
Exploring Early Stages of Protein
Evolution

DISSERTATION

zur Erlangung des Doktorgrades der
Naturwissenschaften (Dr. rer. nat.) der
Fakultät für Biologie und Vorklinische

Medizin der Universität Regensburg

vorgelegt von

Leonhard Josef Heizinger

aus Landshut

Juni 2020

Das Promotionsgesuch wurde eingereicht am:
12.06.2020

Die Arbeit wurde angeleitet von:
Prof. Dr. Rainer Merkl

Unterschrift:

Leonhard Josef Heizinger

Abstract

A comparison of protein backbones makes clear that the number of contemporary protein ar-
chitectures is limited: Not more than approximately 1400 different folds exist, each specifying
the architecture of a protein domain. In agreement with the frequent reuse observed in nature,
many folds can accommodate different functions and large proteins are composed of specific do-
main combinations. These findings make clear that gene duplication and fusion are fundamental
forces in evolution. In contrast to the evolution of homologs that share the same fold but possess
substantially different functions, the origin of the architecture of individual domains is unclear.
If reuse was also the driving force of domain evolution, it should be possible to identify a set
of ancestral fragments of sub-domain size that are shared between domains having significantly
different architectures. For a fully automated detection of putative ancestral fragments, the
algorithm FragStatt was developed. It assesses proteins pairwise in order to find shared frag-
ments. To identify fragments that are homologous, FragStatt compares sequences and to reach
maximum sensitivity, HMM searches are cascaded. Subsequently, the program determines and
scores the similarity of the fragments’ 3D structures. A comprehensive large-scale comparison of
proteins from the CATH database yielded 12,533 partially overlapping and structurally similar
motifs that clustered to 134 unique motifs. These motifs are concentrated on not more than
18 % of the CATH topologies and at most one topology exists that contains more than one motif.
These findings suggest that the reuse of sub-domain sized fragments was not the dominating
force of protein evolution.

v

Contents

Abstract v

List of Figures xi

List of Tables xiii

Abbreviations 1

1 Introduction 3
1.1 The Origin of Life . 3
1.2 Homology . 6
1.3 Protein Sequence, Structure, and Function . 7

1.3.1 Hierarchy of protein architecture . 10
1.3.2 The protein domain as a folding unit . 12
1.3.3 Protein folds . 14

1.4 Measuring Similarity of Proteins . 15
1.4.1 Sequence similarity . 15

1.4.1.1 Pairwise sequence alignments . 16
1.4.1.2 Multiple sequence alignments . 17
1.4.1.3 HMMs . 19

1.4.2 Structure similarity . 21
1.4.2.1 RMSD . 22
1.4.2.2 TM-score and TM-align . 23

1.5 Classification of Proteins . 24
1.5.1 Sequence-based classification . 25
1.5.2 Structure-based classification . 26

1.6 Aim and Scope of this Work . 30

2 Materials and Methods 33
2.1 Databases . 33
2.2 FragStatt . 33

2.2.1 GraphCreator . 34
2.2.2 Pathfinder . 36
2.2.3 Pathanalyzer . 38

vii

Contents

2.2.4 SWiFD . 42
2.3 Testing and Benchmarking FragStatt . 45

2.3.1 Detecting a previously reported ancestral barrel fragment 45
2.3.2 Reevaluation of a set of putative ancestral motifs 46

2.4 Large-scale Scan for Ancestral Protein Motifs . 47
2.4.1 Data acquisition and preparation . 47
2.4.2 All-vs-all based on CATH . 49

2.5 Evaluation of Motifs . 50
2.5.1 Filtering of the hits . 50
2.5.2 Hit count statistics . 51
2.5.3 Generation of CATH classification networks 51
2.5.4 Evaluation of length distribution . 51
2.5.5 Generation of random fragments . 51
2.5.6 Evaluation of TM-score distribution . 53

2.6 Clustering . 53
2.6.1 Additional redundancy removal . 53
2.6.2 All vs. all TM-align . 53

2.7 Search for Multi-Motif Proteins . 54

3 Results 57
3.1 FragStatt: An Algorithm to Detect Putative Ancestral Protein Motifs 58
3.2 Working Principle and Implementation of FragStatt 61
3.3 Testing and Benchmarking FragStatt . 65

3.3.1 Assessing FragStatt in identifying an ancestral barrel fragment 65
3.3.2 Assessing FragStatt in detecting putative ancient motifs 69

3.4 A Large-Scale Scan for Ancestral Protein Motifs 74
3.4.1 Data basis and basic strategy . 74
3.4.2 Defining a set of candidate hits . 75
3.4.3 CoMo motifs are spread unevenly amongst CATH 78
3.4.4 Length distribution of the CoMo motifs 86
3.4.5 Structure similarity of the CoMo motifs 87
3.4.6 Clustering the CoMo set to identify unique motifs 89
3.4.7 Identifying proteins possessing more than one motif 96

4 Discussion 103
4.1 Alternative Approaches for the Detection of Ancestral Protein Motifs 103
4.2 Parameters Affecting The Sensitivity of FragStatt 104
4.3 Assessing the Capabilities of FragStatt . 107
4.4 A comparison of CoMo, ProVoc, and Fuzzle . 108
4.5 Protein Modules as the Building Blocks of Evolution 112

viii

Contents

References 115

Acknowledgement 125

ix

List of Figures

1.1 Timeline of the early history of life on Earth . 4
1.2 Example of symmetrical protein folds . 5
1.3 Example of the emergence of homologous genes 7
1.4 Protein folding . 8
1.5 Hierarchy of protein architecture . 11
1.6 Protein domains of a pyruvate kinase . 13
1.7 Example of protein folds . 14
1.8 Multiple sequence alignment of TrpA sequences 18
1.9 Topology of an HMM . 20
1.10 Pfam-A workflow . 26
1.11 Hierarchy of the CATH database . 28

2.1 GraphCreator . 34
2.2 Pathfinder . 36
2.3 Path object . 37
2.4 Function of Aligner . 39
2.5 Example case for Aligner . 40
2.6 MSA match matrix . 41
2.7 Example dotplot of a match matrix . 42
2.8 Defining a submatrix . 44
2.9 Calculating the Smith-Waterman matrix . 45
2.10 Result of SWiFD . 45
2.11 Data preparation . 48

3.1 Basic principle of motif detection . 58
3.2 Linking two HHblits cascades . 61
3.3 HHblits cascade . 62
3.4 Components of FragStatt . 64
3.5 FragStatt plots for 1WA3_A and 4JGI_A . 66
3.6 Superposition of common motifs in 1WA3_A and 4JGI_A 67
3.7 Pfam distribution for the FragStatt run 1WA3_A vs. 4JGI_A 68
3.8 Comparison of the approach of Alva et al. and FragStatt 70
3.9 Putative ancient motifs identified by Alva et al. 71

xi

List of Figures

3.10 Sequences of motif 1 from Alva et al. 72
3.11 All vs. all search for protein ancestral protein motifs 74
3.12 Seven (PDB-ID 3Q7M_A) and eight (PDB-ID 1ERJ_A) bladed beta propellers . . . 77
3.13 Distribution of PDB protein chains in CATH classes 79
3.14 Distribution of CATH architectures in four data sets 80
3.15 A survey of motifs shared between CATH architectures 83
3.16 Distribution of the length of the detected motifs 86
3.17 Histogram of TM-Scores . 88
3.18 Histogram of TM-Scores . 89
3.19 Frequency of CATH architectures in the CoMoClust set 94
3.20 Examples of motifs from the CoMoClust set . 95
3.21 Clustering of motif manifestations on a protein chain basis 97
3.22 CATH topologies of putative multi-motif proteins 98
3.23 A protein possessing a repetitive motif . 99
3.24 A protein possessing two overlapping and repetitive motifs 99
3.25 Example of fragmented motifs . 100
3.26 Multiple motifs of the protein PlcR (PDB-ID 2QFC_A) 101
3.27 Multiple putative motifs in GmhA (PDB-ID 2XBL_B) and diaA (PDB-ID 2YVA_A) 102

4.1 Evolutionary scenario of the (βα)8 barrel fold . 104
4.2 Consequences of the choice of the HHblits database 106
4.3 Histogram of TM-scores . 109
4.4 Number of folds/topologies per motif in the CoMoClust set and the ProVoc set . 110

S1 A survey of motifs shared between CATH topologies 130

xii

List of Tables

3.1 Parameters of the HHblits cascade . 62
3.2 Common motifs detected for 1WA3_A and 4JGI_A 67
3.3 Correspondence of motifs detected by FragStatt and Alva et. al. 73
3.4 Relative frequencies of CATH architectures in different datasets 82
3.5 Number of hits detected by FragStatt when comparing two CATH architectures . 84
3.6 CoMoClust set of 134 clusters each defining a putative ancestral motif 90
3.7 Putative multi-motif proteins . 100

S1 Number of hits detected by FragStatt in respect of CATH topologies 127

xiii

Abbreviations

CATH Protein Structure Classification database

CoMo Set of putative ancient motifs identified with FragStatt

CoMoClust Clustered variant of CoMo

DFS Depth first search

f Statistical absolute frequency

rf Statistical relative frequency

FASTA Text-based sequence file format

Fuzzle Database of putative ancient motifs (Ferruz et al., 2020)

Gya Billion years ago

HMM Profile hidden Markov model

HRR HHsuite result file extension

MSA Multiple sequence alignment

PDB Protein Data Bank

PKL Format for binary storage of Python objects

Pfam Protein families database

ProVoc Set of putative ancient motifs (Alva et al., 2015b)

RMSD Root-mean-square deviation

SCOP Structural Classification of Proteins database

1

Chapter 1

Introduction

1.1 The Origin of Life

Proteins are the main actors in all known life forms. In a functioning cell, a broad range of

different biochemical tasks need to be fulfilled, facilitated by a vast variety of different and highly

specialized proteins: For example enzymes are optimized to catalyze biochemical reactions with

high specificity, structural proteins maintain the shape of a cell, and signaling proteins transduce

external stimuli into the cell. The origin of the complex molecular protein machinery which

makes up large parts of an organism goes back billions of years, to an era when the first proteins

evolved.

Life as we know it on Earth is assumed to have emerged over 3.6 billion years ago (Doolittle,

2000; Glansdorff et al., 2008; Betts et al., 2018). The existence of a simple primordial form of

life named last universal common ancestor (LUCA) in this era is generally accepted (Darwin,

1859; Woese, 1998; Theobald, 2010) (compare Figure 1.1). Interestingly, the reconstruction of

ancestral enzymes and the modeling of “minimal genomes” indicate that in its basics LUCA

resembled modern-day organisms and already possessed a relatively complex enzyme-facilitated

metabolism (Koonin, 2003; Weiss et al., 2016). This leads to the assumption that LUCA must

have already had a repertoire of efficient enzymes and enzyme complexes similar to those we

can observe in all organisms today. Consequently, this suggests that the evolutionary origin of

many proteins goes back within the pre-LUCA era. The emergence of life in this era is still

3

Chapter 1 Introduction

unresolved. However, it is a widely accepted hypothesis that RNA played an important role in

the earliest stages of abiogenesis and that RNAs could have been the earliest precursors of life.

The so-called RNA world hypothesis (Gilbert, 1986) founds on the unique properties of RNA

which make it a promising candidate for the earliest precursor of life: It can store information

similar to DNA and it can be enzymatically active in the form of a ribozyme. Furthermore there

is increasing evidence suggesting the ability of RNA to self-replicate (Zaher and Unrau, 2007;

Horning and Joyce, 2016). However, over time the enzymatic functions performed by RNA in

the RNA world must have gradually been transferred to much more effective and specialized

proteins which led to the first protein and DNA based life as we know it today. Little is known

about this important stage in the emergence of life in which supposedly the first folded proteins

evolved.

Figure 1.1: Timeline of the early history of life on Earth.
The earth formed at approximately 4.5 Gya and some 300 million years later a stable hydrosphere de-
veloped. The fundamental chemical components for the emergence of life were supposedly present at
4 Gya. The earliest RNA based precursors of life are thought to have emerged at approximately 3.8 Gya.
It is assumed that the first DNA and protein based life and finally LUCA emerged in a relatively short
time span of only a few hundred million years. Note that this timeline is based on rough estimates.
New insights and evidence might change these estimates drastically. Adapted by kind permission from
Springer Nature Customer Service: The antiquity of RNA-based evolution, Joyce (2002)

Over 50 years ago, before the idea of the RNA world emerged, the pioneering bioinformatican

Margret Dayhoff together with here colleague Richard Eck were the first ones to propose the

idea that proteins are built from small reoccurring motifs. Dayhoff and Eck deduced their

hypothesis from the occurrence of repeating sequence motifs in the few protein sequences which

were known at that time (Eck and Dayhoff, 1966a,b). With the rise of the widely accepted

4

1.1 The Origin of Life

RNA world hypothesis Dayhoff and Eck’s observations led to the proposal that the first folded

proteins arose by repetition, fusion, recombination, and accretion from a set of ancestral protein

fragments which emerged in the RNA world (Fetrow and Godzik, 1998; Söding and Lupas, 2003;

Alva et al., 2015b).

In the 1960s Dayhoff and Eck based their hypothesis on internal symmetries they discovered

in the sequence of ferredoxin proteins. Since then in the fields of biochemistry, biophysics, and

bioinformatics many revolutionary discoveries have been made and game-changing new methods

were developed. In this manner, next generation sequencing techniques have led to an enormous

amount of known protein sequences, improvements in crystallography made it possible that more

than 100,000 protein structures are known, and profile based sequence analysis algorithms allow

the identification of faint sequence similarities facilitated by widely available and affordable

high performance computing clusters. Today, it is known that proteins can be classified by

their basic architecture, called folds. Currently approximately 1400 different folds are known

(Chothia, 1992; CATHTeam, 2020; SCOPTeam, 2020). For many of the known folds an internal

symmetry can be observed (compare Figure 1.2). For example beta propeller like proteins consist

of a symmetrical radial arrangement of multiple so-called blades. A similary striking symmetry

can be observed for (βα)8 barrel-like proteins.

Figure 1.2: Example of symmetrical protein folds.
The four folds updown-bundle (PDB-ID 1F4M), beta propeller (PDB-ID 3Q7M), beta trefoil (PDB-ID
1BFG) and (βα)8 barrel (PDB-ID 5BVL) each show a symmetrical architecture: The folds are composed
of a repetition of the same motif (highlighted in blue).

Interestingly, increasing evidence suggest that utilization of reoccurring motifs can not only be

detected within a fold but also between distinct folds (Andrade et al., 2001; Höcker et al., 2002;

Remmert et al., 2010; Farías-Rico et al., 2014). For the field of protein evolution this is an

5

https://www.rcsb.org/structure/1F4M
https://www.rcsb.org/structure/3Q7M
https://www.rcsb.org/structure/1BFG
https://www.rcsb.org/structure/5BVL

Chapter 1 Introduction

interesting finding as in general different folds are considered to be evolutionary unrelated, in a

classical sense, i.e. it is assumed that they do not share a common ancestor. Common motifs

found in distinct folds could represent remnants from the pre-LUCA era when the first folded

proteins emerged. These remote similarities between folds could deliver important insights into

the earliest stages of protein evolution and the emergence of life on earth.

The detection and revelation of such unknown and ancient relationships are the subject of this

work. In the following sections the required theoretical basics of structural biology and protein

evolution will be covered. Subsequently a systematic study aimed at the detection of ancestral

protein relationships will be presented.

1.2 Homology

In the most general definition, homology “designates a relationship of common descent between

any entities” (Koonin, 2005). Historically the idea of common homologous structures in nature is

old and was already familiar to ancient Greek philosophers like Aristotle (Hall, 2012). Naturally,

in biology the concept of homology plays a fundamental role. Homology of living organisms can

be observed on different levels, for example a morphologic homology of bone structures among

vertebrates. In this work however, the term homology will be strictly used in the context of

protein evolution, i.e. homology on a molecular level.

The following shall introduce the concept of homology. In a genome, proteins are encoded in

genes. A hypothetical evolutionary trajectory of a gene “gene A” can be seen in Figure 1.3.

Gene duplication is one of the central mechanism which facilitates divergent evolution (Koonin,

2005), which is the separate and independent evolution of two genes which both descend from

a common ancestor gene. Say a gene A, which is essential for the organism, gets duplicated

resulting in the copy gene B. The duplication eases the selective pressure for one duplicate and

makes it possible for one copy of the gene to diverge through genetic drift, while the other

copy keeps its original function. Subsequently a possible speciation event, i.e. an evolutionary

split into distinct species Species 1 and Species 2, results in four different variants of the initial

gene A: geneA1, geneB1, geneA2 and geneB2. These genes (or in the context of this work the

6

1.3 Protein Sequence, Structure, and Function

Figure 1.3: Example of the emergence of homologous genes.
Through a gene duplication event a copy of gene A called gene B emerges. Gene A and gene B evolve
divergently as selective pressure on one of the copies is absent. Through a speciation event both copies
are passed on to two distinct species. This results in four homologous genes geneA1, geneB1, geneA2
and geneB2. Homologous genes in a species are called paralog. Homologous genes from different species
are called ortholog. A third evolutionary unrelated but similar gene C is called analog. Figure based on
Shafee 2018 and itself licensed alike under CC BY-SA 4.0

encoded proteins) are called homologous. Homologous genes within a species, i.e. geneA1 and

geneB1 are called paralog. Homologous genes shared between species, i.e. geneA1 and geneA2

are called ortholog. A third gene C which might be similar to the other genes by chance but has

no common evolutionary origin is called analog. The similarity of gene C and gene A is a result

of convergent evolution.

To verify a common descent of proteins it is necessary to identify homologous relationships

between them. The homology of proteins can be assessed by considering and comparing the

three basic properties of proteins: sequence, structure and function.

1.3 Protein Sequence, Structure, and Function

Each protein-encoding gene defines a specific sequence of amino acids: During protein synthesis,

these amino acids are linked together by peptide bonds and form a long chain. The length of

protein chains, i.e. the number of amino acid residues of the sequence, varies widely: While the

median length of proteins of eukaryotes was estimated to approximately 360 amino acid residues

(Brocchieri and Karlin, 2005), the human muscle protein titin, with a length of approximately

7

Chapter 1 Introduction

30,000 amino acid residues (Opitz et al., 2003) surpasses the median value, as one of the largest

known proteins, by two magnitudes of order. On the other hand proteins can be quite small,

e.g. the ribosomal protein rpmJ of Escherichia coli has a length of only 38 amino acid residues

(Fu et al., 2019).

Sequences of proteins can be deduced by identifying protein coding regions in sequenced genomes.

Sequences of known and also hypothetical proteins are collected in databases. The rise of modern

high-throughput sequencing technologies has led to a vast amount of protein sequence data. An

example is the UniProt database (UniProt Consortium, 2019) which as of April 2020 includes

over 216 million non-redundant protein sequences (UniProtConsortium, 2020).

Figure 1.4: Protein folding.
An unfolded unordered peptide chain folds into a compact, stable, and well-defined three-dimensional
protein structure. The illustration shows the ribosomal protein rpsS from the 30S subunit of the ribosome
from E. coli (PDB-ID 6ORE, Fu et al. 2019).

The sequence of a protein is a unique and simple way to describe it, however it is the three-

dimensional structure of a protein which determines its function. The three-dimensional shape

a protein adopts is a fundamental property as it defines its biochemical characteristics and

abilities, i.e. its biological role. The process of a protein adopting its native three-dimensional

conformation is called protein folding. Figure 1.4 illustrates this concept: The unordered amino

acid chain of the ribosomal protein rpsS from the 30S subunit of the ribosome from E. coli

acquires a complex three-dimensional structure. Only this highly specific and unique spatial

conformation allows the protein to play its dedicated role in the large ribosome complex by

8

https://www.rcsb.org/structure/6ORE

1.3 Protein Sequence, Structure, and Function

binding the ribosomal RNA at a specific position.

While sequencing DNA and deriving the sequence of a protein from its corresponding coding

DNA is a relatively simple and highly automatable process, the case is different for determin-

ing the spatial shape of a protein. In many cases it is a challenging task to solve a proteins

three-dimensional structure using techniques like X-ray crystallography, NMR spectroscopy, or

electron microscopy. If the structure determination is successful, proteins with a known structure

are deposited in a central database called protein data bank PDB (Berman et al., 2002). The

number of structures deposited in the PDB is constantly increasing and in March 2020 it con-

tained over 161,000 entries. The challenging nature of protein structure determination becomes

evident when comparing this number to the afore mentioned number of 216 million sequences in

the UniProt database: Only for a small fraction of known proteins a three-dimensional structure

is available.

The just introduced properties of a protein – sequence, structure, and function – are crucially

dependent on each other. It is a fundamental goal in structural biology and life science in general

to understand how a sequence determines a proteins structure, which again defines the functional

characteristics of the protein. Only with a profound understanding of the relationships between

sequence, structure, and function it is possible to completely elucidate the workings of proteins

on a mechanistic level.

In the last decades computational biology has made considerable progress in this area. The

protein folding problem, i.e. the ab initio prediction of a native protein structure from sequence

data only, can be solved in many cases at a high level of accuracy, even for proteins with a so

far unknown fold (Abriata et al., 2019). This indicates that the relationship of sequence and

structure becomes increasingly better understood as it can be adequately described by supplying

the algorithms with sophisticated force fields and scoring functions.

