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3 Objectives 

3.1 MS-based method development for glutathione determination 

Glutathione is one of the most important endogenous antioxidants. Its level in the body is 

a useful indicator of oxidative stress status. Two forms of glutathione exist in vivo: the 

reduced form GSH and the oxidized form GSSG. A decrease in the ratio of GSH to GSSG 

is considered as an indicator of oxidative stress [1]. Several methods have been reported 

for GSH and GSSG determination in blood and tissues. However, studies regarding the 

determination of GSH and GSSG in cultured cells are scarce. In general, GSSG and GSH 

determination always suffers from autoxidation of GSH occurring at the -SH group which 

can result in overestimation of GSSG. This thesis aimed at developing and optimizing 

mass spectrometry-based methods for the simultaneous determination of GSH and 

GSSG in cultured cells, as well as total glutathione quantification.  

In 2015, Giustarini et al. reported an HPLC-UV-based protocol for GSH and GSSG 

determination in cell culture employing NEM (N-ethylmaleimide) as the -SH masking 

agent [2]. NEM can rapidly permeate cells and react with GSH (Figure 1).  

 

Figure 1. Reaction of NEM with GSH. NEM quickly enters the cells and blocks the -SH 

group in GSH thereby preventing its auto-oxidation. 

 

Based on that protocol, an HPLC-UV-MS/MS method was developed and optimized in 

this thesis for the simultaneous determination of GSH and GSSG employing NEM 

derivatization. A major challenge in this context is the large gap between intracellular GSH 

and GSSG concentrations. While GSH is highly abundant, GSSG is only present in traces. 
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Hence, the linear range of many mass spectrometers might not allow the simultaneous 

determination of both species. Therefore, GSH was determined as the GS-NEM 

derivative adduct and detected by UV and the eluent from LC-UV was subsequently 

subjected to mass spectrometry for GSSG determination. In addition, an HPLC-MS/MS 

method was established to determine the total glutathione pool in cell culture samples 

with DTT reduction. Both methods were systematically validated in terms of LOD, LLOQ, 

inter-/intra-day precision, as well as recovery.  

 

3.2 MS-based method development for 13C tracer analysis of glutathione  

Most of studies published on glutathione analysis to date have focused on its quantitative 

determination. However, knowledge of the metabolic pathways involved in glutathione 

biosynthesis is of equal importance. This thesis introduces an HPLC-MS/MS method for 

13C-tracer analysis of glutathione. We implemented a wide window MRM strategy on a 

QTOFMS instrument for the isotope labeling analysis of GSH, which yielded the full 

isotopologue profile of both parent and product ions resulting from the labeled substrates 

(see Figure 2). Compared to a triple quadrupole instrument, which requires tedious work 

to set up individual transitions, a QTOFMS can acquire all possible isotopologues of the 

analyte with high resolution simultaneously without the need to set up transitions. 

Additionally, the wide MRM window strategy can also reduce interferences as only ions 

within the m/z selection window can pass the first quadrupole, are fragmented in the 

collision cell, and subsequently detected. 

 

Figure 2. “Scheme depicting the wide Q1-isolation window strategy on a QTOF 

instrument for comprehensive GSH isotopologue analysis.” [3] 
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3.3 Investigation of metabolic changes due to IDH1/2 mutation with 13C-

tracer analysis  

The isocitrate dehydrogenase 1 & 2 (IDH1/2) are NADP+-dependent enzyme involved in 

that catalyze the conversion of isocitrate to α-ketoglutarate. Mutations in IDH1/2 have 

been found in several cancers such as certain types of gliomas [4]. The mutations result 

in a neomorphic activity of the enzyme, catalyzing the reduction of α-ketoglutarate (α-KG) 

to D-2-hydroxyglutarate (D-2-HG) concomitantly oxidizing NADPH to NADP+. 

Metabolomic studies of IDH mutation have been frequently carried out and reported [5-

8]. However, there is a continued need for more systematic investigations into the 

metabolic consequences of IDH mutation. In this thesis, using MS-based U-13C-glucose 

and U-13C-glutamine tracing, we investigated isotopic enrichment in a comprehensive set 

of metabolites including organic acids, amino acids, fatty acids, and endogenous 

antioxidant glutathione to elucidate the impact of different IDH1/2 mutations in the human 

colon cancer cell line HCT116 on cell metabolism.  
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4 Background 

4.1 Glutathione  

Glutathione is one of the most important intra- and extracellular antioxidants. Millimolar 

concentrations of glutathione are found in mammalian cells, whereas micromolar 

concentrations are typically detected in plasma [9]. Glutathione is synthesized in the 

cytosol and can be further distributed to different organelles, such as nucleus, 

mitochondria, and endoplasmic reticulum (ER) [10]. De novo biosynthesis occurs in two 

independent ATP-requiring steps, and uses L-cysteine, L-glycine, and L-glutamate as the 

substrates (see Figure 3). The first and rate-limiting step is the synthesis of the dipeptide 

γ-GluCys from cysteine and glutamate catalyzed by glutamate cysteine ligase (GCL), also 

called glutamylcysteine synthetase. Glutathione synthetase (GSS) catalyzes the second 

step whereby glycine is added to γ-GluCys to form the tripeptide glutathione.  

 

 

Figure 3. “Scheme of de novo glutathione biosynthesis. Glutathione is a tripeptide that is 

synthesized in the cytosol from the precursor amino acids: glutamate, cysteine, and 

glycine. It can then be transported into mitochondria, endoplasmic reticulum or the 

nucleus to participate in distinct biological processes. GCL: glutamate cysteine ligase; 

GSS: glutathione synthetase.” [3] 

 

Different forms of glutathione are present in cells, tissues, and plasma. Reduced 

glutathione (GSH) is the predominant form. Glutathione disulfide (GSSG), which is 

referred to as the oxidized form of glutathione, is formed by the oxidation of GSH. The 

ratio of GSH to GSSG within cells plays a crucial role in antioxidant defense. A decrease 
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of the ratio is considered indicative of oxidative stress [1]. Besides, other glutathione 

forms like sulfonates and glutathionylated proteins are also present in the body. However, 

in most cases, when speaking of total glutathione, only GSH and GSSG are included. 

Associations between the total intracellular glutathione level and various diseases have 

been observed in different experimental models [9]. The inhibition of glutathione de novo 

biosynthesis was found to sensitize tumor cells to chemotherapies [11], and to inhibit the 

generation of immune cytotoxic T lymphocytes [12]. This indicates the crucial role of 

glutathione in immune function and cancer therapy. Thus, glutathione has attracted 

increasing research interest.  

 

4.2 Analysis of glutathione in biological samples 

Over the years, numerous methods have been introduced to determine glutathione in 

biological samples. These methods can be divided into spectrophotometric- and HPLC-

based methods. A ‘Recycling assay’, which is also called ‘Tietze recycling assay’, as the 

initial experiments were performed by Tietze in 1969, is one of the most popular 

spectrophotometric methods (see Figure 4) [13, 14]. It utilizes 5,5’-dithio-bis (2-

nitrobenzoic acid) (DTNB) and glutathione reductase (GR), catalyzing the reduction of 

GSSG to GSH, to either determine GSSG only or to quantify the total glutathione pool 

(GSH + GSSG). Taking advantage of the specificity of GR, GSSG is reduced to GSH 

coupled with the generation of NADP+ from NADPH. DTNB reacts with GSH and 

produces 5-thio-2-nitrobenzoate (TNB) which has a strong absorbance at 412 nm [15]. 

Another product GS-TNB (adduct of glutathione and TNB) is then reduced back to GSH 

by GR and NADPH, concomitantly the generation of TNB. Thus, the reaction circulates 

through the self-sustained closed cycle. The rate of TNB formation can be monitored by 

a spectrophotometer and compared to a standard curve and GSH is quantified. The 

recycling assay is generally used to quantify total glutathione (GSH + GSSG). To 

determine GSSG, it is necessary to first block the SH-group in GSH. 2-vinylpridine (2-VP) 

[16] and N-ethylmaleimide (NEM) are two commonly used blocking agents. In particular, 

NEM has been widely used due to its fast reaction with GSH as well as its high cell 

permeability [17]. However, since NEM is a potent inhibitor of GR, excess reagent has to 

be removed when a GR-based glutathione recycling assay is performed, which is 



11 

 

laborious and may introduce experimental errors. 2-VP is thus recommended in those 

cases. Alternatively, GSSG can also be measured by a GSSG-endpoint assay where 

NADH consumption is measured spectrophotometrically based on the specific reduction 

of GSSG by GR [18]. However, all of these enzymatic methods are indirect ways to 

determine glutathione and generally lack sufficient sensitivity for the determination of 

GSSG.  

 

Figure 4. Scheme of glutathione recycling assay. GSSG is reduced to GSH by GR 

coupled with the conversion of NADPH into NADP+. GSH reacts with DTNB and produces 

TNB and GS-TNB. GS-TNB is then reduced back to GSH by GR and NADPH, entering a 

recycling reaction. The rate of TNB formation can be monitored by a spectrophotometer 

at 412 nm. It can be used to determine total glutathione. To determine GSSG only, GSH 

is quenched by blocking the -SH group with a derivatizing agent before the assay. The 

figure was redrawn and modified from previous reports [13, 15]. 

 

HPLC-based methods for glutathione determination include HPLC-UV [19, 20], HPLC-

fluorescence [21-23], and HPLC-MS detection [24-29]. Reed et al. reported an HPLC-UV 

method based on the derivatization of free thiol with iodoacetic acid (IAA) followed by 

derivatization of the N-terminal amino group with 1-fluoro-2,4-dinitrobenzene (DNFB) [30]. 

The method provided a linear response over a GSH working range of 0.1 to 5 nmol. 

However, it takes five hours to prepare the samples for analysis: 1 hour for IAA to react 
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with thiols and 4 hours for DNFB to react with the amino group. Alternatively, 

monobromobimane (mBBr) has been employed to form a fluorescent derivative for 

glutathione determination by HPLC-fluorescence detection [31]. mBBr selectively reacts 

with thiols and the total time for preparation and analysis of a sample is reduced to 1-2 h. 

However, this method cannot be used to detect disulfides like GSSG. Winters et al. then 

combined N-(1-Pyrenyl) maleimide (NPM) derivatization, 2-vinylpyridine (2-VP) masking, 

and reduction of GSSG with glutathione reductase to analyze both GSH and GSSG by 

HPLC-fluorescence detection at an excitation and emission wavelength of 330 nm and 

380 nm, respectively [32]. In this method, similar to the recycling assay, 2-VP was used 

to block the -SH group of GSH. GSSG was then reduced to GSH by GR and NADPH. 

The resulting GSH was measured as a fluorescent derivative after derivatization with 

NPM. The lower detection limit of the method was reported at 58 fmol load on the column.  

In all the above methods, sample pretreatment such as the derivatization of an amino or 

thiol group is required to make the GSH detectable by HPLC-UV or HPLC-fluorescence 

detection. HPLC-MS, on the other hand, can achieve direct detection of GSH with high 

sensitivity and specificity. Combined with reduction to obtain total glutathione or 

derivatization to measure both GSH and GSSG, HPLC-MS has been employed frequently 

to determine glutathione in various specimens such as blood [26, 33], tissue [34], and 

cultured cell [3].  

Of note, over the years, results have varied greatly from study to study regarding GSSG 

and GSH concentrations in biological samples, even in control groups. The main reason 

is thought to be autooxidation of GSH during sample collection and preparation. Roberts 

et al. [35] have pointed out the importance of appropriate tissue sample preparation in 

glutathione analysis. They compared two methods of sample preparation of various 

mouse organs to test the effect of sample preparation on resulting GSH values: tissue 

homogenization in sulfosalicylic acid, an acid used for protein precipitation in sample 

preparation, and tissue homogenization in 5,5’-dithio-bis (2-nitrobenzoic acid) (DTNB), an 

agent used to block the thiol group [35]. GSH levels were significantly underestimated 

when using DTNB to prepare tissue samples like kidney, liver, and pancreas. The author 

reasoned that DTNB only masked the thiol group but failed to protect against the 
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degradation of GSH by gamma-glutamyl transpeptidase (γ-GT). Inhibition of γ-GT with 

AT-125 (L-(αS, 5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazole acetic acid), an irreversible 

inhibitor of γ-GT, restored GSH values to those seen with acid homogenization.  

Protein precipitation with acids such as trichloroacetic acid and perchloric acid, is a 

common step in biological sample preparation for glutathione analysis. Russi et al. [36] 

discussed possible reasons that can cause artifact GSSG formation and erroneous GSH 

determination in blood during sample preparation, including oxidation of thiols in acidified 

sample or during acid deproteinization, GSSG reduction by GR and NADPH, and the 

reaction of electrophiles (-SH blocking reagent) with amino groups. Thus, blockade of the 

-SH group prior to protein precipitation and acidification was strongly recommended by 

the authors. Nature Protocols published a modified procedure in 2006 based on the 

recycling assay for quantitative analysis of glutathione in various specimens [15]. This 

protocol uses sulfosalicylic acid to precipitate proteins, as it can also inhibits γ-GT, thus, 

avoiding the degradation of GSH. In 2016, Giustarini et al. [13] reported a variant of the 

protocol that uses NEM to block the -SH group [15]. This protocol is believed to better 

prevent GSH autooxidation during sample collection and preparation.  

Overall, the improved sample preparation and detection methods together with the 

increasing awareness to prevent GSH autoxidation or degradation during sample 

preparation will provide more reliable results and better understanding of the role of 

glutathione in metabolism and disease. 

 

4.3 Isocitrate dehydrogenase mutation 

Mutations in isocitrate dehydrogenases 1/2 (IDH1/2) have been frequently discovered in 

multiple types of human cancers, but mostly in acute myeloid leukaemia (AML) [37] and 

gliomas [4]. IDHs catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate 

(α-KG) coupled with the generation of NADPH (or NADH in the case of IDH3). There are 

three isoforms of this enzyme with same function, however, localized in different parts of 

cell, the cytosolic IDH1 and the mitochondrial IDH2 and IDH3 [38]. To date, all mutations 

observed in IDH1 affected codon 132 (Arg132) and IDH2 mutations were identified at the 
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Arg172 and Arg140 codons [37]. In gliomas IDH1-R132H was found to be the most 

frequent mutant type (> 90%) where arginine is replaced with histidine [39] while the 

identified IDH2 mutations in gliomas often results in the replacement of arginine with 

lysine at codon R172K [4]. In AML, in contrast, IDH2-R140Q accounts for the majority of 

the mutations observed [40]. Great efforts have been made to elucidate the mechanism 

of tumorigenesis in these cancers. Among those, metabolomics studies have revealed 

important aspects of tumor metabolism at different levels (cell or tissue) [7, 41-45]. A shift 

of the mutated enzyme’s ability from catalyzing the conversion of isocitrate to α-KG to the 

production of D-2-hydroxyglutarate (D-2-HG) from α-KG in IDH1/2 mutant cells was 

observed (see Figure 5) [4, 46, 47]. As a result, elevated levels of D-2-HG were found in 

tumor cells with IDH1/2 mutation [48]. Tumor cells containing IDH1-R132H or IDH2-

R172H mutations exhibit a more than 100-fold increase in D-2-HG amounts compared to 

tumors  with wild-type IDH enzyme [47, 49, 50].  

2-Hydroxyglutarate exists in two isoforms: L-2-HG and D-2-HG. Germline mutations in D- 

/ L-2-hydroxyglutarate dehydrogenase (D2HGDH / L2HGDH) can also cause the 

accumulation of 2-hydroxyglutarate (2-HG) [51]. D2HGDH / L2HGDH specifically oxide 

D-2-HG / L-2-HG back to α-KG, respectively. The deficiency in those two enzymes results 

in an elevated level of 2-HG, which have been observed in D-/L-2-hydroxyglutarate 

aciduria (D-/L-2-HGA) diseases [52]. Elevated level of 2-HG was also identified in renal 

cell carcinoma, however, more than 90% of it was the L-enantiomer due to the reduced 

expression of L2HGDH [53].  

D-2-HG is considered as an oncometabolite and the accumulation of D-2-HG may 

promote tumorigenesis in cancers. In the past few years, researchers have focused on 

the role of D-2-HG in regulating the phenotype of IDH1/2 mutant cancer cells. It was found 

that D-2-HG can act as an antagonist of α-KG as they are similar in structure, therefore 

inhibiting α-KG-dependent enzymes activity [46, 54]. These enzymes catalyze a variety 

of functions, including various metabolic reactions. Therapies to treat cancers harboring 

an IDH1/2 mutation are being developed, targeting either the mutant IDH enzyme directly 

or 2-HG sensitizing pathways [46, 55, 56].  



15 

 

 

Figure 5. Scheme depicting the intracellular metabolism associated with IDH mutation. 

The figure was drawn and modified referred to a previous report [57]. 

 

Dysregulation of metabolism commonly occurs in cancer cells. Since IDH enzymes 

function at metabolic crossroads, mutations in IDHs influence other metabolic pathways 

[58-63]. Glutathione, as one of most important endogenous anti-oxidant, is generally 

maintained in its reduced form (GSH) in cells by glutathione reductase (GR) to protect 

cells against oxidative damage. Glutathione reductase specifically requires NADPH for 

the reduction of glutathione. Although NADPH can be supplied by several enzymes 

involved in different metabolic pathways, e.g., glucose-6-phosphate dehydrogenase in 

pentose phosphate pathway, IDH enzymes are considered as a major source of NADPH 

[38, 64]. Wild-type IDH enzymes reduce NADP+ to NADPH while converting isocitrate to 

α-KG in cytosolic and mitochondrial compartments. Since NADPH does not permeate the 

mitochondrial membrane, wild-type IDH2 is essential to replenish this reducing equivalent 

to protect cells against local oxidative stress [38]. In contrast, mutant IDH1/2 consume 

NADPH to form D-2-HG (see Figure 5). Indeed, Shi et al. reported a decreased NADPH 

level in clonally generated mutant IDH1 glioma cells compared to the control cells [65]. 

More recently, it was argued that mutant IDHs sensitize cells to oxidative stress by 
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consumption of NADPH for D-2-HG synthesis, which may serve as a metabolic weakness 

for radiation anti-cancer therapy [66].  

Additionally, mutant IDH cells show an increased dependence on glutaminase (GLS) for 

glutamate biosynthesis [8]. In fact, Seltzer et al. found that mutIDH1 glioma cells were 

particularly sensitive to GLS inhibition [67]. This phenomenon was then further proven in 

IDH1/2 mutant AML cells [45] and may provide a potential target for cancer therapy if IDH 

mutations are present. Furthermore, intracellular amino acids, choline derivatives, fatty 

acids, and TCA intermediates levels were also found to be altered in mutant IDHs 

expressing cells [63, 66]. Not surprisingly, exogenous 2-HG treatment can replicate most 

of the metabolic changes [68]. However, glutamate decrease is an exception which is a 

direct result of the mutation occurring in IDH enzymes and cannot be replicated by 

exogenous 2-HG treatment. All in all, a clear understanding of metabolic changes caused 

by IDH mutation, leading to a better understanding of the tumorigenesis, may provide 

exciting novel targets for cancer therapy.  

 

4.4 Metabolomics 

4.4.1 Basic principles and concepts 

Metabolomics as one of the ‘omic’ sciences is used to investigate endogenous 

metabolites within a biologic system to determine metabolites levels or follow the fate of 

metabolites along metabolic pathways. Metabolites here are usually defined as small 

molecule with <1500 Da molecular-weight that are required for metabolism or are 

products of metabolic reactions [69]. Metabolomics covers the identification and 

quantification of all intra- and extracellular metabolites using different analytical 

techniques. Metabolic profiling and metabolic fingerprinting are the two complementary 

approaches used in metabolomics study [70]. Metabolic profiling aims at developing 

specific analytical tools to analyze known groups of metabolites that are involved in one 

or more pathways of interest, yielding absolute quantification of the studied metabolites 

[71]. It is also often called targeted metabolomics. This approach generally needs a prior 

knowledge of the pathways associated with the study. Thus, it is a hypothesis-driven 

approach [72]. Metabolic fingerprinting, also called ‘non-targeted metabolomics’, on the 



17 

 

other hand, aims at investigating the global metabolite profile and comparing patterns or 

‘fingerprints’ of metabolites that change in response to internal or external perturbations 

under specific conditions [73, 74]. Thus, it is a hypothesis-free approach. Combined with 

statistical analysis, non-targeted metabolomics can be used to quickly identify small 

molecule biomarkers and affected pathways related to specific disease and provide a 

prior knowledge for targeted metabolomics. Combination of targeted and non-targeted 

metabolomics serves an extremely important role in metabolic research. Moreover, 

metabolic flux / tracer analysis which can be used to study the fate and origin of the 

metabolites in biological systems is also being increasingly applied in biomedical research. 

 

4.4.2 Flux / tracer analysis 

In the past decade, metabolic flux and stable-isotope tracing analyses have become 

powerful tools for uncovering cellular metabolic pathways. Metabolic flux analysis (MFA) 

aims to detect the rate of consumption / production of metabolites in biological systems. 

In general, the labeled substrates are used to feed the cells and incorporated into the 

metabolites of the metabolic network, and the incorporation can be used to resolve the 

fluxes [75-77]. By combining isotopic labeling data, nutrient uptake, and product excretion 

rates, the flux of the pathway can be determined with a computational model of the 

metabolic network [78-80]. Metabolic flux analysis can be used to reconstruct a 

comprehensive flux map that describes cellular metabolism. Comparisons of flux maps 

obtained under different experimental conditions provide a functional readout of the 

overall effect of the disturbance on cellular metabolism.  

Tracer analysis can also be a powerful tool to investigate the metabolism of cells. It may 

be less informative, but it is easier to perform because mathematical model fitting with the 

obtained isotope labeling data is not necessary. Tracer analysis provides immediate 

insight into isotope labeling patterns of metabolites resulting from the labeled nutrient [81]. 

In many cases, tracer analysis can provide sufficient information to elucidate the nutrient 

/ metabolic pathway contribution to the production of specific metabolites. 

 Mass spectrometry (MS) is the most frequently used technique to obtain isotope labeling 

data, while nuclear magnetic resonance (NMR), though well suited, is less often 
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employed. Of note, the obtained isotopic labeling data need to be corrected for the 

presence of naturally occurring heavy isotopes which can be performed with tools like 

IsocorrectoR [82]. 

The most frequently used tracer is 13C, but other tracers such as 15N, 2H can also be 

employed [83]. Taking 13C-tracer analysis as an example, by feeding cells with 13C-

labeled glucose, over time, the metabolites will become more and more enriched in 13C 

until the point where 13C enrichment in metabolites is stable. This state is called isotopic 

steady state during which the isotopologue distribution does not change with time [84]. 

The time that the cells need to reach isotopic steady state differs among metabolites and 

the tracer substrate employed. Besides, for some metabolites under certain cell culture 

condition, isotopic steady state might never be reached due to the constant and fast 

intracellular and extracellular exchange [81]. Alternatively, isotopically non-stationary 

metabolic flux analysis (INST-MFA), in which the metabolic network is regarded as a 

dynamic system, can be used to study local, relative fluxes when cells are not under 

isotopic steady state [85].  

Metabolic flux analysis as well as tracer analysis, combined with advanced analytical 

techniques to obtain isotope labeling data, enables us to better understand cellular 

metabolism and enhances our knowledge to elucidate disease mechanism.  

 

4.4.3 Analytical techniques  

Metabolomics has experienced exponential growth in the past decade. This is largely 

attributed to the rapid development of increasingly sensitive and reproducible analytical 

platforms [86]. Mass spectrometry (MS) in combination with various separation 

techniques and nuclear magnetic resonance (NMR) spectroscopy are the two primary 

analytical techniques employed in metabolomics [87-89].  

Proton NMR spectroscopy (1H NMR) offers robust, high-throughput, unbiased metabolite 

detection [90-92]. It is characterized by high reproducibility, and requires only minimal 

sample preparation. Depending on the sample matrix, it can deliver data for a relatively 

large set of metabolites in a single analysis [93-95]. Nearly 70 blood metabolites have 
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been quantitatively determined in pooled human serum by combining 1H NMR 

measurements, database searches, and spiking with authentic compounds [96]. 

Furthermore, chemical structure information can be obtained. In practice, NMR databases 

and search tools are commercially available and customizable, allowing fast and accurate 

identification of the compounds. However, NMR suffers from comparatively poor 

sensitivity. A concentration > 1 µM of the metabolite is typically needed for NMR-based 

analysis [97]. Underestimation of the metabolites due to their binding to proteins present 

in samples such as blood or urine, as well as signal overlaps from multiple detected 

metabolites are also issues that need to be taken into account when carrying out NMR-

based metabolomics [94, 98]. 

Mass spectrometry, on the other hand, is a more sensitive technique. The high sensitivity 

enables the quantitative measurement of a broad spectrum of metabolites. Mass 

spectrometry coupled with a separation technique, such as liquid chromatography, gas 

chromatography, or capillary electrophoresis, has played an essential role in generating 

metabolomics data [99-104]. Hyphenation of MS with a separation technique 

tremendously expands the capability of MS for the analysis of complex biological samples. 

Due to separation of the metabolites in a time dimension, the complexity of the samples 

is tackled and cleaner mass spectra are obtained. However, MS-based methods 

generally require a more complex sample preparation. Ion suppression might also 

contribute a problem with complex samples, particularly when electrospray ionization (ESI) 

is employed [105].  

Additionally, the combination of NMR and MS is advantageous for metabolite 

identification in complex samples. A fully automated workflow was introduced by Bingol 

and Brüschweiler as “NMR/MS Translator” [106]. It was applied to the metabolite 

identification in human urine and 98 metabolites in total were identified. With this strategy, 

metabolite candidates are firstly identified by 1D or 2D NMR, followed by the 

determination of their possible ions, adducts, fragments, and characteristic isotope 

patterns by MS. Together with NMR spectra, the mass spectrum generated by MS can 

be assigned with high confidence.  
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Metabolites are present over a wide concentration range. Moreover, they differ 

tremendously in their chemical structure and therefore also in their chemical and physical 

properties, making it virtually impossible to simultaneously determine the whole 

metabolome. Besides, there are still a lot of ‘unknowns’ that cannot be identified by MS 

or NMR alone [107]. To obtain as much information as possible in metabolomics studies, 

proper sample preparation and a combination of different analytical techniques are 

extremely advisable.  

 

4.5 Mass spectrometry-based metabolomics 

4.5.1 Mass spectrometry 

Mass spectrometry is an analytical technique to determine molecules in gas-phase 

through the detection and characterization of their mass-to-charge ratios (m/z). By 

comparing the identified m/z with the known compound mass, their fragmentation, and 

isotope patterns, unknown compounds can be identified. Currently, there are several 

types of commercially available MS analyzers that are used in metabolomics. 

