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“The greatest challenge to any thinker is stating the problem in a way that will allow a
solution.”

Bertrand Russell
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Financial Trading and the Real Economy: A Competition for Talent

by Sebastian ZELZNER

The rise of finance over the last century begs the question of whether financial mar-
kets can, and potentially have, become excessive in a way that is detrimental to the
real economy. This thesis addresses the brain-drain hypothesis with regards to fi-
nance, i.e., the conjecture that the financial sector attracts too much talent, which
could produce larger social benefits in other occupations. We set up a new theo-
retical model, based on the noisy rational expectations equilibrium (REE) model of
Grossman and Stiglitz (1980). Agents who specialize in financial trading promote
informational efficiency, at the cost that they do not contribute to job creation and
output production in the real sector. We find that the equilibrium allocation of talent
to financial trading tends to be excessive from a social welfare point of view.
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Chapter 1

Introduction

“I confess to an uneasy Physiocratic suspicion, perhaps unbecoming in an academic, that we
are throwing more and more of our resources, including the cream of our youth, into financial
activities remote from the production of goods and services, into activities that generate high
private rewards disproportionate to their social productivity.”

James Tobin, 1984

Over the last century, finance has experienced an era of remarkable growth. Its long-
run upward trend in the U.S., as shown by figure 1.1, reached a temporary peak in
2006, just at the dawn of the global financial crisis. By that time, financial sector value
added (VA) as a share of GDP was about three times as high as it had been in 1950.
In recent years, it recovered from the drop in 2007/08 and is re-approaching pre-
crisis highs. Less data is available outside the U.S., but a positive long-run trend also
shows up for many other parts of the world. Notably, while finance in the U.S., the
U.K. and Japan was seriously affected by the global financial crisis, China’s financial
sector gathered pace and in 2016 was almost four times as large as in the 1970s.
Financial services in the Euro area encountered a steady increase from 1970 to the
mid-1980s, but since then expansion has slowed down.

Reoccurring presumptions that the rise of finance might be explained by the rise
of the services industry as a whole are rejected by Phillipon and Reshef (2013, p. 75)
and Phillipon (2015, p. 1417). Patterns don’t change much when looking at finance
as a share of services instead of GDP. In response to Stauffer’s (2004) criticism on the
measurement methods related to finance VA, as well as concerns that VA over GDP
could be a misleading indicator when financial services are traded abroad, Bazot
(2018) proposes adjusted VA measures. Analyzing data from the U.S. and a number
of European countries, he finds that, if anything, "plain" value added has even un-
derstated the financial sector’s importance in recent decades. Cournède et al. (2015)
and Antill et al. (2014) consider other indicators of financial sector size, such as the
widely used "Credit-to-GDP" and "Market-Cap-to-GDP". Overall, these measures
reveal a similar long-term upward trend as depicted in figure 1.1.1

1As argued by Philippon (2015, p. 1416), VA to GDP is the conceptually superior measure for the size
of the financial sector’s share in the economy. Cournède et al. (2015, p. 10) add that while value added
has the advantage of providing a single measure that captures all parts of finance, it relies on modeling
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FIGURE 1.1: Finance Value Added to GDP (in %)
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Source: BEA for U.S. Data, EU KLEMS for Euro-5 and U.K. Data, OECD for CHN Data, Statistics
Bureau (SB) for JP Data between 1955-1998, OECD for JP Data between 1998-2016.

Note: From 1970-1974, Euro-5 depicts the weighted average of Germany, Italy, Spain and The
Netherlands. From 1975 onwards it also includes France. EU KLEMS derives data on Germany
before 1991 from data on West Germany. Different data sources use slightly different definitions
of "value added", so level comparisons between countries should be made with caution.

Note: Philippon and Reshef (2013) provide data also for some other countries, such as Canada
and Australia. By including historical sources, they get time series dating back until 1850 and
find clear long-run upward trends.

The rise of finance. U.S. data from the Bureau of Economic Analysis (BEA) allows
for a decomposition of the financial sector, as it is provided also for four different
subsectors within finance: (i) "Federal Reserve banks, credit intermediation, and re-
lated activities", (ii) "Insurance carriers and related activities", (iii) "Securities, com-
modity contracts, and investments", and (iv) "Funds, trusts, and other financial ve-
hicles". While the first two subsectors are self-explaining, the remaining two can
be subsumed under a single entity called "Other Finance". Greenwood and Scharf-
stein (2013) further decompose this "Other Finance" and show that more than 80%
of it is related to asset management activities and trading (the rest being associated
with investment banking activities such as underwriting or M&A). Consequently,
Boustanifar et al. (2017) simply call it "trading-related activities". We build on this
wording and refer to subsectors (iii)-(iv) as "(Financial) Trading". Figure 1.2 shows
U.S. finance value added over GDP for the then three distinct subsectors. It is easy to
see that while credit intermediation and insurance roughly doubled since the early
1960s, financial trading increased by a multiple of that. Consequently, financial trad-
ing accounted for 21% of finance value added in 2017, compared to only about 7%

assumptions for indirectly remunerated services such as lending or deposit-taking. In contrast, other
measures are often restricted to a certain aspect of finance, but have the advantage of being observed
directly.
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in the 1960-70s.

FIGURE 1.2: U.S. Financial Subsectors’ Value Added to GDP (in %)
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Source: Data from the BEA National Accounts.

Additional insight is gained by breaking up "value added" into its components,
namely, returns to the capital factor (i.e., gross operating surplus, or simply "profits")
and labor compensation, from which the latter is determined by wages and employ-
ment. As data from the BEA shows, profits account for a relatively steady 40-50% of
finance VA for most of the time between 1950 and 2016 and with that explain about
one-half of the rise of finance VA in the U.S. (see also Cournède et al., 2015). The
other half is explained by an increasing relative labor compensation, which means
that also finance employees have received their slice of the cake. While in the 1970s
the average U.S. financial sector worker earned about the same (full-time equiva-
lent) wage as the average worker in other occupations, figure 1.3a shows that wages
and salaries soared since the 1980s. In 2006, the average wage gap between finance
and non-finance employees amounted to more than 70%.2

Looking at the three subsectors separately, finance relative wages show a dispro-
portionately strong increase in financial trading. Kaplan and Rauh (2010) point out
that the wage gap between financial trading and other industries even widens when
looking at the very top positions. In 2004, the combined compensation of the top 25
hedge-fund managers was higher than that of all CEOs from the S&P 500 companies
taken together.

2 Strikingly, Philippon and Reshef (2012) show that this gap remains at a high average of 30-50%
when controlling for individual skill background, which implies that even people of similar ability earn
a lot more when working in finance rather than in other industries. This "finance wage premium" has
been subject to analysis in a growing amount of literature (see, e.g., Oyer, 2008, Bell and Van Reenen,
2013, Axelson and Bond, 2015, Lindley and Mcintosh, 2017, Boustanifar et al., 2017, Böhm et al., 2018,
and Célérier and Vallée, 2019). Among other explanations, it is often attributed to the stressful and
unstable job environment in finance, high returns to talent, and the participation in industry rents.
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FIGURE 1.3: Decomposition of U.S. Finance Value Added
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(B) Finance Share in Employment
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(C) Finance Share in Labor Compensation
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Source: Data from the BEA National Accounts and own calculations.

Note: Data frictions in the years 1987 and 2000 are due to changes in the methodology of the BEA
(for these years, data is plotted under both the old and the new methodology). Wages include
salaries, bonuses and stock options. Compensation additionally includes employer contributions
for pension funds, insurance funds and government social insurance.

Note: A somewhat similar analysis for various other countries is provided by Phillippon and
Reshef (2013) and Boustanifar et al. (2017).

The financial sector’s share of (full-time equivalent) employment, as shown by figure
1.3b, has recently remained relatively constant, after a doubling from about 2.5 to al-
most 5 percent between 1950 and the 1980s. Looking closer, one can see that also the
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composition of financial sector employment changed. While relative employment
in credit intermediation and insurance has even decreased since the 1980s, financial
trading has seen a steady increase. And this increase has actually been quite sub-
stantial: financial trading’s share in total employment in 2017 was more than two
times as large as it was in the late 1970s. Evidence from Philippon and Reshef (2012)
suggests that, especially since the 1980s, jobs in finance have become increasingly
complex and demanding and, consequently, the financial sector has been claiming
an increasing fraction among the well-educated. As they show, the differential in
the share of employees with strictly more than high school education in finance vs.
in other occupations almost doubled from 12 to 20 percentage points between 1980
and 2005. One can reasonably suggest that the high wages, especially in financial
trading, were at least in part geared towards satisfying this increasing demand for
talent.

Loosely speaking, combining relative wages and the share in employment gives
the financial sector’s share in economy-wide labor compensation, as shown by fig-
ure 1.3c. For intermediation and insurance, it has been increasing until the late 1980s,
but not much has happened after that. This is again totally different for financial
trading, where we see a significant increase starting in the early 1980s. With about
2.5% of the economy’s labor compensation going to financial trading since the 2000s,
it is roughly on par with intermediation and insurance. Insofar as increasing (rela-
tive) wages have attracted increasingly skilled employees, changes in the (relative)
compensation of employees are a decent indicator for changes in the share of total
employed human capital. With this in mind, figure 1.3c illustrates that we have lit-
tle reason to assume that a disproportionate inflow of talent has recently happened
with regards to the intermediation and insurance parts of finance. Strikingly, how-
ever, we do have every reason to believe that there might have been a brain-drain
towards the financial trading industry, which we see to have claimed strongly in-
creasing portions of human resources over the last three to four decades.

To complete the picture, finance’s share in economy-wide profits is given by fig-
ure 1.3d. Besides being more volatile, with a large negative spike during the financial
crisis, they show a pattern similar to that of labor compensation.

What happened? The underlying reasons for the rise of finance are not easily iden-
tified. A rather convincing story, which is hinted at by Philippon and Reshef (2013)
and Greenwood and Scharfstein (2013), goes as follows. Before the 1980s, the rise
of finance was driven mostly by an increasing relative demand for basic financial
services, such as credit, investment or insurance. This increase in demand in turn
stemmed from increasing incomes (starting from a relatively low level), which cre-
ated the scope for broad financial participation and allowed people to delegate fi-
nancial tasks from private provision to the market (see also Buera and Kaboski, 2012,
for the services industry as a whole). The composition of finance started to change in
the 1980s, when deregulation of the financial sector and the development of IT led to
a wave of financial innovation, such as securitization, derivatives trading, financial



6 Chapter 1. Introduction

engineering, hedge funds, private equity and high frequency trading. As a conse-
quence, financial sector growth shifted away from traditional banking and insurance
towards financial trading activities3. It is hard to argue that this growth of financial
trading was driven by demand alone. Professionally managed, high fee investment
funds experienced money inflows not only because they pose clear-cut benefits for
investors (they actually tend to do not, as shown by the vast amount of literature on
the failure of the active funds industry to beat the market; cf., e.g., Fama and French,
2010, and Malkiel, 2019), but rather because they have been heavily advertised (see
Malkiel, 2013, and Roussanov et al., 2018).

This story of financial sector growth is consistent with our data as well (cf. fig-
ures 1.2 and 1.3). Until 1980, traditional banking and insurance clearly dominated.
To keep up with the increasing relative demand for basic financial services, relative
employment in these sectors increased. Patterns changed with deregulation and fi-
nancial innovation in the 1980s. The financial sector as an early, heavy adopter of IT
started to delegate routine tasks to machines and computers, which especially hurt
low-skilled employment in banking and insurance. In contrast, trading-related ac-
tivities performed by high-skilled individuals gathered pace. As deregulation and
IT are typically considered complementary to skill, this perfectly fits the picture (see
Autor et al., 2013, and Boustanifar et al., 2017).

Finance and economic growth I. The enormous growth of the financial sector natu-
rally begs the question of whether this is a good or a bad thing. In pre-crisis times,
the common academic view was that a well developed financial sector brings ben-
efits overall. As summarized by Levine (2005), some of the main benefits are (i) the
pooling of capital and its efficient allocation to the most promising projects, (ii) the
provision of monitoring services, which help reduce problems of asymmetric infor-
mation, and (iii) the provision of risk sharing and insurance opportunities.

Widely taking the overall advantageousness of well developed financial markets
as given, academic discussion during the last century mainly focused on the ques-
tion of whether an expanding financial system is promoting welfare and economic
growth ("the banker ... is the ephor of the exchange economy", Schumpeter, 1911, p.
74), or whether it just reacts to changes in demand from the real sector ("where enter-
prise leads, finance follows", Robinson, 1952, p. 86). Empirical work on this question
was first undertaken by Goldsmith (1969). Using a simple econometric model with
cross-country data, he shows that there is a positive correlation between the size of
the financial intermediary sector and long-run economic growth, but fails to estab-
lish causality. McKinnon (1973) and Shaw (1973) analyze a number of case studies
from various countries and find a strong connection between financial and economic
development. However, they take more of a descriptive approach than a tangible
econometric analysis. So with the absence of any hard evidence on causality, Lucas

3Innovation in securitization also led to an increase in household credit, especially mortgage debt.
An increasing number of defaults within this sector has been at the center of negative headlines in the
U.S. subprime-mortgage crisis in 2008. See Greenwood and Scharfstein (2013) for an evaluation of the
rise of household credit.
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(1988, p. 6) famously argued that financial development is "very badly over-stressed"
in the role it plays for economic growth.

It was five years later that King and Levine (1993), building on Goldsmith (1969)
and the work of Barro (1991), found first stressable empirical evidence for causal-
ity by showing that the size of the financial intermediary sector is a good indica-
tor for subsequent economic growth. Lots of research followed in the years there-
after. Building on early work by Atje and Jovanovic (1993), Levine and Zervos (1998)
found that not only credit, but also equity markets show a strong correlation with
economic growth. Evidence for causality further fostered with the work of Rajan and
Zingales (1998), Levine et al. (2000), Beck et al. (2000) and many others, who made
use of more sophisticated empirical methods, such as panel data econometrics, the
instrumental variable approach and GMM estimation.

Even though some skeptics remained and there was still reason to believe that
this might not be true for all countries at all times and circumstances (see, e.g., Wach-
tel, 2003, Rioja and Valev, 2004, and Demetriades and Law, 2006), the prevailing view
just before the financial crisis was, as summarized by Levine (2005, p. 921):

“A growing body of empirical analyses [...] demonstrate[s] a strong positive link be-
tween [...] the financial system and long-run economic growth”

and

“Theory and empirical evidence make it difficult to conclude that the financial system
merely – and automatically – responds to economic activity, or that financial develop-
ment is an inconsequential addendum to the process of economic growth.”

Put simply: Financial development was widely thought to have an unambiguously
positive causal effect on long-run economic growth.

Finance and economic growth II. In the aftermath of the financial crisis, this consen-
sus crumbled. Academics increasingly recognized that financial expansion does not
only yield benefits, but can also come with serious drawbacks (see, e.g., Zingales,
2015). So, nowadays, the focus of the discussion on the interconnection between fi-
nancial markets and the real economy mostly lies on the question of whether finance
can, and potentially has, become excessive in a way that actually hurts economic
welfare. In this sense, Adair Turner (2010, p. 6), who chaired the Financial Services
Authority in the U.K. between 2008 and 2013, notably stated:

“There is no clear evidence that the growth in the scale and complexity of the financial
system in the rich developed world over the last 20 to 30 years has driven increased
growth or stability, and it is possible for financial activity to extract rents from the real
economy rather than to deliver economic value.”

Generally speaking, the potential risks of a large financial sector include (i) higher
economic volatility and an increasing risk of severe financial crises (Reinhart and
Rogoff, 2008, Ollivaud and Turner, 2014, Schularick and Taylor, 2012), (ii) excessive
risk taking, especially under explicit and implicit state guarantees (Denk et al., 2015,
Schich and Aydin, 2014), (iii) exacerbating wealth and income inequality due to the
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fact that credit and capital services benefit the rich disproportionately (Denk and
Cazenave-Lacroutz, 2015, Piketty and Zucman, 2014, de Haan and Sturm, 2017) and
due to the "finance wage premium" (cf. footnote 2), and (iv) competition for talent
resulting in a brain-drain from other, socially more productive industries (which is
the focus of this thesis).

Economists revisiting the data have since then painted a more nuanced picture
of the effects of financial development on growth than the one prevailing before.
This has become apparent through at least two important facets. First, it was em-
phasized that it is essential to distinguish between different parts of finance. Beck
et al. (2012) show that while corporate credit is positively correlated with economic
growth, household credit is not. Beck et al. (2014a) cast a shadow on the role of the
sharply increasing financial trading activities, by assessing that financial sector size
(measured by VA over GDP) does not have an effect on growth once intermediation
is controlled for. Greenwood and Scharfstein (2013) elaborate on this, reasoning that
expanding household credit and financial trading may actually hurt welfare. Sec-
ond, an expansion of the financial sector might benefit the real economy only up to
a certain point. Re-estimating King and Levine’s (1993) original work, Rousseau and
Wachtel (2011) find that the positive relationship between finance and growth that
has been found using data from 1960-1989 significantly weakens when including
the years up to 2004 and even vanishes when looking at the more recent data from
1990-2004 only. Referring to a kind of Lucas (1976) critique, they argue that the posi-
tive early results about the finance-growth relationship may have induced policy to
excessively promote the expansion of their financial systems. Haiss et al. (2016) con-
firm the results by Rousseau and Wachtel (2011) in a set of 26 European countries
with data from 1990 to 2009. Other authors stress the fact that the finance-growth
relationship seems to be not only non-linear, but also non-monotonic. Simply put,
this means that more finance is beneficial when the financial sector is still relatively
small, but further expansion turns to be harmful when it is large already. Among
the first to emphasize this have been Arcand et al. (2015a) by asking: "Too much Fi-
nance?".4 Lots of other empirical work followed, including Cecchetti and Kharroubi
(2012, 2019), Pagano (2013), Gründler and Weitzel (2013), Beck et al. (2014b) Law and
Singh (2014), Cournéde et al. (2015), Ductor and Grechyna (2015), Capelle-Blancard
and Labonne (2016), Benczúr et al. (2019), Gründler (forthcoming), a meta-analysis
by Bijlsma et al. (2018) and reviews of the literature by Panizza (2018) and Popov
(2018).5 As rules of thumb for the point where financial expansion turns from good
to bad, this kind of literature provides roughly estimated thresholds such as 100%
Credit/GDP, 5% VA/GDP, or 4% of total workforce employed in finance.

4The results of the paper have been challenged by William R. Cline from the Peterson Institute for
International Economics. This initiated a heated public debate among its authors and Mr. Cline, see
Cline (2015a), Arcand et al. (2015b), Cline (2015b), and Panizza (2018, p. 49-50).

5For a recent theoretical contribution which establishes a non-monotonic relationship between finan-
cial development and economic growth in a dynamic model framework á la Lucas (1988), see Bucci
and Marsiglio (2019).
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As the financial sector did not only grow in size but also changed in composition,
it seems natural to assume that the two insights outlined above could be intercon-
nected. Put differently: Insofar as the thresholds just mentioned are established by
just looking at total finance or credit, one neglects the fact that the apparent non-
linearities in the finance-growth relationship might actually stem from substantial
structural changes in the composition of finance. Accounting for Beck et al.’s (2012)
results on the effect of household credit on growth, Panizza (2018, p. 48), one of the
co-authors of Arcand et al. (2015a), recognizes that "it is thus possible that the ’too
much finance’ result is really a ’too much household finance’ result". Consequently,
indiscriminate empirical thresholds are likely to be misleading in the sense that, e.g.,
a Credit/GDP ratio of more than 100% is actually not a problem per se, but only if it
is increasingly related to private debt. Similarly, when looking at recently estimated
thresholds for VA/GDP or finance’s share in employment, one should keep in mind
the driving forces behind the increase in these ratios over recent decades. We have
seen that, in this regard, financial trading stands out. The channels through which
too much of it can potentially harm the real economy have already been mentioned
in points (i)-(iv) above. The literature has related (i) and (ii) mainly to scenarios in-
volving a credit boom and hence to the intermediation part of finance. In contrast, we
have seen that both (iii) and (iv) are highly relevant with regards to financial trading,
where wages surged and talent followed. The interrelationship between inequality
and economic growth has been studied for example by Berg and Ostry (2011) and
Cingano (2014), but the connection is not straightforward. In what follows, we will
therefore focus on point (iv) and argue why concerns for a brain-drain caused by the
extraordinary rise of financial trading have to be taken seriously.

The Wall Street brain-drain. Worries about a brain-drain from other industries into
finance often relate to the sharp rise of finance relative wages, which has attracted
increasing portions of the well-educated. Some concerns, however, go even further,
in that especially the top-paid positions in financial trading attract society’s "crème
de la crème", its "best and brightest", leading to a scenario in which "finance liter-
ally bids rocket scientists away from the satellite industry" and, as a result, "people
who might have become scientists, who in another age dreamt of curing cancer or
flying to Mars, today dream of becoming hedge fund managers" (Checchetti and
Kharroubi, 2012, p. 1-2).

Lots of anecdotal evidence for this conjecture can be found by looking at the flow
of U.S. elite university graduates into the job market. Building on university data
from Princeton, Yale and Harvard, the New York Times reports that between 2000 and
2010, around 20-40% of students who finished university with a Bachelors degree
went straight into finance.6 The MIT Faculty Newsletter observes only slightly lower
numbers from MIT.7 Shu (2013, p. 13) finds that even within MIT, finance seems to

6Catherine Rampell, "Out of Harvard, and into Finance", The New York Times, December 2011,
https://economix.blogs.nytimes.com/2011/12/21/out-of-harvard-and-into-finance/.

7Daniel Hastings, Steven Lerman, and Melanie Parker, "The Demand for MIT Graduates", MIT Fac-
ulty Newsletter, January-February 2010, http://web.mit.edu/fnl/volume/223/hastings.html.
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attract students with particularly high "raw academic talent". Goldin and Katz (2008)
observe that the fraction of male Harvard students who work in finance 15 years af-
ter graduation more than tripled between the 1970s and 1990s cohorts. Studying the
early career of Stanford MBAs, Oyer (2008) finds that when equity markets boom,
entry into finance increases. He adds that people who start on Wall Street are likely
to stay there also for their later career. Vivek Wadhwa, technology entrepreneur and
director of research at Duke University’s Pratt School of Engineering, emphasizes
that finance does not only attract graduates from majors related to business and eco-
nomics. In a testimony to the U.S. House of Representatives in 2006, he remarks
that "thirty to forty percent of Duke Masters of Engineering Management students
were accepting jobs outside of the engineering profession. They chose to become in-
vestment bankers or management consultants rather than engineers."8 In the same
sense, Célérier and Vallée (2019, p. 4029) find that the fraction of engineering gradu-
ates from the most selective French universities who work in finance almost tripled
from 3% to 8% between 1986 and 2011. Gupta and Hacamo (2019) obtain data from
a large U.S. online business networking service (OBNS) and find that "superstar"
engineers are significantly more likely to switch job to work in finance in times of
high financial sector growth. They add that this can have long-run consequences for
startup activity: engineers who worked in finance during their early career are less
likely to engage in entrepreneurship later on and, even if they do, their startups tend
to be less successful.

Evidence which at least partly alleviates concerns for a finance brain-drain has
recently been provided by Böhm et al. (2018). Using detailed scores and performance
measures from military aptitude tests in Sweden, they find that the selection of talent
into finance has not increased over the 1990-2013 period. Nonetheless, they recog-
nize that finance is still a "high-talent profession" (p. 16), with its employees being
significantly more talented than workers in other occupations, on average. One can
also question if the situation in Sweden is actually comparable to that in the U.S.
Opposed to what we have seen in figure 1.3a, Boustanifar et al. (2017, p. 9) show
that Swedish finance relative wages did not increase between 1970 and 2011. Hence,
the Swedish financial sector has been lacking an important pull factor for talent. Shu
(2016) analyses bachelor graduates from MIT between 1994-2012 and finds that top
positions in finance might require different skill sets than those needed for innovat-
ing in science and engineering (S&E). He concludes that "finance does not systemat-
ically attract those who are best prepared at college graduation to innovate in S&E
sectors", but adds that "anticipated career incentives influence students’ acquisition
of S&E human capital during college" (p. 0). Hence, even if high compensation in
finance were not to cause a brain-drain induced decline in real sector innovative-
ness in the short run, by distorting early career aspirations it could still do so in the
long run. D’Acunto and Frésard (2018) study the reallocation of skilled workers into
finance in a sample of 24 countries from 1970 to 2005. While they find signs for a

8Quoted from Philippon (2010, p. 159).
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modest brain-drain from other industries, they argue that the magnitude of its effect
is probably too small to have significant consequences for overall economic devel-
opment.

Contrasting evidence, which supports the hypothesis of a significant finance
brain-drain, comes from Kneer (2013a, 2013b). Using data on U.S. banking dereg-
ulations, she finds that high talent inflows into finance have caused negative effects
on productivity in other skill-intensive industries. Boustanifar et al. (2017) show
that extraordinarily high wages in finance attract talent even across country borders,
thereby imposing negative externalities on the countries of origin. While it is intu-
itive that affected countries or industries typically suffer from an outflow of talent,
it is less clear whether the effect is positive or negative from an overall perspective.
A growing amount of literature on the rent-seeking character of modern finance at
least suggests that social returns are probably higher in other industries. In this re-
gard, Nobel prize winner Paul Krugman argues that "everything we know suggests
that the rapid growth in finance since 1980 has largely been a matter of rent-seeking,
rather than true productivity."9 Paul Woolley (2010, p. 123) from the Paul Woolley
Centre for the Study of Capital Market Dysfunctionality at the London School of
Economics agrees by stating that "rent extraction has become one of the defining fea-
tures of finance and goes a long way to explaining the sector’s extraordinary growth
in recent years". As Luigi Zingales (2015, p. 1328), finance professor at Chicago Booth
and winner of the Bernácer Prize emphasizes,

“. . . there is no theoretical reason or empirical evidence to support the notion that all
growth in the financial sector over the last 40 years has been beneficial to society. In
fact, we have both theoretical reasons and empirical evidence to claim that a component
has been pure rent seeking.”

Greenwood and Scharfstein (2013) attribute these rents especially to the financial
trading part of finance, where professionally managed mutual funds and hedge
funds have attracted increasing amounts of investor money, despite often charg-
ing unjustifiably high fees. Recent empirical studies find that the high and increas-
ing relative wages in finance since the 1980s are associated with a participation in
increasing industry rents. Lindley and Mcintosh (2017) argue that deregulation to-
gether with implicit state guarantees and unintelligible financial instruments helped
in creating and extracting rents. They conclude that rent participation seems to be
the most convincing explanation for the finance wage premium in the U.K. Simi-
larly, Böhm et al. (2018) find that the wage gap between finance and other industries
in Sweden accrues mostly to industry rents.

One of the main arguments that is typically brought forward in favor of financial
trading is that the information acquisition process inherent in its activities increases
informational efficiency in the market, makes asset prices deviate less from their

9Paul Krugman, "Darling, I love you", The New York Times, December 2009, https://krugman.
blogs.nytimes.com/2009/12/09/darling-i-love-you/.
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fundamental value and hence allows society to obtain a more efficient resource allo-
cation.10 Still, Murphy et al. (1991, p. 506) suspect that these effects are rather small
compared to the private returns from trading:

“Trading probably raises efficiency since it brings security prices closer to their funda-
mental values . . . But the main gains from trading come from the transfer of wealth to
the smart traders . . . Even though efficiency improves, transfers are the main source of
returns in trading.”

Furthermore, there even is good reason to believe that we have already passed the
point where more financial trading makes markets significantly more informative.
A good example for this is high-frequency trading (HFT). It is not mainly designed
to discover genuinely new information, but rather to create what Hirshleifer (1971)
calls "foreknowledge", that is to get a grasp on information just a little earlier than
everyone else and then quickly make use of it (for a more nuanced view on HFT, see,
e.g., Biais and Woolley, 2012, or Linton and Mahmoodzadeh, 2018). As this makes
HFT a game of "the fastest takes it all", the consequence is what the Bloomberg Markets
magazine calls an "arms race" in finance.11 Activities like this are obviously prone to
the critique of pure rent-seeking, which Stiglitz (1989, p. 5) intuitively illustrates with
the following example:

“Assume that as a result of some new information, there will be a large revaluation of
some security, say from $10 to $50. Assume that that information will be announced
tomorrow in the newspaper. What is the private versus social return to an individual
obtaining the information today? Assume the firm will take no action on the basis of the
information – certainly not as a result of knowing the information a day earlier . . . The
information has only affected who gets to get the return. It does not affect the magnitude
of the return. To use the textbook homily, it affects how the pie is divided, but it does not
affect the size of the pie.”

Of course the relevant time intervals in HFT are even narrower than "a day earlier".
Milliseconds make the difference. Entailing no social value, all resources going to
activities like this are wasted from an economy-wide perspective. Bai et al. (2016)
give further evidence that recent developments in financial trading did not neces-
sarily come with benefits in terms of informational efficiency. While they do find
that the U.S. S&P500 has become significantly more informative between 1960 and
2014, nearly all of this improvement must have happened in the earlier years of the
sample. Price efficiency within 2010-2014 shows no significant improvement over
that of the 1980s. Farboodi et al. (2019) argue that increases in price informativeness
have been even weaker with regards to the stocks of smaller firms outside of the
S&P500.

10The fact that asset prices can give valuable signals for real decisions, e.g. regarding investment or
production, was already highlighted by Hayek (1945). Bond et al. (2012) give a more recent review on
the real effects of informational efficiency in financial markets.

11Hugh Son and Dakin Campbell, "Wall Street’s Big Banks Are Waging an All-Out Technological
Arms Race", Bloomberg Markets, April 2018, https://www.bloomberg.com/news/features/2018-04-
05/wall-street-s-big-banks-are-waging-an-all-out-technological-arms.
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After all, Tobin’s view, as quoted at the beginning of this Introductory Chapter,
may have been unbecoming in academics at his time. It surely is not any more. There
is much to suggest that the rise of financial trading, which took off in the 1980s and
gathered pace in the 1990s, was fueled mainly by private, not social, returns. And
it is likely that the related inflow of talent to Wall Street has caused a significant
brain-drain from other industries.

Thesis structure. The goal of this thesis is to contribute to the theoretical literature
on the competition for talent between finance and the real sector. For the reasons
given in the Introductory Chapter, we focus on the financial trading aspect of fi-
nance. Chapter 2 contains an in-depth analysis of the model by Arnold and Zelzner
(2020) and considers some variations and extensions. The model includes occupa-
tional choice between financial trading and entrepreneurship into the seminal noisy
rational expectations equilibrium (REE) framework of Grossman and Stiglitz (1980).
Professional traders make the market more informationally efficient, entrepreneurs
create output and jobs. The main question is whether the equilibrium amount of
talent going into finance is excessive from a social welfare point of view. Before for-
mally setting up the model, we review the related theoretical literature. Details on
how we structure the model analysis are given within Chapter 2. Chapter 3 con-
cludes. Proofs and additional material are delegated to the Appendix.
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Chapter 2

The Model

—————————–
—————————–

“A disease of the economy is the progressive transformation of entrepreneurs into speculators
. . . A speculator is a figure similar to what Jesus in the gospels called ’hired-hands’ as opposed
to good shepherds.”

Pope Francis, Genoa 2017

This chapter formalizes the allocation of talent to financial trading versus the real
sector using a novel theoretical model built on the noisy rational expectations equi-
librium (REE) model of Grossman and Stiglitz (1980, henceforth "GS (1980)"). High
potential individuals (hipos) decide whether to engage in speculative financial trad-
ing activities (i.e., to become dealers) or in production (to become entrepreneurs). En-
trepreneurs create jobs for (lower-skilled) "ordinary" workers and produce output,
while dealers contribute to informational efficiency in the asset market. All agents
trade in a noisy market environment. We analyze whether the equilibrium alloca-
tion of hipos to financial trading is excessive from a social welfare perspective. Our
results suggest that this tends to be the case.

The model uses a CARA-Gaussian set-up (i.e., a combination of negative ex-
ponential utility and normally distributed random variables), which allows for a
tractable analysis and closed-form solutions. Hipos are ex ante identical, so in equi-
librium, where occupational choice (OC) is optimal, all dealers and entrepreneurs
obtain the same expected utility. Ordinary workers find themselves in a labor mar-
ket with or without frictions, where they try to find a job in one of the firms set
up by entrepreneurs. Firms create a stochastic amount of output, which they partly
sell in the asset market. More entrepreneurship is beneficial for workers. Depend-
ing on whether we consider a frictionless labor market with full employment or a
labor market with wage rigidities and equilibrium unemployment, it either allows
them to earn higher wages or decreases their risk of unemployment. In the former
case, workers’ wage gains from more entrepreneurship come at the expense of firm
profitability. In the latter case, however, workers’ employment gains do not draw
on entrepreneurs’ welfare. Hence, the fact that hipos’ OC decision does not inter-
nalize the positive effect of entrepreneurship on workers gives rise to an externality.
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Dealers gather information on asset fundamentals, which gives them a private ad-
vantage in trading. Strikingly, this also comes with "informational externalities". The
obvious one is asymmetric information. But as private information get partially re-
vealed through the public asset price, there is also a second one: informed trading
increases informational efficiency in the market. The last type of agents in the model
is a group of noise traders, which exerts an exogenous stochastic asset demand and
thereby ensures that the dealers’ private information do not leak out to the public
perfectly.

To answer the question of whether the allocation of talent to financial trading
vs. entrepreneurship is excessive, we conduct a second-best welfare analysis, tak-
ing individuals’ portfolio and labor market decisions as given. As analytical welfare
analysis turns out to be infeasible for stochastic noise trader demand, we take a two-
step approach. We first provide a rigorous analysis of the model with non-stochastic
noise trader activity, where agents can perfectly infer private information from the
public price, information asymmetries vanish and there is either full or "zero" infor-
mation in the market, depending on whether the mass of dealers is positive or not.
In this case, dealers do not earn informational rents. As a second step, we show that
the welfare results obtained from this model also hold in the limit for sufficiently
small noise volatility and use this as the starting point for a comprehensive numeri-
cal analysis of the model with substantial noise trader shocks.

The results obtained from the model without noise are the following. First, the
allocation of talent is constrained efficient in the case of a labor market without fric-
tions, i.e., any marginal change in the mass of entrepreneurs, starting from equi-
librium, decreases welfare. This is not surprising, as without frictions in the labor
market, without information asymmetries and without informational externalities
(in that becoming a dealer does not affect informational efficiency at the margin),
we essentially obtain a model without market imperfections. Second, the allocation
of talent to finance is excessive in the presence of wage rigidity and equilibrium
unemployment in the labor market, i.e., a marginal increase in the mass of entre-
preneurs, starting from equilibrium, increases welfare in case of labor market fric-
tions. As mentioned before, the reason is entrepreneurship’s positive externality on
workers’ job prospects. Third, we show that under a set of fairly weak conditions,
social welfare increases when the possibility to become a dealer is shut down com-
pletely. Surprisingly, this is because higher price informativeness as a consequence
of informed trading is not generally beneficial. Rather than that, it tends to have a
negative welfare effect which is reminiscent of Hirshleifer’s (1971) result on the po-
tential harmfulness of information revelation for risk-sharing. Strikingly, impaired
risk-sharing especially hurts entrepreneurs, who are the ones setting up enterprises
and creating the asset in the first place. Hence, information revelation in the financial
market distorts the allocation of talent by discouraging entrepreneurship. In turn, a
ban on informed trading enhances risk-sharing, encourages entrepreneurship and
real economic activity and increases welfare.
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Using Matlab to simulate a wide range of reasonable parameter combinations,
we find that our result that the financial sector tends to be too large is not restricted
to the analytically tractable case without noise. In fact, it is even reinforced in the
presence of noise trader shocks, where dealers earn informational rents and the neg-
ative effects of informed trading also apply at the margin: in contrast to the noiseless
case, each (additional) dealer makes the price reflect more fundamental information.
Therefore, an increase in the mass of entrepreneurs, starting from equilibrium, de-
creases information revelation in the financial market, enhances mutually beneficial
risk-sharing among agents and reduces risk-clustering among entrepreneurs.

In essence, the allocation of talent to GS (1980)-like financial trading in our model
is excessive, whenever (i) dealers create negative informational externalities, which
relate to deficient risk-sharing and a clustering of risk at entrepreneurs, or (ii) entre-
preneurship is associated with positive externalities in the labor market for ordinary
workers.

Related theoretical literature. Our model contributes to the growing theoretical lit-
erature on the efficiency of the allocation of resources between finance and the real
sector (for a glimpse on the empirical literature, see the Introductory Chapter). The
two classic papers on the allocation of talent come from Baumol (1990) and Mur-
phy et al. (1991). They broadly distinguish between socially productive industries
which create value (e.g., manufacturing and engineering) and rent-seeking indus-
tries which just try to acquire portions of the wealth already available (e.g., finance
and law). Using rather informal analyses, both argue that economic welfare and
growth suffer, if high private returns attract significant amounts of talent to the latter
type of industries.

More recently, Philippon (2010) includes OC between entrepreneurs, workers
and financiers into an endogenous growth model with overlapping generations.
With the help of financiers’ monitoring services, entrepreneurs employ workers and
create output. Innovation, given by labor productivity growth in the real sector, is
modeled on a learning-by-doing basis with knowledge spillovers. It is driven by
both physical capital (as in Romer, 1986) in terms of aggregate investment, as well
as human capital (as in Lucas, 1988) in terms of the total amount of entrepreneurs.
In a second-best scenario with the possibility of direct subsidies on investment and
entrepreneurship, there is no need for a discriminatory tax on labor income from the
financial versus the real sector. If, however, this kind of intervention is not feasible
(which Philippon, 2010, p. 173, argues is the case in most real world scenarios), the
third-best solution implies a subsidy to finance when innovation is driven mainly
by aggregate investment and a tax on finance when innovation is driven mainly by
the mass of entrepreneurs.1

Cahuc and Challe (2012) study the welfare effects of rational asset bubbles in a
standard OLG setting to which they add occupational choice between finance and

1For a model that explores the role of financial innovation for economic growth, see Laeven et al.
(2015).
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production. When provided with financing, the productive sector employs workers
and creates output. Production workers earn a fixed wage rate early, which they are
willing to reinvest into the productive sector until their consumption period arrives.
They can, however, not do so on their own but only with the help of financiers.
Frictions in the financial sector ensure that financiers earn an intermediation margin
for their services. While Tirole (1985) shows that, by crowding out capital, rational
asset bubbles can help to overcome dynamic inefficiency à la Diamond (1965), this is
not necessarily the case in the set-up by Cahuc and Challe (2012). As bubbly assets
can be traded only by financiers, large rents in the financial sector may arise and
crowd out labor from the productive sector. Hence, rational asset bubbles potentially
induce an excessively large financial sector and thereby become detrimental to social
welfare.

Shakhnov (2017) develops a heterogeneous agents model with matching frictions
and an OC decision between banking and entrepreneurship. Entrepreneurs produce
output, but need financing from an investor. In the absence of bankers, entrepre-
neurs and investors do not know each others’ type and meet randomly. Bankers,
who have superior information on the agents’ individual types, enhance this pro-
cess by efficiently matching each pair of agents. Bankers in this set-up potentially
earn large informational rents which result in an excessive financial sector. An ap-
propriate taxation of finance can restore efficiency.

While the papers above emphasize the financial sector’s role as an intermedi-
ary, Bolton et al. (2016) focus on the financial trading aspect. They propose a model
with a dual-structured financial sector, where uninformed investors have the costly
option to become "dealers" and participate in an exclusive over-the-counter (OTC)
market instead of the organized exchange (for an earlier version of the model with
OC between dealers and entrepreneurs, see Bolton et al., 2012). Entrepreneurs (called
"originators") are hit by a liquidity shock early and have to sell their business (the
"asset") in the market. In contrast to uninformed investors, dealers have precise in-
formation on the value of this asset. As a consequence, they are able to "cream-
skim" good assets in the OTC market, while the lower quality assets are left to be
sold to uninformed investors in the organized exchange (see Fishman and Parker,
2015, for a similar mechanism). Bolton et al. (2016, Section II) show that without any
link between dealers’ valuation abilities and originators’ asset quality, becoming a
dealer is driven only by private benefits and entails no social value. Consequently,
all resources spent in the process are wasted from a social welfare perspective. The
situation changes, if dealers’ valuation ability incentivizes originators to make an
effort in improving their asset quality (Section III). The size of the dealer market re-
mains generally inefficient, but depending on parameters it can be either too large or
too small. Building on the framework by Glosten and Milgrom (1985) and Glosten
(1989), Glode and Opp (2020) compare the efficiency of traders’ decisions on exper-
tise acquisition in OTC vs. limit-order organized markets. In contrast to Bolton et
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al.’s (2016) dual-structure of the financial sector, they analyze the two markets sep-
arately. Due to differences in market microstructure, private returns to expertise in
asset valuation are higher in the OTC market. Whether the resulting acquisition of
larger amounts of financial expertise is beneficial or detrimental to welfare depends
on whether it is mainly motivated by rent-seeking behavior or includes a significant
value-creating component.

Kurlat (2019) proposes a model where banks decide on their amount of expertise
in asset valuation. Informed households want to sell their assets to the bank. The
acquisition of expertise is costly, but it increases the banks’ returns from trading.
Besides the private incentive to invest in expertise, there is also a social component
to it: more informed banks reduce informational asymmetries between banks and
households, mitigate the problem of adverse selection and allow for additional mu-
tually beneficial trades. Kurlat (2019) emphasizes that the mere fact that there are
private as well as social returns from the acquisition of expertise does not mean that
the two perfectly align. He introduces a measure denoted "r", which gives the ratio
of the (marginal) social over the (marginal) private benefits from an additional unit
of resources deployed to the acquisition of financial expertise. He estimates a value
of r = 0.16 for the U.S. junk bond underwriting market, which implies that the pri-
vate benefits from expertise exceed the social ones by far and, hence, underwriters’
investment in expertise is excessive.

Glode et al. (2012) model the behavior of competing financial trading institu-
tions as an "arms race" in finance. Similarly as in Kurlat (2019), each institution has
to decide on its optimal investment in financial expertise, which gives access to im-
proved valuation techniques with regards to assets traded with other institutions. In
principle, the ability to value assets better than one’s trading partners gives an insti-
tution an informational advantage in the trading process. In equilibrium, however,
trying to gain an edge over the competitors prompts these to act the same way and
hence neutralizes any individual advantages. Accumulating costly financial exper-
tise in this set-up is pure rent-seeking (similar to Bolton et al., 2016, Section II) and,
hence, deployed resources are wasted from an economy-wide perspective. Simply
put, what happens is similar to a prisoners’ dilemma, where private incentives push
institutions into high investment on financial expertise, while they would be collec-
tively better off without it. Glode and Lowery (2016) build on Glode et al. (2012) and
propose a model with competition for talent within the financial sector. Financial in-
stitutions compete with each other for a fixed number of potential employees, who
can be deployed either to banking or trading (see Bond and Glode, 2014, for a model
with OC between banking and bank regulation). While bankers search for profitable
investment projects, traders are specialized at valuation tasks which help striking fa-
vorable deals with competitor institutions who are required to sell their investments
when hit by a liquidity shock. In contrast to banking, trading is pure rent-seeking.
Hence, any positive amount of workers in trading is excessive. Still, traders are not
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only present in equilibrium, but are even paid a higher wage than bankers. The rea-
son is that each trader an institution does not employ itself, does not only imply fore-
gone benefits, but can even bring harm if employed by a competitor instead. Traders
hence earn a "defensive premium" over their internal marginal product. The surplus
created by investment opportunities identified by bankers, on the other hand, is at
risk of not being fully captured by the institution itself, but eventually being ap-
propriated by its competitors. Consequently, bankers face a "wage penalty" on their
internal marginal product.

Arping (2013, Section 3) offers another model with a competition for resources
between banking and pure rent-seeking trading. In contrast, Arping (2013, Section 4)
and Boot and Ratnovski (2016) study models with a genuine social trade-off between
banking versus trading. In Arping (2013, Section 4), trading comes with treasury ser-
vices and the provision of risk management to the bank’s borrowers, which makes
it complementary to banking. Boot and Ratnovski (2016) study the effects of the al-
location of resource between traditional banking vs. trading on bank-level welfare.
In their model, banking requires to establish customer relationships, which limits
its scalability. In contrast, trading is easily scalable but capital-constrained. For the
bank, complementing banking with small-scale trading activity can be beneficial,
as the borrower’s money can be used to relax trading’s capital constraints, while
trading creates additional bank profits even when the traditional banking business
can’t be expanded any further. Large-scale trading, however, gives rise to a time-
inconsistency problem and results in an overallocation of resources to trading.

Biais et al. (2015) focus on the trading process in financial markets. Financial in-
stitutions have to decide whether to invest in a costly "fast trading" technology or
not. If they do, they gain immediate access to a liquid trading venue whenever they
desire to execute an asset trade (which creates "search value") and, in addition, re-
ceive private information on the asset’s value (which creates "speculative value"). If
they don’t, they find a trading opportunity only with a certain probability and stay
uninformed. Adopting the "fast trading" technology in this context entails both so-
cial benefits and costs.2 The gains from a guaranteed trade opportunity do not come
at the expense of other agents and hence the private "search value" an institution
gains by investing into the technology translates one-to-one into larger social wel-
fare. In contrast, speculative gains come at the expense of trading partners. Even
worse, fast institutions’ trading on private information creates a negative external-
ity in the form of an increasing bid-ask spread that prevents potentially beneficial
trades. As a consequence, equilibrium investment in the "fast trading" technology is
generally excessive from a social welfare point of view. Nonetheless, the social opti-
mum investment typically deviates from zero, as at least the aforementioned "search
value" positively contributes to social welfare.

2See Budish et al. (2015) for a model where high-frequency trading is pure rent-seeking and leads
to an "arms race" similar as in Glode et al. (2012).
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Axelson and Bond (2015) study optimal contracting and promotion in finance.
As the financial sector constitutes a job environment with high level risks of moral-
hazard behavior, optimal contracting includes high bonus payments, which in turn
help explain why employees in finance earn higher wages than employees in other
occupations.3 In an extension to their basic model, Axelson and Bond (2015, Sec-
tion VII) also take an eye on the allocation of talent. They find both the possibility
that highly skilled agents who would be more productive in other occupations are
"lured" into finance by overpay, as well as a "talent-scorned" force, which potentially
prevents talented individuals from getting a job in finance, as good outside options
make it hard to provide them with proper incentivization.

Our paper also relates to the literature on feedback effects from information re-
vealed by financial markets to the real economy, as recently reviewed by Bond et al.
(2012) and Goldstein and Yang (2017). We delegate a brief discussion of this literature
to Section 2.5.3.

Building on the GS (1980) model. Our model builds on the noisy REE framework
by Grossman and Stiglitz (1980), which by now has become "the workhorse model
in the study of financial markets with asymmetric information" (Vives, 2008, p. 112).
GS (1980) study information revelation through prices and the limits of price infor-
mativeness in financial markets. Only recently, their contribution was acknowledged
as one of the "’Top 20’ articles published in the American Economic Review during its
first hundred years" (Arrow et al., 2011, p. 1). Agents in the GS (1980) model can
obtain costly private information about the value of a risky asset, which gives them
an informational advantage when trading in the market. Trading on their private
information, however, partially reveals these information via the public asset price.
If, because of positive private information, demand for the asset is high, so is the
asset’s price. Consequently, also individuals without direct access to the private in-
formation can partly infer it from the public price. The reason why they can not do so
perfectly, is that the market is exposed to "noise" due to an exogenous asset supply
shock. Consequently, a high asset price is not necessarily backed by positive private
information on asset fundamentals, but can also stem from "noise". GS (1980) show
that informational efficiency, that is the degree to which the public price reveals pri-
vate information, increases with the amount of informed market activity. Strikingly,
however, markets can never be perfectly efficient, as in that case gathering infor-
mation would no longer entail any private value. All information could already be
inferred from the public price and hence no one would have an incentive to invest
resources into acquiring these information in the first place.

Crucially, we adopt the GS (1980) notion of financial trading as not only being
a zero-sum game where better-informed agents gain at the expense of their coun-
terparties, but as an activity that makes markets more informationally efficient. Ob-
viously, this puts our focus on a very different aspect of finance than the literature

3The "cream-skimming" mechanism in Bolton et al. (2016) and the "defense premium" in Glode and
Lowery (2016) provide alternative explanations.
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that refers to the intermediary role of financial markets. Furthermore, our specifica-
tion of financial trading also differs substantially from the literature which models
trading as either purely rent-seeking or related to social benefits other than infor-
mational efficiency (like, e.g., enhanced market liquidity). Further notable parts of
the GS (1980) framework that carry over to our model are (i) macroeconomic uncer-
tainty and stochastic asset prices, (ii) simultaneous trading with demand schedules,
and (iii) the CARA-normal setting. Unlike idiosyncratic asset risk in the models of,
e.g., Bolton et al. (2016) and Glode and Lowery (2016), macroeconomic uncertainty
cannot be diversified away and translates into stochastic asset prices. Price volatil-
ity is essential for GS (1980)-like trading, as there would be no way for information
to be transmitted through the price if it were fixed and known in the first place.
The market microstructure is characterized by simultaneously submitted demand
schedules, which give each agent’s desired amount of assets as a continuous func-
tion of the price. A market maker determines the equilibrium price at which de-
mand equals supply. This contrasts with other price determination processes, such
as bilateral Nash-bargaining in Bolton et al. (2016) and Cahuc and Challe (2012), or
take-it-or-leave-it prices in Glode et al. (2012) and Glode and Lowery (2016). The
CARA-normal assumption makes the model analytically tractable.

In order to make proper use of the GS (1980) framework with respect to our re-
search objective, we have to submit it to some modifications and extensions. First of
all, GS (1980) do not study welfare. In order to conduct a welfare analysis, we have
to specify appropriate welfare measures for all agents in the model. While this is
straightforward for the rational agents, it requires us to at least somehow substan-
tiate the origin of market noise. We attribute it to so called "noise traders" (see, e.g.,
Dow and Gorton, 2008), but keep their aggregate behavior exogenous and do not
specify what motivates them to trade. In order to evaluate noise traders’ well-being,
we assign them a utility function ex-post, which, however, they do not maximize
ex-ante.4 Second, we introduce a productive sector to the GS (1980) pure financial
market model and thereby endogenize the asset supply. This allows us to study com-
petition for talent between finance, characterized by GS (1980)-like trading, and the
real sector, characterized by the production of goods. Third, we dispose of the direct
physical cost of acquiring information and instead take the cost of engaging in the
financial sector to be the opportunity cost of not working in the productive sector
and vice versa. In contrast to GS (1980), this allows for the existence of a perfectly
efficient asset market, which makes a good starting point in our analytical welfare
analysis. Fourth, we add a labor market for ordinary workers to account for poten-
tial positive side effects of entrepreneurship (innovation would be another one; see

4Explicitly modeling noise trader behavior, using (i) boundedly rational investors as in De Long et
al. (1990), Mendel and Shleifer (2012) or more recently Vives and Yang (2018) and Eyster et al. (2019),
or (ii) "near-rational" investors as in Hassan and Mertens (2017), or (iii) hedging motives as in Rahi
(1996) or more recently Bond and Garcia (2019), or (iv) private valuations as in Vives (2014) or Rahi
and Zigrand (2018), or (v) discretionary liquidity trading as in Admati and Pfleiderer (1988) or more
recently Han et al. (2016), would pose a valuable alternative, but would require us to further leave the
GS (1980) set-up.
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Phillipon, 2010). It follows that the OC decision of skilled individuals does not only
affect their own well-being, but has further consequences for the lower qualified
workforce.

Whether the allocation of talent to financial trading within this setting is exces-
sive or deficient is not obvious ex-ante. On the one hand, Murphy et al. (1991, p.
506) suppose that "even though efficiency improves, transfers are the main source
of returns in trading" and the evidence presented in the Introductory Chapter lends
some support to this view. If this were true and trading a mostly rent-seeking ac-
tivity, then we would expect the amount of talent in finance to be excessive from
a social welfare point of view. On the other hand, Bolton et al. (2016, p. 711) state
that in "the standard framework of trading in financial markets first developed by
Grossman and Stiglitz (1980). . . privately produced information leaks out in the pro-
cess of trading, and as a result too little costly information may be produced", and,
hence, "the Grossman-Stiglitz model seems to suggest that the financial sector could
be too small" (see Fishman and Parker, 2015, p. 2579, for a similar conjecture). If this
were true instead and private incentives to engage in informed trading fall short of
its social benefits, the equilibrium amount of talent in finance would be deficient.

Structure of the analysis. The remainder of this chapter builds on the paper by
Arnold and Zelzner (2020) and is organized as follows. Chapters 2.1 and 2.2 estab-
lish the baseline model and solve for equilibrium, respectively. Chapter 2.3 analyzes
the model under the simplifying assumption of non-stochastic noise trader activity.
This simplification is necessary in order to derive analytical welfare results, which
serve as the starting point for numerical simulation of the model with stochastic
noise later. In Chapter 2.4, we extend the model by adding a labor market for ordi-
nary workers within the real sector. We consider both a specification with full em-
ployment and a specification with labor market frictions and equilibrium unemploy-
ment. Analytical welfare analysis follows in Chapter 2.5. We aim for a second-best
solution with regards to the allocation of talent, taking agents’ portfolio and labor
market decisions as given. In Chapter 2.6 we use Matlab to simulate a wide range of
reasonable parameter combinations and check whether our analytical results from
the noiseless model carry over to the model with noise trader shocks. The implemen-
tation of the second-best solution via appropriate taxation is discussed in Chapter
2.7. Concepts and results from probability theory required for a rigorous analysis of
the model are given in Appendix A. Lengthy, technical proofs from the model are
delegated to Appendix B. Appendix C contains additional material about the nu-
merical simulation of the model. The Matlab code for the simulation is provided in
Appendix D.

2.1 Baseline Model

We consider a CARA-normal economy with a single homogeneous consumption
good. Prices are given in terms of this good. There are three "stages". Occupational
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choice between entrepreneurship and GS (1980)-type financial trading takes place
"early". At the "intermediate" stage, all agents trade in the asset market. Uncertainty
resolves and consumption is done "late". The baseline model does not include job
creation by entrepreneurs. This is added in Chapter 2.4.

Market participants and occupational choice. The model contains three types of
agents: a continuum of high professionals (hipos) of mass L; a continuum of passive
investors of mass M; and a continuum of noise traders of mass N. Hipos and pas-
sive investors have rational expectations and their preferences are given by negative
exponential utility:

U(π) = − exp(−ρπ), (2.1)

where π denotes final wealth and ρ indicates the degree of absolute risk aversion.
Hipos decide "early" whether to engage in entrepreneurship within the real sector or
to become a professional dealer in the financial market. Entrepreneurs set up firms
and create output. Dealers acquire information and contribute to market efficiency.
Passive investors engage in uninformed market trading. Hipos who neither want to
become entrepreneurs nor dealers can also act as passive investors. Noise traders
are characterized by exogenous stochastic trading in the asset market. We normalize
agents’ initial wealth to zero. As decisions under CARA-utility are independent of
(non-stochastic) endowments, this is without loss of generality.

The real sector. Denote the mass of hipos who become entrepreneurs by LE. Each
entrepreneur sets up a continuum of firms indexed by the interval [0, 1/a]. Conse-
quently, a firm is an element of [0, LE]× [0, 1/a] and the total mass of firms is given
by LE/a. For each entrepreneur, the subset of firms he owns is of measure zero, so
entrepreneurs do not have market power.5 Each firm produces a stochastic output
worth θ, where θ is the combination of two normally distributed random variables s
and ε:

θ = s + ε,

s ∼ N (s̄, σs
2),

ε ∼ N (0, σε
2).

(2.2)

The financial market. Firms are tradable in the asset market at the "intermediate"
stage. Consequently, they correspond to the risky asset and the payoff of the risky
asset is given by θ. Additionally, there is a safe asset in perfectly elastic supply, which
allows agents to borrow or lend at zero interest rate. Dealers acquire information on
the risky asset and privately observe the fundamental s.6 Even for them, however,

5A more intuitive, albeit less mathematically precise interpretation of this specification would be
that setting up a single firm requires a "number" of a entrepreneurs. Hence, the total mass of firms is
given by LE/a and each entrepreneur owns a fraction 1/a of the firm he helped to set up.

6As s is not firm-specific, we can interpret it as a "macro" fundamental. Hence, the fact that dealers
have information on s, while entrepreneurs do not, does not imply that entrepreneurs have inferior
insight into their own business. It also entails that, in contrast to Ferreira et al. (2014), entrepreneurs
can not hide information by going private.
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residual uncertainty σε
2 regarding the asset payoff remains. Noise traders exoge-

nously exert an aggregate stochastic demand ν for the risky asset, where ν is nor-
mally distributed and independent of both s and ε:

ν ∼ N (ν̄, σν
2). (2.3)

Rational agents maximize expected utility and submit optimal asset demand sched-
ules to a market maker who determines the price at which demand equals supply.

Free vs. restricted OC. In addition to the setup with free OC, as explained above,
we also consider a version of the model where hipos are restricted from becoming
dealers. We do this in order to compare the case with professional financial trading
to the case where there is no informed trading at all. This helps us isolate the effects
of information revelation in financial markets on welfare.

If hipos are allowed to become dealers, they never (strictly) prefer to act as pas-
sive investors. Becoming a dealer grants access to a potentially useful signal on the
asset payoff and comes without any direct cost. As long as the price is not fully
revealing, private access to this signal is of value and, hence, acting as a passive in-
vestor is always inferior to becoming a dealer. If the price is fully revealing, hipos are
indifferent between becoming a dealer or acting as a passive investor, as they even-
tually end up with the same information anyway: either by observing it privately,
or from the public price. In contrast to the GS (1980) set-up with a direct cost of in-
formation, in our model a fully revealing price can be part of an equilibrium with
non-stochastic noise trader activity (i.e., with σν

2 = 0). Without noise, the price is
fully revealing whenever there is a non-zero amount of dealers. The precise amount
of dealers versus passive investors has no effect on the asset price and agents’ wel-
fare. A zero-mass of dealers would immediately imply a non-revealing asset price
and, as a consequence, hipos would strictly prefer becoming dealers over staying
passive. In any case, without loss of generality, we can confine attention to equilib-
ria where hipos become either dealers or entrepreneurs if there is free occupational
choice.

Then, with LE denoting the amount of hipos engaging in entrepreneurship, L−
LE gives: the mass of dealers, whenever there is free OC; or the mass of hipos acting
as passive investors, whenever OC is restricted.

Model variants. As already mentioned, we differentiate between a noisy market en-
vironment (σν

2 > 0) and deterministic noise trader activity (σν
2 = 0 and ν = ν̄). The

latter case is important because it allows for analytical welfare results, which are un-
obtainable in the former. The results from the non-noisy analysis also help us guide
the numerical welfare analysis in Chapter 2.6. In order to derive one of our main
results (i.e., that information acquisition in financial markets harms risk-sharing and
distorts the allocation of talent, cf. Proposition 2.5.2), we have to compare the situa-
tion of free vs. restricted OC. Besides the baseline model discussed above, section 2.4
adds a real-sector labor market to the model, either with or without frictions. This
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allows us to account for potential positive externalities from entrepreneurship and
is essential for another main result (i.e., that a marginal increase in the mass of en-
trepreneurs, starting from equilibrium, can be conducive to welfare, cf. Proposition
2.5.1). Accounting for all of these specifications yields a total of 2x2x3=12 different
model variants. To avoid confusion, we always explicitly state the variant which we
are currently looking at.

Figure 2.1 illustrates the noisy version of the model with free OC (including a
labor market, cf. section 2.4). In a nutshell, it works as follows. Hipos decide on their
occupation, then entrepreneurs set up firms and dealers acquire fundamental infor-
mation. After that, all agents trade in the asset market. Thereby, the dealers’ private
information partly leak out to the public. Noise prevents the information from being
revealed completely: high prices can not only be the result of positive information
about fundamentals, but can also stem from high noise trader demand. Everything
outside the dashed red box essentially shows the GS (1980) model. Everything in-
side the box is what we add to it: a real sector and OC between financial trading and
entrepreneurship; an endogenous asset supply from firms set up by entrepreneurs;
and a real-sector labor market for ordinary workers (cf. section 2.4).

FIGURE 2.1: The Model
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2.2 Equilibrium

This and the following sections define and solve for equilibrium. We start with the
noisy baseline model with free OC.
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Final wealth. The final wealth of a dealer is given by πD = (θ − P) ID, where ID

denotes asset holdings. A dealer’s information set ID consists in the public asset
price P and the private signal s, that is, ID = {P, s}.7 For a passive investor, it is
πM = (θ − P) IM and IM = {P}. As entrepreneurs already own parts of a firm, in
order to end up with a portfolio of IE risky assets, they have to sell a net amount of
ĨE = 1/a− IE assets in the market. Hence, πE = θ IE + P (1/a− IE) and IE = {P}.

Definition of equilibrium. Agents’ occupational choice LE, their asset holdings ID,
IE, IM and the asset price P jointly determine an equilibrium, iff:

(i) ID maximizes E [U (πD) |s, P],

(ii) IE maximizes E [U (πE) |P] and IM maximizes E [U (πM) |P],

(iii) P clears the asset market, that is (L− LE)ID + MIM + ν = LE (1/a− IE),

(iv) and OC is optimal, i.e.,

• E(πE) = E(πD) and 0 < LE ≤ L, or

• E(πE) ≥ E(πD) and LE = L.