However, research is still far from understanding the architecture of proteins at a really detailed

level. This becomes best evident when taking a look at the discipline of computational pro-

tein design. Undoubtedly protein design has delivered many successful and important results

(Kuhlman et al., 2003; Looger et al., 2003; Huang et al., 2016). However, in their basic con-

cept, protein design algorithms pursue a guided trial-and-error strategy with a limited rational

9

Chapter 1 Introduction

component. Today, it is not possible to accurately predict the overall mechanistic effect of a mu-

tation introduced in a protein. Algorithmically it is only possible to score mutations regarding

their effect on biophysical energy terms like the Lennard-Jones potential or Coulomb potential

and thereby approximate whether a certain mutation is energetically favorable or not. However,

in evolution, the minimization of the energy state of a protein is not a selection criteria per

se, but favorable functional properties, possibly mediated through energetical stabilization are.

This makes clear why current computational protein design algorithms can only provide limited

insights to advance the field of protein evolution. Opposed to the relatively new methods of

computational protein design the classical rational protein design is based on the knowledge of

a specialist researcher which sometimes spent many years studying a specific protein. Also here,

while delivering many successful and fundamental findings, the rational approach is often driven

by a trial-and-error strategy. The example of protein design illustrates that the relationship of

function to sequence and structure is yet to be understood in detail.

To gain further insight in the mechanics of proteins and the relationship of sequence, structure

and function it is vital to uncover their evolutionary origin. For this it is of interest to study the

process of protein evolution, i.e. to elucidate how functional proteins formed. To study the origin

of proteins it is necessary to understand the basic construction of proteins. Thus, in the next

section at first the general architecture of proteins will be treated. Subsequently the methodical

foundations and definitions which will be required in later chapters will be introduced.

1.3.1 Hierarchy of protein architecture

The structure of proteins can be organized into four different hierarchic levels: primary structure,

secondary structure, tertiary structure and quaternary structure. In this order the levels describe

the spatial assembly of a protein structure beginning at the polypeptide chain itself (primary

structure) on the one end and global arrangements (quaternary structure) on the other end

(compare Figure 1.5).

To begin with, the primary structure describes the unique polypeptide chain, defined by the

sequence of the protein. The primary structure consists of amino acid residues connected by

peptide bonds. The series of peptide bonds defines the backbone of the protein. The different

10

1.3 Protein Sequence, Structure, and Function

Figure 1.5: Hierarchy of protein architecture.
The figure shows the human DNA-clamp protein PCNA broken down into the different levels of protein
architecture. The structural composition of a protein can be divided into four different hierarchic levels:
primary, secondary, tertiary and quaternary structure. The primary structure consists of a sequence of
amino acids which form a polypeptide chain. The next level is called secondary structure and describes the
smallest spacial units the protein chain forms when folding, called secondary structure motifs: α-helices,
β-sheets, and loops. The tertiary structure is constituted of a series of secondary structure motifs and
forms protein domains. Finally, the highest level of protein architecture is the quaternary structure and
describes the oligomerization of individual protein chains. The illustration shows a homotrimer consisting
of three identical monomers. (Figure based on Shafee 2016 licensed under CC BY 4.0, PDB-ID 1AXC,
Gulbis et al. 1996)

residues are characterized by their side-chains and the side-chain conformation. It is remarkable,

that the amino acid sequence completely and uniquely defines a protein. Higher order structure

and consequently function of the protein are predefined by the primary structure of the protein.

Through the formation of hydrogen bonds between its residues the primary structure adapts

energetically favorable simple local substructures. These structures are called secondary struc-

ture motifs and as a total they define the secondary structure of the protein. The most common

secondary structure motifs are α-helices and β-sheets. Unordered regions which connect these

motifs are called loops. Multiple adjacent secondary structure motifs which form a cohesive unit

are called supersecondary structure (Levitt and Chothia, 1976). Common supersecondary struc-

ture motifs are for example helix-turn-helix or β-hairpin motifs. The supersecondary structure

can be interpreted as an intermediate level of organization between the secondary and tertiary

level.

Ascending in the hierarchic organization, on the tertiary structure level, the secondary or su-

11

https://www.rcsb.org/structure/1AXC

Chapter 1 Introduction

persecondary structure motifs are packed together and form a complex structure, mainly driven

by optimizing compactness, solubility and the ability to form binding and active sites (Kessel

and Ben-Tal, 2010). While in wide regards secondary structure motifs are very similar amongst

all proteins, on the tertiary level a vast space of possible three-dimensional conformations opens

up, which facilitates the enormous functional diversity of proteins.

The last and highest level of protein organization is the quaternary structure. It describes the

oligomerization of multiple folded protein chains, called subunits, into larger complexes. Protein

complexes can consist of two or more subunits, i.e. dimers, trimers, tetramers, etc. Even large

complexes with 20 or more subunits are known; e.g. viral capsids (Božič et al., 2013).

The hierarchic architecture of proteins reflects their intrinsically modular nature. Especially on

the secondary structure level it is obvious that reuse of basic motifs, in this case α-helices and

β-sheets, is a general concept in proteins. But also, and even more importantly for this work,

on the tertiary structure level the reuse of certain conformations can be observed in the form of

protein domains. For example the tertiary structure shown in Figure 1.5 shows the symmetrical

reuse of a conformation consisting of eight β-sheets and two α-helices.

1.3.2 The protein domain as a folding unit

The classification of protein architecture into the four levels primary, secondary, tertiary, and

quaternary is purely focused on their structural composition. When taking the functional aspect

into account the question arises how the smallest functional units of proteins can be described.

At the tertiary structure level the fundamental unit is called protein domain. It is defined as

a region of the polypeptide chain that can fold autonomously and in many cases has a distinct

and unique function (Branden and Tooze, 2012). The tertiary structure of proteins may consist

of a single domain or in other cases of multiple domains. A protein can either consist of multiple

similar or identical domains or it can be composed of different domains. For the pyruvate kinase

isoform PykA, exemplary shown as a multi-domain protein in Figure 1.6, the latter is the case.

In Pseudomonas aeruginosa PykA is the main “pacemaker” of the Entner-Doudoroff pathway for

glycolysis. It is allosterically regulated, meaning the enzymatic activity of PykA is modulated

12

1.3 Protein Sequence, Structure, and Function

Figure 1.6: Protein domains of a pyruvate kinase.
The pyruvate kinase isoform PykA from P. aeruginosa is an example for the modularity of protein
chains. It consists of three domains A, B and C. Though occurring in a single protein chain each domain
constitutes an individual unit with a distinct folding type. Also functionally the domains fulfill different
tasks. Domain A in interaction with the cap domain B is the enzymatically active domain. Domain C
is the receiver for an allosteric signal which modulates the enzyme activity (PDB-ID 6QXL, Abdelhamid
et al. 2019).

by an external stimulus, in this case the additional binding of ligands other than its substrate.

Interestingly, the allosteric stimulus is sensed in a dedicated allosteric domain which mediates

the signal to the enzymatically active site of the protein. The enzymatically active part of

the protein again consists of two distinct domains (Abdelhamid et al., 2019). While the exact

enzymatic mechanism of PykA goes beyond the scope of this introductory example, the case

of PykA serves well to illustrates the functional modularity of proteins, which is based on the

combination of multiple dedicated domains.

Besides constituting the basic biologically functional unit, domains can also be seen as the basic

evolutionary unit (Kessel and Ben-Tal, 2010): The widely accepted model (compare Figure 1.3)

suggests that through gene duplication a gene, coding for a certain domain, gets copied and

through divergent evolution a modified homologous version of the domain arises (Ohno, 2013).

In this manner, new functions can evolve on the basis of domain duplication events. As as

consequence this concept also suggests that structurally similar domains can fulfill different

functions as the general structure of proteins is known to be more conserved than sequence

(Illergård et al., 2009). In fact naturally occurring domains can be grouped into classes which

show a similar structural architecture and in many cases those domains facilitate a large number

13

https://www.rcsb.org/structure/6qxl

Chapter 1 Introduction

of different biochemical functions.

1.3.3 Protein folds

The duplication and divergent evolution of protein domains is thought to be one of the most

important mechanisms in protein evolution (Chothia and Gough, 2009; Russell, 2001). It is a

natural consequence that certain sets of proteins can be grouped together as they share a similar

basic architecture, which supposedly goes back to a hypothetical common ancestral prototypical

domain. Such a general and reoccurring type of architecture which in many cases can be observed

amongst a broad phylogenetic spectrum of organisms is called a protein fold. In Figure 1.7 three

different folds can be seen and proteins possessing these architectures. Proteins with similar

architectures can be found in all three superkingdoms of life (CATHTeam, 2020). This suggests

that the origin of some folds must go back at least to the era of LUCA, i.e. to a moment in time

before life started to diverge into its three superkingdoms.

Figure 1.7: Example of protein folds.
The Rossman fold (PDB-ID 1G5Q) is composed of six parallel beta strands connected by alpha helices.
A beta-barrel (PDB-ID 6FWW) mainly consists of beta strands arranged in an twisted toroidal structure.
The up-down bundle fold (PDB-ID 1VCS) consists of parallel respectively antiparallel alpha helices.

It is easy to see that the folds in Figure 1.7 have a distinct overall architecture and no obvious

similarities. This is expected as they don’t have a common evolutionary origin. However, as

already mentioned, for some folds local similarities have been detected suggesting unidentified

relationships between supposedly unrelated folds.

14

https://www.rcsb.org/structure/1g5q
https://www.rcsb.org/structure/6FWW
https://www.rcsb.org/structure/1vcs

1.4 Measuring Similarity of Proteins

The total number of different folds in nature is estimated to most probably not exceed 10,000

(Koonin et al., 2002). Today, there are approximately 1,400 known folds (SCOPTeam, 2020;

CATHTeam, 2020). The concept of the protein fold and the classification of reoccurring protein

architectures plays an import role in this work and will be used extensively. The classification of

protein structures will be treated in a following part. Before however, it is necessary to introduce

the required tools to measure similarity between proteins.

1.4 Measuring Similarity of Proteins

In the previous sections the general concept of homology was introduced which is fundamental

in studying the subject of protein evolution. To make homology methodically accessible for

computational analyses it is crucial to establish the ability of deciding on homology. This is

achieved by introducing different measures of similarity between proteins, which can be used to

identify homologs. In general, homology can be inferred when two proteins share more similarity

than one would expect by chance (Pearson, 2013). This means that a similarity measure alone

is not sufficient to assess a potential homologous relationship. It is always necessary to consider

the background possibility of two proteins being similar by mere chance. In general similarity

measures between proteins can be divided into sequence-based and structure-based approaches.

It is noteworthy that similarity measures based on the function of proteins do also exist (Pesquita,

2017; Weichenberger et al., 2017). But as such metrics won’t be used in this work they will not

be discussed any further. The methods used in this work are heavily based on sequence and

structure comparisons, hence in this section the basic methods of quantifying sequence and

structure similarity of proteins will be introduced.

1.4.1 Sequence similarity

The amino acid sequence of a protein is a simple representation, which completely defines the

protein and encodes all of its properties. From a computational perspective it is easy to handle

and store, as it can be represented as a simple array of characters, i.e. a string. This makes the

sequence a suitable representation to algorithmically assess the similarity of proteins.

15

Chapter 1 Introduction

To compare sequences, an optimal alignment of the amino acid residues of the sequences has

to be found. This is done by introducing gaps as necessary, while maximizing the number of

similar or identical amino acid residues aligned to each other (matches). The number of similar

amino acid residues aligned to each other (mismatches) should be minimal at the same time.

In general this can be done for two sequences (pairwise sequence alignment) or for multiple

sequences (multiple sequence alignment). Further one can distinguish between local and global

alignments. Local alignments identify optimal alignments of one or more subregions, like single

domains to be found in both sequences. Global alignments on the other hand deliver a optimal

alignment of the complete sequences, as e.g. needed for phylogenetic analyses. For this work

only the local variant of alignments is of importance. Unless otherwise stated, in the following

parts of the work the term alignment will always refer to the local variant.

1.4.1.1 Pairwise sequence alignments

The pairwise sequence alignment is one of the most basic methods in sequences analysis. Se-

quences can be aligned to each other by performing the edit operations insertion, deletion and

substitution. An optimal alignment is characterized by a minimal number of applied edit opera-

tions while maximizing the number of correctly aligned “matching” positions at the same time.

TrpA Ecoli 8 KEGAFVPFVTLGD--PGIEQSLKIIDTLIEAGADALELGIPFSDPLADGP 55
|:..|:|::..|| .|:|...:.|..|.:||:.|:|:|:|||||:||||

TrpA Lacla 4 KKNNFIPYIMAGDHEKGLEGLKETIQLLEQAGSSAIEIGVPFSDPVADGP 53

Alignment 1.1: Pairwise alignment of TrpA subsequences
An alignment of the N-terminal part of the tryptophan synthase alpha subchain (TrpA) is shown. The
homologous sequences are from the organisms E. coli (Ecoli) and L. lactis (Lacla).

As an example in Alignment 1.1 the pairwise alignment of the N-terminal part of the tryptophan

synthase alpha subchain can be seen. The homologous sequences are from the organisms E. coli

and Lactococcus lactis. An optimal pairwise sequence alignment of two sequences as shown can

be found by algorithmically solving an optimization problem that determines the Levenshtein

distance (Levenshtein, 1966).

16

1.4 Measuring Similarity of Proteins

In the early 1980s the authors Smith and Waterman introduced their local alignment algorithm

called Smith-Waterman algorithm (Smith et al., 1981), which is until today, in various modified

variants, a standard algorithm to compute pairwise sequence alignments. An adapted version

of this algorithm was also used in this work.

To align two sequences a and b with length m and n in the Smith-Waterman algorithm the

following recursively defined scoring matrix S is calculated:

S(i, j) = max

0

S(i− 1, j − 1) + w(ai, bj) Match or Mismatch

S(i− 1, j) + w(ai,−) Deletion

S(i, j − 1) + w(−, bj) Insertion

(1.1)

The function w is called a scoring function which scores match, mismatch, deletion and insertion.

S is calculated for 1 ≤ i ≤ m and 1 ≤ j ≤ n, with m = length(a) und n = length(b).

The fully populated matrix S describes local alignments of a and b. These alignments can be

deduced by identifying tracebacks in the matrix, i.e. tracing back the recursive origin of the

maximum score values in the matrix. Each traceback in the matrix defines a local alignment.

Pairwise alignments are a simple tool to study the similarity of two sequences. However, in

many cases not only two but multiple, often homologous, sequences, for example different TrpA

sequences from various organisms, need to be compared which makes the alignment of multiple

sequences necessary.

1.4.1.2 Multiple sequence alignments

A multiple sequence alignment (MSA) is an extension of the pairwise sequence alignment which

allows to align more than two sequences. With multiple sequences, finding the optimal align-

ment can become computationally very expensive which makes it necessary to fall back to fast

heuristic algorithms. As a consequence, for the creation of MSA, there’s a variety of different

algorithms available such as MAFFT (Katoh et al., 2002), MUSCLE (Edgar, 2004) or T-Coffee

(Notredame et al., 2000), with each of them implementing an individual heuristic approach. A

17

Chapter 1 Introduction

detailed methodical consideration of these algorithms, however, would go beyond the scope of

this introduction. Therefore in the following only the basic composition and the properties of

an MSA will be introduced using the example of a TrpA MSA.

In the MSA shown in Figure 1.8 multiple TrpA sequence from different species are aligned. The

MSA consists of rows (sequences) and columns (sequence positions). Also the sequences from E.

coli and L. lactis used in the example of a pairwise alignment from above can be found again. A

closer look at the alignment of the sequences from these two species makes it apparent that the

optimal pairwise alignment from above is not exactly reproduced in the MSA. The deviation

from optimal pairwise alignments naturally results from globally optimizing the alignment of all

sequences to each other in the MSA.

Figure 1.8: Multiple sequence alignment of TrpA sequences.
The MSA shows the N-terminal part of selected SEED sequences from the Pfam family Trp_syntA
(PF00290). A position dependent variation of the conservation can be observed in the MSA. The MSA
includes sequences from various species, e.g. Haloferax volcanii (Halvd), Zea mays (Maize), Saccha-
romyces cerevisiae (Yeast), etc. The figure was created with Jalview (Waterhouse et al., 2009).

The sequences in the MSA result from millions or even billions of years of divergent evolution.

This becomes especially apparent in variable regions which acquired various mutations amongst

the different species (see conservation and consensus graphs in Figure 1.8). However, also highly

conserved regions can be observed in the MSA. This indicates that the amino acid composition

in these regions is critical for the correct functioning of the protein. As a result the amino acid

composition of each column in the MSA varies. This property of MSAs can be used to generate

18

1.4 Measuring Similarity of Proteins

a position-dependent sequence profile from the MSA. Position-specific sequence profiles have

proven to be very useful when iteratively extending an MSA with additional sequences. With

the help of a profile this can be done by checking whether a potential new sequence matches the

profile. In the next section this concept will be explained in detail.

1.4.1.3 HMMs

Profile hidden markov models, commonly just called HMMs, are a widely used method of uti-

lizing sequence profiles for the identification of homologous sequences. An HMM models a set

of aligned sequences as a stochastic process by describing it as a Markov chain. The initial

calculation of an HMM is based on an MSA. A HMM generalizes the information of an MSA

and describes it as a sequence profile, which results in a representation of the potential sequence

space of similar sequences.

In Figure 1.9a, a classical three-state topology of an HMM with five matching positions is de-

picted. In general the HMM consists of the three different states match state, insert state and

deletion state. These states can transit into each other. However, not all transitions are possible

and the topology of the HMM dictates which state transitions are valid. Possible state transi-

tions are indicated with arrows. Each state transition has a certain probability called transition

possibility. The topology of the HMM is based on the number of match states which can be

deduced from the initial MSA. The shown MSA has five matching columns. A matching column

is defined as column featuring less gap characters than a predefined threshold requires, i.e. less

than 50 % gaps. Thus in this example the fourth column of the MSA is not considered a match

column. The number of match states is defined by the number of matching columns in the MSA.

A match state can emit an amino acid residue. Each match state has unique emission proba-

bilities which define the probability of a certain amino acid residue being emitted by a certain

match state. These emission probabilities can be deduced from the initial MSA by simply eval-

uating the column-wise amino acid abundances. Additionally, natural background probabilities

are taken into account to make emissions and transition possible which are not observed in the

initial MSA. The transition probabilities can be estimated by analyzing adjacent columns of the

MSA (i.e the probability of inserts, matches, deletions in the corresponding next column).

19

Chapter 1 Introduction

Figure 1.9: Topology of an HMM.
a A three-state HMM consists of match states, insert states and deletion states. The shown HMM features
five match states which correspond to five matching columns of the MSA. The possible transitions from
one state to another are represented by arrows. The probabilities of a certain transition is indicated by
the opacity of the arrow. The emission probabilities of the match states are indicated by different sized
amino acid characters above the match state symbols. Begin (B) and end (E) states ensure a formally
correct defined HMM and allow a initial insert state I0. b A sequence can be described as a path through
the HMM. The total probability of the path can be calculated from the individual emission and transition
probabilities. Figure based on EMBL-EBI 2020 and itself licensed alike under CC BY-SA 4.0

Figure 1.9a illustrates how an MSA can be used to define the match states of an HMM. In

Figure 1.9b it is shown how a certain sequence can be described as series of state transitions

and emissions, i.e. as a path through the HMM. As a series of state transitions and emissions,

a path can be also interpreted as a series of probabilities. In this manner, the emission of a

sequence from the HMM can be assessed with a certain probability. This property can be used

to score an arbitrary new sequence (query) based on the given HMM, which makes it possible

to evaluate how well a new sequence matches a given sequence profile.

In the case of larger and more complex HMMs, for a given sequence often multiple paths can be

found which emit the query. In this case the most likely path through the HMM is of interest.

This optimization problem can be solved in a similar manner as the previously introduced

Smith-Waterman algorithm finds optimal pairwise alignments. The so-called Viterbi algorithm

20

1.4 Measuring Similarity of Proteins

also calculates a recursively defined matrix and identifies the most likely path, called Viterbi

path by using back tracking.

An HMM can be iteratively refined by adding matching sequences and rebuilding it. In this

manner, highly sensitive profiles for the detection of even remotely homologous sequences can

be created.

There are different software packages offering homology detection based on HMMs, most notably

HMMER (Eddy, 2020) and HHSuite (Steinegger et al., 2019a). In this work the HHblits tool from

the HHSuite package was utilized.

1.4.2 Structure similarity

As seen in the previous part, the pairwise comparison of proteins based on sequences is a rela-

tively clear and straightforward process. Although there are many different algorithms available,

historically there is a consensus about the basic methods of sequence alignments which “has led

to trusted and generally accepted procedures” (Kolodny et al., 2013). The case is different for

the comparison of proteins based on structures. It has proven to be a difficult task to find an op-

timal superposition of complex three-dimensional protein structures and there is no agreed-upon

standard method for this problem (Kolodny et al., 2013).

It could be shown that structure alignments with an optimal score can be found, but the runtime

of such an algorithm scales proportional to the eighth power with increasing sequence length

(Kolodny and Linial, 2004). As a consequence, there’s a variety of algorithms which make

heuristic approaches such as DALI (Holm and Sander, 1995), CE (Shindyalov and Bourne, 1998)

or TM-align (Zhang and Skolnick, 2005). These algorithms are fast, but do not necessary find

the optimal alignment due to their heuristic nature. For this work, TM-align was chosen, which

was in comparison to other methods shown to improve accuracy while being several times faster

(Zhang and Skolnick, 2005). All structure alignment algorithms have in common that they

need to define a metric between two three-dimensional protein structures which they assess and

optimize. These are either called structural similarity or structural distance measures, depending

on whether the value gets higher with increasing distance or increasing similarity of the protein

21

Chapter 1 Introduction

structures. In general, one has to differentiate between a measure of structural similarity or

distance per se and algorithms minimizing or maximizing these measures to find a good or

optimal structural alignment between two protein structures. For example, TM-align uses its

own similarity measure called TM-score and aims to maximize it. However, before treating TM-

align in more detail, at first the most basic and common three-dimensional distance measure for

protein structures called RMSD will be introduced.