 

4.5.1.1 Single quadrupole mass spectrometer 

A single quadrupole mass spectrometer is composed of four circular or hyperbolic parallel 

rods. A direct current (DC) voltage and a radiofrequency (RF) voltage are applied to the 

rods and the pairs of opposite rods have the same charge applied [108]. Ions are 

separated based on their trajectory stability in the electric field applied to the rods. Only 

ions with a certain m/z, depending on the applied voltage, can pass through the 

quadrupole and reach the detector [108-111]. By changing the applied voltage, ions are 

successively selected and scanned. This mass spectrometer can be operated in either 

full scan mode or selected ion monitoring (SIM) mode. In full scan mode, the transmitting 

ions are scanned in sequence. In SIM mode, only selected mass is allowed to pass the 

quadrupole. Thereby, longer scan time per mass can be realized. Thus, a better limit of 

detection (LOD) and lower limit of quantification (LLOQ) of the analyte can be achieved.  
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4.5.1.2 Time-of-flight mass spectrometer  

Time-of-flight mass spectrometer (TOF) is a common mass spectrometer for gathering 

high resolution data. Using an electric field, ions are accelerated by a fixed voltage, 

traverse a field free flight tube, and the time required to reach the detector is measured 

[112]. The ions will have identical kinetic energies if they have the same charge and their 

velocities depend only on their masses. The lighter the ions are (lower m/z), the faster 

they will reach the detector. TOF mass spectrometry (TOFMS) can provide at least a 

mass resolution of 10,000 [113]. The resolution (or resolving power) is improved by using 

a reflectron (ion mirrors), which reduces the diffusion of the kinetic energy and, thus, a 

longer flight path is obtained [114]. A big advantage of TOFMS over the single quadrupole 

mass spectrometer is the high mass accuracy. That allows to generate a possible 

molecular formula for the detected ion, making it suitable for the identification of 

unknowns in metabolic fingerprinting. 

 

4.5.1.3 Orbitrap 

The Orbitrap mass spectrometer was invented in 1999 by Makarov [115]. It is an ion trap 

mass analyzer which consists of an outer barrel-like electrode and a central spindle 

electrode [116-118]. Ions enter the Orbitrap and oscillate around the central electrode. 

Ions are trapped because their electrostatic attraction to the central electrode is balanced 

by the centrifugal force created by their initial tangential velocity and the ions move in 

spiral patterns in the electrostatic field inside the trap [119, 120]. The axial oscillation of 

the trapped ions is detected as an image current and converted to a mass spectrum 

through Fourier transform of the frequency signal. Fairly high resolution (over 100,000) 

and mass accuracy (2 to 5 ppm) can be achieved by an Orbitrap mass spectrometer, as 

well as the detection of a wide range of compounds during both targeted and untargeted 

analyses without losing selectivity or sensitivity [116, 119, 121]. It has been increasingly 

applied in proteomics, metabolomics, as well as environmental, food and safety analysis 

[122-126]. However, compared to a TOF analyzer, Orbitrap analyzer suffers from a slow 

data acquisition. Fast acquisition rate is generally required to provide sufficient data points 

across a quantitatively chromatographic peak, especially when the mass spectrometry is 
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hyphenated with a UHPLC [121]. A comparison of the above introduced mass analyzers 

regarding their resolving power, mass accuracy, scan speed, as well as linear dynamic 

range is summarized in Table 1. 

 

Table 1. Comparison of basic mass analyzers. 

Mass 
analyzer 

Resolving power 
(FWHM) 

Mass accuracy Scan speed Linear dynamic 
range 

Quadrupole < 5,000 50-100 ppm 2 - 10 Hz 105 

TOF >10,000 3 ppm 5 - 40 Hz 104 

Orbitrap >100,000 2 ppm 1 - 5 Hz 5×103 

Values shown in the table are considered when the mass analyzer is hyphenated with 
(U)HPLC and operated in full scan mode. This table was adapted from a previous report 
[127]. FWHM: full width at half maximum. 

 

4.5.1.4 Tandem mass spectrometer 

Triple quadrupole mass spectrometer (QqQ MS) is one of the most commonly used 

tandem mass spectrometers. It consists of three quadrupoles (see Figure 6) with the first 

and third quadrupole (Q1 and Q3) acting as a mass filter. The second quadrupole (q2), a 

non-mass resolving quadrupole, acts as a collision cell where the precursor ions selected 

in Q1 undergo collision-induced fragmentation. The resulting fragments are scanned or 

filtered by the third quadrupole (Q3) [128]. QqQ MS can be performed in various modes 

as shown in Table 2. QqQ MS contains double mass filtering, thus yields excellent LODs 

and LLOQs. It is highly suitable for selective and sensitive quantification of the analytes 

[129-134]. 
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Figure 6. Schematic diagram of a Triple Quadrupole mass spectrometer. 

 

Table 2. Settings associated with each scan mode in QqQ MS. 

Scan mode Settings 

Precursor ion scan 
Q1: scan 

Q3: fixed m/z 

Product ion scan 
Q1: fixed m/z 

Q3: scan  

Neutral loss scan 

Q1: scan 

Q3: scan 

m/z Q1 - m/z Q3 = fixed m/z (neutral loss) 

Selected reaction monitoring (SRM) 
Q1: fixed m/z (single ion) 

Q3: fixed m/z (single ion) 

Multiple reaction monitoring (MRM) 
Q1: fixed m/z (more than one) 

Q3: fixed m/z (more than one) 

 

4.5.1.5 Hybrid mass spectrometer 

High resolution and sensitivity are desired for metabolite detection in metabolomics 

studies. However, in general, higher sensitivity leads to lower resolution and vice versa. 

Thus, with a single MS, it is challenging to achieve both. In addition, the increasing speed 

of chromatographic separation and the complexity of analyzed mixtures require faster and 

more intelligent and robust detectors [135]. Hybrid instruments are such mass 

spectrometric detectors, which combine different types of mass analyzers within a single 
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instrument. It typically consists of a low-resolution analyzer which is used to filter ions 

(e.g., quadrupole, linear trap) and a high resolution mass analyzer at the back end (e.g., 

TOF or Orbitrap) [120, 136]. When performing a full scan acquisition, it is similar to a 

standalone high-resolution mass analyzer, while in MS/MS mode ions can be selected 

and fragmented in the front analyzer and the fragments can be analyzed by the high-

resolution mass analyzer. 

Quadrupole-time-of-flight mass spectrometer (QTOFMS) is a common hybrid mass 

spectrometer. It is constructed like a QqQ MS except the Q3 is replaced by a TOF mass 

analyzer (see Figure 7). When performing full scan acquisition, the quadrupole serves 

only as a transmission unit while the TOF analyzer is used to record the mass spectra. 

TOF analyzers record all ions without scanning and can be operated in high acquisition 

speed which allows the acquisition of more data points per time unit, dramatically 

increasing sensitivity compared to a triple quadrupole mass spectrometer performed in 

full scan mode [137]. In MS/MS mode [138], Q1 serves as a mass filter. The selected 

precursor ions in Q1 are transferred to the collision cell (q2) where the ions undergo 

collision-induced dissociation (CID). The product ions are then analyzed by TOF mass 

spectrometer with high resolution. Hybrid QTOFMS such as Bruker Maxis Impact series 

can also perform broadband collision-induced dissociation (bbCID) acquisition whereby 

all precursor ions observed in the MS scan are simultaneously fragmented. It is similar to 

data independent acquisition (DIA) methods, which are now commercialized as SWATH 

and SONAR platforms by AB Sciex and Waters, respectively [139]. DIA and bbCID are 

able to capture both all MS and MS/MS data scans in a single run, enabling the acquisition 

of full information for all compounds and their fragments. They overcome the 

disadvantage of the traditional data dependent acquisition (DDA) method in which only 

the most abundant ions are fragmented, resulting in the information loss of low-

abundance compounds [139]. Additionally, the Q1 on a QTOFMS platform can also be 

operated to allow ions over a given m/z range to pass through. Thus, only ions within the 

given m/z range will be transferred to collision cell and fragmented. The fragments can 

then be analyzed in parallel by the TOF analyzer with high resolution. In this thesis, we 

applied the wide Q1 isolation window strategy to 13C-tracer analysis of glutathione (see 

Chapter 8). QTOFMS provides the exact masses of the quasi-molecular ions, the 



25 

 

fragments information, as well as the structural information of the detected ions. Hybrid 

QTOF mass spectrometers have been widely used in the field of proteomics and 

metabolomics for metabolic fingerprinting and identification of unknowns [140-144].   

 

 

Figure 7. Schematic diagram of a Quadrupole Time-of-Flight mass spectrometer. 

 

Other hybrid mass spectrometers such triple quadrupole MS where the third quadrupole 

can be used as linear ion trap (Q-Trap) [145-152] and a linear ion trap combined with a 

Fourier transform ion cyclotron resonance mass analyzer (LTQ-FTICR) [153-156] or an 

Orbitrap mass analyzer (LTQ-Orbitrap) [120, 157, 158] also play an increasingly role in 

proteomics as well as metabolomics studies.  

 

4.5.1.6 Ion source 

Techniques based on mass spectrometry require an ionization step (ion source) through 

which gas-phase ions are generated. Electron ionization (EI) and chemical ionization (CI) 

are typical ionization techniques used with GC [159]. For both EI and CI, samples much 

be introduced as a gas, thus are used exclusively for GC applications. EI is a hard 

ionization technique [160]. It generates many fragments and the fragmentation patterns 
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are unique and reproducible. By employing databases or reference libraries containing 

electron ionization mass spectra under the same operating conditions, it facilitates the 

identification of unknown compounds [161].  With CI, ions are generated through the 

collision of the analytes with a reagent gas ions (usually ammonia or methane) [162]. CI 

is a low energy process, being considered a much softer ionization technique compared 

to EI. It was originally used to produce quasi-molecular ions for GC-MS. However, CI 

requires additional maintenance in practice and it is not as sensitive as EI [159].  

Electrospray ionization (ESI) has increasingly become one of the most important 

ionization techniques in mass spectrometry since its introduction in 1989 [163]. It is a soft 

ionization method and generates intact, multiply charged (typically for large molecules) 

gas-phase ions, and can be applied to a wide range of chemical and biological 

applications [164-167]. ESI generates gas-phase ions of the analytes directly from a liquid 

solution by applying a strong electric field to the droplets, creating a spray in an electric 

field [168]. Polar molecules are ionized especially well by ESI. To note, ESI could result 

in underestimation of the analyte concentrations due to the competitive ion formation (so-

called ion suppression) [169]. This problem could be solved by using isotope labeled 

internal standard, which will experience identical ion suppression to the analyte of interest. 

Serial dilution of the sample could also be an alternative, especially when isotopic 

standards are not available. A linear response suggests the absence of ion suppression, 

while a strongly nonlinear one points to a problem. 

Atmospheric pressure chemical ionization (APCI) is a form of chemical ionization that 

uses solvent spray at atmospheric pressure. It can be coupled to both liquid 

chromatography [170] and gas chromatography [171]. APCI is an ESI variant, however, 

is not as soft an ionization technique as ESI. With APCI, sample solution is nebulized by 

the nitrogen nebulizer gas to form a spray as it enters the heater and both sample and 

solvent molecules are vaporized to a gaseous state and ionized by a corona discharge 

[168]. The corona discharge is created at atmospheric pressures by applying a voltage 

on the needle. Nonpolar and slightly polar molecules can be ionized by APCI. In addition, 

compared to ESI, APCI has lower ion suppression effect. However, APCI is typically used 

for small molecules (<1000 u) [168]. Large proteins remain inaccessible to APCI. 

https://www.sciencedirect.com/topics/chemistry/electrospray-ionization
https://www.sciencedirect.com/topics/chemistry/ionization-technique
https://en.wikipedia.org/wiki/Atmospheric_pressure_chemical_ionization
https://en.wikipedia.org/wiki/Chemical_ionization
https://en.wikipedia.org/wiki/Corona_discharge
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Matrix-assisted laser desorption ionization (MALDI) is an ionization technique which can 

ionize solid-phase molecules. It is first introduced in 1987 by Karas et al [172]. Although 

the exact mechanism of MALDI ionization technique is not well known, it is generally 

believed that MALDI produces ions through laser excitation and ablation of the sample 

matrix [173, 174]. MALDI can produce high ionization yields of the intact analyte with a 

charge of 1. The generated ions are mostly detected by a TOF mass analyzer. This 

technique favors polar compounds.  

Desorption electrospray ionization (DESI) is a very new ionization technique compared 

to others which was proposed by Cooks et al in 2004 [175]. DESI ionization technique 

relies on solvent extraction directly on the surface of the sample for localized information. 

It is a combination of ESI and desorption ionization technique. However, not like in ESI in 

which the sample is in the solution, sample of interest in DESI is in the solid phase. On 

the other hand, it is not like in MALDI since the sample is not under vacuum. Instead, 

DESI is performed under ambient environmental conditions [176]. Applications of DESI 

in metabolomics studies, especially in imaging mass spectrometry, have been frequently 

reported recently [177-181]. 

 

4.5.2 Liquid chromatography-mass spectrometry (LC-MS) 

High performance liquid chromatography (HPLC) with its advanced form ultra-high 

performance liquid chromatography (UPLC) is an analytical technique used to separate 

each component in a mixture [182]. Liquid chromatography coupled to mass spectrometry 

(LC-MS) is a powerful tool for the identification and quantification of metabolites from 

complex samples in metabolomics studies [100, 183-186]. By combing HPLC separation 

of compounds with high resolution MS analysis, the detection limits and data quality can 

be dramatically improved, as the separation of the metabolites in a time dimension 

reduces the complexity of the samples and cleaner mass spectra are obtained.  

Reversed-phase liquid chromatography (RP-LC) is the most frequently used liquid 

chromatography in HPLC practice. It utilizes a non-polar stationary phase, usually an 

alkyl- bonded silica phase, and an aqueous, moderately polar mobile phase. With RP-LC, 
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less polar molecules will show a stronger retention while polar molecules are less strongly 

retained on the column and elute earlier [182]. Normal-phase liquid chromatography (NP-

LC), on the other hand, utilizes a polar stationary phase column and non-polar, non-

aqueous mobile phase [187-190]. Thus, it is only suitable for the analysis of compounds 

that are readily soluble in non-polar solvents. NP-LC possesses its own advantages in 

specific studies. William et al [183] reported the determination of lipopolysaccharide (LPS) 

biosynthetic intermediate with normal phase liquid chromatography mass spectrometry 

(NPLC-MS/MS) and pointed out the more sensitive detection, low carry-over, smaller 

sample volumes, and extended column lifetimes of NP-LC achieved compared to RP-LC.  

In addition, hydrophilic interaction liquid chromatography (HILIC) is another valuable 

alternative. “Hydrophilic” here refers to the affinity to water. It can be used to separate 

polar, weakly acidic or basic samples [191-194]. In HILIC, the separation of the samples 

is performed with a polar column and aqueous-organic mobile phase, typically acetonitrile 

with a small amount of water. The water in the mobile phase is attracted by polar groups 

of the stationary phase and an aqueous layer is formed over the surface of the stationary 

phase. Present theories of separation mechanism in HILIC include partitioning between 

the mobile phase and the water layer, hydrogen bonding, dipole-dipole interactions, and 

electrostatic interactions [195]. In a specific study, a combination of different separation 

mechanisms is most probably involved, depending on the column and buffer conditions  

employed i.e., the type of organic solvent, salt, and the pH [196]. HILIC can provide 

sufficient retention for strongly polar compounds with highly organic mobile phase and is 

well suitable for coupling to mass spectrometry, making it complementary to RP-LC [186, 

197-199]. However, HILIC is not suitable for the analysis of compounds with low solubility 

in high proportion of organic solvent. Besides, relatively long equilibration time will be 

necessary to form stable water layer on the surface of stationary phase and achieve 

reproducible measurement in HILIC. 

Furthermore, mixed-mode liquid chromatography (MM-HPLC) is also an alternative in 

HPLC practice. MM-HPLC is a type of chromatography in which the separation of the 

analytes is achieved based on more than one interaction form of the analytes with the 

chromatographic stationary phase in one single column [200]. The advantages of MM-
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HPLC over a conventional single-mode stationary phase include high separation 

efficiency and selectivity, high loading capacity, as well as its possible replacement of two 

conventional corresponding columns under certain conditions [201]. MM-HPLC has been 

increasingly employed in the study of metabolomics [202-205]. 

 

4.5.3 Gas chromatography-mass spectrometry (GC-MS) 

Gas chromatography (GC) is another type of chromatography used for analyzing 

compounds which can be vaporized without thermal decomposition. In modern GC, 

capillary columns are used, where the stationary phase is coated as layer of liquid (wall 

coated open tubular column) or particles (porous layer open tubular column) on the inner 

surface of a thin fused silica or metal tube. GC uses carrier gas (Helium, hydrogen, or 

nitrogen) to transport the analytes through the column. In contrast to liquid 

chromatography, carrier gas in GC will not interact with the stationary phase and the gas 

type has no influence on the retention of the analyte. Gas chromatography coupled to 

mass spectrometry (GC-MS) has been frequently used in metabolomics studies for both 

targeted and untargeted analysis [101, 102, 206-211].  

Gas chromatography is restricted to analytes that can be vaporized without 

decomposition. However, most of the metabolites, such as organic acids and sugars, 

possess polar functional groups and have poor volatility and thermal stability. 

Derivatization is thus necessary to make those compounds suitable for GC analysis. 

Derivatization not only increases the volatility and thermal stability of the analytes, but 

often also improves the chromatographic properties of the analytes [212]. Silylation, 

alkylation, acylation, oximation, and cyclization are the commonly used derivatization 

reactions [212]. Sometimes, even more than one derivatization reaction is used within a 

protocol. Mu et al. has employed oximation and silylation reactions combined GC-MS 

analyss to carry out metabolomics study of non-small cell lung cancer (NSCLC) patients 

serum, providing a biomarker panel for the auxiliary diagnosis of NSCLC in nonsmoking 

females [206]. Combination of methoximation and silylation of organic acids e.g., TCA 

cycle intermediates, and subsequent GC-MS analysis has been frequently used in 

metabolomics studies [213, 214]. Besides, fatty acids are usually analyzed by GC-MS 
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after derivatization to form respective fatty acids methyl esters (FAMEs), especially for 

the fatty acids containing more than 10 carbon numbers [215]. Nowadays, due to the 

progress of the instrument development, automated derivatization can be performed on 

GC-MS coupled with a sample-preparation device which can not only improve the speed, 

efficiency, and reproducibility of the analysis, but also the safety of the operators. 

Investigation of volatile organic compounds (VOCs) is also an important application of 

GC-MS in metabolomics studies. VOCs are a diverse group of carbon-based compounds 

such as alkanes, alcohols, aldehydes, and ketones that exist in exhaled breath and 

biofluids e.g., blood, urine, feces, and sweat [216]. VOCs patterns have been linked to a 

variety of diseases like cancers [207, 216-218] and diabetes [219]. Coupled with 

extraction device such as solid phase microextraction (SPME) [101, 218, 220], GC-MS 

has been frequently used for VOCs detection and analysis, especially in the investigation 

of potential cancer biomarkers. 

 

4.5.4 Ion mobility spectrometry-mass spectrometry (IMS-MS) 

Ion mobility spectrometry (IMS) is another analytical technique used to separate gas-

phase ions. With IMS, ions are separated based on their size, shape, and charge, which 

is also defined as their ‘mobility’, in an electric field [221]. IMS provides an additional 

selectivity dimension, increasing the ability to separate and analyze compounds even 

when they have the same molecular weight and chromatographic retention time. 

Numerous ion mobility technologies have been introduced including drift tubes, traveling 

wave, trapped IMS, and differential mobility analyzers, among others [222]. Drift tube IMS 

(DTIMS) is the most established form of IMS. In DTIMS, ions are propelled by an electric 

field against a counter current flow of a drift gas (mostly nitrogen, helium or argon). In the 

drift tube, ions collide with the drift gas multiple times, which slows them down. The ions 

are accelerated again by the applied field and they move at a constant velocity which 

depends on their charge, size, shape, and collision cross section, allowing them to be 

identified by the time they arrive at the detector [223]. Traveling wave IMS (TWIMS) is 

another widespread IMS technology. TWIMS works along similar lines to DTIMS. 

However, instead of having a constant electric field, in TWIMS, the ions are propelled by 
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a set of continuously symmetric potential waves in the tube [224]. Although different 

mobility dispersive fields were employed in those IMS technologies to generate ion 

mobility spectra, all of them work on the common basis that the analytes are separated 

based on their different ion mobility behavior in the gas phase. 

IMS can be hyphenated with MS, referred to as ion mobility spectrometry-mass 

spectrometry (IMS-MS). IMS-MS provides multidimensional characterization of detected 

analytes, making it a powerful analytical tool in the studies of proteomics [225], lipidomics 

[226, 227], and metabolomics [228-230]. It offers advantages in isomer separation and 

structural characterization [231, 232]. IMS-MS has become an increasingly popular 

technique in metabolomics [233-235]. In a metabolic profiling study of human blood with 

IM-TOF-MS, simultaneous separation of 300 isomeric / isobaric metabolites, along with 

the detection of ~ 1,100 metabolite ions, was accomplished [234]. Six-fold of peak 

capacity increase of the MS was also achieved by coupling IMS prior to MS analysis as 

introduced in the study. Moreover, using DTIMS-QTOF-MS, more than 500 small 

molecules including metabolites involved in TCA cycle, glycolysis, pentose phosphate 

pathway, secondary metabolites such as terpenes and flavonoids, and the xenobiotics 

such as antibiotics and pesticides were characterized [236]. Database developed based 

on that study is freely available at http://panomics.pnnl.gov/metabolites/. Additionally, 

combination of IMS with imaging mass spectrometry has also been increasingly explored 

to improve the performance of biological tissue imaging [237]. 

 

  

http://panomics.pnnl.gov/metabolites/


32 

 

5 Experimental section 

5.1 Materials and chemicals 

Ammonium hydrogen carbonate (NH4HCO3) was purchased from AppliChem GmbH 

(Darmstadt, Germany), and DL-dithiothreitol (DTT) from Sigma-Aldrich (Taufkirchen, 

Germany). Stable isotope labeled glutathione (glutathione-(glycine-13C2,15N1)), stable 

isotope labeled glutathione disulfide (glutathione-(glycine-13C4,15N2)) as internal standard, 

unlabeled GSH, and unlabeled GSSG were purchased from Toronto Research Chemicals 

(Toronto, Canada). N-ethylmaleimide (NEM) was purchased from Sigma Aldrich 

(Taufkirchen, Germany). U-13C6-glucose and U-13C5-glutamine were purchased from 

Cambridge Isotope Laboratory, Inc. (Andover, MA, USA). Buthionine sulfoximine (BSO, 

Sigma-Aldrich) was kindly provided by Dr. Raquel Blazquez from the University Hospital 

Regensburg. 2-Propanol (LC-MS grade), acetylchloride, methyl chloroformate, 

methoxylamine hydrochloride, and pyridine were from Sigma-Aldrich (Taufkirchen, 

Germany). Chloroform (HPLC grade) was from Fisher (Fisher Scientific GmbH, Ulm, 

Germany). N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) was purchased from 

Macherey-Nagel (Dueren, Germany). L-glutamine was from Sigma-Aldrich (Taufkirchen, 

Germany). Solvents for sample preparation and LC-MS analysis were HPLC grade and 

purchased from VWR (Vienna, Austria). Purified water used in this thesis was from a 

PURELAB Plus system (ELGA LabWater, Celle, Germany).  

 

5.2 Instrumentation 

5.2.1 Glutathione determination and 13C tracer analysis by HPLC-ESI-QTOF MS 

Glutathione determination and 13C-tracer analysis in chapter 7 and chapter 8 were 

performed as our previous report [3]. “The measurements employ a Maxis Impact 

QTOFMS (Bruker Daltonics, Bremen, Germany) with an ESI source coupled to a Dionex 

Ultimate 3000 UHPLC system (Thermo Scientific, Idstein, Germany) consisting of the 

HPG3400 RS pumping system, the WPS3000TFC autosampler, and the Dionex Diode 

Array Detector (shown in Figure 8). A Waters Atlantis T3 reversed-phase column 

(2.1×150 mm, 3 µm) with a 2.0 × 4 mm C18 pre-column (Phenomenex) was used with 
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mobile phase A (0.1% formic acid in H2O, v/v) and B (0.1% formic acid in acetonitrile, v/v) 

gradient elution. The column was kept at 35 °C and a flow rate of 0.3 mL/min was 

employed in all studies. For full MS analysis the mass range was set from 50 to 1000 m/z. 

The optimized MS parameters are as follows: end plate offset 500 V; capillary voltage 

4500 V; nebulizer pressure 2.6 bar; dry gas flow rate 10.0 L/min; dry temperature 220 °C. 

Before measurements, an external mass calibration was carried out using sodium formate 

clusters (10 mM sodium formate in 50 / 50 water / isopropanol, v/v). Moreover, each run 

was started with an injection of the sodium formate solution for internal recalibration using 

a six-port valve.” [3] 

 

Figure 8. Instrument used for glutathione determination and 13C-tracer analysis: Maxis 

Impact QTOF mass spectrometer coupled to a Dionex Ultimate 3000 UHPLC system. 

 

Analysis of the ratio of GSH (determined as GS-NEM) to GSSG (see chapter 6) was 

performed by HPLC-UV-ESI-QTOF-MS with a gradient chromatographic separation as 

shown in Table 3. For GS-NEM determination, the diode-array detector was operated 

over a range of 200 to 400 nm. The GS-NEM absorption peak was extracted at 210 nm. 

The eluent is then transferred into the QTOF mass spectrometer through an ESI source 

for GSSG monitoring in positive MRM mode with a 10 Da Q1 selection window.  
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Table 3. Gradient used for GSSG and GS-NEM analysis with HPLC-UV-ESI-QTOF-

MS/MS. 