Equilibrium conditions (i) and (ii) say that, at the "intermediate" stage, agents chose
their asset holdings so as to maximize the expected utility of final wealth, conditional
on the information they have. The market clearing condition is given by (iii), where
the l.h.s. shows asset demand by dealers, passive investors and noise traders and the
r.h.s. entrepreneurs’ asset supply. The fact that, at the "early" stage, hipos optimally
choose the occupation which promises the highest expected utility is entailed in (iv).
In an interior equilibrium with both entrepreneurs and dealers, the expected utilities
of the two have to be equal to each other. If they were not, then agents would have
an incentive to switch occupations towards the one that promises the higher utility.
We also allow for a corner equilibrium with entrepreneurs only, which would arise
if the expected utility of an entrepreneur exceeds that of a dealer even if all agents
become entrepreneurs.8

In the timing of the model, occupational choice precedes market trading. Solving
for equilibrium works backwards. We first derive agents’ optimal portfolio decisions
and the equilibrium asset price, given the occupational choice. In a second step, we
determine the equilibrium allocation of talent, where individuals optimally decide
on the occupation, taking into account their later optimal asset holdings and the
resulting asset price.

7The price is determined by the auctioneer and therefore is not literally known when the agents
make their investment decisions. However, agents do not decide on a fixed amount of assets to buy or
sell, but they trade on demand schedules. These are conditioned on the price and, in this sense, P is
part of the information set.

8We do not consider "equilibria" with a zero mass of entrepreneurs, as this would imply that the
risky asset is in zero supply.
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2.2.1 Portfolio Holdings and Price Function

Equilibrium conditions (i) and (ii) yield

ID =
s− P
ρσε

2 , IE (= IM) =
E (θ|P)− P

ρV (θ|P) (2.4)

(see Appendix B.1). Agents hold positive amounts of the asset, if its (conditional)
expected payoff exceeds its price. Intuitively, they hold more assets, (i) the higher
the payoff-to-price differential, (ii) the lower the (conditional) uncertainty regarding
the payoff, and (iii) the lower their degree of risk aversion ρ.

Substituting the optimal portfolio choices from (2.4) into the market clearing con-
dition gives the equilibrium price function:

P =
w + LE+M

ρ V(θ|w)
E(θ|w)− LE

a
L−LE
ρσε

2 + LE+M
ρ V(θ|w)

, (2.5)

where

w :=
L− LE

ρσε
2 s + ν (2.6)

(see Appendix B.2). Both w and P are normally distributed. From Appendix A.3, we
know that E (θ|w) is just a linear function of w and V (θ|w) is non-random. Hence,
the asset price is a linear function of w. As w is the only stochastic variable in the
price function, P and w are informationally equivalent in the sense that one can
immediately infer P from w and vice versa.

As E (θ|w) is increasing in w and w is in turn increasing in s, the asset price is
the higher, the "better" the asset fundamental. However, as w is also increasing in
ν, the price is also the higher, the greater the amount of noise trader asset demand.
Consequently, entrepreneurs and passive investors can not perfectly relate a high
(low) price P to a "good" ("bad") asset fundamental s. So, while the public price
does, to some extent, contain information about s, noise keeps it from being fully
revealing.

Restricted occupational choice. Now assume that hipos are no longer allowed to
become dealers. Then, given OC, agents’ portfolio holdings IE, IM and the asset
price P jointly determine a (partial) equilibrium, if (i) IE maximizes E [U (πE) |P],
(ii) IM maximizes E [U (πM) |P], and (iii) P clears the asset market, that is (L− LE +

M)IM + ν = LE (1/a− IE).
Without dealers, the price does not contain any information regarding the asset

fundamental s. Hence, E(θ|P) = E(θ) = s̄ and V(θ|P) = V(θ) = σs
2 + σε

2. From
(2.4), it immediately follows that the optimal portfolio decisions are given by (2.7).9

9It is not completely straightforward to argue that (2.4) remains valid for the case of restricted OC.
Some expressions that have been normally distributed with free OC, are non-stochastic with restricted
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The market clearing condition simplifies to (L + M) IM + ν = LE/a and immediately
gives the equilibrium price function according to (2.8):

IE(= IM) =
s̄− P

ρ (σ2
s + σ2

ε )
, (2.7)

P = s̄−
ρ
(
σ2

s + σ2
ε

)
L + M

(
LE

a
− ν

)
. (2.8)

As no one observes the asset fundamental s, the best guess on it is just E(s) = s̄. The
only price variation left is due to stochastic noise trader demand ν.

2.2.2 Occupational Choice

When deciding on their occupation, hipos compare unconditional expected utili-
ties. Equivalently, they can compare unconditional certainty equivalents (CEs). As
its name suggests, the certainty equivalent CEi of an individual in occupation i,
i ∈ {E, D, M}, gives the certain amount of wealth that would provide the individual
with exactly the same utility as it expects to derive from its uncertain final wealth
πi. Hence, it is implicitly given by U(CEi) = E [U (πi)]. An agent’s CE is equivalent
to his expected utility in the sense that the former is just a strictly monotonically
increasing function of the latter:

CEi = U−1 {E [U(πi)]} = −
1
ρ

ln {−E [U (πi)]} . (2.9)

Note that we have specified our utility function to take on values only in the negative
realm, so −E [U (πi)] is always positive.

Agents’ Certainty Equivalents

In what follows, we use the law of iterated expectations to derive the ex-ante (un-
conditional) certainty equivalents for passive investors, dealers and entrepreneurs
in the noisy model with free OC.

Passive investors. With his optimal portfolio holdings IM according to (2.4), the final
wealth of a passive investor is given by

πM = IM(θ − P)︸ ︷︷ ︸
GTM|s, ε, ν

= CEM|s, ε, ν. (2.10)

"Late", when all uncertainty resolves, a passive investor’s final wealth is not ran-
dom any more. In this sense, CEM|s, ε, ν denotes his (conditional) certainty equivalent,

OC. Hence, it remains to be checked whether the conditions required to derive (2.4) still hold. The fact
that the formulas in Appendix A.3 and A.4 also hold for non-random and degenerate joint normal
variables implies that this is the case.
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given that he observes s, ε and ν. We denote the part of a passive investor’s (condi-
tional) certainty equivalent that relates to gains from trading by GTM|s, ε, ν. As we see,
a passive investor gains wealth solely from uninformed trading in the asset market.
At the "intermediate" stage, a passive investor only observes the public asset price
P. His certainty equivalent, conditional on P, is given by

CEM|P =
[E(θ|P)− P]2

2ρV(θ|P)︸ ︷︷ ︸
GTM|P

. (2.11)

Finally, there are no information available at all in the "early" stage. A passive in-
vestor’s unconditional certainty equivalent is given by

CEM =
E(z)2

1 + 2ρV(z)
+

1
2ρ

ln [1 + 2ρV(z)]︸ ︷︷ ︸
GTM

, (2.12)

where
z :=

[E(θ|P)− P]√
2ρV(θ|P)

=
√

GTM|P (2.13)

(see Appendix B.3). Note that z, which is just a monotonic transformation of GTM|P,
is proportional to the (conditional) Sharpe Ratio of the risky asset SRθ|P (cf. Ap-
pendix B.3). Hence, it closely relates to the (conditional) risk-adjusted expected re-
turn from uninformed trading in the market.

Dealers. Analogously to the passive investors above, for a dealer we get

πD = ID(θ − P)︸ ︷︷ ︸
GTD|s, ε, ν

= CED|s, ε, ν. (2.14)

Dealers gain wealth solely from informed trading in the asset market. Their certainty
equivalent conditional on s and P is given by

CED|s,P =
(s− P)2

2ρσε
2︸ ︷︷ ︸

GTD|s,P

. (2.15)

Similar as before,
√

GTD|s,P is proportionate to the (conditional) Sharpe Ratio SRθ|s,P

and closely relates to the (conditional) risk-adjusted expected return from informed
trading in the market (see Appendix B.3).
Dealers’ certainty equivalent conditional on P is given by

CED|P =
1

2ρ
ln

V(θ|P)
σε

2︸ ︷︷ ︸
GID|P

+
[E(θ|P)− P]2

2ρV(θ|P)︸ ︷︷ ︸
GTM|P

. (2.16)
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As GID|P is non-random, it carries over one-to-one into the unconditional certainty
equivalent and we get

CED =
1

2ρ
ln
[

1 +
V(s|P)

σ2
ε

]
︸ ︷︷ ︸

GID

+
[E(z)]2

1 + 2ρV(z)
+

1
2ρ

ln [1 + 2ρV(z)]︸ ︷︷ ︸
GTM

(2.17)

(see Appendix B.3). As private information come without direct costs and give an
informational advantage in trading, a dealer’s CE exceeds that of a passive investor.
We denote the term which is related to these gains from information by GID. It is the
higher, (i) the less residual uncertainty σε

2 remains, and (ii) the larger the dealers’
informational advantage (i.e., the less private information leaks to the public and
therefore the larger V(s|P)). In case that the price fully reveals the private signal, it
is V(s|P) = 0, GID = 0 and, hence, the expected utility of a dealer equals that of a
passive investor.

Entrepreneurs. An entrepreneur’s final wealth πE can be written as

πE =
P
a︸︷︷︸

GPE|s, ε, ν

+ IE(θ − P)︸ ︷︷ ︸
GTE|s, ε, ν

= CEE|s, ε, ν. (2.18)

The market value created by a single hipo’s entrepreneurial activity is denoted by
GPE|s, ε, ν. "Gross" gains from trade are denoted by GTE|s, ε, ν. These gains are "gross"
in the sense that they arise from buying an amount of IE assets in the market, which
implies that the entrepreneur has sold his initial 1/a assets before. For an alterna-
tive illustration of πE, which instead separates entrepreneurs’ "net" gains from trade
from the fundamental value of entrepreneurship, see Appendix B.4.
An entrepreneur’s certainty equivalent conditional on P is given by

CEE|P =
P
a︸︷︷︸

GPE|P

+
[E(θ|P)− P]2

2ρV(θ|P)︸ ︷︷ ︸
GTE|P (=GTM|P)

. (2.19)

For the unconditional CE, it follows that

CEE = E

(
P
a

)
− ρ

2
V

(
P
a

)
︸ ︷︷ ︸

GPE

+

[
E (z)− ρCov

( P
a , z
)]2

1 + 2ρV(z)
+

1
2ρ

ln [1 + 2ρV(z)]︸ ︷︷ ︸
GTE

(2.20)

(see Appendix B.3). GPE relates to the expected utility from selling 1/a assets for
price P in the market. GTE relates to the expected utility from (re)building the de-
sired asset portfolio IE after that. Without the covariance term, GTE would exactly
equal a passive investor’s gains from trading GTM. However, an entrepreneur’s
gains from selling the 1/a shares in his firm and the gains from buying back the
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desired amount of asset holdings IE are not independent of each other. A higher as-
set price P increases the former, but hurts the latter. This counter-movement, repre-
sented by Cov(P, z) < 0 (see Appendix B.5), mitigates an entrepreneur’s risk overall
and hence increases GTE. As a consequence, the "gross" gains from trade for an entre-
preneur are always higher than those for passive investors, even though they trade
on the same information and eventually hold the same asset portfolio IE = IM.10

Again, see Appendix B.4 for an alternative illustration of entrepreneurs’ CE, which
explicitly states expected utility from "net" trade.

The Equilibrium Allocation of Talent

For each hipo, it is optimal to choose the occupation that yields the highest CE. As
we can immediately see by comparing (2.12) to (2.17), becoming a passive investor
is never preferred to becoming a dealer. Hence, with free OC, hipos become either
dealers or entrepreneurs. In an interior equilibrium 0 < LE < L with both entrepre-
neurs and dealers, CEE has to equal CED. Otherwise, some agents would voluntarily
choose an "inferior" occupation, which is incompatible with optimal behavior. A cor-
ner equilibrium with entrepreneurs only may arise if the certainty equivalent of an
entrepreneur exceeds that of a dealer even when all agents become entrepreneurs,
that is, if CEE ≥ CED at LE = L.

With the expressions for V(s|w), E(P), V(P), E(z), V(z) and Cov(P, z) given
in Appendix B.5, one immediately sees that the agents’ certainty equivalents are
continuous functions of LE. Let

∆(LE) := CEE − GTM = GPE + (GTE − GTM) ,

Γ(LE) := CED − GTM = GID.
(2.21)

Then, if there is an LE with 0 < LE < L that solves ∆(LE) = Γ(LE), this LE constitutes
an interior equilibrium. If ∆(L) ≥ Γ(L), then there is a corner equilibrium with
LE = L. Together with the optimal portfolio decisions in (2.4) and the equilibrium
asset price (2.5), the equilibrium mass of entrepreneurs LE constitutes the general
equilibrium of the model.

Existence and uniqueness. As figure 2.2 illustrates, continuity of ∆(LE) and Γ(LE)

implies that a sufficient condition for the existence of an equilibrium with a positive
mass of entrepreneurs is given by ∆(0) > Γ(0). As ∆(LE)− Γ(LE) is not necessarily
monotonic, multiple equilibria are possible. With regards to figure 2.2, this would be
the case if ∆(LE) crosses Γ(LE) again, from below. The result would be a co-existence
of two interior equilibria plus a corner equilibrium. With regards to their properties,
these would be quite different. To see this, call an equilibrium LE "stable", if, after
a slight perturbation away from it, the mass of entrepreneurs "returns" to exactly

10Strictly speaking, GTE > GTM also requires E(z) > 0. With (2.13) and (2.11), we can easily show
that z = [(ρ/2)V(θ|P)]0.5 · IM. Hence, E(z) > 0 whenever E(IM) > 0, that is whenever rational agents
are expected not to short the asset.
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FIGURE 2.2: Equilibrium LE in Case of Free OC and σν
2 > 0
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this equilibrium value.11 While the interior equilibrium where ∆(LE) crosses Γ(LE)

from above, as well as the corner equilibrium would obviously be stable, the interior
equilibrium where ∆(LE) crosses Γ(LE) from below would not: a small perturbation
away from it makes the mass of entrepreneurs move to one of the other two equilib-
ria instead.

Strategic substitutability vs. complementarity. Dealers’ utility from having an in-
formational advantage over the other agents, given by Γ(LE)(= GID), is strictly
increasing in LE. Intuitively, the informational advantage of a single dealer is the
higher, the less other dealers are around.

With regards to entrepreneurs, we see two effects. The first one is, again, one
of strategic substitutability: a single entrepreneur’s gains from production are the
higher, the less other entrepreneurs are around. This is because entrepreneurs are
net sellers of the asset and less aggregate entrepreneurship implies a lower total
asset supply (and, hence, higher prices). Interestingly, however, we see an additional
effect of strategic complementarity: a single entrepreneur benefits from the presence
of other entrepreneurs through the fact that more entrepreneurship implies fewer
dealers and therefore less information revelation in the market. In fact, as we show
in section 2.5.3, the availability of information harms entrepreneurs via an inefficient
clustering of risk.

Depending on which of the two effects dominates, ∆(LE) is decreasing or in-
creasing. As figure 2.2 shows, we find that for low values of LE and, hence, a large
number of dealers, the first effect tends to dominate. This is not surprising, as V(θ|P)
as a measure of the degree of information revelation (the higher V(θ|P), the less in-
formation is revealed) tends to be less sensitive to marginal changes in the mass of
dealers when there are relatively many of them (see the pattern of Γ(LE)(= GID)

in figure 2.2). In contrast, for high values of LE and a low presence of dealers, a

11Talking about "stability" in a non-dynamic context is controversial. In doing so, we follow the
argumentation in Manzano and Vives (2011) and Biais et al. (2015, p. 303).
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marginal change in the amount of informed trading has a rather large impact on
informational efficiency and, as a result, the second effect gains in strength.

Equilibrium with restricted OC. If hipos are restricted from becoming dealers, the
price does not contain any information regarding the risky asset θ. With P according
to (2.8), it follows from (2.13) that

z =
1√
2ρ

s̄− P√
σs2 + σε

2

=

√
ρ

2
(σ2

s + σ2
ε ) ·

LE
a − ν

L + M
. (2.22)

The certainty equivalents of passive investors and entrepreneurs are given by (2.12)
and (2.20), with P and z according to (2.8) and (2.22). The corresponding closed-form
solutions for E(P), V(P), E(z), V(z) and Cov(P, z) are given in Appendix B.6.

Without the option to engage in professional trading, hipos decide whether to
become entrepreneurs or passive investors. Let again ∆(LE) = CEE − GTM. Then, if
there is an LE with 0 < LE < L that solves ∆(LE) = 0, this LE constitutes an inte-
rior equilibrium with a positive mass of both entrepreneurs and passive investors.
If ∆(L) ≥ 0, then there is a corner equilibrium with LE = L. Together with the opti-
mal portfolio decisions in (2.7) and the equilibrium asset price (2.8), the equilibrium
mass of entrepreneurs LE constitutes the general equilibrium of the model. The rea-
son why some hipos might prefer staying passive over becoming entrepreneurs is
that entrepreneurship entails entrepreneurial risk. Even though the asset price P, ac-
cording to (2.8), is now independent of the fundamental s, uncertainty remains with
regards to noise trader demand ν. Hence, it is V(P) > 0 and with that the gains from
entrepreneurship GPE are not necessarily positive.

Continuity of ∆(LE) implies that a sufficient condition for the existence of an
equilibrium with a positive mass of entrepreneurs is given by ∆(0) > 0. In contrast
to the case of free OC, ∆(LE) is strictly monotonically decreasing with restricted OC
(see Appendix B.6). Consequently, equilibrium is unique.

2.3 Deterministic Noise Trader Demand

Even though our analysis of the noisy model yields closed-form solutions, compli-
cated expressions for the agents’ CEs (cf. Appendix B.3) make it infeasible to derive
meaningful analytical welfare results. We therefore take a two-step approach. First,
we provide a rigorous analysis of the noiseless model, that is, we assume determinis-
tic noise trader demand (i.e., σν

2 = 0). In this case, agents can perfectly infer private
information from the public price. Hence, information asymmetries vanish and there
is either complete or no information in the market, depending on whether the mass
of dealers is strictly positive or not. This simplifies expressions enough to allow for
analytical welfare analysis. As a second step, we then show that the welfare results
we obtain from this model also hold in the limit for small noise volatility and use this
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as the starting point for our numerical welfare analysis of the model with substantial
noise volatility (cf. section 2.6).

Let σν
2 = 0 and ν = ν̄. Consider first the case of free OC. If there is a positive mass

of dealers, that is LE < L, then with (2.5) and (2.6) we immediately see that the price
P fully reveals the private signal s. It follows that E(θ|w) = s and V(θ|w) = σε

2. If
there are no dealers at all, that is LE = L, the price does not contain information on
s and E(θ|w) = s̄ and V(θ|w) = σε

2 + σs
2. From (2.5), the equilibrium price function

is given by:12

P =


s− ρσε

2

L+M

(
LE
a − ν̄

)
, for LE < L

s̄− ρ(σε
2+σs

2)
L+M

( L
a − ν̄

)
, for LE = L

(2.23)

(see Appendix B.7). From (2.13), it immediately follows that

z =


√

ρ
2 σε

2 ·
LE
a −ν̄

L+M , for LE < L√
ρ
2 (σε

2 + σs2) ·
L
a−ν̄

L+M , for LE = L
. (2.24)

Hence, z is non-random and V(z) = 0 and Cov(P, z) = 0, from which it immediately
follows GTM = GTE. For LE = L, the asset price P is also non-random. The functions
∆(LE) and Γ(LE) simplify to

∆(LE) = GPE =


1
a

(
s̄−

LE
a −ν̄

L+M ρσε
2 − ρσs

2

2a

)
, for LE < L

1
a

(
s̄−

L
a−ν̄

L+M ρ
(
σε

2 + σs
2)) , for LE = L

(2.25)

and

Γ(LE) = GID =


0, for LE < L

1
2ρ ln

[
1 + σs

2

σε
2

]
, for LE = L

. (2.26)

As GID = 0 for LE < L, dealers do not earn informational rents in the model with-
out noise. For LE < L, ∆(LE) is strictly monotonically decreasing in LE. Hence, if an
interior equilibrium with LE < L exists, then this is the only interior equilibrium.
Obviously, ∆(LE) and Γ(LE) are not continuous at LE = L. This implies the possibil-
ity for non-existence of equilibrium or two simultaneous equilibria, one with LE < L
and one at LE = L.
For an interior equilibrium with both dealers and entrepreneurs to exist, we require
∆(LE) = 0 for some LE with 0 < LE < L. This is the case, exactly if

s̄1 < s̄ < s̄2, (2.27)

12The fact that Appendices A.3 and A.4 also hold for non-random and degenerate joint normal vari-
ables implies that the general expressions derived in Chapter 2.2 carry over to the noiseless case.
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where

s̄1 :=
ρσs

2

2a
− ν̄

L + M
ρσε

2, s̄2 :=
ρσs

2

2a
+

L
a − ν̄

L + M
ρσ2

ε (2.28)

(see Appendix B.8). If (2.27) holds, then the interior equilibrium LE is given by

LE =
a(L + M)

ρσε
2

(
s̄− ρσs

2

2a

)
+ aν̄ (2.29)

(see Appendix B.8). Even though dealers do not have an informational advantage
over passive investors, the OC decision is non-trivial in the sense that not all agents
necessarily want to become entrepreneurs. While the asset price P, according to
(2.23), is deterministic with respect to noise traders’ asset demand, it still varies with
respect to the fundamental s. Hence, it is V(P) > 0 and this entrepreneurial risk
implies that the gains from entrepreneurship GPE are not necessarily positive.
For a corner equilibrium with only entrepreneurs, we require ∆(L) ≥ Γ(L), which
can be written as

s̄ ≥ s̄3, (2.30)

where

s̄3 :=
L
a − ν̄

L + M
ρ
(
σs

2 + σε
2)+ a

2ρ
ln
(

1 +
σs

2

σε
2

)
(2.31)

(see Appendix B.8). The fact that s̄2 6= s̄3 gives room for the existence of multiple
equilibria as well as the possibility of non-existence. Figure 2.3 illustrates the two
cases. If ∆(LE) = 0, for an LE < L, and ∆(L) ≥ Γ(L), an interior and a corner equilib-
rium co-exist. If ∆(LE) > 0 for LE < L, but Γ(L) > ∆(L), the GS (1980) non-existence
result re-arises. As long as LE < L and the private signal is fully revealed by the pub-
lic price, all agents prefer to engage in entrepreneurship. Hence, an equilibrium with
LE < L does not exist. For LE = L, however, where the price is uninformative, the
(price-taking) agents gain an incentive to acquire private information and, thereby,
a (perceived) informational advantage over the other agents, by becoming dealers.
Consequently, LE = L is not an equilibrium either.13

If ∆(LE) = 0 for an LE < L, then an equilibrium where the public price fully re-
veals the private signal exists. With direct costs of information as in GS (1980), such
an equilibrium would not exist: agents would always prefer to become passive in-
vestors rather than dealers and free-ride on the information acquired by others. An
equilibrium with only entrepreneurs exists if, at LE = L, the opportunity cost of be-
coming a dealer (i.e., the gain from entrepreneurship) is larger than the (perceived)
gains from information. This is similar to GS (1980), where such an equilibrium can
only exist if the direct costs of acquiring information are sufficiently large.

Restricted occupational choice. In case of free OC, price informativeness jumps
from "perfect", for LE < L, to "zero", at LE = L. Without dealers, the price never

13Hellwig (1980) has called these GS(1980)-type agents as schizophrenic, as they do understand how
the price conveys information, but do not realize their own informational impact on the price.
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FIGURE 2.3: Equilibrium LE in Case of Free OC and σν
2 = 0
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Note: In contrast to the two cases depicted in the figure, equilibrium is unique, if either (i) ∆(LE) =
0 for an LE < L and Γ(L) > ∆(L) (interior equilibrium), or (ii) ∆(LE) > 0 for LE < L and
∆(L) > Γ(L) (corner equilibrium).

conveys any information at all. Therefore, there are no discontinuities in case of re-
stricted OC. According to (2.8) and (2.22), with ν̄ instead of ν, we get:

P = s̄−
ρ
(
σ2

s + σ2
ε

)
L + M

(
LE

a
− ν̄

)
, (2.32)

z =

√
ρ

2
(σ2

s + σ2
ε ) ·

LE
a − ν̄

L + M
. (2.33)

P and z are both non-stochastic and hence it is GTM = GTE as well as V(P) = 0. It
follows that

∆(LE) = GPE =
1
a

(
s̄−

LE
a − ν̄

L + M
ρ
(
σε

2 + σs
2)) . (2.34)

Obviously, ∆(LE) is strictly decreasing in LE. Together with continuity, this implies
that equilibrium is unique. For an interior equilibrium with both entrepreneurs and
passive investors to exist, we require ∆(LE) = 0 at an 0 < LE < L, that is:

s̄4 < s̄ < s̄5, (2.35)

where

s̄4 := −ρ(σε
2 + σs

2)

L + M
ν̄, s̄5 :=

ρ(σε
2 + σs

2)

L + M

(
L
a
− ν̄

)
(2.36)

(see Appendix B.8). If (2.35) holds, then the interior equilibrium LE is given by

LE =
a(L + M)

ρ(σε
2 + σs2)

s̄ + aν̄ (2.37)

(see Appendix B.8). While this tells us that an equilibrium at which some hipos be-
come entrepreneurs and some act as passive investors is a theoretical possibility, it
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is not very intuitive. As the asset price P, according to (2.32), is non-random, there is
no entrepreneurial risk. Therefore, the gains from entrepreneurship GPE are positive,
as long as the expected asset price is positive. Put the other way round, an interior
equilibrium is possible only if E(P) becomes negative.
For a corner equilibrium with only entrepreneurs, we require ∆(L) ≥ 0, which can
be written as

s̄ ≥ s̄5. (2.38)

With (2.35) and (2.38), we again see that an equilibrium with a positive amount of
entrepreneurs exists and is unique, whenever ∆(0) > 0.

Comparative Statics

With the (interior) equilibrium LE in case of free OC given by (2.29), we can easily
look at some comparative statics regarding the equilibrium mass of entrepreneurs.
First of all, an increase in the expected asset payoff s̄ increases the equilibrium mass
of entrepreneurs. This is pretty intuitive, as the gains from entrepreneurship stem
from the creation and consequent ownership of this asset. An increase in ν̄ increases
aggregate demand and with that the asset’s market value. Therefore, the equilibrium
mass of entrepreneurs goes up.

In what follows, assume that all agents hold positive amounts of the risky as-
set (cf. the subsection below). Then, similarly as a variation in ν̄, an increase in the
amount of passive investors M increases aggregate demand and, therefore, the equi-
librium level of LE. While, unsurprisingly, an increase in the total amount of hipos
L leads to a higher mass of entrepreneurs LE, note that the fraction of hipos that
decides to engage in entrepreneurship (i.e., LE/L) is in fact decreasing in L. Inter-
estingly, higher values for a imply a larger amount of entrepreneurs. This might be
unexpected, because a higher a effectively means that the amount of assets that is
to be gained from entrepreneurship decreases. As it turns out, however, this bene-
fits entrepreneurs on net: less of the asset does not only mean less expected profit,
but also less risk; and less of the asset for each entrepreneur implies less aggregate
supply for a given mass of entrepreneurs, which in turn benefits the asset’s market
value. A related question is what happens to the equilibrium aggregate asset supply
LE/a, if a increases. As we can see, a higher a does not only have a positive effect
on the mass of entrepreneurs LE, but that, regarding total equilibrium asset supply
LE/a, this effect even overcompensates the lower asset production per entrepreneur.

Higher payoff risk, i.e., higher σε
2 or σs

2, decreases the equilibrium mass of en-
trepreneurs. The same holds true for a higher degree of risk aversion ρ. This is not
surprising, as entrepreneurs dislike risk related to the asset they create and they dis-
like this uncertainty the more, the higher their degree of risk aversion.

LE with free vs. restricted OC. An interesting question concerns the consequences of
a ban on dealers for the equilibrium mass of entrepreneurs. To avoid confusion, de-
note variables that relate to the case of free OC by a superscript "1" and variables that



2.3. Deterministic Noise Trader Demand 39

relate to the case of restricted OC by a superscript "0". Hence, the equilibrium mass
of entrepreneurs with free or restricted OC is given by L1

E or L0
E, respectively. Start-

ing from an equilibrium with L1
E < L, we find that for a ban of dealers to strengthen

entrepreneurship (i.e., for L0
E > L1

E), it is sufficient that

L− aν̄

L + M
≤ 1

2
(2.39)

(see Appendix B.9). A simple set of sufficient conditions that ensures the validity of
(2.39) is given by ν̄ ≥ 0 and M ≥ L. It ensures that noise traders do not short the
asset and talent is scarce in the sense that the amount of passive investors exceeds
the amount of high potentials.

While these conditions are rather weak, one might still wonder why any condi-
tions are needed here in the first place. Put differently: Why should a ban of dealers
ever decrease the mass of entrepreneurs? The answer is that, by restricting OC, not
only do the "former" dealers have to decide whether to become entrepreneurs or
passive investors, but also the "former" entrepreneurs re-evaluate their decision. To
understand this, remember that a ban on dealers dramatically changes the informa-
tional structure of the market. Only in case that this change benefits entrepreneurs
more than passive investors does a ban of dealers increase entrepreneurship.

Trading Volumes

With non-stochastic noise trader demand, the price either perfectly reveals all pri-
vate information or there are no information at all. In both cases, all agents act on
the same information and expectations. Within the original GS (1980) model, this
would imply the no-trade result by Milgrom and Stokey (1982).14 The reason why
trade between rational agents is still happening in our model, is because of differ-
ent initial endowments of the risky asset: while each entrepreneur enters the trading
stage with 1/a risky assets, each dealer or passive investor enters with zero. Agents’
net trading volumes, both with free and restricted OC, are given by

ĨE =
1
a
−

LE
a − ν̄

L + M
, (2.40)

ID = IM(= IE) =
LE
a − ν̄

L + M
, (2.41)

where ID drops out in case of restricted OC or LE = L (see Appendix B.10). Ag-
gregate noise trading is exogenously given by ν̄. In a (hypothetical) scenario with
no entrepreneurs at all, (2.41) shows that trade would happen only because of noise
traders. For 0 < LE ≤ L, trade happens even for ν̄ = 0, because of the aforemen-
tioned differences in agents’ initial asset endowments.

14Strictly speaking, there would be some kind of "noise-trade" left due to noise traders’ exogenous
asset demand ν̄, but no further trade between the rational agents.
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The fact that equations (2.40) and (2.41) are valid both with free and restricted
OC does not imply that individual equilibrium trading volumes are the same in
both cases. This is because the (interior) equilibrium values for LE are not the same,
but given by (2.29) and (2.37), respectively. Substituting these into (2.40) and (2.41)
yields

ĨE =
1
a
−

L1
E

a − ν̄

L + M

=
1
a
− 1

ρσε
2

(
s̄− ρσs

2

2a

)
, (2.42)

ID = IM =
L1

E
a − ν̄

L + M

=
1

ρσε
2

(
s̄− ρσs

2

2a

)
(2.43)

in case of free OC (and L1
E < L), and

ĨE =
1
a
−

L0
E

a − ν̄

L + M

=
1
a
− s̄

ρ (σε
2 + σs2)

, (2.44)

ID = IM(= IE) =
L0

E
a − ν̄

L + M

=
s̄

ρ (σε
2 + σs2)

(2.45)

in case of restricted OC (and L0
E < L).

No short-selling. With (2.42)-(2.45), it is easy to identify conditions under which all
agents hold positive equilibrium amounts of the risky asset. For the noise traders,
this is just given by ν̄ ≥ 0. For the rational agents, it comes down to LE/a ≥ ν̄, with
LE evaluated at equilibrium with free or restricted OC, respectively. The condition
simply requires that, in equilibrium, total entrepreneurial output exceeds aggregate
noise trader demand. Note that, if all agents hold long positions, entrepreneurs, who
are the only agents entering the trading stage with positive amounts of the asset,
have to be net sellers. All other agents are net buyers, as their asset holdings equal
their respective trading volumes.

If we substitute the equilibrium L1
E(< L) into LE/a ≥ ν̄, we immediately see that

rational agents do not short the asset in equilibrium with free OC, if s̄ ≥ (ρσs
2)/(2a).

Analogously, rational agents do not short the asset in equilibrium L0
E(< L) with

restricted OC, if s̄ ≥ 0. It follows that, if agents do not short the asset in equilibrium
with free OC, they certainly don’t short it with restricted OC. Hence, summing up,
no agent ever shorts the asset in equilibrium, if ν̄ ≥ 0 and L1

E/a ≥ ν̄. In order to
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avoid tedious case distinctions, we will make use of this condition set in the welfare
chapter 2.5. Also note that, from a real-life perspective, short-selling is typically both
constrained and costly.

Trading volumes with free vs. restricted OC. Regarding the effects of a ban on deal-
ers on trading volumes, we immediately see that, with L0

E > L1
E, each rational agent’s

asset holdings increase. An interesting question is whether this is true also for aggre-
gate net trading. To answer it, note first that, as entrepreneurs are the only group of
sellers in the market, aggregate net trading is given by LE · ĨE. Comparing (2.42) to
(2.44), we immediately see that, for a given amount of entrepreneurs, a ban of deal-
ers has no effect on the trading volume. However, there is an (indirect) effect via the
change in the equilibrium mass of entrepreneurs. In Appendix B.10, we show that a
ban on dealers typically increases aggregate net trading. Actually, this is not surpris-
ing, as the implied increase in entrepreneurship increases aggregate asset supply.
The result also emphasizes that a ban on trading would have a completely differ-
ent effect than a ban on professional traders. The latter even increases equilibrium
trading volumes.

2.4 Adding a Labor Market

Entrepreneurship’s only role so far has been the creation of output. We now add a
potentially positive additional effect of entrepreneurship: the creation of jobs.15

To do so, assume that each of the M passive investors is now endowed with one
unit of ("ordinary") labor and hence also called an (ordinary) "worker". The output
a firm creates depends on both a macroeconomic shock and the amount of workers
employed. Formally, let firm output Y be given by

Y = θ̃ + F(m), (2.46)

where

θ̃ = s̃ + ε,

s̃ ∼ N(ŝ, σs
2),

ε ∼ N(0, σε
2),

(2.47)

m is employment at the firm-level and F(m) a standard production function with
positive, decreasing marginal returns. To ensure that an interior solution to the entre-
preneurs’ profit maximization problem exists, let F(m) satisfy the Inada conditions
limm→0 F′(m) = ∞ and limm→∞ F′(m) = 0. Firm profit θ is given by

θ = Y−Wm, (2.48)

15For empirical evidence on the fact that entrepreneurship creates jobs and drives wage growth, see,
e.g., Bednarzik (2000), Acs and Armington (2004), Acs (2006), and Malchow-Møller et al. (2011)
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where W is the wage rate per unit of labor. As before, θ corresponds to the payoff of
the risky asset. By choosing employment, firms affect the expected value of the asset.
A worker’s disutility from supplying his unit of labor to a firm is given by D(≥ 0).
Hence, he does so only if W ≥ D.

It seems reasonable to assume that wages and employment are determined at the
"intermediate" stage, that is, after the OC decision is made. Note, however, that the
additive nature of production Y implies that equilibrium wages and employment
are non-stochastic (see below) and, therefore, the timing is basically irrelevant with
regard to our results. The fact that only passive investors are endowed with "ordi-
nary" labor implies that becoming a worker is not feasible for the hipos. A possible
explanation could be that while only hipos have the mental abilities to engage in pro-
fessional financial trading or entrepreneurship, hard work in production requires a
level of physical fitness met only by workers. As before, only dealers observe s̃. All
other assumptions are the same as in the basic version of the model.16

In what follows, we will first characterize the scenario of a frictionless labor mar-
ket with full employment (FE). Afterwards, we introduce labor-market frictions and
equilibrium unemployment (UE). Workers benefit from more entrepreneurship in
both cases: via increasing wages in the former, via lower risk of unemployment in
the latter.

2.4.1 Full Employment

For simplicity, let D = 0, so that the aggregate supply of labor equals M for any non-
negative wage W. Furthermore, let M̂ = M/(LE/a) denote the number of workers
per firm. The labor market is in equilibrium, if (i) firms choose m in order to maxi-
mize their entrepreneurs’ (conditional) expected utility and (ii) m = M̂, so that the
labor market clears.

Labor market equilibrium. We can show that maximizing an entrepreneur’s (condi-
tional) expected utility w.r.t. m comes down to just maximizing the non-random part
of a firm’s profits F(m)−Wm (see Appendix B.11). Solving for the optimal m then
immediately gives F

′
(m) = W. Using the market clearing condition to substitute m

for M̂ gives the equilibrium wage W̃ as W̃ = F
′
(M̂).

General equilibrium. Let

s := s̃ + F(M̂)− F
′
(M̂)M̂, and s̄ := E(s). (2.49)

Then, s ∼ N (s̄, σs
2), and the equilibrium analysis in the FE model goes through

exactly as in the basic version of the model. More formally: Let s and s̄ be given by

16We neglect the fact that there is job creation also in the financial trading industry (Philippon, 2010,
p. 163, makes a similar assumption by ignoring innovation in the financial industry). We justify this
by our focus on a job market for "ordinary" workers, not for the high-skilled. As we have seen in the
Introductory Chapter, employees in financial trading typically are highly skilled. Within our model,
these people would be regarded as hipos and not be dependent on an employer: they could decide to
engage in informed trading just any time they want.
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(2.49). If (IE, ID, IM, P, LE) is an equilibrium of the basic version of the model, then
(IE, ID, IM, P, LE, M̂, W̃) is an equilibrium of the full employment model (ID drops
out in case of restricted OC).

Existence and uniqueness With s̄ given by (2.49), equilibrium analysis from Sections
2.2 and 2.3 carries over to the FE model. At least for a standard Cobb-Douglas pro-
duction function of the form F(m) = Am1−b, where A > 0 and 0 < b < 1, existence
of an equilibrium with LE > 0 is ensured by the fact that

lim
LE→0

s̄ = lim
LE→0

[
AM̂1−b − A(1− b)M̂−b M̂

]
= lim

LE→0
bAM̂1−b = ∞ (2.50)

and, therefore, limLE→0 ∆(LE) = ∞.
As s̄ now depends on LE, it is no longer possible to explicitly solve for the equi-

librium LE, not even in case of non-stochastic NT demand and a standard Cobb-
Douglas production function. Still, what we can show is that s̄ is strictly decreasing
in LE:

ds̄
dLE

= F′(M̂)(−1)
M̂
LE
−
[

F′′(M̂)(−1)
M̂
LE

M̂ + (−1)
M̂
LE

F′(M̂)

]
= F′′(M̂)

M̂2

LE
< 0. (2.51)

It immediately follows that ∆(LE) in the noiseless case, given by (2.25) or (2.34),
with s̄ according to (2.49), is still strictly decreasing in LE for LE < L. Hence, without
noise, the uniqueness properties from the basic model carry over to the FE model
(besides the fact that limLE→0 ∆(LE) = ∞ and ∆(LE) is now non-linearly decreasing
in LE, figure 2.3 still applies; see also figure B.2 in Appendix B.12).

In the case of stochastic noise trader demand, the fact that s̄ depends on LE does
not change the fact that equilibrium LE with free OC is not generally unique (qual-
itatively, figure 2.2 still applies, except that now limLE→0 ∆(LE) = ∞). To see that
the equilibrium LE with restricted OC stays unique also in the FE model, note that
the fact that s̄ decreases in LE immediately implies that ∆(LE) is still strictly decreas-
ing (cf. Appendix B.6; besides the fact that limLE→0 ∆(LE) = ∞ and ∆(LE) is now
non-linearly decreasing in LE, figure B.1 still applies).

Comparative statics. Doing comparative statics with respect to the equilibrium mass
of entrepreneurs is less straightforward in the FE model, as we can’t solve for LE

explicitly. In the noiseless case, parameter variations that shift ∆(LE) up or make it
less steep increase the equilibrium level of LE. From (2.25) and (2.34), with s̄ given
by (2.49), we immediately see that, analogously as in the basic model, an increase in
ŝ or ν̄ increases LE, as it shifts up ∆(LE). An increase in σε

2 or σs
2 or ρ decreases LE,

as it shifts down ∆(LE). Regarding a ban of dealers, note that condition (2.39) stays
sufficient for L0

E > L1
E (see Appendix B.12).
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Workers’ job gains To see that workers’ labor income benefits from an increasing
mass of entrepreneurs via higher equilibrium wages, we take the derivative of W̃
w.r.t. LE:

dW̃
dLE

= F
′′
(M̂)(−1)

aM
L2

E
= −F

′′
(M̂)

M̂
LE

> 0. (2.52)

Note, however, that LE is not exogenous, but endogenously determined in equilib-
rium. In terms of variation in the exogenous variables, anything that increases the
equilibrium mass of entrepreneurs without affecting the other parameters in (2.52)
increases workers’ equilibrium wage. This is in particular the case if the equilibrium
mass of entrepreneurs increases from L1

E to L0
E as the result of a ban on dealers.

2.4.2 Frictions and Unemployment

In reality, wage rigidities are a common labor market characteristic (see, e.g., Dick-
ens et al., 2007, and Babecký et al., 2010). If wages do not adjust so that demand
equals supply, this gives rise to equilibrium unemployment. In what follows, we in-
troduce frictions to the labor market by considering a union wage setting setup as in
McDonald and Solow (1981).17

Again, the mass of workers per firm is given by M̂. Workers organize in firm-
level unions. Unions set the wage so as to maximize the (conditional) expected utility
of their members. Firms have the right to hire along their optimal labor demand
function. If the wage set by unions is greater than the one that clears the market, there
is equilibrium unemployment. It amounts to M̂−m workers per firm and, hence, the
individual probability of being unemployed is given by 1− (m/M̂) for each worker.
Unions face a trade-off: on the one hand, setting a high wage benefits employed
workers; on the other hand, however, it increases the risk of unemployment. For
simplicity, we assume the production function to be Cobb-Douglas with F(m) =

Am1−b, where A > 0 and 0 < b < 1.

Labor market equilibrium. In Appendix B.13, we show that workers’ utility re-
lated to gains from the job is separable from their asset trading activities. Hence,
unions simply maximize the certainty equivalent of a worker’s expected job rev-
enues, which is given by

− 1
ρ

ln
(

1− m
M̂

[1− exp {−ρ(W − D)}]
)
=: GJM, (2.53)

with

m =

(
A(1− b)

W

) 1
b

(2.54)

depicting firm-level labor demand. GJM is greater than zero, as the argument of the
logarithm takes on values between zero and one. Equation (2.54) again points out

17In Appendix B.15, we also consider alternative wage-setting regimes: "work or shirk" as in Shapiro
and Stiglitz (1984); maximization of the wage bill as in Dunlop (1944); and efficiency wages as in Solow
(1979).
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to the unions’ trade-off: the higher they set the wage W, the lower the firm-level
employment m and, hence, the higher the unemployment risk 1− (m/M̂).

While we cannot explicitly solve for the wage rate that maximizes (2.53), we can
show that such a wage, call it W̃, exists, is unique, and is greater than D (see Ap-
pendix B.14). Hence, W̃, together with firms’ labor demand m evaluated at W = W̃,
call it m̃, constitute a labor market equilibrium in the UE model. In order to have
equilibrium unemployment, we require m̃ < M̂. A simple sufficient condition for
this is m̃ ≤ M/(L/a).

General equilibrium. As workers’ portfolio decisions are independent of their em-
ployment status (cf. Appendix B.13) and we already argued that the analogous holds
for entrepreneurs, the equilibrium analysis of the basic version of the model again
goes through unchanged by defining

s := s̃ + F(m̃)− W̃m̃, and s̄ := E(s). (2.55)

More formally: Let s and s̄ be given by (2.55). If (IE, ID, IM, P, LE) is an equilibrium of
the basic version of the model and m̃ < M̂, then (IE, ID, IM, P, LE, m̃, W̃) is an equi-
librium of the UE model (ID drops out in case of restricted OC). As W̃ and, therefore,
also m̃ are independent of LE (cf. Appendix B.14), s̄ given by (2.55) is independent
of LE. Hence, with s̄ given by (2.55), the explicit solutions (2.29) and (2.37) for the
equilibrium mass of entrepreneurs in the basic model without noise carry over to
the UE model. It follows that also the comparative statics from the baseline model
go through unchanged.

The fact that s̄ is independent of LE implies that ∆(LE) shows qualitatively the
same pattern as in the basic version of the model. Hence, for a graphical illustration
of how equilibrium is determined in the UE model, we can simply refer to the figures
in Sections 2.2 and 2.3. Existence and uniqueness properties then obviously carry
over from the basic version of the model as well. Condition (2.39) is sufficient for
L0

E > L1
E in the UE model, as with s̄ being independent of LE, the proof in Appendix

(B.9) goes through unchanged.

Workers’ job gains. As m̃/M̂ is increasing in LE, workers benefit from an increase in
the mass of entrepreneurs through a higher chance of getting employed. To see that
the lower risk of unemployment indeed translates into an increase in GJM, note that
from (2.53):

dGJM

dLE
= −1

ρ
·
−m̃

[
1− exp

{
−ρ(W̃ − D)

}]
1− m̃

M̂

[
1− exp

{
−ρ(W̃ − D)

}] · (−1) · 1
M̂2
· (−1) · aM

LE
2

=
1
ρ
·

m̃
M̂

[
1− exp

{
−ρ(W̃ − D)

}]
1− m̃

M̂

[
1− exp

{
−ρ(W̃ − D)

}] · 1
LE

> 0. (2.56)

Hence, everything that increases entrepreneurial activity LE, without affecting the
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other parameters in (2.53), increases workers’ expected job gains GJM. This is in par-
ticularly the case if the equilibrium LE increases as the result of a ban on dealers.

Regarding workers’ rate of unemployment, the wage level is of particular inter-
est. This is because a decrease in wages increases job opportunities in two ways.
First, (2.54) shows that firm-level employment rises. And second, the number of
firms increases as a consequence of an increase in expected firm profit s̄:

ds̄
dW̃

=
dm̃
dW̃︸︷︷︸
<0

(
F′(m̃)− W̃

)
︸ ︷︷ ︸

=0

−m̃ < 0. (2.57)

The wage rate W̃ is endogenously determined in equilibrium. Hence, in terms of
variation in the exogenous variables, this implies the following: anything that de-
creases the equilibrium wage rate without affecting the other parameters in (2.54)
increases firm-level employment m̃; and anything that decreases the equilibrium
wage rate without affecting the other parameters that influence the equilibrium mass
of entrepreneurs increases LE and, therefore, decreases M̂.

2.5 Welfare

This chapter provides analytical welfare results for the case of deterministic noise
trader demand, i.e., for σν

2 = 0. We define social welfare S as the sum of all agents’
certainty equivalents:

S = LE · CEE + (L− LE) · CED + M · CEM + N · CEN . (2.58)

Based on certainty equivalents, social welfare is not affected by how safe income
is distributed among agents. Hence, our welfare criterion puts aside any redistri-
butional aspects.18 Crucially, S includes noise traders’ welfare. This requires us to
answer the question of how the well-being of agents who exhibit exogenous behav-
ior can be evaluated in the first place. We do this by ex-post assigning them the same
CARA-utility function as the rational agents. As noise traders do not maximize this
function ex-ante, this either implies that they are hit by some kind of shock that pre-
vents them from maximizing utility and instead makes them randomize their asset
demand, or that they are just kind of irrational.19 The fact that, as we show in Sec-
tion 2.5.2, equilibrium is constrained efficient in the absence of market imperfections,

18A theoretical justification for using a SW-function based on CEs in the presence of uncertainty is
given by Chambers and Echenique (2012). For a recent application, see Kawakami (2017, p. 307).

19Allen (1984) and Albagli et al. (2018) take a similar approach. Allen (1984) studies welfare in the
GS (1980) model and uses a risk-neutral utility function to evaluate NT well-being. Albagli et al. (2018)
analyze the effects of limits to arbitrage and noisy information aggregation in financial markets on
corporate behavior. They use aggregate expected dividends (accruing to risk-neutral rational agents as
well as noise traders) as their welfare criterion (p. 9). Alternative specifications of noise trader behavior
have already been discussed in footnote 4. Another possibility would be to just ignore NT well-being in
the social welfare analysis. However, as emphasized by Albagli et al. (2018, p. 18), "welfare discussions
are incomplete without a proper specification of noise trader welfare."



2.5. Welfare 47

lends support to our measure of welfare. Furthermore, as we will see, our main an-
alytical results (cf. Propositions 2.5.1-2.5.2) are valid also for ν̄ = 0, that is, in case of
no noise trader activity at all.

2.5.1 Social Welfare Function

We proceed to derive agents’ certainty equivalents. Aggregating them gives social
welfare according to (2.58). We start with the case of free OC.
As z given by (2.24) is non-random, the CE of a passive investor, given by (2.12),
simplifies to

CEM = z2 =


ρσε

2

2

(
LE
a −ν̄

L+M

)2

, for LE < L

ρ(σs
2+σε

2)
2

( L
a−ν̄

L+M

)2
, for LE = L

. (2.59)

In the FE model, a worker’s CE is given by (2.59) plus his wage gains W̃(= F′(M̂)).
In the UE model, his CE is given by (2.59) plus his expected gains from the job GJM.
For LE < L, dealers trade on the same information as the passive investors and,
hence, have the same expected utility:

CED = CEM. (2.60)

In contrast to the passive investors, dealers don’t gain any additional utility in the
labor market models.
The CE of an entrepreneur, given by (2.20), simplifies to

CEE = GPE + z2 = GPE +


ρσε

2

2

(
LE
a −ν̄

L+M

)2

, for LE < L

ρ(σs
2+σε

2)
2

( L
a−ν̄

L+M

)2
, for LE = L

, (2.61)

with GPE given by (2.25). In the FE model, s̄ is given by (2.49). In the UE model, s̄ is
given by (2.55).
Finally, from Appendix B.16, the CE of a noise trader is given by

CEN =



ν̄

N︸︷︷︸
IN

ρσε
2

LE
a − ν̄

L + M︸ ︷︷ ︸
E(θ−P)

− ρ
2

(
ν̄

N

)2

︸ ︷︷ ︸
IN

2

σε
2︸︷︷︸

V(θ−P)

, for LE < L

ν̄

N︸︷︷︸
IN

ρ(σε
2 + σs

2)
L
a − ν̄

L + M︸ ︷︷ ︸
E(θ−P)

− ρ
2

(
ν̄

N

)2

︸ ︷︷ ︸
IN

2

(σε
2 + σs

2)︸ ︷︷ ︸
V(θ−P)

, for LE = L

, (2.62)

where IN gives individual noise trader asset demand. As long as all agents hold pos-
itive amounts of the asset, NTs’ expected gains from trading are positive. Whether
their overall utility is positive depends on whether this effect dominates the disutil-
ity they face from uncertainty regarding these gains.
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Summing up, social welfare S is given by

S =


LEGPE + ρσε

2

2

[ (
LE
a

)2

L+M − ν̄2 ( 1
L+M + 1

N

)]
, for LE < L

LGPE + ρ(σε
2+σs

2)
2

[
( L

a )
2

L+M − ν̄2 ( 1
L+M + 1

N

)]
, for LE = L

(2.63)

(see Appendix B.17). In the FE model, S is given by (2.63) plus the workers’ aggregate
wage gains M · W̃(= M · F′(M̂)). In the UE model, S is given by (2.63) plus the
workers’ aggregate expected gains from the job M · GJM.

Restricted occupational choice In case of restricted OC, z is given by (2.33) and again
non-random. Analogously as above, we get

CEM = z2 =
ρ(σs

2 + σε
2)

2

(
LE
a − ν̄

L + M

)2

(2.64)

and workers’ CE in the labor market models additionally includes their respective
gains from the job. The CE of an entrepreneur is given by

CEE = GPE + z2 = GPE +
ρ(σs

2 + σε
2)

2

(
LE
a − ν̄

L + M

)2

, (2.65)

with GPE given by (2.34). Again, in the labor market models s̄ is given by (2.49) or
(2.55), depending on whether there is full employment or not. From Appendix B.16,
the CE of a noise trader is given by

CEN =
ν̄

N︸︷︷︸
IN

ρ(σε
2 + σs

2)
LE
a − ν̄

L + M︸ ︷︷ ︸
E(θ−P)

−ρ

2

(
ν̄

N

)2

︸ ︷︷ ︸
IN

2

(σε
2 + σs

2)︸ ︷︷ ︸
V(θ−P)

. (2.66)

As in case of restricted OC there are no dealers at all, social welfare S, specified as
the sum of all agents’ CEs, is just given by

S = LE · CEE + (L− LE + M) · CEM + N · CEN , (2.67)

which comes down to

S = LEGPE +
ρ(σε

2 + σs
2)

2


(

LE
a

)2

L + M
− ν̄2

(
1

L + M
+

1
N

) (2.68)

(see Appendix B.17). As in the case of free OC, S in the labor market models addi-
tionally includes the workers’ aggregate gains from the job.
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2.5.2 Constrained Efficiency

We first analyze the equilibrium allocation of talent with regards to constrained
(in)efficiency, i.e., we check whether a marginal variation in the mass of entrepre-
neurs, starting from equilibrium, can increase social welfare.
Assume that agents do not short the asset. Then, from the preceding chapter, we
immediately see that dealers, passive investors and noise traders benefit from an
(exogenous) increase in the mass of entrepreneurs LE. This is not surprising, as they
are all net buyers of the asset and increasing entrepreneurial activity increases total
asset supply. Consequently, workers in the labor market models do not only benefit
from an (exogenously) increasing LE via higher gains in the job, but also via higher
gains from uninformed market trade. In contrast, entrepreneurs’ welfare in all ver-
sions of the model decreases in LE (see Appendix B.18). As they are net sellers of
the asset, an increasing total asset supply hurts their market position. It follows that,
overall, it is not obvious how an (exogenous) increase in entrepreneurship affects
social welfare S.

Second-best analysis. To address this question, we perform a second-best welfare
analysis with regards to the socially optimal amount of entrepreneurship LE, taking
the agents’ trading and labor market decisions as given. The analysis is further con-
strained in the sense that we also take as given the state of OC (free vs. restricted)
and the labor market environment (none vs. FE vs. UE).20 The following proposition
states the first of our two main analytical welfare results:

PROPOSITION 2.5.1. Let σν
2 = 0.

(i) Free OC. Suppose that an interior equilibrium LE < L exists, both in the basic ver-
sion of the model as well as in the labor market economies. Then, this equilibrium LE

maximizes social welfare S on (0, L) in the baseline model and in the FE economy, but
falls short of the social welfare maximizing LE in the UE model.

(ii) Restricted OC. Suppose that an equilibrium LE ≤ L exists, both in the basic version
of the model as well as in the labor market economies. Then, this equilibrium LE maxi-
mizes social welfare S on (0, L] in the baseline model and in the FE economy, but falls
short of the social welfare maximizing LE in the UE model.

The proof is in Appendix B.19. The proposition states that in the baseline and in the
FE model, the equilibrium allocation of talent is (constrained) efficient. This is ex-
actly what we would expect, as what we look at is, essentially, an economy without
imperfections: (i) there are no labor market frictions; (ii) without noise, the price is
fully revealing and, therefore, information is symmetric; and (iii) without noise, a
(marginal) change in the mass of dealers does not affect price informativeness and,
hence, does not entail informational externalities. Consequently, the only potential

20Another thing we implicitly take as given is agents’ "personality traits". This especially concerns
the noise traders’ non utility-maximizing behavior. If it were possible to nudge them towards behaving
more rational, this would increase social welfare (see Appendix B.20).
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imperfection remaining is noise traders’ non utility-maximizing behavior. And as
stated before, the fact that, still, the equilibrium and optimal allocation of talent co-
incide, lends support to the welfare criterion chosen. Note that the proposition also
holds for ν̄ = 0, that is, for the case where there is zero NT activity and hence so-
cial welfare consists of only rational agents’ well-being. One might wonder why the
positive impact entrepreneurship has on workers’ wages in the FE model does not
translate into a socially deficient equilibrium mass of entrepreneurs. The reason is
that the workers’ wage gains translate one-to-one into lower firm profitability (see
Appendix B.21).

In case of labor market frictions and equilibrium unemployment, the amount of
hipos engaging in professional financial trading is too big (see figure 2.4). The rea-
son is that entrepreneurship entails a positive externality: a larger number of firms
decreases the workers’ risk of unemployment. In contrast to increasing wages in the
FE economy, this does not come at the expense of firm profitability. Hence, measures
aimed at reallocating talent from finance towards the real sector are beneficial for so-
cial welfare.21 The mass of entrepreneurs that maximizes S on (0, L) in the UE model

FIGURE 2.4: Equilibrium and Optimum SW in the UE Model
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with free OC can be approximated by

LE =
a(L + M)

ρσε
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(
s̄− ρσs
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2a

)
+ aν̄ +

a(L + M)

ρ2σε
2 m̃

[
1− exp

{
−ρ(W̃ − D)

}]
, (2.69)

if this value is smaller than L. The amount of entrepreneurs that maximizes S on
(0, L] in case of restricted OC can be approximated by

LE =
a(L + M)

ρ (σs2 + σε
2)

s̄ + aν̄ +
a(L + M)

ρ2 (σs2 + σε
2)

m̃
[
1− exp

{
−ρ(W̃ − D)

}]
, (2.70)

21Remember that we took the labor market environment as given. If we would allow for the possibil-
ity to remove labor market frictions, then doing exactly this and thereby moving from the UE economy
towards full employment would be clearly superior to any attempt to manipulate OC within the UE
economy (see Appendix B.22).
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if this value is smaller than L, and by LE = L otherwise (see Appendix B.23).22 Com-
paring (2.69) and (2.70) to (2.29) and (2.37) immediately shows that the optimum
LE exceeds the equilibrium one. Unsurprisingly, it does so by the more, the higher
firm level employment m̃ and the higher the "net" wage W̃ −D, as this increases the
benefits workers get from more entrepreneurship.

Finally, note that, in case of free OC, Proposition 2.5.1 only applies for LE ∈ (0, L).
It is silent on how equilibrium social welfare S1(L1

E), with L1
E < L, compares to S1(L).

This is because price informativeness jumps from "perfect" to "zero" at LE = L and,
therefore, S1 is discontinuous at LE = L. Corollary 2.5.2.1 in the next subsection gives
further information in this regard.

2.5.3 Informational Efficiency vs. Real Efficiency

While the preceding chapter addressed the effects of a marginal change in the mass
of entrepreneurs LE, starting from equilibrium, we now turn to a comparison of so-
cial welfare with free vs. restricted OC. In particular, we show that social welfare
with restricted OC exceeds social welfare with free OC, both at equilibrium and the
constrained optimum values. To avoid confusion, we indicate expressions that refer
to the case of free OC by a superscript "1" and expressions that refer to the case of
restricted OC by a superscript "0". Note that for LE = L we don’t have to distin-
guish the case with free OC from the one with restricted OC, as all hipos engage in
entrepreneurship anyway. Comparing, e.g., (2.68) to (2.63) immediately shows that
S1(L) = S0(L).

Pareto Analysis

We start with individual comparisons. For a passive investor, comparing (2.59) to
(2.64) immediately shows that, for any given LE, CE0

M > CE1
M. As dealers face the

same expected utility as passive investors, this also implies that hipos who decide
to become dealers in case of free OC would be better off acting as passive investors
with restricted OC. Taking into account that the equilibrium values of LE differ de-
pending on whether there is free OC or not, a simple set of sufficient conditions for
CE0

M(L0
E) > CE1

M(L1
E), which immediately follows from comparing (2.59) to (2.64), is

given by L1
E/a > ν̄ and L0

E ≥ L1
E. This holds true also for the labor market models,

as workers’ (expected) gains on the job are increasing in LE and, hence, are higher
with restricted OC, if L0

E > L1
E.

We can show that also for entrepreneurs we have CE0
E > CE1

E, for any given LE

(see Appendix B.24). With regards to equilibrium values, note that an entrepreneur’s
equilibrium gains from trading z2 equal the equilibrium CE of passive investors
(and, in case of free OC, also that of dealers). Hence, they are greater without free OC

22In fact, the simulation in Chapter 2.6.2 gives evidence that (2.69) and (2.70) are good approxima-
tions of the "true" values; cf. table C.16 in Appendix C.7.
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under the same conditions as stated above. With free OC, an entrepreneur’s equilib-
rium gains from production are given by GP1

E(L1
E) = 0 for L1

E < L. A ban of dealers
either leads to an interior equilibrium L0

E < L, in which case GP0
E(L0

E) = 0 as well, or
to a corner equilibrium L0

E = L with GP0
E(L) ≥ 0. Either way, it follows that a simple

set of sufficient conditions for CE0
E(L0

E) > CE1
E(L1

E) is again given by L1
E/a > ν̄ and

L0
E ≥ L1

E. This obviously holds true also for the labor market economies.

Rational agents. In an (interior) equilibrium with free OC, an entrepreneur’s wel-
fare equals that of a dealer, which in turn equals that of a passive investor. Under
restricted OC, an entrepreneur’s equilibrium welfare either equals (if L0

E < L) or
exceeds (if L0

E = L) that of a passive investor. Hence, from the above it follows that
under L1

E/a > ν̄ and L0
E ≥ L1

E, every single hipo benefits from a ban on dealers.
Together with the fact that, under this set of conditions, also every single passive
investor is better off in equilibrium with restricted OC, this implies that a ban on
dealers results in a Pareto improvement for all rational agents in the economy.