1.4.2.1 RMSD

The most common way in structural biology to specify the three-dimensional distance between

two protein structures is the so-called root mean square deviation (RMSD). The RMSD is based

on the distance between pairs of corresponding atoms and can be defined as a simple formula:

RMSD =

√√√√ 1
N

N∑
i=1

d2
i (1.2)

where N is the number of pairs of atoms and di is the euclidean distance between the i-th atom

pair. Depending on which atoms to include in the calculation, the RMSD can vary quite much

for the same two input structures. The all-atom RMSD which includes all side-chain atoms of

the protein is generally larger then an RMSD resulting from a subset of the atoms. It is most

common to use either the heavy backbone atoms of the protein structures or only Cα atoms.

As it sums up distance values, the RMSD has the dimension of length which is usually given in

Ångström (Å, 10−10 m).

The RMSD has a substantial drawback when it comes to the comparison of RMSD values re-

sulting from independent pairs of structures: The RMSD is length dependent. For example the

significance of an RMSD value of 2 Å for a protein pair with the length of 50 residues is funda-

mentally different to the significance of the same RMSD value resulting from the comparison of

two proteins with a length of 500 residues (Carugo and Pongor, 2001). For this work it was very

important to choose a similarity measure which makes it possible to compare the results from

independent structural alignments with big size differences. For this reason, instead of using

the RMSD it was chosen to use the TM-score and the according structural alignment algorithm

22

1.4 Measuring Similarity of Proteins

TM-align.

1.4.2.2 TM-score and TM-align

The TM-score is a variant of the Levitt-Gerstein (LG) score which was introduced to overcome

several shortfalls of the RMSD, for example the dominance of outliers, i.e. pairs featuring a

large distance (Levitt and Gerstein, 1998). However, the LG-score and other derived scores like

MaxSub (Siew et al., 2000) or the GDT_TS score (Zemla, 2003) still show a length dependence

(Zhang and Skolnick, 2004). As an improved LG-score derivative the TM-score was defined as

follows (Zhang and Skolnick, 2004):

TM-score = max

 1
LN

LT∑
i

1

1 +
(

di
d0(LN)

)2

 (1.3)

At this place it is important to note that the TM-score evaluates local alignments: It differen-

tiates between the length of the native (“to be aligned“) structure LN and the length LT of the

actual alignment to the target structure (also called template structure). For a global alignment

LN would be equal to LT . di is the distance between the i-th pair of aligned residues. The max

operator indicates that the maximum TM-score of all possible spatial superpositions is returned,

i.e. the optimal superposition is used for the calculation of the TM-score. The value d0 is used

as normalization. The redefinition of this value is the main adjustment which differentiates the

TM-score from other approaches like MaxSub or GDT_TS. The authors Zhang and Skolnick

achieved a length independence by approximating the value of d0 dependent of LN :

d0(LN) = 1.24 3
√
LN − 15− 1.8 (1.4)

The formula is based on the statistical analysis of a comprehensive set of PDB structures. In

this manner, the authors could approximate d0 as “the average distance of corresponding residue

pairs of random related proteins” (Zhang and Skolnick, 2004) for a given length LN , which makes

the TM-score a length independent structural similarity score for proteins.

TM-align is an algorithm which is designed to identify close to optimal structural alignments

23

Chapter 1 Introduction

based on the maximization of the TM-score. After making multiple initial alignment steps

(e.g. secondary structure alignment) it then applies an heuristic optimization algorithm which

iteratively refines the alignment using a TM-score based rotation matrix similar to the RMSD

based rotation matrix used in the Kabsch algorithm (Kabsch, 1978), which is one of the earliest

methods for the superposition of protein structures.

1.5 Classification of Proteins

As the previous sections showed, proteins can be described at three different levels: based on

the sequence of the polypeptide chain, based on their three-dimensional structure, and based on

their function. The potential space of manifestations on these three levels will be called sequence

space, structure space and function space in the following. It is a crucial understanding that

these three levels are not independent of each other: A certain amino acid sequence induces a

three-dimensional structure and the spatial conformation facilitates the functional capabilities

of a protein. In structural biology, it is one of the main goals to understand the relationship

between these levels (Kessel and Ben-Tal, 2010). The classification or in other words grouping

of similar and thus presumably homologous proteins, is an essential requirement for studying

protein evolution as it is laying the data basis for computationally driven analyses of evolutionary

relationships between proteins.

In a previous section the protein domain was introduced as a basic evolutionary unit. The goal of

protein classification is to group domains into homologous protein families and establish higher

order hierarchic relationships between the identified families. From a technical and methodical

perspective it has proven to be a challenging task to consider all three levels, sequence, structure,

and function at once. Thus, over time, different classification methods for proteins with their

primary focus on either sequence, structure or function were developed. In this work different

classification schemes, mainly on the sequence and structure level, were used, which will be

introduced in the following.

24

1.5 Classification of Proteins

1.5.1 Sequence-based classification

Sequence-based classification schemes make use of the sequence similarity of proteins. The

already introduced concept of HMMs has proven to be an ideal method for the iterative com-

pilation and extension of protein families. By using HMMs it is possible to create individual

sequence profiles for each protein family. As a consequence, with an increasing number of cor-

rectly identified sequences, the profile becomes more representative and sensitive, which makes

it possible that even sequences with a weak homologous signal can be correctly classified. One

of the first databases which offered a HMM-based classification of protein sequences was Pfam

(Orengo et al., 2014; El-Gebali et al., 2018). Another widely used resource is the InterPro

database (Mitchell et al., 2014), which follows the approach of collecting data from various

sources and aggregates it to increase its coverage (Orengo et al., 2014). InterPro also includes

data from Pfam. For this work, it was decided to use the Pfam database because of the following

two reasons: Firstly, Pfam offers a manually curated high quality subsets of the database which

is less prone to misclassifications compared to highly automated approaches like InterPro and,

secondly, pre-built HMM databases are available for Pfam which will play an important role in

the algorithm presented in the next chapter. Thus, in this section the concept behind the Pfam

database will be introduced.

The Pfam database is a collection of sequences of protein domains which are grouped into

homologous families. There are two variants of the database Pfam-A and Pfam-B. Pfam-A is

the high quality portion based on a high amount of manual curation, while Pfam-B is based

on automated sequence annotation and is trimmed to maintain a maximum coverage (Orengo

et al., 2014). In this work the Pfam-A database was used.

In Figure 1.10, the workflow behind a Pfam-A entry is shown. Each entry is based on a so-called

SEED alignment which is a manually created small set of sequences which was chosen by experts

and represents the family well (Orengo et al., 2014). Subsequently from this set of sequences

an HMM is built. Using the SEED HMM profile as a basis, the UniProt database is searched

for additional sequences which match the profile. In this way the so-called FULL alignment is

built.

25

Chapter 1 Introduction

Figure 1.10: Pfam-A workflow.
Each entry of the Pfam-A database is based on a manually created SEED alignment which is curated by
experts. A HMM is built and used to automatically search the UniProt database for additional sequences
which match the profile. This results in the FULL alignment of the entry. Figure adapted from Orengo
et al. 2014 by kind permission of John Wiley and Sons.

The current release Pfam 32.0 contains 17929 entries (Pfam Team, 2020). If available, except

from sequence alignments, Pfam offers additional information about the families like functional

annotations, phylogenetic distribution or known interactions with other families.

1.5.2 Structure-based classification

In the previous sections it became clear that the principle architecture of proteins, i.e. primary,

secondary, tertiary and quaternary structure can be described hierarchically and that the enor-

mous functional variety of proteins is facilitated by the tertiary structure diversity. Naturally,

the question arises whether this structure space can be classified and organized in a similar way

as possible for the sequence space.

Historically, with increasingly more protein structures available, it has become apparent that

the structure space in general, although emerged through billions of years of evolution, is read-

ily comprehensible and comprised of reoccurring fold types (Levitt and Chothia, 1976). As a

consequence hierarchically organized structure-based classification systems for protein domains

were proposed and established. In this section the systematic classification of proteins according

to their structure will be treated.

26

1.5 Classification of Proteins

The two most important and popular protein databases that classify protein domains according

to their structure are SCOP (Murzin et al., 1995) and CATH (Orengo et al., 2002). At this point

it should be mentioned that neither SCOP nor CATH are purely structure-based. On lower levels

of their hierarchy, both databases use sequence information in the form of homologous sequence

families for the classification. In this work however, mainly the higher levels, which are purely

based on structure data, are of importance. In the following the focus will lie on the CATH

database as it was mainly used in this work. As for the comparison to other studies also the

SCOP database was utilized, the differences between CATH and SCOP will be treated in the last

part of this section.

Figure 1.11 shows the hierarchical classification scheme of CATH. On the highest and most

coarse level of the CATH database, called the class level, there are four groups: Mainly Alpha,

Mainly Beta, Alpha and Beta and Few Secondary Structure. Only the first three are shown in

the Figure as a big majority of classified domains falls into these categories, leaving the fourth

class for irregular proteins. When descending in the hierarchy of the classification scheme, the

levels architecture, topology (fold) and homologous superfamily follow. Currently, in April 2020,

the CATH database knows 41 different architectures, 1,391 topologies, and 6,119 superfamilies

(CATHTeam, 2020).

At the class level CATH differentiates only by the raw secondary structure content and groups

domains in those with mainly alpha, mainly beta, and both alpha and beta secondary elements.

The relatively sparsely populated Few Secondary Structures category collects irregular protein

domains. At the architecture level the orientation of secondary structure elements comes into

play. This level describes the overall shape of the protein (Kessel and Ben-Tal, 2010). However,

the connectivity of the secondary structure elements is ignored. This changes at the next lower

level, the topology category which is also referred to as fold. At this level, proteins which share

a common fold are grouped together, meaning that the orientation of the secondary structure

elements is similar as well as their connectivity. At the next lower level, the level of super-

families, one can assume a common evolutionary origin of the collected domains. Superfamilies

describe a certain manifestation of the fold which in many cases goes along with a certain func-

tional repertoire of the proteins. Finally, the lowest level of the CATH database are sequence

27

Chapter 1 Introduction

Figure 1.11: Hierarchy of the CATH database.
The CATH database classifies protein domains in the hierarchical categories class, architecture, topology,
and superfamily. At the class level the secondary structure content is evaluated grouping the domains
into those with Mainly Alpha, Mainly Beta, Alpha and Beta and Few Secondary Structure (not shown).
The next lower level architecture groups structures with similar orientation and arrangement of secondary
structure. At the topology (fold) level the connectivity of the secondary structure elements is added to
the classification. At the level of homologous superfamilies, an evolutionary relationship between the
members of a superfamily can be assumed. The lowest level includes sequence information and groups
domains into sequence families at a sequence identity of 35 %. Figure adapted from Orengo et al. 2014
by kind permission of John Wiley and Sons.

28

1.5 Classification of Proteins

families collecting domains with a minimum sequence identity of 35 %. At this level a common

evolutionary origin is almost certain.

The just described scheme and its notation can be illustrated by looking at domain 1 of a lactate

dehydrogenase (PDB-ID 9LDT_A, domain 1) as an example. Instead of full names the classifi-

cation can be written using integer numbers separated by dots. The full CATH classification of

the domain is 3.40.50.720. This indicates that the protein belongs to class 3 (Alpha Beta),

architecture 40 (3-Layer(aba) sandwich), topology 50 (Rossmann fold) and superfamily 720

(NAD(P)-binding Rossmann-like Domain). Due to its compactness the numerical notation of

CATH classifications will be used from this point on.

From a conceptional perspective the scheme of the SCOP database is very similar to the one of the

CATH database: The SCOP database has the categories class, fold, superfamily, and family. In

this manner, the most obvious difference is that CATH has the additional architecture level. The

other differences between SCOP and CATH lie in the process of populating the different levels. To

understand this, one has to consider the general difficulties of protein structure classification: At

the beginning of this section it was said that the structure space can be classified in a hierarchical

manner, which is what CATH and SCOP are trying to achieve. However, for an unambiguous and

perfect classification of all proteins the structure space would have to be discrete. As evolution

is a continuous and still ongoing process, which began billions of years ago, this is not the case:

The structure space has a continuous nature (Shindyalov and Bourne, 2000; Kolodny et al., 2006;

Skolnick et al., 2009). Thus, both CATH and SCOP face the challenge to discretize a continuous

structure space. This discrepancy makes it necessary to base the classification systems on

models using certain assumptions and thresholds. In these regards SCOP and CATH differ as

different design decisions were made. An example for this is the domain boundary assignment

which requires a, to some degree arbitrary, decisions whether to include linker regions in the

domain or not (Orengo et al., 2014). Another example that illustrates the problem of structural

classification is the fact that terms like fold and architecture lack a formal and universally agreed

upon definition (Orengo et al., 2014). As a consequence it is difficult to rank SCOP and CATH

regarding their quality, as there is no generally accepted benchmark framework available to

evaluate structural protein classification.

29

https://www.rcsb.org/structure/9ldt

Chapter 1 Introduction

However, despite the difficulties of structural classification, studies comparing CATH and SCOP

showed that for approximately 70 % to 80 % of superfamilies a mapping from CATH to SCOP

i.e. an agreement of CATH and SCOP can be found (Csaba et al., 2009; Orengo et al., 2014).

There are three reasons why in this work the CATH database was chosen. Firstly, due to an

automated assignment process the CATH database tends to contain more protein domains than

SCOP (~276,000 in SCOP vs. ~434,000 in CATH in May 2020) . Secondly, it offers the additional

level Architecture which was used in this work. Thirdly, other studies similar to this work (Alva

et al., 2015b; Farías-Rico et al., 2014) used the SCOP database. Using the CATH database

discriminates this work from these studies and makes it possible to evaluate the effect of the

choice of the classification scheme.

1.6 Aim and Scope of this Work

The previous sections introduced the necessary concepts to study the origin of protein folds. As

explained in the very beginning of this chapter the aim of the work is to apply sensitive sequence

and structure comparison algorithms to search for previously unknown relationship between

protein folds, which can deliver new insights into the earliest stages of protein evolution.

The work presented in this thesis can be divided into four parts: The first objective was the

design and implementation of an algorithm for the automated detection of putative ancestral

protein motifs. Testing of the algorithm and a comparison to similar approaches represent

the second part of the work. Subsequently, the third part was a large-scale application of the

algorithm based on a comprehensive set of protein structures. Finally, the fourth part was the

analysis of the results from the large-scale application.

The developed algorithm represents an alternative approach to other studies (Farías-Rico et al.,

2014; Alva et al., 2015b; Ferruz et al., 2020) , which are methodically similar to each other.

The design of the algorithm aims at high sensitivity and an automated execution to minimize

the need for manual intervention. The goal of the large-scale scan for protein modules was to

identify as many putative ancient relationships between proteins as possible. The final analyses

30

1.6 Aim and Scope of this Work

of the scan results were used as a data basis to assess the hypothesis of a modular origin of

protein folds.

It was found that, despite making differing methodical design choices, most of the motifs reported

in previous studies could be detected as well. The large-scale scan gives information on the

abundance of putative ancestral motifs among a representative set of proteins. The results

suggest that these putative ancestral remnants are rarely detectable in modern-day proteins.

Further it was found that the detected motifs are not evenly distributed among all folds which

questions their universality.

31

Chapter 2

Materials and Methods

2.1 Databases

In this work the following databases were used.

• CATH (Orengo et al., 2002), version 4.2

• SCOPe (Fox et al., 2014), version 2.06

• Protein Data Bank PDB (Berman et al., 2002), snapshot May 2019

• Pfam-A (El-Gebali et al., 2018) version 32.0

• UniProt (UniProt Consortium, 2019), release 2020_01

2.2 FragStatt

The algorithm FragStatt for the detection of putative ancestral protein motifs consists of the

four modules GraphCreator, Pathfinder, Pathanalyzer and SWiFD. In this section their design,

implementation, and function will be explained in detail. A practical description and specific

applications of FragStatt will be presented in Chapter 3. Generally the motif detection algorithm

requires two HHblits cascade results, as described in section 2.4.1, as an input. The two input

datasets have a tree structure, with the root representing a protein from the PDB. All parts of

the algorithm were implemented in Python 2.7.

33

Chapter 2 Materials and Methods

2.2.1 GraphCreator

As its name implies, the first component of FragStatt called GraphCreator creates a graph based

on two HHblits cascades (compare Figure 2.1) with the two proteins P1 and P2 as roots. The

nodes in such a graph represent HMMs and the edges represent HHblits hits. HHblits hits are

local alignments between HMMs. GraphCreator loads two previously generated edge lists in

pickle format and checks them for common nodes. If no common nodes are detected this means,

that the individual tree graphs can not be connected and thus no paths between the two root

sequences exist. When this should be the case, an error message informs the user and the

program terminates.

Figure 2.1: GraphCreator.
The first component of FragStatt takes two HHblits cascades in the form of edge lists as an input. At
first it checks whether the two subgraphs graphs can be connected, i.e. if the edge lists share common
nodes. If this is the case (e.g. PfamT and PfamI in the illustration) a combined graph is built using the
graph-tool library. To limit the data amount and required computational resources, for further analysis
the number of edges is limited to 5000 for each subgraph. If this number is exceeded a subsample of
all edges is considered. Each edge holds the information of the corresponding HHblits hit in the form of
edge properties. As by default nodes in graph-tool only have internal IDs, it is necessary to store the
real name of a node (e.g. PF000001, 1ABC_A) as additional node property. For this purpose the bidict
name2vertexidx serves as a bidirectional lookup table stored as a graph property. Additionally, to keep
track of errors while generating the graph (e.g. parsing errors) a variable fail_counter is stored.

For the positive case of intersecting HHblits cascades, GraphCreator continues to build a graph

by combining both edge lists of the tree-structured subgraphs utilizing the graph-tool (Peixoto,

2014) library. Before creating the graph, the number of edges available for both subgraphs is

34

2.2 FragStatt

checked. If either edge list exceeds a number of 5000 edges it is evenly reduced to a 5000 edges

subsample. This ensures a similar maximum size of the resulting graph, independent of the

input data fed into GraphCreator, which is important for estimating the required computational

resources for a large-scale use of FragStatt.

The combined graph has a topology like it is shown in Figure 2.1: The graph spreads from two

proteins P1 and P2 and eventually reaches the same point in the sequence space from both sides.

To keep all data compact and consistent and to provide easy accessibility, the information on

the underlying HHblits hits were stored as edge properties as supported by graph-tool. Each edge

was assigned the informations extracted from the HHblits results files, as described in Section

2.4.1 and listed in Figure 2.1.

The graph-tool library automatically assigns internal IDs to the nodes and edges and all of its

analysis methods, e.g. finding paths between two nodes, refer two these internal IDs. Thus, to

interpret the results of such an analysis it is necessary to map the internal node IDs back to the

initial real names of nodes (e.g. PF000001, 1ABC_A). For this purpose the real name of each node

is stored as a node property. For fast conversion between the real name and the internal ID a

bidirectional dictionary name2vertexidx is created when initially building the graph and stored

as a global graph property. As Python does not support bidirectional dictionaries by default

the bidict library (Bronson, 2019) was used for this purpose. Unlike common dictionaries a

bidirectional dictionary does not only support looking up the value for a key but also looking up

the key for a value. This requires, as it is the case here, a bijective mapping, e.i. an unambiguous

mapping both from name to ID and from ID to name.

In the case of errors during parsing of the edge lists, an error counter fail_counter keeps

track of the number of encountered errors. This was implemented in view of a large-scale use

of FragStatt and a very high number of inputs which might be corrupted in some cases. Thus

GraphCreator was designed in such a way that non-fatal errors, occurring during the generation

of the graph, are ignored and counted using fail_counter. After the run the user can then

decide, whether a given error rate (e.g. 0.1 % of edges couldn’t be parsed) is acceptable.

As result the component GraphCreator returns a graph-tool Graph object which embeds all nec-

essary information for further analysis in the form of edge, node, and graph properties. This

35

Chapter 2 Materials and Methods

object is the basis for the next step of FragStatt.

2.2.2 Pathfinder

The component Pathfinder was designed to identify paths connecting the root P1 and P2 (compare

Figure 2.2). Based on the graph-tool Graph created by GraphCreator in the previous step a depth-

first search (DFS) is carried out. The maximum search depth of the DFS is set to 4 by default,

but can be changed by the user.

As HHblits hits are local alignments, it can be the case that for a query-target pair multiple hits

are detected. In terms of graph topology, this means that nodes can be connected by parallel

edges as shown in Figure 2.2. In some cases, this property of the graph leads to vast number of

paths connecting P1 and P2. Pathfinder may identify hundreds of thousands or even millions of

possible paths. To keep the number of paths which have to be evaluated in the following steps

manageable, the maximum number of paths is limited to 10000. If this number is exceeded, the

set of paths is reduced by randomly sampling 10000 paths.

Figure 2.2: Pathfinder.
The second component of FragStatt uses a depth-first search as implemented in graph-tool and identifies
paths connecting the root sequences P1 and P2. The identified paths are extracted and collected using a
dedicated Path class. The illustration also shows a case of multiple edges between the same two nodes (V
and R), which can occur if more than one local alignment was detected by HHblits for a pair of profiles.
Pathfinder resolves these cases and splits them into single paths with exactly one connection for each pair
of nodes. Consequently four individual paths are detected in the exemplary case.