Total time (min) Flow rate (µL/min) A % B % 

0.00 300 95 5 

15.00 300 95 5 

17.00 300 0 100 

20.00 300 0 100 

20.10 300 95 5 

25.10 300 95 5 

 

Quantification and 13C-tracer analysis of total reduced glutathione (tGSH) in chapters 7 

and 8 are performed with HPLC-ESI-QTOF-MS/MS. A gradient chromatographic 

separation was used (shown in Table 4). “Absolute quantification of tGSH was performed 

in positive ion MRM mode with a 0.7 Da Q1-isolation window (centering on 308 m/z for 

unlabeled GSH and 311 m/z for labeled GSH), while isotope labeling analysis was 

performed in positive ion MRM mode with a 20 Da window (centering on 313 m/z). A 

collision energy of 15 eV was used for both. For full MS and broadband collision-induced 

dissociation (bbCID) analysis the mass range was set from 50 to 1000 m/z in Chapter 8. 

When performing bbCID acquisition, collision energy of MS was 5 eV and collision energy 

of MS/MS (bbCID) was 15 eV” [3]  

 

Table 4. Gradient used for quantification and 13C-tracer analysis of total reduced 
glutathione with HPLC-ESI-QTOF MS/MS. 

Total time (min) Flow rate (µL/min) A % B % 

0.00 300 100 0 

10.00 300 40 60 

12.00 300 0 100 

17.00 300 0 100 

17.10 300 100 0 

22.10 300 100 0 

 

5.2.2 Amino acids tracer analysis by HPLC-ESI-QqQ-MS 

Amino acids tracer analysis in chapter 9 was performed after propyl 

chloroformate/propanol derivatization (see section 5.4.4) as described in a previous 

report [238] using an Agilent 1200 Series HPLC system (Boeblingen, Germany) 
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containing a binary pump, a temperature-controlled autosampler, and a column oven. The 

HPLC was coupled to an AB SCIEX 4000 QTRAP mass spectrometer (Darmstadt, 

Germany), equipped with a TurboV electrospray ion source (see Figure 9). A reversed-

phase column Phenomenex EZ: faast AAA-MS (250×3 mm i.d., 4 µm) with mobile phase 

A: 10 mM ammonium formate and 0.1% (v/v) heptafluorobutyric acid in water and B: 10 

mM ammonium formate and 0.1% (v/v) heptafluorobutyric acid in methanol was used. 

The column was kept at 30 °C. Gradient used for chromatographic separation is shown 

in Table 5. A 10 µL of solution was subjected to the analysis for each sample. The MS 

was performed in multiple reaction monitoring (MRM) after ESI ionization in positive mode 

using the parameters and transitions for different isotopologues listed in Table S1 (see 

supplementary information in chapter 11).  

 

Figure 9. Instrument used for amino acids isotope labeling analysis: AB SCIEX 4000 

QTRAP mass spectrometer coupled to an Agilent 1200 Series HPLC system. 

 

Table 5. Gradient used for amino acids chromatographic separation on HPLC-ESI-QqQ 
MS. 

Total time (min) Flow rate (µL/min) A % B % 

0.00 350 38 62 

12.00 350 21 79 

12.01 350 2 98 

15.00 350 2 98 

15.10 350 38 62 

23.00 350 38 62 
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5.2.3 Organic acids tracer analysis by GC-EI-MS 

Tracer analysis of organic acids in chapter 9 was carried out with an Agilent model 6890 

GC (Agilent, Palo Alto, CA, USA) equipped with a mass selective detector (MSD) model 

5975 Inert XL using an EI source, and an MPS-2 Prepstation sample robot (Gerstel, 

Muehlheim, Germany) (see Figure 10). Analytes were derivatized (see section 5.4.2) and 

separated on an RXI-5MS column, 30 m × 0.25 mm ID × 0.25 µm film thickness (Restek, 

Bad Homburg, Germany) equipped with a deactivated precolumn (2 m × 0.25 mm ID). 

Splitless injection was employed with an injection volume of 1 μL at 280 °C. The initial 

oven temperature was set at 50 °C, equilibrated for 0.5 min, ramped at 5 °C / min to 

120 °C, and then to 300 °C at 8 °C / min, and held for 5 min. Total runtime is 42.5 min. A 

flow rate of 0.7 mL/min of the carrier gas (Helium) was employed. The transfer line to the 

mass spectrometer was kept at 310 °C. A full scan acquisition ranged from 50 to 550 m/z 

was performed.  

 

 

Figure 10. Instrument used for organic acids isotope labeling analysis: Agilent model 

6890 GC-EI-MS equipped with a mass selective detector and an MPS-2 Prepstation 

sample robot. 

 

5.2.4 Fatty acid (C16:0) tracer analysis by GC-EI-MS 

Tracer analysis of C16:0 as FAME in chapter 9 was carried out with a Agilent model 6890 

GC (Agilent, CA, USA) equipped with a Mass Selective Detector (MSD) model 5975 using 
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an EI source and an Auto Liquid Injector model 7683 with a 10-µL syringe (see Figure 

11). Analytes were derivatized (see section 5.4.3) and separated on a DB-Wax UI column, 

32 m × 0.25 mm ID × 0.25 µm film thickness (Restek, Bad Homburg, Germany) equipped 

with a deactivated precolumn (2 m × 0.25 mm ID). Splitless injection was employed with 

an injection volume of 1 μL at 250 °C. The initial oven temperature was set at 50 °C, 

equilibrated for 1 min, ramped at 10 °C /min to 245 °C and held for 10 min. A flow rate of 

1 mL/min of the carrier gas (Helium) in constant flow mode was employed. Total run time 

is 30.5 min. A full scan acquisition ranged from 60 to 550 m/z was performed.  

 

 

Figure 11. Instrument used for fatty acids isotope labeling analysis: Agilent model 6890 

GC-EI-MS equipped with a Mass Selective Detector (MSD) model 5975 and an Auto 

Liquid Injector model 7683 with a 10 µL syringe. 

 

5.3 Cell culture 

The colon carcinoma HCT116 panel (Horizon Discovery Ltd, Water beach, UK), parental 

cell line (WT-IDH1/2) and three mutant cell lines carrying IDH1/2 mutations (IDH1-R132H, 

IDH2-R172K, IDH2-R140Q), and the colon adenocarcinoma LS174T cell panel (kindly 

provided by J. Pouyssegur, University Côte d’Azur, Nice, France and M. Kreutz, 

Regensburg) were cultivated in RPMI (PAN, Aidenbach, Germany), supplemented with 
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10 % FCS (Biochrom), 1 % Pen/Strep and 2 mM L-glutamine, incubated at 37 °C with 5% 

CO2. For experiments, cells were seeded in 6-well plates in triplicate and incubated at 

37 °C with 5 % CO2.  

For GSH and GSSG determination in chapter 6 and 7, 350,000 cells of LS174T cell lines 

were seeded per well in 6-well plates and 300,000 cells of HCT116 cell line were seeded 

per well in 6-well plates. For GSH isotope labeling analysis in chapter 8, 250,000 cells of 

HCT116 cell line were seeded per well in 6-well plates. Cell density used in chapter 9 is 

shown in Table S2 (see supplementary information in chapter 11). 

“To harvest the cells for GSSG and GSH analysis, the medium was discarded and the 

cells were washed twice with 1 mL PBS (PAN) containing 1 mM NEM. Each PBS washing 

step lasted 1 min. After the second PBS/NEM wash solution was removed, 10 µL of 25 

µM glutathione disulfide internal standard (glutathione-(glycine-13C4,15N2)) was added into 

each well before cells were scrapped in 600 µL 80% methanol. The extract was 

transferred to a 1.5 mL-cup and the wells were washed with 400 µL of cold 80% methanol 

twice and collected into the same cup.” (Sun et al., in submission) 

“For absolute GSH quantification, parental and IDH1-R132H mutant cells were pre-

cultured on plates overnight, then incubated with or without 5 µM BSO for another 24 h. 

All media were sterile filtered using a 25-mm syringe filter with a 0.2-µm cellulose acetate 

membrane (VWR, USA) before treating the cells. To harvest the cells for further analysis, 

the medium was discarded and the cells were washed twice with 1 mL PBS (PAN). Then, 

20 µL of 500 µM glutathione internal standard (glutathione-(glycine-13C2,15N1)) was added 

into each well before cells were scrapped in 600 µL cold 80 % methanol. The extract was 

transferred to a 1.5-mL cup and the wells were washed with 400 µL of cold 80 % methanol 

and collected into the same cup.” [3] 

“For stable isotope tracing analysis, cells were pre-cultured in standard RPMI medium for 

24 h. Then the supernatant was removed and the cells were washed once with 2 mL of 

PBS. RPMI medium supplemented with 2 g/L 13C6-glucose or 2 mM 13C5-glutamine, 

respectively, but devoid of the respective unlabeled compound, was added. Cells were 

then cultured with the labeled nutrient for different time periods depending on the 
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experiment design before being harvested. Samples were collected as described above, 

but without the addition of labeled internal standard.” [3] 

 

5.4 Sample preparation 

5.4.1 Cell extraction 

Cell extracts in 80 % methanol (v/v) were centrifuged at 4 °C and 10,000 xg for 5 min. 

The supernatant was then collected and the pellets were washed twice with 200 µL of 

80 % methanol (v/v). The combined supernatants were evaporated to dryness 

(CombiDancer, Hettich AG, Bach, Switzerland) and then re-dissolved either with 100 µL 

or 50 µL water. The extracts contain the hydrophilic metabolites.  

To measure fatty acids in the samples, pellets after 80% methanol extraction were 

subjected to chloroform extraction. Pellets were extracted with 600 μL of chloroform, 

centrifuged at 4 °C and 10,000 xg for 5 min, the chloroform phase was collected and the 

pellets were washed twice with 200 µL of chloroform. The combined chloroform fraction 

was evaporated to dryness and stored at -20 °C for further sample preparation. 

 

5.4.2 Derivatization for organic acids analysis by GC-MS 

For GC-MS analysis, 35 µL of the aqueous cell extracts were taken from each sample 

and evaporate to dryness in flat bottom insert. The dried residue was subjected to 

methoximation and silylation and the derivatives were analyzed by GC-MS analysis. The 

derivatization protocol and instrumental setup referred to previous reports [239]. Briefly, 

50 µL of 20 mg/mL methoxylamine hydrochloride (MeOX, Sigma-Aldrich, Taufkirchen, 

Germany) in pyridine were added to the sample residue and incubated at 60 °C for 60 

min. Then, 10 µL of an undecanoic acid solution(C11:0) with a concentration of 1 mM 

were added to each sample as a quality control as well as for retention time shifts 

normalization, followed by the addition of 50 µL of N-methyl-N-trifluoroacetamide (MSTFA, 

Macherey-Nagel, Dueren, Germany) and incubation for 60 min at 60 °C. Derivatization 

steps were automated using a GC-MS with a robot (MPS prepstation).  
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5.4.3 Derivatization for fatty acids analysis by GC-MS 

Fatty acids were transformed into the respective methyl esters prior to the GC-MS 

analysis according to a standard protocol adopted from Masood et al. [240] in the lab at 

the Institute of Functional Genomics. As internal standard, 10 µL of a heptadecanoic acid 

solution at a concentration of 1 mM was added to the dried chloroform extracts and 

evaporated to dryness. Then, 100 µL of 0.5 mg/mL BHT (3,5-di-tert-butyl-4-

hydroxytoluene in methanol) was added to each sample and vortex. For derivatization, a 

reaction mix was freshly prepared containing acetylchloride and methanol at a ratio of 83 

to 1417. 1500 µL of reaction mix were added to each sample, followed by 1 h incubation 

at 100 °C after thorough vortexing. After samples had cooled down to room temperature, 

750 µL of hexane were added to extract the fatty acid methyl esters, followed by vortexing 

for 4 s. The upper fraction was collected in a glass vial and the extraction step was 

repeated one more time. The combined upper fractions were evaporated to dryness and 

re-dissolved in 100 µL of hexane. 

 

5.4.4 Derivatization for amino acids analysis by LC-MS 

Propyl chloroformate/propanol derivatization of amino acids was performed prior to LC-

MS analysis according to a published protocol [238]. Ten µL of aqueous cell extracts were 

diluted with water to a final volume of 200 µL. Then, 80 µL of derivatizing reagent (A) 

containing 77% of n-propanol and 25% of 3-picoline (v/v) were added to the samples 

followed by the addition of 50 µL of derivatizing reagent (B) containing 17.4% of propyl 

chloroformate, 11% of isooctane, and 71.6% of chloroform (v/v) and through vortexing. 

The derivatives were extracted by the addition of 250 µL of ethylacetate. 200 µL of the 

upper organic phase were taken after thoroughly mixing and dried with N2 gas. The 

residue was re-dissolved in 100 µL water/methanol (38% / 62%, v/v). 

 

5.5 Protein determination 

Total protein content of cell pellets was determined using the FluoroProfile® Protein 

Quantification Kit (Sigma-Aldrich) according to manufacturer’s instructions. Alternatively, 

the fluorescent dye SERVA Purple (SERVA, Heidelberg, Germany) was used in an 
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analogous manner. Protein precipitates were lysed in a 20 mM solution of NaH2PO4 

containing 1.2% SDS (w/v) and followed by fluorometric analysis. The excitation and 

emission maxima for the SERVA Purple dye were ~ 518 nm and ~ 610 nm, respectively. 

Prior to analysis, samples were diluted with water if necessary. Intracellular metabolites 

determined in Chapter 6 and 7 were normalized to total protein content. 

 

5.6 GC-MS analysis of lactate, pyruvate, glucose and glucose 6-phosphate 

“Uptake of glucose and release of lactate and pyruvate in section 6.5 were determined 

by GC-MS analysis cell culture supernatants of LS174T parental and MCT1/4 knockout 

clones grown for 24 hours. 10 µL of cell culture supernatant were spiked with 10 µL 

internal standard solution containing 13C3-lactate, 13C3-pyruvate, 13C6-glucose, 13C6-

glucose-6-phosphate (each 1 mM) and dried directly in a flat bottom insert in 1.5- mL vial 

for subsequent GC-MS analysis. The measured concentrations were converted to 

uptake/release data (molar amounts per mg cellular protein per unit time) by subtracting 

the fresh medium concentration of each respective metabolite, and normalizing to the 

area under the growth curve according to Jain et al. [241].” (Sun et al., in submission)  

“For determination of the intracellular concentrations of glucose and glucose 6-phosphate 

in section 6.5 by GC-MS, the cell culture medium was removed and cells were washed 

with 1 mL PBS twice before cell-scraping with 600 µL cold 80% methanol. During scraping, 

10 μL of an internal standard solution (see above) was added to each sample. The sample 

suspension was collected in a 1.5-mL cup. The wells were further rinsed with 400 µL cold 

80% methanol and the wash was added to the sample extract. Samples were then stored 

at -80 °C. Further sample extraction was performed as described above. The dried 

sample extract was subjected to GC-MS analysis employing the derivatization protocol 

and instrumental setup previously described [239]. Splitless injection with an injection 

volume of 1 μL was performed. Quantification was achieved based on calibration curves 

using the corresponding stable isotope labeled analog as internal standard.” (Sun et al., 

in submission) 
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5.7 DTT reduction to obtain total reduced glutathione 

The optimized procedure of DTT reduction to obtain total glutathione in cell extracts in 

Chapter 7 was performed as our previous report. “33 µL of 100 mM NH4HCO3 were 

pipetted into a vial, before the addition of 10 µL cell extract. After mixing, 5 µL of DTT 

(100 mM in water) were added, followed by thorough mixing and incubation at room 

temperature for 20 min. In a final step, 2 µL of 25% formic acid are added. The final 

volume of the mixture is 50 µL, containing 10 mM DTT and 1% formic acid.” [3] 

 

5.8 Data analysis and statistics 

Mass spectra obtained by HPLC-ESI-QTOFMS were internally recalibrated based on the 

sodium formate clusters analyzed prior to each run using Bruker Data Analysis V4.1 

(Bruker Daltonics). Data were then imported into Bruker Quant Analysis 2.2 (Bruker 

Daltonics) for retention time checking and peak integration. For quantification, calibration 

curves as well as the concentration of specific metabolites in real samples can be 

obtained from Quant Analysis software. Data obtained by HPLC-ESI-QqQ-MS were 

processed in MultiQuant analysis software 3.0.2 (AB Sciex) while data obtained by GC-

MS were processed using the Agilent Mass Hunter Quantitative Analysis Workstation 

Software Version B.07.01. 

All isotopologues from tracer analysis were corrected for natural isotope abundance and 

isotopic tracer purity using the IsoCorrectoR package [82], which can be downloaded from 

http://bioconductor.org/packages/release/bioc/html/IsoCorrectoR.html.  

Group comparisons were conducted using either a two-sided Student’s t test or ANOVA, 

depending on the group number and size. Basic statistics were performed with MS Excel 

2013. Analysis of variance (ANOVA) was performed using the R/Bioconductor software 

package (version 3.5.1). Pairwise comparisons between cell lines or groups were 

performed with Tukey’s post hoc test. Differences were considered significant with a p 

value <0.05. Figures were prepared with GraphPad Prism 6. In figures, asterisks denote 

statistical significance (* p< 0.05; ** p<0.01; *** p<0.001).  
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6 Simultaneous determination of GSH and GSSG in cultured 

cells by LC-UV-QTOFMS after in situ derivatization with N-

ethylmaleimide 

Over the years, a wide variety of methods have been introduced for the determination of 

glutathione in biomedical specimens, including spectrophotometric [13, 15, 242], 

fluorometric [21, 22, 243], and the more recently developed HPLC-MS techniques [25, 26, 

244, 245]. However, large differences in the reported values have been observed, 

particularly for GSSG [36, 246]. The main cause of this variation is the non-enzymatic 

autoxidation of GSH during sample preparation and, therefore, the overestimation of 

GSSG [13, 33, 247]. Hence, for reliable determination of GSSG, it is critical to prevent 

artefactual GSH oxidation. 2- Vinylpyridine (2-VP) is one of the most widely used agents 

to block the -SH group in GSH and, thus, to prevent autooxidation. Drawbacks of 2-VP 

include poor cell membrane permeability and slow reactivity with GSH [13]. N-

Ethylmaleimide (NEM) is another commonly used agent, which rapidly permeates cell 

membranes and quickly blocks the -SH group by alkylation [17]. In addition, NEM can 

also prevent the reduction of GSSG in biological samples through inhibition of the 

corresponding enzyme glutathione disulfide reductase (GR) [2, 13]. Thus, in GR involved 

enzymatic assay of GSH and GSSG, NEM is not recommended. 

We developed an HPLC-UV-QTOF-MS method for the simultaneous determination of 

GSH and GSSG in cultured cells using NEM derivatization. This protocol is based on the 

publication by Giustarini et al. [2] but differs in the determination of GSSG. Instead of 

tedious DTT reduction of GSSG into GSH and subsequent fluorescent labeling of the -

SH group to make the compound detectable by HPLC-UV, GSSG is directly detected by 

mass spectrometry with high sensitivity. The method presented here is more 

straightforward, rapid, and suitable for high-throughput analysis of GSH and GSSG in 

cultured cells with possible extension to other types of biological samples. Detailed 

instrumental setup and conditions used for the analysis of GSH (GS-NEM) and GSSG 

are introduced in chapter 5. A manuscript regarding the study presented in this Chapter 

is in submission, titled “Simultaneous determination of GSH and GSSG in cultured cells 
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by LC-UV-QTOFMS after in situ derivatization with N-ethylmaleimide”. Of note, 

determination of pyruvate secretion, lactate secretion, glucose uptake, cell growth, and 

intracellular glucose and glucose 6-phosphate discussed in section 6.6 (data shown in 

Figure 26) were performed by Dr. Raffaela Berger. Paragraphs taken directly from the 

manuscript are marked with quotation marks. 

 

6.1 Derivatization of GSH standard with NEM 

GSH standard solutions were prepared and used to test NEM derivatization efficiency. 

NEM at a final concentration of 1 mM was added to 200 µM solution of solution prepared 

either in water or in 80% methanol and incubated for different time spans from 5 min to 1 

hour, followed by LC-MS analysis. 80% methanol is routinely used to extract aqueous 

metabolites from cultured cells at Institute of Functional Genomics. Hence, combined 

extraction and derivatization in a single step would be preferred. However, more than 40 

min of incubation time were necessary when the reaction was performed in 80% methanol 

until GS-NEM was completely formed and no free GSH was detectable. In contrast, the 

reaction is complete within minutes in aqueous solution by monitoring free GSH in the 

reaction solution.  

 

6.2 Chromatography and mass spectrometry 

An extracted ion chromatogram of a GSSG standard measured by LC-QTOFMS is shown 

in Figure 12A. Figure 12B displays the respective spectrum. On a QTOFMS, GSSG is 

detected as [M+H]+ ion at m/z 613.1598 as well as its doubly charged ion at m/z 307.0850. 

The doubly charged ion yielded the higher intensity and was used for quantification in the 

present study. 

“To improve the sensitivity of GSSG determination by mass spectrometry, a 10 Da Q1 

selection window was employed so that only a limited m/z range covering the unlabeled 

and stable isotope-labeled GSSG was transmitted and detected. Compared to full scan 

detection, this led to a highly significant increase in the signal-to-noise ratio of the GSSG 

peak (Figure 13).” (Sun et al., in submission)  
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Figure 12. “Chromatographic separation and detection of GSSG and GS-NEM. (A) 

Extracted ion chromatogram (XIC) and (B) mass spectrum of GSSG standard measured 

by LC-ESI-TOFMS. (C) GS-NEM was measured by LC-UV and the trace at 210 nm is 

shown. The doubly charged ion of GSSG at m/z 307 in Figure 1B was used for GSSG 

determination throughout the study. In Figure 1C, two separate GS-NEM peaks at 6.7 

min and 7.8 min, respectively, were observed due to the generation of diastereomers. 

The peak at 6.7 min was chosen for GS-NEM determination.” (Sun et al. in submission) 
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Figure 13. “Comparison of signal-to-noise ratio for 2.5 µM solution of GSSG measured 

by mass spectrometry in full scan or MRM mode (n=3).” (Sun et al., in submission) 

 

“GS-NEM yielded two separate peaks of equal peak area ratio with an RSD of 3.13% at 

6.7 min and 7.8 min due to the generation of diastereomers that are separated under the 

given chromatographic conditions (Figure 12C and Figure 14). Here, the peak eluting at 

6.7 min was used for GS-NEM quantification. GS-NEM was also detected by QTOFMS. 

No other biomolecules existing in the samples coeluted with GS-NEM as evidenced by 

Figure 15 demonstrating that a pooled cell sample and a GS-NEM standard share the 

same MS spectrum at 6.7 min. Intracellular GSH/GSSG ratios are typically too high to be 

determined accurately by mass spectrometers with a linear dynamic range of less than 

four orders of magnitude. Hence, GSSG and GSH would have to be determined 

separately after appropriate dilution of the samples. Thus, here MS detection was only 

used to monitor the potential influences arising from the complex cell samples and UV 

absorbance was used to determine GS-NEM.” (Sun et al., in submission) 
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Figure 14. “GS-NEM diastereomers peak area comparison detected by LC-UV eluted at 

6.7 min and 7.8 min, respectively. Peak area ratios of the GS-NEM diastereomers in 

cultured cell samples detected by LC-UV are all stably around 1 with an RSD of 3.13%.” 

(Sun et al., in submission) 

 

 
Figure 15. “Exemplary MS spectra of GS-NEM detected by QTOFMS in (A) standard 

sample and (B) a pooled cell sample. GS-NEM shows a [M+H]+ ion at m/z 433 and a 

fragment ion at m/z 304 due to the loss of Glu.” (Sun et al., in submission) 
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6.3 Method validation 

“The linear range for GSSG quantification was determined based on a serial dilution of a 

GSSG standard (10 µM to 0.0024 µM) with a constant concentration of the internal 

standard (5 µM). The calibration curve was built based on the peak area ratio of analyte 

to internal standard versus the corresponding nominal concentration ratio. Lower limit of 

quantification (LLOQ) and limit of detection (LOD) were defined according to the FDA 

Guide for Bioanalytical Method Validation [248] with LLOQ as the lowest concentration of 

calibration curve, for which the analyte can be quantitatively determined with an accuracy 

of 80% - 120%, and the LOD as the lowest analyte concentration that yields a peak with 

S/N ≥ 3.” (Sun et al., in submission) 

“Linearity of GS-NEM quantification was evaluated in a concentration range of 15.63 µM 

to 1000 µM. A GS-NEM standard solution was produced by reaction of fresh GSH 

standard with NEM. Calibration samples were diluted from this standard GS-NEM 

solution.” (Sun et al., in submission) 

“For GSSG determination, the limits of detection and quantification were 0.001 µM and 

0.0098 µM, respectively. Compared to previously reported methods as shown in Table 6, 

the here presented method features better detection sensitivity for GSSG. A twelve-point 

calibration covering a concentration range of 0.0098 µM to 10 µM yielded excellent 

linearity (R2 = 0.9994). For GS-NEM determination, a nine-point calibration curve was 

generated that was linear from 15.63 µM to 1000 µM (R2 = 0.9997). The LOD for GS-

NEM was 7.81 µM. Representative calibration curves for both GSSG and GS-NEM are 

shown in Figure 16.” (Sun et al., in submission)  

“It should be noted that high amounts of GSSG were observed in GSH standard stock 

solutions after storage for 1 month at -20 °C (data not shown). To generate a reliable GS-

NEM calibration curve, GSH stock solutions should be either freshly prepared from 

powder or the concentration must be recalculated through the quantification of GSSG in 

the stock solution.” (Sun et al., in submission) 
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Table 6. “Comparison of methods reported for the determination of GSH and GSSG.” 

(Sun et al., in submission) 

Method Sample 
GSH  
LOD * 

GSH  
LOQ* 

GSSG 
LOD* 

GSSG 
LOQ* 

Derivatizat
ion 

Ref. 

Enzymatic 
recycling 

Rat liver/bile -- 6.25 pmol -- 2.17 pmol M4VP [249] 

HPLC-UV Erythrocytes 
820 pmol  
(0.041 mM) 

2700 pmol  
(0.135 mM) 

-- -- DTNB [19] 

HPLC Plasma 
0.6 pmol 
(0.03 µM) 

2 pmol (0.10 µM) -- -- NBD-F [21] 

LC-MS/MS Whole blood 
4 pmol  
(0.4 µM) 

15 pmol (1.5 µM) 
1.5 pmol  
(0.1 µM) 

1.5 pmol 
(0.1 µM) 

NEM [26] 

HPLC Cultured cells -- -- -- -- 
NEM/DTT/

mBrB 
[2] 

LC-UV-MS Cultured cells 
78.1 pmol  
(7.81 µM) 

156.5 pmol 
(15.65 µM) 

0.01 pmol 0.1 pmol NEM 
This 

study 

M4VP: 1-methyl-4-vinyl-pyridinium; DTNB: 5,5’-dithio-bis-(2-nitrobenzoic acid); NBD-F: 7-flouro-4-nitrobenzo-2-oxa-
1,3-diazole; NEM: N-ethylmaleimide; mBrB: monobromobimane; DTT: dithiothreitol; * Amount of substance loaded 
on column. 