Noise traders. Comparing (2.62) to (2.66) immediately shows that, for any given LE

with LE/a > ν̄ and ν̄ > 0, banning dealers (i) benefits noise traders through higher
expected gains from trading, but, at the same time, (ii) hurts them through a higher
volatility of these gains. The same is true also with regards to equilibrium values,
if L1

E/a > ν̄ > 0 and, additionally, L0
E ≥ L1

E. If effect (i) dominates (ii), then noise
traders are better off with restricted OC. Two simple sufficient sets of conditions for
that to be the case, i.e., for CE0

N(L0
E) > CE1

N(L1
E), are given by:

(i) ν̄ > 0, L0
E ≥ L1

E, and
L1

E
a

> ν̄

(
1 +

L + M
2N

)
, (2.71)

in all versions of the model, or

(ii) ν̄ > 0, L0
E < L and

ν̄

N
<

1
a

(2.72)

in the basic version of the model and the UE economy.

The proof is in Appendix B.25. The third condition in (i) is a strengthened version of
L1

E/a > ν̄. The third condition in (ii) requires noise traders to be sufficiently "small",
in the sense that a single noise trader’s asset demand is smaller than the amount
of assets created by a single entrepreneur. As it stands, condition set (ii) does hold
neither for L0

E = L, nor in the FE model (see Appendix B.25 for adjusted versions of
the condition set in these cases). Obviously, if ν̄ = 0, then noise traders are inactive
and their final wealth equals zero, independent of the state of OC.

All agents. Condition set (i) implies that besides noise traders, also rational agents
benefit from a ban on dealers. It immediately follows that restricting OC leads to
a Pareto improvement for all agents in the economy, in all model variants. Alterna-
tively, combining condition set (ii) with L1

E/a > ν̄ and L0
E ≥ L1

E gives another set of
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sufficient conditions for which a ban on dealers results in a Pareto improvement for
all agents in the economy, in the baseline and the UE model. The result that agents
tend to be better off with restricted OC, which implies the absence of information
on asset fundamentals, might come as a surprise. We will further elaborate on what
drives these results below.

Social Welfare Analysis

In this section, we turn to a comparison of aggregate welfare levels, i.e., to the com-
parison of social welfare with free vs. restricted OC. The following proposition states
the second of our two main analytical welfare results:

PROPOSITION 2.5.2. Let σν
2 = 0. Then, for the baseline model and the FE economy,

equilibrium social welfare S0(L0
E) in case of restricted OC exceeds equilibrium social welfare

S1(L1
E) in case of free OC, if

L1
E

a
> ν̄ ≥ 0,

ν̄

N
≤ 1

a
.

(2.73)

For the UE model, the same holds true by adding L0
E ≥ L1

E.

The proof is in Appendix B.26. Proposition 2.5.2 gives a set of simple sufficient con-
ditions under which a ban on dealers raises social welfare. The first condition in
(2.73) ensures that all agents hold positive amounts of the asset. The second one
states that individual noise trader demand is sufficiently small. In the UE model,
where equilibrium welfare differs from the social optimum, we additionally have
to assume that L0

E ≥ L1
E. The set of conditions in Proposition 2.5.2 is weaker than

the conditions for a Pareto improvement for all agents. To see this, first note that
condition (2.71) is stronger than the set of both L1

E/a > ν̄ and ν̄/N ≤ 1/a.23 And
in contrast to the second set of conditions for a Pareto improvement, jointly given
by (2.72), L1

E/a > ν̄ and L0
E ≥ L1

E, the condition set in Proposition 2.5.2 does not
require L0

E < L and also holds for the FE economy. Again, note that the Proposition
also holds for ν̄ = 0, i.e., for the case without NT activity and hence a SWF that en-
compasses only rational agents’ welfare. As we can easily see, in this case, the mere
existence of an equilibrium L1

E already ensures condition set (2.73).

Are information harmful? As mentioned before, the result that social welfare is typ-
ically higher with restricted OC might be surprising, especially as we have seen that
this is true also for a given mass of entrepreneurs LE. Holding LE fixed, the only ma-
jor difference between the case of free vs. restricted OC is the informational structure
in the financial market. While there is full information about the asset fundamental s,
available to everyone, in the presence of dealers, in case of restricted OC there are no

23It is immediately obvious that (2.71) implies L1
E/a > ν̄. Rewriting (2.71) gives L1

E/a > ν̄ + ν̄/N ·
(L + M)/2. For M ≥ L, this requires ν̄/N < 1/a.
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information at all. In fact, as information acquisition comes without direct costs, this
result implies that the mere presence of information on asset fundamentals tends
to be detrimental to social welfare. The reason is that the revelation of fundamental
information has a negative impact on ex-ante efficient risk-sharing, as was first high-
lighted by Hirshleifer (1971).24 Figure 2.5 shows that we can decompose the transi-
tion from equilibrium social welfare with free OC to equilibrium social welfare with
restricted OC into two separate effects. The first effect is the one just explained.

FIGURE 2.5: Social Welfare Effects of a Ban on Dealers
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Note: Both figures refer to the basic version of the model. They basically look the same in the FE
economy. In the UE model, the equilibrium values L1
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welfare maximizing LE’s. The left panel depicts the case of an interior equilibrium L0
E < L, the

right panel the case of a corner equilibrium L0
E = L.

What is even more interesting, however, is the second effect. While impaired risk-
sharing hurts all (rational) agents, it does not hurt all of them equally hard. In fact,
entrepreneurs suffer disproportionately. As they are the ones who establish firms
and create the asset, they, initially, bear all risk. In the trading stage, they engage in
mutually beneficial risk-sharing and thereby get rid of some of this risk. Indepen-
dent of whether there is free or restricted OC, they can always share risk regarding
the non-fundamental uncertainty in ε. Strikingly, however, they can share risk re-
garding the asset fundamental s only if it has not been fully revealed already, which
actually is exactly what happens in the presence of dealers (cf. Appendix B.27). This
discourages entrepreneurship in case of free OC compared to the case of restricted
OC. Simply put, informed trading impedes ex-ante beneficial risk-sharing, leads to
a clustering of risk at entrepreneurs and thereby distorts the allocation of talent.

24To give an easy and intuitive example, assume that there are only two risk-averse agents and only
two possible future states of the world. Agent A gets a payoff pA = 1 in state one of the world and
pA = 0 in state two. Agent B gets a payoff pB = 0 in state one of the world and pB = 1 in state two.
Without information about the future state of the world, the two agents agree on mutually beneficial
insurance and hence get a net-payoff equal to 1/2 each, with certainty. In contrast, if the future state of
the world is known from the beginning, one of the agents gets his payoff equal to 1 and the other one
his payoff equal to 0. From a social welfare perspective, this is clearly inferior.
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Taking these information out of the market via a ban on dealers encourages entre-
preneurship, results in increased real economic activity and benefits welfare.

In general, the fact that the revelation of information can harm optimal risk shar-
ing is well known since Hirshleifer (1971). In this sense, also Hu and Qin (2013) find
that an increase in informed traders harms welfare in the Grossman (1976) model
with diverse information and a fully revealing equilibrium. Similarly, Allen (1984)
finds that informational efficiency harms the rational agents in the GS (1980) model
and has an ambiguous effect on the noise traders. More recently, Kawakami (2017)
shows that information aggregation in an REE framework with heterogeneous infor-
mation of the type introduced in Diamond and Verrecchia (1981) can harm welfare
by decreasing hedging effectiveness. Bond and Garcia (2019) study the equilibrium
consequences of indexing vs. active trading in a multi-asset version of Diamond
and Verrecchia (1981) and find that increased price informativeness through active
trading hurts welfare by constraining agents’ risk sharing options. By adding agents
with correlated private valuations into a generalized framework of GS (1980) and
Hellwig (1980), Rahi and Zigrand (2018) show that more informative prices tend to
reduce profitable trading opportunities by bringing asset prices closer to agents’ val-
uations. More generally, the fact that disclosure of information in financial markets
can potentially reduce welfare has recently been emphasized also by Morris and
Shin (2002), Colombo et al. (2014), Kurlat and Veldkamp (2015), Han et al. (2016),
Goldstein and Yang (2017), and Albagli et al. (2018, Chapter 5.3).

Feedback effects to the real economy. Strikingly, these results seem to be at odds
with the conventional wisdom that, as argued by Fama (1970, p. 383), an "ideal" mar-
ket is one in which "prices always ’fully reflect’ available information" and, hence,
"provide accurate signals for resource allocation". The resolution of this apparent
paradox is simple: informational efficiency does not necessarily translate into real ef-
ficiency. As made clear by Bond et al. (2012), information revelation is not useful per
se, but only if "the price reveals information necessary for decision makers to take
value maximizing actions" (p. 6), that is if these information are useful for making
better "real" decisions on activities such as production or investment. There are var-
ious ways to account for these kind of feedback effects from information in financial
markets to the real economy. In Dow and Gorton (1997), managerial pay is linked to
the firm’s stock market performance and information from asset prices guide real-
investment. Goldstein and Yang (2014) consider a model where the funding of fi-
nancially constrained firms depends on information from secondary financial mar-
kets. In Bolton et al. (2016, Section III), traders’ asset valuation ability incentivizes
entrepreneurs to improve the quality of their firms. Gao and Liang (2013) and Gold-
stein and Yang (2017, Section 4) allow firms to make more efficient real-investment
decisions by observing fundamental information from the financial sector. In Bond
and Goldstein (2015), information from asset markets can influence government in-
terventions such as bailouts or state guarantees. Another interesting model recently
proposed by Angeletos et al. (2018) considers a two-way feedback effect between the
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financial and the real sector. Not only can firms guide their decisions by information
from asset prices, but also the financial market guides its investment by signals on
firm profitability inferred from the degree of startup activity in the real sector. Once
a non-fundamental shock to entrepreneurs’ sentiment on startup profitability dis-
turbs their decision on market entry, the feedback effects reinforce the shock and
give rise to an aggregate behavior called "animal spirits". This results in excessive
non-fundamental volatility both in the real and the financial sector and reduces wel-
fare. Benhabib et al. (2019) add a real sector with monopolistic competition as in Dixit
and Stiglitz (1977) to the GS (1980) framework. Firms decide on optimal investment
under imperfect information and uncertainty. Strikingly, informational interdepen-
dence and mutual learning between the financial and the real sector can result in a
self-fulfilling surge in uncertainty, accompanied by a drop in investment efficiency
and economic output.

Where do we stand? While feedback channels as discussed above might create the
scope for further research, their absence does not in any way render our model as-it-
stands deficient. The set-up we use allows us to emphasize that informationally effi-
cient markets are not a good thing per se, even if information come without costs. As
long as these information are used for portfolio decisions only, impaired risk-sharing
tends to reduce welfare. Hence, we re-establish a kind of Hirshleifer (1971) effect in
the GS (1980) framework with costless information. The main thing we add to the
literature, however, is informed trading’s effect on the allocation of talent. Strikingly,
the presence of dealers leads to an inefficient clustering of risk at entrepreneurs, dis-
courages real economic activity and distorts the allocation of talent. In fact, this does
constitute a feedback effect of information in the financial market to the real econ-
omy. However, as we have seen, it is actually a negative one. Viewed the other way
round, any argumentation that financial trading à la GS (1980) is beneficial to welfare
would have to argue that other, positive, feedback effects on allocational efficiency
in the real economy outweigh the negative effects we find. In this regard, note that
even the literature that accounts for such effects, as cited above, does not establish
unambiguously positive welfare effects of information revelation in financial mar-
kets.

Model-implied policy recommendations. Proposition 2.5.2 holds true, if we look at
maximum instead of equilibrium welfare levels. For the basic version of the model
and the FE economy, this follows directly from the fact that the equilibrium LE equals
the social welfare maximizing one (cf. Proposition 2.5.1). When comparing maxi-
mum instead of equilibrium levels in the UE model, the conditions of the proposi-
tion can even be weakened by disposing of the additional assumption of L0

E ≥ L1
E

(cf. Appendix B.26). Consequently, combining the results of Propositions 2.5.1 and
2.5.2 immediately gives the following optimal "policy actions":

(i) Implement an outright ban on professional trading.

(ii) In case of labor market frictions, additionally boost entrepreneurship.
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Under the conditions of Proposition 2.5.2, the constrained optimum social welfare is
always higher in the absence of dealers – therefore, action (i). As Proposition 2.5.1
tells, no second action is required in case of the basic version of the model and the
FE economy. In the UE model, one should take additional measures to increase the
number of entrepreneurs LE – therefore, action (ii). As, in reality, policy can typically
not directly control the allocation of talent, we discuss implementation via appropri-
ate taxation in Chapter 2.7.

Further remarks. The following corollary summarizes some (rather technical) re-
marks to Propositions 2.5.1 and 2.5.2.

Corollary 2.5.2.1. Let σν
2 = 0.

(i) Under the conditions of Proposition 2.5.2, it is

lim
LE→L

S1(LE) < S0(L)(= S1(L)). (2.74)

(ii) Assume that the set of conditions stated in Proposition 2.5.2 holds. Additionally, let
M ≥ L and σε

2 ≤ σs
2. Consider the baseline model. Then:

S1(L1
E) < S1(L)(= S0(L)). (2.75)

(iii) An alternative set of conditions which ensures the validity of Proposition 2.5.2 is given
by L0

E ≥ L1
E, ν̄ ≥ 0, and

L0
E

a
>

(
1 +

L + M
N

) 1
2

ν̄. (2.76)

The proof is in Appendix B.28. If it is limLE→L ∆1(LE) ≥ 0 and hence there is no
interior equilibrium L1

E < L, social welfare S1 is continuously increasing in LE for
LE ∈ (0, L). Part (i) of the corollary states that welfare "jumps" up when the price be-
comes uninformative at LE = L. It follows that if an interior equilibrium L1

E does not
exist, S1 is maximum at LE = L. This also implies that keeping a "marginal dealer"
in order to reach informational efficiency is not desirable. As explained before, the
revelation of information actually tends to hurt social welfare.

Part (ii) of the corollary tells that social welfare S1 at the local optimum with
free OC typically falls short of S1(L). Starting from the local optimum, a marginal
increase in LE obviously decreases social welfare. At LE = L, however, the price be-
comes uninformative and, as we have seen in (i), welfare jumps up. Equation (2.75)
states that, in fact, it jumps high enough to surpass the local optimum value. Corol-
lary 2.5.2.1(ii) holds under fairly weak conditions. Besides the ones already stated in
Proposition 2.5.2 and the condition that talent is scarce, i.e., M ≥ L, it additionally
requires that residual uncertainty is lower than fundamental one, i.e., σε

2 ≤ σs
2. Note

that forcing LE = L is not equivalent to a ban on dealers. While the former makes all
hipos engage in entrepreneurship, the latter leaves them the choice to become either
entrepreneurs or act as passive investors.
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Part (iii) of the corollary gives an alternative set of conditions for the validity of
Proposition 2.5.2. Essentially, it disposes of the condition that a single noise trader’s
asset demand falls short of the amount of assets created by a single entrepreneur
and instead requires condition (2.76). Compared to the condition that L1

E/a > ν̄,
condition (2.76) is stronger in the sense that [1 + (L + M)/N]0.5 > 1, but weaker in
the sense that L0

E ≥ L1
E.

2.6 Stochastic Noise Trader Demand

2.6.1 Small Noise Trader Shocks

The equilibrium analysis in Chapter 2.3 and the welfare results from Chapter 2.5 all
hinge on one central assumption: non-stochastic noise trader demand, i.e., σν

2 = 0.
Now, let σν

2 > 0. We will show that these chapters go through unchanged for an
infinitesimally small amount of noise trader volatility, i.e., for σν

2 → 0. After that,
we take a closer look at what to expect for a σν

2 that is greater than but "close" to
zero, i.e., for σν

2 & 0.

Limit analysis. For σν
2 → 0, the noisy versions of ∆(LE) and Γ(LE) from Chapter 2.2

converge pointwise to their non-noisy "siblings" given in Chapter 2.3 (see Appendix
B.30). Hence, Chapter 2.3 also applies in the limit for σν

2 → 0. Notably, this implies
that the equilibrium mass of entrepreneurs LE in case of NT shocks converges to
the one derived for non-stochastic NT demand. Regarding welfare results, Appen-
dices B.30 and B.31 together show that the noisy versions of all agents’ CEs converge
pointwise to their non-noisy siblings given in Chapter 2.5. This immediately implies
that the same is true for the social welfare function S. Together with the fact that
the equilibrium LE converges, it follows that all agents’ equilibrium CEs as well as
equilibrium social welfare converge. Hence, Chapter 2.5 holds also for σν

2 → 0.

Non-zero NT shocks. The results from the limit analysis let us expect that our main
results are likely to (approximately) hold also for positive but small noise trader
volatility. We will numerically check on this in the following chapter. Before, how-
ever, note that with σν

2 & 0 at least one important qualitative difference arises com-
pared to the cases of σν

2 = 0 and σν
2 → 0: all relevant expressions from Chapter 2.2

as well as social welfare S are continuous in LE at LE = L.25 This implies that, with
free OC, the existence and uniqueness properties of equilibrium in the former case
differ substantially from the two latter ones.

To illustrate this, consider the basic version of the model and the following two
examples. First, assume that with σν

2 = 0 there is a coexistence of two equilibria, one
with LE < L and one with LE = L. As the left panel of figure 2.6 shows, equilibria
close to the ones without noise trader shocks still exist for σν

2 greater than zero but

25Remember that these expressions lost the continuity property in the limit for σν
2 → 0. In this

regard, note that Appendices B.30 and B.31 prove pointwise convergence, but do not prove uniform
convergence.
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small. However, there is an additional (albeit "unstable") equilibrium at LE close to
L, given by the second intersection of ∆(LE) and Γ(LE). This additional intersection
is due to the fact that instead of the discontinuity in case of σν

2 = 0, which makes
∆(LE) and Γ(LE) "jump" to ∆(L) and Γ(L) at LE = L, with σν

2 & 0 these functions
are almost kinked and are obviously continuous. As a second example, assume that
with σν

2 = 0 equilibrium does not exist. In contrast, as is shown by the right panel of
figure 2.6, with σν

2 & 0 the functions ∆(LE) and Γ(LE) intersect at LE close to L and
thereby depict an equilibrium. Overall, while we can expect that equilibria close to
the ones with σν

2 = 0 still exist, additional equilibria with LE close to L may arise.

FIGURE 2.6: Equilibrium with Small Noise Trader Shocks
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Note: Both figures refer to the case of free OC in the basic version of the model. The blurred parts
depict ∆(LE), Γ(LE), and equilibrium LE, respectively, for σν

2 = 0. Analogous, the bold lines refer
to the case of σν

2 greater than zero but small.

As our welfare results from Chapter 2.5 relate to the equilibrium amount of entre-
preneurship, the fact that equilibrium properties change when looking at small but
positive noise trader shocks instead of σν

2 = 0 implies that Propositions 2.5.1 and
2.5.2 do no longer entail a clear statement. To illustrate this, consider again the first
example above. While with σν

2 = 0 there is a unique interior equilibrium LE < L,
with σν

2 & 0 there are two. So, if Propositions 2.5.1 and 2.5.2 are still expected to
hold approximately, then the question of course is: with regards to which of the two
equilibria?

As we can see in the left panel of figure 2.7, we can still expect a local maximum
of social welfare close to the equilibrium LE where ∆(LE) crosses Γ(LE) from above
(call it L1′

E ), which in turn is close to the equilibrium LE < L in case of σν
2 = 0. In

contrast to the discontinuity in case of σν
2 = 0, which makes S(LE) "jump" to S(L)

at LE = L, with σν
2 & 0 social welfare looks almost kinked in the vicinity of LE = L

and is obviously continuous. Furthermore, if the conditions of Corollary 2.5.2.1(ii)
are met, then again S(L) is greater than S(L1′

E ) and hence S still reaches its global
maximum at LE = L. Social welfare at the additional equilibrium with LE close to L



60 Chapter 2. The Model

(call it L1′′
E ) is obviously lower than at LE = L. The left panel of figure 2.7 also shows

that besides a local maximum, social welfare now takes on a local minimum in the
vicinity of the LE where ∆(LE) crosses zero from below (cf. the left panel of figure
2.6 and Appendix B.19). As Γ(LE) ≥ 0, its second intersection with ∆(LE) occurs to
the right of this social welfare minimizing LE. Hence, S is continuously increasing in
LE for LE ∈ [L1′′

E , L]. Whether S(L1′
E ) R S(L1′′

E ) is ambiguous, but only of secondary
interest anyway: the local social welfare maximum is given at LE = L1′

E , the global
maximum at LE = L.

Now consider the second example from above. As equilibrium with σν
2 = 0

does not exist (cf. the right panel of figure 2.6), social welfare is strictly increasing
for LE ∈ (0, L). Furthermore, assume that the conditions of Corollary 2.5.2.1(i) are
met and hence S(L) > limLE→L S(LE) for σν

2 = 0. Then, as the right panel of figure
2.7 shows, with σν

2 & 0 social welfare is strictly increasing for LE ∈ (0, L] and still
reaches its global maximum at LE = L. Nothing in particular happens at the newly
existing equilibrium LE < L.

FIGURE 2.7: Social Welfare with Small Noise Trader Shocks
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The reason why, so far, we didn’t speak about the case of restricted OC is because
there are no qualitative differences with regards to the equilibrium and welfare prop-
erties when considering σν

2 & 0 instead of σν
2 → 0 or σν

2 = 0. All relevant expres-
sions are continuous in LE in any of these cases. Hence, with restricted occupational
choice, Chapters 2.3 and 2.5 can be expected to approximately hold for σν

2 & 0. The
labor market models can be illustrated analogous to the basic version of the model.
Besides the fact that social welfare takes on its local maximum for an LE greater than
L1′

E in the UE model, figures 2.6 and 2.7 go through more or less unchanged.
In essence, with σν

2 & 0 we can expect the following. Proposition 2.5.1(ii) holds
approximately. Proposition 2.5.1(i) approximately holds with respect to the equilib-
rium LE < L close to the interior equilibrium in case of σν

2 = 0 (i.e., where ∆(LE)
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first crosses zero from above). With regards to Proposition 2.5.2, note that equilib-
rium with restricted OC is unique and lies in the vicinity of the LE that maximizes
social welfare S0 on [0, L]. Furthermore, it is S0(L) = S1(L). Hence, Proposition 2.5.2
still applies in the sense that equilibrium social welfare without OC is higher than
social welfare in any equilibrium with OC that complies with the proposition’s con-
ditions.

2.6.2 Large Noise Trader Shocks

So far, we have aimed at analytical results within our model. As these are largely
unachievable for the model with noise trader shocks, we turned to a version of
the model with deterministic noise trader demand. Our main welfare statements
therein, given by Propositions 2.5.1 and 2.5.2, have been the following. First, the
equilibrium amount of entrepreneurship is constrained efficient in the basic version
of the model and in the FE economy, but falls short of the social welfare maximizing
amount in the model with labor market frictions. Second, banning informed trading
altogether typically increases social welfare, as the availability of information im-
pairs risk-sharing and distorts the allocation of talent. Subsection 2.6.1 showed that
we can expect these results to (approximately) carry over to the case of small noise
trader shocks. In this chapter, we perform a comprehensive numerical analysis of the
model and check to what extent our results also hold in case of substantially large
noise volatility.

Essentially, we ask the following two questions. First, if equilibrium is not con-
strained efficient for σν

2 > 0 (as the presence of noise introduces market imperfec-
tions), then what is the effect of a marginal increase in the mass of entrepreneurs,
starting from equilibrium? Is it positive? Second, is a ban on dealers still conducive
to social welfare? Matlab simulations over a wide range of reasonable parameter
combinations show that both tends to be the case.

Strategy

The closed-form solutions for ∆(LE) and Γ(LE) as well as for social welfare S(LE),
given in Appendices B.5, B.6 and B.29, allow for a numerical analysis of the equilib-
rium effects of professional trading on welfare for σν

2 > 0. We use our analysis of
the model with deterministic noise trader demand as the starting point for our sim-
ulation. To make sure that this starting point is well-behaved, we restrict attention
to parameter combinations that imply the existence of a unique interior equilibrium
L1

E where agents do not short the asset for σν
2 = 0. Additionally, we consider only

parameter combinations that obey the conditions from Proposition 2.5.2. We then in-
troduce noise volatility and gradually increase the standard deviation of aggregate
noise trader demand σν from 0.1% up to 50% of the maximum feasible asset supply
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L/a and check whether our analytical results prove robust to substantial noise trader
volatility.26

Consider first the basic version of the model. In table 2.1, we look at a wide range
of reasonable parameter combinations within the restrictions just stated. Similar to
how we vary σν, average aggregate noise trader demand ν̄ is specified as a fraction of
L/a. We assume that talent is scarce by setting M as a multiple (≥ 1) of L. Together,
ν̄ ≥ 0 and M ≥ L ensure L0

E > L1
E in the model with deterministic noise trader

demand (cf. equation 2.39). We vary the mass of noise traders N from at least 25%
of the mass of rational agents up to a multiple of 25. Together, ν̄, M and N are set in
a way that, for any of the given parameter combinations, it is always ν̄/N ≤ 1/a.
To ensure the existence of an equilibrium L1

E with aν̄ < L1
E < L in the model with

deterministic noise trader demand (cf. equation 2.29), we set s̄ according to row six
in table 2.1. We let residual uncertainty σε

2 be a fraction of σs
2, so that knowledge on

the asset fundamental s reduces the uncertainty regarding the asset’s payoff θ by at
least 50% and up to over 90%. As the magnitude of the CARA-parameter ρ cannot be
interpreted without context, empirically meaningful and universally valid estimates
for it do not exist (cf. Babcock et al., 1993). We set ρ so as to ensure that rational
agents are not excessively risk-averse in the model with deterministic noise trader
demand. We do so by requiring that rational agent i’s certainty equivalent of final
wealth πi does not fall below the 95% confidence interval for πi. Additionally, we
pay attention to not cluster ρ around values that all imply more or less risk-neutral
agents (see Appendix C.3).

TABLE 2.1: Parameter Values in the Simulation of the Basic Version of
the Model

parameter values multiple of
σν 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 L

a
ν̄ 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 L

a
M 1, 2, 3, 5, 10, 100 L
N 1, 2, 3, 5, 10, 100 0.25(L + M)
L 100 1

s̄− ρσ2
s

2a 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 ρσ2
ε

L+M

( L
a − ν̄

)
σ2

ε 0.1, 0.25, 0.5, 0.75, 1 σ2
s

ρ 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1 4√
1.25

a
σs

σ2
s 1 1
a 10 1

Note: The parameters in the first column are specified as multiples of the magnitudes in the third
column.

With parameters set as discussed above, the equilibrium and constrained optimum
mass of entrepreneurs both in the model with free and restricted OC are linear ho-
mogeneous in L and homogeneous of degree zero in σs

2 and a, respectively (see

26An aggregate asset supply of L/a is realized if all hipos become entrepreneurs. By that, it also
states an upper bound for the equilibrium asset supply.
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Appendix C.4). In particular, an increase in L by a factor of λ just increases the equi-
librium LE, the social welfare maximizing LE and the corresponding values of social
welfare by factor λ as well. Varying σs

2 or a, respectively, does not have any effects
on the equilibrium LE or the social welfare maximizing LE. The corresponding val-
ues of social welfare all simply change by factor λ for a factor λ-increase in σs, and
by factor (1/λ) for a factor λ-increase in a. As a consequence, our welfare analysis
is independent of the parameter choice for L, a and σs

2 and we can just fix them to
some arbitrary values, L = 100, a = 10, σs

2 = 1, say.

Example

Before getting to the simulation, figure 2.8 illustrates a numerical example for the ba-
sic version of the model. Social welfare in the case of rather low noise trader volatil-
ity, depicted in the left panel of the figure, is very close to the noiseless case (except
that S1 converges to S0 for LE → L, cf. Chapter 2.6.1). The equilibrium amounts of
entrepreneurship and the corresponding levels of social welfare are in the immedi-
ate vicinity of their respective constrained optimum levels. As L1

E falls short of the
constrained optimum LE by 0.5%, a marginal increase in the amount of entrepre-
neurship starting from equilibrium yields a weakly positive effect on social welfare.
Equilibrium and maximum social welfare are higher in case of restricted OC com-
pared to free OC by far.

FIGURE 2.8: Social Welfare with Large Noise Trader Shocks

Note: Both panels refer to the basic version of the model. The dashed lines depict social wel-
fare for σν

2 = 0. The solid parts refer to the case of σν
2 > 0. Parameter values are chosen

in accordance with table 2.1, where the values in the second column are 0.01 or 0.2 for σν and
0.2, 1, 3, 100, 0.5, 0.75, 0.5, 1, 10, in that order, for the other variables.

For rather large noise trader volatility, depicted in the right panel of figure 2.8, social
welfare differs substantially from the noiseless case. While S0 is still hump-shaped
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(Appendix C.2 shows that this is a general property of S0), S1 is monotonically in-
creasing in LE (which, however, is not a general property of S1). Consequently, a
marginal increase in the amount of entrepreneurship, starting from equilibrium L1

E,
increases social welfare. In fact, this should not come as a surprise. Compared to the
noiseless case, dealers now earn informational rents. Each additional (marginal) hipo
who engages in entrepreneurship instead of professional trading tends to be con-
ducive to welfare, as this implies less informed trading, benefits rational agents’ risk
sharing, reduces the clustering of risk at entrepreneurs and increases real economic
activity (cf. Chapter 2.5.3). Comparing equilibrium social welfare with restricted OC
to the case of free OC shows that the former still clearly exceeds the latter.

While figure 2.8 highlights that the presence of information tends to be detrimen-
tal to social welfare, especially at equilibrium, it also shows that there is a section
with low LE for which information is actually beneficial. Furthermore, this section
seems to expand for higher σν

2. In this regard, note that whenever the presence of
(or an increase in) dealers actually benefits social welfare, this is usually due to noise
traders’ part in the social welfare function. For high noise volatility, noise traders
tend to dominate the SWF.27 And, as information bring the asset price closer to fun-
damentals, noise traders are likely to benefit from the higher informational efficiency
that comes with dealers via less risky returns from their (exogenous) trading activ-
ities. This weighs especially heavy for high σν

2 (and low N, so that individual NT
risk is high), in which case the positive effect on NT utility can outweigh the nega-
tive effects that dealers typically have on rational agents’ welfare (see also simulation
tables 2.2 and 2.4).

Simulation

In what follows, we set up the simulation and state the main results. Further details
and the Matlab code are delegated to Appendices C and D.

Basic version of the model. The parameters in table 2.1 yield a number of 87,480
combinations for each given value of σν and by construction imply that for σν

2 = 0 an
equilibrium exists and the conditions of Proposition 2.5.2 are satisfied. Additionally,
we require equilibrium to be unique, that is ∆(L) < Γ(L) (cf. Chapter 2.3), which
rules out 22,368 parameter combinations and leaves us with a remaining total of
65,112 cases.28 This defines our starting point, for which we know that Propositions
2.5.1 and 2.5.2 hold.

We then use Matlab to simulate the model for positive levels of noise volatility.
In doing so, we add two further regulatory conditions. First, we maintain the condi-
tion that equilibrium exists, is unique and rational agents do not short the asset on

27In fact, for high σν
2, the variance V(Ψ) increases and noise traders certainty equivalent becomes

strongly negative (cf. Appendix B.29).
28Almost all combinations ruled out entail high values for the risk-aversion parameter ρ. Multiplicity

does not occur at all for the first five values of ρ in table 2.1, but for almost 85% of the cases with ρ set
to its highest admissible value.
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average. Hence, for each σν
2, we focus on parametrizations for which ∆(aν̄) > Γ(aν̄)

and ∆(L) < Γ(L).29 Second, noise trader welfare for σν
2 > 0 is not always well de-

fined, but can converge to minus infinity (cf. Appendix B.29). We rule out such cases.
Consequently, the number of admissible parameter combinations further decreases,
to a minimum of 16,607 in case of σν = 0.5L/a (for more details, see table C.1 in
Appendix C.5).

Table 2.2 gives the main results from the simulation. The first column states the
magnitude of noise volatility, the second column gives the number of admissible
parameter combinations and columns three and four show the percentages out of
these combinations for which the respective inequalities in the first row hold. Obvi-
ously, equilibrium social welfare is almost always higher with restricted OC, that is
without any dealers at all. Hence, Proposition 2.5.2 tends to carry over to the case
of substantial noise volatility. The marginal effect of a higher mass of entrepreneurs
(and, hence, a lower amount of dealers), starting from equilibrium, is positive for
the vast majority of cases, at least up to σν = 0.2L/a. The result reverses for very
high noise volatility, i.e., at σν = 0.5L/a. The reasons are as explained in the example
above. Professional trading tends to impair rational agents’ risk-sharing, leads to a
clustering of risk at entrepreneurs and implies foregone real economic activity. For
high noise volatility, however, the beneficial effect of information on noise traders’
return volatility can outweigh these negative effects.

TABLE 2.2: Matlab Simulation of the Basic Version of the Model

σν
L/a # cases dS1(L1

E)
dLE

> 0 S0(L0
E) > S1(L1

E)

0.001 65,112 99.63% 100.00%
0.01 64,938 99.63% 100.00%
0.05 58,614 98.87% 100.00%
0.1 50,114 97.67% 99.90%
0.2 37,658 88.77% 99.55%
0.5 16,607 16.15% 94.61%

Note: Numbers in the last column are similar when com-
paring constrained optimum levels of SW instead of
equilibrium ones.

In Appendix C, we show that while the marginal effect of an increasing LE, starting
from equilibrium, now is typically positive, the equilibrium mass of entrepreneurs
still lies in the vicinity of its constrained optimum, if noise volatility is small (cf. table
C.2). Social welfare is not only higher with restricted compared to free OC, but the
difference is also quite large (cf. table C.3). We also decompose the total effect of a
ban on dealers into the two distinct effects illustrated in figure 2.5 and show that
they are both positive and of comparable magnitudes for the vast majority of cases
(cf. table C.4).

29∆(aν̄) > Γ(aν̄) implies L1
E > aν̄, which in turn implies that E(ID) > 0 and E(IE) > 0, cf. equations

(2.4) and (B.41).
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Full employment model. Consider next the FE model. If not stated otherwise in
the upper part of table 2.3, parameters stay the same as in the basic version of the
model. In order to simulate the FE model, we specify the firms’ production function
as Cobb-Douglas: F(m) = Am1−b, with A > 0 and 0 < b < 1. Expected firm profit
s̄ now depends on LE and is given by s̄(LE) = F(M̂)−WM̂ + ŝ = AbM̂1−b + ŝ. We
set ŝ in a way to ensure that an equilibrium L1

E with aν̄ < L1
E < L exists in the model

with σν
2 = 0 (see the first row in table 2.3 and Appendix C.6). Empirical estimates

for the output elasticity of labor suggest a Cobb-Douglas exponent somewhere in
between 0.50 and 0.75 (see Douglas, 1976), so we vary 1− b around these values.
The efficiency parameter A is set in a way to ensure that the two terms which add
up to expected firm profit s̄ are of comparable magnitude for σν

2 = 0 (see Appendix
C.6). The homogeneity properties from the basic model carry over to the FE economy
(see Appendix C.4).

TABLE 2.3: Parameter Values in the Simulation of the FE and the UE
Model

parameter values multiple of

s̄(aν̄)− ρσ2
s

2a 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99
ρσ2

ε
L+M

( L
a − ν̄

)
+

+s̄(aν̄)− s̄(L)
FE b 0.10, 0.25, 0.40, 0.55 1

A 0.25, 0.5, 0.75, 1 ρσ2
s

2ab

(
ν̄
M

)1−b

s̄− ρσ2
s

2a 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 ρσ2
ε

L+M

( L
a − ν̄

)
UE A 0.25, 0.5, 0.75, 1 ρσ2

s
2ab

( L
aM

)1−b

D A(1− b)
( L

aM

)b − 1
ρ ln

(
1 + ρb(1− b)A

( L
aM

)b
)

1

For each given σν, the total number of parameter combinations implied from tables
2.1 and 2.3 is 1,399,680. After dropping those for which equilibrium in the noiseless
case is not unique, 1,124,190 combinations remain. Again, we also drop all combi-
nations which imply that either equilibrium L1

E is not unique and greater than aν̄ or
that noise trader welfare is not well defined. This leaves us with no less than 943,858
combinations for σν up to 0.2L/a and with 636,033 combinations for σν = 0.5L/a.
The left part of table 2.4 shows the main results from the simulation of the FE model.
Similarly to the basic version of the model, a ban on dealers is almost always bene-
ficial to social welfare and a marginal increase in the mass of entrepreneurs starting
from equilibrium is most often positive, at least up to σν = 0.2L/a.
Additional material regarding the simulation of the FE model can be found in Ap-
pendix C.6.

Unemployment model. Finally, consider the UE model. If not stated otherwise in
the lower part of table 2.3, parameter settings stay the same as in the FE model.
Expected firm profit s̄ is given by (2.55) and independent of LE. Hence, the first row
in the lower part of table 2.3 pins down ŝ in a way to ensure that equilibrium L1

E

in the noiseless case lies within the interval (aν̄, L). The intuition behind setting A
is the same as in the FE model and we set the disutility of work parameter D such
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TABLE 2.4: Matlab Simulation of the FE and the UE Model

FE UE

σν
L/a

dS1(L1
E)

dLE
> 0 S0(L0

E) > S1(L1
E)

dS1(L1
E)

dLE
> 0 S0(L0

E) > S1(L1
E)

0.001 99.60% 100.00% 100.00% 100.00%
0.01 99.60% 100.00% 100.00% 100.00%
0.05 91.63% 99.99% 99.99% 100.00%
0.1 84.53% 99.73% 99.93% 99.94%
0.2 73.58% 98.76% 99.72% 99.67%
0.5 21.66% 92.95% 97.10% 97.48%

that there is equilibrium unemployment for all LE < L and full employment only for
LE = L (see Appendix C.7). This keeps the positive effect that entrepreneurship has
on job creation operative over the whole range of LE. The homogeneity properties
from the basic model carry over to the UE economy (cf. Appendix C.4).

The total number of parameter combinations according to tables 2.1 and 2.3 is
given by 1,399,680. After dropping those for which equilibrium in the noiseless case
is not unique, 1,041,792 combinations remain. Again, we also drop all combinations
which imply that either equilibrium L1

E is not unique and greater than aν̄ or that
noise trader welfare is not well defined. This leaves us with no less than 937,824
combinations for σν up to 0.05L/a, no less than 602,528 combinations for σν up to
0.2L/a and with 265,712 combinations for σν = 0.5L/a. The right part of table 2.4
shows the main results from the simulation of the UE model. Similar as in the basic
and the FE model, equilibrium welfare in case of restricted OC is higher than with
free OC for almost all simulated parameter combinations. As entrepreneurship en-
tails a positive externality on workers in the UE model (cf. Proposition 2.5.2), the
effect of a marginal increase in entrepreneurship is positive for the vast majority of
cases, even for σν = 0.5L/a.
Additional information and results from the simulation of the UE model can be
found in Appendix C.7.

2.7 Implementation

As discussed in Chapter 2.5.3, the second-best policy measures to be taken by a social
planer would be characterized by, first, a ban on dealers and, only in case of labor
market frictions, second, a subsequent increase in the amount of entrepreneurship.
In reality, governments can not directly control the allocation of talent by forcing in-
dividuals into certain occupations. However, they can influence occupational choice
via indirect measures such as preferential tax or regulatory treatments for certain
types of jobs. For simplicity, suppose that the government can levy lump-sum taxes
τi on type-i individuals (i = E, D, M, N). Then, a ban on dealers could be (indirectly)
implemented via a sufficiently high tax τD on dealers and, if desired, a subsequent
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increase in entrepreneurship could be (indirectly) achieved by a subsidy −τE on en-
trepreneurs.

Again, it is important to emphasize that a tax on dealers is very different from a
tax on trading. While the former targets only professional traders, the latter would
target all kinds of trading and thereby also affect the other agents in the model. While
this distinction is clear in theory, a tax that hurts professional trading without also
affecting uninformed trades seems hard to implement in practice. We can, however,
think of it as a proxy for some kind of regulatory requirements aimed at constraining
agents and institutions specialized in professional trading activities.

Deterministic Noise Trader Demand

Consider first the case of non-stochastic noise trader demand, i.e., σν
2 = 0.

Implementation of the second-best allocation. With free OC, the price is fully infor-
mative (for LE < L) and, hence, dealers obtain the same utility as passive investors.
Consequently, any tax τD > 0 on dealers implies that every dealer would be better
off as an uninformed investor and, therefore, an equilibrium with a positive amount
of dealers cannot exist. To ensure that no one wants to become a dealer even if the
price is uninformative (i.e., at LE = L), let τD > Γ(L), where Γ(L) is given by (2.26).
In this case, the tax on dealers is prohibitive in the sense that hipos always pre-
fer uninformed trading over becoming a dealer. This implies that a tax τD > Γ(L) is
equivalent to a straight ban on dealers and it is all that is needed in order to reach the
second-best optimum in the baseline model and the FE economy. In the UE model,
additional subsidies to entrepreneurship are required in order to achieve the social
welfare maximizing mass of entrepreneurs. Denote this optimal mass of entrepre-
neurs by L

′
E and, for the sake of brevity, assume that L

′
E < L. Then, the subsidy −τE

required to ensure that L
′
E is attained as the unique equilibrium outcome is given by

∆0(L
′
E)− τE = 0 and, hence, by −τE = −∆0(L

′
E), where ∆0(LE) is given by (2.34).

Using the approximation for L
′
E from (2.70), the optimal subsidy on entrepreneur-

ship is given by

− τ
′
E =

m̃
aρ

[
1− exp

{
−ρ(W̃ − D)

}]
> 0. (2.77)

Total government expenditures equal L
′
Eτ
′
E. The government can raise this money

without further affecting OC or social welfare by, e.g., introducing an economy-wide
lump sum tax equal to L

′
Eτ
′
E/(L + M + N) for every single individual (including

entrepreneurs).

Implementation of the constrained second-best allocation. In reality, a (prohibi-
tive) tax on dealers might not be practicable. If there are real world forces that make
the implementation of a (prohibitive) tax on dealers difficult, then at least the con-
strained optimum allocation can be attained via appropriate subsidies to entrepre-
neurs.
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If social welfare S1 attains its (global) optimum at LE = L (cf. Corollary 2.5.2.1),
then the optimal subsidy on entrepreneurship requires −τE ≥ −

[
∆1(L)− Γ1(L)

]
.

Note, however, that while this subsidy guarantees the existence of an equilibrium
at LE = L, it is not necessarily unique. Uniqueness is ensured only if, additionally,
limLE→L ∆1(LE)− τE ≥ 0 and, hence,−τE ≥ − limLE→L ∆1(LE).30 To sum up, LE = L
is obtained as the unique equilibrium, if

− τE ≥ max
{
−
[
∆1(L)− Γ1(L)

]
,− lim

LE→L
∆1(LE)

}
. (2.78)

Just as a (prohibitive) tax on dealers, high subsidies on entrepreneurs or, more gen-
erally, a strong manipulation of the allocation of talent, might not be politically prac-
ticable.

Hence, we now show how to attain the (locally) optimal LE < L in the presence of
dealers. For the sake of brevity, assume that a unique equilibrium L1

E < L exists in
all versions of the model and that the (locally) optimal L

′
E in the UE model, approx-

imated by (2.69), is smaller than L. Then, the optimal subsidy to entrepreneurship
is zero in the basic version of the model and the FE economy. In the UE model, the
subsidy−τE required to ensure that the (locally) social welfare maximizing L

′
E(< L)

is attained as an equilibrium outcome is given by ∆1(L
′
E) − τE = 0 and, hence, by

−τE = −∆1(L
′
E), where ∆1(LE) is given by (2.25).31 Using the approximation for L

′
E

from (2.69), the optimal subsidy on entrepreneurship −τ
′
E is, again, given by

− τ
′
E =

m̃
aρ

[
1− exp

{
−ρ(W̃ − D)

}]
> 0. (2.79)

In contrast to the implementation of the ("overall") second-best allocation, we do not
require a tax on dealers.

Stochastic Noise Trader Demand

Now let σν
2 > 0. For σν

2 → 0, implementation works analogously as in case of
σν

2 = 0. For σν
2 & 0, we can expect it to work approximately the same as in case of

σν
2 = 0, at least besides the fact that there is the possibility of additional equilibria

in case of free OC (cf. Chapter 2.6.1). In general, a prohibitive tax on dealers is given
by τD > Γ(L), where Γ(L) is given by (2.21) and Appendix B.5. This follows directly
from the fact that Γ(LE) is strictly increasing in LE:

dV(s|w)

dLE
= σs

2σν
2 dγ

dα︸︷︷︸
<0

dα

dLE︸︷︷︸
<0

> 0. (2.80)

30In general, the possibility of multiple equilibria in the model variants with free OC implies that
taxation can not always ensure that a certain OC outcome is attained as the unique equilibrium. In
contrast, a social planner does not face this constraint, as he can set LE directly.

31Even though we assume that (i) equilibrium L1
E < L is unique, which implies ∆1(L) < Γ1(L),

and (ii) L
′
E < L, this subsidy not necessarily establishes L

′
E as the unique equilibrium. Uniqueness

additionally requires ∆1(L)− τ
′
E < Γ1(L).
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Again, the amount of entrepreneurship can be controlled by appropriate taxes/sub-
sidies on entrepreneurs. Consider first the case where τD > Γ(L), that is, the case
of a prohibitive tax on dealers. If the government wants to attain a certain LE(< L),
call it L

′
E, as the unique equilibrium outcome, it can do so by setting ∆0(L

′
E)− τE = 0

and, hence, −τE = −∆0(L
′
E), where ∆0(LE) is given by (2.21) and Appendix B.6.

If prohibitive taxes on dealers are not possible, the government can attain a
certain LE(< L), call it L

′
E, as an equilibrium outcome by setting ∆1(L

′
E) − τE =

Γ1(L
′
E)− τD and, hence, τD − τE = Γ1(L

′
E)− ∆1(L

′
E), where ∆1(LE) and Γ1(LE) are

given by (2.21) and Appendix B.5. Again, note that while this tax differential guar-
antees an equilibrium at LE = L

′
E, without further assumptions it is not necessarily

unique.
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Chapter 3

Conclusion

The rise of finance over the last century and the financial crisis of 2007/08 have
sparked a discussion about the risks of a large financial sector. An important aspect
of this discussion is a potential brain-drain to finance, that is, the question of whether
too much talent is lured into high-paid jobs in finance, which could produce larger
social benefits in other occupations within the real sector. We identify financial trad-
ing as the part of finance where wages and the inflow of talent over the last three to
four decades have increased the most by far and which, at the same time, is often
accused of providing only little social value.

We address the brain-drain question within a theoretical model that adds a real
sector to the seminal noisy rational expectations equilibrium (REE) model of Gross-
man and Stiglitz (1980). This enables us to study occupational choice between en-
trepreneurship and financial trading. Individuals who decide to become dealers
instead of entrepreneurs increase informational efficiency in the financial market,
but at the cost of foregone real economic activity in terms of job creation and the
production of output. The model delivers interesting results via a genuinely new
mechanism. If the sole benefit of informational efficiency is more informed portfolio
decisions, there tends to be too much, rather than too little, professional financial
trading. The reason is that more informed trading leads to a clustering of risk at en-
trepreneurs, which distorts the allocation of talent and discourages real economic
activity. Furthermore, in the presence of labor market frictions, entrepreneurship
creates additional jobs and hence entails a positive externality on ordinary work-
ers. This fosters the impression that agents’ contribution to social welfare is higher
in the real sector than in the financial one.

Obviously, our analysis is not "all-encompassing". Like any model, we shed light
only on parts of the picture. In particular, we do not consider positive feedback ef-
fects of information revelation in the financial market on allocational efficiency in
the real economy. Quite to the contrary, the feedback effect we explore is a nega-
tive one: informative asset prices can distort occupational choice away from real
economic activity. In order to additionally implement positive feedback effects, one
could think of either (i) an incentive channel, that is, e.g., the possibility to link man-
agerial pay to firm performance, or (ii) a learning channel, where decision makers
can condition their actions on information revealed by secondary financial markets



72 Chapter 3. Conclusion

and thereby increase the efficiency of real sector investment, production, etc. In this
sense, an interesting idea for future research within the context of our model would
be to introduce a positive real effect of information by re-modeling the determina-
tion of firm output in a way that makes entrepreneurs’ labor demand depend on
the stochastic macro variable and, hence, on information about that variable. Pro-
fessional traders who gain information on that variable and leak it to entrepreneurs
via trade in the asset market then create valuable information about the effective-
ness of labor, influence entrepreneurs’ labor demand and affect the real sphere via
wages, employment and production. After all, however, any argumentation that the
amount of talent engaged in professional financial trading is in fact deficient, rather
than excessive, would have to show that positive feedback effects such as the ones
just mentioned, outweigh the negative effects we find.
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Appendix A

Technical Appendix

The model in the text builds on a CARA-normal framework, which means: negative
exponential utility, with normally distributed random variables as input. The un-
derlying probability theory is clearly non-trivial. Hence, this Appendix provides the
necessary technical background knowledge.

A.1 Normal Random Variables

Density function. The density of a normally distributed random variable X1 with
expected value µ1 and variance σ1

2 is given by

fX1 (x1) =
exp

{
− (x1−µ1)

2

2σ1
2

}
√

2πσ1
2

. (A.1)

The density of two jointly normally distributed random variables (X1, X2) with ex-
pected values (µ1, µ2), variances

(
σ1

2, σ2
2) and a correlation coefficient equal to ρ,

is given by:

fX1,X2 (x1, x2) =

exp
{
− 1

2(1−ρ2)

[(
x1−µ1

σ1

)2
− 2ρ (x1−µ1)(x2−µ2)

σ1σ2
+
(

x2−µ2
σ2

)2
]}

2πσ1σ2
√

1− ρ2
. (A.2)

Properties. Important properties of normally distributed random variables are the
following (see, e.g., Gut, 2009, Section 5):

(i) Two random variables are jointly normal exactly if all of their linear combina-
tions are normal. (A.3)

(ii) Two independent normal random variables are jointly normal. (A.4)

(iii) Two jointly normal random variables are independent exactly if they are un-
correlated. (A.5)

Furthermore, from (i) directly follows that

(iv) If X1, X2 are jointly normal, then X1 is normal and X2 is normal. (A.6)

From (i) and (ii) jointly follows that
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(v) Linear combinations of two independent normal random variables are again
normal. (A.7)

A.2 Conditional Expectations

Definition. Let X1, X2 be two continuous random variables. The expected value of
X1 is given by:

E (X1) =
∫ ∞

−∞
x1 fX1(x1)dx1. (A.8)

The expected value of X1 conditional on X2 is given by

E (X1|X2) =
∫ ∞

−∞
x1 fX1|X2

(x1, x2)dx1. (A.9)

Law of the unconscious statistician (LOTUS). In order to calculate the expected
value of a function g(X) of a random variable X, no information about the density
of this function are needed. It is enough to know the density function of the random
variable X:

E(g(X)) =
∫ ∞

−∞
g(x) fX(x)dx. (A.10)

This also holds for joint distributions, i.e., if g(X1, X2) is a function of two random
variables X1, X2 with joint density function f(X1,X2)(x1, x2), then:

E(g(X1, X2)) =
∫ ∞

−∞

∫ ∞

−∞
g(x1, x2) f(X1,X2)(x1, x2)dx1dx2. (A.11)

Conditional expectation of a function of random variables. From (A.9) and (A.11)
follows that

E(g(X1, X2)|X3) =
∫ ∞

−∞

∫ ∞

−∞
g(x1, x2) f(X1,X2)|X3

(x1, x2, x3)dx1dx2. (A.12)

Conditioned on itself, a random variable is not random any more. Therefore, a spe-
cial case of (A.12) is:

E(g(X1, X2)|X2) =
∫ ∞

−∞
g(x1, x2) fX1|X2

(x1, x2)dx1. (A.13)

The law of iterated expectations (LIE). Let X1 be a random variable and I1, I2 two
information sets with I2 ⊆ I1. Then:

E(E(X1|I1)|I2) = E(X1|I2). (A.14)

Note that for (A.14) to hold, I2 necessarily has to be a subset of I1.
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For the simplest version of (A.14), let I1 = {X2}, where X2 is just another random
variable, and I2 an empty set, that is I2 = {}. It obviously holds true that I2 ⊆ I1

and it immediately follows that

E (E (X1|X2)) = E (X1) . (A.15)

For another example of (A.14), consider I1 = {X2, X3} and I2 = {X3}, where X3 is
a third random variable. It is I2 ⊆ I1 and again it immediately follows that

E(E(X1|X2, X3)|X3) = E(X1|X3). (A.16)

A.3 Bayesian Updating

Let (X1, X2) be jointly normal. Then:

X1|X2 ∼ N (E(X1|X2), V(X1|X2)) , (A.17)

E(X1|X2) = µ1 +
Cov(X1, X2)

σ22 (X2 − µ2), (A.18)

V(X1|X2) = σ1
2 − Cov(X1, X2)2

σ22 . (A.19)

When agents get additional information (here: X2) on some random variable (here:
on X1), they "update" their initial expectation (i.e., µ1) by taking these information
into account. Analogously for the variance. As these properties are central to our
analysis, we offer a short proof below.
Proof. Let fX2(x2) > 0. Then the conditional density function is by definition given
by

fX1|X2
(x1, x2) =

f(X1,X2)(x1, x2)

fX2(x2)
. (A.20)

Using (A.1)-(A.2), we get:

fX1|X2
(x1, x2) =

exp
{
− 1

2(1−ρ2)

[(
x1−µ1

σ1

)2
− 2ρ (x1−µ1)(x2−µ2)

σ1σ2
+
(

x2−µ2
σ2

)2
]
+ (x2−µ2)

2

2σ22

}
√

2πσ1
2 (1− ρ2)

.

Denote

ζ :=
1√

2πσ1
2 (1− ρ2)

, ϑ :=
1

2σ1
2 (1− ρ2)

, η(x2) := µ1 + ρ
σ1

σ2
(x2 − µ2) . (A.21)

Rearranging terms gives

fX1|X2
(x1, x2) = ζ exp

{
−ϑ

[
(x1 − µ1)

2 − 2ρ
σ1

σ2
(x1 − µ1) (x2 − µ2) +

+
σ1

2

σ22 (x2 − µ2)
2 − σ1

2

σ22

(
1− ρ2) (x2 − µ2)

2
]}
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= ζ exp
{
−ϑ

[
x1

2 − 2x1µ1 + µ1
2 − 2ρ

σ1

σ2
(x1 (x2 − µ2) −

− x2µ1 + µ1µ2) + ρ2 σ1
2

σ22 (x2 − µ2)
2
]}

= ζ exp
{
−ϑ
[
(x1 − η(x2))

2 − η(x2)
2 + µ1

2 −

− 2ρ
σ1

σ2
(−x2µ1 + µ1µ2) + ρ2 σ1

2

σ22 (x2 − µ2)
2
]}

= ζ exp
{
−ϑ

[
(x1 − η(x2))

2 − µ1
2 − 2ρ

σ1

σ2
µ1 (x2 − µ2)− ρ2 σ1

2

σ22 ·

· (x2 − µ2)
2 + µ1

2 + 2ρ
σ1

σ2
µ1 (x2 − µ2) + ρ2 σ1

2

σ22 (x2 − µ2)
2
]}

= ζ exp
{
−ϑ [x1 − η(x2)]

2
}

. (A.22)

Expression (A.22) depicts the density function of a normally distributed random
variable with expected value η(x2) and variance σ1

2 (1− ρ2). The proof is complete
by noting that

ρ =
Cov (X1, X2)

σ1σ2
. (A.23)

Remark: One can easily check that (A.18)-(A.19) also hold if one of the two variables
is non-random or if one is just a linear transformation of the other, in which case
they are degenerate joint-normal (and informationally equivalent).

A.4 CARA-Utility and Normal Random Variables

A.4.1 Lemma 1

Let X1, X2 be jointly normal. Then it holds that

E
[
exp

{
X1 − X2

2}] = exp
{

µ1 +
1
2 σ1

2 − [µ2+Cov(X1,X2)]
2

1+2σ22

}
√

1 + 2σ22
. (A.24)

Note that (A.24) also holds if one of the two variables is non-random, or if one is
just a linear transformation of the other, in which case they follow a degenerate joint
normal distribution (and are informationally equivalent).
Proof. A sketched proof for this result can be found in Demange and Laroque (1995,
p. 252-3).1 We provide an alternative step-by-step proof below. We start by showing
that (A.24) holds if X1, X2 follow a (non-degenerate) joint normal distribution. We
proceed in two steps. First, we derive the expectation conditional on X2. Second, we
use the LIE to get the unconditional expectation.

1Demange and Laroque (1995, p. 252–253), however, only assume X1 and X2 to be normal, not
necessarily jointly normal. Strictly speaking, this assumption is not sufficient. In the proof they supply,
they implicitly assume joint normality, as they make use of the A.3 properties, which are properties
for jointly normal variables (possibly degenerate), but do not generally hold for just X1 normal and X2
normal. A simple counterexample can be constructed by letting X ∼ N (0, 1) and defining Y by Y = X
if |X| ≥ 1 and Y = −X if |X| < 1.
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Step 1. With (A.13), we know that

E
[
exp

{
X1 − X2

2} |X2
]
=
∫ ∞

−∞
exp

{
x1 − x2

2} fX1|X2
(x1, x2)dx1.

As X1, X2 are jointly normal, Appendix A.3 tells us that X1|X2 is normal, too. Let
µ1|2 := E(x1|x2) and σ1|2

2 := V(x1|x2). Then,

E
[
exp

{
X1 − X2

2} |X2
]
= exp

{
−x2

2} ∫ ∞

−∞
exp{x1}

exp
{
− [x1−µ1|2]

2

2σ1|22

}
√

2πσ1|22
dx1

= exp
{
−x2

2} ∫ ∞

−∞

exp
{
−−2x1σ1|2

2+x1
2−2x1µ1|2+µ1|2

2

2σ1|22

}
√

2πσ1|22
dx1

= exp
{
−x2

2} ∫ ∞

−∞

exp
{
− [x1−[σ1|2

2+µ1|2]]
2−[σ1|2

2+µ1|2]
2
+µ1|2

2

2σ1|22

}
√

2πσ1|22
dx1

= exp{−x2
2} exp

{
2µ1|2σ1|2

2 + σ1|2
4

2σ1|22

} ∫ ∞

−∞

exp
{
− [x1−[σ1|2

2+µ1|2]]
2

2σ1|22

}
√

2πσ1|22
dx1.

Recall from Appendix A.3, that σ1|2
2 is non-random and µ1|2 depends only on x2. The

expression under the integral sign is the density function of a normal random vari-
able. And, of course, the area under a density function always is unity. Furthermore,
applying our knowledge from Appendix A.3, we get:

E
[
exp

{
X1 − X2

2} |X2
]
= exp{−x2

2} exp
{

µ1|2 +
1
2

σ1|2
2
}

(A.25)

= exp
{
−x2

2 +
Cov(x1, x2)

σ22 x2

}
exp

{
µ1 +

1
2

σ1
2 − Cov(x1, x2)

σ22 µ2 −
Cov(x1, x2)2

2σ22

}
.

Step 2. Using the LIE yields

E
[
exp

{
X1 − X2

2}] = E
[
E
[
exp

{
X1 − X2

2} |X2
]]

= exp
{

µ1 +
1
2

σ1
2 − Cov(x1, x2)

σ22 µ2 −
Cov(x1, x2)2

2σ22

}
·

·E
[

exp
{
−x2

2 +
Cov(x1, x2)

σ22 x2

}]
. (A.26)

For now, let’s focus on the remaining expected value term in the expression above.
Using (A.10),

E

[
exp

{
−x2

2 +
Cov(x1, x2)

σ22 x2

}]
=
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=
∫ ∞

−∞
exp

{
−x2

2 +
Cov(x1, x2)

σ22 x2

} exp
{
− (x2−µ2)

2

2σ22

}
√

2πσ22
dx2

=
∫ ∞

−∞

exp
{
−x2

2+2x2µ2−µ2
2−2σ2

2x2
2+2x2Cov(x1,x2)

2σ22

}
√

2πσ22
dx2

=
∫ ∞

−∞

exp
{

x2
2(−1−2σ2

2)+2x2(µ2+Cov(x1,x2))−µ2
2

2σ22

}
√

2πσ22
dx2

=
∫ ∞

−∞

1√
2πσ22

exp


−
(

x2 +
µ2+Cov(x1,x2)
−1−2σ22

)2
+
(

µ2+Cov(x1,x2)
−1−2σ22

)2
+ µ2

2

−1−2σ22

2σ22

1+2σ22

dx2

=
1√

1 + 2σ22
exp


µ2

2+2µ2Cov(x1,x2)+Cov(x1,x2)
2+µ2

2(−1−2σ2
2)

(1+2σ22)
2

2σ22

1+2σ22

 ·
·
∫ ∞

−∞

1√
2πσ22

1+2σ22

exp

−
(

x2 +
µ2+Cov(x1,x2)
−1−2σ22

)2

2σ22

1+2σ22

dx2.