Each detected path is saved in the form of a Path object (compare Figure 2.3). The path is

defined by a sequence of graph-tool edges which is stored in the edges attribute of the Path

36

2.2 FragStatt

object. Additionally a reference to the graph is kept as an attribute of the class. For later use

the class has an attribute msa, which is a BioPython (Cock et al., 2009) MSA object.

Figure 2.3: Path object.
Each detected path is stored using a Path class. It holds three attributes: g, a reference to the graph,
edges, an ordered list of edges defining the path, and msa, a BioPython MSA object which will be used
by Pathanalyzer in the following parts of FragStatt. The Path class has three methods. A path consists
of individual local HHblits alignments which must not necessary overlap. For that reason the method
check_overlap() can be used to check if the alignments that determine the path continuously overlap.
The method check_eval() can be used to check whether all HHblits hits of the path suffice a given
E-value threshold. get_seqrecords() returns all sequences of the path as BioPython SeqRecord object.

Each iteration or hop in a HHblits cascade is an individual local alignment. A path in the HHblits

cascade is a series of query-target relationships. For a path to be valid, it must be assured that

every hit region in the cascade overlaps with the query region of the next iteration as illustrated

in Figure 2.3. For this purpose the method check_overlap() as sketched out in Pseudocode 2.1

was used.

def intersect_len(s1, e1, s2, e2):
return(min(e1, e2) - max(s1, s2) + 1)

def check_overlap(path, minlen):
for e1, e2 in pairwise(path.edges): # e.g. (P1-A, A-T), (A-T, T-Q), etc.

ilen = intersect_len(e1.template_start, e1.template_end,
e2.query_start, e2.query_end)

if ilen < minlen:
return False

else:
return True

Pseudocode 2.1: Checking overlaps of HHblits cascade paths. The helper method
intersect_len() returns the overlapping length of two intervals (s1, e1) and (s2, e2). intersect_len()
checks a path for a consistent overlapping of alignment regions by looping over it’s edges in a pairwise
manner and applying intersect_len(). The minimum required length of the overlap can be defined by
setting the value for minlen accordingly.

37

Chapter 2 Materials and Methods

The method check_eval() checks all edges of a path regarding the HHblits E-value and re-

turns True if they suffice a given threshold. The method get_seqrecords() returns BioPython

SeqRecords of the alignments and is used for generating an MSA as described in the next sec-

tion. Pathfinder discards paths which do not overlap. A sufficient overlap of adjacent HHblits

alignments in a path is a necessary requirement for the next component of FragStatt called

Pathanalyzer.

2.2.3 Pathanalyzer

As a first step the component Pathanalyzer converts all paths as identified by Pathfinder to

MSAs, implemented in the sub-component Aligner, by joining the individual HHblits pairwise

alignments. Subsequently the MSAs are analyzed and a match matrix is calculated, which is

the basis for the last module of FragStatt.

In this section the residues of the sequences of a path will be referenced according to the following

formal definitions. The residues of P1 and P2 are defined as

Res(P1) = {p1, p2, . . . , pn} (2.1)

and

Res(P2) = {p̃1, p̃2, . . . , p̃m} , (2.2)

with n andm being the length of P1 and P2. The residues of intermediate nodes will be referenced

in a similar manner by the according lower-case letter, again indexed with the residue position

e.g.

Res(A) = {a1, a2, . . . , ak} (2.3)

and

Res(T) = {t1, t2, . . . , tl} , (2.4)

with k and l being the length of A and T .

38

2.2 FragStatt

A pairwise alignment of two sequences α, β will be called Ali(α, β) in the following. The resulting

aligned sequences with introduced gaps will be named Aliα(β) and Aliβ(α), while Aliβ(α) refers

to the sequence α aligned to β and Aliα(β) refers to the sequence β aligned to α:

Ali(α, β) = (Aliβ(α), Aliα(β)) (2.5)

A path consists of a sequence of HHblits alignments. For the exemplary case in Figure 2.3 in

the previous section the path can be written as

Path(P1, P2) = (Ali(P1, A), Ali(A, T), Ali(T,Q), Ali(Q,P2)) (2.6)

Figure 2.4: Function of Aligner.
The sub-component Aligner joins multiple pairwise alignments of an HHblits cascade path into an MSA.
Step 1: The starting point are two individual pairwise HHblits alignments Ali(P1, A) and Ali(A, T).
The sequence A is part of both alignments but can have different gaps and alignment starting/ending
positions. Step 2: Gaps of both initial aligned sequences AliP1(A) and AliT (A) are combined and added
to the respective other sequences (highlighted in dark grey). Step 3: The gaps added to AliP1(A) and
AliT (A) are transferred “up” or “down” to AliA(P1) and AliA(T) (highlighted in dark grey). Step 4:
The “regapped“ sequences of AliA(P1), AliP1(A), AliT (A) and AliA(T) can be joined to an MSA. As
indicated, this procedure is repeated until all pairwise alignments of the path are merged into an single
MSA.

Naturally, because of the iterative nature of the HHblits cascade, consecutive alignments always

share an identical hit and query sequence, e.g. A for Ali(P1, A) and Ali(A, T) in the path

from above (Equation 2.6). Ali(P1, A) and Ali(A, T) are individual alignments; this means, A

39

Chapter 2 Materials and Methods

can acquire different gaps for both cases (compare Figure 2.4, Step 1). The task of Aligner is

to join all pairwise alignments which constitute a path and convert them into an MSA. This

is done by successively adding the gaps from the pairwise alignment to the other alignments.

For the case of Path(P1, P2), the first step is to join Ali(P1, A) and Ali(A, T). Gaps from

Ali(P1, A) are added to Ali(A, T) and vice versa (compare Figure 2.4, Step 2 and 3). This

way MSA(P1, A, T) is generated (compare Figure 2.4, Step 4). Analogously the next pairwise

alignment Ali(T,Q) can be added toMSA(P1, A, T) resulting inMSA(P1, A, T,Q). Adding the

last pairwise alignment Ali(Q,P2) yields the final result MSA(P1, A, T,Q, P2). The Figure 2.5

illustrates Aligners function again using concrete sequences as examples.

Figure 2.5: Example case for Aligner.
The path Path(P1, P2) as defined in Equation 2.6 consists of four HHblits alignments. To join the
alignments into an MSA, it is necessary to add gaps to all the sequences as described previously and
illustrated in Figure 2.4. Aligner preserves the matching residues of the individual pairwise alignments
and only adds gaps as necessary to create a valid MSA.

At this point, for each path a corresponding MSA was created and stored as a BioPython MSA

object in the msa attribute of the previously introduced Path object (compare Figure 2.3). The

second task of Pathanalyzer is to analyze the created MSAs.

40

2.2 FragStatt

The goal of Pathanalyzer is to calculate the match matrix H defined as

H(i, j) = match_count(pi, p̃j). (2.7)

The method match_count() evaluates how often the residue on position i of P1 (i.e. pi) was

aligned to the residue on position j of P2 (i.e. p̃j) by processing all MSAs. In Figure 2.6 the

procedure is shown for a single path, respectively MSA. Each column of the MSA gets checked

for whether it is a match column, i.e. if no gaps occur in the column. The according element of

H gets incremented for the positive case of a match column.

Figure 2.6: MSA match matrix.
To populate H, all path MSAs are processed identically in a column-wise manner. The approach is shown
for a single path. Each column of the MSA is checked by a method check_col(), which returns True
if the column does not contain any gaps and is a match column therefore (indicated by gray or white
boxes). For the positive case of a match column, the corresponding position indices of the root sequences
P1 and P2 are identified and the according element of the matrix H gets incremented. For simplicity
the matrix is only shown for P1 residue 46− 53 and P2 residue 136− 143 (highlighted by the red bar in
the bottom MSA position axis). The illustration only shows the first path being processed. However, all
other paths are handled analogously and the counter values of H will increase accordingly.

All paths identified by Pathfinder are processed in this manner. However, in an actual imple-

mentation, instead of match_count() a method like match_count_all() as sketched out in

Pseudocode 2.2 is used, which processes all paths and MSAs at once. The result of Pathfinder

is the populated matrix H of dimension n ×m according to the sequence length of P1 and P2

(see Equation 2.1 and Equation 2.2).

41

Chapter 2 Materials and Methods

def check_col(col):
if "-" not in col:

return True

def match_count_all():
M = zero_matrix(m, n)
for p in paths:

for col in p.msa:
if check_col(col):

M[col.pos_p1, col.pos_p2] += 1
return M

Pseudocode 2.2: Calculating match count of MSAs. The function match_count_all() initializes
a zero matrix of the dimension n×m (sequence length of P1 and P2) and iterates all paths and all columns
of a path MSA. If a column is a match column according to check_col(), the corresponding element
of matrix H is incremented. As the MSAs are comprised of local alignments it is necessary to map the
MSA position back to the actual sequence positions of P1 and P2. This is indicated by the expression
col.pos_p1 and col.pos_p2.

2.2.4 SWiFD

The previously defined matrix H holds an integer value for all residue pairs P1 × P2, which can

be interpreted as an alignment score and gives information about how often a certain residue

pair was aligned to each other. When visualizing the matrix H as dot plot it becomes apparent

that a meaningful alignment will result in a continuous line. By means of a projection of the

line to the position axis of P1 and P2, a mapping P1 ↔ P2 can be deduced (compare Figure 2.7).

The purpose of the last component of FragStatt is to automate this approach by processing

Figure 2.7: Example dotplot of a match matrix.
A match matrix H can be visualized as a dotplot. If a majority of the paths and their associated
alignments target the same position on P1 and P2 it manifests as a ”line” in the plot. By evaluating the
dotplot and projecting the line to the corresponding positions on P1 and P2 one can deduced a potential
common fragment. For this, it is necessary to detect aligned regions automatically, in other word to
perform a line detection in the dotplot.

42

2.2 FragStatt

the matrix and detecting continuous sections of aligned regions in the matrix H. A modified

version of the Smith-Waterman algorithm (Smith et al., 1981) called Smith Waterman inspired

Fragment Detection (SWiFD) was implemented to solve this problem. In the following this

approach will be explained in detail.

Analogous to the classic Smith-Waterman algorithm the matrix S can be defined as follows.

S(i, j) = max

0

S(i− 1, j − 1) + uH(i, j) match or mismatch

S(i− 1, j) + uH(i,−) deletion

S(i, j − 1) + uH(−, j) insertion

(2.8)

The matrix S is linked to the previously introduced matrix H by using the following scoring

function uH :

uH(x, y) =

sMatch if H(x, y) > t (match)

sMismatch if H(x, y) < t (mismatch)

sGap if x = − or y = − (gap),

(2.9)

whereas sMatch is the match score, sMismatch is the mismatch score and sGap is the gap penalty.

Whether a position is considered matching (respectively mismatching) can be adjusted with

setting the threshold t accordingly. To obtain the highest sensitivity, t is set to 0 by default.

In the following, the operating principle of SWiFD will be demonstrated using a small 8 × 8

match matrix based on the example from Figure 2.6. For the purpose of the demonstration the

following two simplifications will be made:

1. The considered sequences of P1 and P2 are limited to positions 46− 53 and 136− 143.

2. Only one path (the path shown in Figure 2.6) was detected and evaluated, thus resulting in

a binary match matrix H∗, i.e. only containing values 0 or 1.

Making these two assumptions results in the matrix shown in Figure 2.8, which formally can be

43

Chapter 2 Materials and Methods

defined as:

H∗(i, j) = H(i, j)i∈{46,...,53},j∈{136,...,143} (2.10)

Figure 2.8: Defining a submatrix.
On the left side the dotplot of a FragStatt run can be seen. The path shown in Figure 2.5 and Figure 2.6
is also based on the same example data. For simplicity regarding a demonstration of SWiFD a 8 × 8
submatrix of H called H∗ will be extracted. This can be interpreted as if P1 and P2 had a sequence
length of 8 amino acid residues. The representation of the “line” in the matrix appears flipped as the
indices (position values) in the matrix representation increase from top to bottom.

The Smith-Waterman matrix S can be calculated based on Equation 2.8 and the specific scoring

function

uH∗(x, y) =

+2 if H∗(x, y) > t (match)

−5 if H∗(x, y) < t (mismatch)

−5 if x = − or y = − (gap).

(2.11)

The values for sMatch, sMismatch and sGap were chosen to be convenient for the purpose of this

demonstration but other than that in this case they are arbitrary and have no practical meaning.

In Figure 2.10 the result of the described method can be seen. Matching positions are connected

and the score increases. Gaps can be bridged at the cost of score reduction.

The length of the detected tracebacks can be controlled by setting sMismatch and sGap accord-

ingly. A gap penalty value of −6 for example would result in two tracebacks as the score in

S would reset to 0 after the initial 2, 4, 6 sequence when hitting the first gap. The traceback

defines the aligned regions and a mapping P1 ↔ P2 can be deduced (compare Figure 2.10). To

44

2.3 Testing and Benchmarking FragStatt

check for structural similarity TM-align (Zhang and Skolnick, 2005) is used.

Figure 2.9: Calculating the Smith-Waterman matrix.
The Smith-Waterman matrix S is calculated based on H∗ and the scoring function uH∗ . The predecessor
of each element is stored during the filling of the matrix, indicated by arrows. A traceback is carried
out starting from the highest score value by tracing back the predecessor elements (red boxes and blue
arrows).

Figure 2.10: Result of SWiFD.
The traceback detected by SWiFD is shown in red. The projection of the traceback on each axis specifies
a mapping P1 ↔ P2 defining two subfragments of P1 and P2. The two fragments can be superimposed
by TM-align.

2.3 Testing and Benchmarking FragStatt

2.3.1 Detecting a previously reported ancestral barrel fragment

The FragStatt run for 1WA3_A and 4JGI_A was performed using the default parameters. All

detected fragments and their positions were extracted from the generated CSV file and are

45

Chapter 2 Materials and Methods

listed in Table 3.2. The dotplot output was prepared and colored in a meaningful way. Axes

were limited to the relevant regions. Visualizations were generated using PyMol. To deduce

the Pfam distribution, the FragStatt output file paths.txt was parsed using a Python script. The

Pfam↔SCOP mapping was generated by linking the mappings pdb2pfam and pdb2scop, which

are based on the files pdb_pfam_mapping.txt (European Bioinformatics Institute, 2020) and

dir.des.scope.2.06-stable.txt (Fox et al., 2020) provided by Pfam and SCOP. The histogram was

plotted using the Python libraries pandas (McKinney, 2010) and matplotlib (Hunter, 2007).

2.3.2 Reevaluation of a set of putative ancestral motifs

The file elife-09410-fig3-data1-v2.docx (Alva et al. 2015a, excerpted in Figure 3.10), which is

provided as an additional online resource, was parsed and converted to a CSV file containing

all meta data of the reported fragments: PDB ID, SCOP ID, start position, end position. This

resulted in a list of PDB protein chains Ci for each motif i ∈ (1, 40). For each motif all

combinations of PDB protein chains were generated in the following manner:

LDiffFold,i = {{a, b} | a, b ∈ Ci, a 6= b, SCOPFold(a) 6= SCOPFold(b)} (2.12)

Instead of the CATH annotation which is the main structural classification system used in the

this work, in this case the SCOP fold classification was utilized, as the work of Alva et al. is

based on it, i. e. each of the pairs in LDiffFold,i feature a different SCOP fold. After compiling

this list, all fragments were downloaded and saved as PDB files using PyMol. For each motif all

combinations LDiffFold,i were submitted to a FragStatt run with the following parameters:

–search_depth 4

–search_mode all

–max_depth 3

–min_overlap 5

Subsequently, the results were evaluated for each motif: It was checked whether for a given PDB

protein chain the fragment reported by Alva et al. was detected. A fragment was considered

to be correctly detected, if the region reported by FragStatt covered at least 75 % of the region

46

2.4 Large-scale Scan for Ancestral Protein Motifs

defined by Alva et al. Correctly identified fragments were counted on a PDB protein chain level

(Table 3.3). A motif was considered to be detected, when at least one manifestation in a PDB

protein chain was detected, which led to the overall detection rate of 85 %.

2.4 Large-scale Scan for Ancestral Protein Motifs

2.4.1 Data acquisition and preparation

The Pfam-A database (El-Gebali et al., 2018) version 32.0 and the Protein Data Bank (PDB)

(Berman et al., 2002), snapshot May 2019, served as the fundamental data basis for the anal-

ysis. For the all vs. all HHblits (Remmert et al., 2012) runs, the pre-built Pfam-A database

was retrieved from the HHsuite web server (Steinegger et al., 2019b). The Pfam queries were

extracted in A3M format from the HHblits database using the script extract_a3m.py. For the

PDB queries, the file pdb_seqres.txt, containing the sequences of all PDB entries separated in

single chains, was downloaded from the PDB FTP-Server (Berman et al., 2019). The file was

split into single FASTA files. In this manner, a total of 463,366 queries, 17,929 Pfam MSAs and

445,437 PDB sequences, were generated. Each one of the queries was submitted to a HHblits

search using the Pfam database (compare Figure 2.11, Step 1). Except for disabled secondary

structure scoring (-ssm 0), the standard parameters for HHblits were used. The 463,366 runs

were divided into 34 batches and computations were trivially parallelized on the shell-level using

xargs. All computations were carried out on the high performance computing cluster Athene at

University of Regensburg.

The first step of the data preparation resulted in 463,366 HRR HHblits result files. Subsequently,

in the next step (compare Figure 2.11, Step 2) these files were parsed using the hh_reader.py

(Meier, 2017) script provided by HHsuite. For each hit the relevant informations, namely query

ID, template ID, query start, query end, template start, template end, probability, E-value,

query sequence, and template sequence were extracted. Hits were taken into account up to an

E-value of 1. If more than 500 hits were present for a single query, a reduced subsample of 500

hits was generated.

47

Chapter 2 Materials and Methods

Figure 2.11: Data preparation.
Step 1: All Pfam HMMs and PDB sequences were used as queries for a HHblits search in the Pfam
database. The first step resulted in an HHblits HRR result file for each query. Step 2: The result files
were parsed and relevant information is extracted. The number of extracted hits per query was reduced to
a maximum of 500. The remaining hits were collected in a CSV file. Step 3: To enable quick access to all
hits, for a given query a key-value database using RocksDB was built. Step 4: By traversing the query2hit
database starting at a certain sequence, a tree based on the cascading of pairwise HHblits alignments can
be generated. This was done for each PDB entry in the dataset. The generated trees were stored as edge
lists in the binary Python pickle format.

The extracted hits were collected in an intermediate CSV file, which was then converted into

a key-value database query2hit (compare Figure 2.11, Step 3) using RocksDB (Facebook, 2020)

and the Python bindings pyrocksdb (Hofmockel, 2015). Each line (HHblits hit) in the CSV file

was translated to a key-value pair: The i-th hit of a query was assigned the key “ID_I”, e.g.

1ABC_A_3 for the PDB query 1ABC, chain A, hit number 3. The value holds the aforementioned

information on the hit.

In the final step of data preparation, the query2hit database was used to create an HHblits

cascade starting from a certain query (compare Figure 2.11, Step 4). For this, the database was

traversed in an recursive manner. For example, starting at the query 1ABC_A, the hit 1ABC_A_0

would lead to the next query in the cascade (e.g. PF000001) which again would have hits to

other Pfam entries (e.g. PF000002), and so on. In this manner, a tree starting from a root

sequence can be created. Nodes represent sequences or respectively Pfam profiles and edges

represent the connecting HHblits hits. As this recursive approach can produced huge graphs if

not restricted by a reasonable stop criteria, the following parameters were introduced: Maximum

number of children per node: 500, maximum depth of traversal: 3 hops. Also, an option to limit

48

2.4 Large-scale Scan for Ancestral Protein Motifs

the E-value range was implemented. However, this parameter was kept at the maximum range,

meaning an upper threshold of 1 and a lower threshold of 0 for the E-value.

. . .

query Template qs qe ts te prob evalue q_seq t_seq

1 GPW_A PF00121 .18 195 233 197 235 89.26 0.013 TLPIIASGGA . . . DLIIQYGGSV . . .

1 GPW_A PF00215 .24 197 239 172 214 93.44 0.0014 PIIASGGAGK . . . AGGDNLGQ -Q. . .

1 GPW_A PF00218 .21 31 239 66 248 99.02 1.9e -14 DPVELGKFYS . . . QPGEIARVYS . . .

1 GPW_A PF00290 .20 30 229 19 227 98.58 6.2e -12 GDPVELGKFY . . . ESSLEYVEAL . . .

1 GPW_A PF00478 .25 154 235 273 364 98.33 7.9e -11 RDWVVEVEKR . . . YDGAMDLINL . . .

1 GPW_A PF00697 .22 182 241 127 183 89.54 0.012 YDTEMIRFVR . . . LNLKAIPHIS . . .

1 GPW_A PF00701 .22 154 247 25 129 59.01 0.56 RDWVVEVEKR . . . EKLVEHHIEA . . .

1 GPW_A PF00724 .20 155 241 230 321 94.34 0.00058 DWVVEVEKRG . . . GFAKWMKEQG . . .

1 GPW_A PF00724 .20 31 118 227 319 97.66 1.4e -08 DPVELGKFYS . . . DHIGFAKWMK . . .

1 GPW_A PF00834 .19 62 228 43 196 98.58 6.4e -12 MLELVEKVAE . . . GPVVLENVTQ . . .

. . .

Table 2.1: Excerpt from the hitlist CSV file. The table shows exemplary data from the CSV file
generated in the second step of data preparation (compare Figure 2.11, Step 2). The excerpt contains
hits of the PDB query 1GPW_A to various Pfam families. For better readability the column headers for
query start (qs), query end (qe), template start (ts), template end (te) were abbreviated and as well the
sequences were truncated.