 

 

Figure 16. “Calibration curves for GS-NEM and GSSG. (A) A nine-point GS-NEM 

calibration curve was generated over a concentration range of 15.63 µM to 1000 µM by 

plotting the peak area versus the corresponding nominal concentration. (B) A twelve-point 

GSSG calibration curve was constructed over a concentration range of 0.0098 µM to 10 

µM based on the peak area ratios and concentration ratios of unlabeled to stable isotope-

labeled GSSG (GSSG-(glycine-13C4,15N2)).” (Sun et al. in submission) 

 

“Within-run precision was evaluated by ten successive injections of a pooled cell culture 

sample. The obtained peak areas of GS-NEM and the peak area ratios of GSSG to GSSG 

internal standard are shown in Figure 17. The corresponding coefficients of variation (CV) 
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for within-run repeatability of GS-NEM and GSSG were 3.48% and 3.11%, respectively. 

Inter-run repeatability was determined by injecting aliquots of the same pooled cell culture 

sample on five successive days in triplicate each day (see Figure 18). A CV of 2.51% and 

3.66% was obtained for GS-NEM and GSSG, respectively.” (Sun et al., in submission) 

 

 

Figure 17. “(A) Peak areas of GS-NEM and (B) peak area ratios of GSSG to GSSG 

internal standard for ten successive injections of a pooled cell culture sample measured 

by LC-UV-QTOFMS.” (Sun et al., in submission) 

 

 

Figure 18. “(A) Peak areas of GS-NEM and (B) peak area ratios of GSSG to GSSG 

internal standard for a pooled cell culture sample measured on 5 successive days by LC-

UV-QTOFMS (n=3 for each day).” (Sun et al., in submission) 
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“Quality control samples (QCs) of GSSG and GS-NEM were prepared from stock 

solutions on five different days over a period of five months prior to analysis. Results are 

shown in Figure 19. All QC samples showed an accuracy in the range of 80% - 120%. 

For GSSG, the respective accuracies were 96.74 ± 4.54% (calcheck1), 96.16 ± 5.16% 

(calcheck2), 99.27 ± 5.34% (calcheck3), 102.46 ± 6.60% (calcheck4), and 106.47 ± 16.00% 

(calcheck5). The corresponding accuracies for GS-NEM were 101.20 ± 3.40% 

(calcheck1), 104.29 ± 5.40% (calcheck2), 107.46 ± 6.68% (calcheck3), 105.32 ± 6.58% 

(calcheck4), and 103.79 ± 19.83% (calcheck5). Calcheck5, the closest to the LLOQ, 

featured the highest standard deviations of 16.00% and 19.83%, respectively, for GSSG 

and GS-NEM. However, mean accuracies of 106.47% and 103.79% for GSSG and GS-

NEM, respectively, were still acceptable.” (Sun et al., in submission) 

 

 

Figure 19. “Accuracies of five quality control samples measured on different days. QCs 

were standard samples prepared from different stock solutions (n=3) on different days 

(n=5) within five months. (A) The concentrations of calcheck1 to calcheck5 for GSSG 

were 3 µM, 1.5 µM, 0.15 µM, 0.05 µM, and 0.02 µM, respectively. (B) The corresponding 

concentrations for calcheck1 to calcheck5 for GS-NEM were 500 µM, 200 µM, 100 µM, 

50 µM, and 20 µM.” (Sun et al., in submission) 
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“Furthermore, we investigated the stability of GS-NEM solutions under different storage 

conditions. A standard GS-NEM sample was stored at 4 °C, -20 °C, and -80 °C, 

respectively, for the periods of time indicated in Figure 20. The CVs of average peak area 

over all injections (15 injections in total) were 3.10% (4 °C), 5.66% (-20 °C), and 2.47% (-

80 °C), respectively, thus attesting to adequate sample stability over at least one month.” 

(Sun et al., in submission) 

 

Figure 20. “GS-NEM stability was investigated by comparing GS-NEM peak areas after 

storage at different temperature for up to one month (n=3).” (Sun et al., in submission) 

 

6.4 Cell harvesting 

“The timing of the addition of NEM to cultured cells is critical for the accurate 

determination of GSH as is evident from Figure 21. The amount of GSSG determined 

decreased dramatically by adding NEM already during cell harvesting instead of adding 

it later to the methanolic cell extract. This impressively shows the importance of 

immediately trapping GSH to prevent autooxidation when analyzing GSSG in cultured 

cells.” (Sun et al., in submission) 
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Figure 21. “Peak area of GSSG detected in cell culture samples after derivatization of 

GSH with NEM either in the final extract or during cell harvesting by adding NEM to the 

PBS wash (n=3).” (Sun et al., in submission) 

 

“To further optimize the protocol, we tested four different cell harvesting procedures: 

1) As described above, the cell culture medium was removed and the cells were 

washed twice for 1 min with PBS containing 1 mM NEM prior to cell harvesting in 

cold 80% methanol.  

2) Cells were washed twice with 1 mL of PBS prior to addition of 400 µL of 1 mM 

NEM solution for 5 min, followed by cell harvesting in cold 80% methanol. 

3) Cells were washed twice with 1 mL of PBS and then scrapped with 1 mL of cold 

80% methanol containing 0.5 mM NEM.  

4) NEM was added directly to the cell culture medium at a final concentration of ~1 

mM for 2 min (add 10 µL of 310 mM NEM) prior to discarding the medium and 

washing the cells with PBS.” (Sun et al., in submission) 

“Cells were seeded at the same density and each procedure was performed in triplicate. 

Results are shown in Figure 22. No significant difference between the four procedures 

was observed for GS-NEM (ANOVA p=0.59). However, a significant lower GSSG amount 

was detected when cells were washed with PBS containing 1 mM NEM (procedure 1), 

indicating that autooxidation was kept to a minimum. In procedure 4, NEM was directly 
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added into cell culture medium prior to PBS washing. Components present in the medium 

may interfere with NEM and influence the reaction efficiency. Consequently, procedure 1 

became the standard protocol. Besides, no free GSH was detected in cell culture samples 

after NEM derivatization, indicating sufficient derivatization of GSH with NEM.” (Sun et al., 

in submission)  

 

Figure 22. “Optimization of the NEM derivatization procedure. Procedure 1, cell medium 

was discarded, followed by two 1-min washing steps with PBS containing 1 mM NEM. 

Procedure 2, cell medium was discarded, followed by PBS washing twice. Then, 400 µL 

of 1 mM NEM was added to the cells and incubated at room temperature for 5 min before 

harvesting the cells in 80% methanol. Procedure 3, cells were harvested with 1 mL of 

80% methanol containing 0.5 mM NEM after PBS washing twice. Procedure 4, 10 µL of 

310 mM NEM were added directly to the cells and incubated for 2 min before discarding 

the medium and PBS washing. No significant difference in GS-NEM amount was 

observed between groups (ANOVA, p=0.59). For GSSG, significant differences were 

found between groups (ANOVA, p=0.0068): 1 versus 2: p=0.0364; 1 versus 3: p=0.0171; 

1 versus 4: p=0.0064. One-way ANOVA and post hoc analysis with Tukey’s test were 

performed in R (version 3.5.1).” (Sun et al., in submission) 

 

“We also compared the quantification of GSH as GS-NEM with the determination of total 

reduced GSH (tGSH) in the colorectal adenocarcinoma cell line LS174T to validate the 

GS-NEM method. Quantification of tGSH employing DTT reduction was performed 

according to our previously reported method [3]. The results are shown in Figure 23. 
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There is no significant difference between GS-NEM and tGSH amount after normalization 

to protein amount. This indicates correct analysis of GSH by LC-UV after NEM 

derivatization, as the very low intracellular amounts of GSSG will not contribute 

significantly to tGSH.” (Sun et al., in submission) 

 

Figure 23. “Total GSH was assessed with DTT reduction and both tGSH and GS-NEM 

were normalized to protein amount. No significant difference was observed between GS-

NEM and tGSH (p=0.53, n=3).” (Sun et al., in submission) 

 

“Furthermore, spike-in experiments were performed with LS174T wild type cells to assess 

GSH (GS-NEM) and GSSG recovery. To minimize autooxidation artefacts, GS-NEM 

rather than GSH was used for the spike-in experiments. Recovery of GS-NEM and GSSG 

was assessed separately. Three different GS-NEM or GSSG standard solutions of known 

concentration (low, medium, and high) were added to the culture dishes and cell 

extraction was performed as described above. The spike-in amounts were selected 

according to the endogenous levels of GSH (GS-NEM) and GSSG measured previously 

in LS174T wild type cells, which were about 20 nmol absolute for GSH and 0.02 nmol 

absolute for GSSG. Based on the endogenous levels, spike-in amounts of 10, 20, and 

40 nmol for GS-NEM, and 0.02, 0.06, and 0.2 nmol for GSSG were selected. For each 

experiment, three replicates were generated. Recovery of GS-NEM and GSSG were 

calculated as follows:” (Sun et al., in submission) 
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"𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑠𝑝𝑖𝑘𝑒−𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑎𝑚𝑜𝑢𝑛𝑡⁄ −
 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒

𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑎𝑚𝑜𝑢𝑛𝑡⁄

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑝𝑖𝑘𝑒𝑑
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑎𝑚𝑜𝑢𝑛𝑡⁄

 ×

 100%” (Sun et al., in submission) 

“Absolute amounts were normalized to protein amount in the sample to correct for 

differences in cell number. As shown in Figure 24, recovery of GS-NEM and GSSG was 

satisfactory for all three spike levels. Mean recovery of GS-NEM ranged between 92.2 

and 101 % (101.01 ± 7.96%, 94.25 ± 2.00%, and 92.15 ± 1.06%) while the mean recovery 

and standard deviation for GSSG was 104.28 ± 11.18%, 98.70 ± 1.99%, and 97.49 ± 

9.60%, respectively.” (Sun et al., in submission) 

 

 

Figure 24. “(A) GS-NEM and (B) GSSG spike-in experiments. Recovery was determined 

by adding defined amounts of GS-NEM or GSSG at low (10 nmol of GS-NEM, 0.02 nmol 

of GSSG), medium (20 nmol of GS-NEM, 0.06 nmol of GSSG), and high (40 nmol of GS-

NEM, 0.2 nmol of GSSG) concentration into LS174T wild type cell cultures before 80% 

methanol cell extraction. GS-NEM and GSSG recovery experiments were performed 

separately (n=3 for each).” (Sun et al. in submission) 

 

6.5 GSH and GSSG determination in monocarboxylate transporter deficient 

cells 

“To demonstrate the applicability of the developed LC-UV-QTOFMS method, we 

measured the intracellular concentrations of GSH and GSSG in parental LS174T cells as 

well as derived single (SKO) and double knockout (DKO) clones of the monocarboxylate 

transporters MCT1 and MCT4. As is evident from Figure 25A, under normal cell culture 
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conditions, parental and SKO cells exhibited similar GSH/GSSG ratios with a more than 

2,000-fold molar excess of GSH, while the GSH/GSSG ratio of the DKO cells was 

significantly lower but still in excess of 1,500:1. This can be readily explained by the 

observation [250], that complete disruption of MCT activity in LS174T cells by a 

combination of genetic and pharmacological means results in a more than 6-fold increase 

in oxidative phosphorylation, which leads in turn to the increased generation of 

mitochondrial reactive oxygen species (ROS) and, consequently, an increase in cellular 

content of GSSG. As expected, when cells were challenged with 0.2 mM H2O2 for 10 min, 

all four cell lines showed a dramatic decrease in the GSH:GSSG ratio compared to the 

corresponding unstressed condition due to a collapsing NADP+/NADPH ratio (p<0.001 

for all cell lines, normal condition versus H2O2 treatment) (Figure 25B). But rather 

unexpectedly, the decrease in GSH/GSSG ratio upon H2O2 treatment was by far the most 

pronounced in the MCT4-/- SKO cells (for statistics see Supplementary Table S3 in 

Chapter 11).”  (Sun et al. in submission) 

 

Figure 25. “GSH/GSSG ratio in MCT-competent and MCT-deficient LS174T cells, 

respectively, in response to oxidative stress. Cells were not treated (Figure 6A, n=6) or 

treated (Figure 6B, n=6) with 0.2 mM H2O2 for 10 min, before they were washed with PBS 

containing 1 mM NEM. Treatment with H2O2 decreases the ratio of GSH to GSSG in all 

cell lines.  However, MCT4-/- and double knockout cells are more sensitive to oxidative 

stress than MCT-competent and MCT1-deficient cells. * p< 0.05, ** p< 0.01, *** p< 0.001, 

n.s., not significant.” (Sun et al. in submission) For further statistics see Supplementary 

Table S3 in Chapter 11. 
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“Any attempt to interpret the above finding needs to account for the fact that both, 

differences in the expression of MCT1 and MCT4 as well as the choice of methodology 

to knock them out or down or to inhibit them pharmacologically may exert different effects 

on cell metabolism. In cells that express little, if any, MCT4, knockdown or 

pharmacological inhibition of MCT1 has been reported to result, amongst others, in 

increased levels of glucose- and fructose-6-phosphate, as was observed here, as well as 

in marked reductions in the intracellular levels of pyruvate and GSH and in reduced 

glucose uptake and lactate efflux, all of which were not detected in the present study [251]. 

In contrast, knockdown or pharmacological inhibition of MCT1 in cells expressing 

considerable amounts of MCT4 resulted in reduced pyruvate export and increased 

oxygen consumption, accompanied by increased expression of genes involved in 

oxidative phosphorylation, while the expression of glycolytic genes such as hexokinase 

1, phosphofructokinase M, and enolase 1 was decreased. Moreover, continued glucose 

uptake and lactate export were sustained by MCT4 [252]. Increased mitochondrial 

respiration and the consequently enhanced generation of ROS are known to inactivate 

the M2 isozyme of pyruvate kinase (PKM2) through oxidation of Cys358 [253]. The 

resulting accumulation of phosphoenolpyruvate, in turn, results in direct catalytic inhibition 

of triosephosphate isomerase. This mediates a protective diversion of glucose flux into 

the oxidative branch of the pentose phosphate pathway (PPP) to generate NADPH 

required for the reduction of the antioxidants glutathione, thioredoxin and peroxiredoxin 

[254]. MCT1 facilitates the proton-linked bi-directional transport of both lactate and 

pyruvate, while MCT4 is considered primarily a high-affinity exporter of lactate with a 

significantly lower affinity for pyruvate [255]. Indeed, under unstressed conditions, growth 

rate adjusted export of pyruvate was lower in MCT1-/- than MCT4-/- SKO cells, while they 

did not differ in glucose uptake and lactate release from the parental clone (Figure 26A-

C). Given that LS174T cells express only MCT1 and MCT4 [250], genetic ablation of both 

MCT1 and MCT4 resulted in an almost complete inhibition of pyruvate and lactate export 

and very little glucose uptake, as DKO cells meet their energy requirements mostly by 

oxidative phosphorylation [250]. The present observation, that both the MCT1-/- SKO and 

the MCT1-/-/ MCT4-/- DKO clone exhibit a higher abundance of glucose and glucose 6-

phpsphate than the MCT4-/- SKO clone under unstressed conditions, may provide an 
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important clue toward understanding the pronounced drop of GSH:GSSG ratio in the 

MCT4-/- SKO clone upon H2O2 treatment (Figure 26D). As shown previously, MCT1 

blockade leads to increased mitochondrial respiration and generation of ROS, which 

redirect via inhibition of triosephosphate isomerase glucose flux to the PPP [250, 252]. 

MCT4-/- null cells, in contrast, show under unstressed conditions neither a significant 

increase in extracellular acidification rate (ECAR) nor a significant decrease in 

intracellular pH [250]. The roughly two-fold increase in oxygen consumption rate (OCR) 

is also very modest. As cells experience an oxidative burst upon exposure to H2O2, they 

inactivate glycolysis within seconds via oxidation of not only pyruvate kinase but also 

glyceraldehyde 3-phosphate dehydrogenase, while glucose flux through the PPP 

continues to generate NADPH [256]. Given that glucose flux through the PPP is already 

increased in MCT1 deficient cells, these cells can stage most likely a faster response to 

H2O2 exposure, which should be reflected in lower intracellular GSSG levels. Indeed, as 

evident from Figure 27, intracellular levels of GSSG in MCT1-/- SKO cells are similar to 

those found in wild type cells under both unstressed and stressed conditions, with only 

the level of GSH being somewhat lower in the former under oxidative stress. Both MCT4-

/- SKO and MCT1-/-/MCT4-/- DKO cells show highly significant increases in GSSG content 

compared to parental and MCT1-/- SKO cells. Interestingly, the increase in GSSG content 

in DKO cells as compared to MCT competent cells is lower than in MCT4-/- SKO cells and 

further compensated by a higher GSH content in the DKO cells. In conclusion, it appears 

that MCT4-/- null cells are poorly adapted to sudden bursts of oxidative stress.” (Sun et al. 

in submission) 
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Figure 26. “Release of (A) pyruvate and (B) lactate as well as uptake of glucose 

normalized to (C) area under the growth curve, and (D) intracellular content of glucose 

and glucose 6-phosphate (G6P) in unstressed LS174T parental and MCT1/4 single and 

double knockout clones cultured for 24 h. Metabolites in methanolic extracts of both cell 

culture supernatants (A, B) and cell pellets (D) were analyzed by GC-MS. Two 

independent experiments, each in triplicate, were performed. (ANOVA for pyruvate p = 

5.1×10-4, for lactate secretion p = 9.7×10-9, for glucose uptake p = 1.3×10-9, for 

intracellular glucose p = 2.4×10-6 and intracellular G6P p = 2.8×10-5, * p< 0.05, ** p< 0.01, 

*** p< 0.001, n.s., not significant).” (Sun et al. in submission) For further statistics see 

Table S4 in Chapter 11. Note: This figure was kindly provided by Dr. Raffaela Berger. Dr. 

Raffaela Berger performed all experiments involved in this figure (for detailed method, 

see section 5.6).  
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Figure 27. “Intracellular levels of GSH and GSSH in LS174T parental and MCT1/4 single 

and double knockout clones before (unstressed, n=6 each) and after treatment with 0.2 

mM H2O2 for 10 min (n=3 each). One-way ANOVA (p=0.0473 for GSH, unstressed; 

p=7.4410-7 for GSSG, unstressed; p=1.6510-4 for GSH, H2O2 treated; p=2.0410-6 for 

GSH, H2O2 treated) and post hoc analysis with Tukey’s test were performed in R (version 

3.5.1). * p< 0.05, ** p< 0.01, *** p< 0.001.” (Sun et al. in submission) 

 



62 

 

6.6 GSH and GSSG determination in isocitrate dehydrogenase wild type 

and mutant cells 

“Next, we applied the developed method to the determination of the intracellular levels of 

GSH and GSSG in the colon cancer cell line HCT116, in which we had already 

determined previously total GSH content [3]. The wild type and isocitrate dehydrogenase 

1/2 (IDH1/2) mutant cell clones IDH1-R132H, IDH2-R172K, and IDH2-R140Q, 

respectively, were used to study the effect on the GSH/GSSG ratio in cells carrying 

neomorphic IDH1/2 mutations, which enable cells to catalyze the NADPH consuming 

reduction of α-KG to D-2-HG (see Figure 28A) [4, 46, 47]. As shown in Figure 28B, all 

mutIDH cell lines show a significant lower GSH/GSSG ratio compared to the wild type 

cell line (for statistics see Supplementary Table S5 in Chapter 11), supporting the notion 

that increased consumption of NADPH by IDH1/2 mutant cells will impair their ability to 

reduce GSSG to GSH. Interestingly, the GSH/GSSG ratios observed in the three mutant 

cell lines appear to correlate indirectly with the amounts of D-2-hydroxyglutarate detected 

in these cells [257]. Furthermore, it mutIDH1 cells seem to be less capable of regenerating 

GSH than mutIDH2 (mitochondrial isoform) cells. IDH1 is the cytosolic isoform and, 

therefore, increased consumption of NADPH by the mutated enzyme has a more direct 

effect on the reduction of GSSG, which also takes place in the cytosol.” (Sun et al., in 

submission) 
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Figure 28. “(A) Scheme depicting the reactions catalyzed by wild type and mutant IDH 

enzymes and their respective effects on the provision of NADPH for the reduction of 

GSSG to GSH by glutathione reductase. (B) Effect of different IDH1/2 mutations on the 

GSH/GSSG ratio in HCT116 cells compared to IDH1/2 wild type cells. * p< 0.05, ** p< 

0.01, *** p< 0.001, n=3.” (Sun et al., in submission) For statistics see Supplementary 

Table S5 in Chapter 11. 
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7 Quantification of total reduced glutathione by HPLC-

QTOFMS/MS 

Derivatization or tailored sample preparation is generally necessary to determine the ratio 

of GSH and GSSG in cell cultures as described above. In studies only interested in the 

total size of the glutathione pool, separate determination of GSH and GSSG is not 

necessary. In this chapter, an optimized HPLC-MS/MS method is described for the 

absolute quantification of total reduced glutathione.  

Dithiothreitol (DTT) [20, 23] and tris-(2-carboxyethyl)-phosphine (TCEP) [22, 258] are two 

commonly used reductants. The mechanism of disulfide reduction by DTT is shown in 

Figure 29. To achieve effective reduction with DTT, alkaline pH is required as the 

negatively charged thiolate group (S-) is more reactive than the thiol group (–SH) to 

reduce disulfide bonds.  

 

Figure 29. “Mechanism of disulfide reduction by DTT.” [3] 

 

TCEP, is commercially available since 1992 [259, 260]. The reaction of disulfide reduction 

by TCEP of GSSG proceeds as follows [259]:  

(CH2CH2COOH)3P + GSSG + H2O → (CH2CH2COOH)3P=O + 2 GSH.  

In preliminary experiments performed by Paul Heinrich, the reduction efficiency of DTT 

and TCEP with a standard mixture of GSH and GSSG was assessed. DTT proved to be 

a better choice for the reduction of the disulfide bond in GSSG, as TCEP gave rise to 

significant ion suppression if used at a concentration needed for complete reduction of 

GSSG. Based on an optimized DTT reduction protocol developed by Paul Heinrich (see 
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section 5.7), an LC-MS/MS method for the direct determination of total intracellular 

glutathione in cultured cells was developed and adapted for 13C tracer analysis.  

The study introduced in this chapter was published in Analytica Chimica Acta (Sun et al., 

Quantification and 13C-Tracer Analysis of Total Reduced Glutathione by HPLC-

QTOFMS/MS, 2019, 1080, 127-137). Paragraphs taken directly from the publication are 

marked with quotation marks. 

 

7.1 Chromatography and mass spectrometry 

“GSH is a tripeptide, which contains both basic and acidic sites that undergo protonation 

or deprotonation depending on pH [29]. We selected 0.1 % formic acid in water / 0.1 % 

formic acid in acetonitrile as the mobile phase A / B, respectively. Figure 30 shows an 

exemplary extracted ion chromatogram (XIC) and spectrum of the [M+H] + ion of GSH 

standard measured by LC-ESI-MS after DTT reduction. To improve selectivity and 

specificity, as well as peak intensity, GSH was measured by tandem mass spectrometry. 

Figure 31 displays the ESI- MS/MS spectrum of the GSH standard. GSH forms a quasi-

molecular ion at m/z 308.0966 ([M+H] +ion) and two product ions at m/z 179.0497 and 

m/z 233.0613, respectively, which occur due to the loss of glutamate and glycine. The 

fragment at m/z 179 (Gly-Cys) shows the highest intensity, while fragment m/z 233 (Glu-

Cys) shows only 25 % - 30 % of the m/z 179 intensity (see Figure 31). Preliminary 

experiments were performed to evaluate both fragments for quantification, with fragment 

m/z 179 showing the better performance. Hence, this fragment ion was used to build the 

calibration curves.” [3] 

“In addition, the settings of the mass spectrometer were tuned with direct infusion of a 

GSH standard solution in order to yield maximum intensity for the m/z 179 fragment. An 

increase in collision energy from 10 to 15 led to an increased intensity of the m/z 179 

signal and a decreased precursor signal (m/z 308). A further increase in collision energy 

caused a decrease in the m/z 179 signal due to enhanced fragmentation.” [3] 
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Figure 30. “Exemplary extracted ion chromatogram and spectrum of a GSH standard as 

measured by LC-QTOFMS in positive ion mode.” [3]  

 

 

Figure 31. “Exemplary mass spectrum of GSH acquired in positive ion multiple reaction 

monitoring mode with a 0.7 Da window, in which the parent ion m/z 308 was selected in 

Q1 and a collision energy of 15 eV was employed.” [3]  
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7.2 Method validation 

The developed LC-MS/MS method was systematically validated by assessing the LOD, 

LLOQ, linear range, intra/inter-day precision, as well as recovery. 

“The limit of detection for tGSH was 0.01 µM. The lower limit of quantification (LLOQ) of 

the analytical procedure was 0.78 µM, i.e., the lowest point of the calibration curve with a 

signal-to-noise ratio > 10 and 80 % - 120 % accuracy. Within-run precision was evaluated 

by ten consecutive injections of the same reduced sample (20 µM GSH standard solution) 

and comparing targeted peak areas of m/z 179. The coefficient of variation (CV) for intra-

run repeatability was 2.49 %. The corresponding CV for inter-run repeatability, which was 

determined by reducing and injecting the same aliquoted sample on five consecutive days, 

was 2.04 %.” [3] 

“Eight-point calibration curves were acquired over the concentration range of 0.78 µM to 

100 µM GSH after DTT reduction. Figure 32 shows the accuracy of each concentration 

point from 5 replicates measured over 9 months. Mean accuracy per calibration point 

ranged from 98.85 % to 105.56 %. Repeatability was calculated from the 5 replicates of 

each concentration point. CVs of the accuracy for all studied concentration points were 

lower than 10 %. The calibration curve was linear over the studied concentration range 

with a squared correlation coefficient R of 0.9997 and an equation of y=1.2314 x + 0.0069 

as obtained by plotting the relative responses versus relative concentrations.” [3] 

“To check the stability of GSH at 4 °C, we reanalyzed in triplicate a sample that had been 

kept in the autosampler for 24 h. The coefficient of variation of the peak areas is 2.13 %, 

thus indicating sufficient sample stability.” [3]  
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Figure 32. “Quantification of GSH. A: Accuracy of each concentration point from five 

calibration curves detected within 9 months. Results are shown as mean + SD (n=5).” [3] 

 

“Recovery of tGSH for the analysis of cell pellets was determined by adding standard 

working solutions of GSH at low, medium, and high concentrations (2, 10, 50 nmol) to cell 

pellets. Cell aliquots with the same cell count (~300,000 cells) were generated from a 

pool sample of HCT116 cells (parental cell line) and spiked with GSH standard and stable 

isotope-labeled internal standard (20 µL of 500 µM) before precipitation in 1 mL of 80% 

methanol. In addition, control samples were analyzed to determine endogenous tGSH 

levels. The recovery experiment workflow is displayed in Figure 33. The spike-in 

experiment was performed in triplicate for each group. The endogenous amount of GSH, 

determined from the analysis of the control samples was subtracted to obtain the spike-

in amount of GSH. The recovery of each spike concentration was calculated as follows:” 

[3] 

"𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝐺𝑆𝐻 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑠𝑝𝑖𝑘𝑒−𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟⁄ −
𝐺𝑆𝐻 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒

𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟⁄

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐺𝑆𝐻 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑝𝑖𝑘𝑒𝑑
𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟⁄

 ×

 100%” 

“The mean recovery and standard deviations for the three spike-in amounts of GSH were 

108.9 ±2.1 %, 100.8 ± 8.3 %, 99.9 ± 7.1 %, respectively.” [3] 
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Figure 33. “Intracellular GSH recovery experimental workflow.” [3] 

 

“A comparison of reported methods for GSH determination with our method in terms of 

LOD, LLOQ, recovery, and reductant or derivatization reagent used is given in Table 7. 

