 

literature.[31] 

1H-NMR (300 MHz, CDCl3): δ 7.86 – 7.75 (m, 2H), 7.41 – 7.34 (m, 2H), 4.37 – 4.23 (m, 1H), 

3.56 (dd, J = 14.6, 6.2 Hz, 1H), 3.45 (dd, J = 14.6, 6.5 Hz, 1H), 2.46 (s, 3H), 2.04 – 1.90 (m, 

1H), 1.83 – 1.68 (m, 1H), 1.54 – 1.22 (m, 8H), 0.91 – 0.84 (m, 3H). 

 

The reaction was also performed using mpg-C3N4 (10 mg) as catalyst, irradiating with 

a blue LED (λ = 455 nm) for 72 h. 

 

 

4-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)butan-2-one (197)[33] 

A Schlenk tube was charged with 2-phenyl-1,2,3,4-tetrahydroisoquinoline 

(89a, 52.3 mg, 250 µmol, 1.00 equiv), but-3-en-2-one (196, 35.1 mg, 

42 µL, 500 µmol, 2.00 equiv), trifluoroacetic acid (29 mg, 19 µL, 

250 µmol, 1.00 equiv) and [Ru(bpy)3]Cl2 (1, 3.7 mg, 5.0 µmol, 2.0 mol%). 

Dry MeCN (1.0 mL) was added, the tube was closed with a screw-cap and the mixture was 

degassed by three freeze-pump-thaw cycles. The screw-cap was replaced by a Teflon-sealed 

inlet for a glass rod to ensure irradiation from above with a blue LED (λ = 455 nm) while being 

magnetically stirred from below. After irradiation for 5 h at 50 °C the mixture was allowed to 

cool to room temperature and was neutralized with K2CO3 (69 mg, 500 µmol, 2.00 equiv). Pu-

rification was achieved by flash silica column chromatography (hexanes / EtOAc, 9:1) to obtain 

the pure product as colorless oil (55 mg, 197 µmol, 79%). The analytical data is in agreement 

with the one reported in literature.[33a] 
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1H-NMR (300 MHz, CDCl3): δ 7.30 – 7.21 (m, 2H), 7.21 – 7.15 (m, 3H), 7.15 – 7.09 (m, 1H), 

6.96 – 6.88 (m, 2H), 6.77 (tt, J = 7.2, 1.1 Hz, 1H), 4.76 (dd, J = 9.2, 5.7 Hz, 1H), 3.70 – 3.51 

(m, 2H), 3.02 (ddd, J = 15.3, 9.2, 5.8 Hz, 1H), 2.77 (dt, J = 16.2, 4.6 Hz, 1H), 2.60 (t, J = 6.9 Hz, 

2H), 2.34 – 2.18 (m, 1H), 2.15 – 2.01 (m, 4H); 13C-NMR (101 MHz, CDCl3): δ 208.65, 149.90, 

138.42, 134.95, 129.38, 128.83, 127.32, 126.60, 125.99, 117.78, 114.64, 57.99, 41.54, 40.42, 

30.43, 30.30, 26.42. 

 

The reaction was also performed (1) using mpg-C3N4 (10 mg) under the same condi-

tions as above, (2) using mpg-C3N4 (10 mg) at 18 h reaction time, (3) using mpg-C3N4 (20 mg), 

and (4) using mpg-C3N4 (10 mg), without TFA and without heating, 18 h reaction time. The 

yields of the single reactions are given in the main part.  
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3. Chapter C: Photochemical Decarboxylations 

3.1. Synthesis of N-(acyloxy)phthalimides for intermolecular reactions 

 

(S)-3-(5-oxo-3-tosyloxazolidin-4-yl)propanoic acid 

Tosyl-L-glutamic acid[34] (2.70 g, 8.96 mmol, 1.00 equiv) was dissolved in 

20 mL DCM, followed by the addition of paraformaldehyde (538 mg, 

17.9 mmol, 2.00 equiv) and p-TsOH (30.9 mg, 0.179 mmol, 2.0 mol%). The 

reaction mixture was heated to 50 °C for 18 h using a reverse Dean-Stark trap. Subsequently, 

the mixture was allowed to cool to room temperature and extracted with 1 M HCl (4 x 5 mL) 

and the organic layer was dried over Na2SO4. Evaporation of the solvent gave the pure product 

(2.34 g, 7.47 mmol, 83%) as colorless, viscous oil. The compound is literature known,[35] how-

ever, not sufficiently characterized. 

1H-NMR (400 MHz, CD3OD): δ 8.64 (d, J = 8.0 Hz, 2H), 8.24 (d, J = 8.0 Hz, 2H), 6.02 (brs, 

3H), 4.83 (dd, J = 9.1, 4.9 Hz, 1H), 4.27 (s, 3H), 3.28 (d, J = 7.5 Hz, 2H), 3.05 – 2.87 (m, 1H), 

2.81 – 2.63 (m, 1H); 13C-NMR (101 MHz, CD3OD): δ 176.15, 174.33, 144.67, 138.97, 130.55, 

128.11, 56.23, 49.85, 30.57, 29.15, 21.45; IR (neat): 3290, 3049, 2945, 1730, 1703, 1599, 

1498, 1431, 1308, 1215, 1141, 1088, 984, 902, 816, 693, 671 cm-1; HRMS (ESI-MS) m/z 

calculated for C11H17NO6 ([M-H]-) , found . 

 

 

1,3-dioxoisoindolin-2-yl (S)-3-(5-oxo-3-tosyloxazolidin-4-yl)propanoate (121a) 

(S)-3-(5-oxo-3-tosyloxazolidin-4-yl)propanoic acid (2.00 g, 

6.38 mmol, 1.00 equiv) and DCC (1.45 g, 7.02 mmol, 1.10 equiv) 

were dissolved in 20 mL dry DCM. The mixture was cooled to 0 °C 

and N-hydroxyphthalimide (1.15 g, 7.02 mmol, 1.10 equiv) was added. After stirring for 18 h 

at room temperature, the precipitate was filtered, and the solvent was evaporated. The residue 

was re-dissolved in EtOAc and extracted with 1 M HCl (3 x 5 mL). The organic phase was 

dried over Na2SO4 and the solvent was evaporated. Purification was achieved by flash silica 

column chromatography (hexanes / EtOAc, 2:1) to give the pure product as white solid (2.43 g, 

5.30 mmol, 82%). 

1H-NMR (300 MHz, CDCl3):
 δ 7.94 – 7.86 (m, 2H), 7.85 – 7.78 (m, 2H), 7.78 – 7.72 (m, 2H), 

7.43 – 7.35 (m, 2H), 5.53 (d, J = 7.2 Hz, 1H), 5.28 (d, J = 7.2 Hz, 1H), 4.12 (dd, J = 8.8, 5.4 Hz, 

1H), 3.08 – 2.95 (m, 2H), 2.45 (s, 3H), 2.43 – 2.31 (m, 1H), 2.30 – 2.16 (m, 1H); 13C-NMR 
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(75 MHz, CDCl3): δ 170.94, 168.53, 161.70, 145.86, 134.86, 132.25, 130.68, 128.86, 127.85, 

124.08, 79.06, 55.97, 26.88, 25.02, 21.73; Rf (hexanes / EtOAc, 2:1) = 0.4; mp: 58 – 62 °C;  

IR (neat): 2930, 2113, 1789, 1737, 1595, 1495, 1357, 1163, 1081, 969, 880, 816, 697, 664 cm-1; 

HRMS (ESI-MS) m/z calculated for C21H19N2O8S ([M+H]+) 459.0857, found 459,0864. 

 

 

(S)-3-(3-(tert-butoxycarbonyl)-5-oxooxazolidin-4-yl)propanoic acid  

(tert-butoxycarbonyl)-L-glutamic acid[36] (45.0 g, 182 mmol, 1.00 equiv) 

was dissolved in 250 mL DCM followed by the addition of paraformalde-

hyde (10.93 g, 364 mmol, 2.00 equiv) and p-TsOH (627 mg, 3.64 mmol, 

2.0 mol%). The mixture was heated to 50 °C for 19 h using a reverse Dean-Stark trap. Subse-

quently, the mixture was allowed to cool to room temperature und was extracted with 0.5 M 

HCl (4 x 50 mL). The organic layer was dried over Na2SO4. Evaporation of the solvent gave 

the pure product (42.5 g, 164 mmol, 90%) as colorless, viscous oil.  

1H-NMR (400 MHz, CDCl3):
 δ 10.38 (brs, 1H), 5.49 (s, 1H), 5.34 – 5.03 (m, 1H), 4.33 (t, J = 

6.2 Hz, 1H), 2.51 (t, J = 7.3 Hz, 2H), 2.35 – 2.23 (m, 1H), 2.22 – 2.12 (m, 1H), 1.48 (s, 9H); 

13C-NMR (101 MHz, CDCl3): δ 178.02, 172.23, 152.42, 82.62, 77.96, 53.96, 29.22, 28.19, 

25.76; IR (neat): 3168, 2982, 2937, 1804, 1744, 1684, 1402, 1371, 1252, 1141, 1070, 1033, 

989, 768, 700 cm-1; HRMS (ESI-MS) m/z calculated for C11H16NO6 ([M-H]-) 258.0983, found 

258.0988. 

 

 

tert-butyl(S)-4-(3-((1,3-dioxoisoindolin-2-yl)oxy)-3-oxopropyl)-5-oxooxazolidine-3-car-

boxylate (121b) 

(S)-3-(3-(tert-butoxycarbonyl)-5-oxooxazolidin-4-yl)propanoic acid 

(18.95 g, 73.1 mmol, 1.00 equiv) and DCC (16.59 g, 80.4 mmol, 

1.10 equiv) were dissolved in 250 mL dry DCM and cooled to 0 °C. 