Trees were calculated for each of the 445,437 PDB queries from the initial dataset. For later use

in FragStatt, each tree was stored as a simple edge list, packaged in a Python pickle binary file.

2.4.2 All-vs-all based on CATH

The all vs. all dataset of PDB entries was compiled based on the CATH database version 4.2

(Orengo et al., 2002). A list of all CATH domains filtered to a maximum sequence identity of 35 %

was obtained by downloading the file cath-domain-list-S35-v4_0.txt from the CATH webserver.

Based on this file, 12, 623 single-domain PDB chains were extracted, resulting in the list LSDC .

A list of all possible combinations (pairs) of these PDB chains was generated with the constraint

that the CATH topology differs:

LDiffTopo = {{a, b} | a, b ∈ LSDC , a 6= b, Topo(a) 6= Topo(b)} (2.13)

The list of unordered PDB chain combinations LDiffTopo contained 77, 847, 546 pairs covering

867 CATH topologies.

49

Chapter 2 Materials and Methods

Based on the list LDiffTopo, for each pair a FragStatt run was carried out. The runs were split

into batches and calculations were distributed on the High Performance Computing Cluster

Athene at University of Regensburg. The computational workload cumulated to approximately

11 000 CPUh. The following parameters of FragStatt were used:

–search_depth 4

–search_mode all

–max_depth 3

–min_overlap 5

–max_num_paths 400

Of the total of 77, 847, 546 analyzed pairs 936, 792 (1.2 %) gave positive results, i.e. paths from

P1 to P2 were found.

2.5 Evaluation of Motifs

2.5.1 Filtering of the hits

All raw hits delivered by FragStatt in CSV format were parsed and filtered in the following

manner: The hits were reduced to those comparing two PDB protein chains which belong to

different CATH architectures. All hits coming from the CATH topology 1.20.5 “Single alpha-

helices” were filtered out. All hits of combinations of sandwich architectures (CATH 3.30, 3.40,

3.50, 3.55, 3.60, 2.60) were dismissed. The same was done for all propeller architectures (CATH

2.105, 2.110, 2.115, 2.120, 2.130, 2.140). The combination CATH 3.90.180 and 3.40.50 was also

filtered out because of a putative homologous background. Hits with an alpha-helix content

of more then 90 % were also removed. The maximal length difference of the two fragments

specifying one hit was set to 5 residues. The lower length threshold was set to 15 and the

upper threshold to 60 amino acids. The minimum TM-score requirement was set to 0.55 The

remaining hits were collected and again stored in CSV format.

50

2.5 Evaluation of Motifs

2.5.2 Hit count statistics

The number of hits were counted on the architecture and topology level of CATH. This was

done for the unfiltered and filtered dataset (see Section 2.5.1). Raw counts were also translated

to relative frequencies. Additionally, the abundance and distribution of all CATH entries and of

all single-domain chain CATH entries were calculated. For this the file cath-domain-list-S35.txt

(all CATH entries up to 35 % sequence identity) was parsed and entries were counted. Again,

for comparability the relative frequencies were computed.

2.5.3 Generation of CATH classification networks

For the generation of the networks shown in Figure 3.15 and Figure S1 the software Cytoscape

(Shannon et al., 2003) was used. The architecture and topology combinations and their associ-

ated counts were loaded from a previously generated CSV file and imported as edge list. The

yFiles Circular Layout was applied and the edge thickness was scaled according to the abundance

of the topology respectively architecture pair.

2.5.4 Evaluation of length distribution

For each fragment F the length was calculated by evaluating the end position e and the start

position s in reference to its protein chain of origin. Length values were plotted as an histogram

as shown in Figure 3.16. To visualize the abundance of different CATH architectures in the

histogram, the length distribution was calculated for each CATH architectures pair individually

and plotted as a stacked bar plot using matplotlib and scipy.

2.5.5 Generation of random fragments

For each pair of fragments detected by FragStatt an artificial random pair was generated. The

following will explain the procedure for a given pair of fragments {F1, F2}, whereas F1 is the

manifestation of the common motif in the PDB chain P1 and F2 is the manifestation of the

common motif in the PDB chain P2. F1 and F2 are defined each by a starting positions s1 and

51

Chapter 2 Materials and Methods

s2 and end positions e1 and e2 which refer to a position on P1 respectively P2. F1 and F2 are

defined as

F1 = P1[s1, e1] (2.14)

and

F2 = P2[s2, e2]. (2.15)

For each detected pair {F1, F2} a random pair {F̃1, F̃2} was generated in the following way: At

first two randomly sampled PDB protein chains P̃1 and P̃2 were obtained. For this, all PDB

protein chains for which FragStatt detected common fragments served as the sampling seed.

Next, the lengths l1 and l2 of the original fragments were calculated.

Subsequently two new tuples of random end and start positions with length l1 and length l2 were

generated: (s̃1, ẽ1) and (s̃2, ẽ2). It was ensured that the newly sampled start and end position

were within the maximal length of P̃1 and P̃1. In this way, the artificial pair of fragments

{F̃1, F̃2} can be fully defined by

F̃1 = P̃1[s̃1, ẽ1] (2.16)

and

F̃2 = P̃2[s̃2, ẽ2]. (2.17)

The described random sampling procedure was carried out for each detected pair of fragments.

If the randomly sampled regions were partly not resolved in the sampled PDB protein chain, the

sampling was repeated until a fully resolved fragment could by generated. To prevent infinite

loops the maximum number of retries was limited to 10.

The fragments were loaded in PyMol and the TM-score was calculated. The fragments were

saved as PDB files and the pairwise TM-scores were collected in a CSV file.

52

2.6 Clustering

2.5.6 Evaluation of TM-score distribution

The filtered hits (filtering described in Section 2.5.1) and their according TM-scores were col-

lected. The same was done for the randomly generated fragment pairs (Section 2.5.5). The

TM-score distributions of the two datasets were plotted as a histogram as shown in Figure 3.17.

Both a t-test and a Wilcoxon signed-rank test were carried out for the two samples. The t-test

(Student, 1908) as well as the Wilcoxon signed-rank test (Wilcoxon, 1992) gave highly signifi-

cant results of a p-value < 1E − 99. The scipy package (Virtanen et al., 2020) was used for the

statistical testing.

2.6 Clustering

2.6.1 Additional redundancy removal

CD-HIT (Li and Godzik, 2006) was used to further reduce redundancy in the hits on the sequence

level. For this a FASTA, file containing all fragments and their corresponding sequences was

generated. The FASTA file was fed into CD-HIT using default parameters. In this manner, the

individual fragments were clustered independently of the links made by FragStatt into clusters of

90 % sequence identity. The cluster centers and the cluster members were stored in the CD-HIT

CLSTR format.

2.6.2 All vs. all TM-align

For all candidate fragments, an all vs. all distance matrix based on a pairwise TM-score as

delivered by TM-align was calculated. If n fragments F1, F2, . . . , Fn are defined as the cluster

centers of the previously explained redundancy removal, a similarity matrix A = (aij) can be

defined as follows:

aij = tij = TMScore(Fi, Fj) (2.18)

53

Chapter 2 Materials and Methods

A =

1 t12 t13 . . . t1n

t21 1 t23 . . . t2n

t31 t32 1 . . . t3n
...

...
...

tn1 tn2 tn3 . . . 1

(2.19)

The distance matrix B = (bij) can be derived from A:

bij = 1− aij (2.20)

B =

0 1− t12 1− t13 . . . 1− t1n

1− t21 0 1− t23 . . . 1− t2n

1− t31 1− t32 0 . . . 1− t3n
...

...
...

1− tn1 1− tn2 1− tn3 . . . 0

(2.21)

A modified distance matrix B∗ = (b∗ij) adjusted for a TM-score threshold of 0.55 was defined:

b∗ij = 1 if bij > 0.45 otherwise bij (2.22)

The matrix B∗ was used as the input for a DBSCAN clustering. The parameter minPts, which

defines the minimum number of neighbors a point must have to be considered as core point was

set to 2. The parameter ε defines the neighborhood radius and was chosen by optimizing the

number of clusters and the average TM-score of all pairs within each cluster.

2.7 Search for Multi-Motif Proteins

The set of pairwise common motifs CoMo was parsed and for each protein all detected motifs

were collected. Subsequently, for a protein P with n detected pairwise motifs Mi the set of all

54

2.7 Search for Multi-Motif Proteins

fragments was defined:

Frags(P) = {Fi = P (Mi) | i ∈ [1, n]} (2.23)

A fragment Fi is further defined by its start an end position in reference to P

Fi = P [si, ei] (2.24)

To assess the number of unique regions, i.e. positionally distinct groups of fragments Fi, the

all vs. all Hausdorff distance was calculated based on the start and end position si and ei of

the fragments. For two intervals A = [a1, a2] and B = [b1, b2] the one dimensional Hausdorff

distance can be defined as

dHausdorff(A,B) = max(|a1 − b1|, |a2 − b2|). (2.25)

as stated by Chavent (2004).

In this manner, the distance between two fragments was defined as

dHausdorff(Fi, Fj) = ||Fi − Fj || = max(|si − sj |, |ei − ej |). (2.26)

A distance matrix H = (hij) was calculated according to

hij = ||Fi − Fj ||. (2.27)

The matrix H was used as the input for a DBSCAN clustering which was performed for each of

the protein in the CoMo set. The parameter minPts, which defines the minimum number of

neighbors a point must have to be considered as core point was set to 2. The parameter ε defines

the neighborhood radius and was set to 10.

For each protein the result of the clustering was evaluated and those proteins with a minimum

of two clusters were collected resulting in a list of multi-motif protein chains. A result file

55

Chapter 2 Materials and Methods

containing the cluster members and according CATH classification was compiled. To ease visual

inspection, for each protein chain a PyMol session was created showing the superposition of the

fragments colored according to their cluster membership.

56

Chapter 3

Results

Separated by billions of years of divergent evolution, one has to assume that the similarity of

the proposed ancestral motifs is vanishingly low and barely detectable. The development of an

algorithm to detect such faint homologous signals with highest sensitivity lays the foundation

for an comprehensive scan for the proposed ancestral remnants. The design, implementation

and application of such a software tool was the central aim of this thesis. By applying such

an algorithm to a representative set of proteins, it is possible to define a collection of putative

ancestral motifs. This set serves as a data basis for further statistical analysis which delivers

insights in the distribution and abundance of putative motifs.

In the following the terms motif and fragment will be used extensively, it is therefore important

to precisely define them. A super-secondary structure arrangement which can be found in at

least two proteins will be called a motif. The manifestation of a certain motif in a protein will

be called a fragment. The fragments defining a common motif must have a detectable sequence

and structure similarity.

For a protein chain with known sequence and structure called P the manifestation F of the

motif M will be referenced to as

F = P (M) = P [e, s] (3.1)

whereas e and s are the start and end position of the fragment F in the protein chain P .

57

Chapter 3 Results

3.1 FragStatt: An Algorithm to Detect Putative Ancestral Protein

Motifs

FragStatt (an acronym for fragment instantiation) is a dedicated software aimed at the detection

of common motifs shared by proteins, which are non-homologous in a classical sense. The

algorithm is trimmed to detect relatively short local sequence similarities, i.e. common fragments

in otherwise highly dissimilar proteins. It furthermore requires a significant structure similarity

of the detected fragments. Based on the findings from other studies (Alva et al., 2015b; Farías-

Rico et al., 2014) work, the size of the stated motifs seems to have its lower boundary in the

realm of super-secondary-structure elements (e.g. helix-turn-helix motifs or beta-hairpin motifs)

at approximately 15 residues. As the postulated individual motifs are not considered to define

a protein fold on their own, the upper boundary can be located in the sub-domain range at

approximately 60 residues.

Figure 3.1: Basic principle of motif detection.
Two proteins P1 and P2 are analyzed and scanned for local sequence and structure similarities. While
globally the proteins feature different folds and thus no overall similarity, locally a common motif, in this
case a (αβ)2 element, can be identified. In this manner, the pairwise comparison of two proteins, aiming
at the identification of local common regions, is the basic approach of FragStatt.

The basic principle of FragStatt is depicted in Figure 3.1. The algorithm implements a pairwise

comparison approach: Two proteins, referred to as P1 and P2, which feature a distinct fold and

thus are not considered to be homologous, are scanned for local sequence similarities. For some

cases such an analysis yields one or more common shared elements of the previously mentioned

size of approximately 15 to 60 residues. For these positive cases FragStatt returns a mapping

P1 ↔ P2 which defines the fragments F1 and F2 constituting a motif M . For instance the two

58

3.1 FragStatt: An Algorithm to Detect Putative Ancestral Protein Motifs

proteins share a common motif at residue position 1 − 50 and 50 − 100, respectively: F1 =

P1(M) = P1[1, 50] matches F2 = P2(M) = P2[50, 100]. The detected fragments in P1 and P2 are

scored and filtered regarding their three-dimensional similarity and can be visualized in PyMol

(Schrödinger, LLC, 2019).

From a technical perspective FragStatt is based on the comparison of profile Hidden Markov

Models (HMMs). HMMs are currently the state-of-the-art method for the detection of remote

homology, and have been widely used to study ancient protein evolution and unveil relationships

between protein folds that might date back to the beginning of life on earth (Coles et al., 2005;

Alva et al., 2010). Moreover, studies similar to this work and also aimed at the identification

of ancestral protein motifs, have utilized HMMs as well (Alva et al., 2015b; Farías-Rico et al.,

2014).

As mentioned in the introduction, there are several different software packages available offering

HMM based homology detection. In this work the tool HHblits was used to generate the data

basis for FragStatt. In general, HHblits can be seen as an analog method to classical homology

detection algorithms like the well-known BLAST (Altschul et al., 1997) software. However, while

BLAST serves very well for the detection of highly or moderately similar proteins, the HMM

based HHblits is optimized for the discovery of remote homologs, which share only little sequence

similarity (Park et al., 1998). Searching with the highest possible sensitivity is the key-feature

which makes HHblits the appropriate choice to uncover unknown ancestral relationships between

proteins.

As stated above, this work is not the first study aimed at identification of ancestral protein

motifs. The main feature of FragStatt which differentiates it from the approaches made in other

studies (Alva et al., 2015b; Farías-Rico et al., 2014) is the cascading of HMM based homology

detection runs. This practice is aimed at maximizing the sensitivity of the homology detection

at the expense of an increased false positive rate. The following shall briefly explain this key

difference:

A classical HMM based homology detection tries to find direct hits for a given query P to a

database HMM called targetT :

P → T

59

Chapter 3 Results

The HMM T is part of a pre-generated database of HMMs, e.g. the Pfam database.

It is known that in this manner, algorithms like HHblits can detect three times as many remote

homologs as pairwise methods like BLAST (Park et al., 1998). However, the sensitivity can

be increased even further by cascading HMM based search runs (Kaushik et al., 2016). The

cascading variant of the HMM homology detection does not make a query-target connection

directly but uses intermediate HMMs Ii:

P → I1 → I2 → · · · → In → T

In this way the search space can be extended and very weak homologous signals can be traced.

The implementation of this approach based on HHblits is called HHblits cascade which is a central

part of FragStatt. While discussing the advantages and drawbacks of an HHblits cascade will

be part of Chapter 4, the practical aspects of the algorithm, i.e. the working principle and the

application of FragStatt, will be presented in the following.

At this point, is important to mention that with a HHblits cascade as defined above only targets

within the HHblits database can be reached, i.e. T and all Ii are part of a pre-built HHblits

database. The query P however, is not part of the HHblits database. In the case of FragStatt

two queries P1 and P2 shall be connected. This can not be achieved with a single HHblits

cascade. Instead, two individual HHblits cascades are calculated, one for P1 and one for P2.

Subsequently the individual HHblits cascades are connected. In this manner, FragStatt takes

two “root proteins” P1 and P2 with known 3D structure as input. Based on the sequence of the

proteins, the two HHblits cascades are calculated which can then be linked together (compare

Figure 3.2). By identifying the intersection of the HHblits cascades, FragStatt can deduce local

similarities, i.e. a common motif between the root proteins. While the generation and analysis of

the HHblits cascade is solely based on sequence data, the final evaluation of the detected motifs

requires a protein structure to be available, as it is based on scoring the structural similarity.

60

3.2 Working Principle and Implementation of FragStatt

Figure 3.2: Linking two HHblits cascades.
Based on the sequence of two root proteins P1 and P2 FragStatt calculates two HHblits cascades and
links them by identifying the intersections. The intersections represent a path from P1 over multiple
intermediate HMMs to P2.

3.2 Working Principle and Implementation of FragStatt

The data basis for FragStatt are two HHblits cascades, each starting from one of the root proteins

P1 and P2. In the next section it will be shown that by connecting and traversing HHblits cascades

FragStatt can find alignments between P1 and P2. Before that, the HHblits cascade has to be

introduced formally and explained in general for a protein P .

Figure 3.3 illustrates the concept of an HHblits cascade: The cascade starts with the sequence

of P submitted as the first HHblits query. Subsequently, each hit of the run is fed into HHblits

again, leading to new hits. In this iterative manner a tree rooted at the starting sequence is

spanned. The nodes of the graph are HMMs, and the edges indicate HHblits hits, which in turn

each define a local sequence alignment. FragStatt computes two HHblits cascades based on the

root sequences of P1 and P2. With increasing depth HHblits cascades discover a exponentially

increasing number of nodes. As computational resources are limited this property is problematic.

There are different parameters of the HHblits cascade which can be adjusted to keep its final

size manageable .

The graph resulting from an HHblits cascade depends on multiple parameters of FragStatt that

have to be chosen by the user: For each hit (i.e. alignment) of HHblits an E-value is reported,

61

Chapter 3 Results

Figure 3.3: HHblits cascade.
The sequence of the root protein P serves as the starting point for an HHblits cascade. The sequence of
P is submitted to the initial HHblits run, which delivers hits to the database (in this case Pfam). These
hits are again submitted to another round of HHblits. By repeating this process a defined number of
times a tree graph with P as the root can be generated.

Table 3.1: Parameters of the HHblits cascade.

Parameter Description Default
eval_upper Upper threshold of hit E-value 1
eval_lower Lower threshold of hit E-value 0
max_children Maximum number of children per node 500
max_depth Maximum depth of the cascade 3

which signals the significance of the alignment. A lower and upper threshold of the E-value

can be defined to decide whether a hit should be included in the cascade or not. Each HHblits

run delivers a certain number of hits to the database. To keep the growth of the cascade per

iteration in a reasonable extent, the maximum number of children per node needs to be limited,

which represents another parameter. Finally the number of iterations (depth of the cascade)

has to be defined. The mentioned parameters and their default values are listed in Table 3.1.

A maximum depth of 3 and a maximum number of 500 children per node turned out to be a

suitable choice to keep the size of the cascades within a reasonable range. The standard values

for the E-value thresholds of HHblits were set high in order to reach highest sensitivity (at the

expense of an increased false positive rate). The idea behind this approach is that the final

component SWiFD will filter out noise in the form of “true” non-significant hits . This concept

will be discussed in more detail in Chapter 4.

62

3.2 Working Principle and Implementation of FragStatt

HHblits cascades can be precomputed for every PDB entry and stored, as described in Sec-

tion 2.4.1. For the generation of an HHblits cascade an HHblits database needs to be chosen

and in this work the Pfam database (El-Gebali et al., 2018) was used. Technically any HHsuite

database could be used, however, as discussed later in Chapter 4, choosing a suitable database

is crucial for this method to succeed.

Now that the principle of an HHblits cascade was demonstrated, in the next part, the compo-

nents of FragStatt will be introduced. Figure 3.4 shows the four core components of FragStatt:

GraphCreator, Pathfinder, Pathanalyzer, and SWiFD, which can be seen as a pipeline and are

executed in succession.

The obligatory input for FragStatt are two PDB IDs, including a chain identifier (e.g. 1XYZ_A),

which define the root proteins P1 and P2. The first component, GraphCreator (compare Fig-

ure 3.4, top-left panel) generates the HHblits cascades based on the two root sequences and

subsequently creates a combined graph, from the two individual trees. In the actual implemen-

tation of FragStatt the HHblits cascades for all PDB protein chains are already pre-computed.

The next element in the pipeline, called Pathfinder (compare Figure 3.4, top-right panel), takes

the combined graph and uses a depth-first search (DFS) approach to identify paths connecting

P1 and P2. All detected path are passed to Pathanalyzer (compare Figure 3.4, bottom-left panel).

A path defines a series of local alignments connecting the sequences of the root proteins through

multiple HMMs. At this point the individual pairwise alignments are independent of each other

and the hits must not necessarily overlap. Consequently, the first task of Pathanalyzer is to check

whether the hits of the alignments comprising the path are continuously overlapping. If the local

alignments of a path fulfill this requirement, they are merged to an MSA. After Pathanalyzer

has finished its tasks, for each path their is a valid MSA available, which always includes the

sequences of the root proteins P1 and P2 (mediated by consensus sequences of Pfam HMMs).