Compared to most of the methods listed, our method achieves similar or even better LOD 

and LLOQ. To measure GSH, one can – as reported in this study - use reduction to obtain 

tGSH. If the GSH/GSSG ratio is of interest, derivatization has to be employed to protect 

the –SH group of GSH from autooxidation. Then the quantity of the derivatized species 

can be determined, accompanied by either a measurement of sample GSSG or tGSH to 

obtain ratio information. However, if derivatization is employed to assess the GSH/GSSG 

ratio, the timing of addition of derivatizing reagent is very critical. Autooxidation of GSH 

may occur from the very beginning of sample collection and preparation. Since our 

method does not require derivatization at the point of cell sampling and only a sample 

aliquot is needed for the reduction step, the remaining sample can be used for further 

metabolic analyses. Most importantly, the present method can be extended easily to the 

comprehensive analysis of isotope labeling patterns of GSH in stable isotope tracing 

experiments, as shown in the discussion of our wide Q1 window method which we 

developed specifically for that purpose.” [3] 
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Table 7. “Comparison of methods reported for the determination of reduced GSH.” [3] 

Method LOD * LOQ recovery 
intra-day 
 precision 

inter-day  
precision 

reduct
ant 

Derivati
zation 

Ref. 

HPLC-
Fluorescence 

0.05 pmol 
(50 fmol) -- 98.40% 4.9% 4.2% DTT OPA [23] 

LC-ESI-MS 
0.10 pmol 
(0.01 µM) 0.05 µM 98.5 % - 100.6 % 1.6% - 1.9% 1.75% -- NEM [29] 

LC-MS/MS 0.20 pmol -- -- 3.1% - 14.1% 4.2%-24.5% -- -- [28] 

HPLC-UV 
0.20 pmol 
(0.02 µM) -- 99.4 % - 102.2 % -- -- DTT DTNB [20] 

HPLC-
Fluorescence -- 1.56 µM 88.4 % - 97.5 % 1.7% - 4.1% 3.1%-4.9% TCEP SBD-F [22] 

HPLC-UV 
820 pmol 
(0.041 mM) 

135 µM 
(0.135 mM) 94.5% - 104.5% 6.64% - 9.65% 

4.60%-
7.67% -- DTNB [19] 

HPLC-
Fluorescence 

0.60 pmol 
(0.03 µM) 0.1 µM -- 6.3% 6.90% -- NBD-F [21] 

LC-MS/MS 
4.00 pmol 
(0.4 µM) 1.5 µM 95% - 97% 3.3% 4.10% -- NEM [26] 

LC-MS/MS -- -- 93.3% - 106.0% -- -- DTT NEM [25] 

LC-MS/MS 
1000 pmol 
(50 µM) 75 µM 98.0% - 105.9% 2.0% - 4.3% 4.10% -- NEM [24] 

LC-MS/MS 
0.05 pmol 
(0.01 µM) 0.78 µM 99.9% - 108.9% 2.49% 2.04% DTT -- 

This 
study 

OPA: ortho-phthalaldehyde; NEM: N-ethylmaleimide; DTNB: 5,5’-dithio-bis-(2-nitrobenzoic acid);  
SBD-F: 7-fluorobenzofurazan-4-sulfonic acid ammonium salt; 
NBD-F: 4-flouro-7-nitrobenzofurazan; mBBr: monobromobimane 
* Amount of substance loaded on column 

 

7.3 Quantification of intracellular tGSH in HCT116 cells 

“To further demonstrate the applicability of the developed LC-MS/MS method, we 

measured the total intracellular concentration of glutathione in HCT116 cells. Both 

parental HCT116 and IDH1-R132H mutant cell lines were employed to study the effect of 

a neomorphic mutation in isocitrate dehydrogenase 1. The mutated enzyme catalyzes the 

NADPH consuming conversion of α-ketoglutarate to 2-hydroxyglutarate, while wt-IDH1 

catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate producing NADPH. 

NADPH is used to reduce GSSG and, therefore, to maintain the reductive capacity of the 

cell. Cells carrying mutated IDH1 might compensate for changes in the redox system by 

upregulation of cellular biosynthesis of GSH. BSO, on the other hand, is a specific and 

competitive inhibitor of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in 

GSH biosynthesis. Therefore, it can reduce the intracellular level of glutathione [261, 262]. 

To assess the method using biological samples, both parental HCT116 and IDH1-R132H 

mutant cells were cultured with/without BSO for 24h. As shown in Figure 34, intracellular 

tGSH was decreased significantly after 24h of BSO treatment in both parental and mutant 
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cells compared to the corresponding untreated controls (p = 1.80×10-7 and 1.47×10- 8, 

respectively, for parental and mutant cells) and BSO suppressed glutathione levels to a 

similar extent in both cell lines. However, no significant difference in tGSH was observed 

between parental and IDH1-R132H mutant cell lines. Maybe an alteration of NADPH 

levels by the IDH1 mutation only affects the GSH to GSSG ratio but not overall GSH 

biosynthesis (and thus tGSH) in HCT116 cells.” [3] 

 

Figure 34. “Total GSH amount in parental HCT116 and IDH1-R132H mutant cells after 

treatment with or without 5 µM BSO for 24 h, n=6, two independent experiments. Cell 

pellets were extracted using 80 % methanol and the extracts were reduced with DTT. 

Data is shown as mean + SD, p-values for parental and mutant cells are 1.80×10-7 and 

1.47×10-8, respectively.” [3] 
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8 Tracer analysis of glutathione by HPLC-QTOF-MS/MS  

So far, studies regarding glutathione have focused on its quantification either in total or in 

oxidized and reduced form. However, the distribution of glutathione isotopologues in cells 

from tracer analysis experiments can also provide vital information on cell metabolic 

changes induced by internal/external stimuli. In this chapter, a wide Q1 isolation MRM 

window strategy on a QTOFMS instrument is presented for assessing the distribution of 

glutathione isotopologues from stable isotope labeling experiments. The developed 

method was applied to study the effect of a neomorphic mutation in isocitrate 

dehydrogenase gene (IDH1) on the biosynthesis of glutathione in the presence of fully 

13C labeled glucose or glutamine.  

This chapter was published in Analytica Chimica Acta (Sun et al., Quantification and 13C-

Tracer Analysis of Total Reduced Glutathione by HPLC-QTOFMS/MS, 2019, 1080, 127-

137). Paragraphs taken directly from the publication are marked with quotation marks. 

 

8.1 Method development and optimization 

Tracer analysis using a triple quadrupole MS in multiple reaction monitoring mode 

requires the setup of individual transitions for each isotopologue. Moreover, if tracer 

atoms are lost in the neutral loss, this must be accounted for by separate transitions. As 

the number of tracer atoms (13C) increases in a given compound, the number of 

transitions to be considered increases rapidly. Operation of a QTOFMS instrument for 

MS/MS experiments is not hampered by setting up transitions. In this study, the first 

quadrupole (Q1) is operated to allow ions over a given m/z range to pass through. That 

allows all of the GSH isotopologues that can originate from 13C incorporation to enter the 

collision cell simultaneously. The resulting fragments can then be analyzed in parallel by 

the TOF analyzer with high resolution, yielding the full isotopologue distribution of both 

GSH precursor ion and its fragment ions. The window width was optimized and the 

performance of the wide Q1 window strategy was compared with full scan and all ion 

fragmentation acquisition mode on the same MS instrument with standard solutions of 

labeled (glutathione-(glycine-13C2,15N1)) and unlabeled GSH.  
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“We firstly assessed the performance of MRM methods with different Q1 isolation window 

widths (8, 10, 12, and 20 Da). The wide-window MRM strategy was then compared with 

full scan MS and bbCID performed in the m/z range of 50 to 1000 using mixtures of 

standard stable isotope labeled and unlabeled GSH. bbCID is an approach to achieve all 

ion fragmentation (AIF) whereby all ion precursor ions observed in the MS survey scan 

are  fragmented [139]. GSH standard solutions containing equal amounts of labeled and 

unlabeled GSH were prepared at different concentrations (10, 20, 40 µM). Those 

solutions were then processed according to our reduction protocol (see section 5.7) and 

subjected to LC-MS/MS measurements with different MRM window widths (8, 10, 12, and 

20 Da), bbCID, and LC-MS measurements in full scan mode. We compared the peak 

areas of the parent ions (m/z 308 from unlabeled GSH and m/z 311 from isotope labeled 

GSH) and the product ions (m/z 179 and m/z 182) of unlabeled and labeled GSH, 

respectively. Peak area ratios are shown in Figure 35 (different MRM window widths) and 

Figure 36 (20 Da-window MRM, bbCID and full scan). In Figure 35, peak area ratio 

increases with increasing window width from 8 Da to 20 Da. ANOVA statistics was run to 

test the difference between different window widths, the results are shown in Table S6 

(see supplementary information in Chapter 11). In stable isotope tracer analysis, it is 

important to properly quantify isotopologues of a molecule relative to each other. Window 

width should be adjusted in a metabolite specific manner to achieve accurate labeling 

analysis. An insufficiently wide window may exclude some of the isotopologues from the 

measurement or reduce their measured intensity relative to isotopologues with an m/z 

more central in the window as we can see from Figure 35. Unlabeled GSH (m/z 308) was 

partly excluded from the measurement at smaller MRM window widths, resulting in a 

lower peak area ratio.  In the case of GSH, we set up the central selection m/z at 313 as 

all possible isotopologues of GSH that can result from a 13C-tracing experiment are in the 

m/z range of 308 to 318. To be sure that all GSH isotopologues ions will be included 

equally in the MRM selection window, we measured a GSH standard solution (unlabeled 

GSH) by MRM with an isolation window width from 12 Da to 24 Da. Of all isotopologues, 

unlabeled GSH (m/z 308) and GSH+10 (m/z 318) are farthest from the center of isolation, 

making unlabeled GSH a suitable choice for this analysis. Results are shown in Figure 

36. Peak area increases with increasing MRM isolation window width and levels off at a 
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window width of 20 Da. This means that even the ions at the selection boundary are 

reliably included when using this window width. Therefore, a 20 Da window was finally 

set for the MRM-based isotope labeling analysis of GSH. We compared the performance 

of the wide-window MRM strategy with full scan MS and bbCID. No significant differences 

can be found with regard to the peak area ratios of unlabeled and labeled GSH measured 

by the three methods (see Figure 37). However, peaks measured by full scan MS show 

relatively low intensity. bbCID might be an alternative to isotope labeling pattern analysis 

of GSH. However, in our preliminary experiment, bbCID also showed very low peak 

intensities. We optimized it by adjusting the acquisition time factor (ATF) to try to achieve 

peak intensity comparable to the MRM measurements. ATF is the factor by which the 

sample time of the digitizer is multiplied. This parameter applies only to MS/MS spectra 

and is used to increase the intensity of small peaks in the MS/MS spectrum. Figure 38 

shows the chromatograms of GSH standard measured under different bbCID conditions. 

Peak intensity improves upon increasing the acquisition time factor. However, it also 

dramatically decreases the number of data points taken across a peak. For good 

quantitative reproducibility, it is necessary to acquire enough data points to precisely 

define a chromatographic peak. We therefore finally set up the acquisition time factor at 

15 for bbCID acquisition. However, still, the intensity of the peak obtained from bbCID 

mode is much lower than in wide-window MRM with the same mass spectrometer 

acquisition parameters as shown in Figure 39. Besides, since all ions will undergo 

fragmentation without any precursor ion selection in bbCID, interferences might be a 

substantial issue especially for complex samples. With a wide window strategy on the 

other hand, interfering ions must not only coelute with the analyte but have a precursor 

ion within the specified m/z window of e.g. 20 Da and fragment m/z that cannot be 

resolved from target product ion m/z. This makes the wide window approach more 

selective compared to bbCID under the conditions we employed in this study.” [3] 
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Figure 35. “Peak area ratios of labeled and unlabeled GSH measured by MRM with 

different window widths.” [3] 

 

 

Figure 36. “Peak areas of GSH standard measured by MRM with different window widths.” 

[3] 



76 

 

 

Figure 37. “The unlabeled to labeled GSH peak area ratio was measured by different 

methods. Standard solutions containing unlabeled and labeled GSH at the same 

concentration (10 µM, 20 µM, 40 µM) were measured by LC-MS/MS in positive MRM 

mode with a 20 Da - Q1 selection window, by LC-MS in positive full scan mode, and by 

LC-MS/MS in bbCID mode. Data is shown as mean + SD (n=3).” [3] 

 

 

Figure 38. “Chromatograms of a standard unlabeled and labeled GSH mixture as 

measured by bbCID mode with different acquisition time factors (ATF).” [3]  
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Figure 39. “Chromatograms of a mixture of unlabeled and labeled GSH (glutathione-

(glycine-13C2,15N1)) as measured by bbCID mode and 20 Da-window MRM with the same 

mass spectrometer data acquisition parameters.” [3] 

 

8.2 GSH tracer analysis in HCT116 cells 

“To illustrate biological application, the developed wide Q1 isolation window HPLC-

MS/MS method was applied to GSH stable isotope labeling analysis in HCT116 cells. 

Cells were cultured with fully 13C-labeled glucose or glutamine to examine the fate of 

tracers in the glutathione synthetic pathway. To be able to see biologically induced 

changes in the GSH labeling patterns and/or GSH abundance, cells were pretreated with 

or without BSO for 24 h. Our wide-window HPLC-QTOF-MS/MS method in positive MRM 

mode with a 20 Da Q1-window was employed to analyze the GSH isotopologues. Cell 

samples were subjected to cell extraction and DTT reduction before LC-MS/MS 

measurement. Acquired data was transferred to Bruker QuantAnalysis 2.2 software for 

retention time and peak integration checking. Peak areas of all parent ions and fragment 

ions were then corrected for natural isotope abundance and purity of the tracer using the 

IsoCorrectoR R-package. Results are shown as mean enrichment in Figure 40A and 40B. 

Mean enrichment was calculated as follows:” [3] 

"𝑀𝑒𝑎𝑛 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
∑(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑐𝑎𝑟𝑏𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟)

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
⁄  “ [3] 

“Here, the fraction of the given isotopologue is multiplied with the carbon number of 13C 

in that isotopologue and divided by the total carbon number of 13C label the molecule in 
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question can contain. In 13C-glucose tracing, the GluCys fragment showed a mean 

enrichment of 10-20 %, while for CysGly, only a mean enrichment of 0.5-1.5 % was 

observed. Thus, in the time period during which cells were given labeled glucose, glucose 

contributed to GSH synthesis mainly via its conversion to glutamate. Most likely, the 

majority of the glycine and cysteine required for GSH synthesis was taken directly from 

the cell culture medium and not synthesized from glucose via 3-phosphoglycerate/serine. 

When cells were cultured with 13C-labeled glutamine, isotopic enrichment could only be 

observed in GluCys but not in CysGly. In addition, regarding the mean enrichment, 

contribution to GSH synthesis is higher for glutamine than for glucose as shown in Figure 

40A and B. The total isotopic enrichment of GSH from labeled glucose and labeled 

glutamine is lower than 100 %, which is probably due to the existence of unlabeled amino 

acids and glutathione in cell culture RPMI medium as shown in Table S7 (see 

supplementary information in Chapter 11).” [3] 

“We also observed a significant difference in isotopic enrichment of GSH between 

parental and mutant cells for both BSO treated (p=1.55×10-6) and untreated (p=5.43×10-

6) cells when fed labeled glucose. A significantly higher GSH isotopic enrichment was 

observed in parental cells compared to (IDH1) mutant cells. It is known that mutIDH1 cells 

have to adapt their metabolism, such as TCA-cycle flux, to compensate for increased α-

ketoglutarate consumption by mutant IDH1 for D-2- hydroxyglutarate production [58, 263, 

264]. Besides, formation of glutamate from glucose has been shown to decrease due to 

the inhibition of branched-chain amino acid transaminase (BCAT transaminases) by D-2-

HG [8]. This increases the dependence on glutaminase for the biosynthesis of glutamate 

from glutamine. This is corroborated by Figure 40B, which shows a higher isotopic 

enrichment of GSH in IDH1-mutant cells compared to parental cells when fed labeled 

glutamine.” [3] 

“To further validate our LC-MS/MS method for stable isotope labeling analysis, we 

cultured the cells in the presence of equimolar amounts of both labeled and unlabeled 

glucose. Results are shown in Figure 40C and D. The mean enrichment values obtained 

for this experiment are fairly close to half of the enrichment values found in the cells 

cultured only with labeled glucose. This result further demonstrates the suitability and 
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accuracy of this wide-window LC-MS/MS method for GSH stable isotope labeling 

analysis.” [3] 

 

 

Figure 40. “GSH stable isotope labeling analysis results from tracing experiments with U-
13C-labeled glucose or glutamine. For BSO treated groups, cells were cultured and 
pretreated with BSO for 24 h before using labeled glucose/glutamine and then cultured 
with BSO and labeled nutrient for an additional 24 hours. A: Cells were cultured with fully-
labeled glucose, two independent experiments, n=6; B: Cells were cultured with fully-
labeled glutamine, two independent experiments, n=6; C: Cells were cultured with both 
labeled and unlabeled glucose (1:1), n=3; D: Mean enrichment ratio of A and C. Data is 
shown as mean + SD; p-values from the ANOVA are listed in Table S8 (see 
supplementary information in Chapter 11).” [3] 
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9 13C-tracer analysis of metabolic changes induced by IDH 

mutation 

The redirection of α-KG from normal reductive metabolism in citric acid cycle towards D-

2-HG generation in cells harboring an IDH mutation has been suggested to dysregulate 

other metabolic fluxes [58, 265, 266]. Studies from chapter 6 to chapter 8 have 

demonstrated the changes in glutathione metabolism in IDH mutant cells. Glucose and 

glutamine metabolism were also found to be different in mutant IDH cells [38, 68]. To 

better understand the metabolic impact of different IDH mutations in vitro, we performed 

13C-tracer experiments with wild-type an IDH mutant (IDH1-R132H, IDH2-R172K, and 

IDH2-R140Q) HCT116 cell clones. The cells were incubated with fully 13C labeled glucose 

or glutamine for different time periods. GC-MS and HPLC-MS were employed to analyze 

the isotope labeling pattern of various metabolites, i.e., amino acids, TCA cycle 

intermediates, fatty acids, and GSH to identify important metabolic alterations associated 

with IDH1/2 mutations. Occurrence of metabolic alterations is evident from differences in 

isotopic mean enrichment, which reflects the overall tracer incorporation, and 

isotopologue fractions for a given metabolite. Details of sample preparation and 

instrumental analysis have been described in Chapter 5.  

 

9.1 Study of isotopic steady state in various metabolites 

13C tracing experiments are commonly performed at isotopic steady state which describes 

a condition where 13C enrichment into metabolites has reached an equilibrium and is 

stable over time. To determine the time needed to reach isotopic steady state for the 

metabolite examined, both HCT116 wild-type and IDH mutant cell lines (IDH1-R132H, 

IDH2-R172K, and IDH2-R140Q) were grown for different time periods (0h, 12h, 24h, 48h, 

72h) in glucose or glutamine-free media supplemented with 2 g/L of U-13C-glucose (11.1 

mM) or 2 mM of U-13C-glutamine. Mass spectrometry-based analytical tools were used 

to investigate the incorporation of 13C atoms derived from labeled glucose and glutamine, 

respectively, into the studied metabolites.  
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Glucose contributes to the de novo biosynthesis of numerous amino acids such as 

alanine, glutamate, aspartate, proline, glycine, and serine. Incorporation of glucose-

derived carbon into other amino acids such as ornithine, arginine, and asparagine can 

also be observed, albeit to a lesser degree (mean enrichment < 3%). From U-13C- glucose 

tracer analysis it is evident, that all of the studied amino acids, with the exception of 

glycine (48 h vs 72 h, p=0.0359) and serine (48 h vs 72 h, p=0.0033) reached their isotopic 

steady state in IDH wild-type cells after 48 h, as indicated by stable isotopic mean 

enrichment (Figure 41A, statistics see Supplementary Table S9 in Chapter 11). In mutant 

IDH cells, in contrast, isotope labeling was still changing in most of the amino acids at 48 

h (Figure 41B-D, 48 h vs 72 h, p<0.05 for alanine, glutamate, aspartate, proline and 

glycine). Only serine appeared to reach isotopic steady state at 48h in IDH2-R172K (48 

h vs 72 h, p=0.6647) and IDH2-R140Q (48 h vs 72 h, p=0.0714) cells, as mean isotopic 

enrichment in serine did not differ significantly between 48 h and 72 h of incubation 

(detailed statistics see Supplementary Table S9 in Chapter 11). However, one should 

keep in mind that exchange reactions with extracellular pools of amino acids, e.g. amino 

acids in the growth medium, may prevent or disturb the establishment of isotopic steady 

state. Other factors that may contribute are autophagy. Autophagy is a self-degrading 

process, which is important to balance energy source and responses to nutrient stress at 

critical time [267]. Exogenous 2-HG treatment was found to be able to trigger autophagy 

in glioma U87MG cells and increased autophagosome was also observed in IDH1-

R132H-expressing U87MG cells [268]. 

Glutamine, an important amino acid itself, has been recognized to play a nutrient role 

similar to glucose. It can be both used to generate ATP and provide precursors for 

biosynthetic reactions. Glutamate, aspartate, and proline are the main three glutamine-

derived amino acids as indicated in Figure 42. Unlike glucose, carbons derived from 

glutamine are rapidly incorporated into glutamate, aspartate, and proline. When cells 

were fed with labeled glutamine, isotopic enrichment in glutamate and aspartate reached 

its maximum after 12 h of incubation (Figure 42). However, further incubation of the cells 

with labeled glutamine resulted in a gradual decrease in isotopic enrichment in glutamate 

and aspartate. This phenomenon can be seen in all cell lines, indicating that this effect is 

probably not related to the IDH mutation. We then hypothesized that this is caused by 
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glutamine deprivation in the cell culture medium after a certain time of incubation. To 

answer this question, we measured the extracellular U-13C-glutamine level in cell culture 

medium by NMR after 0 h, 12 h, 24 h, 48 h, and 72 h of incubation. As shown in Figure 

43A, about half of the labeled glutamine was consumed by the cells after 24 hours and 

after 72 h of incubation, only ~ 0.15 mM of labeled glutamine were left in the medium. 

Cell growth of the whole cell panel was also tested during 72h incubation. However, the 

quick consumption of the labeled glutamine seems not to affect cell growth as evidenced 

by Figure 43B. Both parental and IDH mutant cells show an exponential growth during 

the 72h of incubation. Cells may also take up unlabeled substrates e.g., protein-derived 

glutamine to support growth. We therefore analyzed the unlabeled glutamine content in 

the supernatant. As shown in Figure 43C, a gradual increase of unlabeled glutamine was 

observed in the supernatant of all cell lines during the incubation, which may serve as an 

additional substrate in the medium. However, the concentration of unlabeled glutamine is 

more than an order of magnitude lower than the remaining labeled glutamine. We 

wondered whether the decrease in amino acid labeling can be rescued by supplying 

enough labeled glutamine in the medium during incubation. HCT116 wild-type cells were 

grown in the presence of U-13C-glutamine for 48 h, while exchanging the medium every 

twelve hours. Cells were harvested at 12 h, 24 h, and 48 h and the corresponding 

supernatants were collected. Intracellular amino acids labeling was analyzed by LC-

MS/MS (Figure 44A) and organic acids labeling was analyzed by GC-MS (Figure 44B). 

Both labeled and unlabeled glutamine in the supernatant were determined by NMR 

(Figure 44C). U-13C-glutamine concentration determined at 0 h by NMR was lower than 

2 mM (theoretical concentration of labeled glutamine at 0 h), which is probably due to the 

binding of glutamine to proteins present in the fetal calf serum added in the medium. Thus, 

the uptake values which were obtained by subtracting the U-13C-glutamine concentration 

at each time point (12 h, 24 h, and 48 h) from the medium control (0 h) were calculated 

and shown in Figure 44D. By replenishing the medium every 12 hours, labeled glutamine 

concentrations above 1 mM were maintained, but still decreased over time due to the 

increasing number of cells in culture. 
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Figure 41. Isotopic mean enrichment in amino acids at different incubation times (0 h, 12 

h, 24 h, 48 h, 72 h) from U-13C-glucose in HCT116 cells with wild-type IDH or mutant 

(IDH1-R132H, IDH2-R1172K, and IDH2-R140Q). Both IDH wild-type and mutant cells 

were cultivated in glucose free media supplemented with 2 g/L of U-13C-glucose (11.1 

mM) for different time periods. Data are shown as mean ± SD, n=6, two independent 

experiments. For statistics see Supplementary Table S9 in Chapter 11. 
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Figure 42. Isotopic mean enrichment in amino acids at different incubation times (0 h, 12 

h, 24 h, 48 h, 72 h) from U-13C-glutamine in HCT116 cells with wild-type or mutant IDH 

(IDH1-R132H, IDH2-R1172K, and IDH2-R140Q). Both wild-type and IDH mutant cells 

were cultivated in glutamine free media supplemented with 2 mM of U-13C-glutamine for 

different time periods. Data are shown as mean ± SD, n=6, two independent experiments. 