The expression under the integral sign above, again, is the density of a normal ran-
dom variable. It follows that

E

[
exp

{
−x2

2 +
Cov(x1, x2)

σ22 x2

}]
=

exp
{

2µ2Cov(x1,x2)+Cov(x1,x2)
2−2µ2

2σ2
2

(1+2σ22)2σ22

}
√

1 + 2σ22
. (A.27)

Substituting this expression into (A.26) gives:

E
[
exp

{
X1 − X2

2}] = exp
{

µ1 +
1
2 σ1

2}
√

1 + 2σ22
·

·
exp

{
−2Cov(x1,x2)µ2(1+2σ2

2)−Cov(x1,x2)
2(1+2σ2

2)+2µ2Cov(x1,x2)+Cov(x1,x2)
2−2µ2

2σ2
2

(1+2σ22)2σ22

}
√

1 + 2σ22
=

=
exp

{
µ1 +

1
2 σ1

2 − [µ2+Cov(x1,x2)]
2

1+2σ22

}
√

1 + 2σ22
.

In what follows, we show that (A.24) also holds in case that (i) X1, X2, or both are
non-random, or (ii) X1, X2 are degenerate joint normal.
Non-random variables. Let X̄1, X̄2 be non-stochastic and X1, X2 two normally dis-
tributed random variables. Using (A.24):

• E
(

exp
{

X̄1 − X̄2
2
})

=︸︷︷︸
(A.24)

exp
{

X̄1 − X̄2
2
}

.

• E
(

exp
{

X1 − X̄2
2
})

=︸︷︷︸
(A.24)

exp
{

E (X1) +
1
2 V (X1)− X̄2

2
}

=︸︷︷︸
(A.25)

exp
{
−X̄2

2
}

E (exp {X1})
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The second equality sign follows from the derivation of (A.25), by just letting
X2 = X̄2 instead of conditioning on X2.

• E
(
exp

{
X̄1 − X2

2}) =︸︷︷︸
(A.24)

exp
{

X̄1−
E(X2)

2

1+2V(X2)

}
√

1+2V(X2)

=︸︷︷︸
(A.27)

exp {X̄1}E
(
exp

{
−X2

2})
The second equality sign follows from (A.27) and its derivation, by just letting
Cov(x1, x2) = 0.

These results correspond to what we get from simply taking the expectations di-
rectly. Hence, (A.24) holds for non-random variables. In particular, this allows us to
use (A.24) with X1 = 0 or X2 = 0.
Degenerate joint-normal variables. If X2 is just a linear transformation of X1, then
X1 and X2 follow a degenerate joint normal distribution. As, in that case, X1|X2 is no
longer normal, the proof as it stands for (non-degenerate) joint-normality does not
exactly go through.
Now, assume that Y1 is normal and Y2 = a + bY1, with a, b constant. We can write
Y1 −Y2

2 as

Y1 −Y2
2 = Y1 − a2 − 2abY1 − b2Y1

2

= −
(

bY1 −
1− 2ab

2b︸ ︷︷ ︸
=:Y

)2

+

(
1− 2ab

2b

)2

− a2.

Y is normal and from above we know that we are allowed to apply (A.24) with
X1 = 0 and X2 = Y:

E
(

exp
{

Y1 −Y2
2
})

= exp

{(
1− 2ab

2b

)2

− a2

}
E
(
exp

{
−Y2})

= exp

{(
1− 2ab

2b

)2

− a2

} exp
{
− (bµ1− 1−2ab

2b )
2

1+2b2σ1
2

}
√

1 + 2b2σ1
2

=

exp

{(
1

4b2−
a
b

)
(1+2b2σ1

2)−b2µ1
2+µ1(1−2ab)− 1

4b2 +
a
b−a2

1+2b2σ1
2

}
√

1 + 2b2σ1
2

=

exp
{
( 1

2−2ab)σ1
2−a2−b2µ1

2+µ1(1−2ab)
1+2b2σ1

2

}
√

1 + 2b2σ1
2

. (A.28)

Now we just have to check that using formula (A.24) with X1 = Y1 and X2 = Y2

gives the same result:

E
(

exp
{

Y1 −Y2
2
})

=

exp
{

µ1 +
1
2 σ1

2 − (a+bµ1+bσ1
2)

1+2b2σ1
2

}
√

1 + 2b2σ1
2
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=
exp

{
µ1+2b2µ1σ1

2+ 1
2 σ1

2+b2σ1
4−a2−2abµ1−b2µ1

2−2abσ1
2−2b2µ1σ1

2−b2σ1
4

1+2b2σ1
2

}
√

1 + 2b2σ1
2

=

exp
{
( 1

2−2ab)σ1
2−a2−b2µ1

2+µ1(1−2ab)
1+2b2σ1

2

}
√

1 + 2b2σ1
2

. (A.29)

In the model, e.g., P and z are degenerate joint normal (cf. Appendix B.3).

A.4.2 Lemma 2

Let X1, X2 be jointly normal. Then, if
(
1− 2σ2

2) > 0, it holds that

E
[
exp

{
X1 + X2

2}] = exp
{

µ1 +
1
2 σ1

2 + [µ2+Cov(X1,X2)]
2

1−2σ22

}
√

1− 2σ22
. (A.30)

Proof. This a slightly modified version of Lemma 1 (cf. Appendix A.4.1). The proof
is similar.
Step 1 proceeds completely analogously as before. It yields

E
[
exp

{
X1 + X2

2} |X2
]
= exp

{
x2

2 +
Cov(x1, x2)

σ22 x2

}
exp

{
µ1 +

1
2

σ1
2 −

− Cov(x1, x2)

σ22 µ2 −
Cov(x1, x2)2

2σ22

}
.

Step 2. Using the LIE gets us

E
[
exp

{
X1 + X2

2}] = E
[
E
[
exp

{
X1 + X2

2} |X2
]]

=

= exp
{

µ1 +
1
2

σ1
2 − Cov(x1, x2)

σ22 µ2 −
Cov(x1, x2)2

2σ22

}
·

·E
[

exp
{

x2
2 +

Cov(x1, x2)

σ22 x2

}]
. (A.31)

Again, just focus on the remaining expected value term. Using (A.10),

E

[
exp

{
x2

2 +
Cov(x1, x2)

σ22 x2

}]
=

=
∫ ∞

−∞
exp

{
x2

2 +
Cov(x1, x2)

σ22 x2

} exp
{
− (x2−µ2)

2

2σ22

}
√

2πσ22
dx2

=
∫ ∞

−∞

exp
{
−x2

2+2x2µ2−µ2
2+2σ2

2x2
2+2x2Cov(x1,x2)

2σ22

}
√

2πσ22
dx2

=
∫ ∞

−∞

exp
{

x2
2(−1+2σ2

2)+2x2(µ2+Cov(x1,x2))−µ2
2

2σ22

}
√

2πσ22
dx2

=
∫ ∞

−∞

1√
2πσ22

exp


(

x2 +
µ2+Cov(x1,x2)
−1+2σ22

)2
−
(

µ2+Cov(x1,x2)
−1+2σ22

)2
− µ2

2

−1+2σ22

2σ22

−1+2σ22

dx2



A.4. CARA-Utility and Normal Random Variables 81

=
1√

1− 2σ22
exp


−µ2

2−2µ2Cov(x1,x2)−Cov(x1,x2)
2−µ2

2(−1+2σ2
2)

(−1+2σ22)
2

2σ22

−1+2σ22

 ·
·
∫ ∞

−∞

1√
2πσ22

1−2σ22

exp

−
(

x2 +
µ2+Cov(x1,x2)
−1+2σ22

)2

2σ22

1−2σ22

dx2.

For
(
1− 2σ2

2) > 0, the integrand in the expression above is the density of a normal
random variable. It follows that

E

[
exp

{
x2

2 +
Cov(x1, x2)

σ22 x2

}]
=

exp
{
−2µ2Cov(x1,x2)−Cov(x1,x2)

2−2µ2
2σ2

2

(−1+2σ22)2σ22

}
√

1− 2σ22
.

Substituting this expression into (A.31) gives

E
[
exp

{
X1 + X2

2}] = exp
{

µ1 +
1
2 σ1

2}
√

1− 2σ22
·

·
exp

{
−2Cov(x1,x2)µ2(−1+2σ2

2)−Cov(x1,x2)
2(−1+2σ2

2)−2µ2Cov(x1,x2)−Cov(x1,x2)
2−2µ2

2σ2
2

(−1+2σ22)2σ22

}
√

1− 2σ22
=

=
exp

{
µ1 +

1
2 σ1

2 + [µ2+Cov(x1,x2)]
2

1−2σ22

}
√

1− 2σ22
.

Remark: Just as we did for Lemma 1 in Appendix A.4.1, one can show that (A.30) also
holds if one of the two variables is non-random or if one is just a linear transforma-
tion of the other, in which case they are degenerate joint-normal.





83

Appendix B

Model Proofs

B.1 Optimal Portfolio Holdings

Dealers.The expected utility of a dealer given his information set ID = {s, P} is

E [U (πD) |s, P] = E [− exp {−ρπD} |s, P] .

If πD|s, P is normal, we can apply (A.24). As πD = ID(s + ε − P), this is the case
exactly if ε|s, P is normal. As ε and s are independent, this is again the case exactly
if ε|P is normal. The asset price P can depend on the known moments of ε, but as ε

is unobservable and materializes only in the last stage of the model (after all trading
took place), it cannot be related to ε itself.1 Hence, ε|P ∼ N

(
0, σ2

ε

)
and applying

(A.24) with X2 = 0 yields:

E [− exp {−ρπD} |s, P] = − exp
{
−ρ
[
E (πD|s, P)− ρ

2
V (πD|s, P)

]}
(B.1)

The certainty equivalent (CE) of πD conditional on knowing s and P (denoted by
CED|s,P), is implicitly given by U

(
CED|s,P

)
= E [U (πD) |s, P]. It states the certain

amount of wealth the individual would value exactly the same as its uncertain final
wealth πD|s, P. With the CARA-utility function given by (2.1), solving for the CE
gives

CED|s,P = U−1 {E [U (πD) |s, P]} =

= −1
ρ

ln {−E [U (πD) |s, P]} . (B.2)

As we can easily see, this is just a strictly positive monotonic transformation of ex-
pected utility which preserves the agent’s preference ordering. Hence, maximization
of the CE is equivalent to maximization of expected utility. From (B.1) and (B.2),

CED|s,P = E (πD|s, P)− ρ

2
V (πD|s, P)

= ID(s− P)− ρ

2
ID

2σ2
ε . (B.3)

1Note that ε was assumed to be independent of the other two random variables in the model, s and
ν, so it is not possible that P is indirectly affected by ε via s or ν.
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The first order condition for a dealer’s optimal asset demand is given by

∂CED|s,P

∂ID
= (s− P)− ρIDσ2

ε = 0 (B.4)

and we get

ID =
s− P
ρσ2

ε

. (B.5)

As (B.4) immediately tells us that the second derivative is negative, this indeed rep-
resents the optimal portfolio decision of a dealer.
Passive investors. The expected utility of a passive investor given his information
set IM = {P} is

E [U (πM) |P] = E [− exp {−ρπM} |P] . (B.6)

Again, if πM|P is normal, we can apply (A.24). As πM = IM(s + ε − P) and from
above we know that ε and P must be independent of each other, this is the case
exactly if s|P is normal. From Appendix A.3, this is the case if s and P are jointly
normal. As s and ν are normal and independent, with (A.4) follows that they are
jointly normal and with (A.3) that all of their linear combinations are normal. Now
assume that P is linear in s and ν.2 Then, except for a constant, all linear combinations
of s and P can also be obtained from linear combinations of s and ν. Hence, all linear
combinations of s and P are normal, which again with (A.3) tells that s and P are
jointly normal. Applying (A.24) yields:

E [− exp {−ρπM} |P] = − exp
{
−ρ
[
E (πM|P)−

ρ

2
V (πM|P)

]}
(B.7)

and it follows that

CEM|P = E (πM|P)−
ρ

2
V (πM|P)

= IM(E(s|P)− P)− ρ

2
IM

2V(s + ε|P)

= IM(E(θ|P)− P)− ρ

2
IM

2V(θ|P). (B.8)

The first order condition for a passive investor’s optimal asset demand is given by

∂CEM|P
∂IM

= (E(θ|P)− P)− ρIMV(θ|P) = 0 (B.9)

and we get his optimal IM by

IM =
E(θ|P)− P

ρV(θ|P) . (B.10)

2This is the standard "conjecture" for the price function in a CARA-normal model (see Vives, 2008,
p. 116-117). As we will show in Appendix B.2, such an equilibrium price indeed exists.
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Entrepreneurs. The expected utility of an entrepreneur given his information set
IE = {P} is

E [U (πE) |P] = E [− exp {−ρπE} |P] . (B.11)

Again, if πE|P is normal, we can apply (A.24). As πE = P/a + IE(θ − P) and P|P
is non-random, using the same argument as for the passive investors above, we see
that πE|P is indeed normal. Applying A.24 and transforming for the CE gives

CEπE|P = E (πE|P)−
ρ

2
V (πE|P)

=
P
a
+ IE(E(θ|P)− P)− ρ

2
IE

2V(θ|P). (B.12)

The first order condition for an entrepreneur’s optimal asset holdings is given by

∂CEπE|P
∂IE

= E(θ|P)− P− ρIEV(θ|P) = 0 (B.13)

and we get

IE =
E(θ|P)− P

ρV(θ|P) . (B.14)

B.2 Equilibrium Price Function

Substituting the optimal portfolio holdings from (2.4) into the market clearing con-
dition (B.15) below gives:

(L− LE)ID + MIM + ν = LE (1/a− IE) ; (B.15)

(L− LE)
s− P
ρσε

2 + (LE + M)
E(θ|P)− P

ρV(θ|P) =
LE

a
− ν;

−
[

L− LE

ρσε
2 +

LE + M
ρV(θ|P)

]
P =

LE

a
− ν− L− LE

ρσε
2 s− LE + M

ρV(θ|P)E(θ|P)

and with that

P =
− LE

a + ν + L−LE
ρσε

2 s + LE+M
ρV(θ|P)E(θ|P)

L−LE
ρσε

2 + LE+M
ρV(θ|P)

=
w + LE+M

ρV(θ|P)E(θ|P)− LE
a

L−LE
ρσε

2 + LE+M
ρV(θ|P)

, (B.16)

where
w :=

L− LE

ρσε
2 s + ν.

As we know that V(θ|P) is non-random and E(θ|P) is linear in P (cf. Appendix
A.3), equation (B.16) implicitly gives P as a linear function of w. Hence, P and w
are informationally equivalent, which technically means that the information sets
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{w, P}, {w}, {P} are equivalent to each other. It immediately follows that

P =
w + LE+M

ρV(θ|w)
E(θ|w)− LE

a
L−LE
ρσε

2 + LE+M
ρV(θ|w)

.

Note that this price is indeed linear in s and ν and, hence, consistent with the "con-
jecture" made in order to derive equation (B.7). With (A.7), it follows that both P and
w are normal.

B.3 Agents’ Certainty Equivalents

Passive investors. Substituting the optimal portfolio decision IM from (B.10) into
equation (B.8) gives

CEM|P =
E(θ|P)− P

ρV(θ|P) (E(θ|P)− P)− ρ

2

[
E(θ|P)− P

ρV(θ|P)

]2

V(θ|P) =

=
[E(θ|P)− P]2

2ρV(θ|P) . (B.17)

Note that as the safe asset in our setup yields a rate of return equal to zero, this is
just a function of the (conditional) Sharpe Ratio of the risky asset θ, given its price P:

CEM|P = GTM|P =
1

2ρ

[E(θ|P)− P]2

V(θ|P)

=
1

2ρ

 E( θ−P
P − 0|P)√

V( θ−P
P − 0|P)

2

=
1

2ρ

(
Sθ|P

)2 , (B.18)

where Sθ|P denotes the (conditional) Sharpe Ratio. Written the other way around:

Sθ|P = +
(−)

√
2ρ
√

GTM|P. (B.19)

This result is closely related to the concept of a maximum certainty equivalent return
in Pézier (2012). It implies that the Sharpe Ratio is equivalent to GTM|P in the sense
that the former is just a strictly monotonically increasing function of the latter.

We now want to derive the (unconditional) certainty equivalent CEM. This is
implicitly given by U (CEM) = E [U (πM)]. Using the LIE, we know that

E [U (πM)] = E [E [U (πM) |P]] = E
[
U
(
CEM|P

)]
. (B.20)

As P is normal (see Appendix B.2), with the use of (A.24) it follows that

U (CEM) = E
[
U
(
CEM|P

)]
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= −E
[
exp

{
−ρ · CEM|P

}]
= −E

[
exp

{
− (
√

ρz)2
}]

= −
exp

{
−ρ E(z)2

1+2ρV(z)

}
√

1 + 2ρV(z)
, (B.21)

where
z :=

E(θ|P)− P√
2ρV(θ|P)

. (B.22)

Consequently,

CEM =
E(z)2

1 + 2ρV(z)
+

1
2ρ

ln [1 + 2ρV(z)] . (B.23)

Dealers. Substituting the optimal portfolio decision ID from (B.5) into equation (B.3)
gives

CED|s,P =
s− P
ρσε

2 (s− P)− ρ

2

(
s− P
ρσε

2

)2

σε
2 =

=
(s− P)2

2ρσε
2 . (B.24)

Again, this can be expressed as a function of the (conditional) Sharpe Ratio of the
risky asset θ, given its price P and the fundamental s:

CED|s,P = GTD|s,P =
(s− P)2

2ρσε
2 =

=
1

2ρ

 E( θ−P
P − 0|s, P)√

V( θ−P
P − 0|s, P)

2

=

=
1

2ρ

(
Sθ|s,P

)2 . (B.25)

To derive the (unconditional) certainty equivalent CED, we proceed in two steps.
First, we compute the conditional certainty equivalent CED|P, which, using the LIE,
is implicitly given by U

(
CED|P

)
= E

[
U
(
CED|s,P

)
|P
]
. As a second step, we again

use the LIE to obtain CED, which is implicitly given by U (CED) = E
[
U
(
CED|P

)]
.

Step 1. Denote
ẑ :=

√
CED|s,P. (B.26)

As s|P is normal, ẑ|P is normal too and we can use (A.24) to get

U
(
CED|P

)
= E

[
U
(
CED|s,P

)
|P
]

= −E
[
exp

{
−ρ · CED|s,P

}
|P
]

= −E
[
exp

{
− (
√

ρẑ)2
}
|P
]

= − 1√
1 + 2ρV (ẑ|P)

exp

{
− ρE (ẑ|P)2

1 + 2ρV (ẑ|P)

}
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= − 1√
1 + 1

σε
2 V(s|P)

exp

−
[
− P√

2σε
2
+ 1√

2σε
2
E(s|P)

]2

1 + 1
σε

2 V(s|P)


= − 1√

V(θ|P)
σε

2

exp

−
[E(θ|P)−P]2

2σε
2

V(θ|P)
σε

2


= −

√
σε

2

V(θ|P) exp

{
− [E(θ|P)− P]2

2V(θ|P)

}

= −

√
σε

2

V(θ|P) exp
{
−ρ · z2} . (B.27)

It follows that
CED|P =

1
2ρ

ln
V(θ|P)

σε
2 + z2. (B.28)

Step 2. As z is normal, again using (A.24) gives

U (CED) = E
[
U
(
CED|P

)]
= −

√
σε

2

V(θ|P)E
[
exp

{
−ρ · z2}]

= −

√
σε

2

V(θ|P)
exp

{
−ρ

E(z)2

1+2ρV(z)

}
√

1 + 2ρV (z)
(B.29)

and it follows that

CED =
1

2ρ
ln

V(θ|P)
σε

2 +
E (z)2

1 + 2ρV (z)
+

1
2ρ

ln [1 + 2ρV (z)] . (B.30)

Entrepreneurs. Substituting the optimal portfolio decision IE from (B.14) into equa-
tion (B.12) gives

CEE|P =
P
a
+

E(θ|P)− P
ρV(θ|P) [E(θ|P)− P]− ρ

2

[
E(θ|P)− P

ρV(θ|P)

]2

V(θ|P)

=
P
a
+ z2. (B.31)

As P is normal and z is just a linear function of P, all linear combinations of z and P
are linear in P and hence normal. With (A.3), it follows that z and P have a (degen-
erate) joint normal distribution. Applying (A.24) yields

U (CEE) = E
[
U(CEE|P)

]
= −E

[
exp

{
−ρ · CEE|P

}]
= −E

[
exp

{
−ρ

P
a
− (
√

ρz)2
}]
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= −
exp

{
−ρE

( P
a

)
+ ρ2

2 V
( P

a

)
− ρ

[E(z)−ρCov( P
a ,z)]

2

1+2ρV(z)

}
√

1 + 2ρV(z)
(B.32)

and consequently,

CEE = E

(
P
a

)
+

ρ

2
V

(
P
a

)
+

[
E(z)− ρCov

( P
a , z
)]2

1 + 2ρV(z)
+

1
2ρ

ln [1 + 2ρV(z)] . (B.33)

B.4 Alternative Representation of an Entrepreneur’s CE

We can also write an entrepreneur’s final wealth as

πE =
θ

a︸︷︷︸
FGPE|P, θ

+ ĨE(P− θ)︸ ︷︷ ︸
NGTE|P, θ

= CEE|P, θ , (B.34)

where ĨE = 1/a− IE is an entrepreneur’s net asset supply. FGPE|P, θ gives the fun-
damental value created by an agent’s entrepreneurial activity. The gains from actual
"net" trade are denoted by NGTE|P, θ . These gains are "net" in the sense that they
arise from the actual amount of assets ĨE an entrepreneur trades in the market. An
entrepreneur’s certainty equivalent conditional on P is given by

CEE|P = E

(
θ

a
|P
)
− ρ

2
V

(
θ

a
|P
)

︸ ︷︷ ︸
FGPE|P

+

[ ρ
a V(θ|P)− (E(θ|P)− P)

]2

2ρV(θ|P)︸ ︷︷ ︸
NGTE|P

, (B.35)

which one can easily show to be equivalent to (B.31). Now let

z̃ :=

[ ρ
a V(θ|P)− (E(θ|P)− P)

]√
2ρV(θ|P)

(B.36)

=
√

NGTE|P

=

√
ρ

2
V

(
θ

a
|P
)
− z

=

√
ρ

2
V(θ|P) · ĨE.

Then, analogously as in Appendix B.3,

U (CEE) = E
[
U(CEE|P)

]
= −E

[
exp

{
−ρ · CEE|P

}]
= −E

[
exp

{
−ρ

(
E

(
θ

a
|P
)
− ρ

2
V

(
θ

a
|P
))
− (
√

ρz̃)2
}]
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= −
exp

{
−ρE

(
θ
a

)
+ ρ2

2 V
(

θ
a |P
)
+ ρ2

2 V
[
E
(

θ
a |P
)]
− ρ

[E(z̃)−ρCov(E( θ
a |P),z̃)]

2

1+2ρV(z̃)

}
√

1 + 2ρV(z̃)
.

(B.37)

With the law of total variance, it follows that

CEE = E

(
θ

a

)
− ρ

2
V

(
θ

a

)
︸ ︷︷ ︸

FGPE

+

[
E(z̃)− ρCov

(
E
(

θ
a |P
)

, z̃
)]2

1 + 2ρV(z̃)
+

1
2ρ

ln [1 + 2ρV(z̃)]︸ ︷︷ ︸
NGTE

.

(B.38)

Even though (B.38) and (2.20) are mathematically equivalent, (B.38) allows for a dif-
ferent perspective on the composition of entrepreneurs expected utility. More specif-
ically, it shows which part of an entrepreneur’s expected utility stems from the fun-
damental value of entrepreneurship and which from additionally having an asset ex-
change that allows for beneficial trades. FGPE relates to an entrepreneur’s expected
utility from receiving the asset payoff θ for each of the 1/a assets he creates. NGTE

relates to an entrepreneur’s additional utility from the possibility to sell an amount
of ĨE out of his 1/a assets in the market, instead of holding all of them "to maturity".

Two terms make NGTE differ from the trading gains GTM of a passive investor.
The covariance term stems from the fact that the fundamental value of entrepre-
neurship and the gains from trading are not independent of each other. A higher
asset price P is a signal for high θ, which benefits FGPE|P, as well as it increases
the gains from asset sales, which benefits NGTE|P. This co-movement, depicted by
Cov (E ((θ/a)|P) , z̃) > 0, increases overall risk and hence decreases NGTE.3 The
term which makes z̃ differ from z essentially stems from the fact that ĨE 6= IM(= IE).

Actual "net" gains from trade for an entrepreneur can be higher or lower than that
for passive investors. This is easy to see. If IE = IM = 0, then z = 0 and GTM = 0,
while NGTE > 0, as ĨE 6= 0 and with that z̃ 6= 0. On the other hand, if ĨE = 0,
then z̃ = 0 and NGTE = 0, while GTM > 0, as IE = IM 6= 0 and with that z 6= 0.
While (2.20) is more convenient to use within our social welfare analysis, (B.38) can
give additional information in case that the actual composition of entrepreneurs’
expected utility is of interest.

B.5 Closed-Form Solutions - Free OC

Let
α :=

L− LE

ρσε
2 , β :=

LE + M
ρV(θ|w)

, γ :=
1

α2σs2 + σν
2 . (B.39)

3As E ((θ/a)|P) is linearly increasing in P, and z̃ is linearly decreasing in z, Cov(P, z) < 0 implies
Cov (E ((θ/a)|P) , z̃) > 0. Again, E(z̃) is positive as long as ĨE > 0, which is the case if agents don’t
short the asset (on average).
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Then, it is

V(θ|w) = σε
2 + σs

2σν
2γ, (B.40)

E(P) = s̄−
LE
a − ν̄

α + β
, (B.41)

V(P) =
1
γ

(
1 + αβγσs

2

α + β

)2

, (B.42)

E(z) =
LE
a − ν̄

(α + β)
√

2ρ (σε
2 + σs2σν

2γ)
, (B.43)

V(z) =
γσν

4

2ρ (σε
2 + σs2σν

2γ) (α + β)2 , (B.44)

Cov(P, z) = −
√

V(P)V(z). (B.45)

Proof. With the definition of w in (2.6) and the Bayesian updating rules in (A.3), we
get

V(θ|w) = σs
2 + σε

2 − α2σs
4

α2σs2 + σν
2

= σε
2 +

α2σs
4 + σs

2σν
2 − α2σs

4

α2σs2 + σν
2

= σε
2 + σs

2σν
2γ (B.46)

and with that
V(s|w) = σs

2σν
2γ. (B.47)

With P according to (2.5) and as V(θ|w) is non-random, it is

E(P) =
E(w)

α + β
+

βE(θ)

α + β
−

LE
a

α + β

=
αs̄ + ν̄

α + β
+

βs̄
α + β

−
LE
a

α + β

= s̄−
LE
a − ν̄

α + β
(B.48)

and

V(P) =
V
(

w + β
[
s̄ + Cov(θ,w)

V(w) (w−E(w))
]
− LE

a

)
(α + β)2

=
V
([

1 + βCov(θ,w)
V(w)

]
w
)

(α + β)2

=

[
1 + βασs

2

α2σs2+σν
2

]2

(α + β)2

(
α2σs

2 + σν
2)



92 Appendix B. Model Proofs

=
1
γ

(
1 + αβγσs

2

α + β

)2

. (B.49)

With z according to (2.13) and with (B.46) and (B.48) from above, we get

E(z) =
E(θ)−E(P)√

2ρV(θ|w)

=

s̄−
(

s̄−
LE
a −ν̄
α+β

)
√

2ρ (σε
2 + σs2σν

2γ)

=
LE
a − ν̄

(α + β)
√

2ρ (σε
2 + σs2σν

2γ)
(B.50)

and

V(z) =

V

(
s̄ + Cov(θ,w)

V(w) (w−E(w))−
w+β

[
s̄+ Cov(θ,w)

V(w) (w−E(w))
]
− LE

a

α+β

)
2ρV(θ|w)

=

V

([
Cov(θ,w)

V(w)
−

1+β
Cov(θ,w)

V(w)

α+β

]
w
)

2ρV(θ|w)

=

[
Cov(θ,w)(α+β)−V(w)−βCov(θ,w)

(α+β)V(w)

]2
V(w)

2ρV(θ|w)

=

[
α2σs

2(α + β)− α2σs
2 − σν

2 − βασs
2]2

2ρ (σε
2 + σs2σν

2γ) (α + β)2 (α2σs2 + σν
2)

=
γσν

4

2ρ (σε
2 + σs2σν

2γ) (α + β)2 . (B.51)

To compute Cov(P, z), note that, with Appendix A.3, we know that P and z are both
linear in w and it follows that P can be written as a linear function of z. Consequently,
the correlation between P and z is either perfectly positive or perfectly negative, de-
pending on whether P is increasing or decreasing in z. Obviously, P is increasing in
z exactly if P and z are either both increasing in w or both decreasing in w. Analo-
gously, P is decreasing in z exactly if one of the two is increasing in w while the other
one is decreasing in w. From (2.5) and Appendix A.3, we immediately see that P is
linearly increasing in w. Regarding z, note that

E(θ|w)− P = E(θ|w)

(
1− β

α + β

)
− w

α + β
+

LE
a

α + β

=

(
s̄ +

Cov(θ, w)

V(w)
[w−E(w)]

)(
α

α + β

)
− w

α + β
+

LE
a

α + β

= "non-random term" +
(

Cov(θ, w)

V(w)

α

α + β
− 1

α + β

)
w
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and the expression in parentheses is negative exactly if

Cov(θ, w)

V(w)
α < 1

α2σs
2

α2σs2 + σν
2 < 1,

which is obviously the case. So z is linearly decreasing in w and it follows that P
must be linearly decreasing in z, that is Corr(P, z) = −1. This immediately yields

Cov(P, z) = Corr(P, z)
√

V(P)V(z)

= −
√

V(P)V(z).

B.6 Closed-Form Solutions - Restricted OC

With P and z given by (2.8) and (2.22), it immediately follows that

E(P) = s̄−
ρ
(
σs

2 + σε
2)

L + M

(
LE

a
− ν̄

)
, (B.52)

V(P) =

[
ρ
(
σs

2 + σε
2)

L + M

]2

σν
2, (B.53)

E(z) =
√

ρ

2
(σs2 + σε

2) ·
LE
a − ν̄

L + M
, (B.54)

V(z) =
ρ
(
σs

2 + σε
2)

2(L + M)2 σν
2, (B.55)

Cov(P, z) = −
√

V(P)V(z). (B.56)

With (2.20) and (2.12), it holds that

∆(LE) = CEE − GTM

= E

(
P
a

)
− ρ

2
V

(
P
a

)
+

ρ2Cov
( P

a , z
)2 − 2ρE(z)Cov

( P
a , z
)

1 + 2ρV(z)
. (B.57)

As (B.52)-(B.56) tell, V(P), V(z) and with that also Cov(P, z) are independent of LE.
Hence, differentiating yields

d∆(LE)

dLE
=

[
−

ρ
(
σs

2 + σε
2)

a2(L + M)

]
+
−2ρCov(P, z)

√
ρ (σs2 + σε

2)

a2(L + M)
√

2 (1 + 2ρV(z))

=
ρ
(
σs

2 + σε
2)

a2(L + M)

 −2
(
−
√

ρV(P)V(z)
)

√
2 (1 + 2ρV(z))

√
σs2 + σε

2
− 1
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=
ρ
(
σs

2 + σε
2)

a2(L + M)

 2

√
ρ4(σs2+σε

2)
3
σν

4

2(L+M)4

√
2
[
1 + ρ2(σs2+σε

2)σν
2

(L+M)2

]√
σs2 + σε

2
− 1


=

ρ
(
σs

2 + σε
2)

a2(L + M)︸ ︷︷ ︸
>0

 ρ2σν
2(σs

2+σε
2)

(L+M)2

1 + ρ2σν
2(σs2+σε

2)
(L+M)2

− 1


︸ ︷︷ ︸

<0

< 0. (B.58)

Figure B.1 graphically illustrates the result and shows that equilibrium with re-
stricted OC is always unique. For an explicit solution for the equilibrium LE, see
Appendix C.1.

FIGURE B.1: Equilibrium LE in Case of Restricted OC and σν
2 > 0
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B.7 Equilibrium Price Function for σν
2 = 0

Let σν
2 = 0. If LE < L, then from (2.5) follows that:

P =

L−LE
ρσε

2 s + ν̄ + LE+M
ρσε

2 s− LE
a

L+M
ρσε

2

=
L− LE

L + M
s +

ρσε
2

L + M
ν̄ +

LE + M
L + M

s− ρσε
2

L + M
LE

a

= s− ρσε
2

L + M

(
LE

a
− ν̄

)
. (B.59)

If LE = L, then from (2.5) follows that:

P =
ν̄ + L+M

ρ(σε
2+σs2)

s̄− L
a

L+M
ρ(σε

2+σs2)

= s̄−
ρ
(
σε

2 + σs
2)

L + M

(
L
a
− ν̄

)
. (B.60)

Alternatively, (B.60) also follows directly from (2.8) with LE = L and ν = ν̄.
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B.8 The Equilibrium Mass of Entrepreneurs

Let σν
2 = 0. Consider first the case of free OC. An interior equilibrium exists if ∆(LE)

given by (2.25) equals zero for an LE between zero and L. Setting ∆(LE) = 0, we get

s̄−
LE
a − ν̄

L + M
ρσε

2 − 1
2a

ρσs
2 = 0;

s̄− ρσs
2

2a
=

ρσε
2

L + M

(
LE

a
− ν̄

)
;

LE =
a(L + M)

ρσε
2

(
s̄− ρσs

2

2a

)
+ aν̄. (B.61)

This is an interior equilibrium, if

a(L + M)

ρσε
2

(
s̄− ρσs

2

2a

)
+ aν̄ > 0;

s̄ >
ρσs

2

2a
− ρσε

2

L + M
ν̄ (B.62)

and

a(L + M)

ρσε
2

(
s̄− ρσs

2

2a

)
+ aν̄ < L;

s̄ <
ρσs

2

2a
+

ρσε
2

L + M

(
L
a
− ν̄

)
. (B.63)

A corner equilibrium with LE = L exists, if ∆(L) given by (2.25) is greater than or
equal to Γ(L)given by (2.26). We can write this condition as

1
a

(
s̄−

L
a − ν̄

L + M
ρ
(
σε

2 + σs
2)) ≥ 1

2ρ
ln
[

1 +
σs

2

σε
2

]
;

s̄ ≥ a
2ρ

ln
[

1 +
σs

2

σε
2

]
+

L
a − ν̄

L + M
ρ
(
σε

2 + σs
2) . (B.64)

Restricted occupational choice. Consider now the case of restricted OC. An interior
equilibrium exists if ∆(LE) given by (2.34) equals zero for some LE between zero and
L. Setting ∆(LE) = 0, we get

s̄−
LE
a − ν̄

L + M
ρ
(
σε

2 + σs
2) = 0;

LE

a
− ν̄ =

L + M
ρ (σε

2 + σs2)
s̄;

LE =
a(L + M)

ρ (σε
2 + σs2)

s̄ + aν̄. (B.65)
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This is an interior equilibrium, if

a(L + M)

ρ (σε
2 + σs2)

s̄ + aν̄ > 0;

s̄ > −ρ(σε
2 + σs

2)

L + M
ν̄ (B.66)

and

a(L + M)

ρ (σε
2 + σs2)

s̄ + aν̄ < L;

s̄ <
ρ(σε

2 + σs
2)

L + M

(
L
a
− ν̄

)
. (B.67)

A corner equilibrium with LE = L exists, if ∆(L) given by (2.34) is greater or equal
to zero. We can write this condition as

s̄−
L
a − ν̄

L + M
ρ
(
σε

2 + σs
2) ≥ 0;

s̄ ≥ ρ(σε
2 + σs

2)

L + M

(
L
a
− ν̄

)
. (B.68)

B.9 Equilibrium LE with Free vs. Restricted OC

Let σν
2 = 0. For an equilibrium L1

E < L to exist, we require s̄ < s̄2, which according
to (2.28) can be written as

s̄− ρσs
2

2a
− L− aν̄

a(L + M)
ρσε

2 < 0. (B.69)

Now consider such an equilibrium, given by (2.29), as the "starting point". Further-
more, assume that in case of restricted OC an equilibrium with L0

E < L exists, which
is then given by (2.37). It is L0

E > L1
E, that is, banning dealers increases the equilib-

rium mass of entrepreneurs, exactly if

a(L + M)

ρ (σε
2 + σs2)

s̄ + aν̄ >
a(L + M)

ρσε
2

(
s̄− ρσs

2

2a

)
+ aν̄;

1
σε

2 + σs2 s̄ >
1

σε
2

(
s̄− ρσs

2

2a

)
;

σε
2s̄−

(
σε

2 + σs
2) (s̄− ρσs

2

2a

)
> 0;

−σs
2s̄ +

ρσs
2

2a
(
σε

2 + σs
2) > 0;

s̄− ρ

2a
(σs

2 + σε
2) < 0. (B.70)
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Finally, note that (B.69) already implies (B.70), if

s̄− ρσs
2

2a
− L− aν̄

a(L + M)
ρσε

2 ≥ s̄− ρ

2a
(σs

2 + σε
2), (B.71)

which simplifies to

− ρ

2a

(
σs

2 + 2
L− aν̄

L + M
σε

2
)
≥ − ρ

2a
(
σε

2 + σs
2) ;

2
L− aν̄

L + M
σε

2 ≤ σε
2;

L− aν̄

L + M
≤ 1

2
. (B.72)

In the special case of L1
E < L and L0

E = L, we obviously get L0
E > L1

E as well. And
if L1

E < L is not satisfied in the first place, then there are no dealers anyway and,
consequently, banning them has no effect at all.

B.10 Trading Volumes with Free vs. Restricted OC

Let σν
2 = 0. Then, with (2.4) and (2.23) follows that

ĨE =


1
a −

s−P
ρσε

2 = 1
a −

LE
a −ν̄

L+M , for LE < L

1
a −

s̄−P
ρ(σε

2+σs2)
= 1

a −
L
a−ν̄

L+M , for LE = L
, (B.73)

IM = IE =
1
a
− ĨE =


LE
a −ν̄

L+M , for LE < L

L
a−ν̄

L+M , for LE = L
, (B.74)

ID =
s− P
ρσε

2 =
LE
a − ν̄

L + M
, for LE < L, (B.75)

in case of free OC. With (2.7) and (2.32) follows that

ĨE =
1
a
− s̄− P

ρ (σε
2 + σs2)

=
1
a
−

LE
a − ν̄

L + M
, for LE ≤ L, (B.76)

IM = IE =
1
a
− ĨE =

LE
a − ν̄

L + M
, for LE ≤ L, (B.77)

in case of restricted OC. Summarizing equations (B.73)-(B.77) gives equations (2.40)-
(2.41) in the text.
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Aggregate trading volumes. To see that aggregate net trading LE · ĨE is increasing in
LE, note that

d
(

LE · ĨE
)

dLE
=

1
a
−

LE
a − ν̄

L + M
−

LE
a

L + M

=
1
a

(
1− 2LE

L + M

)
+

ν̄

L + M
, (B.78)

for which to be positive, it is sufficient that M ≥ L and ν̄ ≥ 0. Consequently, a ban
on dealers, which increases the equilibrium mass of entrepreneurs (cf. Appendix B.9)
without affecting the other parameters in ĨE, increases aggregate net trading.

B.11 Entrepreneurs’ Optimal Labor Demand

If all other firms make profit θ with employment m, then firm j that chooses em-
ployment mj makes profit θ j = θ + δ, with δ :=

(
F(mj)−Wmj) − (F(m)−Wm).

Since the firm’s profit differs from the other firms’ profit by the non-random amount
δ, arbitrage-freeness implies that also the respective share prices differ by δ, i.e.,
Pj = P + δ.
The final wealth of an entrepreneur in firm j is given by

π
j
E =

Pj

a
+ (θ j − Pj)I j∗

E + (θ − P)I j′
E , (B.79)

where I j∗
E denotes the amount of shares the entrepreneur holds in his own firm and

I j′
E the amount of shares he holds in other firms. As we know that θ j − Pj = θ − P,

the entrepreneur’s final wealth is the same irrespective of whether he trades shares
in his own firm or shares in other firms. Then, if we just let I j

E := I j∗
E + I j′

E denote the
total amount of assets the entrepreneur holds, (B.79) simplifies to

π
j
E =

Pj

a
+ (θ − P)I j

E

=
P
a
+

δ

a
+ (θ − P)I j

E. (B.80)

A firm j entrepreneur maximizes his conditional expected utility with respect to both
mj and I j

E. Proceeding as in Appendix B.1, we immediately get that the optimal I j
E

corresponds to IE given by (2.4) or (2.7), depending on whether there is free or re-
stricted OC. This is not surprising, as δ is non-random and optimal portfolio deci-
sions under CARA-utility are independent of (non-stochastic) wealth. The fact that
δ is non-random and does not interact with any other random variables also implies
that maximizing the conditional expected utility with respect to mj is equivalent to
straight maximization of π

j
E. Hence, the entrepreneur’s FOC w.r.t. mj is simply given
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by

∂π
j
E

∂mj =
∂δ

∂mj = 0;

F′(mj) = W. (B.81)

Hence, in (symmetric) equilibrium of the FE model, entrepreneurs’ optimal employ-
ment and portfolio decisions are given by (B.81) and (2.4) or (2.7), respectively. For
a given mass of entrepreneurs LE, the wage W is the same with free and restricted
OC.

B.12 Equilibrium LE with Free vs. Restricted OC - FE Model

Let σν
2 = 0. Let condition (2.39) hold. Then, we can show that it is L0

E > L1
E also in

the FE model. In contrast to the basic model, however, we cannot solve for the equi-
librium LE’s explicitly. Hence, we have to use a different approach than in Appendix
B.9.

FIGURE B.2: Equilibrium LE with Free vs. Restricted OC in the Noise-
less FE Model
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To avoid confusion, denote ∆(LE) in case of free OC by ∆1(LE) and in case of re-
stricted OC by ∆0(LE). Note that, according to (2.25) and (2.34), ∆1(LE) and ∆0(LE)

are both strictly decreasing for LE < L. For any given LE < L, the difference between
the two yields

∆0(LE)− ∆1(LE) =
ρσs

2

a

[
1
2a
−

LE
a − ν̄

L + M

]
. (B.82)

If L1
E < L, then (B.82) evaluated at equilibrium LE = L1

E is obviously greater than
when evaluated at LE = L, that is

∆0(L1
E)− ∆1(L1

E) >
ρσs

2

a

[
1
2a
−

L
a − ν̄

L + M

]
. (B.83)
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With condition (2.39), the r.h.s. of (B.83) is obviously positive. It follows that ∆0(L1
E) >

∆1(L1
E). As we know that ∆1(L1

E) = 0, this immediately gives ∆0(L1
E) > 0. The fact

that ∆0(LE) is strictly decreasing with limLE→∞ ∆0(LE) = −∞ implies that ∆0(LE)

equals zero for an LE > L1
E, so that L0

E > L1
E. Figure B.2 illustrates the result.

B.13 Unions’ Wage Setting Problem

Unions maximize workers’ conditional expected utility. In what follows, we argue
that this comes down to the maximization of (2.53).

From Appendix B.11, we already know that firms choose employment m accord-
ing to F′(m) = W. If all other unions choose a wage rate W, which leads to firm
employment m and firm profit θ, then if a union j chooses wage W j, its firm’s la-
bor demand is given by mj and its firm’s profits are given by θ j = θ + δ, where
δ = F(mj) −W jmj − (F(m)−Wm). Again, as δ is non-random, arbitrage-freeness
implies Pj = P + δ.
The final wealth of a worker in union j is given by

π
j
M =

W j − D + (θ j − Pj)I j∗

M|e + (θ − P)I j′

M|e, if he is employed

(θ j − Pj)I j∗

M|u + (θ − P)I j′

M|u, if he is unemployed
, (B.84)

where, if worker j is employed, I j∗

M|e denotes his position in the asset of "his" firm and

I j′

M|e his position in other firms’ assets; or if worker j is unemployed, I j∗

M|u denotes his

position in the asset of "his" firm and I j′

M|u his position in other firms’ assets. As with
CARA-utility a worker’s portfolio decision does not depend on whether he gets an
additional fixed job income of W j − D or not, it is I j∗

M|e = I j∗

M|u and I j′

M|e = I j′

M|u.
Moreover, it is (θ− P) = (θ j − Pj), so regarding his final wealth it doesn’t make any
difference, if the worker trades the asset of "his" firm or the other firms’ assets. Then,
if we just let I j

M := I j∗

M|e + I j′

M|e = I j∗

M|u + I j′

M|u denotes a worker’s total asset holdings,
(B.84) simplifies to

π
j
M = (θ − P)I j

M +

W j − D, if he is employed

0, if he is unemployed
. (B.85)

As a firm j worker’s probability of being employed is given by (mj/M̂), his condi-
tional expected utility is given by

E[U(π
j
M)|P] = E[E[U(π

j
M)|s, ε, ν]|P]

= E

[
mj

M̂
U
(
(θ − P)I j

M + W j − D
)
+

(
1− mj

M̂

)
U
(
(θ − P)I j

M

)
|P
]

=
mj

M̂
E[U((θ − P)I j

M + W j − D)|P] +
(

1− mj

M̂

)
E[U((θ − P)I j

M)|P]
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=
mj

M̂
E
[
− exp

{
−ρ((θ − P)I j

M)
}

exp
{
−ρ(W j − D)

}
|P
]

+

(
1− mj

M̂

)
E
[
− exp

{
−ρ((θ − P)I j

M)
}
|P
]

= −mj

M̂
exp

{
−ρ(W j − D)

}
E
[
exp

{
−ρ((θ − P)I j

M)
}
|P
]

−
(

1− mj

M̂

)
E
[
exp

{
−ρ((θ − P)I j

M)
}
|P
]

= E
[
exp

{
−ρ((θ − P)I j

M)
}
|P
] (
−mj

M̂
exp

{
−ρ(W j − D)

}
−
(

1− mj

M̂

))
= E

[
exp

{
−ρ((θ − P)I j

M)
}
|P
]
·
(

mj

M̂

[
1− exp

{
−ρ(W j − D)

}]
− 1
)

. (B.86)

The first equality uses the LIE. Note that from knowing s, ε and ν, one also knows P.
Hence, it is I2 := {P} ⊆ I1 := {s, ε, ν} and we can apply (A.14).
The worker’s respective (conditional) certainty equivalent is then given by

CE
j
M|P = −1

ρ
ln
(

E
[
exp

{
−ρ((θ − P)I j

M)
}
|P
])

− 1
ρ

ln
(

1− mj

M̂

[
1− exp

{
−ρ(W j − D)

}])
. (B.87)

We have already argued that the worker’s optimal I j
M does not depend on his gains

from the job. Hence, I j
M corresponds to IM given by (2.4) or (2.7), depending on

whether there is free or restricted OC. The union’s maximization problem then comes
down to just maximizing the second term in (B.87) w.r.t. W j, taking into account that
the firm will optimally respond with the respective labor demand mj (cf. Appendix
B.14).
Hence, in (symmetric) equilibrium of the UE model, unions set the wage so as to
maximize (2.53) and workers’ optimal portfolio decisions are given by (2.4) or (2.7),
respectively. For a given mass of entrepreneurs LE, workers’ gains from job are the
same with free and restricted OC.

B.14 Unions’ Optimal Wage Setting

Unions anticipate that firms respond to the wage W they set by choosing employ-
ment m according to F′(m) = W. With a Cobb-Douglas production function of the
form F(m) = Am1−b, where A > 0 and 0 < b < 1, this gives a firm’s labor demand
as

m =

(
A(1− b)

W

) 1
b

. (B.88)
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Substituting into the second factor in equation (B.86), which is just a strictly mono-
tonically increasing transformation of (2.53), gives the unions objective function:

(
A(1−b)

W

) 1
b

M̂
[1− exp {−ρ(W − D)}]− 1. (B.89)

Performing another strictly monotonically increasing transformation of (B.89) by us-
ing the transformation function g(x) = (x + 1)M̂ (A(1− b))−

1
b simplifies the firm’s

objective function to

(
1

W

) 1
b

[1− exp {−ρ(W − D)}] =: G̃JM. (B.90)

Taking the derivative w.r.t. W yields

dG̃JM

dW
= −1

b
W−

1
b−1 (1− exp {−ρ(W − D)})−W−

1
b (−ρ) exp {−ρ(W − D)} .

(B.91)
A union’s FOC is given by

dG̃JM

dW
= 0; (B.92)

−1
b

W−
1+b

b +
1
b

W−
1+b

b exp {−ρ(W − D)}+ ρW−
1
b exp {−ρ(W − D)} = 0;

1
b

W−
1+b

b exp {−ρ(W − D)} [− exp {ρ(W − D)}+ 1 + ρbW] = 0;

1 + ρbW − exp {ρ(W − D)}︸ ︷︷ ︸
=:ψ(W)

= 0. (B.93)

Obviously, we cannot explicitly solve (B.93) for W. However, we can show that the
W(> 0) that solves (B.93), call it W̃, is (i) unique, (ii) greater than D and (iii) maxi-
mizes (B.90).
Proof. To prove properties (i)-(ii), we show that the l.h.s. of (B.93), denoted by ψ(W),
has a single zero for W > 0 and it takes on this zero at a wage W > D. In order to
do so, note first that ψ(W) is continuous and differentiable in W and has only one
critical point, which is a maximum:

dψ

dW
= ρb− ρ exp {ρ(W − D)} = 0;

W =
ln b

ρ
+ D < D, (B.94)

with
d2ψ

dW2 = −ρ2 exp {ρ(W − D)} < 0. (B.95)

Moreover,

ψ(W = 0) = 1− exp {−ρD} > 0, (B.96)
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ψ(W = D) = ρbD > 0. (B.97)

Taken together, (B.94)-(B.97) tell us that ψ takes on a positive value at W = 0, then
increases until it reaches its maximum at a W < D. After that, it strictly decreases,
but at W = D is still positive. Finally, the fact that limW→∞ ψ(W) = −∞ ensures that
ψ must eventually hit zero at a W > D, which consequently is the unique positive
solution to (B.93). As stated before, we denote this solution by W̃.

That W̃ indeed maximizes (B.90), i.e., that property (iii) holds, follows from the
fact that the objective function’s first derivative, given by (B.91), changes sign from
positive to negative at W = W̃. As the objective function is continuous and differ-
entiable for all W > 0 and has a single critical point, to show this, it is sufficient to
show that the objective function’s derivative is positive for some arbitrary W with
0 < W < W̃ and negative for some arbitrary W > W̃. Rewriting (B.91) yields

G̃JM

dW
= W−

1+b
b

(
−1

b
+

1
b

exp {−ρ(W − D)}+ ρW
exp {ρ(W − D)}

)
. (B.98)

Evaluated at W = D(< W̃), we get

dG̃JM

dW

∣∣∣∣∣
W=D

= D−
1+b

b

(
−1

b
+

1
b
+ ρD

)
= ρD−

1
b > 0. (B.99)

And for W → ∞(> W̃):

dG̃JM

dW

∣∣∣∣∣
W→∞

= 0+ ·
(
−1

b
+ 0+ + 0+

)
= 0−, (B.100)

where the notation 0+ (0−) indicates that the respective term converges to zero "from
above" ("from below"). The convergence of the last term in parentheses follows from
L‘Hôpital’s rule.

B.15 Alternative Wage-Setting Regimes

Besides the union wage setting model from the main text, we also consider three
other potential sources of real wage rigidities: a "work or shirk" job environment as
in Shapiro and Stiglitz (1984); maximization of the wage bill as in Dunlop (1944); and
efficiency wages as in Solow (1979). If we denote the equilibrium wage that results
from the respective wage-setting regime by W̃ and the corresponding equilibrium
firm-level labor demand by m̃, then everything that follows equation (2.55) in chap-
ter 2.4.2 goes through unchanged. In particular, our main propositions with regards
to welfare in the UE model from chapter 2.5 hold irrespective of the specific source
of real wage rigidity. In what follows, we use our notation from the main text.
Work or shirk. Assume that workers can "work" or "shirk" at their workplace. Firms
cannot perfectly monitor their employees and detect a shirker with probability q. A
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worker who "works" earns a wage W, but faces a disutility of work D. A worker who
"shirks" without being detected also earns wage W, but does not face any disutility
from work. A worker who is caught shirking gets nothing. A firm that employs m
workers makes profit θ = θ̃ + F(m)−Wm if all of its workers work and profit θ =

θ̃ + 0− 0 if all of its workers shirk. We have already shown that a firm chooses m by
simply maximizing F(m)−Wm (cf. Appendix B.11). Hence, given a firm’s optimal
employment decision m, F(m)−Wm is certainly non-negative. Consequently, firms
optimally offer a wage W that is just high enough to prevent workers from shirking
and subsequently choose their optimal labor demand m.
The conditional expected utility of a worker who "works" is given by

E[U(πM)|P] = E[− exp {−ρ(IM(θ − P) + W − D)} |P]
= −E[exp {−ρ(IM(θ − P))} |P] · exp {−ρ(W − D)} . (B.101)

The conditional expected utility of a worker who "shirks" is given by

E[U(πM)|P] = E[E[U(πM)|s, ε, ν]|P]
= E[−q exp {−ρ(IM(θ − P))} − (1− q) exp {−ρ(IM(θ − P) + W)} |P]
= qE[− exp {−ρ(IM(θ − P))} |P]
− (1− q) exp {−ρW}E[exp {−ρ(IM(θ − P))} |P]

= −E[exp {−ρ(IM(θ − P))} |P] · [q(1− exp {−ρW}) + exp {−ρW}] .
(B.102)

As argued before, the optimal portfolio holdings IM are independent of whether the
worker decides to "work" or to "shirk" (cf. Appendix B.13). A worker refrains from
shirking, if (B.101)≥(B.102), that is if

exp {−ρ(W − D)} ≤ q(1− exp {−ρW}) + exp {−ρW} ;

exp {−ρW} exp {ρD} ≤ q(1− exp {−ρW}) + exp {−ρW} ;

exp {ρD} ≤ q(exp {ρW} − 1) + 1;

exp {ρW} ≥ exp {ρD} − 1
q

+ 1;

W ≥ 1
ρ

ln
[

1 +
exp {ρD} − 1

q

]
. (B.103)

Denote the r.h.s. of (B.103) by W̃. The firm chooses the lowest possible wage that pre-
vents shirking, that is, W = W̃. Subsequently, it chooses employment m̃ = (F′)−1 (W̃).
There is equilibrium unemployment, if m̃ < M̂. A simple sufficient condition for this
is m̃ ≤ M/(L/a).
Maximization of the wage bill. Unions are organized as in the main text. They set
the wage, anticipating the entrepreneurs’ optimal response regarding labor demand.
Instead of maximizing workers’ utility, now assume that unions maximize the wage
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bill Wm. Let the production function display constant elasticity of substitution (CES):

F(m) = A
[

b + (1− b)m
η−1

η

] η
η−1

, (B.104)

where A > 0, 0 < b < 1 and 0 < η < 1. As before, a firm optimally sets F′(m) = W,
which with (B.104) comes down to

A · η

η − 1
·
[

b + (1− b)m
η−1

η

] η
η−1−1

· (1− b) · η − 1
η
·m

η−1
η −1 = W;

A(1− b)m−
1
η

[
b + (1− b)m

η−1
η

] 1
η−1

= W;

A(1− b)
[

bm−
η−1

η + (1− b)
] 1

η−1

= W;

bm−
η−1

η + (1− b) =
(

W
A(1− b)

)η−1

;

m =

[
1
b

((
A(1− b)

W

)1−η

− (1− b)

)] η
1−η

. (B.105)

Note that without further restrictions on η, the last step above is valid only if the term
in brackets is non-negative, which then in turn implies m ≥ 0. The CES production
function and with that also the firm’s profit function is concave, so that this solution
meets the firm’s SOC for a maximum. Unions anticipate firm behavior and maximize
Wm, with m given by (B.105). A union’s FOC is given by

d(Wm)

dW
= 0;

m + W
dm
dW

= 0;

m + W ·m ·m
η−1

η · η

1− η
· 1

b
· (η − 1) ·Wη−2 · (A(1− b))1−η = 0;

m
1−η

η − η

b
(A(1− b))1−η Wη−1 = 0;(

A(1− b)
W

)1−η

− (1− b)− η (A(1− b))1−η Wη−1 = 0;

Wη−1 (1− η) (A(1− b))1−η = 1− b;

W =

[
1− b

(1− η) (A(1− b))1−η

] 1
η−1

;

W = A
[

1− η

(1− b)η

] 1
1−η

> 0. (B.106)

Denote this solution by W̃. As it is the unique solution to the union’s FOC and the
objective function is continuous and differentiable on the relevant part of its domain,
to prove that this solution indeed maximizes the wage bill, it is sufficient to show
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that Wm evaluated at both, an arbitrary W with 0 < W < W̃ and an arbitrary W
with W > W̃ (but below the value above which the term in brackets in (B.105) gets
negative), is lower than it is for W = W̃. Evaluated at W̃, m is given by m̃ according
to (B.107) and with that the wage bill is W̃m̃ = A(1 − η) (η/b)η/(1−η) (> 0). For
W → 0(< W̃), the wage bill Wm converges to zero, as W converges to zero "faster"
than m to infinity. For W = A(1− b)−η/(1−η)(> W̃), the wage bill equals zero, as m
equals zero.
Substituting W̃ given by (B.106) into (B.105) gives equilibrium employment m̃:

m̃ =

1
b


 (1− b)[

1−η

(1−b)η

] 1
1−η


1−η

− (1− b)




η
1−η

=

[
1
b

(
(1− η)−1(1− b)− (1− b)

)] η
1−η

=

[
1− b

b

(
(1− η)−1 − 1

)] η
1−η

=

[
1− b

b
η

1− η

] η
1−η

> 0. (B.107)

There is equilibrium unemployment, if m̃ < M̂.
Efficiency wages. Workers choose the level of effort E they deploy on their job de-
pending on how much wage they are paid: E = E(W), with dE/dW > 0. Firm
output is given by F(E(W)m). The higher the wage, the higher the workers’ moti-
vation and effort level and, hence, the higher the output. Firms choose the wage-
employment pair (W, m) that maximizes profit Π = F(E(W)m) −Wm. The firm’s
FOCs are given by

∂Π
∂W

= F′(E(W)m)m
∂E
∂W
−m = 0, (B.108)

∂Π
∂m

= F′(E(W)m)E(W)−W = 0. (B.109)

Dividing equation (B.108) by m and by equation (B.109) gives

∂E
∂W

=
E(W)

W
, (B.110)

which, if a unique solution W exists, pins down the wage. Substituting into (B.109)
yields employment.

As an example, let the production function be given by F(E(W)m) = [E(W)m]1−b,
where 0 < b < 1, and assume an effort function E(W) = ln W. The firm’s objective
function is then given by Π = [(ln W)m]1−b −Wm. From (B.110), we get the op-
timal wage as W̃ = exp {1}. Substituting into (B.109) gives optimal employment
m̃ = [(1− b)/ exp {1}]1/b. To make sure that this pair indeed maximizes profit, we
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check that the objective function’s Hessian is negative definite at (W̃, m̃):

∂2Π
∂W2

∣∣∣∣
W=W̃,m=m̃

= −(1− b)(1 + b) exp {−2}
(

1− b
exp {1}

) 1−b
b

< 0, (B.111)

∂2Π
∂m2

∣∣∣∣
W=W̃,m=m̃

= −b(1− b)
(

1− b
exp {1}

)− 1+b
b

< 0 (B.112)

and

∂2Π
∂W2

∣∣∣∣
W=W̃,m=m̃

· ∂2Π
∂m2

∣∣∣∣
W=W̃,m=m̃

−
(

∂2Π
∂m∂W

∣∣∣∣
W=W̃,m=m̃

)2

= b(1 + b)− (−b)2

= b > 0. (B.113)

Equilibrium output equals F(E(W̃)m̃) = F(m̃). There is equilibrium unemployment,
if m̃ < M̂.