The set of path-specific MSAs is the starting point for the final component of FragStatt SWiFD

(compare Figure 3.4, bottom-right panel). Each matching column in an MSA defines a residue-

wise mapping P1 ↔ P2. By analyzing all columns of all MSAs, a match count can be deduced

for each residue pair (pi, p̃j) with pi ∈ P1, p̃j ∈ P2. The match count indicates how often a

pair (pi, p̃j) was aligned to each other. The match count of all residue pairs can be stored in

63

Chapter 3 Results

Figure 3.4: Components of FragStatt.
GraphCreator takes as an input two HHblits cascades, referring to the proteins P1 and P2, and builds
a combined graph. It processes generated HHblits cascades and builds a combined graph. Pathfinder
searches for paths connecting P1 and P2. In the example, Pathfinder detects three paths. Each of these
paths is evaluated by Pathanalyzer. Each path represents a series of pairwise alignments referring to the
individual HHblits hits constituting the path. The pairwise alignments are combined by Pathanalyzer
which translates all pairwise alignments to a path-specific MSA. SWiFD analyzes these MSAs regarding
matching columns and condensates all path-specific MSAs into a single match matrix. Based on the match
matrix, a modified version of the Smith-Waterman alignment algorithm detects continuous mappings
P1 ↔ P2 (red line) while omitting short artifacts (gray lines).

a matrix H = (hij) and the creation of such a matrix is the first task of SWiFD. The second

task is to deduce continuous mappings P1 ↔ P2 from the matrix H. For this purpose, H is

regarded a score matrix as analogously used in the classical Smith-Waterman local alignment

algorithm. By using the Smith-Waterman approach, tracebacks can be deduced from H and one

or multiple, say k, mappings P1 ↔ P2 can be derived, which in turn define the motifsMk. Using

the start and end positions of these mappings the fragments Fk1 = P1(Mk) and Fk2 = P2(Mk)

can be extracted from the protein structures. Finally, the detected motifs are ranked based on

their structural similarity as assessed by TM-align.

64

3.3 Testing and Benchmarking FragStatt

3.3 Testing and Benchmarking FragStatt

In this section FragStatt will be compared to two other studies which employ HMM based

homology detection for the identification of putative ancestral protein motifs. In this manner,

the sensitivity of FragStatt can be assessed.

3.3.1 Assessing FragStatt in identifying an ancestral barrel fragment

In their study “Evolutionary relationship of two ancient protein superfolds” (Farías-Rico et al.,

2014) the authors detected a homology between the (βα)8 barrel and the flavodoxin-like fold.

Their approach to identify ancestral relationships was also based on the comparison of HMMs.

However, the intent of this study was not to perform a comprehensive search for protein motifs,

but to specifically identify a relationship between the two mentioned folds. The authors used

similar methods like FragStatt does, but in a much less automated manner, and without the

intentional cascading of HMM searches.

The authors gathered all HMMs from the SCOP database (Murzin et al., 1995) which represent

(βα)8 barrel (SCOP fold C.1) and flavodoxin-like proteins (SCOP fold C.23) and used them as

queries to search the SCOP database using HHsearch (Söding, 2005), a predecessor of HHblits. In

this manner, the authors could identify a (βα)2 motif that occurs in flavodoxin-like, as well as in

(βα)8 barrel proteins. Interestingly, the authors identified an intermediate protein family called

TM0182 which links the SCOP folds c.1 and c.23: c.1 → TM0182 → c.23. This observation

is a first hint of the higher sensitivity of a cascading approach by utilizing intermediate sequence

profiles for the detection of protein motifs. Reproducing the above findings is a first test for the

correct functioning of FragStatt. In the following it will be shown, that FragStatt detects this

motif in a fully automatic manner.

To begin with, PDB chains 1WA3_A ((βα)8 barrel) and 4JGI_A (flavodoxin-like) were submitted

to a FragStatt run, i.e. P1 = 1WA3_A and P2 = 4JGI_A. Figure 3.5 shows the dotplot which

represents the match matrix H (Equation 2.6) of FragStatt and the detected tracebacks. In-

terestingly, the algorithm identifies not only one but four tracebacks. This reflects the internal

four-fold symmetry of (βα)8 barrels consisting of four (βα)2 elements. The same motif from

65

Chapter 3 Results

the flavodoxin-like protein 4JGI_A, positioned approximately at residues 130 − 190, is mapped

to each quarter of the (βα)8 barrel 1WA3_A. By means of a structural alignment the authors

Farías-Rico et al. deduced the following mapping (numbers indicate the residue positions on the

proteins): 1WA3_A[47,91] ↔ 4JGI_A[153,198]

The purely sequence based approach of FragStatt detected a larger region which almost fully

covers this motif: 1WA3_A[25,90] ↔ 4JGI_A[124,192]

Figure 3.5: FragStatt plots for 1WA3_A and 4JGI_A.
a The dotplot shows the regions in the two proteins which were frequently aligned to each other in the
HHblits cascade. The frequency of a match is encoded by color (see scale). Four continuously aligned
regions are clearly visible, whereas one region is enriched regarding the match frequency. b The traceback
algorithm detected the four continuous regions correctly and bridged gaps. Altogether, SWiFD filters the
noise in the dotplot and identifies the correct mappings.

Table 3.2 lists the position of the four detected motifs and the structural similarity of the

fragments assessed by TM-align . The motifs fully cover the (βα)8 barrel 1WA3_A and partly

overlap, which can also be seen in Figure 3.6. In the flavodoxin-like protein the motifs occurs only

once at the position 124-192. The C-terminal part of the (βα)8 barrel is aligned to a shorter

version of the motif. The dotplot shows that all motifs consist of higher conserved regions

(helices and sheets) connected by less conserved regions (loops). Depending on the parameters

for SWiFD, it will either “bridge” these regions of lower alignment quality or the alignment will

terminate at these positions resulting in more and shorter sub-fragments. By using the default

parameters of SWiFD the individual segments were linked together which leads to the mentioned

four continuous tracebacks. The pairwise superpositions based on the four mappings all show a

66

3.3 Testing and Benchmarking FragStatt

TM-score > 0.5 as reported by TM-align. On the domain level, a TM-score > 0.5 indicates the

same fold, i.e. a significant structure similarity (Xu and Zhang, 2010).

Figure 3.6: Superposition of common motifs in 1WA3_A and 4JGI_A.
a The same fragment from 4JGI_A can be superimposed four times to 1WA3_A covering the complete (βα)8
barrel fold. The structure of 1WA3_A is shown in transparent gray in the background. The four fragments
from 4JGI_A are shown in different colors according to the coloring of the tracebacks in Figure 3.5. b
The motifs detected by FragStatt almost fully incorporates the motif defined by Farías-Rico et al. The
fragment from 4JGI_A is shown in green, the one from 1WA3_A in gray.

Table 3.2: Common motifs detected for 1WA3_A and 4JGI_A.
The list shows the start and end positions of the detected fragments in the root proteins. For all four
motifs the corresponding fragments show a TM-score > 0.5.

Motif Start 1WA3_A End 1WA3_A Start 4JGI_A End 4JGI_A TM-score
1 25 90 124 192 0.59
2 73 129 124 190 0.60
3 114 178 124 192 0.55
4 162 177 125 140 0.63

The authors Farías-Rico et al. specifically mention that the detected motif occurs in the SCOP

superfamilies c.23.6 (Cobalamin binding domain), c.1.2 (Ribulose-phoshate binding barrel),

c.1.5 (Inosine monophosphate dehydrogenase) , and c.1.10 (Aldolase). FragStatt can not

report SCOP annotations directly as its intermediate sequence profiles are based on Pfam. Con-

sequently, to compare with these findings, at first the intermediate Pfam families in the paths

identified by FragStatt were evaluated, and in a further step a mapping of Pfam to SCOP was

utilized. As the Pfam database is aimed at the functional classification of proteins, a analysis

of the intermediate Pfam families gives insight in the functional diversity among the proteins

67

Chapter 3 Results

Figure 3.7: Pfam distribution for the FragStatt run 1WA3_A vs. 4JGI_A.
The plot shows the relative frequency of the 15 most abundant Pfam families occurring in all paths
connecting 1WA3_A (P1) and 4JGI_A (P2). These relative frequencies summarize for each family the
occurrence in the hops within all paths from P1 to P2. These occurrences and the hops are coded with
the same color. For example, most dominant is PF02310, which occurs preferentially in the entry node
of 4JGI_A (dark green) and the subsequent internal node (orange).

utilizing the motif. In the following it will be differentiated between entry nodes and intermedi-

ate nodes. A entry node refers to Pfam family which results from the first hops (starting from

either root sequence) in a path detected by FragStatt. As multiple paths are detected it is also

possible that multiple entry nodes occur. In a path, starting from the first root sequences, a

entry node is followed by multiple intermediate nodes. Eventually the entry node of the second

root sequence is reached. To evaluate all detected paths at once, the Pfam distribution for a

given distance (in hops) from the root sequences can be assessed. The result of this analysis can

be seen in Figure 3.7.

The most prominent entry nodes for 1WA3_A are PF01680 (SOR/SNZ family, SCOP c.1.2),

PF01207 (dihydrouridine synthase, Dus), and PF13714 (phosphoenolpyruvate phosphomutase,

SCOP c.1.12). For 4JGI_A the most common entry nodes are PF02310 (B12 binding domain,

SCOP c.23.6) and PF16968 (pilus assembly protein TadZ N-terminal).

The most common intermediate families are PF03932 (CutC family SCOP c.1.30), PF00977 (his-

tidine biosynthesis protein), PF01884 (PcrB family), PF01729 (quinolinate phosphoribosyl trans-

ferase, C-terminal domain, SCOP d.41.2), PF03060 (nitronate monooxygenase), and PF04481

(unknown function, DUF561).

68

3.3 Testing and Benchmarking FragStatt

By mapping the Pfam families to SCOP families as described in the Section 2.3.1 it could be

shown that the SCOP families reported by Farías-Rico et al. are also detected by FragStatt:

c.1.2 and c.23.6 can be mapped to the previously listed entry Pfam families PF01680 and

PF02310. The corresponding Pfam families for the SCOP families c.1.5 and c.1.10 were also

found in paths detected by FragStatt however they are not in the top-15 most abundant ones

as shown in Figure 3.7.

In conclusion, the computational part of the work of Farías-Rico et al. could be replicated by

using FragStatt. This indicates that the algorithm is able to detect common motifs shared by

proteins belonging to different protein folds in a fully automated manner.

3.3.2 Assessing FragStatt in detecting putative ancient motifs

The authors of “A vocabulary of ancient peptides at the origin of folded proteins” (Alva et al.,

2015b) were not interested in a specific pair of protein folds but wanted to identify a comprehen-

sive “vocabulary” of motifs which, as hypothesized, should be occurring amongst a wide range

of different protein folds. This approach was also based on HMM comparisons by means of

HHsearch. The outcome was a set of 40 putative ancestral protein motifs which will be named

ProVoc (Protein Vocabulary) in the following.

Alva et al. used HMMs based on MSAs which were created for each SCOP domain by means

of PSI-BLAST (Altschul and Koonin, 1998). To begin with, the SCOP database was filtered to

30 % sequence identity, to exclude homologous domains and reduce redundancy. The resulting

HMMs were then submitted to an all vs. all comparison using HHsearch. As the SCOP database

classifies proteins by structure, each entry in the database can always be linked to a correspond-

ing structure in the PDB. Thus, each hit resulting from one of these comparisons can be directly

translated to a fragment whose structure is known. Consequently, clustering algorithms could

be used to identify common motifs occurring in different folds. By a manual inspection of the

clustering result, the authors curated a list of common motifs which led to the set ProVoc con-

sisting of 40 primordial motifs. FragStatt also makes pairwise comparisons, but is not restricted

to the analysis of proteins whose structure is known. As Figure 3.8 shows, intermediate nodes

specified by means of Pfam entries can interlink two proteins P1 and P2.

69

Chapter 3 Results

Figure 3.8: Comparison of the approach of Alva et al. and FragStatt.
a Alva et al. performed a PSI-BLAST run for each SCOP domain and created an HMM based on
the resulting MSA. This was done for all SCOP domains. Subsequently the HMMs were compared
in a pairwise manner using HHsearch, which resulted in a set of local alignments of SCOP domains.
b Instead of comparing two HMMs, FragStatt extends this concept by utilizing cascaded HMMs to
deduce local alignments of two PDB structures.

Figure 3.9 shows the motifs of the ProVoc set. Each of the motifs was detected in several PDB

structures, which belong to different SCOP folds and superfamilies. In Figure 3.10, the PDB

protein chains featuring motif 1 are listed with their SCOP classification and sequence. For this

motif, a manifestation was detected in 20 PDB structures, which belong to 14 SCOP folds and

20 SCOP superfamilies. This finding indicates that these motifs occur in non-homologous and

thus evolutionary unrelated proteins.

Although FragStatt uses a different approach and data basis, it should be able to detect the

majority of the ProVoc motifs. To verify this, FragStatt runs based on the PDB entries contained

in the ProVoc set were carried out and the concordance between the results and the ProVoc set

was utilized to determine the program’s sensitivity. For each of the 40 motifs from the ProVoc

set all pairwise PDB entry combinations belonging to different SCOP folds were analyzed by

FragStatt. The example of motif 1 of the ProVoc shall clarify the procedure: The PDB identifiers

reported for motif 1 in the ProVoc set resulted in 169 combinations. The number of combinations

results from collecting all pairs of PDB structures which belong to different folds (compare

Equation 2.12). This has to be done as the authors include multiple manifestations of the

motifs from the same fold in their listings (e.g. seven manifestations of motif 1 belong to SCOP

fold A.4, compare Figure 3.10). In the case of proteins belonging to the same fold FragStatt

70

3.3 Testing and Benchmarking FragStatt

Figure 3.9: Putative ancient motifs identified by Alva et al..
The composition of the ProVoc set consisting of ancient motifs. The motifs are shown in ribbon rep-
resentation. The given numbers for each motif indicate the count of SCOP folds and superfamilies in
which a motif occurs (e.g. 14 folds and 20 superfamilies for motif 1). Motifs which occur repetitively in
a domain are boxed with a dotted line. Motifs detected by FragStatt are marked with a green dot or - if
not detected - with a red dot. The figure was adapted from Alva et al. 2015b and is originally licensed
under CC BY 4.0

would be given two globally similar structures as an input. The identification of a local common

motif is not possible for such a pair of proteins as they would be reported as globally similar

by FragStatt. In this manner, for motif 1 of the ProVoc set FragStatt detected 15 of the 20

manifestations (75 %).

The results presented in Table 3.3 allow for a comparison of the two approaches. Overall,

FragStatt detected for 34 of the 40 ProVoc motifs (i.e. 85 %) two or more manifestations. In

total, Alva et al. detected the reported motifs in 239 PDB structures. FragStatt was able to

find the motifs in 145 of those proteins (60.67 %). It is unclear, why the six motifs 5, 30, 35,

38, 39, and 40 were not detected by FragStatt. The final compilation of the ProVoc set was

71

Chapter 3 Results

conducted manually and the authors did not report a detailed protocol. Thus, an exhaustive

grid search of the program parameters would be required to identify the missing motifs. The

re-analysis of the ProVoc set aimed at the assessment of FragStatt’s sensitivity and not at the

reproduction of published results. Thus, the computationally expensive parameter optimization

was not carried out. In summary, the large overlap of detected motifs confirms that FragStatt is

capable of finding shared fragments in a fully automated manner, which was not feasible so far.

Figure 3.10: Sequences of motif 1 from Alva et al..
Each motif is defined by a set of regions in PDB structures. The list contains the following informations:
PDB ID, chain and position, SCOP identifier, sequence alignment. Manifestations of the motif which
were detected by FragStatt are labeled with a green dot, those not detected are labeled with a red dot.

72

3.3 Testing and Benchmarking FragStatt

Table 3.3: Correspondence of motifs detected by FragStatt and Alva et. al..
No. is the number of the motif, # PDBs gives the number of PDB chains the motif was detected in.
Fraction gives the proportion of these counts. The last four columns indicate the number of different
SCOP folds and superfamilies a motif was found in. The motifs which were not detected by FragStatt are
highlighted in red.

No. # PDBs
Alva et al.

PDBs
FragStatt

Fraction
(%)

Folds
Alva et al.

Sfams
Alva et al.

Folds
FragStatt

Sfams
FragStatt

1 20 15 75 14 20 9 15
2 15 12 80 8 15 7 12
3 11 8 72 4 4 3 3
4 5 3 60 2 2 2 2
5 6 0 0 2 2 0 0
6 9 6 66 2 2 2 2
7 8 5 62 6 8 4 5
8 12 10 83 10 10 8 8
9 4 1 25 2 2 1 1
10 9 8 88 3 4 3 4
11 2 1 50 2 2 1 1
12 10 9 90 4 8 3 7
13 5 4 80 5 5 4 4
14 4 1 25 2 2 1 1
15 8 2 25 5 7 2 2
16 10 8 80 3 3 2 2
17 8 4 50 3 3 2 2
18 7 3 42 2 2 2 2
19 4 3 75 3 3 2 2
20 4 1 25 2 2 1 1
21 3 1 33 2 2 1 1
22 2 2 100 2 2 2 2
23 7 2 28 2 2 1 1
24 5 4 80 2 2 2 2
25 7 3 42 2 7 1 3
26 7 2 28 3 3 2 2
27 2 2 100 2 2 2 2
28 12 10 83 7 12 7 10
29 3 1 33 2 2 1 1
30 2 0 0 2 2 0 0
31 4 1 25 2 2 1 1
32 7 2 28 2 2 1 1
33 5 4 80 2 2 2 2
34 8 3 37 3 4 2 2
35 3 0 0 2 2 0 0
36 6 2 33 2 2 1 1
37 6 2 33 2 2 2 2
38 3 0 0 2 2 0 0
39 3 0 0 2 2 0 0
40 3 0 0 2 2 0 0

73

Chapter 3 Results

3.4 A Large-Scale Scan for Ancestral Protein Motifs

After having shown that FragStatt can reproduce literature data and that it is a highly sensitive

approach to identify shared motifs, the next goal was a comprehensive pair-wise comparison

based on a representative set of all known protein structures.

3.4.1 Data basis and basic strategy

By the nature of its design FragStatt can only inspect two protein chains at once. Thus a com-

prehensive scan for ancestral protein motifs comes down to a pairwise all vs. all comparison of

protein chains taken from the PDB, as illustrated in Figure 3.11. Naturally all vs. all computa-

tional problems scale with O(n2), i.e. the required computational resources grow quadratically

with the input size n. A O(n2) scaling algorithm quickly becomes unsolvable in a reasonable

time for for large n, thus it is necessary to keep n small. This method approach of scanning for

ancestral protein motifs is a classical screening approach whose success depends on a sufficient

coverage rate, i.e. a high number n.

Figure 3.11: All vs. all search for protein ancestral protein motifs.
The CATH database filtered to 30 % sequence identity was used as the data basis for the all vs. all scan.
All domains comprising a complete PDB protein chain were extracted and gathered. The all vs all pairs
were generated based on the requirement that the CATH topology of the domains differ. All pairs were
fed into FragStatt which resulted in a set of protein motifs.

If n different protein chains have to be compared pairwise, the total number of comparisons is

#Comparisons = n2 − n
2 . (3.2)

Equation 3.2 results from a simple combinatorial consideration and treats comparisons A↔ B

and B ↔ A as equal and does not count self-comparisons, i.e. A↔ A.

74

3.4 A Large-Scale Scan for Ancestral Protein Motifs

As it was the aim to survey the “protein universe”, i.e. all folds observed in Nature, a diligent

selection of the protein chains included in the analysis had to be carried out. Currently, in

March 2020, the PDB contains over 161,000 entries composed of over 485,000 protein chains.

According to Equation 3.2 using the full PDB as a data basis would result in over 117 billion

comparisons, which cannot be executed in a realistic period of time. However, it is not necessary

to analyze each protein chain, because of the redundancy of the PDB. Both individual proteins

but also folds are often represented by more than one PDB entry. Therefore it is possible to

reduce the number of protein chains without loosing protein folds.

The resulting data basis should represent the structure and sequence diversity of all known

proteins. To remove redundancy while preserving the diversity in a sequence dataset, the most

common practice is to filter it to a certain maximal sequence identity percentage. Additionally,

databases which classify proteins by their structure can be used to ensure an adequate coverage

of the structure space. These two methods can be combined. Thus, the CATH database, filtered

to a sequence identity of 30 %, was used as a structurally highly diverse data basis with low

sequence redundancy. For simplicity, only single-domain PDB protein chains were taken into

account, which brings the advantage that whole chains can be attributed to a certain CATH

classification and chains do not have to be split into single domains. This constraint simplifies

the generation of the data basis as well as the evaluation of the results. In this manner, over

12,000 single-domain and CATH classified PDB protein chains were gathered. Based on this set

all combinations of protein chains which belong to different CATH topologies were generated,

which finally resulted in a set of approximately 77 million pairs of protein chains, further referred

to as CATH_RF.

3.4.2 Defining a set of candidate hits

The CATH_RF set of protein chain pairs served as the starting point for the all vs. all comparison

based on FragStatt. As expected, most of the runs did not find a common motif: Among the

total of 77 million analyzed pairs around 900,000 (1.2 %) hits (AllHits) were detected occurring in

different CATH topologies. By analyzing these visually, it became evident that there is a great

number of topology combinations which are related and do not satisfy the initially assumed

75

Chapter 3 Results

requirement of being evolutionary independent, leading to many false positive hits. This means

that the initially made assumption that all CATH topologies are evolutionary independent does

not strictly hold for all cases. The CATH_RF set contains 867 CATH topologies, which leads to

almost 375,000 possible combinations of topologies. Checking all of these combinations regarding

a possible homology is a task which can’t be done manually with reasonable effort. It is also

difficult to automate this task as often the results of database queries (e.g. Pfam, InterPro,

SCOP, etc.) have to be analyzed to check whether a topology pair is strictly non-homologous.

As on the topology level of CATH, the requirement of evolutionary independence can not be

guaranteed, it was decided to take a more conservative approach by filtering the hits to those

which feature different CATH architectures. The architecture level represents a more coarse

classification than the topology level and a homology between CATH architectures is unlikely.