For statistics see Supplementary Table S9 in Chapter 11. 
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Figure 43. (A) U-13C-glutamine concentration in cell culture supernatants after incubation 

for different time periods (0 h, 12 h, 24 h, 48 h, 72 h). Concentrations were measured by 

NMR (n=6, two independent experiments). (B) Cell growth curve for each cell line over 

72 h (n=3). (C) Unlabeled glutamine concentration in cell culture medium after incubation 

for different time periods (0 h, 12 h, 24 h, 48 h, 72 h) were measured by NMR (n=6, two 

independent experiments).  

 

As observed previously, isotopic steady state for the tested amino acids and TCA cycle 

intermediates was reached at 12 hours (Figure 44A-B) and the U-13C-glutamine 

concentrations are sufficient to maintain a stable mean isotopic enrichment in those 

metabolites. Unlabeled glutamine in the supernatant was also kept at a relatively constant 

level which is quite equal to that in the blank medium (0h) (Figure 44C). Considering the 

increasing levels of unlabeled glutamine observed in Figure 43C, glutamine deficiency 

may drive protein degradation and release unlabeled glutamine into the medium. All in all, 

these experiments show that sufficient labeled nutrient supply by medium exchange every 

12 hours can efficiently compensate for the decrease in amino acid labeling caused by 

the deficiency of labeled nutrient in the cell culture model under investigation.  
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Figure 44. (A) Isotopic mean enrichment of Glu, Asp, and Pro in parental HCT116 cells 

from U-13C-glutamine at different incubation times (12 h, 24 h, 48 h, n=3 for each). 

Medium containing 2 mM of U-13C-glutamine was exchanged every 12 hours. (B) Isotopic 

mean enrichment of TCA cycle intermediates in parental HCT116 cells from U-13C-

glutamine at different incubation times (12 h, 24 h, 48 h, n=3 for each). Medium containing 

2 mM of U-13C-glutamine was exchanged every 12 hours. In all figures, data are shown 

as mean ± SD. (C) Concentrations of unlabeled glutamine and U-13C-glutamine in cell 

culture medium at different incubation times (12h, 24h, 48h, n=3 for each). (D) Glutamine 

uptake at each time point during 48 h of incubation (n=3). Medium containing 2 mM of U-
13C-glutamine was exchanged every 12 hours. U-13C-glutamine concentration 

determined at 0 h by NMR was lower than 2 mM, which is probably due to the binding of 

glutamine to proteins present in the fetal calf serum added in the medium. Thus, the 

uptake values which obtained by subtracting U-13C-glutamine concentration at each time 

point from the medium control (0 h) were calculated and shown in Figure 44D. 

Experiments in this figure were performed by Dr. Raffaela Berger. Sun, X analyzed the 

data and prepared the figures. 
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Since IDHs are essential enzymes in the production of NADPH and α-KG, which is not 

only a key intermediate of the TCA cycle but also a (co-)substrate of transaminases and 

dioxygenases. Therefore, IDH mutations are expected to exert a significant impact on 

intermediary metabolism. The main metabolic change associated with IDH mutation is 

the gain of the new ability to convert α-KG to D-2-HG, resulting in elevated levels of D-2-

HG in IDH mutant cells [48, 50]. However, in addition to D-2-HG accumulation, other TCA 

cycle intermediates are also markedly affected by mutations in IDH enzymes [63]. To 

better understand those mutant IDH-related metabolic changes during cell growth, we 

analyzed the isotopic steady state of glycolysis and TCA cycle intermediates with the 

HCT116 cell panel. As shown in Figure 45A, all of the studied TCA cycle intermediates, 

i.e., citrate, α-KG, succinate, fumarate, and malate, reached isotopic steady state after 48 

h of incubation with U-13C-glucose in HCT116 wild-type cells (48 h vs 72 h, p>0.05 for 

citrate, α-KG, fumarate, and malate, detailed statistics see Supplementary Table S10 in 

Chapter 11), except succinate that showed a drop in isotopic mean enrichment at 72h. 

However, similar to the observation with amino acids, isotopic mean enrichment in those 

typical TCA intermediates is still changing from 48h to 72h in all IDH mutant cells (Figure 

45B-D, 48 h vs 72 h, p<0.05 for citrate, α-KG, succinate, fumarate, and malate, detailed 

statistics see Supplementary Table S10 in Chapter 11).  

Pyruvate and lactate, as important products from glycolysis were also investigated. Cells 

rapidly metabolize glucose into pyruvate and further into lactate in both wild-type and IDH 

mutant cells. At 24 h, both pyruvate and lactate reached isotopic steady state in wild type 

and IDH1-R132H mutant cells (Figure 45A-B, 24 h vs 48 h, p>0.05 for pyruvate and 

lactate in both cell lines). However, as shown in Figure 45C-D, IDH2 mutant cells needed 

more time to reach lactate isotopic steady state compared to wild-type and IDH1 mutant 

cells (24 h vs 48 h, p<0.05 for IDH2-R172K and IDH2-R140Q cells). Lactate reached 

isotopic steady state at 48h in IDH2-R172K and IDH2-R140Q mutant cells (48 h vs 72 h, 

p=0.9310 for IDH2-R172K cells and p=0.7047 for IDH2-R140Q cells). Glycerol-3-

phosphate (glycerol-3-P) which is synthesized from the glycolysis intermediate 

dihydroxyacetone phosphate (DHAP), was also investigated. Interestingly, glycerol-3-P 

reached isotopic steady state at 48 h in all IDH mutant cells (48 h vs 72 h, p>0.05 for all 

IDH mutant cells), while the mean isotopic enrichment still differed significantly between 
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48 h and 72 h in wild-type cells (48 h vs 72 h, p=4.50×10-6). On the other hand, continuous 

labeling changes in 2-HG were observed in both IDH wild-type and mutant cells during 

the entire experimental time span. It should be noted that 2-HG analysis employed in this 

study did not distinguish between D- and L-2-HG.    

 

 

Figure 45. Isotopic mean enrichment in glycolysis and TCA cycle intermediates at 

different incubation times (0 h, 12 h, 24 h, 48 h, 72 h) from U-13C-glucose tracing 

experiments in HCT116 cells with wild-type and mutant IDH (IDH1-R132H, IDH2-R1172K, 

and IDH2-R140Q). Both IDH wild-type and mutant cells were cultivated in glucose-free 

medium supplemented with 2 g/L of U-13C-glucose (11.1 mM) for different time periods. 

Data are shown as mean ± SD, n=5-6, two independent experiments. For statistics see 

Supplementary Table S10 in Chapter 11. 
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When cells were fed with labeled glutamine (Figure 46A), all of the studied metabolites 

reached maximum isotopic mean enrichment in HCT116 wild-type cells after 12 h of 

incubation (12 h vs 24 h, p>0.05 for all tested TCA cycle intermediates and 2-HG). In IDH 

mutant cells, the highest mean isotopic enrichment of 2-HG appeared at 24h (12 h vs 24 

h, p<0.05; 24 h vs 48 h, p>0.05 for all IDH mutant cells) while other tested metabolites 

showed the highest mean enrichment at 12 h (Figure 46B-D). Not surprisingly, decreased 

isotopic labeling also happened in organic acids after 24h incubation in all cell lines when 

U-13C-glutamine was used as the labeled substrate (Figure 46).  Glutamine anaplerosis 

is an important mechanism to replenish TCA cycle intermediates. Glutamine is 

deamidated by glutaminase (GLS) to form glutamate which is further metabolized to α-

KG either by transaminases (alanine or aspartate transaminases) or by glutamate 

dehydrogenase (GDH) [269]. Since the carbon backbone does not change from 

glutamine to glutamate and α-KG, decreased availability of labeled glutamine directly 

influences the labeling of TCA intermediates. When the medium is supplied freshly every 

12 h, the mean isotopic enrichment in TCA cycle intermediates is constant from 12 h to 

48 h as shown in Figure 44B (ANOVA, p>0.05). 
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Figure 46. Isotopic mean enrichment in glycolysis and TCA cycle intermediates at 

different incubation times (0 h, 12 h, 24 h, 48 h, 72 h) from U-13C-glutamine in HCT116 

cells with wild-type or mutant IDH (IDH1-R132H, IDH2-R1172K, and IDH2-R140Q). Both 

wild-type and IDH mutant cells were cultivated in glutamine-free media supplemented 

with 2 mM of U-13C-glutamine for different time periods. Data are shown as mean ± SD, 

n=4-6, two independent experiments. For statistics see Supplementary Table S10 in 

Chapter 11. 

 

As previously discussed, glutathione (GSH) is an important cellular antioxidant to 

maintain redox homeostasis. The de novo synthesis of glutathione requires glycine, 

cysteine, and glutamate. Thus, its synthesis is highly determined by the availability of 

these amino acids. Recently, McBrayer et al have shown that mutant IDH affects GSH 

level in cells [8]. Both glucose and glutamine can contribute to GSH de novo synthesis by 

providing amino acid substrates. While glycine is mainly derived from glucose, glutamate 

can be produced from both precursors.  Initial 13C tracing experiments were performed 
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with two out of four cell lines (wt and IDH1-R132H). As already shown in Chapter 8, 

isotopic enrichment of GSH differed significantly between wild-type and IDH1-R132H 

cells in both U-13C-glucose and U-13C-glutamine tracing experiments [3]. However only 

one time point (24 h) was investigated in the initial experiments (Chapter 8). In the present 

study, we analyzed the isotopic labeling status of GSH during cell growth in both wild-

type and all three IDH mutant HCT116 cell clones in the presence of U-13C- glucose or 

U-13C- glutamine. As shown in Figure 47A, if cells were grown in the presence of U-13C-

glucose, a gradual increase in GSH labeling was found in all cell lines (48 h vs 72 h, 

p<0.05 for all cell lines, detailed statistics see Supplementary Table S11 in Chapter 11). 

However, when U-13C-glutamine was used as the tracer, isotopic steady state is reached 

at 24 h in all cell lines (Figure 47B, 24 h vs 48 h, p>0.05 for cell lines). The observable 

decrease at 48h can again be attributed to glutamine deficiency resulting in decreased 

glutamate labeling as discussed above. 

Glucose and glutamine can also contribute to the de novo synthesis of fatty acids via 

conversion to acetyl-CoA. However, as the mean isotopic enrichment of palmitate (C16:0, 

16 refers to the carbon number in the fatty acid, and 0 refers to the double bond number) 

shows in Figure 48, the whole HCT116 cell panel does not reach isotopic steady state in 

palmitate in the experimental time span no matter if U-13C-glucose or U-13C-glutamine 

tracing is performed. It has been reported that acetate also serves as a carbon source 

that provides acetyl-CoA for fatty acids synthesis [270]. Besides, cells will also 

continuously take up fatty acids from the microenvironment, in this case the cell culture 

medium. They may all influence the time required to reach isotopic steady state in fatty 

acids in cells. 

Together, the data presented above point to difference between IDH mutant cells and the 

wild-type counterparts in terms of the contribution of glucose and glutamine to the de novo 

synthesis of amino acids, organic acids, fatty acids, as well as the endogenous 

antioxidant GSH. 
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Figure 47. Isotopic mean enrichment in glutathione at different incubation times (0h, 12h, 

24h, 48h, 72h) from tracing experiments with U-13C-glucose (A) and U-13C-glutamine (B), 

respectively, in HCT116 cells carrying wild-type or mutant IDH (IDH1-R132H, IDH2-

R1172K, and IDH2-R140Q). Both IDH wild-type and mutant cells were cultivated in 

glucose/glutamine-free media supplemented with 2 g/L of U-13C-glucose (11.1 mM) or 2 

mM of U-13C-glutamine, respectively, for different time periods. Data are shown as mean 

± SD, n=6, two independent experiments. For statistics see Supplementary Table S11 in 

Chapter 11. 

 

 

Figure 48. Isotopic mean enrichment in palmitate (C16:0) at different incubation times (0 

h, 12 h, 24 h, 48 h, 72 h) from tracing experiments with U-13C-glucose (A) and U-13C-

glutamine (B), respectively, in HCT116 cells carrying wild-type or mutant IDH (IDH1-

R132H, IDH2-R1172K, and IDH2-R140Q). Both IDH wild-type and mutant cells were 

cultivated in glucose/glutamine-free media supplemented with 2 g/L of U-13C-glucose 

(11.1 mM) or 2 mM of U-13C-glutamine, respectively, for different time periods. Data are 

shown as mean ± SD, n=6, two independent experiments.  



93 

 

9.2 Changes in amino acid and glutathione biosynthesis due to neomorphic 

mutations in IDH1/2 

Alterations in intracellular amino acid levels in IDH mutant cells have been previously 

reported [63]. In this section, we characterized the changes in amino acids biosynthesis 

affected by IDH1/2 mutations. As discussed above, glutamine mainly contributes to the 

biosynthesis of glutamate, aspartate, and proline by providing the carbon backbone. It 

can also donate carbons to other amino acids such as ornithine and arginine, however, 

to a much less extent. Here, we only focus on glutamate, aspartate, and proline. Based 

on the isotopic steady state analysis performed above, the labeling data originating from 

U-13C-glutamine tracing after 12h are employed in the following discussion. Figure 49A 

shows the mean isotopic enrichment of glutamate, aspartate, and proline from tracing 

with fully 13C-labeled glutamine. IDH1-R132H and IDH2-R172K mutant cells exhibit a 

significant higher mean isotopic enrichment in glutamate and aspartate compared to the 

wild-type controls as well as IDH2-R140Q mutant cells (Figure 49A). Interestingly, 

HCT116 IDH2-R140Q cells act differently compared to cells harboring IDH1-R132H and 

IDH2-172K mutation regarding the 13C incorporation from glutamine into related amino 

acids. The same observation was also reported by a previous study [257].  

As shown in the isotopologue distribution profile of glutamate in Figure 49B, mutant IDH 

markedly enhances the conversion of glutamine to glutamate. The [M+5] isotopologue of 

glutamate is directly derived from U-13C-glutamine. A significantly larger proportion of 

[M+5] glutamate was observed in IDH1-R132H and IDH2-R172K cells (Figure 49B), 

which is in agreement with a previous report that cells harboring an neomorphic IDH 

mutation tend to rely more on glutamine as the carbon source for glutamate biosynthesis 

via glutaminase (GLS) [8]. Figure 49C shows the labeling pattern of aspartate derived 

from U-13C-glutamine. Glutamine contributes to the synthesis of aspartate mostly via 

oxaloacetate by transamination, i.e., aspartate transaminase (AST), also known as 

glutamic-oxaloacetic transaminase (GOT) [271]. Thus, [M+4] aspartate can be generated 

from U-13C-glutamine via oxaloacetate in one metabolic cycle. Figure 49C displays a 

significant higher fraction of [M+4] aspartate in IDH1-R132H and IDH2-R172K cells 

compared to wild type and IDH2-R140Q cell. This may imply an increased glutamine 
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oxidative metabolism through TCA cycle in IDH1-R132H and IDH2-R172K mutant cells. 

On the other hand, [M+3] aspartate fraction can reflect the activity of glutamine reductive 

metabolism. Glutamine can transfer five labeled carbons to citrate ([M+5] citrate) via its 

reductive metabolism which can then be converted to oxaloacetate and therefore 

aspartate, generating [M+3] aspartate. The significantly lower fraction of [M+3] aspartate 

observed in IDH mutant cell, especially in the IDH1-R132H mutant cell clone, reflects 

impaired glutamine reductive metabolism (Figure 49C). 

Mutant IDH1 has been reported to enhance the production of glutamine-derived proline 

through pyrroline-5-carboxylate reductase 1 to maintain redox homeostasis in gliomas 

[272]. Proline is synthesized from glutamate via pyrroline-5-carboxylate synthase (P5C 

synthase) and pyrroline-5-carboxylate reductase (P5C reductase) [273]. Glutamine-

derived glutamate is firstly converted to P5C by P5C synthase. This step requires ATP 

and NADPH. P5C is then converted to proline by P5C reductase, consuming NADH or 

NADPH in mitochondria or cytosol, respectively [274]. Increased expression of pyrroline-

5-carboxylate reductase 1 was found in IDH1-mutant gliomas [272]. Indeed, in this study, 

a significant higher peak area ratio of [M+5] proline to [M+5] glutamate was observed in 

all IDH mutant cells, especially IDH1-R132H mutant cells, compared to wild type (Figure 

49D, for statistics see Supplementary Table S12 in Chapter 11). This may reflect an 

increased expression or enhanced activity of the enzymes involved in the conversion of 

glutamate to proline in IDH mutant cells. However, differences in isotopic mean 

enrichment of proline between HCT116 cell lines are not statistically significant (Figure 

49A, ANOVA, p=0.1550).  
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Figure 49. Amino acid labeling patterns derived from U-13C-glutamine in the HCT116 cell 

panel. (A) Isotopic mean enrichment in Glu, Asp, and Pro and isotopologue fractions of 

glutamate (B) and aspartate (C) from U-13C-glutamine tracing at 12 hours. (D) peak area 

ratio of [M+5] proline to [M+5] glutamate in HCT116 cell panel after 12h incubation with 

U-13C-glutamine. Data are shown as mean + SD, n=6, two independent experiments. * 

p< 0.05, ** p< 0.01, *** p< 0.001, for statistics see Supplementary Table S12 in Chapter 

11. 

 

As discussed in section 9.1, amino acids in IDH wild-type cells reached isotopic steady 

state at 48 h in U-13C-glucose tracing. Labeling data originating from U-13C-glucose 

tracing at 48h are employed in the following discussion. In contrast to U-13C-glutamine 

tracing, wild-type cells fed with U-13C-glucose exhibit higher isotopic mean enrichment in 

glutamate and aspartate compared to IDH1-R132H and IDH2-R172K mutant cells as 
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shown in Figure 50A (for statistics see Supplementary Table S12 in Chapter 11). However, 

differences are not significant between wild type and IDH2-R140Q cells (p=0.8803 for 

glutamate, p=0.0517 for aspartate). Glutamate can be generated from glucose through 

pyruvate metabolism in mitochondria catabolized either by pyruvate dehydrogenase 

(PDH) or by pyruvate carboxylase (PC) [275]. Those two pathways will generate different 

labeling patterns of glutamate. Via PDH, pyruvate is metabolized into acetyl-CoA, 

transferring two glucose-derived carbons to glutamate ([M+2]) while PC catalyzes the 

conversion of pyruvate to oxaloacetate, through which three glucose-derived carbons will 

be transferred into glutamate ([M+3]). Figure 50B shows the labeling pattern of glutamate 

from the incorporation of labeled glucose. Both PDH- and PC-catalyzed pyruvate 

metabolism are active in HCT116 cells as indicated by the observation of [M+2] and [M+3] 

glutamate in Figure 50B. However, significant lower [M+2] and [M+3] glutamate fractions 

were observed in IDH1-R132H and IDH2-R172K mutant cells compared to wild-type 

controls and IDH2-R140Q mutant cells, suggesting a possibly decreased activity of both 

PDH and PC in IDH1-R132H and IDH2-R172K mutant cells. Interestingly, IDH2-R172K 

mutant cells exhibit the lowest proportion of [M+2] and [M+3] glutamate among all cell 

lines (Figure 50B). Given that mutant IDH2 localizes to mitochondria, the large amounts 

of local D-2-HG produced by IDH2-R172K cells may have the highest impact on PDH and 

PC activities. Even though IDH2-R140Q also localizes to mitochondria, it was reported to 

produce less 2-HG than IDH2-R172K [257]. A similar labeling pattern was also observed 

for aspartate in IDH1-R132H and IDH2-R172K mutant cells (Figure 50C).  

Besides, as shown in Figure 50A, significant lower mean isotopic enrichment in proline 

from the 13C incorporation of glucose was observed in IDH1-R132H and IDH2-172K 

mutant cells. This is could be due to the lower conversion of glucose into glutamate, 

however, the imbalance of reducing power induced by the IDH mutations may also play 

a role since the biosynthesis of proline from glutamate needs reducing equivalent. It 

should be noted that the observation here is in contrast to data reported by Hollinshead 

et al [272] who showed a higher 13C incorporation into proline from 13C6-glucose with 

glioma cell models. Cell lines as well as circumstances employed in the study may also 

have impact on cell metabolic characteristics.  
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Another important glucose-derived amino acid is alanine. When cells were incubated with 

labeled glucose for 48h, ~80% of the carbon in alanine was 13C labeled in wild-type cells 

(Figure 50A). Significant lower mean enrichment was observed for the IDH mutant cells. 

Alanine is synthesized from glucose via pyruvate catalyzed by alanine aminotranferases 

(ALT). Three labeled carbons derived from glucose will be transferred into alanine. As 

shown in Figure 50D, IDH1-R132H and IDH2-172K mutant cells exhibit a significant lower 

fraction of [M+3] alanine compared to the wild-type counterparts. Either lower alanine 

synthesis or more pyruvate is shuttled in TCA or lactate in IDH1-R132H and IDH2-R172K 

mutant cells. We then analyzed pyruvate and lactate labeling from 13C6-glucose tracing 

at 48h. IDH1-R132H and IDH2-R172K mutant cells exhibit a significant lower isotopic 

mean enrichment in pyruvate compared to wild-type cells. However, the lower carbon 

incorporation of glucose into lactate was only observed in IDH1 mutant cells (Figure 51A). 

The reduced glycolytic activity in HCT116 IDH1-R132H mutant cells has been reported 

previously by determining the extracellular acidification rate (ECAR) [263]. ECAR is 

linearly related to lactate production. Here, we analyzed the glucose uptake and lactate 

release of each HCT116 cell line to reflect the glycolytic activity. Through glycolysis, one 

molecule of glucose is converted into two molecules of lactate. As shown in Figure 51B, 

a lower ratio of lactate release to glucose uptake was observed in IDH1 mutant cells, 

however, not in IDH2 mutant cells, implying a reduced glycolic activity in IDH1 mutant 

cells.  

Another two important non-essential amino acids derived from glucose are serine and 

glycine. Serine metabolism plays an essential role cancer cell growth by supplying  

precursors for protein and nucleic acids synthesis, as well as fueling one-carbon 

metabolism by providing carbon unit [276]. In cells, glucose serves as the major carbon 

source for serine biosynthesis via the glycolytic intermediate 3-phosphoglycerate [277], 

which is oxidized by phosphoglycerate dehydrogenase (PHGDH) and NAD+ to 3-

phosphohydroxypyruvate and NADH. 3-phosphohydroxypyruvate is further metabolized 

by phosphoserine aminotransferase (PSAT1) to phosphoserine and finally by 

phosphoserine phosphatase (PSPH) to serine [278]. Thus, serine biosynthesis is linked 

to glycolysis pathway. Isotopic mean enrichment in serine is shown in Figure 50A 

revealing that IDH1-R132H mutation markedly decreases serine biosynthesis from 
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glucose, possibly due to a reduced glycolysis activity. Glycine is synthesized from serine. 

However, a significant higher isotopic mean enrichment in glycine was observed in IDH2-

R140Q cells (Figure 50A), while no significant differences were observed for the other 

mutant cell lines. After cells were incubated with labeled glucose for 48h, 30%~40% of 

serine were carbon labeled in HCT116 cells (Figure 50A). Extracellular serine in the cell 

culture medium may replenish serine in cells. Furthermore, protein breakdown is one of 

the intracellular serine sources [279] and is reported to account for ~20% of the 

intracellular serine pool [280]. 

 

Figure 50. Amino acids isotope labeling patterns derived from tracer experiments with U-
13C-glucose in the HCT116 cell panel. (A) Isotopic mean enrichment in various amino 

acids. (B-D) show isotopologue fractions for glutamate, aspartate, and alanine. Cells were 

cultured with U-13C-glucose for 48h (n=6, two independent experiments). Data are shown 

as mean + SD. * p< 0.05, ** p< 0.01, *** p< 0.001, for statistics see Supplementary Table 

S12 in Chapter 11. 
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Figure 51. (A) Isotopic mean enrichment of pyruvate and lactate from U-13C-glucose 

tracing in HCT116 cell panel cultured for 48 h in the presence of labeled nutrient (n=6, 

two independent experiments). (B) Ratio of lactate secretion to glucose uptake in HCT116 

cells during 24 h / 48 h cell culture (n=6, two independent experiments). The conversion 

of glucose to lactate reflects the activity of the glycolysis pathway in cells. Lactate and 

glucose concentrations in cell culture medium were analyzed by NMR. Lactate secretion 

and glucose uptake were determined by calculating the differences to the blank medium. 

ANOVA for pyruvate labeling p = 0.0302, wt vs IDH1-R132H p = 0.0150, wt vs IDH2-

R172K p = 0.0145; ANOVA for lactate labeling p = 0.0176, wt vs IDH1-132H p = 0.0038; 

ANOVA for the ratio of lactate secretion to glucose uptake after 24 h cell culture p = 

0.0340, wt vs IDH1-R132H p=0,0059; for the ratio after 48 h cell culture ANOVA p = 

0.0031, wt vs IDH1-R132H p=0.0003.  

 

Glutamate, cysteine, and glycine are three substrates for GSH biosynthesis. Thus, 

glutathione synthesis is also highly related to amino acids metabolism. Figure 52 shows 

the mean isotopic enrichment of GSH from the 13C incorporation of labeled glucose and 

glutamine. Mean isotopic enrichment is shown for the intact GSH molecule and the 

GlyCys and CysGlu fragments (see Chapter 8). IDH1-R132H and IDH2-R172K mutant 

cells exhibit significant lower carbon incorporation from labeled glucose and significant 

higher carbon incorporation from labeled glutamine in GSH compared to the wild-type 

cells. This is consistent with the observation in Chapter 8.  
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Figure 52. Mean isotopic enrichment of GSH in HCT116 cell panel when cells were 

incubated with U-13C-glucose or U-13C-glutamine for 48h, respectively. Data are shown 

as mean + SD, n=6, two independent experiments, * p< 0.05, ** p< 0.01, *** p< 0.001, for 

statistics see Supplementary Table S13 in Chapter 11. 

 

To further investigate the differences in GSH synthesis caused by IDH1/2 mutation, we 

analyzed the labeling patterns of GSH, as well as its residues GlyCys and CysGlu. 

Isotopologue fraction analysis of GSH is shown in Figure 53 revealing that glutamine 

contributes to GSH biosynthesis mainly via glutamate in all cell lines since no detectable 

GlyCys labeling was observed when cells were incubated with labeled glutamine. On the 

other hand, the incorporation of glucose into GSH can occur in both GlyCys and CysGlu 

residues (Figure 54). Only [M+2] labeling was observed in GlyCys residue, indicating that 

glucose barely contributes to GSH synthesis via its conversion into cysteine (Figure 54). 