B.16 Expected NT Utility with σν
2 = 0

Let σν
2 = 0. Assume noise traders to be symmetric, that is, an aggregate noise trader

demand ν̄ implies an individual noise trader demand IN = ν̄/N. Exogenous be-
havior combined with CARA-utility for an ex-post evaluation of well-being gives a
noise trader’s expected utility as

E [U(πN)] = −E

[
exp

{
−ρ · ν̄

N
(θ − P)

}]
. (B.114)

As (θ − P) is normal, we can use (A.4.1) to get

E [U(πN)] = − exp

{
−ρ

ν̄

N
E(θ − P) +

1
2

ρ2
(

ν̄

N

)2

V(θ − P)

}
. (B.115)

In case of free OC, P is given by (2.23), from which follows that, for LE < L,

E [U(πN)] = − exp

{
−ρ

ν̄

N

(
s̄− s̄ + ρσε

2
LE
a − ν̄

L + M

)
+

1
2

ρ2
(

ν̄

N

)2

σε
2

}

= − exp

{
−ρ2 ν̄

N
σε

2
LE
a − ν̄

L + M
+

1
2

ρ2
(

ν̄

N

)2

σε
2

}
; (B.116)

CEN = ρσε
2 ν̄

N

[
LE
a − ν̄

L + M
− 1

2
ν̄

N

]
(B.117)

and, for LE = L,

E [U(πN)] = − exp

{
−ρ

ν̄

N

(
s̄− s̄ + ρ(σε

2 + σs
2)

L
a − ν̄

L + M

)
+

1
2

ρ2
(

ν̄

N

)2

(σε
2 + σs

2)

}
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= − exp

{
−ρ2 ν̄

N
(σε

2 + σs
2)

L
a − ν̄

L + M
+

1
2

ρ2
(

ν̄

N

)2

(σε
2 + σs

2)

}
; (B.118)

CEN = ρ(σε
2 + σs

2)
ν̄

N

[
L
a − ν̄

L + M
− 1

2
ν̄

N

]
. (B.119)

Restricted occupational choice. In case of restricted OC, P is given by (2.32), from
which follows that

E [U(πN)] = − exp

{
−ρ

ν̄

N
ρ(σε

2 + σs
2)

LE
a − ν̄

L + M
+

1
2

ρ2
(

ν̄

N

)2

(σε
2 + σs

2)

}
; (B.120)

CEN = ρ(σε
2 + σs

2)
ν̄

N

[
LE
a − ν̄

L + M
− 1

2
ν̄

N

]
. (B.121)

B.17 Social Welfare

Let σν
2 = 0 in the basic version of the model. Consider first the case of free OC. For

LE < L, substituting equations (2.59)-(2.62) into (2.58) yields

S = LE(GPE + z2) + (L− LE + M)z2 + N · CEN

= LEGPE + (L + M)
ρσε

2

2

(
LE
a − ν̄

)2

(L + M)2 + Nρσε
2 ν̄

N

(
LE
a − ν̄

L + M
− 1

2
ν̄

N

)

= LEGPE + ρσε
2

[
1

2(L + M)

((
LE

a

)2

− 2
LE

a
ν̄ + ν̄2

)
+ ν̄

LE
a

L + M
− ν̄2

L + M
− 1

2
ν̄2

N

]

= LEGPE +
ρσε

2

2


(

LE
a

)2

L + M
− ν̄2

(
1

L + M
+

1
N

) , (B.122)

with GPE given by (2.25). For LE = L, we get

S = L(GPE + z2) + M · z2 + N · CEN

= LGPE + (L + M)
ρ(σs

2 + σε
2)

2

(
L
a − ν̄

L + M

)2

+ Nρ(σε
2 + σs

2)
ν̄

N

[
L
a − ν̄

L + M
− 1

2
ν̄

N

]

= LGPE +
ρ(σε

2 + σs
2)

2

[ ( L
a

)2

L + M
− ν̄2

(
1

L + M
+

1
N

)]
. (B.123)

Restricted occupational choice. In case of restricted OC, substituting equations (2.64)-
(2.66) into (2.67) yields

S = LE(GPE + z2) + (L− LE + M)z2 + N · CEN

= LEGPE + (L + M)
ρ(σs

2 + σε
2)

2

(
LE
a − ν̄

L + M

)2

+ Nρ(σε
2 + σs

2)
ν̄

N

[
LE
a − ν̄

L + M
− 1

2
ν̄

N

]
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= LEGPE +
ρ(σε

2 + σs
2)

2


(

LE
a

)2

L + M
− ν̄2

(
1

L + M
+

1
N

) , (B.124)

with GPE given by (2.34).

B.18 Proof that an Entrepreneur’s CE is Decreasing in LE

Let σν
2 = 0. Consider first the basic version of the model with free OC. Further,

assume that entrepreneurs are net sellers, i.e., IE < 1/a. Calculating the derivative
of CEE with respect to LE gives

dCEE

dLE
= − ρσε

2

a2(L + M)
+ ρσε

2

(
LE
a − ν̄

L + M

)
1

a(L + M)

= − ρσε
2

a(L + M)

(
1
a
−

LE
a − ν̄

L + M

)

= − ρσε
2

a(L + M)

(
1
a
− IE

)
< 0. (B.125)

The same result applies in the UE model. In the FE economy, s̄ negatively depends on
LE and the derivative of CEE with respect to LE is given by (B.125) plus the additional
term (1/a) · (ds̄/dLE) < 0. The fact that entrepreneurs’ CEs are decreasing also in
case of restricted OC can be shown analogously.

B.19 Proof of Proposition 2.5.1

Let σν
2 = 0. Consider first the case of free OC with LE < L.

Basic model. In the basic version of the model, taking the derivative of social welfare
S given by (2.63) with respect to LE yields

dS
dLE

= LE
dGPE

dLE
+ GPE +

ρσε
2

L + M
LE

a2

= LE

[
− ρσε

2

a2(L + M)

]
+ GPE +

ρσε
2

L + M
LE

a2

= GPE, (B.126)

where GPE is given by (2.25). The FOC for a social welfare optimum requires GPE =

0, which corresponds to the equation that determines an interior equilibrium (cf.
Chapter 2.3). As the second derivative gives

d2S
dLE

2 =
dGPE

dLE
= − ρσε

2

a2(L + M)
< 0, (B.127)

the equilibrium LE < L given by (2.29) maximizes social welfare S on (0, L).
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Full employment model. In the FE model, social welfare S includes the workers’
gains from the job, which is just their wage W̃ = F′(M̂). Hence, S is given by

S = LEGPE +
ρσε

2

2


(

LE
a

)2

L + M
− ν̄2

(
1

L + M
+

1
N

)+ MW̃, (B.128)

with GPE given by (2.25) and s̄ given by (2.49). Taking the derivative with respect to
LE yields

dS
dLE

= LE
dGPE

dLE
+ GPE +

ρσε
2

L + M
LE

a2 + M · F′′(M̂)
dM̂
dLE

=
LE

a

[
ds̄

dLE
− ρσε

2

a(L + M)

]
+ GPE +

ρσε
2

L + M
LE

a2 + M · F′′(M̂)(−1)
M̂
LE

=
LE

a
F′′(M̂)

M̂2

LE
+ GPE − F′′(M̂)

1
a

aM
LE

M̂

= F′′(M̂)
M̂2

a
+ GPE − F′′(M̂)

M̂2

a
= GPE. (B.129)

By the same reasoning as above, this implies that the equilibrium LE < L maximizes
social welfare S on (0, L).
Unemployment model. In the UE model, social welfare S includes the workers’ ex-
pected gains from the job GJM, given by (2.53). Hence:

S = LEGPE +
ρσε

2

2


(

LE
a

)2

L + M
− ν̄2

(
1

L + M
+

1
N

)+ M · GJM, (B.130)

with GPE given by (2.25) and s̄ given by (2.55). Taking the derivative with respect to
LE yields

dS
dLE

= LE
dGPE

dLE
+ GPE +

ρσε
2

L + M
LE

a2 + M
dGJM

dLE

= GPE + M
dGJM

dLE
. (B.131)

The FOC requires dS/dLE = 0. From (2.56) we know that dGJM/dLE > 0, so any
LE that solves the FOC has to be greater than the LE that solves the equilibrium
condition GPE = 0. The second derivative of S with respect to LE gives

d2S
dLE

2 =
dGPE

dLE
+ M

d2GJ

dL2
E

, (B.132)

where we know that the first part is negative. If we use the approximation for GJM

given in Appendix B.23, then dGJM/dLE is independent of LE, the FOC has a unique
solution and the second order condition for a maximum is met. Hence, if the LE that
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solves the FOC is smaller than L, then it maximizes S on (0, L). If the LE that solves
the FOC is greater than L, then LE → L maximizes S on (0, L).

If we don’t use an approximation for GJM but instead continue with GJM given
by (2.53), the analysis is a little more complicated. However, we can still show the
following: if there is no LE < L that solves the FOC, then LE → L maximizes S on
(0, L); if there is a unique LE < L that solves the FOC, then it maximizes S on (0, L);
and if there are multiple LE < L that solve the FOC, either one of these solutions or
LE → L maximizes S on (0, L). In any case, the equilibrium LE falls short of the LE

that maximizes S on (0, L).
Proof: Let m̃ < M/(L/a), so that job creation by entrepreneurs is operative over the
whole range of LE. With regards to the second term on the r.h.s. of (B.132), from
(2.56), we get

M · dGJM

dLE
=

M
ρ

m̃
aM

[
1− exp

{
−ρ(W̃ − D)

}]
1− LE

m̃
aM

[
1− exp

{
−ρ(W̃ − D)

}] (B.133)

and hence

M
d2GJM

dLE
2 =

M
ρ
(−1)

m̃
aM

[
1− exp

{
−ρ(W̃ − D)

}](
1− LE

m̃
aM

[
1− exp

{
−ρ(W̃ − D)

}])2 ·

· (−1)
m̃

aM
[
1− exp

{
−ρ(W̃ − D)

}]
=

M
ρ

(
m̃

aM

[
1− exp

{
−ρ(W̃ − D)

}]
1− LE

m̃
aM

[
1− exp

{
−ρ(W̃ − D)

}])2

> 0. (B.134)

It follows that the sign of d2S/dLE
2 is not unambiguous and may depend on LE.

Hence, dS/dLE is not necessarily monotonic, which implies the possibility of multi-
ple solutions to the FOC. While the sign of d2S/dLE

2 may change with LE, at least
we know that d2S/dLE

2 is strictly increasing in LE. This follows directly from the
fact that dGPE/dLE is independent of LE and that d2GJM/dLE

2, given by (B.134), is
strictly increasing in LE. As from the existence of an equilibrium with 0 < LE < L fol-
lows that GPE|LE=0 > 0, and we know that dGJM/dLE > 0, it is (dS/dLE)|LE=0 > 0.
If (d2S/dLE

2)
∣∣

LE=0 > 0, then an interior solution to the FOC does not exist (as
d2S/dLE

2 is strictly increasing in LE), and LE → L maximizes S on (0, L). If, in-
stead, (d2S/dLE

2)
∣∣

LE=0 < 0, there are three possibilities: (i) an interior solution to
the FOC still does not exist, as dS/dLE stays above zero for all LE < L. Then, again,
LE → L maximizes S on (0, L); (ii) a unique interior solution to the FOC exists, as
dS/dLE = 0 for a single LE < L. As dS/dLE has to change sign from positive to
negative in this case, this solution maximizes S on (0, L); (iii) two interior solutions
to the FOC exist, as dS/dLE first crosses zero from above and then again from below
(both for LE < L). In this case, the "first" solution constitutes a local maximum, the
second one a local minimum. Whether the value that maximizes S on (0, L) is then
given by the "first" solution to the FOC or by LE → L is not obvious. Note, however,
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that both values exceed the equilibrium LE. As d2S/dLE
2 is strictly increasing in LE,

no other cases besides the ones explained above are possible.4

Restricted Occupational Choice. Consider now the case of restricted OC and let
LE ≤ L. Social welfare S in the baseline model is given by (2.68), with GPE given
by (2.34). Proceeding analogously as in the unrestricted case above yields dS/dLE =

GPE and d2S/dLE
2 < 0. As S is continuous in LE ≤ L, it follows that the equilibrium

LE(≤ L) maximizes S on (0, L].
Social welfare S in the FE economy is given by (2.68), with GPE given by (2.34)

and s̄ given by (2.49). Additionally, it includes workers aggregate wage gains M · W̃.
Proceeding analogously as in the unrestricted case shows that the equilibrium LE(≤
L) maximizes S on (0, L].

Social welfare S in the UE model is given by (2.68), with GPE given by (2.34) and
s̄ given by (2.55). Additionally, it includes workers aggregate expected gains from
the job M · GJM. Proceeding analogously as in the unrestricted case shows that if
there is an interior equilibrium LE < L, then it falls short of the LE that maximizes S
on (0, L]. If there is a corner equilibrium with LE = L, then LE = L also maximizes S
on (0, L].

B.20 Welfare Effects of Rational "Noise Traders"

Let σν
2 = 0. Rewriting (2.62) gives a noise trader’s CE in the presence of dealers as

CEN =
ρσε

2

2

( LE
a − ν̄

L + M

)2

−
(

ν̄

N
−

LE
a − ν̄

L + M

)2
 . (B.135)

Comparing this to a passive investor’s CE immediately shows CEM > CEN . Hence,
each noise trader would be better off as a rational passive investor. Rewriting (2.66)
and proceeding analogous, the same can be shown for the case of restricted OC.
Now, assume that all noise traders act as passive investors, i.e.,

(IN =)
ν̄

N
=

LE
a − ν̄

L + M
(= IM), (B.136)

from which follows that
ν̄ =

N
L + M + N

LE

a
. (B.137)

Consider first the basic version of the model in the presence of dealers. Denote social
welfare in an economy with rational "noise traders", i.e., with ν̄ set according to
(B.137), as S‘. From (2.63), for given LE, the social welfare difference in the economy

4At least not besides one last (special) case, where S has a single saddle point at an LE < L and no
other extrema. Then, again, LE → L maximizes S on (0, L).
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without vs. with noise traders is given by

S‘ − S = ρσε
2

LE
a

L + M

(
LE

a
N

L + M + N
− ν̄

)
+

+
ρσε

2

2

(
1

L + M
+

1
N

)[
−
(

LE

a

)2 ( N
L + M + N

)2

+ ν̄2

]

=
ρσε

2

2
1

L + M

[
2
(

LE

a

)2 N
L + M + N

− 2
LE

a
ν̄+

+

(
1 +

L + M
N

)[
ν̄2 −

(
LE

a

)2 ( N
L + M + N

)2
]]

=
ρσε

2

2
N

(L + M)(L + M + N)

[
2
(

LE

a

)2

− 2
LE

a
ν̄

L + M + N
N

+

+

(
L + M + N

N

)2

ν̄2 −
(

LE

a

)2
]

=
ρσε

2

2
N

(L + M)(L + M + N)

(
LE

a
− L + M + N

N
ν̄

)2

> 0. (B.138)

According to Proposition 2.5.1, the equilibrium mass of entrepreneurs L1
E maximizes

social welfare S. As Proposition 2.5.1 holds true for all values of ν̄ and, hence, also for
ν̄ according to (B.137), equilibrium L1‘

E in the economy with rational "noise traders"
maximizes S‘. It follows that S‘(L1‘

E ) ≥ S‘(L1
E) > S(L1

E), that is, equilibrium social
welfare is higher when noise traders act rational. This also applies in case of re-
stricted OC and in the FE economy (proofs analogous). In the UE model, the same
holds true when comparing the respective social welfare optima (it also applies with
regards to the respective equilibrium values under the additional assumption of
L1‘

E ≥ L1
E).

B.21 Workers’ Wages and Firm Profitability - FE Model

Let σν
2 = 0. A single worker’s wage gains from an increase in LE are given by (2.52).

A single firm’s loss in profitability from an increase in LE is given by (2.51). As there
is a total of M workers and LE/a firms, the net effect is given by

LE

a
ds̄

dLE
+ M

dW̃
dLE

=
LE

a
F
′′
(M̂)

M̂2

LE
+ M(−1)F

′′
(M̂)

M̂
LE

=
LE

a
F
′′
(M̂)

M̂2

LE
− M̂

LE

a
F
′′
(M̂)

M̂
LE

= 0. (B.139)
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B.22 Social Welfare in the UE vs. the FE Model

Let σν
2 ≥ 0. Compare social welfare in the FE model vs. the UE model. To ensure

comparability, let D = 0 in the UE model, as this is what we also assumed in the
FE model. For any given mass of entrepreneurs LE, social welfare in the two model
variants differs only in two aspects. First, s̄ is given by (2.49) in case of FE and by
(2.55) in case of UE. Second, workers equilibrium gains on the job are given by M · W̃
in the FE model, while they are given by M ·GJM in the UE model. As CEN , GID, GTE,
GTM and V(P) are independent of s̄, they cancel out with regards to the difference
in social welfare for given LE.

The following proof that social welfare is higher in the FE economy holds true
for both free and restricted OC. Indicating variables by a superscript "FE" or "UE",
depending on whether they relate to the FE model or the UE model, the difference
in social welfare for given LE comes down to

SFE − SUE = LE · GPFE
E + M · W̃FE − LE · GPUE

E −M · GJM

=
LE

a

(
E(P)FE −E(P)UE

)
+ M

(
W̃FE − GJM

)
=

LE

a

(
s̄FE − s̄UE

)
+ M

(
W̃FE − GJM

)
=

LE

a

(
ŝ + F(M̂)− W̃FE M̂− ŝ− F(m̃) + W̃UEm̃

)
+ M̂

LE

a

(
W̃FE − GJM

)
=

LE

a

(
F(M̂)− F(m̃) + W̃UEm̃− M̂ · GJM

)
=

LE

a

(
F(M̂)− F(m̃) + W̃UEm̃ +

M̂
ρ

ln
(

1− m̃
M̂

[
1− exp

{
−ρW̃UE

}]))
.

(B.140)

As equilibrium unemployment in the UE model requires m̃ < M̂, it follows that
F(M̂)− F(m̃) > 0. Hence, for (B.140) to be positive, it is sufficient to show that

W̃UEm̃ +
M̂
ρ

ln
(

1− m̃
M̂

[
1− exp

{
−ρW̃UE

}])
> 0;

exp
{
−ρW̃UE m̃

M̂

}
< 1− m̃

M̂

[
1− exp

{
−ρW̃UE

}]
;

m̃
M̂

[
1− exp

{
−ρW̃UE

}]
︸ ︷︷ ︸

=:φl(m̃)

< 1− exp
{
−ρW̃UE m̃

M̂

}
︸ ︷︷ ︸

=:φr(m̃)

. (B.141)

Consider the l.h.s. and the r.h.s. as functions of m̃, denoted by φl(m̃) and φr(m̃),
respectively. We know that m̃ ∈ (0, M̂). For m̃ → 0 and m̃ → M̂, equation (B.141)
gives 0 = 0 and 1− exp

{
−ρW̃UE} = 1− exp

{
−ρW̃UE}, respectively, so the left

hand side equals the right hand side. For all m̃ in between, we immediately see that
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φl(m̃) is linearly increasing in m̃. For φr(m̃), we see that

∂φr(m̃)

∂m̃
= − exp

{
−ρW̃UE m̃

M̂

}
(−1)ρW̃UE 1

M̂

= ρ
W̃UE

M̂
exp

{
−ρW̃UE m̃

M̂

}
> 0,

∂2φr(m̃)

∂m̃2 = −ρ2
(

W̃UE

M̂

)2

exp
{
−ρW̃UE m̃

M̂

}
< 0. (B.142)

Hence, φr(m̃) is increasing and concave in m̃. Figure B.3 sums up. It shows that
(B.141) holds for all m̃ ∈ (0, M̂) and, hence, SFE > SUE for any given LE.

FIGURE B.3: Welfare in the UE vs. the FE Model
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As the equilibrium LFE
E maximizes SFE (cf. Proposition 2.5.1), it follows that equilib-

rium social welfare in the FE model is higher than both equilibrium and maximum
social welfare in the UE model.

B.23 The (Approximately) Optimal LE in the UE Model

Let σν
2 = 0. As is well known, ln(1 + x) ≈ x for small x. Applying this to workers’

gains on the job GJM, given by (2.53), yields:5

GJM ≈
1
ρ

m
M̂

[1− exp {−ρ(W − D)}] . (B.143)

Let again indicate superscripts "1" and "0" the case of free OC or the case of restricted
OC, respectively. Consider first the case of free OC and let LE < L. From (B.131), the
FOC for a local optimum is given by

GP1
E + M

dGJM

dLE
= 0. (B.144)

5As both m/M̂ and 1− exp {−ρ(W − D)} are positive and smaller than one, their product should
be rather small. Hence, this approximation seems reasonable.
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Substituting GP1
E from (2.25) and using (B.143), evaluated at the labor market equi-

librium W = W̃ and m = m̃, yields

1
a

(
s̄−

LE
a − ν̄

L + M
ρσε

2 − ρσs
2

2a

)
+

m̃
aρ

[
1− exp

{
−ρ(W̃ − D)

}]
= 0;

s̄− ρσs
2

2a
+

m̃
ρ

[
1− exp

{
−ρ(W̃ − D)

}]
=

LE
a − ν̄

L + M
ρσε

2;

LE =
a(L + M)

ρσε
2

(
s̄− ρσs

2

2a

)
+ aν̄ +

a(L + M)

ρ2σε
2 m̃

[
1− exp

{
−ρ(W̃ − D)

}]
. (B.145)

As− ρσε
2

a2(L+M)
< 0, the second order condition for a maximum is met. Hence, if the LE

given by (B.145) is smaller than L, then it gives the amount of entrepreneurship that
(approximately) maximizes S1 on (0, L). If the LE given by (B.145) is greater than L,
then LE → L maximizes S1 on (0, L).

Restricted occupational choice. Consider now the case of restricted OC. From (B.131),
the FOC for a local optimum is given by

GP0
E + M

dGJM

dLE
= 0. (B.146)

Substituting GP0
E from (2.34) and again using (B.143), evaluated at the labor market

equilibrium W = W̃ and m = m̃, yields

1
a

(
s̄−

LE
a − ν̄

L + M
ρ
(
σs

2 + σε
2))+

m̃
aρ

[
1− exp

{
−ρ(W̃ − D)

}]
= 0;

s̄ +
m̃
ρ

[
1− exp

{
−ρ(W̃ − D)

}]
=

LE
a − ν̄

L + M
ρ
(
σs

2 + σε
2) ;

LE =
a(L + M)

ρ (σs2 + σε
2)

s̄ + aν̄ +
a(L + M)

ρ2 (σs2 + σε
2)

m̃
[
1− exp

{
−ρ(W̃ − D)

}]
. (B.147)

As − ρ(σs
2+σε

2)
a2(L+M)

< 0, the second order condition for a maximum is met. Hence, if the
LE given by (B.147) is smaller than L, then it gives the amount of entrepreneurship
that (approximately) maximizes S0 on (0, L]. If the LE given by (B.145) is greater than
L, then LE = L maximizes S0 on (0, L].

B.24 Entrepreneurs’ CE with Free vs. Restricted OC

Let σν
2 = 0. In all versions of the model, the difference between an entrepreneur’s

CE without and with free OC, for a given value of LE < L, is

CE0
E − CE1

E = GP0
E − GP1

E +
ρ(σs

2 + σε
2)

2

(
LE
a − ν̄

L + M

)2

− ρσε
2

2

(
LE
a − ν̄

L + M

)2
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= −
LE
a − ν̄

a(L + M)
ρσs

2 +
ρ

2a2 σs
2 +

ρσs
2

2

(
LE
a − ν̄

L + M

)2

=
ρσs

2

2a2(L + M)2 (L + M− LE + aν̄)2 > 0. (B.148)

B.25 NT Equilibrium Utility with Free vs. Restricted OC

Let σν
2 = 0. Let L1

E < L, as otherwise a ban of dealers has no effect anyway.

Conditions (i)
Comparing (B.117) to (B.121), it is obvious that NT welfare is higher in equilibrium
without free OC, if ν̄ > 0, L0

E ≥ L1
E and the term in brackets is positive, which is the

case if

L1
E

a − ν̄

L + M
>

1
2

ν̄

N
L1

E
a(L + M)

>
1
2

ν̄

N
+

ν̄

L + M
L1

E
a

>

(
1 +

1
2

L + M
N

)
ν̄. (B.149)

Note that according to (2.39) and Appendix B.12, M ≥ L and ν̄ ≥ 0 jointly imply
L0

E > L1
E in all versions of the model.

Conditions (ii)
The difference between a noise trader’s CE in equilibrium with free vs. restricted OC
can be written as

CE0
N(L0

E)− CE1
N(L1

E) =
ρσε

2

L + M
ν̄

N

(
L0

E
a
− L1

E
a

)
+ ρσs

2 ν̄

N

 L0
E

a − ν̄

L + M
− 1

2
ν̄

N

 . (B.150)

Basic model and UE model. In the basic version of the model and the UE model, s̄
is independent of LE. Substituting the equilibrium L1

E from (2.29) into (B.150) yields

ρ(σε
2 + σs

2)

L + M
ν̄

N
L0

E
a
− ρσε

2

L + M
ν̄

N

(
L + M

ρσε
2

(
s̄− ρσs

2

2a

)
+ ν̄

)
− ρσs

2

L + M
ν̄

N
ν̄− ρσs

2

2

(
ν̄

N

)2

=

=
ρ(σε

2 + σs
2)

L + M
ν̄

N
L0

E
a
− ν̄

N
s̄ +

ν̄

N
ρσs

2

2a
− ρσε

2

L + M
ν̄

N
ν̄− ρσs

2

L + M
ν̄

N
ν̄− ρσs

2

2

(
ν̄

N

)2

=

= − ν̄

N

[
s̄− ρ(σε

2 + σs
2)

L + M

(
L0

E
a
− ν̄

)]
︸ ︷︷ ︸

=∆0(L0
E)

+
ν̄

N
ρσs

2

2

(
1
a
− ν̄

N

)
. (B.151)

The term in brackets equals ∆0(L0
E) according to (2.34). If L0

E < L, then ∆0(L0
E) = 0

and a sufficient set of conditions for CE0
N > CE1

N is given by ν̄ > 0 and ν̄/N < 1/a.
If, by contrast, L0

E = L, then ∆0(L) ≥ 0 and the set of conditions just stated is not
sufficient any more. A sufficient set of conditions for L0

E = L would be given by



118 Appendix B. Model Proofs

ν̄ > 0 and

ρσs
2

2

(
1
a
− ν̄

N

)
− ∆0(L) > 0;

ν̄

N
<

1
a
− 2

ρσs2 ∆0(L). (B.152)

FE model. In the FE model, s̄ depends on LE. Denoting

s̄1 := s̄|LE=L1
E

,

s̄0 := s̄|LE=L0
E

,
(B.153)

equation (B.151) becomes

− ν̄

N

[
s̄1 − ρ(σε

2 + σs
2)

L + M

(
L0

E
a
− ν̄

)]
+

ν̄

N
ρσs

2

2

(
1
a
− ν̄

N

)
=

= − ν̄

N

[
s̄0 − ρ(σε

2 + σs
2)

L + M

(
L0

E
a
− ν̄

)]
︸ ︷︷ ︸

=∆0(L0
E)

+
ν̄

N
(s̄0 − s̄1) +

ν̄

N
ρσs

2

2

(
1
a
− ν̄

N

)
. (B.154)

Again, the term in brackets equals ∆0(L0
E) according to (2.34). If L0

E < L, then ∆0(L0
E) =

0. However, as ds̄/dLE < 0, for L0
E ≥ L1

E it is s̄0 ≤ s̄1 and hence the second term in
(B.154) is negative. It follows that the set of conditions given for the basic version of
the model and the UE model above is not sufficient in the FE model. For L0

E < L, a
sufficient set of conditions in the FE model would be given by ν̄ > 0 and

ρσs
2

2

(
1
a
− ν̄

N

)
+ (s̄0 − s̄1) > 0;

ν̄

N
<

1
a
− 2

ρσs2 (s̄
1 − s̄0). (B.155)

In contrast, for L0
E = L, even this set of conditions is not sufficient, as ∆0(L) ≥ 0. For

L0
E = L, a set of sufficient conditions in the FE model is given by ν̄ > 0 and

ρσs
2

2

(
1
a
− ν̄

N

)
+ (s̄0 − s̄1)− ∆0(L) > 0;

ν̄

N
<

1
a
− 2

ρσs2

[
∆0(L) + (s̄1 − s̄0)

]
. (B.156)

B.26 Proof of Proposition 2.5.2

Let σν
2 = 0. We conduct the proof in two steps. First, we show that, under the con-

ditions in (2.73), the difference in social welfare without vs. with free OC is greater
than zero for any given LE with LE > aν̄. Second, we argue that this implies that
equilibrium social welfare is higher without than with free OC.
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Step 1. For the difference in social welfare for a given LE(< L), from (2.63) and (2.68)
we get:6

S0(LE)− S1(LE) =

= LE

(
∆0(LE)− ∆1(LE)

)
+

ρσs
2

2


(

LE
a

)2

L + M
− ν̄2

(
1

L + M
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1
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) =
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ρσs

2

2a2 −
ρσs

2

L + M

(
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a

)2

+ LE
ρσs

2

a(L + M)
ν̄+

+
ρσs

2

2(L + M)

(
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a

)2

− ρσs
2

2

(
1

L + M
+

1
N

)
ν̄2 =

=
ρσs

2

2(L + M)

[
−
(
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)2

+ 2
LE

a

(
L + M

2a
+ ν̄

)
−
(

1 +
L + M

N

)
ν̄2

]
. (B.157)

Evaluated at LE = aν̄,

S0(aν̄)− S1(aν̄) =

=
ρσs

2

2(L + M)

[
−ν̄2 + 2ν̄

(
L + M

2a
+ ν̄

)
−
(

1 +
L + M

N

)
ν̄2
]

, (B.158)

which, for ν̄ ≥ 0, is greater than (or equal to) zero, if

L + M
a

ν̄− L + M
N

ν̄2 ≥ 0;

ν̄

N
≤ 1

a
. (B.159)

Evaluated at LE → L,

lim
LE→L

[
S0(LE)− S1(LE)

]
=

=
ρσs

2

2(L + M)

[
−
(

L
a

)2

+ 2
L
a

(
L + M

2a
+ ν̄

)
−
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L + M

N

)
ν̄2

]
, (B.160)

which is greater than zero, if

LM
a2 + ν̄

(
L
a
− ν̄

)
+

L
a

ν̄− L + M
N

ν̄2 > 0, (B.161)

for which, with ν̄ ≥ 0 and L1
E/a > ν̄, it is sufficient that

LM
a2 +

L
a

ν̄− L + M
N

ν̄2 > 0;

ν̄L
(

1
a
− ν̄

N

)
+ M

(
L
a

1
a
− ν̄

ν̄

N

)
> 0, (B.162)

6Note that, for given LE, workers’ job gains in the labor market economies are the same with free
and restricted OC. Hence, they cancel out.
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for which to hold, it is in turn sufficient that ν̄/N ≤ 1/a.
Having shown that S0(LE)− S1(LE) is positive both at LE = aν̄ and for LE → L, we
now check how it behaves in the interval (aν̄, L). The first derivative is given by

d[S0(LE)− S1(LE)]

dLE
=

ρσs
2

2(L + M)

[
−2

LE

a2 +
2
a

(
L + M

2a
+ ν̄

)]
=

ρσs
2

a(L + M)

[(
L + M

2a
+ ν̄

)
− LE

a

]
. (B.163)

Obviously, the social welfare difference is concave, with a unique maximum at LE =

aν̄ + (L + M)/2, i.e., at an LE > aν̄. As illustrated by figure B.4, it immediately
follows that S0(LE)− S1(LE) > 0 for any given LE within (aν̄, L).

FIGURE B.4: Social Welfare Difference with Free vs. Restricted OC

 0 𝐿 𝐿𝐸    𝑎ν 

𝑆0(𝐿𝐸) −  𝑆1(𝐿𝐸) 

Step 2. In the baseline model and the FE economy, we know from Proposition 2.5.1
that LE = L1

E maximizes S1(LE) and LE = L0
E maximizes S0(LE). Hence, S0(L0

E) ≥
S0(L1

E). From step 1, it is S0(L1
E) > S1(L1

E), for L1
E > aν̄. Taken together, it follows that

S0(L0
E) > S1(L1

E). In the UE model, we know from Proposition 2.5.1 that LE = L0
E

falls short of the LE that maximizes S0(LE). This implies that, for L1
E ≤ L0

E, S0(LE) is
increasing in LE within [L1

E, L0
E] and, hence, S0(L0

E) ≥ S0(L1
E). As, for L1

E > aν̄, from
step 1 we know S0(L1

E) > S1(L1
E), it follows that S0(L0

E) > S1(L1
E).

B.27 Agents’ Risk with Free vs. Restricted OC

Let σν
2 = 0. Assume that agents do not short the asset, that is, ν̄ ≥ 0 and LE/a > ν̄.

This also implies that entrepreneurs sell parts of their initial assets, i.e., IE < 1/a. Let
LE < L, as otherwise there is no difference between the case with free and restricted
OC.
Entrepreneurs. An entrepreneur’s final wealth is given by πE = IEθ + (1/a− IE)P.
For given LE, the difference in the variance of final wealth with and without free OC
is given by

V(π1
E)−V(π0

E) = I2
Eσε

2 +

(
1
a

)2

σs
2 −

(
I2
Eσε

2 + I2
Eσs

2)
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=

(
1
a2 − I2

E

)
σs

2 > 0. (B.164)

With free OC, entrepreneurs carry the full risk of their initial asset holdings 1/a with
regards to the asset fundamental s. With restricted OC, they can share this risk with
the other agents in the economy (see below).
Dealers and passive investors. A dealer’s or passive investor’s final wealth is given
by πD = πM = ID(θ − P). It is ID = IM = IE. For given LE, the difference in the
variance of final wealth with and without free OC is given by

V(π1
D)−V(π0

D) = I2
Dσε

2 −
(

I2
Dσε

2 + I2
Dσs

2)
= −I2

Dσs
2 < 0. (B.165)

With free OC, dealers and passive investors carry no risk with regards to s. With
restricted OC, they take some of this risk from the entrepreneurs.
Noise traders. A noise trader’s final wealth is given by πN = IN(θ − P). For given
LE, the difference in the variance of final wealth with and without free OC is given
by

V(π1
N)−V(π0

N) = I2
Nσε

2 −
(

I2
Nσε

2 + I2
Nσs

2)
= −I2

Nσs
2 ≤ 0. (B.166)

With free OC, noise traders carry no risk with regards to s. With restricted OC, they
take some of this risk from the entrepreneurs.

B.28 Proof of Corollary 2.5.2.1

Let σν
2 = 0.

(i)
This follows directly from the fact that (B.160) is greater than zero under the condi-
tions of Proposition 2.5.2 (cf. Appendix B.26) and that S0 is continuous at LE = L
and hence limLE→L S0(LE) = S0(L).

(ii)
Note that here we do not require LE = L to be an equilibrium in case of restricted OC.
If it were, Proposition 2.5.2 would apply. Consider the basic version of the model.
With (2.63), (2.68) and (2.29), for L1

E < L, the difference between S1(L) and S1(L1
E)

can be written as

S1(L)− S1(L1
E) =

= L∆0(L) +
ρσε

2

2(L + M)

[(
L
a

)2

−
(

L1
E

a

)2]
+
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+
ρσs

2

2(L + M)

[(
L
a

)2

− ν̄2
(

1 +
L + M

N

)]
=

=
L
a

[
s̄−

L
a − ν̄

L + M
ρ
(
σε

2 + σs
2)]+ ρσε

2

2(L + M)

[(
L
a

)2

−

−
(
(L + M)

ρσε
2

(
s̄− ρσs

2

2a

)
+ ν̄

)2
]
+

ρσs
2

2(L + M)

[(
L
a

)2

− ν̄2
(

1 +
L + M

N

)]
=

=
L
a

[
s̄−

L
a − ν̄

L + M
ρ
(
σε

2 + σs
2)]+ ρ(σε

2 + σs
2)

2(L + M)

(
L
a

)2

− L + M
2ρσε

2

(
s̄− ρσs

2

2a

)2

−

−
(

s̄− ρσs
2

2a

)
ν̄− ρσε

2

2(L + M)
ν̄2 − ρσs

2

2(L + M)
ν2
(

1 +
L + M

N

)
=

=
L
a

[
s̄−

L
a − ν̄

L + M
ρ
(
σε

2 + σs
2)]+ ρ(σε

2 + σs
2)

2(L + M)

[(
L
a

)2

− ν̄2

]
−

−L + M
2ρσε

2

(
s̄− ρσs

2

2a

)2

− s̄ν̄ +
ρσs

2

2
ν̄

(
1
a
− ν̄

N

)
=

= s̄
(

L
a
− ν̄

)
+

L
a

ν̄
ρ(σε

2 + σs
2)

L + M
− ρ(σε

2 + σs
2)

2(L + M)

[(
L
a

)2

+ ν̄2

]
−

−L + M
2ρσε

2

(
s̄− ρσs

2

2a

)2

+
ρσs

2

2
ν̄

(
1
a
− ν̄

N

)
=

= s̄
(

L
a
− ν̄

)
− ρ(σε

2 + σs
2)

2(L + M)

(
L
a
− ν̄

)2

− L + M
2ρσε

2

(
s̄− ρσs

2

2a

)2

+
ρσs

2

2
ν̄

(
1
a
− ν̄

N

)
.

(B.167)

We proceed to show that this expression is positive under the conditions of Corollary
2.5.2.1(ii). Consider (B.167) as a function of s̄. It takes on a unique maximum at

s̄ =
ρσ2

ε

L + M

(
L
a
− ν̄

)
+

ρσ2
s

2a
. (B.168)

An interior equilibrium L1
E < L implies that s̄ is less than this maximizing value.

Hence, S1(L)− S1(L1
E) is an increasing function for the admissible values of s̄. The

condition that rational agents do not short the asset in equilibrium, i.e., L1
E/a ≥

ν̄, puts a lower bound on the set of admissible values of s̄, that is, s̄ = ρσ2
s /(2a).

Evaluating S1(L)− S1(L1
E) at this value gives

ρσ2
s

2a

(
L
a
− ν̄

)
− ρ(σε

2 + σs
2)

2(L + M)

(
L
a
− ν̄

)2

+
ρσs

2

2
ν̄

(
1
a
− ν̄

N

)
. (B.169)

If 1/a ≥ ν̄/N, ν̄ ≥ 0, L1
E ≥ aν̄ and, additionally, M ≥ L and σ2

s ≥ σ2
ε , then a sufficient

condition for (B.169) to be greater than (or equal to) zero is given by

ρσs
2

2a
− ρ2σs

2

2(2L)

(
L
a
− ν̄

)
≥ 0;
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1
a
−

L
a − ν̄

L
≥ 0;

ν̄

L
≥ 0, (B.170)

which, for ν̄ ≥ 0, obviously holds. It follows that, for L1
E/a > ν̄, (B.169) is strictly

positive, from which in turn follows that (B.167) is strictly positive as well.

(iii)
Consider (2.63), evaluated at equilibrium L1

E(< L). Additionally, consider (2.68),
evaluated at equilibrium L0

E(≤ L). In the baseline model, subtracting the former
expression from the latter gives

S0(L0
E)− S1(L1

E) =

= L0
E · GP0

E(L0
E) +

ρ(σε
2 + σs

2)

2


(

L0
E

a

)2

L + M
− ν̄2

(
1

L + M
+

1
N

)−
− L1

E · 0−
ρσε

2

2


(

L1
E

a

)2

L + M
− ν̄2

(
1

L + M
+

1
N

) =

= L0
E · GP0

E(L0
E) +

ρσε
2

2(L + M)

[(
L0

E
a

)2

−
(

L1
E

a

)2]
+

+
ρσs

2

2(L + M)

[(
L0

E
a

)2

−
(

1 +
L + M

N

)
ν̄2

]
. (B.171)

GP
0
E(L0

E) is either equal to or greater than zero, depending on whether L0
E < L or

L0
E = L, so the first term in (B.171) is positive. For L0

E ≥ L1
E, the second term is

positive as well. And for ν̄ ≥ 0, the third term is positive, if

L0
E

a
>

(
1 +

L + M
N

) 1
2

ν̄. (B.172)

In the labor market models, social welfare additionally contains workers’ aggre-
gate gains on the job. As these are increasing in LE, the proof above is sufficient for
S0(L0

E) > S1(L1
E) also in the FE economy and the UE model.

B.29 Expected NT Utility with σν
2 > 0

Let σν
2 > 0. Assume noise traders to be symmetric, that is, an aggregate noise trader

demand ν implies an individual noise trader demand IN = ν/N. Exogenous behav-
ior combined with CARA-utility gives a noise trader’s expected utility as

E [U(πN)] = −E
[
exp

{
−ρ · ν

N
(θ − P)

}]
. (B.173)
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Proceeding as usual, we first calculate E [U(πM)|ν] and then use the LIE to get the
unconditional expected utility.
Step 1. As (θ − P)|ν is normal, we can use (A.4.1) and (A.18) to get

E [U(πN)|ν] = −E
[
exp

{
−ρ · ν

N
(θ − P)

}
|ν
]
=

= − exp
{
−ρ

ν

N
E(θ − P|ν) + 1

2
ρ2
( ν

N

)2
V(θ − P|ν)

}
=

= − exp
{
−ρ

ν

N

[
E(θ − P) +

Cov(θ − P, ν)

σν
2 (ν− ν̄)

]
+

1
2

ρ2
( ν

N

)2
V(θ − P|ν)

}

= − exp

−ρ
ν

N

[
E(θ − P) +

Cov(P, ν)

σν
2 ν̄

]
︸ ︷︷ ︸

=:Φ

+

+ ρ
( ν

N

)2
[

ρ

2
V(θ − P|ν) + N

Cov(P, ν)

σν
2

]
︸ ︷︷ ︸

=:Ψ2


= − exp

{
Φ + Ψ2} . (B.174)

Step 2. As Φ and Ψ are both linear in ν, they are (degenerate) joint normal and we
can use (A.4.1) to get

E [U(πN)] = −E
(
exp

{
Φ + Ψ2})

= −
exp

{
E(Φ) + 1

2 V(Φ) + [E(Ψ)+Cov(Φ,Ψ)]2

1−2V(Ψ)

}
√

1− 2V(Ψ)
; (B.175)

CEN = −1
ρ

E(Φ)− 1
2ρ

V(Φ)− [E(Ψ) + Cov(Φ, Ψ)]2

ρ(1− 2V(Ψ))
+

1
2ρ

ln [1− 2V(Ψ)] ,

(B.176)

as long as V(Ψ) < 0.5. For V(Ψ) ≥ 0.5, the integral in Appendix A.4.2 does not ex-
ist (is "infinity"), therefore E(exp

{
Φ + Ψ2}) does not exist (is "infinity") and, hence,

noise trader welfare E [U(πN)] = −E
(
exp

{
Φ + Ψ2}) does not exist (is "minus in-

finity"). Consequently, let V(Ψ) < 0.5. From (B.174), the moments of Φ and Ψ are
given by

E(Φ) = −ρ
ν̄

N

[
s̄−E(P) +

Cov(P, ν)

σν
2 ν̄

]
, (B.177)

V(Φ) =

(
E(Φ)

ν̄

)2

σν
2, (B.178)

E(Ψ) =
√

ρ
ν̄

N

(
ρ

2
V(θ − P|ν) + N

Cov(P, ν)

σν
2

) 1
2

, (B.179)

V(Ψ) =

(
E(Ψ)

ν̄

)2

σν
2, (B.180)
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Cov(Φ, Ψ) =
E(Φ)

ν̄

E(Ψ)

ν̄
σν

2. (B.181)

Step 3. Equations (B.177)-(B.181) contain the expressions Cov(P, ν) and V(θ − P|ν),
for which we did not yet offer closed-form solutions. In case of free OC, E(P) in
(B.177) is given by (B.41) and with P according to (2.5) and the definitions in Ap-
pendix B.5, we get

Cov(P, ν) =
1

α + β
Cov(w + βE(θ|w), ν)

=
1

α + β
[Cov(w, ν) + βCov(E(θ|w), ν)]

=
1

α + β

[
σν

2 + β
Cov(θ, w)

V(w)
σν

2
]

=
1

α + β
σν

2
[

1 + β
Cov(θ, w)

V(w)

]
= σν

2 1 + βαγσs
2

α + β

= σν
2
√

V(P)γ, (B.182)

where V(P) is given by (B.42). Furthermore,

Cov(P, s) =
1

α + β
Cov(w + βE(θ|w), s)

=
1

α + β
[Cov(w, s) + βCov(E(θ|w), s)]

=
1

α + β

[
ασs

2 + β
Cov(θ, w)

V(w)
ασs

2
]

=
1

α + β
ασs

2
[

1 + β
Cov(θ, w)

V(w)

]
= ασs

2
√

V(P)γ, (B.183)

from which follows

V(θ − P) = σε
2 + V(s− P)

= σε
2 + V(s) + V(P)− 2Cov(s, P)

= σε
2 + σs

2 + V(P)− 2ασs
2
√

V(P)γ. (B.184)

With that, we finally get

V(θ − P|ν) = V(θ − P)− Cov(θ − P, ν)2

σν
2

= V(θ − P)− Cov(P, ν)2

σν
2

= V(θ − P)− σν
4V(P)γ

σν
2
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= σε
2 + σs

2 + V(P)− 2ασs
2
√

V(P)γ− σν
2V(P)γ

= σε
2 + σs

2 + V(P)(1− γσν
2)− 2ασs

2
√

V(P)γ, (B.185)

with V(P) given by (B.42).

Restricted occupational choice. In case of restricted OC, E(P) in (B.177) is given by
(B.52) and with P according to (2.8), we get

Cov(P, ν) =
ρ(σs

2 + σε
2)

L + M
σν

2 (B.186)

and

V(θ − P|ν) = σε
2 + V(s− P|ν)

= σε
2 + σs

2. (B.187)

B.30 Convergence of ∆(LE) and Γ(LE)

Let σν
2 → 0. Then, as we show below, the σν

2 > 0 expressions for ∆(LE) and Γ(LE),
as given in Chapter 2.2.2 and Appendices B.3 and B.6, converge to their σν

2 = 0
counterparts, as given in Chapter 2.3.
Consider first the case of free OC. Then, for all LE < L, the expressions in Appendix
B.5 converge to

γ→ 1
α2σs2 , (B.188)

V(θ|w)→ σε
2, (B.189)

β→ LE + M
ρσε

2 , (B.190)

E(P)→ s̄− ρσε
2

LE
a − ν̄

L + M
, (B.191)

V(P)→ α2σs
2

(
1 + αβσs

2 1
α2 σs

2

α + β

)2

= σs
2
(

α + β

α + β

)2

= σs
2, (B.192)

E(z)→ ρσε
2√

2ρσε
2

LE
a − ν̄

L + M

=

√
ρσε

2

2

LE
a − ν̄

L + M
, (B.193)

V(z)→ 0, (B.194)

Cov(P, z)→ 0. (B.195)
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With these expressions and equations (2.12), (2.17) and (2.20) follows that

∆(LE)→
1
a

(
s̄− ρσε

2
LE
a − ν̄

L + M

)
− ρ

2a2 σs
2

=
1
a

(
s̄−

LE
a − ν̄

L + M
ρσε

2 − 1
2a

ρσs
2

)
, (B.196)

Γ(LE)→
1

2ρ
ln [1 + 0]

= 0, (B.197)

which, for LE < L, equals the σν
2 = 0 expressions for ∆(LE) and Γ(LE) given by

(2.25) and (2.26). For LE = L, we get

α = 0, (B.198)

γ→ ∞, (B.199)

γσν
2 = 1, (B.200)

V(θ|w) = σε
2 + σs

2, (B.201)

β =
L + M

ρ(σε
2 + σs2)

, (B.202)

E(P) = s̄− ρ(σs
2 + σε

2)
L
a − ν̄

L + M
, (B.203)

V(P)→ 0, (B.204)

γV(P) =
1
β2 , (B.205)

E(z) =
ρ(σs

2 + σε
2)√

2ρ(σs2 + σε
2)

L
a − ν̄

L + M

=

√
ρ(σs2 + σε

2)

2

L
a − ν̄

L + M
, (B.206)

V(z)→ 0, (B.207)

Cov(P, z)→ 0. (B.208)

With these expressions and equations (2.12), (2.17) and (2.20) follows that

∆(L)→ 1
a

(
s̄− ρ(σs

2 + σε
2)

L
a − ν̄

L + M

)
, (B.209)

Γ(L) =
1

2ρ
ln
[

1 +
σs

2

σε
2

]
, (B.210)

which equals the σν
2 = 0 expressions for ∆(L) and Γ(L) given by (2.25) and (2.26).

Combining (B.196)-(B.197) and (B.209)-(B.210), it follows that, for all LE ≤ L, ∆(LE)

and Γ(LE) are continuous in σν
2, even at σν

2 = 0.
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Restricted occupational choice. In case of restricted OC, the expressions in Ap-
pendix B.6 converge to

E(P) = s̄−
ρ
(
σs

2 + σε
2)

L + M

(
LE

a
− ν̄

)
, (B.211)

V(P)→ 0, (B.212)

E(z) =
√

ρ

2
(σs2 + σε

2) ·
LE
a − ν̄

L + M
, (B.213)

V(z)→ 0, (B.214)

Cov(P, z)→ 0. (B.215)

With these expressions and equations (2.12) and (2.20) follows that

∆(LE)→
1
a

(
s̄− ρ

(
σs

2 + σε
2) LE

a − ν̄

L + M

)
, (B.216)

which, for LE ≤ L, equals the σν
2 = 0 expression for ∆(LE) given by (2.34). Hence, it

follows that, for all LE ≤ L, ∆(LE) is continuous in σν
2, even at σν

2 = 0.

B.31 Convergence of Noise Trader Utility

Let σν
2 → 0. Then, as we show below, the σν

2 > 0 expression for CEN given in Ap-
pendix B.29 converges to its σν

2 = 0 counterpart given in Appendix B.16. Consider
first the case of free OC. For LE < L, from Appendix B.29 and Appendix B.30 we get

E(Φ)→ −ρ
ν̄

N

[
s̄− s̄ + ρσε

2
LE
a − ν̄

L + M
+

√
σs2 1

α2σs2 · ν̄
]

= −ρ
ν̄

N

[
ρσε

2
LE
a − ν̄

L + M
+

ν̄

α

]
, (B.217)

V(Φ)→ 0, (B.218)

E(Ψ)→ √ρ
ν̄

N

[
ρ

2

(
σε

2 + σs
2 + σs

2 − 2ασs
2 1

α

)
+ N

1
α

] 1
2

=
√

ρ
ν̄

N

[
ρ

2
σε

2 +
N
α

] 1
2

, (B.219)

V(Ψ)→ 0, (B.220)

Cov(Φ, Ψ)→ 0. (B.221)

With (B.175), it follows that

CEN → −
1
ρ

[
E(Φ) + E(Ψ)2]
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→ ν̄

N

[
ρσε

2
LE
a − ν̄

L + M
+

ν̄

α

]
−
(

ν̄

N

)2 [ρ

2
σε

2 +
N
α

]

=
ν̄

N

[
ρσε

2
LE
a − ν̄

L + M

]
−
(

ν̄

N

)2 ρ

2
σε

2, (B.222)

which, for LE < L, equals the σν
2 = 0 expression for CEN given by (B.117). For

LE = L, we get

E(Φ) = −ρ
ν̄

N

[
s̄− s̄ + ρ(σs

2 + σε
2)

L
a − ν̄

L + M
+

1
β

ν̄

]

= −ρ
ν̄

N

[
ρ(σs

2 + σε
2)

L
a − ν̄

L + M
+

ν̄

β

]
, (B.223)

V(Φ)→ 0, (B.224)

E(Ψ) =
√

ρ
ν̄

N

[
ρ

2

(
σε

2 + σs
2 − 2ασs

2 1
β

)
+ N

1
β

] 1
2

(B.225)

=
√

ρ
ν̄

N

[
ρ

2
(
σε

2 + σs
2)+ N

1
β

] 1
2

, (B.226)

V(Ψ)→ 0, (B.227)

Cov(Φ, Ψ)→ 0. (B.228)

Again, with (B.175) it follows that, for LE = L,

CEN → −
1
ρ

[
E(Φ) + E(Ψ)2]

=
ν̄

N

[
ρ(σs

2 + σε
2)

L
a − ν̄

L + M
+

ν̄
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]
−
(
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2
(
σε

2 + σs
2)+ N

1
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]

=
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N

[
ρ(σs

2 + σε
2)

L
a − ν̄

L + M

]
−
(

ν̄

N

)2 ρ

2
(
σε

2 + σs
2) , (B.229)

which, for LE = L, equals the σν
2 = 0 expression for CEN given by (B.119). Combin-

ing (B.222) and (B.229), it follows that for all LE ≤ L, CEN is continuous in σν
2, even

at σν
2 = 0.

Restricted occupational choice. In case of restricted OC, from Appendix B.29 and
Appendix B.30 we get

E(Φ) = −ρ
ν̄

N

[
s̄− s̄ + ρ(σs

2 + σε
2)

LE
a − ν̄

L + M
+

ρ(σs
2 + σε

2)

L + M
ν̄

]

= −ρ
ν̄

N

[
ρ(σs

2 + σε
2)

LE
a

L + M

]
, (B.230)

V(Φ)→ 0, (B.231)
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E(Ψ) =
√

ρ
ν̄

N

[
ρ

2
(
σε

2 + σs
2)+ N

ρ(σs
2 + σε

2)

L + M

] 1
2

, (B.232)

V(Ψ)→ 0, (B.233)

Cov(Φ, Ψ)→ 0. (B.234)

With (B.175), it follows that

CEN → −
1
ρ

[
E(Φ) + E(Ψ)2]

=
ν̄

N

[
ρ(σs

2 + σε
2)

LE
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L + M

]
−
(
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2)+ N
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]

=
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[
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2 + σε
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LE
a − ν̄

L + M

]
−
(

ν̄

N

)2 ρ
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2) , (B.235)

which, for LE ≤ L, equals the σν
2 = 0 expression for CEN given by (B.121). Hence, it

follows that, for all LE ≤ L, CEN is continuous in σν
2, even at σν

2 = 0.
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Simulation

C.1 Equilibrium L0
E

Let σν
2 > 0. Superscript "0" indicates that we refer to the case of restricted OC. The

condition that pins down the equilibrium LE is ∆0(LE) = 0, where ∆0(LE) is given
by (2.21). Consider first the baseline model. Using (B.52)-(B.57) yields

∆0(LE) =

=
1
a

[
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ρ
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·

· [ρ(L + M)V(z) + (LE − aν̄)]

]
=

=
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!
= 0. (C.1)

Solving for LE gives the unique equilibrium L0
E:

L0
E =
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, (C.2)

if this expression is smaller than L, and L0
E = L otherwise. For σν

2 = 0, this cor-
responds to the equilibrium L0

E in equation (2.37). The underbraced term gives the
certainty equivalent of an entrepreneur’s production output θ/a. If it is greater than
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zero, the equilibrium mass of entrepreneurs with σν
2 > 0 exceeds the one with

σν
2 = 0.

In the UE model, s̄ is given by (2.55), everything else stays the same as above. In the
FE economy, s̄ is given by (2.49) and depends non-linearly on LE. Hence, there is no
explicit representation of equilibrium L0

E.

C.2 Social Welfare S0 and the Optimum LE

Let σν
2 > 0. Consider first the baseline model. Social welfare S0 in case of restricted

OC is given by
S0 = LE∆0 + (L + M)GT0

M + NCE0
N , (C.3)

with ∆0 and GT0
M given by (2.21) and (2.12), and the moments of P and z given by

(B.52)-(B.56). CE0
N is given by (B.176) and the corresponding moments of Φ and Ψ

are given by (B.177)-(B.181) and (B.186)-(B.187).
Taking the derivative of S0 with respect to LE, we get

dS0

dLE
= ∆0 + LE

d∆0

dLE
+ (L + M)

dGT0
M

dLE
+ N

dCE0
N

dLE
. (C.4)

∆0 is given by (C.1) and LE(d∆0/dLE) can be easily derived from that expression.
Furthermore,
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M
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As E(Ψ), V(Ψ), Cov(P, ν) and V(θ − P|ν) are independent of LE, the last term in
(C.4) comes down to

N
dCE0

N
dLE

= N

−1
ρ

dE(Φ)

dLE
− 1

2ρ

dV(Φ)

dLE
−

2E(Ψ) dCov(Φ,Ψ)
dLE

+ 2Cov(Φ, Ψ) dCov(Φ,Ψ)
dLE

ρ (1− 2V(Ψ))


= −N

ρ

[
dE(Φ)

dLE
+

σν
2

ν̄2 E(Φ)
dE(Φ)

dLE
+ 2

σν
2

ν̄2 E(Ψ)
dE(Φ)

dLE

E(Ψ) + Cov(Φ, Ψ)

1− 2V(Ψ)

]
= −N

ρ

dE(Φ)

dLE

[
1 +

σν
2

ν̄2 E(Φ) + 2
σν

2

ν̄2 E(Ψ)2 1 + σν
2

ν̄2 E(Φ)

1− 2V(Ψ)

]

= −N
ρ

dE(Φ)

dLE

[
1 +

σν
2

ν̄2 E(Φ)

] [
1 + 2

σν
2

ν̄2 E(Ψ)2 1
1− 2V(Ψ)

]
=

ρ
(
σs

2 + σε
2)

a(L + M)
ν̄

[
1 +

2V(Ψ)

1− 2V(Ψ)

] [
1 +

σν
2

ν̄2 E(Φ)

]



C.2. Social Welfare S0 and the Optimum LE 133
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With ν̄ > 0 and V(Ψ) < 0.5 (cf. Appendix B.29), the expression outside of the brack-
ets is positive.
Using (C.1), (C.5) and (C.6), equation (C.4) becomes
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(C.7)

As we know that ∆0 is linearly decreasing in LE, it immediately follows that dS0/dLE

is linearly decreasing in LE and dS0/dLE = 0 has a unique solution. This implies
that S0(LE) is hump-shaped with a unique maximum. Whether the social welfare
maximizing LE exceeds or falls short of the equilibrium L0

E depends on whether the
term in brackets in (C.7), evaluated at LE = L0

E, is greater or smaller than zero.1

As S0(LE) is hump-shaped, it attains it’s unique maximum where dS0/dLE = 0.
Using (C.7), we can explicitly state the social welfare maximizing LE:
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1For σν
2 → 0, the term in brackets converges to zero, dS0/dLE converges to ∆0 and hence the

optimum LE again converges to the equilibrium one.
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, (C.8)

if this expression is smaller than L, and LE = L otherwise.
In the UE model, social welfare S0 contains the additional term M · GJM. In labor
market equilibrium, GJM is given by (2.53), evaluated at m = m̃ and W = W̃. Again,
s̄ is given by (2.55). If GJM is approximated by (B.143), then it is linear in LE and
hence its derivative is independent of LE. In this case, the optimal LE is given by

LE =
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{
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}])
, (C.9)

which differs from (C.8) only by the last term within the second pair of parentheses
and by the definition of s̄. Without the approximation in (B.143), GJM is non-linear
in LE and the social welfare maximizing LE cannot be stated explicitly.
In the FE economy, social welfare S0 contains the additional term M ·W. In labor
market equilibrium, W is given by W = W̃, which depends non-linearly on LE.
Furthermore, also s̄ given by (2.49) depends non-linearly on LE. Hence, there is no
explicit representation of the social welfare maximizing LE.

C.3 Specification of Agents’ Risk-Aversion Parameter ρ

The final wealth of rational agent i is given by πi. With CARA-utility and with πi

being normally distributed, the agent’s certainty equivalent is given by E(πi) −
(ρ/2)V(πi). The 95% confidence interval for πi is (approximately) given by [E(πi)−
2
√

V(πi), E(πi) + 2
√

V(πi)]. Because of symmetry, this means that the probability
of final wealth below the lower boundary of this interval is 2.5%. We call an agent
excessively risk-averse, if his CE is lower than E(πi)− 2

√
V(πi). Hence, to ensure

that agents are not excessively risk-averse, it needs to hold that

E(πi)− (ρ/2)V(πi) ≥ E(πi)− 2
√

V(πi);

ρ ≤ 4√
V(πi)

. (C.10)

Now let σν
2 = 0. The volatility of final wealth is maximum for agents who become

entrepreneurs in the presence of dealers (cf. Appendix B.27). Hence, V(πE), where
πE = P/a + IE(θ − P) with P given by (2.23) and IE given by (2.41), gives an upper
bound for any rational agent’s uncertainty V(πi). It follows that if ρ meets condition
(C.10) for V(πi) = V(πE), then it does so also for all other rational agents’ V(πi). It
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is
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and, as we set σε
2 ≤ σs

2 (cf. table 2.1), it follows that

V(πE) ≤ 1.25
σs

2

a2 . (C.12)

Combining (C.10) with (C.12), rational agents are not excessively risk-averse for

ρ ≤ 4√
1.25 σs2

a2

;

ρ ≤ 4a√
1.25σs

. (C.13)

Condition (C.13) ensures that agents are not overly risk-averse. On the other hand,
we also want to avoid that our parameter choices for ρ cluster around values that im-
ply more or less risk-neutral agents. In this regard, note that the 4% confidence inter-
val for πi is (approximately) given by [E(πi)− 0.05

√
V(πi), E(πi) + 0.05

√
V(πi)].2

We call an agent almost risk-neutral, if his CE is higher than E(πi)− 0.05
√

V(πi).
Hence, agents are not almost risk-neutral if

E(πi)− (ρ/2)V(πi) ≤ E(πi)− 0.05
√

V(πi);

ρ ≥ 0.1√
V(πi)

, (C.14)

or, when using the "estimates" for V(πi) from above, if

ρ ≥ 0.1a√
1.25σs

. (C.15)

C.4 Homogeneity Properties

Let σν
2 > 0. The easiest way to get an impression of the homogeneity properties is to

run some numerical examples. For the sketch of a comprehensive proof, see below.
Basic model. As can be seen from Appendices B.5, B.6 and B.29, agents’ individual
CEs, both with free and restricted OC, are homogeneous of degree zero in L, M, N,
ν, σν and LE jointly. It follows that both ∆(LE) and Γ(LE), as well as social welfare

2Note that for X ∼ N (µx, σx
2), it is P(µx − zσx ≤ X ≤ µx + zσµ) = Φ(z)−Φ(−z) = Φ(z)− (1−

Φ(z)), where Φ denotes the cumulative distribution function of a standard normal distribution and
the second equality follows from symmetry. Using a standard normal table (also called a "z-table"),
one can easily see that P(µx − zσx ≤ X ≤ µx + zσµ) ≈ 0.04 for z = 0.05.