N-hydroxyphthalimide (13.12 g, 80.4 mmol, 1.10 equiv) was added and the mixture was al-

lowed to stir for 18 h at room temperature. After filtration of the precipitate, the solvent was 

evaporated, and the yellow residue was dissolved in ethyl acetate and extracted with 0.5 M HCl 

(3 x 50 mL). The organic layer was dried over Na2SO4 and the solvent was evaporated. The 

yellowish solid was recrystallized from EtOH to give the pure product (23.36 g, 57.8 mmol, 

79%) as white solid.  



E. Experimental Part 

 

150 

 

1H-NMR (300 MHz, CDCl3):
 δ 7.91 – 7.86 (m, 2H), 7.82 – 7.76 (m, 2H), 5.51 (s, 1H), 5.34 

– 5.20 (m, 1H), 4.37 (t, J = 6.1 Hz, 1H), 2.93 – 2.80 (m, 2H), 2.50 – 2.26 (m, 2H), 1.49 (s, 9H); 

13C-NMR (101 MHz, CDCl3): δ 171.93, 168.53, 161.74, 152.40, 134.86, 128.84, 124.03, 

82.71, 78.10, 53.84, 28.21, 26.54, 25.73; Rf (hexanes / EtOAc, 2:1) = 0.2; mp: 98 – 100 °C; 

IR (neat): 3131, 2978, 2937, 1819, 1793, 1744, 1700, 1461, 1368, 1320, 1249, 1163, 1133, 

1066, 965, 880, 783, 693 cm-1; HRMS (ESI-MS) m/z calculated for C19H21NO8 ([M+H]+) 

405.1292, found 405.1292. 
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3.2. Synthesis of trapping reagents 

Boc-hydroxycyclopentenone 122d was prepared following a literature procedure, the spectra 

are in accordance with those reported.[37] TBDMS-hydroxycyclopentenone 122e was synthe-

sized following a literature procedure, the spectra are in accordance with those reported.[38] 

 

The enol acetates 122h – 122n and 122u – 122v were kindly provided by Thomas Föll from 

our group, who synthesized these for his project on visible-light-mediated reactions of α-chloro 

cinnamates.[39] 

 

General procedure for the synthesis of silyl enol ethers (GP-A) 

The silyl enol ethers were prepared following a literature procedure.[40] NaI (840 mg, 5.6 mmol, 

1.4 equiv) was placed in a Schlenk tube which was subsequently flame dried with a heat gun. 

After cooling down to room temperature, the respective ketone (4.0 mmol, 1.0 equiv) and NEt3 

(836 µL, 607 mg, 1.5 equiv) were added and dissolved in dry MeCN (4.0 mL). The mixture 

was cooled to 0 °C and Me3SiCl (660 µL, 565 mg, 5.2 mmol, 1.3 equiv) was added. The mix-

ture was allowed to stir for 16 h at room temperature. The solvent was evaporated under re-

duced pressure and the solid residue was washed with pentane (3 x 20 mL). The combined 

organic layers were concentrated under reduced pressure to give the silyl enol ether which was 

used without further purification. 

The analytical spectra of silyl enol ethers 122o,[41] 122p,[41] 122q,[41] 122r,[42] and 122s[43] are 

in agreement with the reported spectra.  

 

((1-(3,5-bis(trifluoromethyl)phenyl)vinyl)oxy)trimethylsilane (122t) 

Following GP-A using 1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-one 

(1.02 g, 4.0 mmol, 1.0 equiv) furnished the product as colorless oil (1.18 g, 

3.60 mmol, 90%). 

1H-NMR (400 MHz, CDCl3):
 δ 8.03 – 7.98 (m, 2H), 7.81 – 7.77 (m, 1H), 5.05 (d, J = 2.5 Hz, 

1H), 4.60 (d, J = 2.5 Hz, 1H), 0.31 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 152.96, 139.66, 

131.77, 131.33, 125.18, 121.72, 93.30, 0.00; 19F-NMR (377 MHz, CDCl3) δ -63.54; IR (neat): 

2967, 1707, 1629, 1464, 1387, 1275, 1147, 1126, 1014, 876, 842, 757, 708 cm-1; HRMS (EI-

MS) m/z calculated for C13H14F6OSi ([M]+) 328.07126, found 328.07107. 
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3.3. Photochemical reactions exploiting the reductive quenching cycle 

General procedure for the photochemical functionalization of L-glutamic acid derivatives ex-

ploiting the reductive quenching cycle of [Ru(bpy)3]Cl2 (GP-B). 

A flame dried Schlenk tube equipped with a magnetic stirring bar was charged with 1,3-diox-

oisoindolin-2-yl (S)-3-(5-oxo-3-tosyloxazolidin-4-yl)propanoate (TsGluOxNPhth 121a, 

91.7 mg, 200 µmol, 1.00 equiv) or tert-butyl(S)-4-(3-((1,3-dioxoisoindolin-2-yl)oxy)-3-ox-

opropyl)-5-oxooxazolidine-3-carboxylate (BocGluOxNPhth, 121b, 80.9 mg, 200 µmol, 

1.00 equiv), alkene 122 (1.00 – 2.00 mmol, 5.00 – 10.0 equiv), diethyl 2,6-dimethyl-1,4-dihy-

dropyridine-3,5-dicarboxylate (Hantzsch ester, 240, 50.6 mg, 200 µmol, 1.00 equiv) and 

[Ru(bpy)3]Cl2 (1, 3.00 mg, 4.00 µmol, 2.0 mol%), acetone and water (3:1, 2.00 mL, 0.1 M). 

The Schlenk tube was sealed with a plastic screw-cap and the mixture was degassed by three 

freeze-pump-thaw cycles. The screw-cap was replaced by a Teflon sealed inlet for a glass rod. 

A blue LED (λ = 455 nm) was attached on the top of the glass rod to ensure irradiation from 

above while the reaction was magnetically stirred from below. After 5 h of irradiation the LED 

was switched off and the reaction mixture was transferred to a separation funnel. EtOAc (5 mL) 

and water (5 mL) were added. The phases were separated, and the aqueous phase was extracted 

with EtOAc (3x 5 mL). The combined organic phases were washed with 10 mL brine and dried 

over Na2SO4. After evaporation of the solvent the residue was purified by column chromato-

graphy on SiO2 (hexanes / EtOAc, 7:1 to 2:1). 

 

 

(4S)-4-(2-(4-oxocyclopent-2-en-1-yl)ethyl)-3-tosyloxazolidin-5-one (123ad) 

Following general procedure GP-B using 1,3-dioxoisoindolin-2-yl (S)-3-

(5-oxo-3-tosyloxazolidin-4-yl)propanoate (121a, 91.7 mg, 200 µmol, 

1.00 equiv) and tert-butyl (4-oxocyclopent-2-en-1-yl) carbonate (122d, 

198 mg, 1.00 mmol, 5.00 equiv) gave the pure product as yellow oil (35.0 mg, 100 µmol, 50%) 

after purification by silica gel chromatography (hexanes / EtOAc, 2:1). 

1H-NMR (300 MHz, CDCl3): two inseparable diastereomers: δ 7.76 – 7.66 (m, 2H), 7.62 – 

7.59 (m, 1H), 7.39 – 7.36 (m, 2H), 6.18 (dd, J = 5.6, 2.0 Hz, 1H), 5.44 (d, J = 6.8 Hz, 1H), 5.22 

(d, J = 6.7 Hz, 1H), 3.96 (dd, J = 7.0, 5.4 Hz, 1H), 2.99 (ddt, J = 6.4, 4.5, 2.1 Hz, 1H), 2.55 

(ddd, J = 18.8, 6.4, 2.6 Hz, 1H), 2.44 (s, 3H), 2.04 – 1.47 (m, 5H); 13C-NMR (75 MHz, CDCl3): 

two inseparable diastereomers: δ 209.10, 171.47, 167.17, 167.04, 145.86, 134.39, 134.34, 

132.35, 132.29, 130.64, 130.58, 127.70, 79.00, 57.11, 56.99, 40.64, 40.54, 40.49, 29.75, 28.30, 
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28.25, 21.70; Rf  (hexanes / EtOAc, 2:1) = 0.2; IR (neat): 3258, 3034, 2926, 2870, 2102, 1789, 

1707, 1666, 1595, 1495, 1450, 1389, 1353, 1185, 1092, 958, 924, 812, 783, 753, 705, 664 cm-1; 

HRMS (ESI-MS) m/z calculated for C17H20NO5S ([M+H]+) 350.1057, found 350.1063.  

 

 

(4S)-4-(2-(2-((tert-butyldimethylsilyl)oxy)-4-oxocyclopentyl)ethyl)-3-tosyloxazolidin-5-

one (123ae) 

Following general procedure GP-B using 1,3-dioxoisoindolin-2-yl (S)-

3-(5-oxo-3-tosyloxazolidin-4-yl)propanoate (121a, 91.7 mg, 

200 µmol, 1.00 equiv) and 4-((tert-butyldimethylsilyl)oxy)cyclopent-

2-en-1-one (122e, 531 mg, 1.00 mmol, 5.00 equiv) gave the pure product as a white solid 

(86.3 mg, 179 µmol, 36%) after purification by silica gel chromatography (hexanes / EtOAc, 

4:1). 