Even cysteine can also be synthesized de novo from serine and methionine through 

transsulfuration pathway, the majority of intracellular cysteine depends on the uptake from 

the extracellular environment [281]. Besides, the incorporation of glucose into GSH 

through glycine in wild-type cells is significantly lower than that in IDH mutant cells (Figure 

54) which is consistent with the glycine labeling shown in Figure 50A. In addition, the 

incorporation of glucose-derived carbons into GSH via glutamate is significantly 

decreased in IDH mutant cells. In contrast, glutamine contributes more carbons to GSH 

biosynthesis through glutamate in IDH1-R132H and IDH2-R172K mutant cells compared 

to the wild-type controls as indicated by the higher isotopic enrichment in CysGlu residue 
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shown in Figure 53. Overall, IDH mutation drives the cells to rely more on glutamine to 

provide carbons for GSH biosynthesis. This is very likely due to the changes of glutamate 

synthesis caused by IDH1/2 mutation. 

Unfortunately, direct comparison of contributions of glucose and glutamine to GSH 

biosynthesis is not possible since cells, especially IDH mutant cells, do not reach their 

GSH isotopic steady state after 48h incubation with 13C6-glucose. However, if we look at 

U-13C-glutamine tracing only at 48h when all cell lines reach their GSH isotopic steady 

state (Figure 47B), 20% ~ 25% of [M+0] GSH fraction was observed in HCT116 cell panel 

(Figure 53), indicating that ~75% of GSH carbons are derived from glutamine. This might 

also be an underestimation due to the presence of unlabeled substrates in cell culture 

medium. Together, glutamine may play substantially import role in sustaining intracellular 

redox balance by influencing the de novo synthesis of the endogenous anti-oxidant GSH, 

especially for cells harboring an IDH mutation. 
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Figure 53. Isotope labeling distribution of GSH, GlyCys, and CysGlu originating from U-
13C-glutamine tracing at 48h. Data are shown as mean + SD, n=6, two independent 

experiments. * p< 0.05, ** p< 0.01, *** p< 0.001, for statistics see Supplementary Table 

S13 in Chapter 11. 

  

 

Figure 54. Isotope labeling distribution of GSH, GlyCys, and CysGlu originating from U-
13C-glucose tracing at 48h. Data are shown as mean + SD, n=6, two independent 

experiments. * p< 0.05, ** p< 0.01, *** p< 0.001, for statistics see Supplementary Table 

S13 in Chapter 11. 

 

9.3 Glutamine oxidative metabolism is increased in IDH1/2 mutant cells 

Acting as an important energy fuel, glutamine can either undergo complete oxidative 

metabolism via the TCA cycle, i.e., glutaminolysis, or reductive metabolism (Figure 55). 
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Using U-13C-glutamine tracing, different labeling patterns of citrate are observed. Through 

oxidative glutamine metabolism, [M+4] labeled citrate will be generated due to the loss of 

CO2 (Figure 55). Glutamine, on the other hand, can directly supply carbons for citrate 

production via reduction carboxylation catalyzed by IDH, generating [M+5] labeled citrate. 

As discussed above, the significant lower fraction of [M+3] aspartate observed in IDH1-

R132H mutant cells (Figure 49C) may reflect impaired glutamine reductive metabolism. 

Here, the [M+5] citrate fraction in IDH1-R132H mutant cells is also significantly lower than 

in wild-type cells (Figure 56A), indicating that IDH1-R132H mutant cells were limited in 

their ability to generate citrate via reductive carboxylation of glutamine-derived α-KG. 

Several studies have reported a shift from glutamine oxidation to reductive metabolism in 

cells cultured under hypoxic conditions or when cells have defective mitochondria in order 

to maintain citrate levels [282, 283]. However, under normal conditions reductive 

carboxylation is unlikely to be the major glutamine metabolism route in all cell lines as 

indicated by the fairly low fraction of [M+5] citrate (~2%) (Figure 56A). 

A significant increase in [M+4] citrate was observed in IDH1-R132H and IDH2-R172K 

cells compared to wild-type and IDH2-R140Q cells, indicating an increased oxidative 

metabolism of glutamine in those cells (Figure 56A). This is also supported by the higher 

[M+4] labeling fraction of other TCA cycle intermediates, i.e., succinate, fumarate, and 

malate, in IDH1-R132H and IDH2-R172K cells (Figure 56B). An overall increase in 

isotopic mean enrichment in TCA cycle intermediates from glutamine tracing was also 

observed in IDH1-R132H and IDH2-R172K mutant cells compared to the wild-type cells 

(Figure 57). It is concluded that mutant IDH increases glutamine oxidative metabolism to 

fuel the TCA cycle. 

As already discussed, glutamine is one of the cellular sources of α-KG. α-KG is further 

converted to D-2-HG by mutant IDH [47]. A significant higher isotopic mean enrichment 

in 2-HG was observed in IDH1-R132H and IDH2-R172K mutant cells compared to wild-

type cell line as well as IDH2-R140Q mutant cells (Figure 57). It was previously reported 

that IDH1-R132H and IDH2-172K mutant cells produce higher amounts of 2-HG than 

IDH2-R140Q mutant cells [257]. The higher consumption of α-KG for the generation of 2-

HG may drive more glutamine flux into α-KG. Glucose can also contribute to 2-HG 
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production (Figure 58). However, 13C incorporation from glucose into 2-HG did not differ 

significantly between cell lines. This is consistent with previous reports [66, 284]. Besides, 

the decrease in isotopic mean enrichment in most of the TCA cycle intermediates 

observed for IDH1-R132H and IDH2-R172K cells when fed with labeled glucose (Figure 

58), points to an impact of IDH mutation on the flux of glucose into TCA cycle. However, 

the decreases are not statistically significant in our data (ANOVA, p>0.05 for each 

metabolite). Glucose-derived carbons are more likely shunted to other metabolic routes, 

e.g., pentose phosphate pathway, which needs further investigation.  

 

 

Figure 55. Scheme depicting the expected isotopologues of intracellular metabolites 

originated from 13C-glutamine tracing through oxidative or reductive metabolism. Circles 

represents the number of carbons in each metabolite with white circles for 12C carbon, 

blue circles for 13C carbon derived from glutamine through oxidative metabolism and red 

circles for 13C carbons derived from glutamine through reductive metabolism. 
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Figure 56. Isotopologue fractions of citrate and [M+4] fraction of succinate, fumarate, and 

malate from U-13C-glutamine tracing for 24 h. Significant higher fractions of [M+4] labeling 

in citrate, succinate, fumarate, and malate were observed in IDH1-R132H and IDH2-

R172K cells compared to wild type cells, indicating increased glutamine oxidative 

metabolism in IDH1-R132H and IDH2-R172K cells. Data are shown as mean + SD, n=5-

6, two independent experiments. * p< 0.05, ** p< 0.01, *** p< 0.001, for statistics see 

Supplementary Table S14 in Chapter 11. 

 

 
Figure 57. Isotopic mean enrichment in TCA cycle intermediates and 2-HG from U-13C-

glutamine tracing for 24 h. Significant higher isotopic mean enrichments in TCA cycle 

intermediates and 2-HG were observed in IDH1-R132H and IDH2-R172K cells compared 

to wild type cells. Data are shown as mean + SD, n=5-6, two independent experiments. * 

p< 0.05, ** p< 0.01, *** p< 0.001, for statistics see Supplementary Table S14 in Chapter 

11. 
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Figure 58. Mean isotopic enrichment in TCA cycle intermediates and D-2-HG from U-
13C-glucose tracing for 48h. Difference between cell lines are not statistically significant 
(ANOVA, p>0.05 for each metabolite). Data are shown as mean + SD, n=5-6, two 
independent experiments.  

 

9.4 Decreased fatty acids synthesis in mutant IDH cells 

To better assess the impact of IDH mutations on the de novo biosynthesis of fatty acids, 

we analyze the labeling of palmitate generated from uniformly 13C-labeled glucose and 

glutamine, respectively. Acetyl-CoA is the precursor used to synthesize fatty acids 

through acetyl-CoA carboxylase and fatty acid synthase, yielding palmitate [285]. Figure 

59 shows the isotopologue distribution of palmitate in each cell line. The unlabeled [M+0] 

palmitate attributes to the uptake of serum-derived fatty acids and the de novo synthesis 

of fatty acids from unlabeled substrates. Partially labeled forms including [M+2], [M+4], 

[M+6], [M+8], [M+10], [M+12], and [M+14] arise from incomplete acetyl-CoA labeling. 

Together with the fully labeled form [M+16], they are sufficient to determine the fractional 

labeling of cytosolic acetyl-CoA. The significant different labeled fractions, thus labeled 

acetyl-CoA, between IDH wild-type and mutant cells indicate the impact of IDH1/2 

mutations on the de novo synthesis of fatty acids in HCT116 cells (Figure 59, for statistics 

see Supplementary Table S15 in Chapter 11). The carbon incorporation into fatty acids 

from both labeled glucose and glutamine are significantly decreased in all IDH mutant 

cells compared to the wild-type cells (Figure 59 and 60A-B). In addition, compared to 
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glutamine, glucose contributes more carbons to the de novo synthesis of fatty acids as 

indicated in Figure 60A-B. The mean isotopic enrichment of palmitate in each cell line 

from labeled glucose is about ten times higher than that from labeled glutamine. Cytosolic 

acetyl-CoA is mainly produced from glucose-derived citrate under normal conditions and 

the C2 unit of acetyl-CoA is from pyruvate (Figure 55). Glutamine possibly provides a 

small amount of carbons to generate acetyl-CoA via citrate after multiple rounds of TCA 

cycle. When cells are in hypoxia, glutamine has been shown to contribute more to the 

generation of cytosolic acetyl-CoA for fatty acids synthesis, as under this condition 

pyruvate dehydrogenase is less active [283]. However, mutant IDH decreases the cells’ 

ability to convert glutamine-derived carbon to citrate, which is required for acetyl-CoA 

production [59]. This is also consistent with the findings of lower [M+5] citrate and [M+3] 

aspartate fractions, which indicates reduced glutamine reductive metabolism as 

discussed above.  

IDH1-R132H mutant cells exhibit the lowest isotopic mean enrichment in palmitate in both 

glucose and glutamine tracing (~two-fold lower mean isotopic enrichment from U-13C-

glucose and ~ four-fold lower of mean isotopic enrichment from U-13C-glutamine 

compared to wild-type cells) (Figure 60A-B). The de novo synthesis of fatty acids occurs 

in the cytosol and requires large amounts of NADPH. The consumption of cytosolic 

NADPH by mutant IDH1 for the production of D-2-HG may affect NADPH-dependent fatty 

acid synthesis. 

Recently, using isotope tracer analysis, reductive glutamine metabolism catalyzed by IDH 

has been found to provide considerable fractions of the acetyl-CoA pool in cancer cells, 

particularly in those with defective mitochondria or grown under hypoxia condition [286]. 

However, mutant IDH1 compromises the enzyme activity in this metabolic route [287]. 

Indeed, as discussed above, the low fractions of [M+5] citrate and [M+3] aspartate 

observed in IDH1 mutant cells indicate decreased glutamine reductive metabolism, 

therefore, the lower fraction of cytosolic acetyl-CoA from that pathway. More recently, a 

study revealed that cells switch to increased uptake rather than de novo synthesis of fatty 

acids to meet the large demands of acetyl-CoA under hypoxia condition [288]. It was 

found that under hypoxia cancer cells increase fatty acids uptake by inducing the 
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expression of fatty acid binding proteins, namely FABP3 and FABP7, in a HIF-1α-

dependent manner [289]. IDH1 mutant cells have been reported to exhibit increased 

dependence on the uptake of exogenous lipids for cell growth compared to cells 

expressing wild-type enzyme [290]. We therefore analyzed the uptake of fatty acids from 

the cell culture medium for each cell line. The uptake data were normalized to the area 

under the corresponding cell growth curve according to a previous report [291]. The result 

is shown in Figure 60C. A significant higher uptake of fatty acids was observed in IDH1-

R132H mutant cells compared to other cell lines. This may in turn explain the lower 

isotopic labeling observed in IDH1 mutant cells (Figure 60A-B). 

In addition to glucose and glutamine, acetate can also contribute to the production of 

intracellular acetyl-CoA. Comerford et al. reported that acetate provides carbons for 

acetyl-CoA synthesis in tumors via acetyl-CoA synthetase, ACSS2 [292]. Using 13C-tracer 

analysis acetate was found to contribute substantially to acetyl-CoA generation in hypoxic 

cancer cells [293]. Increased uptake of acetate was reported in IDH1-R132H mutant cells 

in a glioblastoma U251 cell model in both in vitro and in vivo experiments [6]. To further 

investigate the impact of IDH1/2 mutations on fatty acids biosynthesis, more extensive 

and systematic studies need to be carried out. 
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Figure 59. Isotopologue distribution of palmitate from 13C6-glucose (A) and 13C5-

glutamine (B) tracing in the HCT116 cell panel. Lower [M+10], [M+12], [M+14], and [M+16] 

fractions were observed in IDH mutant cells compared to wild-type in 13C6-glucose tracing 

experiments (A), while lower [M+2] and [M+4] fractions can be seen in IDH mutant cells 

with 13C5-glutamine  tracing. Data are shown as mean + SD, n=6, two independent 

experiments. * p< 0.05, ** p< 0.01, *** p< 0.001, for statistics see Supplementary Table 

S15 in Chapter 11. 
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Figure 60. Mean isotopic enrichment of palmitate from 13C6-glucose (A) and 13C5-

glutamine (B) tracing and the unlabeled palmitate uptake from the culture medium (C) in 

the HCT116 cell panel. Significant differences in mean enrichment from both 13C-glucose 

and 13C-glutamine tracing between IDH mutant and wild-type cells were observed. Data 

are shown as mean + SD, n=6, two independent experiments. * p< 0.05, ** p< 0.01, *** 

p< 0.001, for statistics see Supplementary Table S15 in Chapter 11.  
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11 Supplementary information 

Table S1. Parameters used for amino acid isotopologue detection in MRM mode by 

HPLC-ESI-QqQ-MS/MS. The numbers next to each amino acid represent the mass shift 

for the precursor and product ion, respectively, e.g., Glu_4.3 represents a mass shift of 4 

in the precursor ion and 3 in the product ion in a glutamate molecule. 

ID Q1 Mass (Da) 
Q3 Mass 

(Da) 
Time 

(msec) 
DP 

(volts) 
CE 

(volts) 
CXP 

(volts) 
Arg_0.0 303.200 243.000 40 26 25 14 
Ser_0.0 234.130 174.080 40 50 14 10 
Ser_1.0 235.130 175.080 40 50 14 10 
Ser_2.0 236.130 176.080 40 50 14 10 
Ser_3.0 237.130 177.080 40 50 14 10 
Asn_0.0 243.130 157.100 40 66 14 11 
Asn_1.1 244.130 158.100 40 66 14 11 
Asn_2.2 245.130 159.100 40 66 14 11 
Asn_3.3 246.130 160.100 40 66 14 11 
Asn_4.4 247.130 161.100 40 66 14 11 
Gly_0.0 204.120 144.070 40 56 12 12 
Gly_1.1 205.120 145.070 40 56 12 12 
Gly_2.2 206.120 146.070 40 56 12 12 
Ala_0.0 218.13 130.09 40 59 17 10 
Arg_1.1 304.200 244.000 40 26 25 14 
Arg_2.2 305.200 245.000 40 26 25 14 
Arg_3.3 306.200 246.000 40 26 25 14 
Arg_4.4 307.200 247.000 40 26 25 14 
Arg_5.5 308.200 248.000 40 26 25 14 
Arg_6.6 309.200 249.000 40 26 25 14 
Ala_1.0 219.130 130.090 40 59 17 10 
Ala_1.1 219.130 131.090 40 59 17 10 
Ala_2.1 220.130 131.090 40 59 17 10 
Pro_0.0 244.150 184.100 40 50 12 10 
Orn_0.0 347.120 287.160 40 67 14 8 
Orn_1.1 348.210 288.160 40 67 14 8 
Orn_2.2 349.120 289.160 40 67 14 8 
Orn_3.3 350.120 290.160 40 67 14 8 
Orn_4.4 351.120 291.160 40 67 14 8 
Orn_5.5 352.120 292.160 40 67 14 8 
Asp_0.0 304.170 216.120 40 61 18 11 
Glu_0.0 318.180 230.140 40 64 18 12 
Glu_5.4 323.180 234.140 40 64 18 12 
Glu_4.3 322.180 233.140 40 64 18 12 
Glu_4.4 322.180 234.140 40 64 18 12 
Glu_3.3 321.180 233.140 40 64 18 12 
Glu_3.2 321.180 232.140 40 64 18 12 
Glu_2.2 320.180 232.140 40 64 18 12 
Glu_2.1 320.180 231.140 40 64 18 12 
Glu_1.1 319.180 231.140 40 64 18 12 
Glu_1.0 319.180 231.140 40 64 18 12 
Pro_1.1 245.150 185.100 40 50 12 10 
Pro_2.2 246.150 186.100 40 50 12 10 
Pro_3.3 247.150 187.100 40 50 12 10 
Pro_4.4 248.150 188.100 40 50 12 10 
Pro_5.5 249.150 189.100 40 50 12 10 
Asp_1.0 305.170 216.120 40 61 18 11 
Asp_1.1 305.170 217.120 40 61 18 11 
Asp_2.1 306.170 217.120 40 61 18 11 
Asp_2.2 306.170 218.120 40 61 18 11 
Asp_3.2 307.170 218.120 40 61 18 11 
Asp_3.3 307.170 219.120 40 61 18 11 
Asp_4.3 308.170 219.120 40 61 18 11 

 



138 

 

Table S2. Density of HCT116 cells seeded per well for each cell line in 6-well plates.  

Cell culture time wild type IDH1-R132H IDH2-R172K / IDH2-R140Q 

0h 380,000 400,000 380,000 

12h 300,000 350,000 300,000 

24h 300,000 350,000 250,000 

48h 200,000 300,000 200,000 

72h 150,000 200,000 150,000 

 

Table S3. “Analysis of variance (ANOVA) of GSH/GSSG ratio between MCT-competent 

and MCT-deficient LS174T cells under normal or H2O2 treatment conditions was 

performed in R (version 3.5.1). Pairwise comparisons between cell lines under each 

condition were performed with Tukey’s post hoc test. A paired t-test (EXCEL 2013) was 

used to test the impact of H2O2 treatment in each cell line. A p-value of less than 0.05 

was statistically significant. n.s., not significant.” (Sun et al., in submission) 

Normal condition (overall p-value = 0.0004) 

  WT MCT1-/- MCT4-/- MCT1-/- MCT4-/- 

WT -- -- -- -- 

MCT1-/- n.s. -- -- -- 

MCT4-/- n.s. n.s. -- -- 

MCT1-/- MCT4-/- 0.0016 0.0027 0.0011 -- 

H2O2 treatment (overall p-value = 4.86E-05) 

  WT MCT1-/- MCT4-/- MCT1-/- MCT4-/- 

WT -- -- -- -- 

MCT1-/- n.s. -- -- -- 

MCT4-/- 3.40E-05 0.0037 -- -- 

MCT1-/- MCT4-/- 0.0022 n.s. 0.0014 -- 

Normal condition versus H2O2 treatment  

  WT MCT1-/- MCT4-/- MCT1-/- MCT4-/- 

WT 9.73E-05 -- -- -- 

MCT1-/- -- 5.89E-05 -- -- 

MCT4-/- -- -- 3.61E-05 -- 

MCT1-/- MCT4-/- -- -- -- 1.05E-07 
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Table S4. “Analysis of variance (ANOVA) of pyruvate secretion, lactate release, glucose 

uptake, and intracellular glucose and G6P content between MCT-competent and MCT-

deficient LS174T cells under normal conditions were performed in R (version 3.5.1). 

Pairwise comparisons between cell lines under each condition were performed with 

Tukey’s post hoc test. A p-value of less than 0.05 was statistically significant. n.s., not 

significant.” (Sun et al., in submission) 

 Under normal condition (overall p-value = 2.86x10-13) – pyruvate secretion 
  WT MCT1-/- MCT4-/- MCT1-/- MCT4-/- 
 WT -- -- -- -- 
 MCT1-/- 1.33x10-8 -- -- -- 
 MCT4-/- 9.38x10-5 6.86x10-4 -- -- 
 MCT1-/- MCT4-/- 2.28x10-13 1.33x10-8 5.77x10-11 -- 

 Under normal condition (overall p-value = 9.67x10-9) – lactate release 

  WT MCT1-/- MCT4-/- MCT1-/- MCT4-/- 

 WT -- -- -- -- 

 MCT1-/- n.s -- -- -- 

 MCT4-/- n.s n.s -- -- 

 MCT1-/- MCT4-/- 1.57x10-7 5.33x10-8 1.19x10-7 -- 

 Under normal condition (overall p-value = 1.29x10-9) – glucose uptake 

  WT MCT1-/- MCT4-/- MCT1-/- MCT4-/- 

 WT -- -- -- -- 

 MCT1-/- n.s -- -- -- 

 MCT4-/- n.s. n.s. -- -- 

 MCT1-/- MCT4-/- 2.70x10-8 4.67x10-8 3.81x10-9 -- 
 Under normal condition (overall p-value = 2.43x10-6) – intracellular glucose 
  WT MCT1-/- MCT4-/- MCT1-/- MCT4-/- 
 WT -- -- -- -- 
 MCT1-/- 2.01x10-5 -- -- -- 
 MCT4-/- n.s. 3.80x10-6 -- -- 
 MCT1-/- MCT4-/- n.s. 2.90x10-4 n.s. -- 
 Under normal condition (overall p-value = 2.81x10-5) – intracellular G6P 
  WT MCT1-/- MCT4-/- MCT1-/- MCT4-/- 
 WT -- -- -- -- 
 MCT1-/- n.s. -- -- -- 
 MCT4-/- n.s. 4.72x10-3 -- -- 
 MCT1-/- MCT4-/- 6.14x10-4 1.62x10-2 2.54x10-5 -- 
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Table S5. “Analysis of variance (ANOVA) of GSH/GSSG ratios between HCT116 cell 

lines was performed in R (version 3.5.1) with Tukey’s post hoc test. A p-value of less than 

0.05 was statistically significant. n.s., not significant.” (Sun et al., in submission) 

overall p-value = 0.0004 

  WT IDH1-R132H IDH2-R172K IDH2-R140Q 

WT -- -- -- -- 

IDH1-R132H 0.0004 -- -- -- 

IDH2-R172K 0.0040 0.0021 -- -- 

IDH2-R140Q 0.0106 0.0004 n.s. -- 

 

Table S6. “Analysis of variance (ANOVA) of peak area ratio between different 

measurement conditions (concentrations and Q1 window widths) was performed using 

the R/Bioconductor software package limma (version 3.4.1). P-values adjusted according 

to the method proposed by Benjamini and Hochberg of pairwise comparisons are given. 

Differences were considered significant, if the p-value was less than 0.05.” [3] 

  179/182 308/311 

10 µM 8 Da vs 10 Da 2.50E-12 7.45E-18 

10 µM 8 Da vs 12 Da 6.66E-17 1.65E-22 

10 µM 8 Da vs 20 Da 3.41E-17 3.28E-23 

10 µM 10 Da vs 12 Da 2.59E-13 6.45E-19 

10 µM 10 Da vs 20 Da 7.82E-14 3.82E-20 

10 µM 12 Da vs 20 Da 2.34E-02 2.40E-10 

20 µM 8 Da vs 10 Da 2.80E-20 3.23E-20 

20 µM 8 Da vs 12 Da 1.62E-28 1.62E-28 

20 µM 8 Da vs 20 Da 1.27E-29 1.27E-29 

20 µM 10 Da vs 12 Da 3.81E-22 3.81E-22 

20 µM 10 Da vs 20 Da 4.58E-24 1.63E-24 

20 µM 12 Da vs 20 Da 1.82E-07 2.80E-09 

40 µM 8 Da vs 10 Da 6.37E-13 9.75E-18 

40 µM 8 Da vs 12 Da 7.01E-18 1.11E-22 

40 µM 8 Da vs 20 Da 1.53E-18 1.50E-23 

40 µM 10 Da vs 12 Da 2.18E-14 4.02E-19 

40 µM 10 Da vs 20 Da 1.64E-15 1.34E-20 

40 µM 12 Da vs 20 Da 1.56E-05 2.32E-11 
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Table S7. “RPMI 1640 medium components from PAN-Biotech website.”[3]  

 Components mg/L 

Inorganic Salts Calcium nitrate × 4H2O 100.00 

 Potassium chloride 400.00 

 Magnesium sulfate anhydrous 48.83 

 Sodium chloride 6000.00 

 di-Sodium hydrogen phosphate 800.49 

Other Components D(+)-Glucose anhydrous 2000.00 

 Glutathione (red.) 1.00 

 Phenol red 5.00 

Amino acids L-Arginine × HCl 241.86 

 L-Asparagine × H2O 50.00 

 L-Aspartic acid 20.00 

 L-Cystine × 2HCl 65.19 

 L-Glutamine 0.00 

 L-Glutamic acid 20.00 

 Glycine 10.00 

 L-Histidine × HCl × H2O 20.27 

 L-Hydroxyproline 20.00 

 L-Isoleucine 50.00 

 L-Leucine 50.00 

 L-Lysine × HCl 40.00 

 L-Methionine 15.00 

 L-Phenylalanine 15.00 

 L-Proline 20.00 

 L-Serine 30.00 

 L-Threonine 20.00 

 L-Tryptophan 5.00 

 L-Tyrosine × 2Na 28.83 

 L-Valine 20.00 

Vitamins p-Aminobenzoic acid 1.00 

 D-(+)-Biotin 0.20 

 D-Calcium pantothenate 0.25 

 Choline chloride 3.00 

 Folic acid 1.00 

 myo-Inositol 35.00 

 Nicotinamide 1.00 

 Pyridoxine × HCl 1.00 

 Riboflavin 0.20 

 Thiamine × HCl 1.00 

  Vitamine B12 0.005 
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Table S8. “Analysis of variance (ANOVA) of isotopic mean enrichment of GSH between 

groups from the 13C-tracer experiments was performed using the R/Bioconductor 

software package limma (version 3.4.1). P-values adjusted according to the method 

proposed by Benjamini and Hochberg of pairwise comparisons are given. Differences 

were considered significant, if the p-value was less than 0.05. No significant difference: 

n.s.” [3] 

U-13C-Glucose tracing (48 h) 

 Par ctrl vs par BSO Par ctrl vs 132H ctrl Par BSO vs 132H BSO 132H ctrl vs 132H BSO 

GlyCys 6.10E-04 1.35E-06 2.56E-07 4.24E-03 

CysGlu 2.55E-03 7.80E-06 9.49E-07 1.34E-02 

GSH 1.93E-03 5.43E-06 1.55E-06 1.24E-02 

U-13C-Glutamine tracing (48 h) 

 Par ctrl vs par BSO Par ctrl vs 132H ctrl Par BSO vs 132H BSO 132H ctrl vs 132H BSO 

CysGlu n.s. 0.0401 n.s. n.s. 