136 Appendix C. Simulation

per capita are homogeneous of degree zero in L, M, N, ν, σν and LE jointly. As we
set M, N, ν and σν as multiples of L in the simulation, it immediately follows that
both the equilibrium and the constrained optimum mass of entrepreneurs vary pro-
portionately with L.

Similarly, it can be seen that agents’ individual CEs change by a factor 1/λ for a
change in parameters from (a, ρ, ν̄, σν) to (λa, λρ, ν̄/λ, σν/λ). It follows that for such
a change in parameters, both ∆(LE) and Γ(LE) as well as social welfare change by
a factor 1/λ. As we set ρ as a multiple of a, and ν̄ and σν as multiples of 1/a in
the simulation, it immediately follows that both the equilibrium and the constrained
optimum mass of entrepreneurs are independent of a.

Finally, it can be seen that agents’ individual CEs change by a factor λ for a
change in parameters from (σs, ρ, σε, s̄) to (λσs, ρ/λ, λσε, λs̄). It follows that for such
a change in parameters, both ∆(LE) and Γ(LE) as well as social welfare change by
a factor λ. As we set ρ as a multiple of 1/σs, and σε and s̄ as multiples of σs in the
simulation, it immediately follows that both the equilibrium and the constrained
optimum mass of entrepreneurs are independent of σs.
Labor market models. Similarly as done above, it can be shown for both the FE
and the UE model that when choosing parameters according to tables 2.1 and 2.3,
the equilibrium and constrained optimum mass of entrepreneurs are linear homoge-
neous in L and homogeneous of degree zero in σs

2 and a, respectively. In particular,
an increase in L by a factor of λ just increases the equilibrium LE, the social welfare
maximizing LE and the corresponding values of social welfare by factor λ as well.
Varying σs

2 or a, respectively, does not have any effects on the equilibrium LE or the
social welfare maximizing LE. The corresponding values of social welfare change by
factor λ for a factor λ-increase in σs, and by factor (1/λ) for a factor λ-increase in a.

C.5 Simulation of the Basic Model

Dropped parameter combinations. The main results regarding the simulation of
the basic version of the model can be found in table 2.2 in the running text. We start
with 65,112 parameter combinations for σν = 0.001L/a, but this number decreases
to 16,607 combinations for σν = 0.5L/a. Further information on the reasons why
parameter combinations have been dropped in the simulation process are given by
table C.1. Elimination was done in column order. First, we dropped all combinations
that satisfy the condition of the second column. From the remaining combinations,
we dropped those which satisfy the condition of the third column, and so on. With
higher σν

2, the number of cases omitted due to non-existence of a unique interior
equilibrium without short-selling (columns 2-3) and undefined noise trader welfare
(column 4) increases. As the condition in column 2 already ensures ∆(L) < Γ(L)
for the remaining cases, multiple L1

E in column 3 occur very rarely. The numbers
outside parentheses in column 4 represent the number of combinations dropped due
to the fact that V(Ψ) ≥ 0.5 at equilibrium L1

E or L0
E (this is the relevant number with
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respect to table 2.2), the numbers within parentheses give the additional number of
parameters that were dropped due to the fact that V(Ψ) ≥ 0.5 for any other value
of LE (these had to be dropped for calculating the social welfare optimum values in
tables C.2-C.3).

TABLE C.1: Omitted Parameter Combinations in the Simulation of the
Basic Model

σν
L/a

# ∆(aν̄) < Γ(aν̄)
or ∆(L) > Γ(L) # mult. L1

E # V(Ψ) ≥ 0.5

0.001 0 0 0
0.01 174 0 0
0.05 6,492 6 0
0.1 14,868 0 130 (+106)
0.2 26,556 0 898 (+151)
0.5 46,554 0 1,951 (+107)

Equilibrium vs. optimum outcomes. Table 2.2, column 3, shows that, for σν up to
0.2L/a, the equilibrium mass of entrepreneurs tends to fall short of the constrained
(local) optimum. We now want to evaluate the magnitude of the average difference
between equilibrium and optimum values for the mass of entrepreneurs as well
as the respective differences in social welfare. Take for example the difference be-
tween equilibrium L1

E and the respective constrained (local) optimum, denoted by
L̂1

E. Then, what we aim for is a measure of relative difference between those two,
averaged over all (L1

E, L̂1
E) combinations we got from the simulation. The obvious

choice for such a measure would be (standard) percentage change. However, this is
problematic in our case mainly for the following reason: its value range is not bound
from above but ranges from zero to infinity. As a consequence, its average over many
(L1

E, L̂1
E) combinations is sensitive to outliers (see below for an example).

We therefore define a "new" measure ∆m(x, y) to evaluate the relative difference
between two variables x and y:

∆m(x, y) =
|x− y|

max(|x|, |y|) . (C.16)

As is usually done, we confine the domain of ∆m(x, y) to x and y with the same sign
(cf. Toernqvist et al., 1980, p. 3).3 We look at the absolute difference between x and
y in the numerator of (C.16) as we do not want opposite signs to cancel out when
calculating the average ∆m(x, y) over many (x, y) combinations. For the scaling into
a relative difference, we use the maximum operator, so that ∆m(x, y) is bound within

3Otherwise, measures of relative differences can give misleading results. This is not only true for
our measure ∆m, but also for (standard) percentage difference. Be, e.g., y1 = 5 and x1 = −10. Then
|x1−y1|
|x1| = 1.5. Now let y2 = 5 and x2 = −20. It is |x2−y2|

|x2| = 1.25, which is smaller than 1.5, even though
the difference between x and y grew larger.
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[0, 1] and has a nice intuition, which can be seen by rearranging (C.16):

∆m ·max(|x|, |y|) = |x− y|;
∆m ·max(|x|, |y|) = max(|x|, |y|)−min(|x|, |y|);

∆m = 1− min(|x|, |y|)
max(|x|, |y|) ;

min(|x|, |y|) = (1− ∆m) ·max(|x|, |y|). (C.17)

Now, what ∆m tells us is that the (absolute) smaller value is (1− ∆m) · 100% of the
(absolute) larger value. This intuition becomes even clearer with figure C.1, where
∆m(x, y) = A/B and thereby tells which portion of the total distance [0, max(|x|, |y|)]
is accounted for by the distance between |x| and |y|. For x/y ≈ 1, ∆m is close to zero,

FIGURE C.1: ∆m(x, y) = A/B

just like standard percentage difference. For x/y → ∞, ∆m converges to one, while
standard percentage difference (with y as the reference value) converges to infinity.

The fact that ∆m is bound within [0, 1] makes its average over many (x, y) com-
binations less sensitive to outliers. To see that, let, e.g., x1 = 0.0001, y1 = 10, x2 = 10,
y2 = 20. Then, what we get is an average standard percentage difference equal to
1
2

( 10−0.0001
0.0001 + 20−10

10

)
= 5,000,000%, that is, on average, y is = 5,000,000% higher than

x. Using our measure from (C.16), we get ∆m = 1
2

( 10−0.0001
10 + 20−10

20

)
≈ 75%, that

is, on average, x is 25% of y. Note also that ∆m(x, y) is symmetric both with regards
to x and y, i.e., ∆m(x, y) = ∆m(y, x), as well as around (0, 0), that is ∆m(x, y) =

∆m(−x,−y). Hence, ∆m is independent of whether we take x or y as the reference
value and we just treat negative values as if they were positive.

Now, as before, let L̂1
E denote the mass of entrepreneurs that constitutes the con-

strained (local) social optimum mass of entrepreneurs in the presence of dealers. If
S1(LE) does not have a local optimum, L̂1

E is not defined.4 We denote the value of
social welfare corresponding to a mass of entrepreneurs equal to L̂1

E by Ŝ1. The en-
tries in columns 2 & 3 of table C.2 give averages (in percent) and standard deviations
(in percentage points) over the subset of parameter combinations for which L̂1

E is de-
fined and ∆m(x, y) is well behaved, i.e., where x and y are of the same sign (this is not
necessarily the case for S1(L1

E) vs. Ŝ1). The average difference between equilibrium
L1

E and the local optimum L̂1
E is quite small, at least up to σ2

ν = 0.2L/a (table C.2,

4Comparing L1
E to the constrained globally optimal LE would be rather meaningless, as this is typ-

ically given by LE = L even in the noiseless case; cf. Corollary 2.5.2.1(ii).
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column 2). The corresponding differences in social welfare are even smaller (column
3).

TABLE C.2: Equilibrium vs. Constrained Optimum Outcomes in the
Basic Model

σν
L/a ∆m

(
L1

E, L̂1
E
)

∆m
(
S1 (L1

E
)

, Ŝ1) ∆m
(

L0
E, L̂0

E
)

∆m
(
S0 (L0

E
)

, Ŝ0)
0.001 0.03% (0.12%) ≈ 0% (≈ 0%) ≈ 0% (≈ 0%) ≈ 0% (≈ 0%)
0.01 0.21% (0.57%) 0.01% (0.14%) ≈ 0% (0.01%) ≈ 0% (≈ 0%)
0.05 0.97% (2.16%) 0.16% (1.59%) 0.05% (0.37%) ≈ 0% (0.03%)
0.1 1.75% (4.08%) 0.25% (2.06%) 0.23% (1.47%) 0.04% (0.77%)
0.2 2.53% (6.87%) 0.50% (3.58%) 0.75% (4.08%) 0.39% (4.20%)
0.5 9.03% (17.80%) 0.89% (5.23%) 1.92% (8.61%) 1.43% (7.47%)

Note: ∆m defined according to (C.16).
Note: The number of admissible parameter combinations with regards to ∆m

(
L1

E, L̂1
E
)

is given
by 57,105 for σν = 0.001L/a, decreases to 31,717 for σν = 0.2L/a, and to 14,313 for σν =
0.5L/a. With regards to ∆m

(
S1 (L1

E
)

, Ŝ1), the analogous numbers are given by 57,105, 31,668,
and 14,313, respectively. With regards to ∆m

(
S0 (L0

E
)

, Ŝ0), they are 65,112, 37,431, and 16,484,
respectively.

Columns 4 & 5 give the corresponding numbers in the absence of dealers, with only
one difference: L̂0

E denotes the global optimum of S0(LE), that is, we also consider
parameter combinations which imply L̂0

E = L. The resulting numbers tend to be
even smaller than the ones in case of free OC.
Free vs. restricted OC. While the average differences between equilibrium and con-
strained optimum outcomes tend to be rather small (cf. table C.2), table C.3 shows
that those between social welfare with free vs. restricted OC are large.5 On average,
equilibrium social welfare with free OC is just about 6% of equilibrium social welfare
with restricted OC, for σν

2 = 0.001L/a, for example. Again, combinations which im-
ply that L̂1

E is not defined or the two arguments of ∆m differ in their sign are omitted
from the calculations in the respective columns.
What is still missing are more detailed information on the two effects that apply
when moving from equilibrium welfare with free OC, i.e., from S1(L1

E), to equilib-
rium welfare with restricted OC, i.e., to S0(L0

E). As shown by figure 2.5, these effects
are: first, the effect of making the market less informative, call it the "i-effect", given
by S0(L1

E)− S1(L1
E); and second, the related increase in the mass of entrepreneurs,

call it the "r-effect", given by S0(L0
E)− S0(L1

E). Column 2 in table C.4 shows that, for
all simulated parameter combinations, the number of entrepreneurs increases when
dealers are banned. Columns 2 & 3 tell that both the "i-effect" and the "r-effect" are
positive for the vast majority of parameter combinations up to a σν of 0.2L/a. Num-
bers for the "i-effect" are not so clear any more for σν = 0.5L/a, which is again mainly

5These already large numbers from our measure ∆m also indicate that using (standard) percentage
difference instead would have produced exorbitantly large, messy numbers. In this regard, also note
that making use of the max-operator in ∆m is necessary, because it is not clear whether S1(L1

E) is greater
or smaller than S0(L0

E), especially for large σν
2 (cf. table 2.2).
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TABLE C.3: Free vs. Restricted OC in the Basic Model

σν
L/a ∆m

(
S1(L1

E), S0(L0
E)
)

∆m
(
Ŝ1, Ŝ0)

0.001 93.76% (9.57%) 94.83% (8.45%)
0.01 93.24% (10.19%) 95.03% (7.98%)
0.05 91.53% (12.40%) 93.88% (8.49%)
0.1 90.26% (13.70%) 92.87% (8.73%)
0.2 90.20% (14.67%) 93.19% (8.22%)
0.5 48.59% (28.17%) 43.90% (26.78%)

Note: ∆m defined according to (C.16).
Note: The number of admissible parameter combina-
tions with regards to ∆m

(
S1(L1

E), S0(L0
E)
)

is given by
54,260 for σν = 0.001L/a, decreases to 19,285 for σν =
0.2L/a, and to 2,000 for σν = 0.5L/a. With regards to
∆m
(
Ŝ1, Ŝ0), the analogous numbers are given by 46,515,

14,769, and 1,339, respectively.

because with high magnitudes of σν, noise traders’ return volatility is likely to ben-
efit from informationally efficient markets and their utility tends to dominate social
welfare (see also table 2.2).

TABLE C.4: The Two Effects of a Ban of Dealers in the Basic Model

σν
L/a L0

E > L1
E i-effect> 0 r-effect> 0 i-effect

total effect
0.001 100% 100% 100% 60.77%
0.01 100% 99.99% 100% 59.27%
0.05 100% 99.97% 99.89% 55.93%
0.1 100% 99.64% 99.35% 54.07%
0.2 100% 97.40% 98.45% 50.51%
0.5 100% 77.82% 97.22% 28.33%

With regards to their average relative magnitudes, column 4 gives the "i-effect" as a
percentage of the total effect. By implication, the relative magnitude of the "r-effect"
is given by 100% minus the relative "i-effect". To avoid misleading numbers, the
calculations in column 4 are restricted to parameter combinations for which both
effects are positive. We see that while the "i-effect" slightly dominates the "r-effect"
for low and medium noise volatility, this turns around for large noise trader shocks.
Price variance. Interestingly, the ex-ante price variance tends to be lower rather than
higher in case of positive noise volatility. This is shown by table C.5, which gives the
average of the percentage difference between the price variance in equilibrium with
stochastic noise, denoted Vσ(P), and the price variance with deterministic noise,
denoted V0(P). The reason is that the direct positive impact of volatility with regards
to noise trader demand ν on the asset price P tends to be more than offset by the
effect that more noise makes P less sensitive to the macro fundamental s.
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TABLE C.5: Price Variance

σν
L/a 0.001 0.01 0.05 0.1 0.2 0.5

Vσ(P)−V0(P)
V0(P) −0.01% −0.18% −0.89% −1.58% −2.32% −1.77%

C.6 Simulation of the FE Model

Setting ŝ. As ∆(LE) is strictly decreasing in LE for LE ∈ (0, L) in the noiseless FE
model (cf. Chapter 2.4.1), for an equilibrium L1

E with aν̄ < L1
E < L to exist, we

require ∆(aν̄) > 0 and limLE→L ∆(LE) < 0. From (2.25) and (2.49), this requires

s̄(aν̄)− ρσs
2

2a
> 0;

ŝ + Ab
(

M
ν̄

)1−b

− ρσs
2

2a
> 0;

ŝ >
ρσs

2

2a
− Ab

(
M
ν̄

)1−b

(C.18)

as well as

s̄(L)−
L
a − ν̄

L + M
ρσε

2 − ρσs
2

2a
< 0;

ŝ + Ab
(

aM
L

)1−b

−
L
a − ν̄

L + M
ρσε

2 − ρσs
2

2a
> 0;

ŝ <
ρσs

2

2a
− Ab

(
aM
L

)1−b

+
L
a − ν̄

L + M
ρσε

2. (C.19)

Hence, the first row in the upper part of table 2.3 pins down ŝ such that L1
E varies in

between the interval (aν̄, L) for σν
2 = 0.

Setting A. Expected firm profit is given by s̄(LE) = AbM̂1−b + ŝ. As a starting
point, consider an equilibrium L1

E = aν̄, which from (C.18) requires that ŝ = ρσs
2

2a −
Ab
(M

ν̄

)1−b
in the noiseless case. If we set

A = ξ · ρσs
2

2a

(
ν̄
M

)1−b

b
, (C.20)

then at L1
E = aν̄:

AbM̂1−b = Ab
(

M
ν̄

)1−b

= ξ · ρσs
2

2a
(C.21)

and

ŝ =
ρσs

2

2a
− ξ · ρσs

2

2a

= (1− ξ) · ρσs
2

2a
. (C.22)
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For ξ = 0.5, (C.21) and (C.22) are exactly equal to each other. The third row in the
upper part of table 2.3 varies ξ around 0.5, so that A given by (C.20) ensures that
the two terms are of comparable magnitude. Note that for ξ = 0.5 and L1

E > aν̄ it is
AbM̂1−b < ŝ, which is why we focus mainly on ξ ≥ 0.5 and don’t consider values for
ξ below 0.25. Table C.6 shows that in the simulation ŝ accounts for 60 to 70 percent
of s̄ at equilibrium with free OC, on average.

TABLE C.6: The Expected Fundamental’s Part in Expected Firm Profit
in the FE Model

σν
L/a 0.001 0.01 0.05 0.1 0.2 0.5

ŝ
s̄ 62.68% 62.64% 62.59% 62.84% 64.25% 67.46%

Simulation tables. The main results regarding the simulation of the FE model can be
found in the left part of table 2.4 in the running text. We start with 1,124,190 param-
eter combinations for σν = 0.001L/a, but this number decreases to 636,033 combi-
nations for σν = 0.5L/a. Table C.7 gives information on the reasons why parameter
combinations are eliminated in the simulation process. It can be read analogous to
table C.1 for the basic version of the model, except that we additionally include the
remaining admissible combinations for each σν in the last column. Tables C.8-C.10
are analogous to the respective tables for the basic model. Results are similar.

TABLE C.7: Omitted Parameter Combinations in the Simulation of the
FE Model

σν
L/a

# ∆(aν̄) < Γ(aν̄)
or ∆(L) > Γ(L) # mult. L1

E # V(Ψ) ≥ 0.5 # rem. cases

0.001 0 0 0 1,124,190
0.01 0 12 0 1,124,178
0.05 11,928 98 0 1,112,164
0.1 55,332 33 2,298 (+1,982) 1,066,527
0.2 161,904 29 18,400 (+4,201) 943,857
0.5 430,266 24 57,867 (+4,373) 636,033

TABLE C.8: Equilibrium vs. Constrained Optimum Outcomes in the
FE Model

σν
L/a ∆m

(
L1

E, L̂1
E
)

∆m
(
S1 (L1

E
)

, Ŝ1) ∆m
(

L0
E, L̂0

E
)

∆m
(
S0 (L0

E
)

, Ŝ0)
0.001 0.01% (0.06%) ≈ 0% (≈ 0%) ≈ 0% (≈ 0%) ≈ 0% (≈ 0%)
0.01 0.08% (0.31%) ≈ 0% (≈ 0%) ≈ 0% (0.01%) ≈ 0% (≈ 0%)
0.05 0.39% (1.18%) 0.01% (0.30%) 0.06% (0.36%) ≈ 0% (0.16%)
0.1 0.72% (2.06%) 0.04% (0.91%) 0.22% (1.31%) 0.03% (0.79%)
0.2 1.17% (3.38%) 0.12% (1.93%) 0.61% (3.26%) 0.24% (3.05%)
0.5 4.14% (10.94%) 0.55% (4.39%) 1.38% (6.45%) 0.69% (5.15%)
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TABLE C.9: Free vs. Restricted OC in the FE Model

σν
L/a ∆m

(
S1(L1

E), S0(L0
E)
)

∆m
(
Ŝ1, Ŝ0)

0.001 73.67% (22.37%) 74.48% (22.35%)
0.01 73.63% (22.45%) 74.81% (22.39%)
0.05 72.71% (22.66%) 74.05% (22.39%)
0.1 71.57% (22.80%) 72.95% (22.34%)
0.2 70.88% (23.17%) 72.10% (22.65%)
0.5 65.50% (26.47%) 65.75% (26.47%)

TABLE C.10: The Two Effects of a Ban of Dealers in the FE Model

σν
L/a L0

E > L1
E i-effect> 0 r-effect> 0 i-effect

total effect
0.001 100% 100% 100% 48.11%
0.01 100% 99.99% 100% 47.73%
0.05 100% 97.87% 99.92% 46.57%
0.1 100% 94.53% 99.61% 45.67%
0.2 100% 90.35% 99.19% 43.27%
0.5 100% 77.69% 98.61% 32.59%

C.7 Simulation of the UE Model

Setting D. From (2.54), firms’ labor demand is given by

m =

(
A(1− b)

W

) 1
b

. (C.23)

There is unemployment for LE < L and full employment at LE = L exactly if

W = A(1− b)
(

L
aM

)b

, (C.24)

as in this case it is m < M̂ for LE < L and m = M̂ at LE = L. The wage W is set
by firm level unions according to the following optimality condition (cf. Appendix
B.14):

1 + ρbW − exp {ρ(W − D)} = 0. (C.25)

Now the question is: Is it possible to set D such that the wage stated in (C.24) follows
from (C.25)? The answer is yes, which can easily be seen by rearranging (C.25):

ln (1 + ρbW) = ρ(W − D);

D = W − 1
ρ

ln (1 + ρbW) , (C.26)

with W given by (C.24). It remains to be checked, whether this D satisfies D < W
and D > 0. From (C.26), we immediately see that D < W. To see that D > 0, note
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that this is the case exactly if

ρW − ln (1 + ρbW) > 0, (C.27)

for which to hold, it is sufficient that

ρW − ln (1 + ρW)︸ ︷︷ ︸
=:ϑ(ρW)

> 0, (C.28)

as 0 < b < 1. Consider the l.h.s. of (C.28) as a function of ρW, denoted by ϑ(ρW).
Let ρW = 0 first. Then ϑ(0) = 0− ln(1 + 0) = 0. As we have

dϑ

d(ρW)
= 1− 1

1 + ρW
> 0, (C.29)

ϑ(ρW) is increasing in ρW. Hence, (C.28) is always satisfied and in turn the D we set
is always greater than zero.
Setting A. With D set as discussed above, the equilibrium wage is given by (C.24).
Together with the optimal labor demand (2.54), expected firm profit is

s̄ = Am1−b −Wm + ŝ

= A

(
A(1− b)

A(1− b)
( L

aM

)b

) 1−b
b

− A(1− b)
(

L
aM

)b
(

A(1− b)

A(1− b)
( L

aM

)b

) 1
b

+ ŝ

= A
(

aM
L

)1−b

− A(1− b)
(

aM
L

)1−b

+ ŝ

= bA
(

aM
L

)1−b

+ ŝ. (C.30)

Again, consider an equilibrium L1
E = aν̄, which requires s̄ = ρσs

2

2a and hence ŝ =
ρσs

2

2a − bA
( aM

L

)1−b
in the noiseless case. If we set

A = ξ · ρσs
2

2a

( L
aM

)1−b

b
, (C.31)

then at L1
E = aν̄:

bA
(

aM
L

)1−b

= ξ · ρσs
2

2a
(C.32)

and

ŝ = (1− ξ) · ρσs
2

2a
. (C.33)

For ξ = 0.5, (C.32) and (C.33) are exactly equal to each other. The second row in the
lower part of table 2.3 varies ξ around 0.5, so that A given by (C.31) ensures that
the two terms are of comparable magnitude. Note that for ξ = 0.5 and L1

E > aν̄ it
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is bA
( aM

L

)1−b
< ŝ (as a higher L1

E is related to a higher ŝ), which is why we focus
mainly on ξ ≥ 0.5 and don’t consider values for ξ below 0.25. Table C.11 shows that,
in the simulation, ŝ accounts for 40 to 50 percent of s̄ at equilibrium with free OC, on
average.

TABLE C.11: The Expected Fundamental’s Part in Expected Firm
Profit in the UE Model

σν
L/a 0.001 0.01 0.05 0.1 0.2 0.5

ŝ
s̄ 42.52% 42.53% 43.06% 43.92% 45.48% 49.44%

Simulation tables. The main results regarding the simulation of the UE model can
be found in the right part of table 2.4 in the running text. We start with 1,041,792
parameter combinations for σν = 0.001L/a, but this number decreases to 265,712
combinations for σν = 0.5L/a. Analogous to table C.7 in the FE model, table C.12
gives information on the reasons why parameter combinations are eliminated in
the simulation process. Tables C.13-C.14 are analogous to the respective tables for
the basic and the FE model. Unsurprisingly, the difference between equilibrium and
constrained optimum outcomes is a lot higher in the UE model (cf. Proposition 2.5.1).

TABLE C.12: Omitted Parameter Combinations in the Simulation of
the UE Model

σν
L/a

# ∆(aν̄) < Γ(aν̄)
or ∆(L) > Γ(L) # mult. L1

E # V(Ψ) ≥ 0.5 # rem. cases

0.001 0 0 0 1,041,792
0.01 2,784 12 0 1,039,008
0.05 103,872 96 0 937,824
0.1 237,888 0 2,080 (+1,696) 801,824
0.2 424,896 0 14,368 (+2,416) 602,528
0.5 744,864 0 31,216 (+1,712) 265,712

TABLE C.13: Equilibrium vs. Constrained Optimum Outcomes in the
UE Model

σν
L/a ∆m

(
L1

E, L̂1
E
)

∆m
(
S1 (L1

E
)

, Ŝ1) ∆m
(

L0
E, L̂0

E
)

∆m
(
S0 (L0

E
)

, Ŝ0)
0.001 67.88% (22.15%) 54.88% (26.64%) 1.90% (5.77%) 0.61% (2.06%)
0.01 55.00% (30.79%) 47.12% (30.97%) 1.90% (5.77%) 0.61% (2.07%)
0.05 49.48% (29.75%) 43.22% (30.60%) 2.10% (6.02%) 0.67% (2.17%)
0.1 47.62% (27.24%) 41.26% (29.60%) 1.94% (5.67%) 0.63% (2.09%)
0.2 47.37% (23.22%) 38.50% (24.89%) 2.27% (6.36%) 0.87% (3.54%)
0.5 56.71% (21.35%) 43.76% (30.66%) 2.22% (7.94%) 1.45% (6.99%)

Table C.15 is similar to table C.10 in the FE model. It gives detailed information on
the three effects that apply when moving from equilibrium welfare with free OC
S1(L1

E) to maximum welfare with restricted OC Ŝ0. The first and second effect are
again given by the already explained "i-effect" and "r-effect". The "e-effect" emerges,
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TABLE C.14: Free OC vs. Restricted OC in the UE Model

σν
L/a ∆m

(
S1(L1

E), S0(L0
E)
)

∆m
(
Ŝ1, Ŝ0)

0.001 79.46% (15.93%) 85.57% (9.40%)
0.01 79.90% (15.69%) 77.19% (14.12%)
0.05 80.59% (15.34%) 72.49% (13.78%)
0.1 80.96% (14.99%) 72.42% (12.93%)
0.2 82.08% (13.62%) 75.18% (12.32%)
0.5 85.47% (19.51%) 79.10% (18.54%)

as in the UE model the equilibrium outcome with restricted OC does not coincide
with the constrained optimum. It is given by Ŝ0 − S0(L0

E). By definition, this effect
can never be negative. Concerning its relative magnitude, columns 6 & 7 in table C.15
show that it accounts for only about 0.7% of the total effect, on average. This is in
part because both equilibrium and optimum LE with restricted OC are in many cases
just given by LE = L. However, the effect remains at a low average of about 4.5% of
the total effect even if cases with L0

E = L̂0
E = L are excluded from the calculations.

The other numbers in table C.15 are of comparable magnitudes as in the basic and
the FE model.

TABLE C.15: From S1(L1
E) to Ŝ0 in the UE Model - Three Effects

σν
L/a L0

E > L1
E i-effect> 0 r-effect> 0 e-effect> 0 i-effect

total effect
r-effect

total effect
0.001 100% 100% 100% 100% 54.26% 45.04%
0.01 100% 99.99% 100% 100% 52.17% 47.12%
0.05 100% 99.97% 99.99% 100% 47.37% 51.85%
0.1 100% 99.75% 99.93% 100% 44.62% 54.64%
0.2 100% 97.64% 99.52% 100% 40.00% 59.24%
0.5 100% 78.33% 98.63% 100% 20.50% 78.91%

Evidence that the approximation used for calculating the optimal mass of entrepre-
neurs in the noiseless UE model (cf. Appendix B.23) is a rather good one comes with
table C.16. It shows that for low levels of noise volatility, the difference between the
approximate L̂E and the "true" L̂E is rather small, on average.

TABLE C.16: Approximated vs. "True" Constrained Optimum in the
Noiseless UE Model

σν
L/a ∆m("true" L̂1

E, approx. L̂1
E) ∆m("true" L̂0

E, approx. L̂0
E)

0.001 3.84% 0.21%
0.01 2.49% 0.21%

Note: ∆m defined according to (C.16).
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Appendix D

Matlab Code

D.1 Structure and Strategy

The simulation is written in Matlab version R2017a. As the number of simulated pa-
rameter combinations is quite large (more than 15 million in total) and computations
include the solving of complicated highly non-linear equations (cf. Appendix B.5),
it is important for the code to bring together precision and reliability with speed
and efficient use of computer memory. We achieve this mainly by a combination
of Matlab’s symbolic math toolbox on the one hand and numeric arithmetic on the
other hand. The remainder of this section explains the structure of the code and the
applied strategy. The code itself is delegated to the subsequent sections.

The structure of the code is the same for all versions of the model. Take, e.g., the
basic version of the model. The main code file is named "Basic_Model". It calls an
auxiliary file named "symaux_Basic", where we use the symbolic toolbox to hand
over our closed-form solutions for the agents’ certainty equivalents (cf. Appendices
B.5, B.6 and B.29) to Matlab and derive some other expressions for later use, e.g., the
first and second derivative of the social welfare function. After that, "Basic_Model"
sets up the matrix "paramCombs", which contains all parameter combinations that
are to be simulated (cf. tables 2.1 and 2.3). Whenever we have to refer to values
within this matrix, we take direct access to it. If, e.g., we want to access a value in
row b, column c, we just call "paramCombs(b,c)". This may at times slightly reduce
the readability of the code, but saves computer memory compared to the alterna-
tive options. After the parameter matrix is set up, we call function "Basic_Model_f1"
for every value of σν. "Basic_Model_f1" is in fact an array function and has the ad-
vantage of being a lot faster than the combination of a "normal" function and a
"for-loop". It takes as inputs the "paramCombs" matrix and the expressions derived
within "symaux_Basic". As output, it returns the equilibrium and optimum values
for the mass of entrepreneurs, the respective levels of social welfare and some other
variables of interest. The remainder of "Basic_Model" simply processes this output
and gives all the information illustrated in tables 2.2 and C.1-C.5 (and more).

As "Basic_Model_f1" is at the heart of the simulation and where essentially all
computations take place, it makes sense to look at this function in some more detail.
Prior to any calculations, it transforms the symbolic expressions from "symaux_Basic"
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into numeric functions of LE only. This is essential for the speed of the simulation,
as Matlab’s numeric arithmetic is a lot faster than its symbolic one. The first com-
putation within "Basic_Model_f1" concerns the equilibrium L1

E with free OC. We use
function "fzero" to determine L1

E, as it is more precise and reliable than possible al-
ternatives (like, e.g., "fsolve"). However, solving for equilibrium is not completely
straightforward, as L1

E is determined by ∆(LE) = Γ(LE), which is highly non-linear
in LE and entails the possibility of multiple solutions. Furthermore, both ∆(LE) and
Γ(LE) are almost kinked at LE = L for low σν (cf. Chapter 2.6.1), which can cause nu-
merical algorithms to fail in finding solutions to ∆(LE) = Γ(LE) that lie in the vicinity
of LE = L. We address these problems by using the function "rmsearch", developed
by John D’Errico (2020) and adjusted for our purpose.1 It identifies a multitude of
good starting values for the numerical algorithm of "fzero" and by that makes sure
that all solutions are found. Solving for equilibrium L0

E with restricted OC is more
straightforward, as we have shown that it is unique (cf. Appendix B.6) and the re-
spective expressions that determine equilibrium are continuous also for σν = 0.

Within "Basic_Model_f1", we call two auxiliary functions, namely "S1opt" and
"S0opt", which help find the constrained optimum values of LE. Function "S1opt"
finds the constrained optimum LE with regards to S1 in case of free OC. As multiple
solutions to the first order condition as well as non-existence are a possibility, we use
the above mentioned combination of "rmsearch" and "fzero". Function "S0opt" does
the analogous in case of restricted OC, which again is more straightforward, as we
have shown that S0 is inverse U-shaped (cf. Appendix C.2).

D.2 Basic Model

Code files are given in the following order:

1. The main file "Basic_Model".

2. The auxiliary file "symaux_Basic".

3. The function "Basic_Model_f1", which also contains the functions "S1opt" and
"S0opt".

4. Function "rmsearch" can be found online (see the footnote in Chapter D.1). We
only state the implemented adjustments.

All of the code is also submitted in digital form.

File "Basic_Model"

1 % S t a r t t imer :
2 t i c

1John D’Errico (2020). RMSEARCH (https://www.mathworks.com/matlabcentral/fileexchange/
13733-rmsearch), MATLAB Central File Exchange.
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3

4 % Cal l a u x i l i a r y f i l e " symaux_Basic " , within which we s t a t e and derive
c losed

5 % form express ions required l a t e r f o r c a l c u l a t i o n s within funct ion
6 % " Basic_Model_f1 " :
7 symaux_Basic ;
8

9 % Parameter values s e t as descr ibed in the t e x t :
10 L=100; %( 1 )
11 a =10; %( 2 )
12 Vs =1; %( 3 )
13 rho = [ 0 . 0 1 0 .025 0 . 0 5 0 .075 0 . 1 0 . 2 5 0 . 5 0 . 7 5 1 ] ; %( 4 )
14 Ve = [ 0 . 1 0 . 2 5 0 . 5 0 . 7 5 1 ] ; %( 5 )
15 M=[1 2 3 5 10 1 0 0 ] ; %( 6 )
16 nuq = [ 0 . 0 0 1 0 . 0 1 0 . 0 5 0 . 1 0 . 2 0 . 5 ] ; %( 7 )
17 sq = [ 0 . 0 1 0 . 0 5 0 . 1 0 . 2 5 0 . 5 0 . 7 5 0 . 9 0 . 9 5 0 . 9 9 ] ; %( 8 )
18 N=[1 2 3 5 10 1 0 0 ] ; %( 9 )
19 Vnu= [ 0 . 0 0 1 0 . 0 1 0 . 0 5 0 . 1 0 . 2 0 . 5 ] ;
20

21 % I n i t i a t e and f i l l in the matrix "paramCombs " , which conta ins a l l
22 % parameter combinations ; Each row of the f i n a l "paramCombs" matrix
23 % c o n s t i t u t e s one parameter combination :
24 paramCombs=L ’ ;
25

26 avec=NaN( s i z e ( paramCombs , 1 ) , length ( a ) ) ;
27 f o r k =1: s i z e ( paramCombs , 1 )
28 avec ( k , : ) =a ;
29 end
30 avec=reshape ( avec , [ ] , 1 ) ;
31

32 paramCombs=repmat ( paramCombs , length ( a ) , 1 ) ;
33 paramCombs=[paramCombs avec ] ;
34 c l e a r avec
35

36 Vsvec=NaN( s i z e ( paramCombs , 1 ) , length ( Vs ) ) ;
37 f o r k =1: s i z e ( paramCombs , 1 )
38 Vsvec ( k , : ) =Vs ;
39 end
40 Vsvec=reshape ( Vsvec , [ ] , 1 ) ;
41

42 paramCombs=repmat ( paramCombs , length ( Vs ) , 1 ) ;
43 paramCombs=[paramCombs Vsvec ] ;
44 c l e a r Vsvec
45

46 rhovec=NaN( s i z e ( paramCombs , 1 ) , length ( rho ) ) ;
47 f o r k =1: s i z e ( paramCombs , 1 )
48 rhovec ( k , : ) =rho ∗ ( 4 / ( 1 . 2 5 ^ . 5 ) ) ∗vpa ( paramCombs ( k , 2 ) /(paramCombs ( k , 3 ) ^ . 5 )

) ;
49 end
50 rhovec=reshape ( rhovec , [ ] , 1 ) ;
51

52 paramCombs=repmat ( paramCombs , length ( rho ) , 1 ) ;
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53 paramCombs=[paramCombs rhovec ] ;
54 c l e a r rhovec
55

56 Vevec=NaN( s i z e ( paramCombs , 1 ) , length ( Ve ) ) ;
57 f o r k =1: s i z e ( paramCombs , 1 )
58 Vevec ( k , : ) =Ve∗paramCombs ( k , 3 ) ;
59 end
60 Vevec=reshape ( Vevec , [ ] , 1 ) ;
61

62 paramCombs=repmat ( paramCombs , length ( Ve ) , 1 ) ;
63 paramCombs=[paramCombs Vevec ] ;
64 c l e a r Vevec
65

66 Mvec=NaN( s i z e ( paramCombs , 1 ) , length (M) ) ;
67 f o r k =1: s i z e ( paramCombs , 1 )
68 Mvec ( k , : ) =M∗paramCombs ( k , 1 ) ;
69 end
70 Mvec=reshape ( Mvec , [ ] , 1 ) ;
71

72 paramCombs=repmat ( paramCombs , length (M) , 1 ) ;
73 paramCombs=[paramCombs Mvec ] ;
74 c l e a r Mvec
75

76 nuqvec=NaN( s i z e ( paramCombs , 1 ) , length ( nuq ) ) ;
77 f o r k =1: s i z e ( paramCombs , 1 )
78 nuqvec ( k , : ) =nuq∗paramCombs ( k , 1 ) /paramCombs ( k , 2 ) ;
79 end
80 nuqvec=reshape ( nuqvec , [ ] , 1 ) ;
81

82 paramCombs=repmat ( paramCombs , length ( nuq ) , 1 ) ;
83 paramCombs=[paramCombs nuqvec ] ;
84 c l e a r nuqvec
85

86 sqvec=NaN( s i z e ( paramCombs , 1 ) , length ( sq ) ) ;
87 f o r k =1: s i z e ( paramCombs , 1 )
88 sqvec ( k , : ) =vpa ( paramCombs ( k , 4 ) ∗paramCombs ( k , 3 ) /(2∗paramCombs ( k , 2 ) ) ) +sq

∗vpa ( ( paramCombs ( k , 1 )−paramCombs ( k , 2 ) ∗paramCombs ( k , 7 ) ) ∗paramCombs ( k
, 4 ) ∗paramCombs ( k , 5 ) /(paramCombs ( k , 2 ) ∗ (paramCombs ( k , 1 ) +paramCombs ( k
, 6 ) ) ) ) ;

89 end
90 sqvec=reshape ( sqvec , [ ] , 1 ) ;
91

92 paramCombs=repmat ( paramCombs , length ( sq ) , 1 ) ;
93 paramCombs=[paramCombs sqvec ] ;
94 c l e a r sqvec
95

96 % Rule out mult ip le e q u i l i b r i a in case of d e t e r m i n i s t i c noise :
97 f o r k =1: s i z e ( paramCombs , 1 )
98 i f 1/paramCombs ( k , 2 ) ∗ (paramCombs ( k , 8 )−paramCombs ( k , 4 ) ∗ (paramCombs ( k , 3 )

+paramCombs ( k , 5 ) ) ∗ (paramCombs ( k , 1 ) /paramCombs ( k , 2 )−paramCombs ( k , 7 ) )
/(paramCombs ( k , 1 ) +paramCombs ( k , 6 ) ) ) −(0.5/paramCombs ( k , 4 ) ) ∗ log (1+
paramCombs ( k , 3 ) /paramCombs ( k , 5 ) ) >0
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99 paramCombs ( k , 8 ) =nan ;
100 end
101 end
102

103 Nvec=NaN( s i z e ( paramCombs , 1 ) , length (N) ) ;
104 f o r k =1: s i z e ( paramCombs , 1 )
105 Nvec ( k , : ) =0.25∗N∗ (paramCombs ( k , 1 ) +paramCombs ( k , 6 ) ) ;
106 end
107 Nvec=reshape ( Nvec , [ ] , 1 ) ;
108

109 paramCombs=repmat ( paramCombs , length (N) , 1 ) ;
110 paramCombs=[paramCombs Nvec ] ;
111 c l e a r Nvec
112

113 disp ( [ ’ # Parameter combinations f o r each \sigma_\nu at s t a r t of the
s imulat ion ( i n c l . mult ipl . equ . in the n o i s l e s s case ) : ’ num2str ( s i z e (
paramCombs , 1 ) ) ] ) ;

114

115 paramCombs=paramCombs(~ isnan ( paramCombs ( : , 8 ) ) , : ) ;
116

117 disp ( [ ’ # Parameter combinations f o r each \sigma_\nu at s t a r t of the
s imulat ion ( e x c l . mult ipl . equ . in the n o i s l e s s case ) : ’ num2str ( s i z e (
paramCombs , 1 ) ) ] ) ; %// number of parameter combinations which imply a
unique equilbrium in the case of d e t e r m i n i s t i c noise f o r each value of
Vnu

118

119 t imer = ( 1 : s i z e ( paramCombs , 1 ) ) ’ ;
120 paramCombs=[paramCombs timer ] ;
121

122 Vnuvec=NaN( s i z e ( paramCombs , 1 ) , length (Vnu) ) ;
123 f o r k =1: s i z e ( paramCombs , 1 )
124 Vnuvec ( k , : ) =Vnu. ^ 2∗ ( paramCombs ( k , 1 ) /paramCombs ( k , 2 ) ) ^2;
125 end
126

127 toc
128

129 % Simulate the model f o r each \sigma_\nu :
130 f o r i =1: s i z e ( Vnuvec , 2 )
131 disp ( [ ’\sigma_\nu= ’ num2str ( double (Vnu( i ) ∗100) ) ’% of L/a ’ ] ) ;
132 paramCombsci=num2cell ( [ paramCombs Vnuvec ( : , i ) ] ) ;
133

134 % Cal l funct ion " Basic_Model_f1 " f o r each parameter combination ; the
135 % " r . h . s . " g ives the funct ion inputs , the " l . h . s . " g ives the funct ion
136 % outputs :
137 [ LE_T , LE_U , S_T , S_U , S_T_deriv , max_LE_U , SU_max_LE_U , Vbl , RVP, multequ

, renT , renE , VrenE , max_LE_S , ST_max_LE_T , max_LE_S_global ,
ST_max_LE_T_global , SU_LET ,UM,VUM, SL , wb, utiE , utiM , Vbl_one ] = arrayfun (@(
n ) Basic_Model_f1 ( paramCombsci { n , : } , Vbn , Fn , VFn , SWFn, dSWFn, d2SWFn , SWF2n ,
rentEn , rentTn , VPn , GTin , VGTin , dVbn) , 1 : s i z e ( paramCombsci , 1 ) , ’ uni ’ , 1 ) ;

138

139 toc
140
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141 % Get r id of the parameter combinations t h a t led to nan−values
142 % within " Basic_Model_f1 " :
143 paramCombsci=paramCombsci (~ isnan ( LE_T ) , : ) ;
144 LE_T2=LE_T(~ isnan ( max_LE_S ) ) ;
145 LE_U2=LE_U(~ isnan (max_LE_U) ) ;
146 S_T2=S_T (~ isnan ( ST_max_LE_T ) ) ;
147 S_U2=S_U(~ isnan (SU_max_LE_U) ) ;
148 SL2=SL(~ isnan ( ST_max_LE_T_global ) ) ;
149 LE_T=LE_T(~ isnan ( LE_T ) ) ;
150 LE_U=LE_U(~ isnan (LE_U) ) ;
151 S_T=S_T (~ isnan ( S_T ) ) ;
152 S_U=S_U(~ isnan ( S_U ) ) ;
153 S_T_deriv=S_T_deriv (~ isnan ( S_T_deriv ) ) ;
154 max_LE_U=max_LE_U(~ isnan (max_LE_U) ) ;
155 SU_max_LE_U=SU_max_LE_U(~ isnan (SU_max_LE_U) ) ;
156 Vbl=Vbl (~ isnan ( Vbl ) ) ;
157 RVP=RVP(~ isnan (RVP) ) ;
158 multequ=multequ (~ isnan ( multequ ) ) ;
159 renT=renT (~ isnan ( renT ) ) ;
160 renE=renE (~ isnan ( renE ) ) ;
161 VrenE=VrenE(~ isnan ( VrenE ) ) ;
162 max_LE_S=max_LE_S(~ isnan ( max_LE_S ) ) ;
163 ST_max_LE_T=ST_max_LE_T(~ isnan ( ST_max_LE_T ) ) ;
164 max_LE_S_global=max_LE_S_global (~ isnan ( max_LE_S_global ) ) ;
165 ST_max_LE_T_global=ST_max_LE_T_global (~ isnan ( ST_max_LE_T_global ) ) ;
166 SU_LET=SU_LET(~ isnan ( SU_LET ) ) ;
167 UM=UM(~ isnan (UM) ) ;
168 VUM=VUM(~ isnan (VUM) ) ;
169 SL=SL(~ isnan ( SL ) ) ;
170 wb=wb(~ isnan (wb) ) ;
171 ut iE=ut iE (~ isnan ( ut iE ) ) ;
172 utiM=utiM (~ isnan ( utiM ) ) ;
173 Vbl_one=Vbl_one (~ isnan ( Vbl_one ) ) ;
174

175 % R e s t r i c t to combinations f o r which a l o c a l maximum f o r S^1 e x i s t s :
176 LE_Ta2=LE_T2 ( max_LE_S~=−1) ;
177 max_LE_Sa2=max_LE_S ( max_LE_S~=−1) ;
178 ST_max_LE_Ta2=ST_max_LE_T ( max_LE_S~=−1) ;
179 S_Ta2=S_T2 ( max_LE_S~=−1) ;
180

181 % Auxi l iary v a r i a b l e s :
182 aux0=abs ( ST_max_LE_Ta2−S_Ta2 ) ./max( abs ( ST_max_LE_Ta2 ) , abs ( S_Ta2 ) ) ;
183 aux=aux0 ( s ign ( ST_max_LE_Ta2 ) ==sign ( S_Ta2 ) ) ;
184 aux00 =( abs ( SU_max_LE_U−S_U2 ) ) ./max( abs (SU_max_LE_U) , abs ( S_U2 ) ) ;
185 aux1=aux00 ( s ign (SU_max_LE_U) ==sign ( S_U2 ) ) ;
186

187 % Combinations dropped in the s imulat ion process :
188 display ( [ ’ # \Delta ( a∗\bar \nu ) <\Gamma( a∗\bar \nu ) or \Delta ( L ) >\Gamma( L ) −

omitted : ’ num2str ( length (wb) ) ] )
189 display ( [ ’ # Mult iple e q u i l i b r i a L_E^1 − omitted : ’ num2str ( length ( multequ )

) ] ) ;
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190 display ( [ ’ # V(\ Ps i ) >0.5 in L_E^1 or L_E^0 − omitted : ’ num2str ( length ( Vbl )
) ] ) ;

191 display ( [ ’ # V(\ Ps i ) <0.5 in L_E^1 and L_E^0 , but V(\ Ps i ) >0.5 f o r some other
L_E − omitted f o r maximizations : ’ num2str ( length ( Vbl_one ) ) ] ) ;

192

193 % Admissible combinations f o r checking the e f f e c t of a marginal i n c r e a s e
in

194 % L_E ( s t a r t i n g from equi l ibr ium ) and whether s o c i a l welfare i s higher in
195 % equi l ibr ium with f r e e or r e s t r i c t e d OC:
196 display ( [ ’ # Combinations l e f t ( without maximizations ) : ’ num2str ( length (

LE_T ) ) ] ) ;
197

198 % Admissible combinations f o r comparing equi l ibr ium values to optimum
values :

199 display ( [ ’ # Combinations l e f t ( with maximizations ) : ’ num2str ( length (
max_LE_S_global ) ) ] ) ;

200

201 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

202

203 display ( [ ’mean , std and max of (VP−VP0 ) /VP0 in %: ’ num2str (mean(RVP)
∗100) ’ ’ num2str ( s td (RVP) ∗100) ’ ’ num2str (max(RVP) ∗100) ] ) ;

204

205 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

206

207 disp ( [ ’ L_E^0 > L_E^1 in % : ’ num2str ( ( length ( LE_T )−length ( f ind ( LE_T>LE_U
) ) ) /length ( LE_T ) ∗100) ’%’ ] ) ;

208 disp ( [ ’ S^0 > S^1 at equi l ibr ium in % : ’ num2str ( ( length ( S_T )−length ( f ind
( S_T>S_U ) ) ) /length ( S_T ) ∗100) ’%’ ] ) ;

209 disp ( [ ’ S^0 > S^1 at constra ined ( g loba l ) optimum in % : ’ num2str ( ( length
( ST_max_LE_T_global )−length ( f ind ( ST_max_LE_T_global−SU_max_LE_U>1e−4) ) )
/length ( ST_max_LE_T_global ) ∗100) ’%’ ] ) ;

210

211 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

212

213 disp ( [ ’ S^1 ’ ’ > −1e−3 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <−1e−3) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

214 disp ( [ ’ S^1 ’ ’ > −1e−6 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <−1e−6) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

215 disp ( [ ’ S^1 ’ ’ > 0 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <0) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

216

217 e l a =abs ( S_T_deriv .∗LE_T ./ S_T ) ;
218 disp ( [ ’mean , std of S^1 ’ ’ ∗ L_E^1/S^1 ( e l a s t i c i t y a t equi l ibr ium L_E^1) :

’ num2str (mean( e l a ) ) ’ ’ num2str ( s td ( e l a ) ) ] ) ;
219

220 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

221
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222 display ( [ ’ d e a l e r s/entrepreneurs equi l ibr ium r e n t s ( equal to GI ) with f r e e
OC as a f r a c t i o n of t h e i r u t i l i t y : ’ num2str (mean( renE . / ( renE+UM) ) ) ’

’ num2str ( s td ( renE . / ( renE+UM) ) ) ] ) ;
223 display ( [ ’ d e a l e r s/entrepreneurs equi l ibr ium r e n t s with r e s t r i c t e d OC as a

f r a c t i o n of t h e i r u t i l i t y : ’ num2str (mean( VrenE . / ( VrenE+VUM) ) ) ’ ’
num2str ( s td ( VrenE . / ( VrenE+VUM) ) ) ] ) ;

224

225 display ( [ ’A hipo ‘ s CE over a uninformed inves tor ‘ s CE in equi l ibr ium with
f r e e OC: ’ num2str (mean( ut iE . / ( utiM ) ) ) ’ ’ num2str ( s td ( ut iE . / ( utiM ) )
) ] ) ;

226

227 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

228

229 % Auxi l iary v a r i a b l e s :
230 S_Ua=S_U ( sign ( S_U ) ==sign ( S_T ) ) ;
231 S_Ta=S_T ( sign ( S_U ) ==sign ( S_T ) ) ;
232

233 display ( [ ’mean , std of |S^0−S^1|/max(|S^0| ,|S^1|) a t equi l ibr ium in % (
d i f f e r e n t s ign cases omitted ) : ’ num2str (mean( abs ( S_Ta−S_Ua ) ./max( abs
( S_Ta ) , abs ( S_Ua ) ) ) ∗100) ’ ’ num2str ( s td ( abs ( S_Ta−S_Ua ) ./max( abs ( S_Ta ) ,
abs ( S_Ua ) ) ) ∗100) ] ) ;

234 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( S_Ta ) ) ] )
235

236 % Auxi l iary v a r i a b l e s :
237 SU_max_LE_Ua2=SU_max_LE_U( max_LE_S~=−1) ;
238 aux0a=abs ( SU_max_LE_Ua2−ST_max_LE_Ta2 ) ./max( abs ( SU_max_LE_Ua2 ) , abs (

ST_max_LE_Ta2 ) ) ;
239 aux2=aux0a ( s ign ( SU_max_LE_Ua2 ) ==sign ( ST_max_LE_Ta2 ) ) ;
240

241 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
242 display ( [ ’|\hat S^0 − \hatS^1|/max(|\ hat S^0|,|\ hat S^1|) a t constra ined (

l o c a l ) optimum in % ( d i f f e r e n t s ign cases omitted , l o c a l opt . L_E^1
e x i s t s ) : ’ num2str (mean( aux2 ) ∗100) ’ ’ num2str ( s td ( aux2 ) ∗100) ] ) ;

243 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux2 ) ) ] )
244

245 % Auxi l iary v a r i a b l e s :
246 S_T2a=S_T2 ( s ign ( S_T2 ) ==sign (SU_max_LE_U) ) ;
247 SU_max_LE_Ua=SU_max_LE_U( sign ( S_T2 ) ==sign (SU_max_LE_U) ) ;
248

249 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
250 display ( [ ’mean , std of |\hat S^0−S^1|/max(|\ hat S^0| ,|S^1|) with S^1 at

equi l ibr ium and S^0 at i t s constra ined optimum in % ( d i f f e r e n t s ign
cases omitted ) : ’ num2str (mean( abs ( S_T2a−SU_max_LE_Ua ) ./max( abs ( S_T2a
) , abs ( SU_max_LE_Ua ) ) ) ∗100) ’ ’ num2str ( s td ( abs ( S_T2a−SU_max_LE_Ua ) ./
max( abs ( S_T2a ) , abs ( SU_max_LE_Ua ) ) ) ∗100) ] ) ;

251 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( S_T2a ) ) ] )
252

253 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

254
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255 disp ( [ ’ i−e f f e c t >0 in %: ’ num2str ( length ( f ind ( SU_LET>S_T ) ) /length ( LE_T )
∗100) ’%’ ] ) ;

256 disp ( [ ’ r−e f f e c t >0 in %: ’ num2str ( length ( f ind ( S_U>SU_LET ) ) /length ( LE_T )
∗100) ’%’ ] ) ;

257

258 display ( [ ’ i−e f f e c t as share of the t o t a l e f f e c t ( r e s t r i c t i o n : both e f f e c t s
p o s i t i v e ) : ’ num2str (mean ( ( SU_LET ( ( SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0)−S_T

( ( SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0) ) . / ( S_U ( ( SU_LET−S_T ) >0 & ( S_U−SU_LET )
>0)−S_T ( ( SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0) ) ) ) ] )

259 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( ( SU_LET ( (
SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0)−S_T ( ( SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0) ) ) )
] )

260

261 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

262

263 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
264 display ( [ ’mean , std of |\hat L_E^1 − L_E^1|/max( | . | , | . | ) − in % ( only

l o c a l optima ) : ’ num2str (mean( abs ( max_LE_Sa2−LE_Ta2 ) ./max( LE_Ta2 ,
max_LE_Sa2 ) ) ∗100) ’ ’ num2str ( s td ( abs ( max_LE_Sa2−LE_Ta2 ) ./max( LE_Ta2 ,
max_LE_Sa2 ) ) ∗100) ] )

265 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( LE_Ta2 ) ) ] ) ;
266

267 display ( [ ’mean , std of |\hat S^1 − S^1|/max( | . | , | . | ) − in % ( d i f f e r e n t
s ign cases omitted , only l o c a l optima ) : ’ num2str (mean( aux ) ∗100) ’ ’

num2str ( s td ( aux ) ∗100) ] ) ;
268 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux ) ) ] ) ;
269

270 display ( [ ’mean , std of |\hat L_E^0 − L_E^0|/max( | . | , | . | ) − in %: ’
num2str (mean ( ( abs (max_LE_U−LE_U2 ) ./max( LE_U2 , max_LE_U) ) ) ∗100) ’ ’
num2str ( s td ( ( abs (max_LE_U−LE_U2 ) ./max( LE_U2 , max_LE_U) ) ) ∗100) ] ) ;

271

272 display ( [ ’mean , std of |\hat S^0 − S^0|/max( | . | , | . | ) − in % ( d i f f e r e n t
s ign cases omitted ) : ’ num2str (mean( aux1 ) ∗100) ’ ’ num2str ( s td ( aux1 )
∗100) ] ) ;

273 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux1 ) ) ] ) ;
274

275 end
276

277 c l e a r aaa hh d i f f sh Vs L a Ve M N rho nuq i j j k paramCombsc dSWF SWFn
dSWFn d2SWFn dSWF2n SWF2n Vbn Fn VFn rentEn rentTn dVbn rentMn s_T_d
sqn VPn wagen timer e r r o r f l a g ;

278

279 toc

File "symaux_Basic"

1 t i c
2

3 % Create symbolic v a r i a b l e s in Matlab :
4 syms L M N sq Vs Ve rho nq a LE Vn
5
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6 % Expressions from the t e x t :
7 alpha =(L−LE ) /( rho∗Ve ) ;
8 gam=1/( alpha ^2∗Vs+Vn) ;
9 VphiGw=Ve+Vs∗Vn∗gam ;

10 beta =(LE+M) /( rho∗VphiGw) ;
11 VsGw=VphiGw−Ve ;
12

13 % Free OC:
14 EP=sq−(LE/a−nq ) /( alpha+beta ) ;
15 VP = ( ( Vs∗alpha∗beta∗gam+1) /( alpha+beta ) ) ^2/gam ;
16 Ez = ( LE/a−nq ) / ( ( alpha+beta ) ∗ (2∗ rho ∗ (Vn∗Vs∗gam+Ve ) ) ^ . 5 ) ;
17 Vz = gam∗Vn^2/((2∗ rho ∗ (Vn∗Vs∗gam+Ve ) ) ∗ ( alpha+beta ) ^2) ;
18 GP = ( EP−.5∗ rho∗VP/a ) /a ;
19 CovPz = −(VP∗Vz ) ^ . 5 ;
20 GTu = ( Ez−rho∗CovPz/a ) ^2/(1+2∗ rho∗Vz ) +( .5/ rho ) ∗ log (1+2∗ rho∗Vz ) ;
21 GI = ( . 5 / rho ) ∗ log (1+VsGw/Ve ) ;
22 GTi = Ez^2/(1+2∗ rho∗Vz ) +( .5/ rho ) ∗ log (1+2∗ rho∗Vz ) ;
23

24 % R e s t r i c t e d OC:
25 VEP = sq−rho ∗ ( Vs+Ve ) ∗ (LE/a−nq ) /(L+M) ;
26 VVP = Vn∗rho ^2∗(Vs+Ve ) ^2/(L+M) ^2;
27 VEz = rho ^ . 5∗ ( Vs+Ve ) ^ . 5∗ ( LE/a−nq ) / ( ( L+M) ∗2 ^ . 5 ) ;
28 VVz = Vn∗rho ∗ ( Vs+Ve ) /(2∗ (L+M) ^2) ;
29 VCovPz = −(VVP∗VVz) ^ . 5 ;
30 VGTi = VEz^2/(1+2∗ rho∗VVz) +( .5/ rho ) ∗ log (1+2∗ rho∗VVz) ;
31 VGTu = ( VEz−rho∗VCovPz/a ) ^2/(1+2∗ rho∗VVz) +( .5/ rho ) ∗ log (1+2∗ rho∗VVz) ;
32 VGP = (VEP−.5∗ rho∗VVP/a ) /a ;
33

34 % Free OC;
35 % b corresponds to \Ps i in the te x t ,
36 % c corresponds to \Phi in the t e x t :
37 CovPn = Vn∗ (VP∗gam) ^ . 5 ;
38 VtmP = Vs+Ve+VP∗(−Vn∗gam+1)−2∗alpha∗Vs∗ (VP∗gam) ^ . 5 ;
39 Eb = rho ^.5∗nq ∗ ( ( 1 / 2 ) ∗rho∗VtmP+N∗CovPn/Vn) ^.5/N;
40 Vb = ( Eb/nq ) ^2∗Vn ;
41 Ec = −rho∗nq∗ ( sq−EP+CovPn∗nq/Vn) /N;
42 Vc = ( Ec/nq ) ^2∗Vn ;
43 Covbc = ( Eb/nq∗ ( Ec/nq ) ) ∗Vn ;
44 UN = . 5∗ log (1−2∗Vb) /rho−Ec/rho−.5∗Vc/rho−(Eb+Covbc ) ^2/( rho∗(1−2∗Vb) ) ;
45 UM = GTi ;
46

47 % R e s t r i c t e d OC:
48 VCovPn = rho ∗ ( Vs+Ve ) ∗Vn/(L+M) ;
49 VVtmP = Vs+Ve ;
50 VEb = rho ^.5∗nq ∗ ( ( 1 / 2 ) ∗rho∗VVtmP+N∗VCovPn/Vn) ^.5/N;
51 VVb = (VEb/nq ) ^2∗Vn ;
52 VEc = −rho∗nq∗ ( sq−VEP+VCovPn∗nq/Vn) /N;
53 VVc = ( VEc/nq ) ^2∗Vn ;
54 VCovbc = (VEb/nq∗ (VEc/nq ) ) ∗Vn ;
55 VUN = . 5∗ log (1−2∗VVb) /rho−VEc/rho−.5∗VVc/rho−(VEb+VCovbc ) ^2/( rho∗(1−2∗VVb)