1H-NMR (400 MHz, CDCl3): mixture of inseparable diastereomers: δ 7.70 (d, J = 8.3 Hz, 2H), 

7.37 (d, J = 7.8 Hz, 2H), 5.47 (dd, J = 6.9, 2.9 Hz, 1H), 5.21 (dd, J = 6.9, 3.5 Hz, 1H), 4.07 (t, 

J = 6.3 Hz, 1H), 3.97 (td, J = 4.8, 2.4 Hz, 1H), 2.54 (ddt, J = 17.0, 10.6, 3.9 Hz, 2H), 2.45 (s, 

3H), 2.26 – 2.07 (m, 2H), 2.02 – 1.78 (m, 4H), 0.89 (s, 9H), 0.06 (s, 6H); 13C-NMR (101 MHz, 

CDCl3): mixture of inseparable diastereomers: δ 214.95, 171.54, 145.66, 132.54, 130.54, 

127.63, 77.32, 77.00, 76.68, 74.54, 57.36, 57.23, 47.53, 47.44, 44.84, 44.82, 42.68, 42.55, 

28.87, 28.81, 28.39, 28.34, 25.71, 21.64, 17.92, 0.99, -4.57, -4.82, -4.84; Rf (hexanes / EtOAc, 

2:1) = 0.5; mp: 94 – 97 °C; IR: 3257, 2956, 2855, 1789, 1733, 1595, 1495, 1450, 1387, 1357, 

1260, 1158, 1163, 1092, 1029, 980, 910, 813, 779, 705, 664 cm-1; HRMS (ESI-MS) m/z cal-

culated for C23H36NO6SSi ([M+H]+) 482.2027, found 482.2033.  

 

 

tert-butyl (S)-5-oxo-4-(4-oxo-4-phenylbutyl)oxazolidine-3-carboxylate (123bf) 

Following general procedure GP-B using tert-butyl(S)-4-(3-((1,3-diox-

oisoindolin-2-yl)oxy)-3-oxopropyl)-5-oxooxazolidine-3-carboxylate 

(121b, 80.9 mg, 200 µmol, 1.00 equiv) and 1-phenylvinyl acetate 

(122f, 162 mg, 1.00 mmol, 5.00 equiv) gave the pure product as a white solid (30.0 mg, 

90.0 µmol, 45%). Purification was achieved by column chromatography on SiO2 (hexanes / 

EtOAc, 5:1). 
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1H-NMR (300 MHz, CDCl3):
 δ 7.97 – 7.87 (m, 2H), 7.58 – 7.49 (m, 1H), 7.48 – 7.38 (m, 2H), 

5.46 (s, 1H), 5.18 (dd, J = 4.7, 1.0 Hz, 1H), 4.28 (s, 1H), 3.01 (t, J = 7.0 Hz, 2H), 2.17 – 2.00 

(m, 1H), 1.99 – 1.82 (m, 2H), 1.82 – 1.62 (m, 1H), 1.47 (s, 9H); 13C-NMR (75 MHz, CDCl3): 

δ 199.11, 172.82, 152.25, 136.74, 133.13, 128.63, 127.97, 82.15, 78.09, 54.83, 37.80, 30.27, 

28.24, 19.08; Rf (hexanes / EtOAc, 2:1) = 0.66; mp: 65 – 68 °C; IR (neat): 2978, 1797, 1700, 

1678, 1595, 1506, 1450, 1405, 1380, 1308, 1252, 1200, 1170, 1137, 1036, 977, 850, 760 cm-1; 

HRMS (ESI-MS) m/z calculated for C18H24NO5 ([M+H]+) 334.1649, found 334.1651. 

 

 

(S)-4-(4-oxo-4-phenylbutyl)-3-tosyloxazolidin-5-one (123af) 

Following general procedure GP-B using 1,3-dioxoisoindolin-2-yl (S)-

3-(5-oxo-3-tosyloxazolidin-4-yl)propanoate (121a, 91.7 mg, 200 µmol, 

1.00 equiv) and 1-phenylvinyl acetate (122f, 162 mg, 1.00 mmol, 

5.00 equiv) gave the pure product as a white solid (35.0 mg, 90.3 µmol, 45%) after purification 

by column chromatography on SiO2 (hexanes / EtOAc, 5:1). 

1H-NMR (400 MHz, CDCl3):
 δ 7.98 – 7.90 (m, 2H), 7.78 – 7.66 (m, 2H), 7.59 – 7.52 (m, 1H), 

7.50 – 7.40 (m, 2H), 7.38 – 7.30 (m, 2H), 5.50 (d, J = 7.2 Hz, 1H), 5.23 (d, J = 7.1 Hz, 1H), 

4.08 – 4.01 (m, 1H), 3.13 – 2.95 (m, 2H), 2.40 (s, 3H), 2.05 – 1.84 (m, 4H); 13C-NMR 

(101 MHz, CDCl3): δ 199.12, 171.85, 145.64, 136.76, 133.20, 132.73, 130.56, 128.68, 128.04, 

127.75, 79.02, 57.36, 37.39, 29.64, 21.67, 19.74; Rf (hexanes / EtOAc, 2:1) = 0.4; mp: 89 – 

92 °C; IR (neat): 3060, 2967, 2930, 2080, 1793, 1718, 1681, 1595, 1491, 1446, 1409, 1361, 

1286, 1245, 1189, 1096, 1029, 984, 887, 820, 760, 734, 697, 664 cm-1; HRMS (ESI-MS) m/z 

calculated for C20H22NO5S ([M+H]+) 388.1213, found 388.1216. 
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3.4. Photochemical reactions exploiting the oxidative quenching cycle 

General procedure for the photochemical functionalization of L-glutamic acid derivatives ex-

ploiting the oxidative quenching cycle of fac-Ir(ppy)3 (GP-C) 

A flame dried Schlenk tube equipped with a magnetic stirring bar was charged with tert-bu-

tyl(S)-4-(3-((1,3-dioxoisoindolin-2-yl)oxy)-3-oxopropyl)-5-oxooxazolidine-3-carboxylate 

(BocGluOxNPhth, 121b, 80.9 mg, 200 µmol, 1.00 equiv), alkene 122 (1.00 mmol, 5.00 equiv), 

and fac-Ir(ppy)3
[3b,44] (5, 1.0 – 2.5 mol%). Water (90 µL, 5.00 mmol, 25.0 equiv) and dry 

MeCN (2.00 mL) were added and the flask was sealed with a plastic screw-cap. The mixture 

was degassed by three freeze-pump-thaw cycles after which the screw-cap was replaced by a 

Teflon sealed inlet for a glass rod. A blue LED (λ = 455 nm) was attached on the top of the 

glass rod to ensure irradiation from above while the reaction was magnetically stirred from 

below. After 18 h the LED was switched off and the solvent was evaporated. The crude mixture 

was purified by flash silica gel chromatography (hexanes / EtOAc, 7:1 to 1:1). 

 

 

tert-butyl (S)-5-oxo-4-(4-oxo-4-phenylbutyl)oxazolidine-3-carboxylate (123bf) 

Following general procedure GP-C using 1-phenylvinyl acetate (122f, 

162 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 (5, 1.3 mg, 2.00 µmol, 

1.00 mol%) gave the pure product as a white solid (53.3 mg, 160 µmol, 

80%). Purification was achieved by column chromatography on SiO2 (hexanes / EtOAc, 5:1). 

1H-NMR (300 MHz, CDCl3):
 δ 7.97 – 7.87 (m, 2H), 7.58 – 7.49 (m, 1H), 7.48 – 7.38 (m, 2H), 

5.46 (s, 1H), 5.18 (dd, J = 4.7, 1.0 Hz, 1H), 4.28 (s, 1H), 3.01 (t, J = 7.0 Hz, 2H), 2.17 – 2.00 

(m, 1H), 1.99 – 1.82 (m, 2H), 1.82 – 1.62 (m, 1H), 1.47 (s, 9H); 13C-NMR (75 MHz, CDCl3): 

δ 199.11, 172.82, 152.25, 136.74, 133.13, 128.63, 127.97, 82.15, 78.09, 54.83, 37.80, 30.27, 

28.24, 19.08; Rf (hexanes / EtOAc, 2:1) = 0.66; mp: 65 – 68 °C; IR (neat): 2978, 1797, 1700, 

1678, 1595, 1506, 1450, 1405, 1380, 1308, 1252, 1200, 1170, 1137, 1036, 977, 850, 760 cm-1; 

HRMS (ESI-MS) m/z calculated for C18H24NO5 ([M+H]+) 334.1649, found 334.1651. 
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tert-butyl (S)-5-oxo-4-(4-oxo-4-(p-tolyl)butyl)oxazolidine-3-carboxylate (123bh) 

Following general procedure GP-C using 1-(p-tolyl)vinyl acetate 

(122h, 176 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 (5, 1.3 mg, 

2.00 µmol, 1.00 mol%) gave the pure product as colorless oil 

(49.3 mg, 142 µmol, 71%) after purification by flash silica gel chromatography (hexanes / 

EtOAc, 7:1). 

1H-NMR (400 MHz, CDCl3): δ 7.89 – 7.78 (m, 2H), 7.31 – 7.17 (m, 2H), 5.49 (s, 1H), 5.20 

(d, J = 5.0 Hz, 1H), 4.30 (s, 1H), 3.00 (td, J = 7.3, 2.1 Hz, 2H), 2.40 (s, 3H), 2.21 – 2.02 (m, 

1H), 2.00 – 1.84 (m, 2H), 1.82 – 1.69 (m, 1H), 1.49 (s, 9H); 13C-NMR (101 MHz, CDCl3): δ 

198.76, 172.81, 152.26, 143.91, 134.32, 129.31, 128.11, 82.16, 77.24, 54.86, 37.71, 30.32, 

28.26, 21.63, 19.21; Rf (hexanes / EtOAc, 4:1) = 0.33; IR (neat): 2974, 2926, 1797, 1703, 

1692, 1606, 1513, 1390, 1319, 1256, 1167, 1047, 902, 850, 809, 752 cm-1; HRMS (ESI-MS) 

m/z calculated for C19H26NO5 ([M+H]+) 348.1805, found 348.1811. 