GSH n.s. 0.0401 n.s. n.s. 

 

Table S9. Analysis of variance (ANOVA) of isotopic mean enrichment of amino acids from 

U-13C-glucose / glutamine tracing experiments were performed in R (version 3.5.1). 

Pairwise comparisons between cell lines were performed with Tukey’s post hoc test. A p-

value of less than 0.05 was considered statistically significant. 

U-13C-Glucose tracing (wild-type) 

  Overall p-value 12h vs 24h 24h vs 48h 48h vs 72h 

Alanine 1.48E-15 1.00E-08 6.00E-07 6.90E-01 

Aspartate 4.96E-15 1.00E-08 1.10E-06 8.66E-01 

Glutamate 2.96E-15 1.00E-08 8.00E-07 2.34E-01 

Glycine 4.21E-07 2.49E-02 1.09E-01 3.59E-02 

Proline 5.18E-13 2.20E-06 1.00E-06 2.76E-01 

Serine 2.03E-14 1.13E-05 1.00E-08 3.33E-03 

U-13C-Glutamine tracing (wild-type) 

Aspartate 2.84E-10 4.63E-04 2.47E-04 1.23E-01 

Glutamate 2.55E-08 4.38E-02 1.41E-03 1.50E-01 

Proline 9.75E-11 9.11E-04 4.40E-06 9.33E-01 

U-13C-Glucose tracing (IDH1-R132H) 

Alanine 4.92E-09 1.84E-02 1.54E-03 3.00E-02 

Aspartate 3.39E-10 4.69E-03 4.13E-04 7.74E-03 

Glutamate 1.56E-15 7.20E-06 1.00E-07 2.00E-07 

Glycine 5.61E-06 2.16E-01 4.41E-02 2.24E-02 

Proline 6.42E-12 1.63E-02 9.60E-06 2.07E-04 

Serine 1.50E-12 6.19E-03 1.00E-07 3.91E-02 

U-13C-Glutamine tracing (IDH1-R132H) 

Aspartate 2.00E-16 3.51E-03 0.00E+00 3.86E-04 
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Glutamate 3.52E-10 7.14E-01 1.33E-05 3.84E-03 

Proline 9.36E-01 -- -- -- 

U-13C-Glucose tracing (IDH2-R172K) 

Alanine 6.12E-15 2.00E-07 0.00E+00 3.32E-03 

Aspartate 2.00E-16 2.00E-07 0.00E+00 0.00E+00 

Glutamate 2.00E-16 2.12E-05 0.00E+00 0.00E+00 

Glycine 7.28E-12 1.28E-04 7.05E-02 5.00E-07 

Proline 1.25E-10 1.56E-02 1.24E-03 9.97E-05 

Serine 7.29E-09 7.29E-09 1.19E-05 6.65E-01 

U-13C-Glutamine tracing (IDH2-R172K) 

Aspartate 2.00E-16 6.00E-07 0.00E+00 0.00E+00 

Glutamate 4.81E-14 2.97E-01 5.00E-07 1.00E-07 

Proline 6.85E-01 -- -- -- 

U-13C-Glucose tracing (IDH2-R140Q) 

Alanine 1.49E-11 5.83E-05 2.73E-05 4.58E-02 

Aspartate 8.55E-14 3.83E-04 3.00E-07 5.05E-05 

Glutamate 1.61E-11 1.27E-02 2.63E-05 4.00E-04 

Glycine 3.20E-07 3.39E-01 6.86E-02 3.15E-03 

Proline 1.85E-08 2.69E-01 1.91E-03 9.58E-03 

Serine 6.32E-11 1.88E-01 1.00E-06 7.14E-02 

U-13C-Glutamine tracing (IDH2-R140Q) 

Aspartate 2.24E-16 3.00E-07 0.00E+00 5.20E-06 

Glutamate 2.00E-16 1.12E-03 0.00E+00 0.00E+00 

Proline 9.40E-01 -- -- -- 

 

Table S10. Analysis of variance (ANOVA) of isotopic mean enrichment of organic acids 

from U-13C-glucose / glutamine tracing experiments were performed in R (version 3.5.1). 

Pairwise comparisons between cell lines were performed with Tukey’s post hoc test. A p-

value of less than 0.05 was considered statistically significant. 

U-13C-Glucose tracing (wild-type) 

  Overall p-value 12h vs 24h 24h vs 48h 48h vs 72h 

Pyruvate 4.41E-08 4.45E-05 1.83E-01 7.76E-01 

Lactate 1.85E-10 1.00E-07 2.26E-01 7.00E-01 

Succinate 9.06E-04 6.43E-02 2.05E-01 1.11E-02 

Fumarate 2.19E-15 1.00E-08 8.10E-06 1.48E-01 

Malate 8.88E-12 2.00E-07 1.93E-04 9.78E-01 

Citrate 1.37E-14 1.00E-08 3.60E-05 7.58E-01 

α-KG 7.90E-06 2.57E-03 2.49E-01 9.76E-01 

Glycerol-3-P 2.00E-16 1.00E-08 1.00E-08 4.50E-06 

2-HG 2.53E-03 4.33E-02 4.49E-02 4.98E-02 

U-13C-Glutamine tracing (wild-type) 

Succinate 2.23E-02 9.95E-01 3.64E-01 7.81E-01 

Fumarate 1.07E-05 4.67E-01 1.62E-02 3.60E-01 

Malate 1.07E-07 2.39E-01 8.60E-04 3.25E-01 
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Citrate 6.64E-05 2.05E-01 8.58E-02 7.56E-01 

α-KG 1.32E-03 1.26E-01 9.74E-01 1.82E-01 

2-HG 7.02E-03 7.26E-01 3.23E-01 8.58E-01 

U-13C-Glucose tracing (IDH1-R132H) 

Pyruvate 6.17E-02 -- -- -- 

Lactate 9.51E-06 3.87E-03 7.35E-01 2.40E-01 

Succinate 1.26E-04 5.46E-02 6.92E-01 2.56E-02 

Fumarate 2.64E-13 2.97E-03 9.00E-07 2.49E-05 

Malate 2.40E-09 4.35E-03 1.33E-03 4.96E-02 

Citrate 1.68E-06 1.95E-03 1.99E-01 4.66E-02 

α-KG 3.42E-09 2.12E-01 8.86E-03 1.67E-04 

Glycerol-3-P 2.21E-15 1.00E-16 1.00E-07 1.32E-01 

2-HG 6.92E-14 3.08E-05 1.10E-06 4.74E-05 

U-13C-Glutamine tracing (IDH1-R132H) 

Succinate 5.60E-05 9.99E-01 2.94E-03 9.62E-01 

Fumarate 6.07E-06 9.53E-01 9.01E-03 8.81E-02 

Malate 3.04E-10 8.74E-01 1.00E-07 8.67E-02 

Citrate 1.82E-07 9.83E-01 1.93E-04 2.51E-01 

α-KG 1.68E-04 6.67E-01 1.54E-03 9.82E-01 

2-HG 9.08E-05 1.77E-03 2.68E-01 7.97E-03 

U-13C-Glucose tracing (IDH2-R172K) 

Pyruvate 3.29E-01 -- -- -- 

Lactate 3.60E-09 2.35E-04 7.90E-04 9.31E-01 

Succinate 6.16E-05 8.90E-01 9.07E-02 1.03E-02 

Fumarate 1.15E-09 1.05E-01 4.37E-03 1.49E-04 

Malate 1.21E-12 2.47E-04 9.51E-05 1.18E-05 

Citrate 1.49E-11 2.10E-06 3.53E-04 1.38E-02 

α-KG 4.13E-10 4.67E-02 7.19E-04 5.60E-04 

Glycerol-3-P 1.04E-10 1.18E-05 1.79E-04 3.02E-01 

2-HG 2.00E-16 0.00E+00 0.00E+00 0.00E+00 

U-13C-Glutamine tracing (IDH2-R172K) 

Succinate 5.48E-03 9.74E-01 5.91E-01 2.47E-01 

Fumarate 1.90E-11 2.44E-02 1.69E-04 2.75E-05 

Malate 3.35E-10 2.94E-02 2.98E-03 1.06E-04 

Citrate 4.16E-11 5.49E-01 8.40E-06 2.54E-04 

α-KG 1.97E-07 4.70E-01 8.25E-04 4.71E-03 

2-HG 1.99E-12 0.00E+00 1.88E-01 0.00E+00 

U-13C-Glucose tracing (IDH2-R140Q) 

Pyruvate 8.88E-04 7.16E-01 1.16E-02 7.76E-01 

Lactate 4.36E-09 4.71E-05 1.03E-02 7.05E-01 

Succinate 1.73E-04 7.03E-01 9.93E-01 2.16E-03 

Fumarate 4.29E-11 5.28E-04 1.62E-04 5.20E-04 

Malate 1.09E-10 6.12E-03 1.68E-04 2.49E-03 

Citrate 6.29E-09 8.93E-03 3.23E-04 3.14E-02 

α-KG 2.46E-11 8.31E-02 4.80E-06 2.55E-04 

Glycerol-3-P 1.05E-10 5.70E-06 3.28E-04 2.50E-01 

2-HG 1.51E-13 2.46E-04 2.05E-05 1.00E-06 

U-13C-Glutamine tracing (IDH2-R140Q) 

Succinate 2.29E-01 -- -- -- 
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Fumarate 1.88E-08 6.52E-01 1.59E-04 7.10E-02 

Malate 1.04E-14 3.98E-01 0.00E+00 4.90E-06 

Citrate 3.94E-08 6.16E-01 1.47E-04 6.49E-03 

α-KG 2.20E-04 9.93E-01 2.02E-02 3.71E-01 

2-HG 6.46E-05 2.41E-02 5.15E-01 1.16E-03 

 

Table S11. Analysis of variance (ANOVA) of isotopic mean enrichment of glutathione 

from U-13C-glucose / glutamine tracing experiments were performed in R (version 3.5.1). 

Pairwise comparisons between cell lines were performed with Tukey’s post hoc test. A p-

value of less than 0.05 was considered statistically significant. 

U-13C-Glucose tracing 

  Overall p-value 12h vs 24h 24h vs 48h 48h vs 72h 

Wild-type 2.00E-16 1.00E-16 1.00E-16 3.08E-04 

IDH1-R132H 2.00E-16 2.00E-16 2.00E-16 2.00E-16 

IDH2-R172K 2.00E-16 2.00E-16 2.00E-16 2.00E-16 

IDH2-R140Q 2.00E-16 3.00E-06 2.00E-16 2.34E-05 

U-13C-Glutamine tracing 

Wild-type 8.54E-05 1.91E-04 9.84E-01 6.20E-02 

IDH1-R132H 1.66E-11 2.00E-16 9.65E-01 3.00E-07 

IDH2-R172K 2.00E-16 2.00E-16 2.00E-01 2.00E-16 

IDH2-R140Q 3.80E-10 2.00E-16 3.49E-01 1.00E-07 

 

Table S12. Analysis of variance (ANOVA) of isotopic mean enrichment and isotopologues 

of amino acids from U-13C-glucose / glutamine tracing experiments were performed in R 

(version 3.5.1). Pairwise comparisons between cell lines were performed with Tukey’s 

post hoc test. A p-value of less than 0.05 was considered statistically significant. 

U-13C-Glucose tracing 48 h (mean enrichment) 

  
overall 
p-value 

wt vs 132H wt vs 172K wt vs 140Q 132H vs 172K 132H vs 140Q 172K vs 140Q 

Ala 4.03E-05 1.73E-05 6.54E-03 4.29E-02 -- 1.07E-02 -- 

Asp 9.58E-04 2.34E-02 4.89E-04 -- -- -- -- 

Glu 1.17E-03 3.64E-02 1.83E-03 -- -- -- 9.73E-03 

Gly 2.49E-03 -- -- 1.67E-03 -- 2.86E-02 3.47E-02 

Pro 1.10E-05 -- 8.70E-06 -- 3.04E-03 -- 1.74E-04 

Ser 1.75E-02 4.46E-02 -- -- -- 1.74E-02 -- 

U-13C-Glucose tracing 48 h (isotopologues) 

m0_Ala 1.89E-04 9.75E-05 3.32E-02 -- -- 8.07E-03 -- 

m1_Ala 2.40E-03 1.18E-01 1.66E-03 1.95E-02 -- -- -- 

m3_Ala 4.82E-05 2.42E-05 5.48E-03 -- -- 7.14E-03 -- 

m0_Glu 5.62E-07 3.79E-03 2.00E-07 3.43E-03 7.76E-04 -- 8.58E-04 
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m2_Glu 4.16E-07 5.99E-03 5.60E-06 -- 2.38E-02 7.78E-04 9.00E-07 

m3_Glu 1.06E-08 2.27E-04 1.00E-08 2.60E-06 1.05E-04 -- 1.16E-02 

m4_Glu 3.02E-06 1.98E-03 1.50E-06 2.18E-04 1.68E-02 -- -- 

m5_Glu 8.44E-06 4.65E-03 8.10E-06 9.69E-05 4.38E-02 -- -- 

m0_Asp 1.72E-04 2.37E-02 7.52E-05 1.28E-02 -- -- -- 

m1_Asp 1.44E-06 -- 2.14E-05 6.90E-06 1.67E-03 4.90E-04 -- 

m2_Asp 7.38E-07 4.43E-04 3.00E-07 3.98E-04 1.03E-02 -- 1.15E-02 

m3_Asp 2.51E-02 -- 2.14E-02 -- -- -- -- 

m4_Asp 2.42E-03 -- 1.28E-03 -- -- -- -- 

U-13C-Glutamine tracing 12 h (mean enrichment) 

  
overall 
p-value 

wt vs 132H wt vs 172K wt vs 140Q 132H vs 172K 132H vs 140Q 172K vs 140Q 

Asp 8.98E-07 2.33E-04 3.49E-05 -- -- 7.04E-05 1.11E-05 

Glu 2.12E-07 2.30E-06 7.00E-07 2.49E-02 -- 2.13E-03 5.05E-04 

U-13C-Glutamine tracing 12 h (isotopologues) 

m0_Glu 8.66E-10 1.00E-11 1.00E-11 7.22E-04 -- 2.27E-05 6.39E-05 

m5_Glu 3.55E-07 1.15E-05 1.00E-06 -- -- 1.68E-03 1.15E-04 

m0_Asp 4.07E-07 1.08E-04 3.51E-05 --            -- 1.79E-05 6.10E-06 

m1_Asp 1.39E-03 3.94E-03 -- -- 3.21E-03 8.34E-03 -- 

m2_Asp 1.30E-02 -- -- -- -- 1.26E-02 -- 

m3_Asp 2.66E-06 1.00E-06 1.21E-02 2.59E-03 1.70E-03 7.99E-03 -- 

m4_Asp 2.49E-06 1.75E-04 4.19E-05 -- -- 2.99E-04 7.05E-05 

m5 
Pro/m5 

Glu 
1.06E-04 5.12E-05 1.45E-02 4.98E-03 8.93E-02 2.11E-01 9.63E-01 

 

Table S13. Analysis of variance (ANOVA) of isotopic mean enrichment and isotopologues 

of GSH from U-13C-glucose / glutamine tracing experiments were performed in R (version 

3.5.1). Pairwise comparisons between cell lines were performed with Tukey’s post hoc 

test. A p-value of less than 0.05 was considered statistically significant. 

U-13C-Glucose tracing 48 h (mean enrichment) 

  
overall 
p-value 

wt vs 132H wt vs 172K wt vs 140Q 
132H vs 

172K 
132H vs 

140Q 
172K vs 

140Q 

CysGlu 6.60E-05 1.00E-02 4.74E-05 -- -- -- 2.33E-03 

GSH 1.41E-05 3.86E-03 1.22E-05 -- -- -- 5.02E-04 

U-13C-Glucose tracing 48 h (isotopologues) 

m0_GSH 6.06E-04 2.53E-02 2.87E-04 -- --- -- -- 

m1_GSH 3.65E-04 3.66E-04 -- -- -- -- -- 

m2_GSH 1.42E-05 2.26E-04 1.43E-05 3.56E-02 -- -- 1.08E-02 

m3_GSH 9.54E-05 1.08E-02 4.58E-05 4.98E-03 -- -- -- 

m4_GSH 3.06E-03 -- 1.58E-03 -- -- -- -- 

m5_GSH 4.82E-03 4.96E-02 3.01E-03 -- -- -- -- 

m0_CysGlu 1.68E-03 -- 8.08E-04 -- -- -- -- 

m1_CysGlu 4.04E-06 1.50E-06 3.04E-03 -- 1.14E-02 1.92E-03 -- 

m2_CysGlu 5.89E-05 1.68E-03 6.24E-05 -- -- -- 5.53E-03 

m3_CysGlu 1.32E-03 -- 6.50E-04 4.86E-02 -- -- -- 
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m4_CysGlu 2.67E-03 -- 1.35E-03 -- -- -- -- 

m5_CysGlu 2.40E-02 -- 1.52E-02 -- -- -- -- 

U-13C-Glutamine tracing 48 h (mean enrichment) 

  
overall 
p-value 

wt vs 132H wt vs 172K wt vs 140Q 
132H vs 

172K 
132H vs 

140Q 
172K vs 

140Q 

CysGlu 9.16E-07 1.66E-03 5.00E-06 -- -- 1.89E-03 5.60E-06 

GSH 1.72E-06 4.89E-03 5.88E-05 -- -- 3.00E-04 4.30E-06 

U-13C-Glutamine tracing 48 h (isotopologues) 

m0_GSH 2.72E-07 -- 9.88E-05 1.52E-02 2.34E-03 6.44E-04 1.00E-07 

m1_GSH 4.31E-03 -- 1.53E-02 -- 4.58E-03 -- 4.92E-02 

m3_GSH 7.63E-05 1.08E-04 4.02E-03 3.65E-04 -- -- -- 

m5_GSH 2.46E-08 4.27E-05 1.00E-08 9.72E-03 2.06E-03 -- 9.80E-06 

m0_CysGlu 2.97E-07 1.80E-02 4.10E-06 -- 5.68E-03 1.49E-03 5.00E-07 

m1_CysGlu 4.05E-03 -- 1.01E-02 -- 6.11E-03 -- 3.58E-02 

m5_CysGlu 9.22E-06 1.22E-03 5.40E-06 -- -- -- 1.77E-03 

 

Table S14. Analysis of variance (ANOVA) of isotopic mean enrichment and isotopologue 

distribution in TCA cycle intermediates and 2-HG from U-13C-glucose / glutamine tracing 

experiments were performed in R (version 3.5.1). Pairwise comparisons between cell 

lines were performed with Tukey’s post hoc test. A p-value of less than 0.05 was 

considered statistically significant. 

U-13C-Glutamine tracing 24 h (mean enrichment) 

  
overall 
p-value 

wt vs 132H wt vs 172K wt vs 140Q 
132H vs 

172K 
132H vs 

140Q 
172K vs 

140Q 

2-HG 2.65E-06 3.84E-04 2.90E-06 -- -- 3.53E-02 2.23E-04 

Citrate 8.37E-04 5.51E-03 1.09E-03 -- -- -- -- 

α-KG 8.77E-09 3.00E-07 1.00E-07 -- -- 4.61E-05 5.80E-06 

Succinate 1.74E-03 4.40E-02 9.42E-03 -- -- 4.51E-02 4.68E-03 

Fumarate 2.99E-03 3.90E-02 1.17E-02 -- -- -- 1.83E-02 

Malate 1.89E-03 2.12E-02 8.15E-03 -- -- 4.37E-02 1.73E-02 

U-13C-Glutamine tracing 24 h (isotopologues) 

m0_Citrate 9.64E-04 5.12E-03 2.61E-03 -- -- -- 3.91E-02 

m2_Citrate 6.45E-03 3.35E-02 -- -- -- 3.25E-02 -- 

m4_Citrate 9.62E-04 8.64E-03 5.19E-03 -- -- 2.60E-02 1.59E-02 

m5_Citrate 2.67E-02 2.14E-02 -- -- -- -- -- 

m4_Succinate 1.98E-03 3.92E-02 5.36E-03 -- -- -- 9.52E-03 

m4_Fumarate 3.74E-03 3.06E-02 2.57E-02 -- -- 3.41E-02 2.87E-02 

m4_Malate 1.68E-03 1.02E-02 7.06E-03 -- -- 3.21E-02 4.53E-02 
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Table S15. Analysis of variance (ANOVA) of isotopic mean enrichment and isotopologues 

of fatty acids (C16:0) from U-13C-glucose / glutamine tracing experiments, as well as 

uptake of fatty acids of the cells after 48 h incubation were performed in R (version 3.5.1). 

Pairwise comparisons between cell lines were performed with Tukey’s post hoc test. A p-

value of less than 0.05 was considered statistically significant. 

C16:0 mean enrichment 

  
overall wt vs 

132H 
wt vs 
172K 

wt vs 
140Q 

132H vs 
172K 

132H vs 
140Q 

172K vs 
140Q p-value 

Glc tracing_48h 3.24E-06 2.40E-06 -- 9.28E-03 8.85E-05 6.10E-03 -- 

Gln tracing_48h 2.67E-06 2.90E-06 2.25E-02 5.80E-05 3.03E-03 -- -- 

U-13C-Glucose tracing (48 h) 

  
overall wt vs 

132H 
wt vs 
172K 

wt vs 
140Q 

132H vs 
172K 

132H vs 
140Q 

172K vs 
140Q p-value 

[M+0] 8.81E-04 3.92E-04 -- -- -- -- -- 

[M+10] 9.82E-03 5.55E-03 -- -- -- -- -- 

[M+12] 2.70E-04 1.39E-04 8.12E-03 2.44E-02 -- -- -- 

[M+14] 3.19E-06 1.50E-06 2.83E-04 2.00E-03 -- 1.67E-02 -- 

[M+16] 4.57E-07 3.00E-07 2.99E-05 3.21E-04 -- 1.27E-02 -- 

U-13C-Glutamine tracing (48 h) 

  
overall wt vs 

132H 
wt vs 
172K 

wt vs 
140Q 

132H vs 
172K 

132H vs 
140Q 

172K vs 
140Q p-value 

[M+0] 3.46E-04 2.89E-04 3.37E-02 2.69E-03 -- -- -- 

[M+2] 9.28E-05 5.20E-05 2.14E-02 2.54E-03 -- -- -- 

[M+4] 1.83E-04 1.65E-04 2.85E-02 1.41E-03 -- -- -- 

[M+6] 4.52E-04 6.94E-04 4.13E-02 1.34E-03 -- -- -- 

C16:0 uptake (48 h) 

  overall 
wt vs 
132H 

wt vs 
172K 

wt vs 
140Q 

132H vs 
172K 

132H vs 
140Q 

172K vs 
140Q 

uptake 9.01E-05 8.71E-05 -- 3.97E-02 2.76E-04 2.23E-03 -- 
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13 Summary 

This thesis describes the development and optimization of mass spectrometry-based 

methods for glutathione determination and 13C-tracer analysis in cultured cells. 

Glutathione is an essential endogenous antioxidant and plays an important role in cellular 

defense against oxidative damage. In this thesis, an HPLC-UV-MS method was 

developed for the simultaneous determination of GSH and GSSG in cultured cells 

following derivatization of GSH with N-ethylmaleimide (NEM) to prevent GSH 

autooxidation. LC-UV was used to detect the GS-NEM conjugate by monitoring its UV 

absorbance at 210 nm. Subsequently, GSSG and the corresponding stable isotope 

labeled internal standard (glutathione-(glycine-13C4,15N2)) were detected by mass 

spectrometry. Here, direct GSSG determination can be achieved without additional 

sample preparation. The method implemented in this thesis provides a straightforward 

and rapid approach for GSH and GSSG determination in cell culture samples and other 

biospecimens that may require minor adaption of the method. In some cases, only the 

total glutathione pool is of the interest. To that end, an optimized reduction procedure, 

employing dithiothreitol (DTT), was developed to achieve quantification of total reduced 

glutathione (tGSH) in cultured cells by LC-MS. Both of the developed methods introduced 

above were validated by testing LOD, LLOQ, intra-/inter-day precision, as well as 

recoveries with spike-in experiments.  

In addition to quantitative metabolite analysis, 13C-tracer experiments to study 

metabolism are a major component of this thesis. In this context, a wide window MRM 

strategy on a QTOF instrument was introduced to perform 13C-tracer analysis of 

glutathione. With this approach, isotopologue profiles of both precursor and product ions 

can be obtained simultaneously with high resolution, thus obviating the need to set up 

individual transitions. Q1 window width was adjusted to achieve accurate determination 

and to reduce potential interferences as much as possible. The developed method was 

applied to U-13C-glucose / U-13C-glutamine tracer analysis of glutathione in wild-type and 

IDH1-R132H mutant HCT116 cells to study the contributions of glucose and glutamine to 

glutathione biosynthesis in the absence or presence of IDH1 mutation. Interestingly, 

IDH1-R132H cells exhibited a higher dependence on glutamine for glutathione 
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biosynthesis than wild-type controls. The strategy introduced here can also be employed 

to the tracer analysis of other metabolites after a metabolite specific optimization of the 

MRM window width.  

Finally, by combining U-13C-glucose / glutamine tracing experiments with mass 

spectrometry-based 13C labeling profile analysis, the effects of different IDH1/2 mutations 

on cellular metabolism were systematically investigated by comparing 13C enrichment 

and isotopologue distribution in various metabolites including amino acids, organic acids, 

fatty acids, and GSH in the HCT116 cell panel. Changes in metabolism observed due to 

IDH1/2 mutation included different pathways and substrates that the cells use to supply 

TCA cycle intermediates, fatty acids, amino acids, as well as endogenous antioxidant 

glutathione. Cells harboring an IDH mutation tend to rely more on glutamine to refuel 

intracellular amino acids such as glutamate and aspartate, GSH, as well as TCA 

intermediates. In addition, the de novo biosynthesis of fatty acids is significantly 

decreased in IDH mutant cells.  
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