) ;
56 VUM = VGTi ;
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57

58 % S o c i a l welfare :
59 SWF = LE∗ (GP+GTu) +(L−LE ) ∗ ( GTi+GI ) +N∗UN+M∗UM;
60 SWF2 = LE∗ (VGP+VGTu) +(L−LE ) ∗VUM+N∗VUN+M∗VUM;
61

62 % F i r s t and second d e r i v a t i v e s :
63 dVb= d i f f (Vb , LE ) ;
64 dSWF= d i f f (SWF, LE ) ;
65 d2SWF= d i f f (dSWF, LE ) ;
66

67 % \Delta ( L_E )−\Gamma( L_E ) :
68 F=GP+GTu−GI−GTi ;
69 VF=VGP+VGTu−VGTi ;
70

71 % " Rents " :
72 rentE=GP+GTu−GTi ;
73 rentT=GI ;
74

75 % Transform express ions i n t o ’ charac ter ’ form :
76 SWFn=char (SWF) ;
77 SWF2n=char (SWF2) ;
78 dVbn=char (dVb) ;
79 Vbn=char (Vb) ;
80 dSWFn=char (dSWF) ;
81 d2SWFn=char (d2SWF) ;
82 Fn=char ( F ) ;
83 VFn=char (VF) ;
84 rentTn=char ( rentT ) ;
85 rentEn=char ( rentE ) ;
86 VPn=char (VP) ;
87 GTin=char ( GTi ) ;
88 VGTin=char ( VGTi ) ;
89

90 c l e a r L M N sq Vs Ve rho nq a LE Vn alpha beta gam VphiGw VsGw EP Ez VP Vz
GP GTu GTi GI CovPz VEP VEz VVP VVz VGP VGTu VGTi VGI VCovPz Vb Vc

Covbc Eb Ec Vb Vc Covbc VEb VEc VVb VVc VCovbc SWF SWF2 dSWF dSWF2 F VF
VCovPn VUM VUN UM UN dVb rentT rentE SWFnN SWF2nN d2SWF dSWFnN

91

92 toc

Function "Basic_Model_f1"

1 % This i s funct ion " Basic_Model_f1 " . The r . h . s . shows funct ion inputs , the
2 % l . h . s . shows funct ion outputs :
3 func t ion [ equ_T , equ_U , s_T , s_U , s_T_d , maxLEU, SU_maxLEU, Vbl , rVP ,

multequ , rT , rE , VrE , maxLES , ST_maxLET , maxLESglobal , ST_maxLETglobal , SU_LET ,
UM,VUM, SL , wb, utiE , utiM , Vbl_one ] = Basic_Model_f1 ( L , a , Vs , rho , Ve ,M, nq , sq ,
N, t , Vn , Vbn , Fn , VFn , SWFn, dSWFn, d2SWFn , SWF2n , rentEn , rentTn , VPn , GTin , VGTin ,
dVbn)

4

5 % Show simulat ion progress in the command window :
6 i f mod( t , 1 0 0 0 0 ) ==0
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7 display ( num2str ( t ) ) ;
8 toc
9 e l s e

10 end
11

12 x0=double ( L/2) ;
13

14 % Transform ’F ’ i n t o a funct ion of L_E :
15 F=eval ( [ ’@( LE ) ’ Fn ] ) ;
16

17 % Set up the funct ion ’ s output v a r i a b l e s :
18 equ_T=NaN;
19 s_T=NaN;
20 s_T_d=NaN;
21 equ_U=NaN;
22 s_U=NaN;
23 maxLEU=NaN;
24 SU_maxLEU=NaN;
25 Vbl=NaN;
26 rVP=NaN;
27 multequ=NaN;
28 rT=NaN;
29 rE=NaN;
30 VrE=NaN;
31 maxLES=NaN;
32 ST_maxLET=NaN;
33 maxLESglobal=NaN;
34 ST_maxLETglobal=NaN;
35 SU_LET=NaN;
36 UM=NaN;
37 VUM=NaN;
38 SL=NaN;
39 wb=NaN;
40 ut iE=NaN;
41 utiM=NaN;
42 Vbl_one=NaN;
43

44

45 i f F ( a∗nq ) <0 || F ( L ) >0
46 wb=1;
47 e l s e
48 % Solve f o r equi l ibr ium L_E ^1; the funct ion " rmsearch " f i n d s good s t a r t i n g

points and search i n t e r v a l s :
49 [ u , ~ , e r r o r f l a g ]= rmsearch ( F , ’ f zero ’ , x0 , 0 , L , ’ I n i t i a l S a m p l e ’ , 1 0 0 ) ;
50

51 f o r k1 =1: length ( e r r o r f l a g )
52 i f e r r o r f l a g ( k1 ) <0
53 u ( k1 ) = [ ] ;
54 end
55 end
56 % Drop the combination , i f i t impl ies mult ip le e q u i l i b r i a :
57 i f length ( u ) >1
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58 multequ =1;
59 e l s e
60

61 Vb=eval ( [ ’@( LE ) ’ Vbn ] ) ;
62 Vbu=Vb( u ) ;
63 VbL=Vb( L ) ; % Vb in case of r e s t r i c e d OC i s indep . of L_E
64

65 % Drop the combination , i f i t does not imply well defined noise t r a d e r
u t i l t i y :

66 i f Vbu>=0.5 || VbL>=0.5
67 Vbl =1;
68

69 e l s e
70

71 equ_T=u ; % the unique L_E^1
72

73 VF = eval ( [ ’@( LE ) ’ VFn ] ) ;
74 VF0=VF ( 0 ) ;
75 VFL=VF( L ) ;
76 i f s ign ( VF0 ) ==sign (VFL) && sign (VFL) >0 % no i n t e r i o r

s o l u t i o n e x i s t s (VF i s s t r i c t l y decreasing , see t e x t )
77 equ_U=L ; % corner equi l ibr ium L_E^0=L
78 e l s e i f s ign ( VF0 ) ==sign (VFL) && sign ( VF0 ) <0
79 equ_U=0;
80 disp ( ’ Warning : L_E^0=0 ’ ) ;
81 e l s e
82 % Solve f o r i n t e r i o r equi l ibr ium L_E ^0:
83 [ equ_U , ~ , e r r o r f l a g ]= fzero (VF , [ 0 L ] ) ; % S u f f i c i e n t , as

we know t h a t L_E^0 i s unique ( see t e x t )
84

85 i f e r r o r f l a g <0
86 equ_U = [ ] ;
87 end
88 i f isempty ( equ_U )
89 disp ( ’ Error : No equ_U ’ )
90 end
91 end
92

93 % Transform express ions i n t o f u n c t i o n s of L_E :
94 VP=eval ( [ ’@( LE ) ’ VPn ] ) ;
95 rentT=eval ( [ ’@( LE ) ’ rentTn ] ) ;
96 rentE=eval ( [ ’@( LE ) ’ rentEn ] ) ;
97 GTi=eval ( [ ’@( LE ) ’ GTin ] ) ;
98 VGTi=eval ( [ ’@( LE ) ’ VGTin ] ) ;
99

100 VP0=Vs ; % Ex−ante p r i c e var iance in the n o i s e l e s s case
with f r e e OC

101

102 rVP=(VP( equ_T )−VP0 ) /VP0 ;
103

104 rT=rentT ( equ_T ) ;
105 rE=rentE ( equ_T ) ;
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106

107 ut iE=rE+GTi ( equ_T ) ; % CE_E
108 utiM=GTi ( equ_T ) ; % CE_M
109

110 UM=GTi ( equ_T ) ;
111

112 % Transform express ions i n t o f u n c t i o n s of L_E :
113 SWF=eval ( [ ’@( LE ) ’ SWFn] ) ;
114 SWF2=eval ( [ ’@( LE ) ’ SWF2n ] ) ;
115 dSWF=eval ( [ ’@( LE ) ’ dSWFn ] ) ;
116 d2SWF=eval ( [ ’@( LE ) ’ d2SWFn ] ) ;
117

118 s_T=SWF( equ_T ) ; % equi l ibr ium s o c i a l welfare with f r e e OC
119 s_T_d=dSWF( equ_T ) ; % slope of the s o c i a l welfare funct ion

with f r e e OC at equi l ibr ium L_E^1
120 SL=SWF2( L ) ; % s o c i a l welfare a t L_E=L
121

122 VrE=VF( equ_U ) ;
123 VUM=VGTi ( equ_U ) ;
124

125 s_U=SWF2( equ_U ) ; % equi l ibr ium s o c i a l welfare with
r e s t r i c t e d OC

126 SU_LET=SWF2( equ_T ) ; % s o c i a l welfare with r e s t r i c t e d OC,
evaluated at L_E=L_E^1

127

128 % For maximization of s o c i a l welfare , noise t r a d e r u t i l i t y has to
129 % be defined f o r a l l L_E ; Hence , we drop a l l combinations which
130 % imply t h a t Vb i s g r e a t e r than 0 . 5 f o r any L_E
131 dVb=eval ( [ ’@( LE ) ’ dVbn ] ) ;
132 [ Vb1 , ~ , e r r o r f l a g 0 ]= rmsearch (dVb , ’ fzero ’ , x0 , 0 , L , ’ I n i t i a l S a m p l e ’

, 1 0 0 ) ;
133 f o r k0 =1: length ( e r r o r f l a g 0 )
134 i f e r r o r f l a g 0 ( k0 ) <0
135 Vb1 ( k0 ) = [ ] ;
136 e l s e
137 end
138 end
139

140 i f isempty ( Vb1 )
141 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) ] ) ;
142 e l s e i f length ( Vb1 ) >1
143 disp ( ’Vb more than one extremum ’ )
144 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
145 e l s e i f dVb( Vb1+1e−12)>0
146 disp ( ’Vb has a minimum ’ )
147 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
148 e l s e
149 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
150 end
151 i f Vbmaxvalgl >=0.5 % there i s an L_E f o r which Vb>0.5
152 Vbl_one =1;
153 e l s e
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154 % Cal l funct ion " S1opt " ( see below ) , which f i n d s the l o c a l
155 % as well as the g loba l maximum of S ^1:
156 [ maxLES , maxLESglobal ]= S1opt (dSWF, d2SWF) ;
157

158 ST_maxLET=SWF( maxLES ) ; % l o c a l maximum s o c i a l welfare S^1
159 ST_maxLETglobal=SWF( maxLESglobal ) ; % globa l maximum s o c i a l

welfare S^1
160

161 % Cal l funct ion " S0opt " ( see below ) , which f i n d s the
162 % maximum of S ^0:
163 maxLEU=S0opt (SWF2) ;
164

165 SU_maxLEU=SWF2(maxLEU) ; % maximum s o c i a l welfare S^0
166 end
167 end
168 end
169 end
170

171 % Auxi l iary f u n c t i o n s " S1opt " and " S0opt " below
172

173 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
174 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
176

177 % funct ion " S1opt " f i n d s the L_E t h a t ( l o c a l l y / g l o b a l l y ) maximizes S ^1:
178 func t ion [ maxLES , maxLESglobal ] = S1opt (dSWF, d2SWF)
179

180 [ j , ~ , e r r o r f l a g ]= rmsearch (dSWF, ’ fzero ’ , x0 , 0 , L , ’ I n i t i a l S a m p l e ’
, 1 0 0 ) ;

181 f o r k2 =1: length ( e r r o r f l a g )
182 i f e r r o r f l a g ( k2 ) <0
183 j ( k2 ) = [ ] ;
184 e l s e
185 end
186 end
187

188 i f isempty ( j ) % no l o c a l extremum
189 maxLES=−1;
190 j va laux =[SWF( 0 ) SWF( L ) ] ;
191 jaux =[0 L ] ;
192 maxLESglobal=jaux ( jva laux==max( jva laux ) ) ;
193 e l s e
194 % check i f l o c a l extremum i s a maximum :
195 j v a l =NaN( length ( j ) , 1 ) ;
196 d2aux=NaN( length ( j ) , 1 ) ;
197 f o r i 1 =1: length ( j )
198 d2aux ( i 1 ) =d2SWF( j ( i 1 ) ) ;
199 j v a l ( i 1 ) =SWF( j ( i 1 ) ) ;
200 end
201 j = j ( d2aux <0) ; % keep only maxima
202 j v a l = j v a l ( d2aux <0) ;
203
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204 j va laux =[ j v a l ’ SWF( 0 ) SWF( L ) ] ;
205 jaux =[ j ’ 0 L ] ;
206 maxLESglobal=jaux ( jva laux==max( jva laux ) ) ;
207

208 i f isempty ( j ) % no l o c a l maximum
209 maxLES=−1;
210 e l s e i f length ( j ) ==1
211 maxLES= j ;
212 e l s e
213 % in case there are mult ip le l o c a l maxima , choose

the one c l o s e s t to equi l ibr ium L_E ^1:
214 lowdis=zeros ( length ( j ) , 1 ) ;
215 f o r k3 =1: length ( j )
216 lowdis ( k3 ) =abs ( equ_T− j ( k3 ) ) ;
217 end
218 maxLES= j ( lowdis==min ( lowdis ) ) ;
219 end
220 end
221

222 end
223

224

225

226 % funct ion " S0opt " f i n d s the L_E t h a t maximizes S ^0:
227 func t ion maxLEU = S0opt (SWF2)
228

229 opts2 = optimset ( ’ TolX ’ ,1 e−6) ; % d e f a u l t TolX i s 1e−4
230 mSWF2=@( LE )−SWF2( LE ) ;
231 % fminbnd f i n d s the min of −SWF2 ( l o c a l i f i t e x i s t s , g loba l
232 % otherwise ) :
233 [ e , ~ , e r r o r f l a g ]= fminbnd (mSWF2, 0 , L , opts2 ) ;
234

235 f o r k4 =1: length ( e r r o r f l a g )
236 i f e r r o r f l a g ( k4 ) <0
237 e ( k4 ) = [ ] ;
238 e l s e
239 end
240 end
241 % S^0 i s inverse U−shaped ( see t e x t ) :
242 i f e>L−1e−3 % no l o c a l minimum has been found
243 maxLEU=L ;
244 e l s e i f e<0+1e−3 % no l o c a l minimum has been found
245 maxLEU=0;
246 disp ( ’ optimal L_E equals zero ’ )
247 e l s e
248 maxLEU=e ;
249 end
250

251 end
252

253

254 end
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Adjustemts to function "rmsearch"

. . .

427 % any c r o s s i n g s found ?
428 i f isempty ( k )
429 x f i n a l =NaN;
430 f f i n a l =NaN;
431 e x i t f l a g =−10;
432 e l s e
433 x f i n a l = zeros ( length ( k ) , 1 ) ;
434 f f i n a l = x f i n a l ;
435 e x i t f l a g = x f i n a l ;
436 x s t a r t = x f i n a l ;
437 f s t a r t = x f i n a l ;
438 % loop over the candidate i n t e r v a l s
439 f o r i = 1 : length ( k )
440 [ x f i n a l ( i ) , f f i n a l ( i ) , e x i t f l a g ( i ) ] = fzero ( fun , . . .
441 [ x i n i t i a l ( k ( i ) ) , x i n i t i a l ( k ( i ) +1) ] , par . Options ) ;
442

443 % s t o r e the b e t t e r of the two points in each bracket
444 i f abs ( f i n i t i a l ( k ( i ) ) ) <= abs ( f i n i t i a l ( k ( i ) +1) )
445 x s t a r t ( i ) = x i n i t i a l ( k ( i ) ) ;
446 f s t a r t ( i ) = f i n i t i a l ( k ( i ) ) ;
447 e l s e
448 x s t a r t ( i ) = x i n i t i a l ( k ( i ) +1) ;
449 f s t a r t ( i ) = f i n i t i a l ( k ( i ) +1) ;
450 end
451 end
452 end

. . .

D.3 Full Employment Model

Code files are given in the same order as for the basic version of the model. All of
the code is also submitted in digital form.

File "FE_Model"

1 % S t a r t t imer :
2 t i c
3

4 % Cal l a u x i l i a r y f i l e " symaux_FE " , within which we s t a t e and derive c losed
5 % form express ions required l a t e r f o r c a l c u l a t i o n s within funct ion
6 % " FE_Model_f1 " :
7 symaux_FE ;
8

9 % Parameter values s e t as descr ibed in the t e x t :
10 L=100; %( 1 )
11 a =10; %( 2 )
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12 Vs =1; %( 3 )
13 rho = [ 0 . 0 1 0 .025 0 . 0 5 0 .075 0 . 1 0 . 2 5 0 . 5 0 . 7 5 1 ] ; %( 4 )
14 Ve = [ 0 . 1 0 . 2 5 0 . 5 0 . 7 5 1 ] ; %( 5 )
15 M=[1 2 3 5 10 1 0 0 ] ; %( 6 )
16 nuq = [ 0 . 0 0 1 0 . 0 1 0 . 0 5 0 . 1 0 . 2 0 . 5 ] ; %( 7 )
17 b = [ 0 . 1 0 . 2 5 0 . 4 0 . 5 5 ] ; %( 8 )
18 A= [ 0 . 2 5 0 . 5 0 . 7 5 1 ] ; %( 9 )
19 sh = [ 0 . 0 1 0 . 0 5 0 . 1 0 . 2 5 0 . 5 0 . 7 5 0 . 9 0 . 9 5 0 . 9 9 ] ; %( 1 0 )
20 N=[1 2 3 5 10 1 0 0 ] ; %( 1 1 )
21 Vnu= [ 0 . 0 0 1 0 . 0 1 0 . 0 5 0 . 1 0 . 2 0 . 5 ] ;
22

23 % I n i t i a t e and f i l l in the matrix "paramCombs " , which conta ins a l l
24 % parameter combinations ; Each row of the f i n a l "paramCombs" matrix
25 % c o n s t i t u t e s one parameter combination :
26 paramCombs=L ’ ;
27

28 avec=NaN( s i z e ( paramCombs , 1 ) , length ( a ) ) ;
29 f o r k =1: s i z e ( paramCombs , 1 )
30 avec ( k , : ) =a ;
31 end
32 avec=reshape ( avec , [ ] , 1 ) ;
33

34 paramCombs=repmat ( paramCombs , length ( a ) , 1 ) ;
35 paramCombs=[paramCombs avec ] ;
36 c l e a r avec
37

38 Vsvec=NaN( s i z e ( paramCombs , 1 ) , length ( Vs ) ) ;
39 f o r k =1: s i z e ( paramCombs , 1 )
40 Vsvec ( k , : ) =Vs ;
41 end
42 Vsvec=reshape ( Vsvec , [ ] , 1 ) ;
43

44 paramCombs=repmat ( paramCombs , length ( Vs ) , 1 ) ;
45 paramCombs=[paramCombs Vsvec ] ;
46 c l e a r Vsvec
47

48 rhovec=NaN( s i z e ( paramCombs , 1 ) , length ( rho ) ) ;
49 f o r k =1: s i z e ( paramCombs , 1 )
50 rhovec ( k , : ) =rho ∗ ( 4 / ( 1 . 2 5 ^ . 5 ) ) ∗vpa ( paramCombs ( k , 2 ) /(paramCombs ( k , 3 ) ^ . 5 )

) ;
51 end
52 rhovec=reshape ( rhovec , [ ] , 1 ) ;
53

54 paramCombs=repmat ( paramCombs , length ( rho ) , 1 ) ;
55 paramCombs=[paramCombs rhovec ] ;
56 c l e a r rhovec
57

58 Vevec=NaN( s i z e ( paramCombs , 1 ) , length ( Ve ) ) ;
59 f o r k =1: s i z e ( paramCombs , 1 )
60 Vevec ( k , : ) =Ve∗paramCombs ( k , 3 ) ;
61 end
62 Vevec=reshape ( Vevec , [ ] , 1 ) ;
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63

64 paramCombs=repmat ( paramCombs , length ( Ve ) , 1 ) ;
65 paramCombs=[paramCombs Vevec ] ;
66 c l e a r Vevec
67

68 Mvec=NaN( s i z e ( paramCombs , 1 ) , length (M) ) ;
69 f o r k =1: s i z e ( paramCombs , 1 )
70 Mvec ( k , : ) =M∗paramCombs ( k , 1 ) ;
71 end
72 Mvec=reshape ( Mvec , [ ] , 1 ) ;
73

74 paramCombs=repmat ( paramCombs , length (M) , 1 ) ;
75 paramCombs=[paramCombs Mvec ] ;
76 c l e a r Mvec
77

78 nuqvec=NaN( s i z e ( paramCombs , 1 ) , length ( nuq ) ) ;
79 f o r k =1: s i z e ( paramCombs , 1 )
80 nuqvec ( k , : ) =nuq∗paramCombs ( k , 1 ) /paramCombs ( k , 2 ) ;
81 end
82 nuqvec=reshape ( nuqvec , [ ] , 1 ) ;
83

84 paramCombs=repmat ( paramCombs , length ( nuq ) , 1 ) ;
85 paramCombs=[paramCombs nuqvec ] ;
86 c l e a r nuqvec
87

88 bvec=NaN( s i z e ( paramCombs , 1 ) , length ( b ) ) ;
89 f o r k =1: s i z e ( paramCombs , 1 )
90 bvec ( k , : ) =b ;
91 end
92 bvec=reshape ( bvec , [ ] , 1 ) ;
93

94 paramCombs=repmat ( paramCombs , length ( b ) , 1 ) ;
95 paramCombs=[paramCombs bvec ] ;
96 c l e a r bvec
97

98 Avec=NaN( s i z e ( paramCombs , 1 ) , length (A) ) ;
99 f o r k =1: s i z e ( paramCombs , 1 )

100 Avec ( k , : ) =A∗0 . 5∗ ( paramCombs ( k , 4 ) ∗paramCombs ( k , 3 ) ) /(paramCombs ( k , 2 ) ∗ (
paramCombs ( k , 8 ) ) ) ∗ (paramCombs ( k , 6 ) /paramCombs ( k , 7 ) ) ^(paramCombs ( k
, 8 ) −1) ;

101 end
102 Avec=reshape ( Avec , [ ] , 1 ) ;
103

104 paramCombs=repmat ( paramCombs , length (A) , 1 ) ;
105 paramCombs=[paramCombs Avec ] ;
106 c l e a r Avec
107

108 shvec=NaN( s i z e ( paramCombs , 1 ) , length ( sh ) ) ;
109 f o r k =1: s i z e ( paramCombs , 1 )
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110 shvec ( k , : ) =vpa ( paramCombs ( k , 4 ) ∗paramCombs ( k , 3 ) /(2∗paramCombs ( k , 2 ) ) −((
paramCombs ( k , 8 ) ) ∗paramCombs ( k , 9 ) ∗ (paramCombs ( k , 6 ) /paramCombs ( k , 7 ) )
^(1−paramCombs ( k , 8 ) ) ) ) +sh∗vpa ( ( paramCombs ( k , 1 )−paramCombs ( k , 2 ) ∗
paramCombs ( k , 7 ) ) ∗paramCombs ( k , 4 ) ∗paramCombs ( k , 5 ) /(paramCombs ( k , 2 ) ∗ (
paramCombs ( k , 1 ) +paramCombs ( k , 6 ) ) ) + ( ( paramCombs ( k , 8 ) ) ∗paramCombs ( k
, 9 ) ∗ (paramCombs ( k , 6 ) /paramCombs ( k , 7 ) ) ^(1−paramCombs ( k , 8 ) ) ) −((
paramCombs ( k , 8 ) ) ∗paramCombs ( k , 9 ) ∗ (paramCombs ( k , 2 ) ∗paramCombs ( k , 6 ) /
paramCombs ( k , 1 ) ) ^(1−paramCombs ( k , 8 ) ) ) ) ;

111 end
112 shvec=reshape ( shvec , [ ] , 1 ) ;
113

114 paramCombs=repmat ( paramCombs , length ( sh ) , 1 ) ;
115 paramCombs=[paramCombs shvec ] ;
116 c l e a r shvec
117

118 % Rule out mult ip le e q u i l i b r i a in case of d e t e r m i n i s t i c noise :
119 f o r k =1: s i z e ( paramCombs , 1 )
120 i f paramCombs ( k , 4 ) ∗ (paramCombs ( k , 1 0 ) +paramCombs ( k , 9 ) ∗ (paramCombs ( k , 8 ) )

∗ (paramCombs ( k , 2 ) ∗paramCombs ( k , 6 ) /paramCombs ( k , 1 ) ) ^(1−paramCombs ( k
, 8 ) )−paramCombs ( k , 4 ) ∗ (paramCombs ( k , 3 ) +paramCombs ( k , 5 ) ) ∗ (paramCombs (
k , 1 ) /paramCombs ( k , 2 )−paramCombs ( k , 7 ) ) /(paramCombs ( k , 1 ) +paramCombs ( k
, 6 ) ) ) /paramCombs ( k , 2 ) −.5∗ log (1+paramCombs ( k , 3 ) /paramCombs ( k , 5 ) ) >0

121 paramCombs ( k , 1 0 ) =nan ;
122 end
123 end
124

125 Nvec=NaN( s i z e ( paramCombs , 1 ) , length (N) ) ;
126 f o r k =1: s i z e ( paramCombs , 1 )
127 Nvec ( k , : ) =0.25∗N∗ (paramCombs ( k , 1 ) +paramCombs ( k , 6 ) ) ;
128 end
129 Nvec=reshape ( Nvec , [ ] , 1 ) ;
130

131 paramCombs=repmat ( paramCombs , length (N) , 1 ) ;
132 paramCombs=[paramCombs Nvec ] ;
133 c l e a r Nvec
134

135 disp ( [ ’ # Parameter combinations f o r each \sigma_\nu at s t a r t of the
s imulat ion ( i n c l . mult ipl . equ . in the n o i s l e s s case ) : ’ num2str ( s i z e (
paramCombs , 1 ) ) ] ) ;

136

137 paramCombs=paramCombs(~ isnan ( paramCombs ( : , 1 0 ) ) , : ) ;
138

139 disp ( [ ’ # Parameter combinations f o r each \sigma_\nu at s t a r t of the
s imulat ion ( e x c l . mult ipl . equ . in the n o i s l e s s case ) : ’ num2str ( s i z e (
paramCombs , 1 ) ) ] ) ;

140

141 t imer = ( 1 : s i z e ( paramCombs , 1 ) ) ’ ;
142 paramCombs=[paramCombs timer ] ;
143

144 Vnuvec=NaN( s i z e ( paramCombs , 1 ) , length (Vnu) ) ;
145 f o r k =1: s i z e ( paramCombs , 1 )
146 Vnuvec ( k , : ) =Vnu. ^ 2∗ ( paramCombs ( k , 1 ) /paramCombs ( k , 2 ) ) ^2;
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147 end
148

149 toc
150

151 % Simulate the model f o r each \sigma_\nu :
152 f o r i =1: s i z e ( Vnuvec , 2 )
153 disp ( [ ’\sigma_\nu= ’ num2str ( double (Vnu( i ) ∗100) ) ’% of L/a ’ ] ) ;
154 paramCombsci=num2cell ( [ paramCombs Vnuvec ( : , i ) ] ) ;
155

156 % Cal l funct ion " FE_Model_f1 " f o r each parameter combination ; the
157 % " r . h . s . " g ives the funct ion inputs , the " l . h . s . " g ives the funct ion
158 % outputs :
159 [ LE_T , LE_U , S_T , S_U , S_T_deriv , max_LE_U , SU_max_LE_U , Vbl , RVP, multequ ,

renT , renE , renM , VrenE , VrenM , max_LE_S , ST_max_LE_T , max_LE_S_global ,
ST_max_LE_T_global , GTi , VGTi , SU_LET , SL , wb, sqq , utiE , utiM , Vbl_one ] =
arrayfun (@( n ) FE_Model_f1 ( paramCombsci { n , : } , Vbn , Fn , VFn , SWFn, dSWFn,
d2SWFn , SWF2n , rentEn , rentTn , rentMn , VPn , sqn , GTin , VGTin , dVbn) , 1 : s i z e (
paramCombsci , 1 ) , ’ uni ’ , 1 ) ;

160

161 toc
162

163 % Get r id of the parameter combinations t h a t led to nan−values
164 % within " FE_Model_f1 " :
165 paramCombsci=paramCombsci (~ isnan ( LE_T ) , : ) ;
166 LE_T2=LE_T(~ isnan ( max_LE_S ) ) ;
167 LE_U2=LE_U(~ isnan (max_LE_U) ) ;
168 S_T2=S_T (~ isnan ( ST_max_LE_T ) ) ;
169 S_U2=S_U(~ isnan (SU_max_LE_U) ) ;
170 SL2=SL(~ isnan ( ST_max_LE_T_global ) ) ;
171 LE_T=LE_T(~ isnan ( LE_T ) ) ;
172 LE_U=LE_U(~ isnan (LE_U) ) ;
173 S_T=S_T (~ isnan ( S_T ) ) ;
174 S_U=S_U(~ isnan ( S_U ) ) ;
175 S_T_deriv=S_T_deriv (~ isnan ( S_T_deriv ) ) ;
176 max_LE_U=max_LE_U(~ isnan (max_LE_U) ) ;
177 SU_max_LE_U=SU_max_LE_U(~ isnan (SU_max_LE_U) ) ;
178 Vbl=Vbl (~ isnan ( Vbl ) ) ;
179 RVP=RVP(~ isnan (RVP) ) ;
180 multequ=multequ (~ isnan ( multequ ) ) ;
181 renT=renT (~ isnan ( renT ) ) ;
182 renE=renE (~ isnan ( renE ) ) ;
183 renM=renM(~ isnan ( renM ) ) ;
184 VrenE=VrenE(~ isnan ( VrenE ) ) ;
185 VrenM=VrenM(~ isnan (VrenM) ) ;
186 max_LE_S=max_LE_S(~ isnan ( max_LE_S ) ) ;
187 ST_max_LE_T=ST_max_LE_T(~ isnan ( ST_max_LE_T ) ) ;
188 max_LE_S_global=max_LE_S_global (~ isnan ( max_LE_S_global ) ) ;
189 ST_max_LE_T_global=ST_max_LE_T_global (~ isnan ( ST_max_LE_T_global ) ) ;
190 GTi=GTi (~ isnan ( GTi ) ) ;
191 VGTi=VGTi(~ isnan ( VGTi ) ) ;
192 SU_LET=SU_LET(~ isnan ( SU_LET ) ) ;
193 SL=SL(~ isnan ( SL ) ) ;



168 Appendix D. Matlab Code

194 wb=wb(~ isnan (wb) ) ;
195 sqq=sqq (~ isnan ( sqq ) ) ;
196 ut iE=ut iE (~ isnan ( ut iE ) ) ;
197 utiM=utiM (~ isnan ( utiM ) ) ;
198 Vbl_one=Vbl_one (~ isnan ( Vbl_one ) ) ;
199

200 % R e s t r i c t to combinations f o r which a l o c a l maximum f o r S^1 e x i s t s :
201 LE_Ta2=LE_T2 ( max_LE_S~=−1) ;
202 max_LE_Sa2=max_LE_S ( max_LE_S~=−1) ;
203 ST_max_LE_Ta2=ST_max_LE_T ( max_LE_S~=−1) ;
204 S_Ta2=S_T2 ( max_LE_S~=−1) ;
205

206 % Auxi l iary v a r i a b l e s :
207 aux0=abs ( ST_max_LE_Ta2−S_Ta2 ) ./max( abs ( ST_max_LE_Ta2 ) , abs ( S_Ta2 ) ) ;
208 aux=aux0 ( s ign ( ST_max_LE_Ta2 ) ==sign ( S_Ta2 ) ) ;
209 aux00 =( abs ( SU_max_LE_U−S_U2 ) ) ./max( abs (SU_max_LE_U) , abs ( S_U2 ) ) ;
210 aux1=aux00 ( s ign (SU_max_LE_U) ==sign ( S_U2 ) ) ;
211

212 display ( [ ’ # \Delta ( a∗\bar \nu ) <\Gamma( a∗\bar \nu ) or \Delta ( L ) >\Gamma( L ) −
omitted : ’ num2str ( length (wb) ) ] )

213 display ( [ ’ # Mult iple e q u i l i b r i a L_E^1 − omitted : ’ num2str ( length ( multequ )
) ] ) ;

214 display ( [ ’ # V(\ Ps i ) >0.5 in L_E^1 or L_E^0 − omitted : ’ num2str ( length ( Vbl )
) ] ) ;

215 display ( [ ’ # V(\ Ps i ) <0.5 in L_E^1 and L_E^0 , but V(\ Ps i ) >0.5 f o r some other
L_E − omitted f o r maximizations : ’ num2str ( length ( Vbl_one ) ) ] ) ;

216

217 % Admissible combinations f o r checking the e f f e c t of a marginal i n c r e a s e
in

218 % L_E ( s t a r t i n g from equi l ibr ium ) and whether s o c i a l welfare i s higher in
219 % equi l ibr ium with f r e e or r e s t r i c t e d OC:
220 display ( [ ’ # Combinations l e f t ( without maximizations ) : ’ num2str ( length (

LE_T ) ) ] ) ;
221

222 % Admissible combinations f o r comparing equi l ibr ium values to optimum
values :

223 display ( [ ’ # Combinations l e f t ( with maximizations ) : ’ num2str ( length (
max_LE_S_global ) ) ] ) ;

224

225 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

226

227 display ( [ ’mean , std and max of (VP−VP0 ) /VP0 in %: ’ num2str (mean(RVP)
∗100) ’ ’ num2str ( s td (RVP) ∗100) ’ ’ num2str (max(RVP) ∗100) ] ) ;

228

229 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

230

231 disp ( [ ’ L_E^0 > L_E^1 in % : ’ num2str ( ( length ( LE_T )−length ( f ind ( LE_T>LE_U
) ) ) /length ( LE_T ) ∗100) ’%’ ] ) ;

232 disp ( [ ’ S^0 > S^1 at equi l ibr ium in % : ’ num2str ( ( length ( S_T )−length ( f ind
( S_T>S_U ) ) ) /length ( S_T ) ∗100) ’%’ ] ) ;
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233 disp ( [ ’ S^0 > S^1 at constra ined ( g loba l ) optimum in % : ’ num2str ( ( length
( ST_max_LE_T_global )−length ( f ind ( ST_max_LE_T_global−SU_max_LE_U>1e−4) ) )
/length ( ST_max_LE_T_global ) ∗100) ’%’ ] ) ;

234

235 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

236

237 disp ( [ ’ S^1 ’ ’ > −1e−3 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <−1e−3) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

238 disp ( [ ’ S^1 ’ ’ > −1e−6 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <−1e−10) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

239 disp ( [ ’ S^1 ’ ’ > 0 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <0) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

240

241 e l a =abs ( S_T_deriv .∗LE_T ./ S_T ) ;
242 disp ( [ ’mean , std of S^1 ’ ’ ∗ L_E^1/S^1 ( e l a s t i c i t y a t equi l ibr ium L_E^1) :

’ num2str (mean( e l a ) ) ’ ’ num2str ( s td ( e l a ) ) ] ) ;
243

244 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

245

246 display ( [ ’ d e a l e r s/entrepreneurs equi l ibr ium r e n t s ( equal to GI ) with f r e e
OC as a f r a c t i o n of t h e i r u t i l i t y : ’ num2str (mean( renE . / ( renE+GTi ) ) ) ’

’ num2str ( s td ( renE . / ( renE+GTi ) ) ) ] ) ;
247 display ( [ ’ d e a l e r s/entrepreneurs equi l ibr ium r e n t s with r e s t r i c t e d OC as a

f r a c t i o n of t h e i r u t i l i t y : ’ num2str (mean( VrenE . / ( VrenE+VGTi ) ) ) ’ ’
num2str ( s td ( VrenE . / ( VrenE+VGTi ) ) ) ] ) ;

248

249 display ( [ ’ equi l ibr ium wage with f r e e OC as a f r a c t i o n of worker u t i l i t y :
’ num2str (mean( renM . / ( renM+GTi ) ) ) ’ ’ num2str ( s td ( renM . / ( renM+GTi ) ) )
] ) ;

250 display ( [ ’ equi l ibr ium wage with r e s t r i c t e d OC as a f r a c t i o n of worker
u t i l i t y : ’ num2str (mean(VrenM . / ( VrenM+VGTi ) ) ) ’ ’ num2str ( s td (VrenM
. / ( VrenM+VGTi ) ) ) ] ) ;

251

252 display ( [ ’ r a t i o of entrepreneurs/d e a l e r s equi l ibr ium r e n t s over workers
r e n t s ( i . e . , GI/GJ ) with f r e e OC: ’ num2str (mean( renE . / ( renM ) ) ) ’ ’
num2str ( s td ( renE . / ( renM ) ) ) ] ) ;

253

254 display ( [ ’A hipo ‘ s CE over a worker ‘ s CE in equi l ibr ium with f r e e OC: ’
num2str (mean( ut iE . / ( utiM ) ) ) ’ ’ num2str ( s td ( ut iE . / ( utiM ) ) ) ] ) ;

255

256 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

257

258 % Auxi l iary v a r i a b l e s :
259 S_Ua=S_U ( sign ( S_U ) ==sign ( S_T ) ) ;
260 S_Ta=S_T ( sign ( S_U ) ==sign ( S_T ) ) ;
261
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262 display ( [ ’mean , std of |S^0−S^1|/max(|S^0| ,|S^1|) a t equi l ibr ium in % (
d i f f e r e n t s ign cases omitted ) : ’ num2str (mean( abs ( S_Ta−S_Ua ) ./max( abs
( S_Ta ) , abs ( S_Ua ) ) ) ∗100) ’ ’ num2str ( s td ( abs ( S_Ta−S_Ua ) ./max( abs ( S_Ta ) ,
abs ( S_Ua ) ) ) ∗100) ] ) ;

263 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( S_Ta ) ) ] )
264

265 % Auxi l iary v a r i a b l e s :
266 SU_max_LE_Ua2=SU_max_LE_U( max_LE_S~=−1) ;
267 aux0a=abs ( SU_max_LE_Ua2−ST_max_LE_Ta2 ) ./max( abs ( SU_max_LE_Ua2 ) , abs (

ST_max_LE_Ta2 ) ) ;
268 aux2=aux0a ( s ign ( SU_max_LE_Ua2 ) ==sign ( ST_max_LE_Ta2 ) ) ;
269

270 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
271 display ( [ ’|\hat S^0 − \hat S^1|/max(|\ hat S^0|,|\ hat S^1|) in % ( d i f f e r e n t

s ign cases omitted , l o c a l opt . L_E^1 e x i s t s ) : ’ num2str (mean( aux2 )
∗100) ’ ’ num2str ( s td ( aux2 ) ∗100) ] ) ;

272 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux2 ) ) ] )
273

274 % Auxi l iary v a r i a b l e s :
275 S_T2a=S_T2 ( s ign ( S_T2 ) ==sign (SU_max_LE_U) ) ;
276 SU_max_LE_Ua=SU_max_LE_U( sign ( S_T2 ) ==sign (SU_max_LE_U) ) ;
277

278 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
279 display ( [ ’|\hat S^0 − S ^1)/max(|\ hat S^0| ,|S^1|) in % ( d i f f e r e n t s ign

cases omitted ) : ’ num2str (mean( abs ( S_T2a−SU_max_LE_Ua ) ./max( abs ( S_T2a
) , abs ( SU_max_LE_Ua ) ) ) ∗100) ’ ’ num2str ( s td ( abs ( S_T2a−SU_max_LE_Ua ) ./
max( abs ( S_T2a ) , abs ( SU_max_LE_Ua ) ) ) ∗100) ] ) ;

280 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( S_T2a ) ) ] )
281

282 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

283

284 disp ( [ ’ i−e f f e c t >0 in %: ’ num2str ( length ( f ind ( SU_LET>S_T ) ) /length ( LE_T )
∗100) ’%’ ] ) ;

285 disp ( [ ’ r−e f f e c t >0 in %: ’ num2str ( length ( f ind ( S_U>SU_LET ) ) /length ( LE_T )
∗100) ’%’ ] ) ;

286

287 display ( [ ’ i−e f f e c t as share of the t o t a l e f f e c t ( r e s t r i c t i o n : both e f f e c t s
p o s i t i v e ) : ’ num2str (mean ( ( SU_LET ( ( SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0)−S_T

( ( SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0) ) . / ( S_U ( ( SU_LET−S_T ) >0 & ( S_U−SU_LET )
>0)−S_T ( ( SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0) ) ) ) ] )

288 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( ( SU_LET ( (
SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0)−S_T ( ( SU_LET−S_T ) >0 & ( S_U−SU_LET ) >0) ) ) )
] )

289

290 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

291

292 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
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293 display ( [ ’mean , std of |\hat L_E^1 − L_E^1|/max( | . | , | . | ) − in % ( only
l o c a l optima ) : ’ num2str (mean( abs ( max_LE_Sa2−LE_Ta2 ) ./max( LE_Ta2 ,
max_LE_Sa2 ) ) ∗100) ’ ’ num2str ( s td ( abs ( max_LE_Sa2−LE_Ta2 ) ./max( LE_Ta2 ,
max_LE_Sa2 ) ) ∗100) ] )

294 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( LE_Ta2 ) ) ] ) ;
295

296 display ( [ ’mean , std of |\hat S^1 − S^1|/max( | . | , | . | ) − in % ( d i f f e r e n t
s ign cases omitted , only l o c a l optima ) : ’ num2str (mean( aux ) ∗100) ’ ’

num2str ( s td ( aux ) ∗100) ] ) ;
297 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux ) ) ] ) ;
298

299 display ( [ ’mean , std of |\hat L_E^0 − L_E^0|/max( | . | , | . | ) − in %: ’
num2str (mean ( ( abs (max_LE_U−LE_U2 ) ./max( LE_U2 , max_LE_U) ) ) ∗100) ’ ’
num2str ( s td ( ( abs (max_LE_U−LE_U2 ) ./max( LE_U2 , max_LE_U) ) ) ∗100) ] ) ;

300

301 display ( [ ’mean , std of |\hat S^0 − S^0|/max( | . | , | . | ) − in % ( d i f f e r e n t
s ign cases omitted ) : ’ num2str (mean( aux1 ) ∗100) ’ ’ num2str ( s td ( aux1 )
∗100) ] ) ;

302 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux1 ) ) ] ) ;
303

304 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

305

306 sd=ce l l2mat ( paramCombsci ( : , 1 0 ) ) ; % \hat s
307 sqq=sqq ’ ; % \bar s a t equi l ibr ium L_E^1
308 ss =[ sd sqq ] ;
309 s s s =[ ss ( : , 1 ) ss ( : , 2 )−ss ( : , 1 ) ss ( : , 2 ) ] ;
310 disp ( [ ’ avg , s td of (\ bar s − \hat s ) / \bar s a t equi l ibr ium L_E ^1: ’

num2str (mean( s s s ( : , 2 ) ./ s s s ( : , 3 ) ) ) ’ ’ num2str ( s td ( s s s ( : , 2 ) ./ s s s ( : , 3 ) ) )
] )

311 end
312

313 c l e a r aaa hh d i f f sh Vs L a A b Ve M N rho nuq i j j k paramCombsc dSWF
SWFn dSWFn dSWF2n SWF2n Vbn Fn VFn rentEn rentTn dVbn u t i l T rentMn GTin

multequ s_T_d sqn Vbl VPn wagen timer e r r o r f l a g j j a x VGTin ;
314

315 toc

File "symaux_FE"

1 t i c
2

3 % Create symbolic v a r i a b l e s in Matlab :
4 syms L M N sh Vs Ve rho nq a LE Vn b A
5

6 % Expressions from the t e x t :
7 alpha =(L−LE ) /( rho∗Ve ) ;
8 gam=1/( alpha ^2∗Vs+Vn) ;
9 VphiGw=Ve+Vs∗Vn∗gam ;

10 beta =(LE+M) /( rho∗VphiGw) ;
11 VsGw=VphiGw−Ve ;
12 w=A∗(1−b ) ∗ (M/(LE/a ) ) ^(−b ) ; % wage
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13 sq=sh+A∗ (M/(LE/a ) ) ^(1−b )−w∗ (M/(LE/a ) ) ; % \bar s
14

15 % Free OC:
16 EP=sq−(LE/a−nq ) /( alpha+beta ) ;
17 VP = ( ( Vs∗alpha∗beta∗gam+1) /( alpha+beta ) ) ^2/gam ;
18 Ez = ( LE/a−nq ) / ( ( alpha+beta ) ∗ (2∗ rho ∗ (Vn∗Vs∗gam+Ve ) ) ^ . 5 ) ;
19 Vz = gam∗Vn^2/((2∗ rho ∗ (Vn∗Vs∗gam+Ve ) ) ∗ ( alpha+beta ) ^2) ;
20 GP = ( EP−.5∗ rho∗VP/a ) /a ;
21 CovPz = −(VP∗Vz ) ^ . 5 ;
22 GTu = ( Ez−rho∗CovPz/a ) ^2/(1+2∗ rho∗Vz ) +( .5/ rho ) ∗ log (1+2∗ rho∗Vz ) ;
23 GI = ( . 5 / rho ) ∗ log (1+VsGw/Ve ) ;
24 GTi = Ez^2/(1+2∗ rho∗Vz ) +( .5/ rho ) ∗ log (1+2∗ rho∗Vz ) ;
25

26 % R e s t r i c t e d OC:
27 VEP = sq−rho ∗ ( Vs+Ve ) ∗ (LE/a−nq ) /(L+M) ;
28 VVP = Vn∗rho ^2∗(Vs+Ve ) ^2/(L+M) ^2;
29 VEz = rho ^ . 5∗ ( Vs+Ve ) ^ . 5∗ ( LE/a−nq ) / ( ( L+M) ∗2 ^ . 5 ) ;
30 VVz = Vn∗rho ∗ ( Vs+Ve ) /(2∗ (L+M) ^2) ;
31 VCovPz = −(VVP∗VVz) ^ . 5 ;
32 VGTi = VEz^2/(1+2∗ rho∗VVz) +( .5/ rho ) ∗ log (1+2∗ rho∗VVz) ;
33 VGTu = ( VEz−rho∗VCovPz/a ) ^2/(1+2∗ rho∗VVz) +( .5/ rho ) ∗ log (1+2∗ rho∗VVz) ;
34 VGP = (VEP−.5∗ rho∗VVP/a ) /a ;
35

36 % Free OC;
37 % b corresponds to \Ps i in the te x t ,
38 % c corresponds to \Phi in the t e x t :
39 CovPn = Vn∗ (VP∗gam) ^ . 5 ;
40 VtmP = Vs+Ve+VP∗(−Vn∗gam+1)−2∗alpha∗Vs∗ (VP∗gam) ^ . 5 ;
41 Eb = rho ^.5∗nq ∗ ( ( 1 / 2 ) ∗rho∗VtmP+N∗CovPn/Vn) ^.5/N;
42 Vb = ( Eb/nq ) ^2∗Vn ;
43 Ec = −rho∗nq∗ ( sq−EP+CovPn∗nq/Vn) /N;
44 Vc = ( Ec/nq ) ^2∗Vn ;
45 Covbc = ( Eb/nq∗ ( Ec/nq ) ) ∗Vn ;
46 UN = . 5∗ log (1−2∗Vb) /rho−Ec/rho−.5∗Vc/rho−(Eb+Covbc ) ^2/( rho∗(1−2∗Vb) ) ;
47 UM = GTi+w;
48

49 % R e s t r i c t e d OC:
50 VCovPn = rho ∗ ( Vs+Ve ) ∗Vn/(L+M) ;
51 VVtmP = Vs+Ve ;
52 VEb = rho ^.5∗nq ∗ ( ( 1 / 2 ) ∗rho∗VVtmP+N∗VCovPn/Vn) ^.5/N;
53 VVb = (VEb/nq ) ^2∗Vn ;
54 VEc = −rho∗nq∗ ( sq−VEP+VCovPn∗nq/Vn) /N;
55 VVc = ( VEc/nq ) ^2∗Vn ;
56 VCovbc = (VEb/nq∗ (VEc/nq ) ) ∗Vn ;
57 VUN = . 5∗ log (1−2∗VVb) /rho−VEc/rho−.5∗VVc/rho−(VEb+VCovbc ) ^2/( rho∗(1−2∗VVb)

) ;
58 VUM = VGTi+w;
59

60 % S o c i a l welfare :
61 SWF = LE∗ (GP+GTu) +(L−LE ) ∗ ( GTi+GI ) +N∗UN+M∗UM;
62 SWF2 = LE∗ (VGP+VGTu) +(L−LE ) ∗VGTi+N∗VUN+M∗VUM;
63
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64 % F i r s t and second d e r i v a t i v e s :
65 dVb= d i f f (Vb , LE ) ;
66 dSWF= d i f f (SWF, LE ) ;
67 d2SWF= d i f f (dSWF, LE ) ;
68

69 % \Delta ( L_E )−\Gamma( L_E ) :
70 F=GP+GTu−GI−GTi ;
71 VF=VGP+VGTu−VGTi ;
72

73 % " Rents " :
74 rentE=GP+GTu−GTi ;
75 rentT=GI ;
76 rentM=w;
77

78 % Transform express ions i n t o ’ charac ter ’ form :
79 SWFn=char (SWF) ;
80 SWF2n=char (SWF2) ;
81 dVbn=char (dVb) ;
82 Vbn=char (Vb) ;
83 dSWFn=char (dSWF) ;
84 d2SWFn=char (d2SWF) ;
85 Fn=char ( F ) ;
86 VFn=char (VF) ;
87 rentTn=char ( rentT ) ;
88 rentEn=char ( rentE ) ;
89 rentMn=char ( rentM ) ;
90 VPn=char (VP) ;
91 sqn=char ( sq ) ;
92 GTin=char ( GTi ) ;
93 VGTin=char ( VGTi ) ;
94

95 c l e a r L M N sq Vs Ve rho nq a LE Vn b w alpha beta gam VphiGw VsGw EP Ez
VP Vz GP GTu GTi GI CovPz VEP VEz VVP VVz VGP VGTu VGTi VGI VCovPz Vb
Vc Covbc Eb Ec Vb Vc Covbc VEb VEc VVb VVc VCovbc SWF SWF2 dSWF dSWF2 F

VF VCovPn VUM VUN UM UN dVb rentT rentE rentM wage drSWF rSWF rSWF2
d2SWF CovPn VtmP VVtmP

96

97 toc

Function "FE_Model_f1"

1 % This i s funct ion " FE_Model_f1 " . The r . h . s . shows funct ion inputs , the
2 % l . h . s . shows funct ion outputs :
3 func t ion [ equ_T , equ_U , s_T , s_U , s_T_d , maxLEU, SU_maxLEU, Vbl , rVP ,

multequ , rT , rE , rM, VrE ,VrM, maxLES , ST_maxLET , maxLESglobal , ST_maxLETglobal ,
GT_i , VGT_i , SU_LET , SL , wb, sqq , utiE , utiM , Vbl_one ] = FE_Model_f1 ( L , a , Vs , rho
, Ve ,M, nq , b ,A, sh ,N, t , Vn , Vbn , Fn , VFn , SWFn, dSWFn, d2SWFn , SWF2n , rentEn , rentTn
, rentMn , VPn , sqn , GTin , VGTin , dVbn)

4

5 % Show simulat ion progress in the command window :
6 i f mod( t , 1 0 0 0 0 ) ==0
7 display ( num2str ( t ) ) ;
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8 toc
9 e l s e

10 end
11

12 x0=double ( L/2) ;
13

14 % Transform ’F ’ i n t o a funct ion of L_E :
15 F=eval ( [ ’@( LE ) ’ Fn ] ) ;
16

17 % Set up the funct ion ’ s output v a r i a b l e s :
18 equ_T=NaN;
19 s_T=NaN;
20 s_T_d=NaN;
21 equ_U=NaN;
22 s_U=NaN;
23 maxLEU=NaN;
24 SU_maxLEU=NaN;
25 Vbl=NaN;
26 rVP=NaN;
27 multequ=NaN;
28 rT=NaN;
29 rE=NaN;
30 rM=NaN;
31 VrE=NaN;
32 VrM=NaN;
33 maxLES=NaN;
34 ST_maxLET=NaN;
35 maxLESglobal=NaN;
36 ST_maxLETglobal=NaN;
37 GT_i=NaN;
38 VGT_i=NaN;
39 SU_LET=NaN;
40 SL=NaN;
41 wb=NaN;
42 sqq=NaN;
43 ut iE=NaN;
44 utiM=NaN;
45 Vbl_one=NaN;
46

47 i f F ( a∗nq ) <0 || F ( L ) >0
48 wb=1;
49

50 e l s e
51 % Solve f o r equi l ibr ium L_E ^1; the funct ion " rmsearch " f i n d s good

s t a r t i n g points and search i n t e r v a l s ;
52 % Note t h a t \bar s and with t h a t E ( P ) , \Delta ( L_E ) and F ( L_E ) go to

i n f i n i t y f o r L_E −> 0 :
53 [ u , ~ , e r r o r f l a g ]= rmsearch ( F , ’ f zero ’ , x0 , 1 e−6,L , ’ I n i t i a l S a m p l e ’ , 1 0 0 ) ;
54

55 f o r k1 =1: length ( e r r o r f l a g )
56 i f e r r o r f l a g ( k1 ) <0
57 u ( k1 ) = [ ] ;
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58 end
59 end
60

61 % Drop the combination , i f i t impl ies mult ip le e q u i l i b r i a :
62 i f length ( u ) >1
63 multequ =1;
64 e l s e
65

66

67 Vb=eval ( [ ’@( LE ) ’ Vbn ] ) ;
68 Vbu=Vb( u ) ;
69 VbL=Vb( L ) ; % Vb in case of r e s t r i c e d OC i s indep . of L_E
70

71 % Drop the combination , i f i t does not imply well defined noise t r a d e r
u t i l t i y :

72 i f Vbu>=0.5 || VbL>=0.5
73 Vbl =1;
74

75 e l s e
76 equ_T=u ; % the unique L_E^1
77

78 VF = eval ( [ ’@( LE ) ’ VFn ] ) ;
79 VF0=VF(1 e−6) ;
80 VFL=VF( L ) ;
81 i f s ign ( VF0 ) ==sign (VFL) && sign (VFL) >0 % no i n t e r i o r

s o l u t i o n e x i s t s (VF i s s t r i c t l y decreasing , see t e x t )
82 equ_U=L ; % corner equi l ibr ium L_E^0=L
83 e l s e i f s ign ( VF0 ) ==sign (VFL) && sign ( VF0 ) <0
84 equ_U=1e−6; % f u n c t i o n s not defined f o r L_E=0
85 disp ( ’ Warning : L_E^0=0 ’ ) ;
86 e l s e
87 % Solve f o r i n t e r i o r equi l ibr ium L_E ^0:
88 [ equ_U , ~ , e r r o r f l a g ]= fzero (VF , [ 1 e−6 L ] ) ; % S u f f i c i e n t , as

we know t h a t L_E^0 i s unique ( see t e x t )
89

90 i f e r r o r f l a g <0
91 equ_U = [ ] ;
92 end
93 i f isempty ( equ_U )
94 disp ( ’ Error : No equi l ibr ium L_E^0 ’ )
95 end
96 end
97

98 % Transform express ions i n t o f u n c t i o n s of L_E :
99 VP=eval ( [ ’@( LE ) ’ VPn ] ) ;

100 rentT=eval ( [ ’@( LE ) ’ rentTn ] ) ;
101 rentE=eval ( [ ’@( LE ) ’ rentEn ] ) ;
102 rentM=eval ( [ ’@( LE ) ’ rentMn ] ) ;
103 sq=eval ( [ ’@( LE ) ’ sqn ] ) ;
104 GTi=eval ( [ ’@( LE ) ’ GTin ] ) ;
105 VGTi=eval ( [ ’@( LE ) ’ VGTin ] ) ;
106
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107 VP0=Vs ; % Ex−ante p r i c e var iance in the n o i s e l e s s case
with f r e e OC

108

109 rVP=(VP( equ_T )−VP0 ) /VP0 ;
110

111 rT=rentT ( equ_T ) ;
112 rE=rentE ( equ_T ) ;
113 rM=rentM ( equ_T ) ;
114

115 ut iE=rT+GTi ( equ_T ) ; % CE_E
116 utiM=rM+GTi ( equ_T ) ; % CE_M
117

118 GT_i=GTi ( equ_T ) ;
119

120 % Transform express ions i n t o f u n c t i o n s of L_E :
121 SWF=eval ( [ ’@( LE ) ’ SWFn] ) ;
122 SWF2=eval ( [ ’@( LE ) ’ SWF2n ] ) ;
123 dSWF=eval ( [ ’@( LE ) ’ dSWFn ] ) ;
124 d2SWF=eval ( [ ’@( LE ) ’ d2SWFn ] ) ;
125

126 s_T=SWF( equ_T ) ; % equi l ibr ium s o c i a l welfare with f r e e OC
127 s_T_d=dSWF( equ_T ) ; % slope of the s o c i a l welfare funct ion

with f r e e OC at equi l ibr ium L_E^1
128 SL=SWF2( L ) ; % s o c i a l welfare a t L_E=L
129

130 sqq=sq ( equ_T ) ; % \bar s a t equi l ibr ium
131

132 VrE=VF( equ_U ) ;
133 VrM=rentM ( equ_U ) ;
134 VGT_i=VGTi ( equ_U ) ;
135

136 s_U=SWF2( equ_U ) ; % equi l ibr ium s o c i a l welfare with
r e s t r i c t e d OC

137 SU_LET=SWF2( equ_T ) ; % s o c i a l welfare with r e s t r i c t e d OC,
evaluated at L_E=L_E^1

138

139 % For maximization of s o c i a l welfare , noise t r a d e r u t i l i t y has to
140 % be defined f o r a l l L_E ; Hence , we drop a l l combinations which
141 % imply t h a t Vb i s g r e a t e r than 0 . 5 f o r any L_E :
142 dVb=eval ( [ ’@( LE ) ’ dVbn ] ) ;
143 [ Vb1 , ~ , e r r o r f l a g 0 ]= rmsearch (dVb , ’ fzero ’ , x0 , 0 , L , ’ I n i t i a l S a m p l e ’

, 1 0 0 ) ;
144 f o r k0 =1: length ( e r r o r f l a g 0 )
145 i f e r r o r f l a g 0 ( k0 ) <0
146 Vb1 ( k0 ) = [ ] ;
147 e l s e
148 end
149 end
150

151 i f isempty ( Vb1 )
152 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) ] ) ;
153 e l s e i f length ( Vb1 ) >1



D.3. Full Employment Model 177

154 disp ( ’Vb more than one extremum ’ )
155 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
156 e l s e i f dVb( Vb1+1e−12)>0
157 disp ( ’Vb has a minimum ’ )
158 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
159 e l s e
160 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
161 end
162 i f Vbmaxvalgl >=0.5 % there i s an L_E f o r which Vb>0.5
163 Vbl_one =1;
164 e l s e
165 % Cal l funct ion " S1opt " ( see below ) , which f i n d s the l o c a l
166 % as well as the g loba l maximum of S ^1:
167 [ maxLES , maxLESglobal ]= S1opt (dSWF, d2SWF) ;
168

169 ST_maxLET=SWF( maxLES ) ; % l o c a l maximum s o c i a l welfare S^1
170 ST_maxLETglobal=SWF( maxLESglobal ) ; % globa l maximum s o c i a l

welfare S^1
171

172 % Cal l funct ion " S0opt " ( see below ) , which f i n d s the
173 % maximum of S ^0:
174 maxLEU=S0opt (SWF2) ;
175

176 SU_maxLEU=SWF2(maxLEU) ; % maximum s o c i a l welfare S^0
177 end
178

179 end
180 end
181 end
182

183 % Auxi l iary f u n c t i o n s " S1opt " and " S0opt " below
184

185 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
186 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
187 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
188

189 % funct ion " S1opt " f i n d s the L_E t h a t ( l o c a l l y / g l o b a l l y ) maximizes S ^1:
190 func t ion [ maxLES , maxLESglobal ] = S1opt (dSWF, d2SWF)
191

192 [ j , ~ , e r r o r f l a g ]= rmsearch (dSWF, ’ fzero ’ , x0 , 1 e−6,L , ’
I n i t i a l S a m p l e ’ , 1 0 0 ) ;

193

194 f o r k2 =1: length ( e r r o r f l a g )
195 i f e r r o r f l a g ( k2 ) <0
196 j ( k2 ) = [ ] ;
197 e l s e
198 end
199 end
200

201 i f isempty ( j ) % no l o c a l extremum
202 maxLES=−1;
203 j va laux =[SWF(1 e−6) SWF( L ) ] ;
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204 jaux =[1 e−6 L ] ;
205 maxLESglobal=jaux ( jva laux==max( jva laux ) ) ;
206 e l s e
207 % check i f l o c a l extremum i s a maximum :
208 j v a l =NaN( length ( j ) , 1 ) ;
209 d2aux=NaN( length ( j ) , 1 ) ;
210 f o r i 1 =1: length ( j )
211 d2aux ( i 1 ) =d2SWF( j ( i 1 ) ) ;
212 j v a l ( i 1 ) =SWF( j ( i 1 ) ) ;
213 end
214 j = j ( d2aux <0) ; % keep only maxima
215 j v a l = j v a l ( d2aux <0) ;
216

217 j va laux =[ j v a l ’ SWF(1 e−6) SWF( L ) ] ;
218 jaux =[ j ’ 1e−6 L ] ;
219 maxLESglobal=jaux ( jva laux==max( jva laux ) ) ;
220

221 i f isempty ( j ) % no l o c a l maximum
222 maxLES=−1;
223 e l s e i f length ( j ) ==1
224 maxLES= j ;
225 e l s e
226 % in case there are mult ip le l o c a l maxima , choose

the one c l o s e s t to equi l ibr ium L_E ^1:
227 lowdis=zeros ( length ( j ) , 1 ) ;
228 f o r k3 =1: length ( j )
229 lowdis ( k3 ) =abs ( equ_T− j ( k3 ) ) ;
230 end
231 maxLES= j ( lowdis==min ( lowdis ) ) ;
232 end
233 end
234

235 end
236

237

238 % funct ion " S0opt " f i n d s the L_E t h a t maximizes S ^0:
239 func t ion maxLEU = S0opt (SWF2)
240

241 opts2 = optimset ( ’ TolX ’ ,1 e−6) ; % d e f a u l t TolX i s 1e−4
242 mSWF2=@( LE )−SWF2( LE ) ;
243 % fminbnd f i n d s the min of −SWF2 ( l o c a l i f i t e x i s t s , g loba l
244 % otherwise ) :
245 [ e , ~ , e r r o r f l a g ]= fminbnd (mSWF2, 1 e−6,L , opts2 ) ;
246

247 f o r k4 =1: length ( e r r o r f l a g )
248 i f e r r o r f l a g ( k4 ) <0
249 e ( k4 ) = [ ] ;
250 e l s e
251 end
252 end
253 % S^0 i s inverse U−shaped ( see t e x t ) :
254 i f e>L−1e−3 % no l o c a l minimum has been found



D.4. Unemployment Model 179

255 maxLEU=L ;
256 e l s e i f e<0+1e−3 % no l o c a l minimum has been found
257 maxLEU=1e−6;
258 disp ( ’ optimal L_E equals " zero " ’ )
259 e l s e
260 maxLEU=e ;
261 end
262

263 end
264

265 end

Adjustemts to function "rmsearch"

Adjustments made to "rmsearch" are the same as in the basic version of the model.