 

 

tert-butyl (S)-4-(4-(4-methoxyphenyl)-4-oxobutyl)-5-oxooxazolidine-3-carboxylate 

(123bi) 

Following general procedure GP-C using 1-(4-methoxyphenyl)vi-

nyl acetate (122i, 192 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 

(5, 1.3 mg, 2.00 µmol, 1.00 mol%) gave the pure product as color-

less oil (53.7 mg, 148 µmol, 74%) after purification by flash silica gel chromatography (hex-

anes / EtOAc, 4:1).  

1H-NMR (400 MHz, CDCl3): δ 7.97 – 7.85 (m, 2H), 6.99 – 6.86 (m, 2H), 5.49 (s, 1H), 5.19 

(d, J = 4.6 Hz, 1H), 4.29 (s, 1H), 3.86 (s, 3H), 2.97 (dq, J = 7.6, 2.5 Hz, 2H), 2.18 – 2.02 (m, 

1H), 2.00 – 1.83 (m, 2H), 1.82 – 1.66 (m, 1H), 1.48 (s, 9H); 13C-NMR (101 MHz, CDCl3): δ 

197.69, 172.83, 163.50, 152.23, 130.26, 129.89, 113.76, 82.16, 78.09, 55.48, 54.86, 37.47, 

30.31, 28.26, 19.32; Rf (hexanes / EtOAc, 2:1) = 0.5; IR (neat): 2978, 2933, 1797, 1703, 1683, 

1599, 1510, 1457, 1390, 1312, 1252, 1167, 1029, 839, 753, 667 cm-1; HRMS (ESI-MS) m/z 

calculated for C19H26NO6 ([M+H]+) 364.1755, found 364.1759. 
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tert-butyl (S)-4-(4-(3-methoxyphenyl)-4-oxobutyl)-5-oxooxazolidine-3-carboxylate 

(123bj) 

Following general procedure GP-C using 1-(3-methoxyphenyl)vinyl 

acetate (122j, 192 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 (5, 

1.3 mg, 2.00 µmol, 1.00 mol%) gave the pure product as colorless oil 

(48.0 mg, 132 µmol, 66%) after purification by flash silica gel chroma-

tography (hexanes / EtOAc, 4:1).  

1H-NMR (400 MHz, CDCl3): δ 7.54 – 7.49 (m, 1H), 7.48 – 7.44 (m, 1H), 7.40 – 7.33 (m, 1H), 

7.17 – 7.05 (m, 1H), 5.50 (s, 1H), 5.20 (d, J = 4.7 Hz, 1H), 4.30 (s, 1H), 3.85 (s, 3H), 3.01 (t, J 

= 6.9 Hz, 2H), 2.21 – 2.00 (m, 1H), 1.99 – 1.83 (m, 2H), 1.82 – 1.69 (m, 1H), 1.49 (s, 9H); 

13C-NMR (101 MHz, CDCl3): δ 198.91, 172.78, 159.86, 138.14, 134.30, 129.62, 123.59, 

120.61, 119.56, 112.27, 82.19, 78.09, 55.45, 37.93, 30.26, 28.26, 19.19; Rf (hexanes / EtOAc, 

2:1) = 0.5; IR (neat): 2937, 2912, 1796, 1685, 1584, 1487, 1454, 1394, 1368, 1327, 1256, 1159, 

1044, 857, 768, 686 cm-1; HRMS (ESI-MS) m/z calculated for C19H26NO6 ([M+H]+) 364.1755, 

found 364.1757. 

 

 

tert-butyl (S)-4-(4-(2-methoxyphenyl)-4-oxobutyl)-5-oxooxazolidine-3-carboxylate 

(123bk) 

Following general procedure GP-C using 1-(2-methoxyphenyl)vinyl 

acetate (122k, 192 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 (5, 

1.3 mg, 2.00 µmol, 1.00 mol%) gave the pure product as colorless oil 

(47.2 mg, 130 µmol, 65%) after purification by flash silica gel chromatography (hexanes / 

EtOAc, 4:1).  

1H-NMR (400 MHz, CDCl3): δ 7.70 – 7.65 (m, 1H), 7.49 – 7.41 (m, 1H), 7.03 – 6.93 (m, 2H), 

5.50 (s, 1H), 5.19 (d, J = 4.6 Hz, 1H), 4.29 (s, 1H), 3.90 (s, 3H), 3.12 – 2.92 (m, 2H), 2.18 – 

1.99 (m, 1H), 1.98 – 1.79 (m, 2H), 1.75 – 1.64 (m, 1H), 1.49 (s, 9H); 13C-NMR (101 MHz, 

CDCl3): δ 201.53, 172.93, 158.55, 134.32, 133.50, 130.27, 128.18, 123.60, 120.70, 111.56, 

82.11, 78.11, 55.51, 43.11, 30.49, 28.29, 19.34; Rf (hexanes / EtOAc, 2:1) = 0.5; IR (neat): 

2974, 2933, 1797, 1703, 1683, 1595, 1484, 1390, 1282, 1245, 1159, 1047, 893, 857, 813, 

757 cm-1; HRMS (ESI-MS) m/z calculated for C19H26NO6 ([M+H]+) 364.1755, found 

364.1756. 
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tert-butyl (S)-4-(4-(4-bromophenyl)-4-oxobutyl)-5-oxooxazolidine-3-carboxylate (123bl) 

Following general procedure GP-C using 1-(4-bromophenyl)vinyl 

acetate (122l, 241 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 (5, 

1.3 mg, 2.00 µmol, 1.00 mol%) gave the pure product as pale yellow 

oil (68.6 mg, 166 µmol, 83%) after purification by flash silica gel chromatography (hexanes / 

EtOAc, 4:1).  

1H-NMR (400 MHz, CDCl3): δ 7.88 – 7.73 (m, 2H), 7.69 – 7.49 (m, 2H), 5.48 (s, 1H), 5.19 

(d, J = 4.8 Hz, 1H), 4.29 (s, 1H), 2.99 (t, J = 7.0 Hz, 2H), 2.17 – 2.01 (m, 1H), 1.98 – 1.84 (m, 

2H), 1.82 – 1.67 (m, 1H), 1.48 (s, 9H); 13C-NMR (101 MHz, CDCl3): δ 198.03, 172.75, 152.24, 

135.48, 131.97, 129.53, 128.31, 82.23, 78.10, 54.81, 37.77, 30.19, 28.27, 19.01; Rf (hexanes / 

EtOAc, 2:1) = 0.6; IR (neat): 2974, 2930, 1797, 1759, 1703, 1640, 1588, 1487, 1394, 1382, 

1256, 1200, 1088, 1047, 1006, 887, 828, 788, 727 cm-1; HRMS (ESI-MS) m/z calculated for 

C18H23BrNO5 ([M+H]+) 412.0749, found 412.0753. 

 

 

tert-butyl (S)-4-(4-(4-chlorophenyl)-4-oxobutyl)-5-oxooxazolidine-3-carboxylate (123bm) 

Following general procedure GP-C using 1-(4-chlorophenyl)vinyl 

acetate (122m, 197 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 (5, 

1.3 mg, 2.00 µmol, 1.00 mol%) gave the pure product as colorless oil 

(59.0 mg, 160 µmol, 80%) after purification by flash silica gel chromatography (hexanes / 

EtOAc, 5:1).  

1H-NMR (400 MHz, CDCl3): δ 7.88 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 5.49 (s, 1H), 

5.20 (d, J = 4.6 Hz, 1H), 4.29 (s, 1H), 2.99 (t, J = 6.9 Hz, 2H), 2.16 – 2.01 (m, 1H), 1.97 – 1.85 

(m, 2H), 1.79 – 1.70 (m, 1H), 1.48 (s, 9H); 13C-NMR (101 MHz, CDCl3): δ 197.82, 172.73, 

152.24, 139.56, 135.05, 129.40, 128.95, 82.22, 78.09, 54.77, 37.77, 30.19, 28.25, 19.01; Rf 

(hexanes / EtOAc, 2:1) = 0.7; IR (neat): 2978, 2933, 1797, 1685, 1588, 1476, 1394, 1320, 

1230, 1159, 1092, 1047, 1014, 902, 816, 768, 719 cm-1; HRMS (ESI-MS) m/z calculated for 

C18H23ClNO5 ([M+H]+) 368.1259, found 368.1261. 
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tert-butyl (4S)-5-oxo-4-(2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)ethyl)oxazolidine-3-

carboxylate (123bn) 

Following general procedure GP-C using 1-(1-oxo-1,2,3,4-tetrahy-

dronaphthalen-2-yl)vinyl acetate (122n, 188 mg, 1.00 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (5, 1.3 mg, 2.00 µmol, 1.00 mol%) gave 

the product as two inseparable diastereomers as colorless oil (43.8 mg, 122 µmol, 61%) after 

purification by flash silica gel chromatography (hexanes / EtOAc, 4:1).  