Still, even on this level the discussed problem occurs. However, as the number of CATH archi-

tectures is much smaller than the number of topologies it is possible to manually filter these

combinations. An illustrative example that highlights the problem is the comparison of beta

propeller proteins shown in Figure 3.12.

From an architectural point of view the two proteins shown in Figure 3.12 share a common

scheme of composition: The annular repetition of the same motif comprised of four consecutive

beta strands, which is called a blade. Beta propeller proteins exist in many different sizes, i.e

number of repetitions of blades: e.g. 3, 4, 5, 6, 7, and 8 propellers. It is assumed that the different

variants of the beta propeller arose divergently and evolved by amplification and diversification

(Kopec and Lupas, 2013; Chaudhuri et al., 2008). The origin of the beta propeller architecture

can supposedly be dated back to the earliest era of protein evolution (Caetano-Anolles et al.,

2009), which makes it an interesting candidate to study. The beta propeller blade may represent

an ancestral motif, however for the purpose of this study it is not desired to detect relationships

between different types of beta propellers as they supposedly evolved after the formation of

a prototypical beta propeller blade motif. Instead the goal is to potentially detect the beta

propeller motif in other distinct folds. For this reason comparisons between beta propellers

(potential false positives) should be filtered out, while comparisons of beta propellers to other

architectures (potential true positives) should be kept. Unfortunately, in the CATH database

76

3.4 A Large-Scale Scan for Ancestral Protein Motifs

the beta propellers are not subsumed under one architecture, but depending on the number of

blades, the proteins are grouped into different CATH architectures. Thus, even if the pairwise

comparison is restricted to proteins with different architectures, a comparison of beta propeller

proteins that possess a differing number of blades cannot be avoided. Thus, it is necessary to

define a "black list" containing combinations of architectures to be removed from the analysis.

Figure 3.12: Seven (PDB-ID 3Q7M_A) and eight (PDB-ID 1ERJ_A) bladed beta propellers.
Both proteins share the same overall architecture of a beta propeller and only the number of repetitions
of the propeller motifs (blades) distinguishes them from an architectural point of view. However, both
proteins are classified into different CATH architectures: 2.140 (8 propeller) and 2.130 (7 propeller)

Based on these insights, a comprehensive comparison of proteins belonging to different archi-

tectures was performed. Prior to the in-depth analysis of the candidate hits, several filters were

applied. First, as discussed, homologous architecture pairs were eliminated. Additionally, all

candidate pairs were removed whose pairwise alignment contained more than five gaps. More-

over, the length of the motifs (mean of the length of the fragments) had to lie between 15 and

60 residues and a minimal TM-score of 0.55 was required.

In this manner, the set CoMo of pairwise common motif relationships was compiled that con-

sisted of 12,533 entries. The CoMo set includes 2870 unique PDB protein chains which belong to

26 CATH architectures and 245 CATH topologies. The CoMo set comprises 1.4 % of the 900,000

initial hits (AllHits) and 0.016 % of the total of 77 million made comparisons (CATH_RF). This

means that approximately every 6,000th comparison yielded a candidate hit. This low rate

strongly suggests that motifs are rarely shared between proteins possessing different CATH ar-

chitectures.

77

Chapter 3 Results

3.4.3 CoMo motifs are spread unevenly amongst CATH

The number of members a CATH architectures has, i.e. the number of protein domains associated

with it, varies immensely. On the one hand there are relatively few highly populated architectures

like the Alpha-Beta barrel (CATH 3.20), which includes over 16,000 domains, and on the other

hand there are many sparsely populated architectures like for example the 4 propeller (CATH

2.110) which is comprised of less than 60 domains. By evaluating these counts one can get

an idea of how frequent a certain architecture occurs in nature. However, when making such

considerations based on the number of solved protein structures, one has to keep in mind that

the PDB itself must not necessarily depict a representative snapshot of the natural protein

structure space. For example proteins or protein folds which are relatively simple to express,

purify and structurally solve in the laboratory are overrepresented in the PDB, whereas other

proteins like membrane proteins, known to be challenging from a bioanalytical perspective, are

underrepresented (Alexandrov and Fischer, 1996). Nevertheless, with sufficient certainty it can

be said that some protein architectures like the alpha-beta barrel have a prominent role in

utilization and functional diversity among all domains of life. For example in five out of seven

classes of the EC nomenclature (Webb, 1992) the (βα)8 fold can be observed making it one of

the most utilized protein folds in nature (Nagano et al., 1999).

As stated, the affiliation to different CATH classes, architectures and topologies can be evaluated

for all known protein structures. Such a statistic was created for the initial hits (AllHits) and

the CoMo set. A statistic was also determined for the full set of analysed single domain protein

chains from CATH (null distribution). To assess, whether the restraint to single domain protein

chains restraint reduces the sampled structure space, the distribution of the full CATH database

was also included in the statistic. The result of the analysis on the CATH class level is shown in

Figure 3.13.

A comparison of the corresponding frequencies in Figure 3.13, confirms that the single domain

proteins are similarly distributed among the CATH classes as the full content of the database

itself. Thus, it can be safely assumed that the subset of single-domain chain entries represents

the space of known protein structures adequately. In contrast, the distribution of CATH classes

among the outcome of the AllHits analysis deviates strongly from the latter two distributions:

78

3.4 A Large-Scale Scan for Ancestral Protein Motifs

Figure 3.13: Distribution of PDB protein chains in CATH classes.
The bar plot shows the relative portion of the CATH classes in different datasets. Blue: The unfiltered
complete CATH database. Orange: Only single-domain chains in the CATH database. Green: All hits
from the scan (AllHits). Red: Hits filtered for redundancy and plausibility (CoMo)

A great fraction of these unfiltered hits belongs to proteins from class one “Mainly Alpha”.

The class two “Mainly Beta” on the other hand is underrepresented in the unfiltered hits. On

the other hand, the hits resulting from the CoMo set possess a CATH class distribution that is

highly similar to that of the full data set. This finding indicates that the removal of false positive

hits, e.g. unspecific helix-only hits of class one members, is effective. Still, minor deviations of

the CoMo set in reference to the null distributions can be seen: A slight overrepresentation of

class one “Mainly Alpha” and four “Few Secondary Structures” can be observed. In class three

“Alpha Beta” the candidate hits are slightly underrepresented.

The analysis on the hightest level of the CATH classification hierarchy shows four things: Firstly,

most proteins belong to class three “Alpha Beta”. Secondly, the used subset of single-domain

chains represents the CATH database well. Thirdly, the chosen filters are effective. Fourthly, at

least on the hightest level of the CATH classification, there is no striking enrichment of putative

ancestral motifs in one of the classes.

The previous analysis showed that the number of proteins comprised of alpha and beta secondary

structures surmount the number of proteins comprised of mainly alpha helices or mainly beta

79

Chapter 3 Results

Figure 3.14: Distribution of CATH architectures in four data sets.
Each bar indicates the relative frequency of an architecture and the color encodes the dataset. Blue:
The unfiltered complete CATH database. Blue: The unfiltered complete CATH database. Orange: Only
single-domain chains in the CATH database. Green: All hits from the scan (AllHits). Red: Hits filtered
for redundancy and plausibility (CoMo)

80

3.4 A Large-Scale Scan for Ancestral Protein Motifs

sheets: Still, the total of protein structures is distributed even among the three classes “Mainly

Alpha”, “Mainly Beta” and “Alpha Beta” at a ratio of roughly 1:1:2. Not necessarily, a similarly

even distribution has to be expected for the next level of the CATH classification, which is the

architecture. Thus, the analysis which was performed above for the class level, was now applied

to CATH architectures.

As Figure 3.14 shows, the five most populated architectures at 35 % sequence identity are 3.40

(3-Layer(aba) sandwich), 1.10 (Orthogonal Bundle), 3.30 (2-Layer Sandwich), 2.60 (Sand-

wich), and 1.20 (Up-down Bundle). About 65 % of all domains assigned to CATH belong to

one of these five architectures. Thus, one can expect that the hits belonging to the CoMo set

will show a similar bias. Figure 3.14 shows that this is generally the case: Highly populated ar-

chitectures also have high hit counts. However, the barplot also reveals that some architectures

show overproportionally many hits.

To quantify the enrichment E, a log-ratio of the candidates frequency and the background

frequency was calculated:

Ei = log f(Ci)
f(CSDi)

(3.3)

Here f(Ci) is the frequency of all CoMo hits belonging to architecture i and f(CSDi) denotes

the frequency of all CATH single-domain entries belonging to architecture i. Table 3.4 shows

the result of this analysis.

The positively enriched architectures, ordered from high to low enrichment, are 2.140 (8 Pro-

peller), 3.20 (Alpha-Beta Barrel), 1.25 (Alpha Horseshoe), 4.10 (Irregular), 2.130 (7 Pro-

peller), 2.40 (Beta Barrel), 1.20 (Up-down Bundle), 1.10 (Orthogonal Bundle), and 2.70

(Distorted Sandwich). With the exception of 2.140, a tendency of sparsely populated architec-

tures being underrepresented can be observed. From the above mentioned highly populated the

two “All Alpha” architectures 1.10 (Orthogonal Bundle) and 1.20 (Up-down Bundle) are en-

riched. Most of these architectures can be associated with an internal symmetry (e.g Alpha-Beta

Barrel, Propellers) or a repetitive structure (Alpha Horseshoe, Up-down Bundle).

The analysis of hit vs. background frequencies relates to single CATH architectures. However,

81

Chapter 3 Results

Table 3.4: Relative frequencies of CATH architectures in different datasets.
The first column denotes the CATH architecture. The following columns give the relative frequencies
(rf) of the CATH architecture in different sets. The column Enrichment gives the enrichment log-ratios
calculated according to Equation 3.3. The rows are sorted according to the enrichment in descending
order.

CATH
Arch.

rf
CATH (%)

rf
CATH single-domain (%)

rf
All hits (%)

rf
CoMo (%)

E
Enrichment

2.140 0.04 0.02 0.15 0.08 1.62
3.20 2.43 4.08 7.21 13.98 1.23
1.25 1.19 2.45 3.71 7.63 1.13
4.10 0.70 1.43 1.56 3.19 0.80
2.130 0.32 0.58 1.63 1.26 0.78
2.40 4.99 4.03 2.79 5.62 0.33
1.20 6.91 8.11 10.89 10.98 0.30
1.10 15.55 15.25 29.34 20.35 0.29
2.70 0.60 0.60 0.18 0.65 0.07
2.120 0.10 0.36 1.31 0.33 -0.07
3.40 22.10 20.05 17.42 18.78 -0.07
3.80 0.25 0.52 0.17 0.47 -0.10
3.10 3.28 5.93 3.91 3.54 -0.52
3.90 5.13 3.93 1.87 2.19 -0.58
3.30 17.51 13.66 10.08 6.87 -0.69
2.102 0.04 0.12 0.61 0.06 -0.75
2.20 1.16 0.60 1.58 0.28 -0.77
2.30 3.10 4.26 1.66 1.90 -0.81
2.10 1.39 1.08 0.70 0.37 -1.08
2.80 0.24 0.43 0.03 0.14 -1.12
3.50 1.31 0.37 1.33 0.06 -1.76
2.60 9.86 8.35 1.25 1.24 -1.91
3.70 0.01 0.11 0.01 0.02 -1.94
1.50 0.25 0.39 0.02 0.01 -3.88
2.170 0.40 0.49 0.22 < 0.01 -4.81
2.160 0.28 0.52 < 0.01 < 0.01 -4.87

as FragStatt links two architectures, it is of interest to consider which pairs of architectures

were linked, and if some combinations turned out to be particularly abundant. This was done

by counting how many motifs were detected for each combination of CATH architectures. The

results of this evaluation are visualized as a network in Figure 3.15 and quantified in Table 3.5.

As expected, relatively few combinations of architectures constitute the greatest part of all hits.

The most abundant five combinations are

3.20 (Alpha-Beta Barrel) ↔ 3.40 (3-Layer(aba) Sandwich),

1.10 (Orthogonal Bundle) ↔ 3.40 (3-Layer(aba) Sandwich),

82

3.4 A Large-Scale Scan for Ancestral Protein Motifs

1.20 (Up-down Bundle) ↔ 1.25 (Alpha Horseshoe),

1.20 (Up-down Bundle) ↔ 1.10 (Orthogonal Bundle),

1.10 (Orthogonal Bundle) ↔ 3.30 (2-Layer Sandwich).

These five combinations sum up to a fraction of 57 % of all hits.

With a frequency of 25 %, hits between CATH architectures 3.20 (Alpha-Beta Barrel) and 3.40

(3-Layer(aba) Sandwich) are the most abundant ones in the all vs. all scan. The (βα)2 motif

identified by Farías-Rico et al. (Farías-Rico et al., 2014) belongs to this group. In general a

overrepresentation of the “Mainly Alpha” class can be observed: Four of the five most abundant

combinations can be attributed to this class. Again, a preference for repetitive (Up-down Bundle,

Alpha Horseshoe) and internally symmetrical architectures (Alpha-Beta Barrel) can be seen

among the most abundant architecture combinations.

Figure 3.15: A survey of motifs shared between CATH architectures.
The nodes represent CATH architectures, which are connected by an edge, if FragStatt detected shared
common motifs between members of the architectures. The width of the edges represents the number of
detected motifs. Exact values can be found in Table 3.5.

The enrichment of alpha helical architectures can also be seen in the network (compare Fig-

ure 3.15) in the form of the highly connected architectures 1.10 (Orthogonal Bundle), 1.20

(Up-down Bundle) and 1.25 (Alpha Horseshoe). Of these architectures 1.10 (Orthogonal Bun-

dle) seems to be the most central, showing strong connections to architectures from all classes,

83

Chapter 3 Results

Table 3.5: Number of hits detected by FragStatt when comparing two CATH architectures.
The tables gives the count of the hits for each combination of CATH architectures. The column Fraction
denotes for each combination the relative share regarding all hits in the CoMo set.

Arch. 1 Name 1 Arch. 2 Name 2 Count Fraction (%)
3.20 Alpha-Beta Barrel 3.40 3-Layer(aba) Sandwich 3186 25.4
1.10 Orthogonal Bundle 3.40 3-Layer(aba) Sandwich 1095 8.7
1.20 Up-down Bundle 1.25 Alpha Horseshoe 1063 8.4
1.20 Up-down Bundle 1.10 Orthogonal Bundle 917 7.3
1.10 Orthogonal Bundle 3.30 2-Layer Sandwich 915 7.3
1.10 Orthogonal Bundle 1.25 Alpha Horseshoe 667 5.3
3.10 Roll 1.10 Orthogonal Bundle 499 3.9
4.10 Irregular 1.10 Orthogonal Bundle 388 3.1
2.40 Beta Barrel 1.10 Orthogonal Bundle 360 2.8
2.40 Beta Barrel 2.30 Roll 296 2.3
4.10 Irregular 1.20 Up-down Bundle 260 2.0
2.40 Beta Barrel 2.130 7 Propeller 253 2.0
3.90 Alpha-Beta Complex 1.20 Up-down Bundle 160 1.2
2.40 Beta Barrel 3.30 2-Layer Sandwich 155 1.2
3.90 Alpha-Beta Complex 3.40 3-Layer(aba) Sandwich 155 1.2
2.70 Distorted Sandwich 2.60 Sandwich 138 1.1
1.20 Up-down Bundle 3.30 2-Layer Sandwich 136 1.0
3.20 Alpha-Beta Barrel 3.30 2-Layer Sandwich 127 1.0
1.10 Orthogonal Bundle 2.60 Sandwich 115 0.9
3.10 Roll 3.30 2-Layer Sandwich 107 0.8
3.10 Roll 1.20 Up-down Bundle 82 0.6
3.90 Alpha-Beta Complex 1.10 Orthogonal Bundle 79 0.6
3.30 2-Layer Sandwich 2.10 Ribbon 79 0.6
1.20 Up-down Bundle 3.40 3-Layer(aba) Sandwich 78 0.6
3.20 Alpha-Beta Barrel 3.80 Alpha-Beta Horseshoe 77 0.6
2.40 Beta Barrel 2.120 6 Propeller 67 0.5
2.30 Roll 1.25 Alpha Horseshoe 66 0.5
1.25 Alpha Horseshoe 3.30 2-Layer Sandwich 64 0.5
2.40 Beta Barrel 3.40 3-Layer(aba) Sandwich 61 0.4
4.10 Irregular 3.30 2-Layer Sandwich 60 0.4
3.20 Alpha-Beta Barrel 1.10 Orthogonal Bundle 56 0.4
3.10 Roll 3.90 Alpha-Beta Complex 52 0.4
2.30 Roll 3.30 2-Layer Sandwich 44 0.3
3.10 Roll 3.40 3-Layer(aba) Sandwich 43 0.3
2.40 Beta Barrel 3.10 Roll 43 0.3
4.10 Irregular 3.40 3-Layer(aba) Sandwich 36 0.2
3.80 Alpha-Beta Horseshoe 3.40 3-Layer(aba) Sandwich 36 0.2
2.40 Beta Barrel 1.25 Alpha Horseshoe 32 0.2
2.80 Trefoil 2.30 Roll 29 0.2
3.90 Alpha-Beta Complex 3.30 2-Layer Sandwich 28 0.2

84

3.4 A Large-Scale Scan for Ancestral Protein Motifs

notably also to the second most abundant architecture (compare Table 3.4) in the CoMo set

3.40 (3-Layer(aba) Sandwich). As mentioned this architecture contributes to the most abun-

dant combination, connecting it to the architecture 3.20 (Alpha-Beta Barrel). However, overall,

the connectivity of 3.40 (3-Layer(aba) Sandwich) seems to be relatively low. A particularly high

connectivity, on the other hand, can be observed for the architectures 2.40 (Beta Barrel), 3.10

(Roll) and 1.20 (Up-down Bundle). These architectures have in common that they consist of

relatively simple and short repeating elements (beta strands and alpha helices) which can be

found in many other architectures.

In general, while most of the hits were detected between only a few architectures, it can be

seen that the network is nevertheless highly connected, suggesting that many less populated

architecture combinations deliver positive results. The same analysis at the topology level was

also carried out. The results can be found in the supplementary material in Table S1 and

Figure S1.

In summary, the analysis presented in this section suggests that during the course of evolu-

tion some protein architectures were utilized particularly often while others seem to be rare.

This natural uneven background distribution of CATH architectures can be also observed in the

CoMo set. A normalization to the background frequencies showed that particularly the CATH

architectures 3.20 (Alpha-Beta Barrel) and 1.25 (Alpha Horseshoe) (compare Table 3.4) seem

to be enriched in the CoMo . Also, the architecture 2.140 (8 Propeller) is enriched, however

its absolute abundance in the CoMo is small. In general, the majority of motifs in the CoMo

is linked to a small number of CATH architectures. Among these architectures, a tendency

for mainly alpha helical ones can be observed. The analysis of all CATH architecture combi-

nations substantiates these findings; e.g. the combination 3.20 (Alpha-Beta Barrel) and 3.40

(3-Layer(aba) Sandwich) contributes 25 % of motifs in the CoMo set. Yet, a network analysis

showed that many motifs between other CATH architectures were detected as well, indicating the

existence of many less universal motifs. In conclusion, the CoMo set is highly uneven distributed

amongst the protein architecture space and the presented findings question the universality of

the detected motifs.

85

Chapter 3 Results

3.4.4 Length distribution of the CoMo motifs

A reasonable assumption is that motifs have at least the size of a small super-secondary structure

element and are not larger than a protein domain. Thus, their length should range between 15

and 60 amino acid residues. This is why the all vs. all scan was restricted to the identification of

fragments of this size. To investigate the length distribution, the histogram shown in Figure 3.16

was generated. The plot shows the relative frequency of motifs of a given size within the CoMo

Figure 3.16: Distribution of the length of the detected motifs.
The histogram shows the relative frequency of the motifs according to their length. For each bin, the
contribution of the eight most abundant combinations of CATH architectures (see legend) is given.

set. Three maxima at a length of approximately 18, 25 and 40 residues can be observed. A less

pronounced enrichment can also be observed at a length of approximately 58 residues, however,

in general motifs with a length greater than 45 residues seem to be rare. As demonstrated in the

last section, the different architectures contribute unevenly to the CoMo set. Thus it is of interest

to assess the length distribution of the most abundant architecture combinations individually. To

achieve this in a single graphical representation, the histogram was plotted as a stacked bar plot.

The height of each bar is the sum of the portions of the individual architecture combinations. It

was decided to show the eight most abundant combinations individually (accounting for almost

86

3.4 A Large-Scale Scan for Ancestral Protein Motifs

70 % of the CoMo set, see Table 3.5) and to group the rest together as “Other”. The histogram

makes clear that motifs of length 40 and 58 residues are predominately found when comparing

the architectures 3.40 (3-Layer(aba) Sandwich) ↔ 3.20 (Alpha-Beta Barrel). This finding

is not unexpected, because this combination contributes over 25 % of all CoMo hits (compare

Table 3.5).

In contrast, the motifs found by comparing the other architectures have a different length distri-

bution with a maximum between 24 and 28 residues. Interestingly, 3.40↔3.20 pairs contribute

less to this range of length. This finding further supports the idea that these two architectures

are a special case because they share an unusually long motif. The length distribution of the

motifs resulting from the comparison of all other architectures has two maxima around 18 and

25 residues.