D.4 Unemployment Model

Code files are given in the same order as for the basic version of the model and the
FE model. All of the code is also submitted in digital form.

File "UE_Model"

1 % S t a r t t imer :
2 t i c
3

4 % Cal l a u x i l i a r y f i l e "symaux_UE " , within which we s t a t e and derive c losed
5 % form express ions required l a t e r f o r c a l c u l a t i o n s within funct ion
6 % " UE_Model_f1 " :
7 symaux_UE ;
8

9 % Parameter values s e t as descr ibed in the t e x t :
10 L=100; %( 1 )
11 a =10; %( 2 )
12 Vs =1; %( 3 )
13 rho = [ 0 . 0 1 0 .025 0 . 0 5 0 .075 0 . 1 0 . 2 5 0 . 5 0 . 7 5 1 ] ; %( 4 )
14 Ve = [ 0 . 1 0 . 2 5 0 . 5 0 . 7 5 1 ] ; %( 5 )
15 M=[1 2 3 5 10 1 0 0 ] ; %( 6 )
16 nuq = [ 0 . 0 0 1 0 . 0 1 0 . 0 5 0 . 1 0 . 2 0 . 5 ] ; %( 7 )
17 b = [ 0 . 1 0 . 2 5 0 . 4 0 . 5 5 ] ; %( 8 )
18 A= [ 0 . 2 5 0 . 5 0 . 7 5 1 ] ; %( 9 )
19 D=1; %( 1 0 )
20 sh = [ 0 . 0 1 0 . 0 5 0 . 1 0 . 2 5 0 . 5 0 . 7 5 0 . 9 0 . 9 5 0 . 9 9 ] ; %( 1 1 )
21 N=[1 2 3 5 10 1 0 0 ] ; %( 1 2 )
22 Vnu= [ 0 . 0 0 1 0 . 0 1 0 . 0 5 0 . 1 0 . 2 0 . 5 ] ;
23

24 % I n i t i a t e and f i l l in the matrix "paramCombs " , which conta ins a l l
25 % parameter combinations ; Each row of the f i n a l "paramCombs" matrix
26 % c o n s t i t u t e s one parameter combination :
27 paramCombs=L ’ ;
28
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29 avec=NaN( s i z e ( paramCombs , 1 ) , length ( a ) ) ;
30 f o r k =1: s i z e ( paramCombs , 1 )
31 avec ( k , : ) =a ;
32 end
33 avec=reshape ( avec , [ ] , 1 ) ;
34

35 paramCombs=repmat ( paramCombs , length ( a ) , 1 ) ;
36 paramCombs=[paramCombs avec ] ;
37 c l e a r avec
38

39 Vsvec=NaN( s i z e ( paramCombs , 1 ) , length ( Vs ) ) ;
40 f o r k =1: s i z e ( paramCombs , 1 )
41 Vsvec ( k , : ) =Vs ;
42 end
43 Vsvec=reshape ( Vsvec , [ ] , 1 ) ;
44

45 paramCombs=repmat ( paramCombs , length ( Vs ) , 1 ) ;
46 paramCombs=[paramCombs Vsvec ] ;
47 c l e a r Vsvec
48

49 rhovec=NaN( s i z e ( paramCombs , 1 ) , length ( rho ) ) ;
50 f o r k =1: s i z e ( paramCombs , 1 )
51 rhovec ( k , : ) =rho ∗ ( 4 / ( 1 . 2 5 ^ . 5 ) ) ∗vpa ( paramCombs ( k , 2 ) /(paramCombs ( k , 3 ) ^ . 5 )

) ;
52 end
53 rhovec=reshape ( rhovec , [ ] , 1 ) ;
54

55 paramCombs=repmat ( paramCombs , length ( rho ) , 1 ) ;
56 paramCombs=[paramCombs rhovec ] ;
57 c l e a r rhovec
58

59 Vevec=NaN( s i z e ( paramCombs , 1 ) , length ( Ve ) ) ;
60 f o r k =1: s i z e ( paramCombs , 1 )
61 Vevec ( k , : ) =Ve∗paramCombs ( k , 3 ) ;
62 end
63 Vevec=reshape ( Vevec , [ ] , 1 ) ;
64

65 paramCombs=repmat ( paramCombs , length ( Ve ) , 1 ) ;
66 paramCombs=[paramCombs Vevec ] ;
67 c l e a r Vevec
68

69 Mvec=NaN( s i z e ( paramCombs , 1 ) , length (M) ) ;
70 f o r k =1: s i z e ( paramCombs , 1 )
71 Mvec ( k , : ) =M∗paramCombs ( k , 1 ) ;
72 end
73 Mvec=reshape ( Mvec , [ ] , 1 ) ;
74

75 paramCombs=repmat ( paramCombs , length (M) , 1 ) ;
76 paramCombs=[paramCombs Mvec ] ;
77 c l e a r Mvec
78

79 nuqvec=NaN( s i z e ( paramCombs , 1 ) , length ( nuq ) ) ;
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80 f o r k =1: s i z e ( paramCombs , 1 )
81 nuqvec ( k , : ) =nuq∗paramCombs ( k , 1 ) /paramCombs ( k , 2 ) ;
82 end
83 nuqvec=reshape ( nuqvec , [ ] , 1 ) ;
84

85 paramCombs=repmat ( paramCombs , length ( nuq ) , 1 ) ;
86 paramCombs=[paramCombs nuqvec ] ;
87 c l e a r nuqvec
88

89 bvec=NaN( s i z e ( paramCombs , 1 ) , length ( b ) ) ;
90 f o r k =1: s i z e ( paramCombs , 1 )
91 bvec ( k , : ) =b ;
92 end
93 bvec=reshape ( bvec , [ ] , 1 ) ;
94

95 paramCombs=repmat ( paramCombs , length ( b ) , 1 ) ;
96 paramCombs=[paramCombs bvec ] ;
97 c l e a r bvec
98

99 Avec=NaN( s i z e ( paramCombs , 1 ) , length (A) ) ;
100 f o r k =1: s i z e ( paramCombs , 1 )
101 Avec ( k , : ) =A∗0 . 5∗ ( paramCombs ( k , 4 ) ∗paramCombs ( k , 3 ) ) /(paramCombs ( k , 2 ) ∗ (

paramCombs ( k , 8 ) ) ) ∗ (paramCombs ( k , 2 ) ∗paramCombs ( k , 6 ) /paramCombs ( k , 1 ) )
^(paramCombs ( k , 8 ) −1) ;

102 end
103 Avec=reshape ( Avec , [ ] , 1 ) ;
104

105 paramCombs=repmat ( paramCombs , length (A) , 1 ) ;
106 paramCombs=[paramCombs Avec ] ;
107 c l e a r Avec
108

109 Dvec=NaN( s i z e ( paramCombs , 1 ) , 1 ) ;
110 wvec=NaN( s i z e ( paramCombs , 1 ) , 1 ) ;
111 mvec=NaN( s i z e ( paramCombs , 1 ) , 1 ) ;
112 f o r k =1: s i z e ( paramCombs , 1 )
113 wvec ( k ) =paramCombs ( k , 9 ) ∗(1−paramCombs ( k , 8 ) ) ∗ (paramCombs ( k , 1 ) /(

paramCombs ( k , 2 ) ∗paramCombs ( k , 6 ) ) ) ^(paramCombs ( k , 8 ) ) ;
114 Dvec ( k ) =D∗ ( wvec ( k )−(1/paramCombs ( k , 4 ) ) ∗ log (1+paramCombs ( k , 4 ) ∗ (

paramCombs ( k , 8 ) ) ∗wvec ( k ) ) ) ;
115 mvec ( k ) =(paramCombs ( k , 9 ) ∗(1−paramCombs ( k , 8 ) ) /wvec ( k ) ) ^(1/(paramCombs ( k

, 8 ) ) ) ;
116 end
117 Dvec=reshape ( Dvec , [ ] , 1 ) ;
118

119 paramCombs=[paramCombs Dvec ] ;
120 c l e a r Dvec
121

122 shvec=NaN( s i z e ( paramCombs , 1 ) , length ( sh ) ) ;
123 f o r k =1: s i z e ( paramCombs , 1 )
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124 shvec ( k , : ) =vpa ( paramCombs ( k , 4 ) ∗paramCombs ( k , 3 ) /(2∗paramCombs ( k , 2 ) )−(
paramCombs ( k , 9 ) ∗mvec ( k ) ^(1−paramCombs ( k , 8 ) )−wvec ( k ) ∗mvec ( k ) ) ) +sh∗
vpa ( ( paramCombs ( k , 1 )−paramCombs ( k , 2 ) ∗paramCombs ( k , 7 ) ) ∗paramCombs ( k
, 4 ) ∗paramCombs ( k , 5 ) /(paramCombs ( k , 2 ) ∗ (paramCombs ( k , 1 ) +paramCombs ( k
, 6 ) ) ) ) ;

125 end
126 shvec=reshape ( shvec , [ ] , 1 ) ;
127

128 wvec=repmat ( wvec , length ( sh ) , 1 ) ;
129 mvec=repmat ( mvec , length ( sh ) , 1 ) ;
130 paramCombs=repmat ( paramCombs , length ( sh ) , 1 ) ;
131 paramCombs=[paramCombs shvec ] ;
132 c l e a r shvec
133

134 % Rule out mult ip le e q u i l i b r i a in case of d e t e r m i n i s t i c noise :
135 f o r k =1: s i z e ( paramCombs , 1 )
136 i f paramCombs ( k , 4 ) ∗ (paramCombs ( k , 1 1 ) +paramCombs ( k , 9 ) ∗mvec ( k ) ^(1−

paramCombs ( k , 8 ) )−wvec ( k ) ∗mvec ( k )−paramCombs ( k , 4 ) ∗ (paramCombs ( k , 3 ) +
paramCombs ( k , 5 ) ) ∗ (paramCombs ( k , 1 ) /paramCombs ( k , 2 )−paramCombs ( k , 7 ) )
/(paramCombs ( k , 1 ) +paramCombs ( k , 6 ) ) ) /paramCombs ( k , 2 ) −.5∗ log (1+
paramCombs ( k , 3 ) /paramCombs ( k , 5 ) ) >0

137 paramCombs ( k , 1 1 ) =nan ;
138 end
139 end
140 c l e a r wvec mvec
141

142 Nvec=NaN( s i z e ( paramCombs , 1 ) , length (N) ) ;
143 f o r k =1: s i z e ( paramCombs , 1 )
144 Nvec ( k , : ) =0.25∗N∗ (paramCombs ( k , 1 ) +paramCombs ( k , 6 ) ) ;
145 end
146 Nvec=reshape ( Nvec , [ ] , 1 ) ;
147

148 paramCombs=repmat ( paramCombs , length (N) , 1 ) ;
149 paramCombs=[paramCombs Nvec ] ;
150 c l e a r Nvec
151

152 disp ( [ ’ # Parameter combinations f o r each \sigma_\nu at s t a r t of the
s imulat ion ( i n c l . mult ipl . equ . in the n o i s l e s s case ) : ’ num2str ( s i z e (
paramCombs , 1 ) ) ] ) ;

153

154 paramCombs=paramCombs(~ isnan ( paramCombs ( : , 1 1 ) ) , : ) ;
155

156 disp ( [ ’ # Parameter combinations f o r each \sigma_\nu at s t a r t of the
s imulat ion ( e x c l . mult ipl . equ . in the n o i s l e s s case ) : ’ num2str ( s i z e (
paramCombs , 1 ) ) ] ) ; %// number of parameter combinations f o r each value
of Vnu

157

158 t imer = ( 1 : s i z e ( paramCombs , 1 ) ) ’ ;
159 paramCombs=[paramCombs timer ] ;
160

161 Vnuvec=NaN( s i z e ( paramCombs , 1 ) , length (Vnu) ) ;
162 f o r k =1: s i z e ( paramCombs , 1 )
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163 Vnuvec ( k , : ) =Vnu. ^ 2∗ ( paramCombs ( k , 1 ) /paramCombs ( k , 2 ) ) ^2;
164 end
165

166 toc
167

168 % Simulate the model f o r each \sigma_\nu :
169 f o r i =1: s i z e ( Vnuvec , 2 )
170 disp ( [ ’\sigma_\nu= ’ num2str ( double (Vnu( i ) ∗100) ) ’% of L/a ’ ] ) ;
171 paramCombsci=num2cell ( [ paramCombs Vnuvec ( : , i ) ] ) ;
172

173 % Cal l funct ion " UE_Model_f1 " f o r each parameter combination ; the
174 % " r . h . s . " g ives the funct ion inputs , the " l . h . s . " g ives the funct ion
175 % outputs :
176 [ LE_T , LE_U , S_T , S_U , S_T_deriv , max_LE_U , SU_max_LE_U , Vbl , RVP, multequ

, renT , renE , renM , VrenE , VrenM , max_LE_S , ST_max_LE_T , max_LE_S_global ,
ST_max_LE_T_global , Empl , LEopt0 , VLEopt0 , ST_LE0opt , SU_VLE0opt , GTi , VGTi ,
SU_LET , SL , wb, sqq , utiE , utiM , Vbl_one ] = arrayfun (@( n ) UE_Model_f1 (
paramCombsci { n , : } , Vbn , Fn , VFn , SWFn, dSWFn, d2SWFn , SWF2n , rentEn , rentTn ,
rentMn , VPn , sqn , empln , LEopt0n , VLEopt0n , GTin , VGTin , dVbn) , 1 : s i z e (
paramCombsci , 1 ) , ’ uni ’ , 1 ) ;

177

178 toc
179

180 % Get r i d of the parameter combinations t h a t led to nan−values
181 % within " UE_Model_f1 " :
182 paramCombsci=paramCombsci (~ isnan ( LE_T ) , : ) ;
183 LE_T2=LE_T(~ isnan ( max_LE_S ) ) ;
184 LE_U2=LE_U(~ isnan (max_LE_U) ) ;
185 S_T2=S_T (~ isnan ( ST_max_LE_T ) ) ;
186 S_U2=S_U(~ isnan (SU_max_LE_U) ) ;
187 SL2=SL(~ isnan ( ST_max_LE_T_global ) ) ;
188 SU_LET2=SU_LET(~ isnan ( ST_max_LE_T_global ) ) ;
189 LE_T=LE_T(~ isnan ( LE_T ) ) ;
190 LE_U=LE_U(~ isnan (LE_U) ) ;
191 S_T=S_T (~ isnan ( S_T ) ) ;
192 S_U=S_U(~ isnan ( S_U ) ) ;
193 S_T_deriv=S_T_deriv (~ isnan ( S_T_deriv ) ) ;
194 max_LE_U=max_LE_U(~ isnan (max_LE_U) ) ;
195 SU_max_LE_U=SU_max_LE_U(~ isnan (SU_max_LE_U) ) ;
196 Vbl=Vbl (~ isnan ( Vbl ) ) ;
197 RVP=RVP(~ isnan (RVP) ) ;
198 multequ=multequ (~ isnan ( multequ ) ) ;
199 renT=renT (~ isnan ( renT ) ) ;
200 renE=renE (~ isnan ( renE ) ) ;
201 renM=renM(~ isnan ( renM ) ) ;
202 VrenE=VrenE(~ isnan ( VrenE ) ) ;
203 VrenM=VrenM(~ isnan (VrenM) ) ;
204 max_LE_S=max_LE_S(~ isnan ( max_LE_S ) ) ;
205 ST_max_LE_T=ST_max_LE_T(~ isnan ( ST_max_LE_T ) ) ;
206 max_LE_S_global=max_LE_S_global (~ isnan ( max_LE_S_global ) ) ;
207 ST_max_LE_T_global=ST_max_LE_T_global (~ isnan ( ST_max_LE_T_global ) ) ;
208 Empl=Empl(~ isnan ( Empl ) ) ;
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209 LEopt0=LEopt0 (~ isnan ( LEopt0 ) ) ;
210 VLEopt0=VLEopt0 (~ isnan ( VLEopt0 ) ) ;
211 ST_LE0opt=ST_LE0opt (~ isnan ( ST_LE0opt ) ) ;
212 SU_VLE0opt=SU_VLE0opt(~ isnan ( SU_VLE0opt ) ) ;
213 GTi=GTi (~ isnan ( GTi ) ) ;
214 VGTi=VGTi(~ isnan ( VGTi ) ) ;
215 SU_LET=SU_LET(~ isnan ( SU_LET ) ) ;
216 SL=SL(~ isnan ( SL ) ) ;
217 wb=wb(~ isnan (wb) ) ;
218 sqq=sqq (~ isnan ( sqq ) ) ;
219 ut iE=ut iE (~ isnan ( ut iE ) ) ;
220 utiM=utiM (~ isnan ( utiM ) ) ;
221 Vbl_one=Vbl_one (~ isnan ( Vbl_one ) ) ;
222

223 % R e s t r i c t to combinations f o r which a l o c a l maximum f o r S^1 e x i s t s :
224 LE_Ta2=LE_T2 ( max_LE_S~=−1) ;
225 max_LE_Sa2=max_LE_S ( max_LE_S~=−1) ;
226 ST_max_LE_Ta2=ST_max_LE_T ( max_LE_S~=−1) ;
227 S_Ta2=S_T2 ( max_LE_S~=−1) ;
228

229 % Auxi l iary v a r i a b l e s :
230 aux0=abs ( ST_max_LE_Ta2−S_Ta2 ) ./max( abs ( ST_max_LE_Ta2 ) , abs ( S_Ta2 ) ) ;
231 aux=aux0 ( s ign ( ST_max_LE_Ta2 ) ==sign ( S_Ta2 ) ) ;
232 aux00 =( abs ( SU_max_LE_U−S_U2 ) ) ./max( abs (SU_max_LE_U) , abs ( S_U2 ) ) ;
233 aux1=aux00 ( s ign (SU_max_LE_U) ==sign ( S_U2 ) ) ;
234

235 display ( [ ’ # \Delta ( a∗\bar \nu ) <\Gamma( a∗\bar \nu ) or \Delta ( L ) >\Gamma( L ) −
omitted : ’ num2str ( length (wb) ) ] )

236 display ( [ ’ # Mult iple e q u i l i b r i a L_E^1 − omitted : ’ num2str ( length ( multequ )
) ] ) ;

237 display ( [ ’ # V(\ Ps i ) >0.5 in L_E^1 or L_E^0 − omitted : ’ num2str ( length ( Vbl )
) ] ) ;

238 display ( [ ’ # V(\ Ps i ) <0.5 in L_E^1 and L_E^0 , but V(\ Ps i ) >0.5 f o r some other
L_E − omitted f o r maximizations : ’ num2str ( length ( Vbl_one ) ) ] ) ;

239

240 % Admissible combinations f o r checking the e f f e c t of a marginal i n c r e a s e
in

241 % L_E ( s t a r t i n g from equi l ibr ium ) and whether s o c i a l welfare i s higher in
242 % equi l ibr ium with f r e e or r e s t r i c t e d OC:
243 display ( [ ’ # Combinations l e f t ( without maximizations ) : ’ num2str ( length (

LE_T ) ) ] ) ;
244

245 % Admissible combinations f o r comparing equi l ibr ium values to optimum
values :

246 display ( [ ’ # Combinations l e f t ( with maximizations ) : ’ num2str ( length (
max_LE_S_global ) ) ] ) ;

247

248 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

249

250 display ( [ ’mean , std and max of (VP−VP0 ) /VP0 in %: ’ num2str (mean(RVP)
∗100) ’ ’ num2str ( s td (RVP) ∗100) ’ ’ num2str (max(RVP) ∗100) ] ) ;
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251

252 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

253

254 disp ( [ ’ L_E^0 > L_E^1 in % : ’ num2str ( ( length ( LE_T )−length ( f ind ( LE_T>LE_U
) ) ) /length ( LE_T ) ∗100) ’%’ ] ) ;

255 disp ( [ ’ S^0 > S^1 at equi l ibr ium in % : ’ num2str ( ( length ( S_T )−length ( f ind
( S_T>S_U ) ) ) /length ( S_T ) ∗100) ’%’ ] ) ;

256 disp ( [ ’ S^0 > S^1 at constra ined ( g loba l ) optimum in % : ’ num2str ( ( length
( ST_max_LE_T_global )−length ( f ind ( ST_max_LE_T_global−SU_max_LE_U>1e−4) ) )
/length ( ST_max_LE_T_global ) ∗100) ’%’ ] ) ;

257

258 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

259

260 disp ( [ ’ S^1 ’ ’ > −1e−3 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <−1e−3) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

261 disp ( [ ’ S^1 ’ ’ > −1e−6 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <−1e−6) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

262 disp ( [ ’ S^1 ’ ’ > 0 in % : ’ num2str ( ( length ( S_T_deriv )−length ( f ind (
S_T_deriv <0) ) ) /length ( S_T_deriv ) ∗100) ’%’ ] ) ;

263

264 e l a =abs ( S_T_deriv .∗LE_T ./ S_T ) ;
265 disp ( [ ’mean , std of S^1 ’ ’ ∗ L_E^1/S^1 ( e l a s t i c i t y a t equi l ibr ium L_E^1) :

’ num2str (mean( e l a ) ) ’ ’ num2str ( s td ( e l a ) ) ] ) ;
266

267 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

268

269 display ( [ ’ Employment r a t i o : ’ num2str (mean( Empl ) ) ] ) ;
270

271 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

272

273 display ( [ ’ d e a l e r s/entrepreneurs equi l ibr ium r e n t s ( equal to GI ) with f r e e
OC as a f r a c t i o n of t h e i r u t i l i t y : ’ num2str (mean( renE . / ( renE+GTi ) ) ) ’

’ num2str ( s td ( renE . / ( renE+GTi ) ) ) ] ) ;
274 display ( [ ’ d e a l e r s/entrepreneurs equi l ibr ium r e n t s with r e s t r i c t e d OC as a

f r a c t i o n of t h e i r u t i l i t y : ’ num2str (mean( VrenE . / ( VrenE+VGTi ) ) ) ’ ’
num2str ( s td ( VrenE . / ( VrenE+VGTi ) ) ) ] ) ;

275

276 display ( [ ’ equi l ibr ium wage with f r e e OC as a f r a c t i o n of worker u t i l i t y :
’ num2str (mean( renM . / ( renM+GTi ) ) ) ’ ’ num2str ( s td ( renM . / ( renM+GTi ) ) )
] ) ;

277 display ( [ ’ equi l ibr ium wage with r e s t r i c t e d OC as a f r a c t i o n of worker
u t i l i t y : ’ num2str (mean(VrenM . / ( VrenM+VGTi ) ) ) ’ ’ num2str ( s td (VrenM
. / ( VrenM+VGTi ) ) ) ] ) ;

278

279 display ( [ ’ r a t i o of entrepreneurs/d e a l e r s equi l ibr ium r e n t s over workers
r e n t s ( i . e . , GI/GJ ) with f r e e OC: ’ num2str (mean( renE . / ( renM ) ) ) ’ ’
num2str ( s td ( renE . / ( renM ) ) ) ] ) ;

280
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281 display ( [ ’A hipo ‘ s CE over a worker ‘ s CE in equi l ibr ium with f r e e OC: ’
num2str (mean( ut iE . / ( utiM ) ) ) ’ ’ num2str ( s td ( ut iE . / ( utiM ) ) ) ] ) ;

282

283 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

284

285 % Auxi l iary v a r i a b l e s :
286 S_Ua=S_U ( sign ( S_U ) ==sign ( S_T ) ) ;
287 S_Ta=S_T ( sign ( S_U ) ==sign ( S_T ) ) ;
288

289 display ( [ ’mean , std of |S^0−S^1|/max(|S^0| ,|S^1|) a t equi l ibr ium in % (
d i f f e r e n t s ign cases omitted ) : ’ num2str (mean( abs ( S_Ta−S_Ua ) ./max( abs
( S_Ta ) , abs ( S_Ua ) ) ) ∗100) ’ ’ num2str ( s td ( abs ( S_Ta−S_Ua ) ./max( abs ( S_Ta ) ,
abs ( S_Ua ) ) ) ∗100) ] ) ;

290 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( S_Ta ) ) ] )
291

292 % Auxi l iary v a r i a b l e s :
293 SU_max_LE_Ua2=SU_max_LE_U( max_LE_S~=−1) ;
294 aux0a=abs ( SU_max_LE_Ua2−ST_max_LE_Ta2 ) ./max( abs ( SU_max_LE_Ua2 ) , abs (

ST_max_LE_Ta2 ) ) ;
295 aux2=aux0a ( s ign ( SU_max_LE_Ua2 ) ==sign ( ST_max_LE_Ta2 ) ) ;
296

297 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
298 display ( [ ’|\hat S^0−\hat S^1|/max(|\ hat S^0|,|\ hat S^1|) a t constra ined (

l o c a l ) optimum in % ( d i f f e r e n t s ign cases omitted , l o c a l opt . L_E^1
e x i s t s ) : ’ num2str (mean( aux2 ) ∗100) ’ ’ num2str ( s td ( aux2 ) ∗100) ] ) ;

299 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux2 ) ) ] )
300

301 % Auxi l iary v a r i a b l e s :
302 S_T2a=S_T2 ( s ign ( S_T2 ) ==sign (SU_max_LE_U) ) ;
303 SU_max_LE_Ua=SU_max_LE_U( sign ( S_T2 ) ==sign (SU_max_LE_U) ) ;
304

305 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
306 display ( [ ’|\hat S^0−S^1|/max(|\ hat S^1| ,|S^1|) in % ( d i f f e r e n t s ign cases

omitted ) : ’ num2str (mean( abs ( S_T2a−SU_max_LE_Ua ) ./max( abs ( S_T2a ) , abs (
SU_max_LE_Ua ) ) ) ∗100) ’ ’ num2str ( s td ( abs ( S_T2a−SU_max_LE_Ua ) ./max( abs (
S_T2a ) , abs ( SU_max_LE_Ua ) ) ) ∗100) ] ) ;

307 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( S_T2a ) ) ] )
308

309 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

310

311 disp ( [ ’ i−e f f e c t >0: ’ num2str ( length ( f ind ( SU_LET2>S_T2 ) ) /length ( LE_T2 )
∗100) ’%’ ] ) ;

312 disp ( [ ’ r−e f f e c t >0: ’ num2str ( length ( f ind ( S_U2>SU_LET2 ) ) /length ( LE_T2 )
∗100) ’%’ ] ) ;

313 disp ( [ ’ e−e f f e c t >0: ’ num2str ( length ( f ind ( ( SU_max_LE_U−S_U2 )>−1e−4) ) /
length ( LE_T2 ) ∗100) ’%’ ] ) ;

314
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315 display ( [ ’ i−e f f e c t as share of the t o t a l e f f e c t ( r e s t r i c t i o n : a l l e f f e c t s
p o s i t i v e ) : ’ num2str (mean ( ( SU_LET2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0)
−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0) ) . / ( SU_max_LE_U ( ( SU_LET2−S_T2
) >0 & ( S_U2−SU_LET2 ) >0)−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0) ) ) )
] )

316 display ( [ ’ r−e f f e c t as share of the t o t a l e f f e c t ( r e s t r i c t i o n : a l l e f f e c t s
p o s i t i v e ) : ’ num2str (mean ( ( S_U2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0)−
SU_LET2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0) ) . / ( SU_max_LE_U ( ( SU_LET2−
S_T2 ) >0 & ( S_U2−SU_LET2 ) >0)−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0) ) )
) ] )

317 display ( [ ’ e−e f f e c t as share of the t o t a l e f f e c t ( r e s t r i c t i o n : a l l e f f e c t s
p o s i t i v e ) : ’ num2str (mean ( ( SU_max_LE_U ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2
) >0)−S_U2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0) ) . / ( SU_max_LE_U ( ( SU_LET2−
S_T2 ) >0 & ( S_U2−SU_LET2 ) >0)−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0) ) )
) ] )

318 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( ( SU_LET2 ( (
SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 ) >0)−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−
SU_LET2 ) >0) ) ) ) ] )

319

320 display ( [ ’ i−e f f e c t as share of the t o t a l e f f e c t ( r e s t r i c t i o n : a l l e f f e c t s
p o s i t i v e , \hat L_E^0~=L_E^0) : ’ num2str (mean ( ( SU_LET2 ( ( SU_LET2−S_T2 ) >0
& ( S_U2−SU_LET2 ) >0 & (max_LE_U~=LE_U2 ) )−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−
SU_LET2 )>0& (max_LE_U~=LE_U2 ) ) ) . / ( SU_max_LE_U ( ( SU_LET2−S_T2 ) >0 & ( S_U2−
SU_LET2 )>0& (max_LE_U~=LE_U2 ) )−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 )
>0& (max_LE_U~=LE_U2 ) ) ) ) ) ] )

321 display ( [ ’ r−e f f e c t as share of the t o t a l e f f e c t ( r e s t r i c t i o n : a l l e f f e c t s
p o s i t i v e , \hat L_E^0~=L_E^0) : ’ num2str (mean ( ( S_U2 ( ( SU_LET2−S_T2 ) >0 & (
S_U2−SU_LET2 ) >0 & (max_LE_U~=LE_U2 ) )−SU_LET2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−
SU_LET2 )>0& (max_LE_U~=LE_U2 ) ) ) . / ( SU_max_LE_U ( ( SU_LET2−S_T2 ) >0 & ( S_U2−
SU_LET2 )>0& (max_LE_U~=LE_U2 ) )−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 )
>0& (max_LE_U~=LE_U2 ) ) ) ) ) ] )

322 display ( [ ’ e−e f f e c t as share of the t o t a l e f f e c t ( r e s t r i c t i o n : a l l e f f e c t s
p o s i t i v e , \hat L_E^0~=L_E^0) : ’ num2str (mean ( ( SU_max_LE_U ( ( SU_LET2−S_T2
) >0 & ( S_U2−SU_LET2 )>0& (max_LE_U~=LE_U2 ) )−S_U2 ( ( SU_LET2−S_T2 ) >0 & (
S_U2−SU_LET2 )>0& (max_LE_U~=LE_U2 ) ) ) . / ( SU_max_LE_U ( ( SU_LET2−S_T2 ) >0 & (
S_U2−SU_LET2 )>0& (max_LE_U~=LE_U2 ) )−S_T2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−
SU_LET2 )>0& (max_LE_U~=LE_U2 ) ) ) ) ) ] )

323 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( (
SU_max_LE_U ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 )>0& (max_LE_U~=LE_U2 ) )−
S_U2 ( ( SU_LET2−S_T2 ) >0 & ( S_U2−SU_LET2 )>0& (max_LE_U~=LE_U2 ) ) ) ) ) ] )

324

325 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

326

327 % \hat i n d i c a t e s the r e s p e c t i v e constra ined optimum value ( see t e x t )
328 display ( [ ’mean , std of |\hat L_E^1 − L_E^1|/max( | . | , | . | ) − in % ( only

l o c a l optima ) : ’ num2str (mean( abs ( max_LE_Sa2−LE_Ta2 ) ./max( LE_Ta2 ,
max_LE_Sa2 ) ) ∗100) ’ ’ num2str ( s td ( abs ( max_LE_Sa2−LE_Ta2 ) ./max( LE_Ta2 ,
max_LE_Sa2 ) ) ∗100) ] )

329 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( LE_Ta2 ) ) ] ) ;
330
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331 display ( [ ’mean , std of |\hat S^1 − S^1|/max( | . | , | . | ) − in % ( d i f f e r e n t
s ign cases omitted , only l o c a l optima ) : ’ num2str (mean( aux ) ∗100) ’ ’

num2str ( s td ( aux ) ∗100) ] ) ;
332 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux ) ) ] ) ;
333

334 display ( [ ’mean , std of |\hat L_E^0 − L_E^0|/max( | . | , | . | ) − in %: ’
num2str (mean ( ( abs (max_LE_U−LE_U2 ) ./max( LE_U2 , max_LE_U) ) ) ∗100) ’ ’
num2str ( s td ( ( abs (max_LE_U−LE_U2 ) ./max( LE_U2 , max_LE_U) ) ) ∗100) ] ) ;

335

336 display ( [ ’mean , std of |\hat S^0 − S^0|/max( | . | , | . | ) − in % ( d i f f e r e n t
s ign cases omitted ) : ’ num2str (mean( aux1 ) ∗100) ’ ’ num2str ( s td ( aux1 )
∗100) ] ) ;

337 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( aux1 ) ) ] ) ;
338

339 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

340

341 sd=ce l l2mat ( paramCombsci ( : , 1 1 ) ) ; % \hat s
342 sqq=sqq ’ ; % \bar s a t equi l ibr ium L_E^1
343 ss =[ sd sqq ] ;
344 s s s =[ ss ( : , 1 ) ss ( : , 2 )−ss ( : , 1 ) ss ( : , 2 ) ] ;
345 disp ( [ ’ avg , s td of (\ bar s − \hat s ) / \bar s a t equi l ibr ium L_E ^1: ’

num2str (mean( s s s ( : , 2 ) ./ s s s ( : , 3 ) ) ) ’ ’ num2str ( s td ( s s s ( : , 2 ) ./ s s s ( : , 3 ) ) )
] )

346

347 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
) ;

348

349 % Auxi l iary Var iab les :
350 ST_max_LE_Ta3=ST_max_LE_T ( max_LE_S~=−1 & LEopt0~=L ) ;
351 ST_LE0opta2=ST_LE0opt ( max_LE_S~=−1 & LEopt0~=L ) ;
352 aux0i=abs ( ST_max_LE_Ta3−ST_LE0opta2 ) ./max( abs ( ST_max_LE_Ta3 ) , abs (

ST_LE0opta2 ) ) ;
353 auxi=aux0i ( s ign ( ST_max_LE_Ta3 ) ==sign ( ST_LE0opta2 ) ) ;
354 a u x 0 i i =abs ( SU_max_LE_U−SU_VLE0opt ) ./max( abs (SU_max_LE_U) , abs ( SU_VLE0opt ) ) ;
355 a u x i i =a u x 0 i i ( s ign (SU_max_LE_U) ==sign ( SU_VLE0opt ) ) ;
356

357 % \hat_0 i n d i c a t e s the approximated constra ined optimum in the n o i s e l e s s
case

358 display ( [ ’mean , std of |\hat L_E^1−\hat_0 L_E^1|./max( | . | , | . | ) in % ( l o c a l
optimum e x i s t s ) : ’ num2str (mean( abs ( max_LE_Sa2−LEopt0 ( max_LE_S~=−1) )

./max( abs ( max_LE_Sa2 ) , abs ( LEopt0 ( max_LE_S~=−1) ) ) ) ∗100) ’ ’ num2str ( s td
( abs ( max_LE_Sa2−LEopt0 ( max_LE_S~=−1) ) ./max( abs ( max_LE_Sa2 ) , abs ( LEopt0 (
max_LE_S~=−1) ) ) ) ∗100) ] ) ;

359 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( abs (
max_LE_Sa2−LEopt0 ( max_LE_S~=−1) ) ) ) ] ) ;

360 display ( [ ’mean , std of |\hat S^1−\hat_0 S^1|./max( | . | , | . | ) in % ( d i f f e r e n t
s ign cases omitted , l o c a l optimum e x i s t s , \hat_0 L_E^1~=L ) : ’

num2str (mean( auxi ) ∗100) ’ ’ num2str ( s td ( auxi ) ∗100) ] ) ;
361 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( auxi ) ) ] ) ;
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362 display ( [ ’mean , std of |\hat L_E^0−\hat_0 L_E^0|./max( | . | , | . | ) in %: ’
num2str (mean( abs ( VLEopt0−max_LE_U) ./max( abs ( VLEopt0 ) , abs (max_LE_U) ) )
∗100) ’ ’ num2str ( s td ( abs ( VLEopt0−max_LE_U) ./max( abs ( VLEopt0 ) , abs (
max_LE_U) ) ) ∗100) ] ) ;

363 display ( [ ’mean , std of |\hat S^0−\hat_0 S^0|./max( | . | , | . | ) in % ( d i f f e r e n t
s ign cases omitted ) : ’ num2str (mean( a u x i i ) ∗100) ’ ’ num2str ( s td (

a u x i i ) ∗100) ] ) ;
364 display ( [ ’ # combinations used f o r the above : ’ num2str ( length ( a u x i i ) ) ] ) ;
365 end
366

367 c l e a r w q b aaa hh d i f f D A sh Vs L a Ve M N rho nuq i i i i i i i i j j k
paramCombsc dSWF SWFn dSWFn dSWF2n SWF2n Vbn Fn VFn rentEn rentTn dVbn
rentMn multequ s_T_d sqn Vbl VPn wagen timer e r r o r f l a g empln LEopt0n
VLEopt0n aux0i a u x 0 i i d2SWFn dSWFnNn GTin VGTin ;

368

369 toc

File "symaux_UE"

1 t i c
2

3 % Create symbolic v a r i a b l e s in Matlab :
4 syms L M N sh Vs Ve rho nq a LE Vn b D q A
5

6 % Expressions from the t e x t :
7 alpha =(L−LE ) /( rho∗Ve ) ;
8 gam=1/( alpha ^2∗Vs+Vn) ;
9 VphiGw=Ve+Vs∗Vn∗gam ;

10 beta =(LE+M) /( rho∗VphiGw) ;
11 VsGw=VphiGw−Ve ;
12 w=A∗(1−b ) ∗ (L/( a∗M) ) ^b ; % wage
13 m=(A∗(1−b ) /w) ^(1/b ) ; % employment
14 sq=sh+A∗m^(1−b )−w∗m; % \bar s
15 mh=M∗a/LE ; % \hat M
16

17 % Free OC:
18 EP=sq−(LE/a−nq ) /( alpha+beta ) ;
19 VP = ( ( Vs∗alpha∗beta∗gam+1) /( alpha+beta ) ) ^2/gam ;
20 Ez = ( LE/a−nq ) / ( ( alpha+beta ) ∗ (2∗ rho ∗ (Vn∗Vs∗gam+Ve ) ) ^ . 5 ) ;
21 Vz = gam∗Vn^2/((2∗ rho ∗ (Vn∗Vs∗gam+Ve ) ) ∗ ( alpha+beta ) ^2) ;
22 GP = ( EP−.5∗ rho∗VP/a ) /a ;
23 CovPz = −(VP∗Vz ) ^ . 5 ;
24 GTu = ( Ez−rho∗CovPz/a ) ^2/(1+2∗ rho∗Vz ) +( .5/ rho ) ∗ log (1+2∗ rho∗Vz ) ;
25 GI = ( . 5 / rho ) ∗ log (1+VsGw/Ve ) ;
26 GTi = Ez^2/(1+2∗ rho∗Vz ) +( .5/ rho ) ∗ log (1+2∗ rho∗Vz ) ;
27

28 % R e s t r i c t e d OC:
29 VEP = sq−rho ∗ ( Vs+Ve ) ∗ (LE/a−nq ) /(L+M) ;
30 VVP = Vn∗rho ^2∗(Vs+Ve ) ^2/(L+M) ^2;
31 VEz = rho ^ . 5∗ ( Vs+Ve ) ^ . 5∗ ( LE/a−nq ) / ( ( L+M) ∗2 ^ . 5 ) ;
32 VVz = Vn∗rho ∗ ( Vs+Ve ) /(2∗ (L+M) ^2) ;
33 VCovPz = −(VVP∗VVz) ^ . 5 ;
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34 VGTi = VEz^2/(1+2∗ rho∗VVz) +( .5/ rho ) ∗ log (1+2∗ rho∗VVz) ;
35 VGTu = ( VEz−rho∗VCovPz/a ) ^2/(1+2∗ rho∗VVz) +( .5/ rho ) ∗ log (1+2∗ rho∗VVz) ;
36 VGP = (VEP−.5∗ rho∗VVP/a ) /a ;
37

38 % Free OC;
39 % b corresponds to \Ps i in the te x t ,
40 % c corresponds to \Phi in the t e x t :
41 CovPn = Vn∗ (VP∗gam) ^ . 5 ;
42 VtmP = Vs+Ve+VP∗(−Vn∗gam+1)−2∗alpha∗Vs∗ (VP∗gam) ^ . 5 ;
43 Eb = rho ^.5∗nq ∗ ( ( 1 / 2 ) ∗rho∗VtmP+N∗CovPn/Vn) ^.5/N;
44 Vb = ( Eb/nq ) ^2∗Vn ;
45 Ec = −rho∗nq∗ ( sq−EP+CovPn∗nq/Vn) /N;
46 Vc = ( Ec/nq ) ^2∗Vn ;
47 Covbc = ( Eb/nq∗ ( Ec/nq ) ) ∗Vn ;
48 UN = . 5∗ log (1−2∗Vb) /rho−Ec/rho−.5∗Vc/rho−(Eb+Covbc ) ^2/( rho∗(1−2∗Vb) ) ;
49 UM = GTi−(1/rho ) ∗ log (1−m/mh∗(1−exp(−rho ∗ (w−D) ) ) ) ;
50

51 % R e s t r i c t e d OC:
52 VCovPn = rho ∗ ( Vs+Ve ) ∗Vn/(L+M) ;
53 VVtmP = Vs+Ve ;
54 VEb = rho ^.5∗nq ∗ ( ( 1 / 2 ) ∗rho∗VVtmP+N∗VCovPn/Vn) ^.5/N;
55 VVb = (VEb/nq ) ^2∗Vn ;
56 VEc = −rho∗nq∗ ( sq−VEP+VCovPn∗nq/Vn) /N;
57 VVc = ( VEc/nq ) ^2∗Vn ;
58 VCovbc = (VEb/nq∗ (VEc/nq ) ) ∗Vn ;
59 VUN = . 5∗ log (1−2∗VVb) /rho−VEc/rho−.5∗VVc/rho−(VEb+VCovbc ) ^2/( rho∗(1−2∗VVb)

) ;
60 VUM = VGTi−(1/rho ) ∗ log (1−m/mh∗(1−exp(−rho ∗ (w−D) ) ) ) ;
61

62 % S o c i a l welfare :
63 SWF = LE∗ (GP+GTu) +(L−LE ) ∗ ( GTi+GI ) +N∗UN+M∗UM;
64 SWF2 = LE∗ (VGP+VGTu) +(L−LE ) ∗VGTi+N∗VUN+M∗VUM;
65

66 % F i r s t and second d e r i v a t i v e s :
67 dVb= d i f f (Vb , LE ) ;
68 dSWF= d i f f (SWF, LE ) ;
69 d2SWF= d i f f (dSWF, LE ) ;
70

71 % \Delta ( L_E )−\Gamma( L_E ) :
72 F=GP+GTu−GI−GTi ;
73 VF=VGP+VGTu−VGTi ;
74

75 % " Rents " :
76 rentE=GP+GTu−GTi ;
77 rentT=GI ;
78 rentM=−(1/rho ) ∗ log (1−m/mh∗(1−exp(−rho ∗ (w−D) ) ) ) ;
79 empl=m/mh;
80

81 % Approximated constra ined optimal L_E ’ s in the n o i s e l e s s case :
82 LEopt0=a ∗ (L+M) ∗sq /( rho∗Ve ) +a∗nq−.5∗Vs∗ (L+M) /Ve+a∗m∗ (L+M) ∗(1−exp(−rho ∗ (w−D)

) ) /( rho^2∗Ve ) ;
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83 VLEopt0=a ∗ (L+M) ∗sq /( rho ∗ ( Vs+Ve ) ) +a∗nq+a∗m∗ (L+M) ∗(1−exp(−rho ∗ (w−D) ) ) /( rho
^2∗(Vs+Ve ) ) ;

84

85 % Transform express ions i n t o ’ charac ter ’ form :
86 SWFn=char (SWF) ;
87 SWF2n=char (SWF2) ;
88 dVbn=char (dVb) ;
89 Vbn=char (Vb) ;
90 dSWFn=char (dSWF) ;
91 d2SWFn=char (d2SWF) ;
92 Fn=char ( F ) ;
93 VFn=char (VF) ;
94 rentTn=char ( rentT ) ;
95 rentEn=char ( rentE ) ;
96 rentMn=char ( rentM ) ;
97 VPn=char (VP) ;
98 sqn=char ( sq ) ;
99 empln=char ( empl ) ;

100 LEopt0n=char ( LEopt0 ) ;
101 VLEopt0n=char ( VLEopt0 ) ;
102 GTin=char ( GTi ) ;
103 VGTin=char ( VGTi ) ;
104

105 c l e a r LEopt0 VLEopt0 empl L M N sq Vs Ve rho nq a LE Vn b w alpha beta gam
VphiGw VsGw EP Ez VP Vz GP GTu GTi GI CovPz VEP VEz VVP VVz VGP VGTu

VGTi VGI VCovPz Vb Vc Covbc Eb Ec Vb Vc Covbc VEb VEc VVb VVc VCovbc
SWF SWF2 dSWF dSWF2 F VF VCovPn VUM VUN UM UN dVb rentT rentE rentM
wage mh m drSWF rSWF rSWF2 VtmP VVtmP SWFnN dSWFnN CovPn d2SWF

106

107 toc

Function "UE_Model_f1"

1 % This i s funct ion " UE_Model_f1 " . The r . h . s . shows funct ion inputs , the
2 % l . h . s . shows funct ion outputs :
3 func t ion [ equ_T , equ_U , s_T , s_U , s_T_d , maxLEU, SU_maxLEU, Vbl , rVP ,

multequ , rT , rE , rM, VrE ,VrM, maxLES , ST_maxLET , maxLESglobal , ST_maxLETglobal ,
Empl , LEopt0 , VLEopt0 , ST_LE0opt , SU_VLE0opt , GT_i , VGT_i , SU_LET , SL , wb, sqq ,
utiE , utiM , Vbl_one ] = UE_Model_f1 ( L , a , Vs , rho , Ve ,M, nq , b ,A,D, sh ,N, t , Vn , Vbn
, Fn , VFn , SWFn, dSWFn, d2SWFn , SWF2n , rentEn , rentTn , rentMn , VPn , sqn , empln ,
LEopt0n , VLEopt0n , GTin , VGTin , dVbn)

4

5 % Show simulat ion progress in the command window :
6 i f mod( t , 1 0 0 0 0 ) ==0
7 display ( num2str ( t ) ) ;
8 toc
9 e l s e

10 end
11

12 x0=double ( L/2) ;
13

14 % Transform ’F ’ i n t o a funct ion of L_E :
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15 F=eval ( [ ’@( LE ) ’ Fn ] ) ;
16

17 % Set up the funct ion ’ s output v a r i a b l e s :
18 equ_T=NaN;
19 s_T=NaN;
20 s_T_d=NaN;
21 equ_U=NaN;
22 s_U=NaN;
23 maxLEU=NaN;
24 SU_maxLEU=NaN;
25 Vbl=NaN;
26 rVP=NaN;
27 multequ=NaN;
28 rT=NaN;
29 rE=NaN;
30 rM=NaN;
31 VrE=NaN;
32 VrM=NaN;
33 maxLES=NaN;
34 ST_maxLET=NaN;
35 maxLESglobal=NaN;
36 ST_maxLETglobal=NaN;
37 Empl=NaN;
38 LEopt0=NaN;
39 VLEopt0=NaN;
40 ST_LE0opt=NaN;
41 SU_VLE0opt=NaN;
42 GT_i=NaN;
43 VGT_i=NaN;
44 SU_LET=NaN;
45 SL=NaN;
46 wb=NaN;
47 sqq=NaN;
48 ut iE=NaN;
49 utiM=NaN;
50 Vbl_one=NaN;
51

52 i f F ( a∗nq ) <0 || F ( L ) >0
53 wb=1;
54

55 e l s e
56 % Solve f o r equi l ibr ium L_E ^1; the funct ion " rmsearch " f i n d s good

s t a r t i n g points and search i n t e r v a l s ;
57 %\hat M not defined f o r L_E =0:
58 [ u , ~ , e r r o r f l a g ]= rmsearch ( F , ’ f zero ’ , x0 , 1 e−6,L , ’ I n i t i a l S a m p l e ’ , 1 0 0 ) ;
59

60 f o r k1 =1: length ( e r r o r f l a g )
61 i f e r r o r f l a g ( k1 ) <0
62 u ( k1 ) = [ ] ;
63 end
64 end
65
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66 % Drop the combination , i f i t impl ies mult ip le e q u i l i b r i a :
67 i f length ( u ) >1
68 multequ =1;
69 e l s e
70

71 Vb=eval ( [ ’@( LE ) ’ Vbn ] ) ;
72 Vbu=Vb( u ) ;
73 VbL=Vb( L ) ; % Vb in case of r e s t r i c e d OC i s indep . of L_E
74

75 % Drop the combination , i f i t does not imply well defined noise t r a d e r
u t i l t i y :

76 i f Vbu>=0.5 || VbL>=0.5
77 Vbl =1;
78

79 e l s e
80 equ_T=u ; % the unique L_E^1
81

82 VF = eval ( [ ’@( LE ) ’ VFn ] ) ;
83 VF0=VF(1 e−6) ;
84 VFL=VF( L ) ;
85 i f s ign ( VF0 ) ==sign (VFL) && sign (VFL) >0 % no i n t e r i o r

s o l u t i o n e x i s t s (VF i s s t r i c t l y decreasing , see t e x t )
86 equ_U=L ; % corner equi l ibr ium L_E^0=L
87 e l s e i f s ign ( VF0 ) ==sign (VFL) && sign ( VF0 ) <0 % f u n c t i o n s not

defined f o r L_E=0
88 equ_U=1e−6;
89 disp ( ’ Warning : L_E^0=0 ’ ) ;
90 e l s e
91 % Solve f o r i n t e r i o r equi l ibr ium L_E ^0:
92 [ equ_U , ~ , e r r o r f l a g ]= fzero (VF , [ 1 e−6 L ] ) ; % S u f f i c i e n t , as

we know t h a t L_E^0 i s unique ( see t e x t )
93

94 i f e r r o r f l a g <0
95 equ_U = [ ] ;
96 end
97 i f isempty ( equ_U )
98 disp ( ’ Error : No equi l ibr ium L_E^0 ’ )
99 end

100 end
101

102 % Transform express ions i n t o f u n c t i o n s of L_E :
103 VP=eval ( [ ’@( LE ) ’ VPn ] ) ;
104 rentT=eval ( [ ’@( LE ) ’ rentTn ] ) ;
105 rentE=eval ( [ ’@( LE ) ’ rentEn ] ) ;
106 rentM=eval ( [ ’@( LE ) ’ rentMn ] ) ;
107 sq=eval ( [ ’@( LE ) ’ sqn ] ) ;
108 empl=eval ( [ ’@( LE ) ’ empln ] ) ;
109 GTi=eval ( [ ’@( LE ) ’ GTin ] ) ;
110 VGTi=eval ( [ ’@( LE ) ’ VGTin ] ) ;
111

112 VP0=Vs ; % Ex−ante p r i c e var iance in the n o i s e l e s s case
with f r e e OC
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113

114 rVP=(VP( equ_T )−VP0 ) /VP0 ;
115

116 rT=rentT ( equ_T ) ;
117 rE=rentE ( equ_T ) ;
118 rM=rentM ( equ_T ) ;
119

120 ut iE=rT+GTi ( equ_T ) ; % CE_E
121 utiM=rM+GTi ( equ_T ) ; % CE_M
122

123 Empl=empl ( equ_T ) ;
124

125 GT_i=GTi ( equ_T ) ;
126

127 % Transform express ions i n t o f u n c t i o n s of L_E :
128 SWF=eval ( [ ’@( LE ) ’ SWFn] ) ;
129 SWF2=eval ( [ ’@( LE ) ’ SWF2n ] ) ;
130 dSWF=eval ( [ ’@( LE ) ’ dSWFn ] ) ;
131 d2SWF=eval ( [ ’@( LE ) ’ d2SWFn ] ) ;
132

133 s_T=SWF( equ_T ) ; % equi l ibr ium s o c i a l welfare with f r e e OC
134 s_T_d=dSWF( equ_T ) ; % slope of the s o c i a l welfare funct ion

with f r e e OC at equi l ibr ium L_E^1
135 SL=SWF2( L ) ; % s o c i a l welfare a t L_E=L
136

137 sqq=sq ( equ_T ) ; % \bar s a t equi l ibr ium
138

139 VrE=VF( equ_U ) ;
140 VrM=rentM ( equ_U ) ;
141 VGT_i=VGTi ( equ_U ) ;
142

143 s_U=SWF2( equ_U ) ; % equi l ibr ium s o c i a l welfare with
r e s t r i c t e d OC

144 SU_LET=SWF2( equ_T ) ; % s o c i a l welfare with r e s t r i c t e d OC,
evaluated at L_E=L_E^1

145

146 % For maximization of s o c i a l welfare , noise t r a d e r u t i l i t y has to
147 % be defined f o r a l l L_E ; Hence , we drop a l l combinations which
148 % imply t h a t Vb i s g r e a t e r than 0 . 5 f o r any L_E :
149 dVb=eval ( [ ’@( LE ) ’ dVbn ] ) ;
150 [ Vb1 , ~ , e r r o r f l a g 0 ]= rmsearch (dVb , ’ fzero ’ , x0 , 0 , L , ’ I n i t i a l S a m p l e ’

, 1 0 0 ) ; %rmsearch f i n d s " good " s t a r t i n g points / i n t e r v a l s ;
fminbnd f i n d s the min of −SWF ( l o c a l i f i t e x i s t s , g loba l
otherwise )

151 f o r k0 =1: length ( e r r o r f l a g 0 )
152 i f e r r o r f l a g 0 ( k0 ) <0
153 Vb1 ( k0 ) = [ ] ;
154 e l s e
155 end
156 end
157

158 i f isempty ( Vb1 )
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159 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) ] ) ;
160 e l s e i f length ( Vb1 ) >1
161 disp ( ’Vb more than one extremum ’ )
162 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
163 e l s e i f dVb( Vb1+1e−12)>0
164 disp ( ’Vb has a minimum ’ )
165 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
166 e l s e
167 Vbmaxvalgl=max ( [ Vb ( 0 ) Vb( L ) Vb( Vb1 ) ] ) ;
168 end
169 i f Vbmaxvalgl >=0.5 % there i s an L_E f o r which Vb>0.5
170 Vbl_one =1;
171 e l s e
172 % Approximated constra ined optimal L_E ’ s in the n o i s e l e s s

case :
173 LEopt0=eval ( LEopt0n ) ;
174 LEopt0=max(1 e−6,min ( LEopt0 , L ) ) ;
175 ST_LE0opt=SWF( LEopt0 ) ;
176 VLEopt0=eval ( VLEopt0n ) ;
177 VLEopt0=max(1 e−6,min ( VLEopt0 , L ) ) ;
178 SU_VLE0opt=SWF2( VLEopt0 ) ;
179

180 % Cal l funct ion " S1opt " ( see below ) , which f i n d s the l o c a l
181 % as well as the g loba l maximum of S ^1:
182 [ maxLES , maxLESglobal ]= S1opt (dSWF, d2SWF) ;
183

184 ST_maxLET=SWF( maxLES ) ; % l o c a l maximum s o c i a l welfare S^1
185 ST_maxLETglobal=SWF( maxLESglobal ) ; % globa l maximum s o c i a l

welfare S^1
186

187 % Cal l funct ion " S0opt " ( see below ) , which f i n d s the
188 % maximum of S ^0:
189 maxLEU=S0opt (SWF2) ;
190

191 SU_maxLEU=SWF2(maxLEU) ; % maximum s o c i a l welfare S^0
192 end
193

194 end
195 end
196 end
197

198 % Auxi l iary f u n c t i o n s " S1opt " and " S0opt " below
199

200 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
203

204 % funct ion " S1opt " f i n d s the L_E t h a t ( l o c a l l y / g l o b a l l y ) maximizes S ^1:
205 func t ion [ maxLES , maxLESglobal ] = S1opt (dSWF, d2SWF)
206

207 [ j , ~ , e r r o r f l a g ]= rmsearch (dSWF, ’ fzero ’ , x0 , 1 e−6,L , ’
I n i t i a l S a m p l e ’ , 1 0 0 ) ;



196 Appendix D. Matlab Code

208

209 f o r k2 =1: length ( e r r o r f l a g )
210 i f e r r o r f l a g ( k2 ) <0
211 j ( k2 ) = [ ] ;
212 e l s e
213 end
214 end
215

216 i f isempty ( j ) % no l o c a l extremum
217 maxLES=−1;
218 j va laux =[SWF(1 e−6) SWF( L ) ] ;
219 jaux =[1 e−6 L ] ;
220 maxLESglobal=jaux ( jva laux==max( jva laux ) ) ;
221 e l s e
222 % check i f l o c a l extremum i s a maximum :
223 j v a l =NaN( length ( j ) , 1 ) ;
224 d2aux=NaN( length ( j ) , 1 ) ;
225 f o r i 1 =1: length ( j )
226 d2aux ( i 1 ) =d2SWF( j ( i 1 ) ) ;
227 j v a l ( i 1 ) =SWF( j ( i 1 ) ) ;
228 end
229 j = j ( d2aux <0) ; % keep only maxima
230 j v a l = j v a l ( d2aux <0) ;
231

232 j va laux =[ j v a l ’ SWF(1 e−6) SWF( L ) ] ;
233 jaux =[ j ’ 1e−6 L ] ;
234 maxLESglobal=jaux ( jva laux==max( jva laux ) ) ;
235

236 i f isempty ( j ) % no l o c a l maximum
237 maxLES=−1;
238 e l s e i f length ( j ) ==1
239 maxLES= j ;
240 e l s e
241 % in case there are mult ip le l o c a l maxima , choose

the one c l o s e s t to the
242 % approx . \hat L_E^1 in the n o i s e l e s s case :
243 lowdis=zeros ( length ( j ) , 1 ) ;
244 f o r k3 =1: length ( j )
245 lowdis ( k3 ) =abs ( LEopt0− j ( k3 ) ) ;
246 end
247 maxLES= j ( lowdis==min ( lowdis ) ) ;
248 end
249 end
250

251 end
252

253

254 % funct ion " S0opt " f i n d s the L_E t h a t maximizes S ^0:
255 func t ion maxLEU = S0opt (SWF2)
256

257 opts2 = optimset ( ’ TolX ’ ,1 e−6) ; % d e f a u l t TolX i s 1e−4
258 mSWF2=@( LE )−SWF2( LE ) ;
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259 % fminbnd f i n d s the min of −SWF2 ( l o c a l i f i t e x i s t s , g loba l
260 % otherwise ) :
261 [ e , ~ , e r r o r f l a g ]= fminbnd (mSWF2, 1 e−6,L , opts2 ) ;
262

263 f o r k4 =1: length ( e r r o r f l a g )
264 i f e r r o r f l a g ( k4 ) <0
265 e ( k4 ) = [ ] ;
266 e l s e
267 end
268 end
269 % S^0 i s inverse U−shaped ( see t e x t ) :
270 i f e>L−1e−3 % no l o c a l minimum has been found
271 maxLEU=L ;
272 e l s e i f e<0+1e−3 % no l o c a l minimum has been found
273 maxLEU=1e−6;
274 disp ( ’ optimal L_E equals " zero " ’ )
275 e l s e
276 maxLEU=e ;
277 end
278

279 end
280

281 end

Adjustemts to function "rmsearch"

Adjustments made to "rmsearch" are the same as in the basic version of the model
and the FE model.
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