1H-NMR (400 MHz, CDCl3): mixture of two inseparable diastereomers: δ 8.06 – 7.97 (m, 1H), 

7.49 – 7.43 (m, 1H), 7.32 – 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 5.49 (s, 1H), 5.21 (d, J = 4.6 Hz, 

1H), 4.31 (s, 1H), 3.05 – 2.96 (m, 2H), 2.55 – 2.45 (m, 1H), 2.28 – 2.12 (m, 2H), 2.11 – 1.83 

(m, 3H), 1.67 – 1.57 (m, 1H), 1.50 (s, 9H); 13C-NMR (101 MHz, CDCl3): mixture of two 

inseparable diastereomers: δ 199.33, 172.83, 143.79, 133.32, 133.29, 132.40, 132.33, 128.75, 

128.71, 127.47, 126.67, 82.20, 78.18, 78.10, 47.12, 47.05, 28.65, 28.51, 28.43, 28.29; Rf (hex-

anes / EtOAc, 2:1) = 0.6; IR (neat): 2974, 2930, 2863, 1797, 1704, 1603, 1476, 1390, 1312, 

1256, 1226, 1159, 1047, 917, 880, 813, 742, 671 cm-1; HRMS (ESI-MS) m/z calculated for 

C20H26NO5 ([M+H]+) 360.1805, found 360.1809. 

 

 

tert-butyl (S)-4-(4-(naphthalen-2-yl)-4-oxobutyl)-5-oxooxazolidine-3-carboxylate (123bo) 

Following general procedure GP-C using trimethyl((1-(naphthalen-

2-yl)vinyl)oxy)silane (122o, 242 mg, 1.00 mmol, 5.00 equiv) and 

fac-Ir(ppy)3 (5, 3.3 mg, 5.00 µmol, 2.50 mol%) gave the pure pro-

duct as white solid (56.0 mg, 146 µmol, 73%) after purification by flash silica gel chromato-

graphy (hexanes / EtOAc, 5:1).  

1H-NMR (300 MHz, CDCl3): δ 8.44 – 8.39 (m, 1H), 8.00 – 7.95 (m, 1H), 7.95 – 7.89 (m, 1H), 

7.88 – 7.80 (m, 2H), 7.60 – 7.47 (m, 2H), 5.47 (s, 1H), 5.18 (d, J = 3.6 Hz, 1H), 4.29 (s, 1H), 

3.21 – 3.05 (m, 2H), 2.19 – 2.04 (m, 1H), 2.02 – 1.87 (m, 2H), 1.86 – 1.70 (m, 1H), 1.45 (s, 

9H); 13C-NMR (75 MHz, CDCl3): δ 199.06, 172.84, 152.27, 135.61, 134.09, 132.52, 129.66, 

129.58, 128.50, 127.79, 126.82, 123.77, 123.60, 82.22, 78.13, 37.90, 30.37, 28.28, 19.28; Rf 

(hexanes / EtOAc, 2:1) = 0.6; mp: 73 – 75 °C; IR (neat): 3202, 3060, 2978, 2933, 1782, 1744, 

1681, 1409, 1368, 1252, 1219, 1170, 1044, 939, 890, 857, 828, 768, 667 cm-1; HRMS (ESI-

MS) m/z calculated for C22H26NO5 ([M+H]+) 384.1805, found 384.1813. 
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tert-butyl (S)-5-oxo-4-(4-oxo-4-(thiophen-2-yl)butyl)oxazolidine-3-carboxylate (123bp) 

Following general procedure GP-C using trimethyl((1-(thiophen-2-

yl)vinyl)oxy)silane (122p, 198 mg, 1.00 mmol, 5.00 equiv) and fac-

Ir(ppy)3 (5, 3.3 mg, 5.00 µmol, 2.50 mol%) gave the pure product as 

white solid (56.1 mg, 166 µmol, 83%) after purification by flash silica gel chromatography 

(hexanes / EtOAc, 5:1).  

1H-NMR (400 MHz, CDCl3): δ 7.84 (dd, J = 3.8, 1.1 Hz, 1H), 7.77 (dd, J = 5.0, 1.1 Hz, 1H), 

7.26 (dd, J = 4.9, 3.8 Hz, 1H), 5.63 (s, 1H), 5.33 (d, J = 4.7 Hz, 1H), 4.43 (s, 1H), 3.10 (t, J = 

7.2 Hz, 2H), 2.32 – 2.14 (m, 1H), 2.05 (ddt, J = 11.1, 7.7, 4.0 Hz, 2H), 1.97 – 1.83 (m, 1H), 

1.62 (s, 9H); 13C-NMR (101 MHz, CDCl3): δ 192.07, 172.73, 152.25, 144.06, 133.63, 131.85, 

128.14, 82.21, 78.07, 54.77, 38.52, 30.27, 28.24, 19.50.; Rf (hexanes / EtOAc, 2:1) = 0.55; mp: 

84 – 86 °C; IR (neat): 3116, 2982, 2933, 1797, 1752, 1696, 1651, 1476, 1405, 1304, 1256, 

1170, 1133, 1036, 988, 932, 846, 775, 730 cm-1; HRMS (ESI-MS) m/z calculated for 

C16H22NO5S ([M+H]+) 340.1213, found 340.1219. 

 

 

tert-butyl (S)-4-(4-(furan-2-yl)-4-oxobutyl)-5-oxooxazolidine-3-carboxylate (123bq) 

Following general procedure GP-C using ((1-(furan-2-yl)vinyl)oxy)tri-

methylsilane (122q, 182 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 

(5, 3.3 mg, 5.00 µmol, 2.50 mol%) gave the pure product as colorless 

oil (25.9 mg, 80.0 µmol, 40%) after purification by flash silica gel chromatography (hexanes / 

EtOAc, 3:1).  

1H-NMR (300 MHz, CDCl3): δ 7.57 (dd, J = 1.7, 0.8 Hz, 1H), 7.18 (dd, J = 3.6, 0.8 Hz, 1H), 

6.53 (dd, J = 3.6, 1.7 Hz, 1H), 5.49 (s, 1H), 5.19 (d, J = 3.7 Hz, 1H), 4.29 (s, 1H), 2.88 (td, J = 

7.3, 1.5 Hz, 2H), 2.08 – 2.00 (m, 1H), 1.99 – 1.81 (m, 2H), 1.82 – 1.66 (m, 1H), 1.49 (s, 9H); 

13C-NMR (101 MHz, CDCl3): δ 188.36, 172.72, 152.58, 152.23, 146.32, 116.98, 112.24, 

82.21, 78.07, 37.65, 31.89, 54.78, 28.24, 19.07; Rf (hexanes / EtOAc, 2:1) = 0.4; IR (neat): 

3131, 2978, 2930, 1797, 1700, 1674, 1569, 1469, 1390, 1320, 1245, 1156, 1044, 883, 764, 

705 cm-1; HRMS (ESI-MS) m/z calculated for C16H22NO6 ([M+H]+) 324.1442, found 

324.1446. 
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tert-butyl (S)-5-oxo-4-(4-oxo-4-(pyridin-3-yl)butyl)oxazolidine-3-carboxylate (123br) 

Following general procedure GP-C using 3-(1-((trimethylsilyl)oxy)-vi-

nyl)pyridine (122r, 193 mg, 1.00 mmol, 5.00 equiv) and fac-Ir(ppy)3 (5, 

3.3 mg, 5.00 µmol, 2.50 mol%) gave the pure product as yellow oil 

(49.3 mg, 147 µmol, 74%) after purification by flash silica gel chromatography (hexanes / 

EtOAc, 1:1). 

1H-NMR (300 MHz, CDCl3): δ 9.23 – 9.07 (m, 1H), 8.77 (dd, J = 4.8, 1.7 Hz, 1H), 8.22 (dt, J 

= 8.0, 1.9 Hz, 1H), 7.42 (ddd, J = 8.1, 4.8, 0.9 Hz, 1H), 5.49 (s, 1H), 5.20 (dd, J = 4.6, 1.1 Hz, 

1H), 4.30 (s, 1H), 3.07 – 3.03 (m, 2H), 2.16 – 2.02 (m, 1H), 2.01 – 1.86 (m, 2H), 1.83 – 1.70 

(m, 1H), 1.48 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 197.80, 172.71, 153.43, 152.28, 149.40, 

135.42, 132.00, 123.76, 82.27, 78.10, 54.76, 38.09, 30.16, 28.26, 18.72; Rf (hexanes / EtOAc, 

2:1) = 0.1; IR (neat): 2974, 2933, 1797, 1689, 1588, 1510, 1394, 1238, 1159, 1044, 857, 768, 

700 cm-1; HRMS (ESI-MS) m/z calculated for C17H23N2O5 ([M+H]+) 335.1601, found 

335.1607. 
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3.5. Upscaling of photoreaction 

 

tert-butyl (S)-5-oxo-4-(4-oxo-4-phenylbutyl)oxazolidine-3-carboxylate (123bf) 

 

 

One-phase batch conditions 

The photoreaction was performed on a 1.0 mmol scale. A 20 mL flame dried Schlenk tube 

equipped with a magnetic stirring bar was charged with tert-butyl 4-(3-((1,3-dioxoisoindolin-

2-yl)oxy)-3-oxopropyl)-5-oxooxazolidine-3-carboxylate (121b, 404 mg, 1.00 mmol, 

1.00 equiv), 1-phenylvinyl acetate (122f, 811 mg, 5.00 mmol, 5.00 equiv), and fac-Ir(ppy)3 (5, 

6.5 mg, 10 µmol, 1.00 mol%). Water (450 µL, 25.0 mmol, 25.0 equiv) and dry MeCN 

(10.0 mL) were added and the tube was sealed with a screw-cap. The mixture was degassed by 

three freeze-pump-thaw cycles. Subsequently, the screw-cap was replaced by a Teflon sealed 

inlet for a glass rod, through which irradiation with a 455 nm LED took place from above while 

the reaction was magnetically stirred from below. After 5 d the LED was switched off and the 

solvent was evaporated. The yield was determined by 1H-NMR using 4-nitrobenzaldehyde as 

internal standard (55% yield). 

 

 

Two-phase batch conditions 

The reactions were performed on a 0.20 mmol scale using polyisobutylene tagged fac-

Ir(ppy)2(PIB-ppy) (40) as catalyst, which was established by Reiser et al.[2] A flame dried 

Schlenk tube equipped with a magnetic stirring bar was charged with tert-butyl 4-(3-((1,3-

dioxoisoindolin-2-yl)oxy)-3-oxopropyl)-5-oxooxazolidine-3-carboxylate (121b, 80.9 mg, 

200 µmol, 1.00 equiv) and 1-phenylvinyl acetate (122f, 162 mg, 1.00 mmol, 5.00 equiv). Wa-

ter (90 µmol, 5.00 mmol, 25.0 equiv) and dry MeCN (1.00 mL) were added. In a second 

Schlenk tube fac-Ir(ppy)2(PIB-ppy) (40, 3.4 mg, 2.0 µmol, 1.00 mol%) was dissolved in hep-

tane (1.00 mL) and added to the reaction mixture and the tube was sealed with a plastic screw-

cap. The combined phases were degassed by three freeze-pump-thaw cycles. Subsequently, the 

screw-cap was replaced by a Teflon sealed inlet for a glass rod, through which irradiation with 

a 455 nm LED took place from above while the reaction was magnetically stirred from below 
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at room temperature. After 18 h the LED was switched off and the reaction mixture was trans-

ferred to a separation funnel with the aid of 5 mL MeCN and 5 mL heptane. The phases were 

separated. The MeCN phase was evaporated and the yield was determined by 1H-NMR using 

4-nitrobenzaldehyde as internal standard (85% yield). 

The heptane phase was evaporated, and the catalyst was re-dissolved in heptane (1.00 mL) to 

be reused in a second run. The yields of the consecutive runs are given in the main part.  

 

 

Flow conditions 

The reaction was performed several times, varying the concentration, flowrate and scale of the 

reaction. Additionally, in some cases two micro reactors were connected in series to lower the 

reaction time.  

 

 

Flow conditions for a 0.20 mmol scale – general procedure 

A flame dried Schlenk tube was charged with tert-butyl 4-(3-((1,3-dioxoisoindolin-2-yl)oxy)-

3-oxopropyl)-5-oxooxazolidine-3-carboxylate (121b, 80.9 mg, 200 µmol, 1.00 equiv), 1-phe-

nylvinyl acetate (122f, 162 mg, 1.00 mmol, 5.00 equiv), and fac-Ir(ppy)3 (5, 1.3 mg, 2.0 µmol, 

1.0 mol%). Water (90 µL, 5.00 mmol, 25.0 equiv) and dry MeCN (2.0 mL (0.1 M) or 4.0 mL 

(0.05 M)) were added and the mixture was degassed by three freeze-pump-thaw cycles. The 

mixture was transferred to a 5 mL syringe and connected to one (or two) micro reactor(s), 

which was (were) purged with nitrogen for 10 min before. The flowrate was set to 1.0 or 

0.5 mL/h with the aid of a syringe pump. The solvent was evaporated, and the yield was deter-

mined by 1H-NMR using 4-nitrobenzaldehyde as internal standard. The results for the different 

experiments are given in the main part. 

 

 

Flow conditions – 4.0 mmol scale 

A flame dried Schlenk flask was charged with tert-butyl 4-(3-((1,3-dioxoisoindolin-2-yl)oxy)-

3-oxopropyl)-5-oxooxazolidine-3-carboxylate (121b, 1.62 g, 4.00 mmol, 1.00 equiv), 1-phe-

nylvinyl acetate (122f, 3.24 g, 20.0 mmol, 5.00 equiv), and fac-Ir(ppy)3 (5, 26.2 mg, 

40.0 µmol, 1.0 mol%). Water (1.80 mL, 100 mmol, 25.0 equiv) and dry MeCN (80.0 mL 

(0.05 M)) were added and the mixture was degassed by N2 sparging for 15 min. The mixture 
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was transferred to a 20 mL syringe and connected to two micro reactors, which were connected 

in series and purged with nitrogen for 10 min before. The flowrate was set to 0.5 mL/h with 

the aid of a syringe pump. The syringe was refilled four times under nitrogen atmosphere. The 

solvent was evaporated, and the yield was determined by 1H-NMR using 4-nitrobenzaldehyde 

as internal standard (78% yield). Afterwards, the crude mixture was submitted to column chro-

matography (hexanes / EtOAc, 5:1) to give the pure compound 123bf as a white solid (971 mg, 

2.91 mmol, 73%). 
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3.6. Intramolecular reactions 

 

(8aS)-6-isopropyl-2-phenyltetrahydroimidazo[1,5-a]pyridine-1,3(2H,5H)-dione (255) 

A Schlenk tube was charged with 1,3-dioxoisoindolin-2-yl (S)-3-(3-(3-

methylbut-2-en-1-yl)-2,5-dioxo-1-phenylimidazolidin-4-yl)propanoate 

(239, 92.3 mg, 200 µmol, 1.00 equiv), [Ru(bpy)3]Cl2 (1, 3.0 mg, 

4.0 µmol, 2.0 mol%), DIPEA (70 µL, 400 µmol, 2.00 equiv) and MeCN 

(2.0 mL). The tube was sealed with a screw-cap and degassed by three freeze-pump-thaw cy-

cles. Subsequently, the screw-cap was replaced by a Teflon sealed inlet for a glass rod to ensure 

irradiation from above with a blue LED (λ = 455 nm) while being magnetically stirred from 

below. After 18 h, the irradiation was stopped, and the solvent was evaporated. The crude res-

idue was purified by flash silica column chromatography (hexanes / EtOAc, 4:1) to give the 

product as an inseparable 1:1 mixture of (8aS)-6-isopropyl-2-phenyltetrahydroimidazo[1,5-

a]pyridine-1,3(2H,5H)-dione (255) and (S)-2-phenyl-6-(propan-2-ylidene)tetrahydroimid-

azo[1,5-a]pyridine-1,3(2H,5H)-dione (254). Via hydrogenation of the mixture using Pd/C 

(2.0 µmol, 1.0 mol%) in MeOH (1.0 mL) at 40 bar H2 pressure, solely product 255 was ob-

tained in two diastereomers as a white solid (39 mg, 143 µmol, 72%). 

1H-NMR (400 MHz, CDCl3): δ 7.48 – 7.32 (m, 5H), 4.34 – 4.25 (m, 1H), 3.87 (dd, J = 12.0, 

4.3 Hz, 1H), 2.61 (dd, J = 13.2, 11.0 Hz, 1H), 2.40 – 2.31 (m, 1H), 2.12 – 2.03 (m, 1H), 1.56 – 

1.41 (m, 2H), 1.35 – 1.21 (m, 2H), 0.97 (dd, J = 6.8, 2.0 Hz, 6H); 13C-NMR (101 MHz, CDCl3): 

δ 171.94, 153.50, 131.87, 129.00, 127.96, 126.08, 57.25, 42.86, 42.37, 30.83, 27.97, 26.73, 

19.86, 19.85; Rf (hexanes / EtOAc, 2:1) = 0.6; mp: 103 – 106 °C; IR (neat): 2974, 2933, 1797, 

1689, 1588, 1510, 1394, 1238, 1159, 1044, 857, 768, 700 cm-1; HRMS (ESI-MS) m/z calcu-

lated for C16H21N2O ([M+H]+) 273.1598, found 273.1599. 
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3.7. Synthesis of pipecolic acid derivatives 

 

(S)-2-((tert-butoxycarbonyl)amino)-6-oxo-6-phenylhexanoic acid (230a) 

The oxazolidinone ring opening towards 230a was performed follow-

ing a literature procedure.[45] A 10 mL round-bottom flask was charged 

with tert-butyl (S)-5-oxo-4-(4-oxo-4-phenylbutyl)oxazolidine-3-car-

boxylate (123bf, 167 mg, 500 µmol, 1.00 equiv) and MeOH (2.0 mL). Subsequently, aqueous 

NaOH (1.0 mL, 1.0 M) was added, whereby the mixture turned yellowish. After stirring for 2 h 

at room temperature, the starting material was completely gone (as judged by TLC). MeOH 

was evaporated and the residual aqueous phase was transferred to a separation funnel with the 

aid of water (5 mL) and was extracted with ethyl acetate (2 x 5 mL), after which the aqueous 

phase was acidified with HCl (2.0 mL, 1.0 M). A white precipitate occurred. EtOAc (10 mL) 

was added and the phases were separated. The aqueous phase was extracted with EtOAc (3 x 

10 mL). The combined organic phases were washed with brine (10 mL) and dried over Na2SO4. 

Evaporation of the solvent yielded a colorless oil (161 mg, 500 µmol, 100%). The crude mix-

ture was submitted to the next step without further purification.  

 

 

(S)-2-((tert-butoxycarbonyl)amino)-6-oxo-6-(thiophen-2-yl)hexanoic acid (230b) 

The oxazolidinone ring opening towards 230b was performed follow-

ing a literature procedure.[45] A 10 mL round bottom flask was charged 

with tert-butyl 5-oxo-4-(4-oxo-4-(thiophen-2-yl)butyl)oxazolidine-3-

carboxylate (123bp, 102 mg, 301 µmol, 1.00 equiv) which was dissolved in MeOH (1.5 mL). 

Subsequently, aqueous NaOH (0.5 mL, 1.0 M) was added, whereby the mixture turned yellow. 

After stirring for 2 h at room temperature, the starting material was completely gone (as judged 

by TLC). MeOH was evaporated and the residual aqueous phase was transferred to a separation 

funnel with the aid of water (5 mL) and was extracted with ethyl acetate (2 x 5 mL), after which 

the aqueous phase was acidified with HCl (2 mL, 1.0 M). A white precipitate occurred. EtOAc 

(10 mL) was added and the phases were separated. The aqueous phase was extracted with 

EtOAc (3 x 10 mL). The combined organic phases were washed with brine (10 mL) and dried 

over Na2SO4. Evaporation of the solvent gave a yellow oil (98.3 mg, 300 µmol, 100%). The 

crude mixture was submitted to the next step without further purification.  
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methyl (S)-2-((tert-butoxycarbonyl)amino)-6-oxo-6-phenylhexanoate (257a) 

The substrate 257a was synthesized following a modified literature 

procedure.[46] A flame dried 10 mL Schlenk flask was charged with 

crude (S)-2-((tert-butoxycarbonyl)amino)-6-oxo-6-phenylhexanoic 

acid (230a, 161 mg, 500 µmol, 1.00 equiv), methyl iodide (124 µL, 283 mg, 2.00 mmol, 

4.00 equiv), Na2CO3 (106 mg, 1.00 mmol, 2.00 equiv), and dry DMF (5 mL). The mixture was 

allowed to stir for 16 h at room temperature after which the solution turned yellowish and a 

white precipitate occurred. EtOAc (10 mL) was added and the mixture was extracted with H2O 

(2 x 10 mL) and brine (2 x 10 mL). The organic phase was dried over Na2SO4 and the solvent 

was evaporated. Purification was achieved by flash silica chromatography (hexanes / EtOAc, 

3:1) to give the pure product as colorless oil (100 mg, 298 µmol, 60% over two steps) 

1H-NMR (300 MHz, CDCl3): δ 7.98 – 7.91 (m, 2H), 7.60 – 7.52 (m, 1H), 7.50 – 7.42 (m, 2H), 

5.16 (dd, J = 30.4, 6.6 Hz, 1H), 4.36 (s, 0H), 3.74 (s, 3H), 3.08 – 2.95 (m, 2H), 1.91 – 1.69 (m, 

4H), 1.44 (s, 9H); 13C-NMR (101 MHz, CDCl3): δ 199.52, 173.17, 155.43, 136.84, 133.09, 

128.62, 128.01, 79.92, 53.19, 52.31, 37.66, 32.15, 28.32, 19.84; Rf (hexanes / EtOAc, 2:1) = 

0.4; IR (neat): 3358, 2974, 1800, 1658, 1599, 1510, 1450, 1364, 1249, 1208, 1159, 1051, 1029, 

913, 865, 731, 693 cm-1; HRMS (ESI-MS) m/z calculated for C18H26NO5 ([M+H]+) 336.1805, 

found 336.1802. 

 

 

methyl (S)-2-((tert-butoxycarbonyl)amino)-6-oxo-6-(thiophen-2-yl)hexanoate 257b 

The substrate 257b was synthesized following a modified literature 

procedure.[46] A flame dried 10 mL Schlenk flask was charged with 

crude (S)-2-((tert-butoxycarbonyl)amino)-6-oxo-6-(thiophen-2-

yl)hexanoic acid (230b, 98.3 mg, 300 µmol, 1.00 equiv), methyl iodide (75 µL, 170 mg, 

1.20 mmol, 4.00 equiv), Na2CO3 (63.5 mg, 599 µmol, 2.00 equiv), and dry DMF (5 mL). The 

mixture was allowed to stir for 16 h at room temperature after which a white precipitate oc-

curred. EtOAc (10 mL) was added and the mixture was extracted with H2O (2 x 10 mL) and 

brine (2 x 10 mL). The organic phase was dried over Na2SO4 and the solvent was evaporated. 

Purification was achieved by flash silica chromatography (hexanes / EtOAc, 2:1) to give the 

pure product as colorless oil (53.0 mg, 155 µmol, 52%, over two steps) 

1H-NMR (400 MHz, CDCl3): δ 7.71 (dd, J = 3.8, 1.1 Hz, 1H), 7.63 (dd, J = 5.0, 1.1 Hz, 1H), 

7.12 (dd, J = 5.0, 3.8 Hz, 1H), 5.20 – 4.95 (m, 1H), 4.44 – 4.24 (m, 1H), 3.73 (s, 3H), 3.04 – 
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2.85 (m, 2H), 1.93 – 1.70 (m, 4H), 1.44 (s, 9H); 13C-NMR (101 MHz, CDCl3): δ 192.46, 

173.10, 155.41, 144.18, 133.59, 131.87, 128.10, 79.95, 53.11, 52.33, 38.38, 32.16, 28.32, 

20.23; Rf (hexanes / EtOAc, 2:1) = 0.3; IR (neat): 3362, 2974, 1744, 1707, 1659, 1513, 1454, 

1364, 1208, 1163, 1055, 857, 727 cm-1; HRMS (ESI-MS) m/z calculated for C16H24NO5S 

([M+H]+) 343.1370, found 343.1370. 

 

 

methyl (2S,6R)-6-phenylpiperidine-2-carboxylate (231a) 

Following a modified literature procedure,[47] methyl (S)-2-((tert-

butoxycarbonyl)amino)-6-oxo-6-phenylhexanoate (257a, 20.0 mg, 

60 µmol, 1.00 equiv) was placed in a 5 mL round-bottom flask. Trifluoro-

acetic acid (1.00 mL) was added in access and the mixture was allowed to stir at room temper-

ature until full conversion of starting material (as judged by TLC, Rf, intermediate (DCM / MeOH, 

9:1) = 0.5, UV active), 2 h). During this time, it turned yellowish. Trifluoroacetic acid was 

evaporated under reduced pressure. Subsequently, the residue was dissolved in 1 mL MeOH, 

cooled to 0 °C, and NaBH4 (2.7 mg, 72 µmol, 1.20 equiv) was added and the mixture was al-

lowed to stir for 1 h at 0 °C. After full conversion of starting material (Rf, product (DCM / MeOH, 

9:1) = 0.7, not UV active, stains with KMnO4), MeOH was evaporated and H2O (10 mL) and 

EtOAc (10 mL) were added. The phases were separated, and the aqueous phase was extracted 

with EtOAc (5 x 5 mL). The combined organic phases were dried over Na2SO4. Evaporation 

of the solvent yielded the pure product as brownish oil (12.3 mg, 56 µmol, 94%) in a diastere-

omeric ratio of 6:1. 

1H-NMR (400 MHz, CDCl3): δ for major diastereomer 7.43 – 7.36 (m, 2H), 7.37 – 7.28 (m, 

2H), 7.30 – 7.23 (m, 1H), 3.72 (s, 3H), 3.71 – 3.64 (m, 1H), 3.52 (dd, J = 10.5, 2.5 Hz, 1H), 

2.48 (brs, 1H), 2.14 – 2.04 (m, 1H), 2.05 – 1.92 (m, 1H), 1.83 – 1.74 (m, 1H), 1.61 – 1.44 (m, 

3H); 13C-NMR (101 MHz, CDCl3): δ major diastereomer 173.28, 144.31, 128.44, 127.34, 

126.77, 61.80, 59.73, 51.99, 33.93, 28.39, 24.99; Rf (DCM / MeOH, 9:1) = 0.7; IR: 2922, 

2855, 2796, 2684, 2363, 2113, 1737, 1498, 1431, 1305, 1200, 1025, 910, 883, 857, 760, 

697 cm-1; HRMS (EI-MS) m/z calculated for C13H17NO2 ([M]+) 219.12538, found 219.12495. 
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methyl (2S,6R)-6-(thiophen-2-yl)piperidine-2-carboxylate (231b) 

Following a modified literature procedure,[47] methyl(S)-2-((tert-

butoxycarbonyl)amino)-6-oxo-6-(thiophen-2-yl)hexanoate (257b, 20 mg, 

59 µmol, 1.00 equiv) was placed in a 5 mL round bottom flask. Trifluoro-

acetic acid (1.00 mL) was added in access and the mixture was allowed to stir at room temper-

ature until full conversion of starting material (as judged by TLC, Rf, intermediate (hexanes / 

EtOAc, 2:1) = 0.50, UV active), 2 h). During this time, it turned reddish. Trifluoroacetic acid 

was evaporated under reduced pressure. Subsequently, the residue was dissolved in 1 mL 

MeOH, cooled to 0 °C, and NaBH4 (2.7 mg, 70 µmol, 1.20 equiv) was added and the mixture 

was allowed to stir for 1 h at 0 °C. After full conversion of starting material (Rf, product (hexanes 

/ EtOAc, 2:1) = 0.45, not UV active, stains with KMnO4), MeOH was evaporated and H2O 

(10 mL) and EtOAc (10 mL) were added. The phases were separated, and the aqueous phase 

was extracted with EtOAc (5 x 5 mL). The combined organic phases were dried over Na2SO4. 

Evaporation of the solvent yielded the pure product as brownish oil (11.6 mg, 51 µmol, 88%) 

in a diastereomeric ratio of 6:1. 

1H-NMR (300 MHz, CDCl3): δ major diastereomer 7.20 (dd, J = 5.0, 1.3 Hz, 1H), 6.99 (ddd, 

J = 3.5, 1.4, 0.7 Hz, 1H), 6.95 (dd, J = 5.0, 3.5 Hz, 1H), 4.05 – 3.95 (m, 1H), 3.72 (s, 3H), 3.57 

– 3.48 (m, 1H), 2.61 (brs, 1H), 2.13 – 1.91 (m, 3H), 1.65 – 1.47 (m, 3H); 13C-NMR (101 MHz, 

CDCl3): δ for major diastereomer 173.02, 148.13, 126.39, 123.84, 123.21, 59.51, 56.80, 52.03, 

34.79, 28.42, 24.70; Rf (hexanes / EtOAc, 2:1) = 0.6; IR: 3325, 2937, 2855, 2792, 2091, 1733, 

1435, 1375, 1290, 1204, 1133, 1055, 1018, 924, 828, 798, 753, 697 cm-1; HRMS (EI-MS) m/z 

calculated for C11H16NO2S ([M+H]+) 228.0896, found 228.0900. 
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F. Appendix 

1. GC-FID analysis 

 

An example GC-FID spectrum of the reaction mixture of the photochemical E/Z-isomerization 

of trans-stilbene (24) is depicted below, using the following temperature program: 

 

Starting temperature:  140 °C 

Hold:    3 min 

Heating rate:   16 °C/min 

End temperature:  300 °C 
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2. NMR spectra 

 

The upper images show the 1H-NMR spectra whereas the lower images describe the 13C-NMR 

spectra. 

 

All compounds were dissolved in CDCl3 unless otherwise stated. 
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1H-NMR (400 MHz, CD3OD): 

 

13C-NMR (101 MHz, CD3OD): 
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1H-NMR (300 MHz, CD2Cl2): 

 

13C-NMR (75 MHz, CD2Cl2): 
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1H-NMR (400 MHz, CD3OD): 

 
13C-NMR (101 MHz, CD3OD): 
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122t 19F-NMR (377 MHz, CDCl3): 
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3. X-Ray 

 

tert-butyl (S)-5-oxo-4-(4-oxo-4-phenylbutyl)oxazolidine-3-carboxylate (123bf) 

 

Formula  C18H23NO5  
Dcalc./ g cm-3  1.277  

/mm-1  0.767  

Formula Weight  333.37  
Colour  clear colourless  
Shape  prism  
Size/mm3  0.19×0.17×0.05  
T/K  123.01(10)  
Crystal System  orthorhombic  
Flack Parameter  -0.01(7)  
Hooft Parameter  0.00(7)  
Space Group  P212121  
a/Å  5.93630(10)  
b/Å  14.4526(3)  
c/Å  20.2083(4)  

/°  90  

/°  90  

/°  90  

V/Å3  1733.77(6)  
Z  4  
Z'  1  
Wavelength/Å  1.54184  
Radiation type  CuK  

min/°  3.760  

max/°  76.221  

Measured Refl.  20011  
Independent Refl.  3608  
Reflections with I > 2(I)  3461  
Rint  0.0399  
Parameters  309  
Restraints  0  
Largest Peak  0.129  
Deepest Hole  -0.153  
GooF  1.044  
wR2 (all data)  0.0669  
wR2  0.0658  
R1 (all data)  0.0281  
R1  0.0265  
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4. List of abbreviation 

A  acceptor 

Å  angstrom 

abs  absolute 

Ac  acetyl 

AIBN  azobisisobutyronitrile 

aq  aqueous 

Ar  aryl 

Asc  ascorbate 

ATRA  atom transfer radical addition 

bpy  2,2’-bipyridine, 2,2’bipyridyl 

BDMAP 1,6-bis(dimethylamino)- 

  pyrene 

bmim  1-butyl-3-methylimidazolium 

Bn  benzyl (PhCH2) 

Boc  tert-butoxycarbonyl 

BNAH  1-benzyl-1,4-dihydronicotina- 

mide 

br  broad (spectral peak) 

Bu  butyl 

tBu  tert-butyl 

BuLi  butyl lithium 

Bz  benzoyl (PhCO) 

°C  degrees Celsius 

13C-NMR carbon NMR 

CB  conduction band 

CDC  cross dehydrogenative  

  coupling 

CFL  compact fluorescent lamp 

cm  centimeter 

cm-1  wavenumber(s) 

Co/C  carbon-coated cobalt nanopar- 

  ticles 

conc.  concentrated 

CTAB  cetrimonium bromide 

CuAAC copper(I)-catalyzed azide-al- 

  kyne cycloaddition 

 

d  day(s); doublet (spectral) 

D  donor 

DABCO 1,4-diazabicyclo[2.2.2]octane 

dap  dianisol phenanthrolin 

DBU  1,8-diazabicyclo[5.4.0]undec- 

7-ene 

DCC  N,N’-dicyclohexylcarbodi- 

Imide 

DCM  dichloromethane 

dF(CF3)ppy 2-(2,4-difluorophenyl)-5-(tri- 

fluoromethyl)pyridine 

DHAA  dihydroartemisinic acid 

DIPA  diisopropylamine 

DIPEA  N,N-diisopropylethylamine 

DMA  dimethylacetamide 

DMAP  4-(N,N-dimethylamino)-pyri- 

dine 

DMF  dimethylformamide 

DMSO  dimethylsulfoxide 

DNM  dinonylmethyl 

dr  diastereomeric ratio 

dtb-bpy  4,4’-di-tert-butyl-2,2’-bipyri 

dine 

E1/2  standard reduction potential 

EA  electron acceptor; elemental  

  analysis 

ED  electron donor 

eq  equation 

e.g.  for example 

equiv  equivalents 

ET  energy transfer 

Et  ethyl 

et al.  and others (co-authors) 

etc.  and so forth 

EtOAc  ethyl acetate 

ESI  electrospray ionization 
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eV  electron volt 

fac  facial 

FEP  fluorinated ethylene propylene 

FRET  Förster resonance energy trans- 

  fer 

g  gram(s); gaseous 

g-C3N4  graphenic carbon nitride 

GC-FID gas chromatography with a  

  Flame ionization detector 

h  hours 

hdppy  heptadecanyl-2-phenylpyri- 

  dine 

HE  Hantzsch ester, diethyl 1,4-di- 

  hydro-2,6-dimethyl-3,5-yridi- 

  nedicarboxylate 

HMDS  hexamethyldisilazane 

1H-NMR proton NMR 

hν  light 

HOMO  highest occupied molecular  

  orbital 

HPLC  high-performance liquid chro- 

  matography  

HRMS  high-resolution mass spectro- 

  metry 

Hz  Hertz 

i.e.  that is 

ICP-OES inductively coupled plasma 

  optical emission spectrometry 

IR  infrared 

ISC  intersystem crossing 

J  coupling constant (in NMR 

  analysis) 

k  kilo 

K  Kelvin 

L  liter 

LDA  lithium diisopropylamide 

LED  light emitting diode 

Lg  leaving group 

λmax  max. UV-vis wavelength 

LUMO  lowest unoccupied molecular  

orbital 

m  meter; milli; multiplet (spec- 

tral) 

M  molar (moles per liter) 

M+  parent molecular ion (in MS) 

µ  micro 

max  maximum 

MCFs  mesocellular silica foams 

Me  methyl 

MeCN  acetonitrile 

MHz  megahertz 

min  minute(s); minimum 

mL  milliliter 

MLCT  metal to ligand charge transfer 

mM  millimolar 

mmol  millimole(s) 

MNP  magnetic nanoparticle  

MOF  metal organic framework 

mol  mole(s) 

mp  melting point 

mpg-C3N4 mesoporous graphitic carbon  

nitride 

MS  mass spectrometry 

m/z  mass to charge ratio (in MS) 

NEt3  triethyl amine 

nBu  normal butyl (primary) 

NCN-CNx cyanamide-functionalized  

carbon nitride 

nm  nanometer 

NMP  N-methyl-2-pyrrolidone 

NMR  nuclear magnetic resonance 

Nu  nucleophile 

n.r.  no reaction 

ns  nanoseconds 

on  over night 

PAMAM polyamidoamine 
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PC  photocatalyst 

PCP  porous crosslinked polymers 

Pd/C  palladium on activated char- 

  coal 

PDVB  polydivinylbenzene 

PET  photoinduced electron transfer 

Pg  protective group 

Ph  phenyl 

Phth  phthaloyl 

PIB  polyisobutylene 

pp  pages 

ppm  part per million 

ppy  2-phenylpyridine 

iPr  iso-propyl 

PWh  peta watt hour(s) 

q  quartet (spectral) 

R  arbitrary residue 

red  reduction 

redox  reduction-oxidation 

Ref  reference 

Rf  retention factor 

rt  room temperature 

rxn  reaction 

s  seconds; singlet (spectral) 

sat.  saturated 

SCE  saturated calomel electrode 

SET  single electron transfer 

t  triplet (spectral) 

T  temperature in Kelvin 

TBAB  tetra-n-butylammonium bro- 

  mide 

TBAF  tetra-n-butylammonium fluo- 

  ride  

TBDMS tert-butyldimethylsilyl 

Tf  trifluoromethansulfonyl 

  (triflyl) 

TFA  trifluoroacetic acid 

TFAA  trifluoroacetic acid anhydride 

THF  tetrahydrofuran 

TLC  thin-layer chromatography 

TMS  trimethylsilyl; tetramethylsi- 

  lane; thermomorphic solvent 

  system 

tosyl  p-toluenesulfonyl 

tR  retention time (in chromato- 

graphy) 

Ts  p-toluenesulfonyl (tosyl) 

UV  ultraviolet (light) 

UV-Vis  ultraviolet-visible absorption  

  Spectroscopy 

VB  valence band 

vis  visible 

vs  versus 

w/o  without 

wt%  weight percent 
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