3.4.5 Structure similarity of the CoMo motifs

A further characteristic feature of the motifs is their pairwise structural similarity which can be

determined by means of the TM-score. FragStatt hits consist of two fragments from two proteins

whose 3D structure is known having different CATH architectures. While the initial detection is

sequence based, each pair of fragments is finally scored regarding its structural similarity using

TM-align. TM-align delivers the TM-score which is normalized to the range 0 to 1.0, where 1.0

indicates a perfect match between the two structures. Domains with a TM-score > 0.5 can be

generally assumed to belong to the same protein fold (Zhang and Skolnick, 2005; Xu and Zhang,

2010).

The question arises whether for the motifs in the CoMo set a higher structural similarity can

be observed than one would expect by chance. For this analysis, a null model distribution is

needed that consists of the TM-scores resulting from a comparison of unrelated fragments. In

order to create this fragment set, residue positions were randomly chosen in the PDB entries

contributing to the CoMo set. Subsequently fragments were excised with a length distribution

following that of the CoMo fragments (compare Figure 3.16).

In Figure 3.17 the resulting length distribution is shown together with the length distribution

87

Chapter 3 Results

Figure 3.17: Histogram of TM-Scores.
The plot shows the relative frequencies of TM-Scores for the CoMoallT M set (CoMo without TM-score
filter, orange) and for scores resulting from the comparison of randomly generated fragments (RanComp
set, blue). For the CoMoallT M set a significantly higher TM-Score (mean value of 0.34) compared to the
RanComp set (mean value of 0.26) can be observed. Mean values are highlighted with dotted lines.

of the CoMoallTM set. This set is identical to the CoMo set, except for omitting the TM-score

filtering step. The lower part of the TM-score distribution would be missing, if the CoMo

set was used for this analysis. The comparison of the two distributions makes clear that the

comparison of randomly chosen fragments (RanComp) results in considerably lower TM-scores

than observed in CoMoallTM . The mean values are 0.26 and 0.34, respectively. Moreover, the

RanComp distribution is right skewed similar a Poisson distribution, wheres CoMoallTM is nearly

symmetrical. Both an unpaired t-test and a Wilcoxon signed-rank test gave highly significant

results with a p-value < 1E−99.

The small shoulder of the CoMoallTM distribution at the mean of the RanComp distribution

might be due to a certain fraction of structurally unrelated fragments, which are, however, not

part of CoMo. In summary, these results conform that a great fraction of the motifs identified

by means of FragStatt possess a larger TM-score than expected by chance.

88

3.4 A Large-Scale Scan for Ancestral Protein Motifs

3.4.6 Clustering the CoMo set to identify unique motifs

The motifs in the CoMo set are based on pairwise comparisons, i.e. they link exactly two proteins

via a common motif. However, if the predecessors of the motifs originated in the pre-LUCA era,

it might be that the sequence similarity of modern manifestations is too low to detect homology,

even with a highly sensitive HMM based approach. Thus, it might be that the same or a highly

similar motif in two different pairs of proteins was detected: Assume two similar pairwise motifs

M1 and M2. Motif M1 was found in the protein chains P1 and P2 and motif M2 was found in

the protein chains P3 and P4. When further assuming that no similar motif was found between

the pairs (e.g. P1 and P3, P1 and P4, etc.) then there is no way to deduce from the CoMo set

thatM1 andM2 represent the same or a very similar motif. Consequently, to detect these cases,

it is necessary to cluster all pairwise motifs Mi and get a set of unique motifs M∗j , whereas a

unique motif is defined as a set of pairwise motifs.

Figure 3.18: Histogram of TM-Scores.
The plot shows three characteristics of the clustering as a function of the DBSCAN neighborhood radius
ε: The average TM-Score, the “cluster number ratio” which is the normalized number of clusters and
the “noise number ratio” indicating the fraction of unclustered motifs. The threshold ε = 0.33 chosen for
subsequent analyses is indicated by a dotted line.

To reduce the redundancy among the fragments (two fragments P (Mi) and P (Mj) can be

identical or highly similar) a sequence based CD-Hit clustering was applied. Only the cluster

center fragments were submitted to the structure based clustering. The clustering of the pairwise

motifs was carried out using the TM-score as a similarity measure. In this manner, by applying

89

Chapter 3 Results

an all vs. all approach the TM-scores between all individual fragments from all pairwise motifs

Mi were calculated. The TM-Score based similarity matrix was converted to a distance matrix

and used as input for the DBSCAN clustering algorithm. DBSCAN has two parameters: The

neighborhood radius ε and the minimum number of cluster members, which was set to two. In

order to find an optimal neighborhood radius, the radius ε was varied with an increment of 0.01

between 0.0 and 1.0 and three critical parameters were recorded. These were the number of

clusters, the fraction of fragments which could be assigned to a cluster (i.e. noise ratio) and the

average TM-score within clusters. Trading off the number of clusters, the number of clustered

fragments, and the average TM-Score of the clusters in combination with a manual inspection

of the clustering output showed that a value of 0.33 for ε gave best results: 159 clusters with

an average TM-score of 0.52. Of the 7901 fragments 4054 fragments (51 %) could be assigned

to a cluster leaving 3847 fragments (49 %) which could not be assigned to a cluster. After

visual inspection 25 clusters were dismissed as of poor quality (due to helix only or too short

superpositions), leaving 134 valid clusters M∗i which define the CoMoClust set. All 134 clusters

are set as listed in Table 3.6. As a cluster defines a motif the terms cluster and motif will be

used synonymously in the following.

Table 3.6: CoMoClust set of 134 clusters each defining a putative ancestral motif.
ID i: Identifier of the cluster/motif M∗

i . #Cl.: Number of CATH classes the motif can be observed in.
#Ar.: Number of CATH architectures the motif can be observed in. #To.: Number of CATH topologies
the motif can be observed in. H/S/L (%): H(elix), S(heet) and L(oop) secondary struture content of the
motif. Classes: List of classes the motif can be observed in. Architectures: List of architectures the motif
can be observed in.

ID #Cl. #Ar. #To. H/S/L (%) Classes Architectures

1 4 10 13 59/ 2/39 1, 2, 3, 4 1.10, 1.20, 1.25, 2.40, 2.60, 3.10, 3.30, 3.40, 3.90, 4.10
2 3 8 9 59/ 0/41 1, 2, 3 1.10, 1.25, 2.40, 2.60, 3.10, 3.30, 3.40, 3.90
3 3 5 5 62/ 0/38 1, 2, 3 1.10, 1.25, 2.40, 3.10, 3.40
4 3 4 4 62/ 0/38 1, 3, 4 1.10, 3.10, 3.30, 4.10
5 2 4 4 48/ 0/52 1, 3 1.10, 3.20, 3.30, 3.40
6 3 4 4 75/ 0/25 1, 3, 4 1.10, 1.25, 3.10, 4.10
7 2 4 4 0/21/79 2, 3 2.130, 2.140, 2.70, 3.40
8 1 4 5 35/20/45 3 3.20, 3.40, 3.50, 3.90
9 2 4 4 2/33/65 2, 3 2.102, 2.20, 3.10, 3.40
10 1 4 4 0/57/43 2 2.120, 2.130, 2.140, 2.40
11 1 4 4 41/15/44 3 3.20, 3.30, 3.40, 3.80
12 3 4 4 56/ 0/44 1, 2, 3 1.10, 1.20, 2.30, 3.30
13 2 3 3 49/ 0/51 1, 3 1.10, 3.10, 3.30
14 1 3 3 64/ 0/36 3 3.20, 3.40, 3.90
15 1 3 3 77/ 0/23 1 1.10, 1.20, 1.25
16 1 3 3 1/49/50 2 2.130, 2.140, 2.40

90

3.4 A Large-Scale Scan for Ancestral Protein Motifs

ID #Cl. #Ar. #To. H/S/L (%) Classes Architectures

17 2 3 3 78/ 0/22 1, 2 1.10, 1.25, 2.160
18 2 3 4 3/17/80 2, 3 2.20, 3.30, 3.90
19 2 3 3 65/ 0/35 1, 2 1.10, 1.25, 2.40
20 1 3 4 2/52/46 2 2.30, 2.40, 2.80
21 3 3 3 61/ 0/39 1, 2, 3 1.10, 2.40, 3.10
22 3 3 3 63/ 0/37 1, 2, 3 1.10, 2.40, 3.30
23 1 3 3 41/ 0/59 3 3.20, 3.40, 3.90
24 3 3 3 65/ 0/35 1, 2, 4 1.10, 2.40, 4.10
25 1 3 3 3/47/50 2 2.120, 2.130, 2.60
26 1 3 3 28/19/53 3 3.20, 3.40, 3.90
27 2 3 5 67/ 0/33 1, 2 1.10, 1.20, 2.40
28 1 3 3 77/ 0/23 1 1.20, 1.25, 1.50
29 1 3 3 38/25/37 3 3.10, 3.20, 3.90
30 3 3 3 9/17/74 2, 3, 4 2.10, 3.30, 4.10
31 1 3 3 0/46/54 2 2.120, 2.130, 2.40
32 1 3 4 0/59/41 2 2.30, 2.40, 2.80
33 3 3 3 0/12/88 2, 3, 4 2.20, 3.30, 4.10
34 2 3 3 1/59/40 2, 3 2.30, 2.40, 3.10
35 2 3 4 72/ 0/28 1, 3 1.10, 3.30, 3.40
36 1 3 3 56/ 0/44 3 3.20, 3.40, 3.80
37 1 3 3 0/46/54 2 2.130, 2.40, 2.60
38 2 3 3 65/ 0/35 1, 4 1.10, 1.25, 4.10
39 2 3 3 0/ 0/100 2, 3 2.40, 2.70, 3.40
40 2 3 3 0/14/86 2, 3 2.40, 2.70, 3.40
41 1 3 3 38/ 0/62 3 3.20, 3.30, 3.40
42 1 3 3 0/60/40 2 2.30, 2.40, 2.80
43 1 3 3 39/20/41 3 3.20, 3.40, 3.90
44 1 3 3 34/ 6/60 3 3.20, 3.30, 3.40
45 3 3 4 56/ 1/43 1, 2, 3 1.10, 2.40, 3.30
46 2 3 4 76/ 0/24 1, 3 1.10, 1.20, 3.40
47 1 3 3 39/ 0/61 3 3.20, 3.40, 3.80
48 1 3 4 69/ 0/31 1 1.10, 1.20, 1.25
49 1 2 3 85/ 0/15 1 1.10, 1.20
50 1 2 2 40/11/49 3 3.20, 3.40
51 2 2 2 0/ 0/100 2, 3 2.60, 3.10
52 1 2 3 66/ 0/34 1 1.10, 1.25
53 1 2 2 42/12/46 3 3.20, 3.40
54 1 2 2 28/11/61 3 3.20, 3.40
55 1 2 2 51/ 0/49 3 3.10, 3.70
56 1 2 2 27/21/52 3 3.40, 3.90
57 1 2 2 35/ 0/65 3 3.20, 3.90
58 1 2 2 46/ 0/54 3 3.10, 3.30
59 2 2 2 48/ 0/52 1, 3 1.10, 3.10
60 1 2 2 61/ 0/39 1 1.10, 1.25
61 1 2 3 43/13/44 3 3.20, 3.40
62 1 2 2 0/39/61 2 2.40, 2.70
63 1 2 2 38/ 0/62 3 3.20, 3.40
64 1 2 3 75/ 0/25 1 1.10, 1.20
65 1 2 2 45/ 6/49 3 3.20, 3.40
66 1 2 2 75/ 0/25 1 1.10, 1.25
67 2 2 2 0/35/65 2, 3 2.10, 3.10

91

Chapter 3 Results

ID #Cl. #Ar. #To. H/S/L (%) Classes Architectures

68 2 2 2 0/ 0/100 2, 3 2.60, 3.10
69 1 2 2 73/ 0/27 1 1.10, 1.20
70 1 2 2 33/18/49 3 3.20, 3.40
71 1 2 2 39/ 0/61 3 3.20, 3.40
72 1 2 2 0/49/51 2 2.30, 2.40
73 1 2 2 45/15/40 3 3.30, 3.90
74 1 2 2 42/20/38 3 3.20, 3.40
75 2 2 2 0/56/44 2, 3 2.40, 3.30
76 2 2 2 68/ 0/32 1, 4 1.10, 4.10
77 1 2 2 18/10/72 3 3.20, 3.40
78 1 2 2 40/17/43 3 3.20, 3.80
79 1 2 2 32/20/48 3 3.20, 3.40
80 2 2 2 52/ 0/48 2, 3 2.30, 3.30
81 1 2 2 11/11/78 2 2.60, 2.70
82 1 2 2 39/15/46 3 3.20, 3.40
83 1 2 2 37/10/53 3 3.20, 3.40
84 2 2 2 21/22/57 2, 3 2.10, 3.30
85 1 2 2 42/11/47 3 3.20, 3.40
86 1 2 2 68/ 0/32 1 1.10, 1.20
87 1 2 4 78/ 0/22 1 1.10, 1.20
88 1 2 2 47/19/34 3 3.20, 3.40
89 1 2 2 48/ 0/52 3 3.20, 3.40
90 2 2 2 17/38/45 2, 3 2.40, 3.40
91 1 2 2 44/ 0/56 3 3.20, 3.40
92 2 2 2 0/61/39 2, 3 2.40, 3.30
93 1 2 2 32/14/54 3 3.20, 3.40
94 1 2 2 12/11/77 2 2.60, 2.70
95 1 2 2 33/ 6/61 3 3.20, 3.40
96 1 2 2 28/19/53 3 3.20, 3.40
97 1 2 2 44/10/46 3 3.20, 3.40
98 1 2 2 43/21/36 3 3.10, 3.30
99 1 2 2 70/ 0/30 1 1.10, 1.25
100 1 2 2 0/51/49 2 2.40, 2.60
101 1 2 2 8/41/51 2 2.30, 2.40
102 1 2 2 44/ 0/56 3 3.10, 3.30
103 1 2 2 33/19/48 3 3.20, 3.40
104 1 2 2 44/ 0/56 3 3.20, 3.40
105 1 2 2 52/ 0/48 3 3.20, 3.40
106 2 2 3 19/20/61 2, 3 2.10, 3.30
107 1 2 2 37/21/42 3 3.40, 3.90
108 1 2 3 55/ 0/45 3 3.20, 3.40
109 2 2 2 64/ 0/36 1, 3 1.10, 3.40
110 1 2 2 44/15/41 3 3.20, 3.40
111 2 2 2 17/22/61 2, 3 2.10, 3.30
112 1 2 2 52/ 0/48 3 3.20, 3.40
113 1 2 2 11/20/69 2 2.60, 2.70
114 1 2 3 86/ 0/14 1 1.10, 1.20
115 2 2 2 36/ 0/64 1, 3 1.20, 3.40
116 1 2 2 59/ 0/41 3 3.20, 3.40
117 2 2 3 0/70/30 2, 3 2.40, 3.30
118 1 2 2 47/ 0/53 3 3.20, 3.40

92

3.4 A Large-Scale Scan for Ancestral Protein Motifs

ID #Cl. #Ar. #To. H/S/L (%) Classes Architectures

119 1 2 2 48/11/41 3 3.20, 3.40
120 1 2 2 28/45/27 3 3.10, 3.30
121 1 2 2 61/ 0/39 3 3.20, 3.40
122 1 2 2 48/ 0/52 3 3.10, 3.30
123 1 2 2 42/17/41 3 3.20, 3.40
124 1 2 2 50/15/35 3 3.40, 3.90
125 1 2 2 30/24/46 3 3.40, 3.90
126 1 2 2 37/18/45 3 3.20, 3.40
127 1 2 2 40/24/36 3 3.40, 3.90
128 1 2 2 11/17/72 2 2.10, 2.40
129 1 2 3 53/ 2/45 3 3.20, 3.40
130 1 2 2 55/ 0/45 3 3.20, 3.40
131 1 2 5 70/ 0/30 1 1.10, 1.20
132 1 2 2 6/37/57 2 2.102, 2.20
133 1 2 2 56/ 0/44 3 3.20, 3.40
134 1 2 2 9/48/43 2 2.60, 2.70

Three clusters (M∗1 ,M∗2 ,M∗3) connect more than four CATH architectures. Nine clusters connect

four (M∗4 –M∗12) CATH architectures, 36 clusters (M∗13–M∗48) connect three CATH architectures

and the rest, summing up to 86 clusters (ID M∗49–M∗134), connect two CATH architectures. This

means that over 90 % of the clusters respectively motifs occur only in three or less CATH archi-

tectures. The majority of detected motifs can not be observed in a wide range of architectures,

in other words most of the detected motifs solely occur in a very limited set of architectures.

The motifs which show the most diverse utilization among architectures tend to have a alpha

helix-rich secondary structure content (M∗1 –M∗6 , see Figure 3.20). In contrast, motifs with a more

even distribution of secondary structure content tend to be found in fewer architectures (M∗7 ,

see Figure 3.20). Mainly beta sheet comprised motifs also seem to be less diversely distributed

amongst architectures than alpha helix motifs are (M∗10, see Figure 3.20).

The five most abundant CATH architectures among all motifs with at least three CATH architec-

tures are 1.10 (Orthogonal Bundle), 3.40 (3-Layer(aba) Sandwich), 2.40 (Beta Barrel), 3.30

(2-Layer Sandwich), and 3.20 (Alpha-Beta Barrel) (compare Figure 3.19). This observation

coincides with the frequencies of CATH architectures in the CoMo set as presented previously in

Section 3.4.3, which substantiates the finding that most of the motifs are found in a small set

of CATH architectures.

93

Chapter 3 Results

Figure 3.19: Frequency of CATH architectures in the CoMoClust set.
The bar plot visualizes in how many different unique motifs M∗

i a certain CATH architecture occurs.

The clustering of the CoMo set based on structure similarity showed that the CoMo set contains

many structurally similar motifs. However, only few of the 134 identified motifs in the CoMoClust

set can be found in more than three CATH architectures. Moreover, only slightly more than

half of the motifs in the CoMo set could be assigned to a cluster. This suggests that the CoMo

set contains many “special cases“ of motifs which were only detected between one specific pair

of proteins respectively CATH architectures. The findings from the clustering concord with the

results from the analysis of the CATH distribution. It appears that only few motifs are universal

to some degree. Still, even these most abundant motifs can only be found in a small set of CATH

architectures.

94

3.4 A Large-Scale Scan for Ancestral Protein Motifs

Figure 3.20: Examples of motifs from the CoMoClust set.
Selected motifs are shown as a superposition of their manifestations (fragments) in cartoon representation.
M∗

1 and M∗
2 are typical alpha helix-rich motifs which are common in the CoMo and CoMoClust set. The

motif M∗
8 has a more even secondary structure content distribution, while M∗

10 shows a beta sheet
arrangement. For this exemplary illustration, motifs with a distinct secondary structure content were
selected to show the structural diversity in the CoMoClust set.

95

Chapter 3 Results

3.4.7 Identifying proteins possessing more than one motif

If ancestral motifs have been the building blocks for the evolution of proteins domains, it should

be possible to find some proteins that contain at least two or more of the identified motifs. This

is why all PDB chains from the CoMo set were scanned for the occurrence of several motifs.

In general it is possible that multiple pairwise common motifs were detected for a single PDB

protein chain. These PDB chains can be easily extracted from the CoMo set. However, the fact

that for a certain protein chain P1 common motifs were detected for more then one other protein

chain, say for P2 and P3, does not automatically imply that two distinct motifs were detected.

In the CoMo set it is a common case that P2 and P3 are mapped to the same region on P1, which

means that the same motif was found in three protein chains. Thus it is necessary to filter these

trivial cases and detect the cases with multiple distinct motifs. This can be done by identifying

clusters of fragments for each PDB protein chain in the CoMo set (compare Figure 3.21). The

protein P1 may share motifs with other proteins P2 and P3. Their manifestations can either

overlap and be located in the same region of P1 (compare Figure 3.21, a) or cover different and

distant protein regions (compare Figure 3.21, b).

It is not trivial to determine automatically whether the hits fall into a single region or in multiple

regions if one wants to consider all motifs of the CoMo dataset. As shown, many of the motifs

are highly similar and will thus map to the same region. On the other hand, the assessment of

all these motifs is a must for a most comprehensive analysis.

Each manifestation is uniquely specified by a start and an end position. Thus, by using clustering

based on a metric for this positions, the localization and the overlap between manifestations can

be determined. More detailed, the task is to cluster intervals of natural numbers. The Hausdorff

metric is well suited to determine their distance (for details see Chapter 2, Equation 2.25).

Thus, for each Pi the start and end positions of all manifestations of the detected motifs were

determined and their pairwise Hausdorff distances were calculated. Based on this distance

matrix, which was determined for each protein of CoMo the manifestations were clustered by

means of DBSCAN. Proteins possessing more than one distinct region occupied by manifestations

were identified. The corresponding regions will be called motif regions in the following.

96

3.4 A Large-Scale Scan for Ancestral Protein Motifs

Figure 3.21: Clustering of motif manifestations on a protein chain basis.
a Several manifestations of similar motifs occur at the same region of protein P1. The hit region (start
and end position of the hit) cluster in one contiguous region of P1. b The hits cluster in two distinct
regions of P1 called cluster 1 and cluster 2. To apply a clustering algorithm, a distance matrix based on
pairwise distances between the hit regions is calculated.

In total, 135 proteins with more than two distant motif regions could be identified and all cases

were inspected manually. 22 protein chains were discarded as of a low quality of the superposi-

tions of the motifs (helix only or too short) leaving 113 cases which belong to 15 different CATH

topologies (compare Figure 3.22). The majority (90 %) of the cases belong to the three CATH

topologies 3.20.20 (TIM Barrel, 53 %), 3.40.50 (Rossmann fold, 21 %), and 1.25.40 (Serine

Threonine Protein Phosphatase 5, 16 %). The 113 cases were classified according to three crite-

ria repetitive, overlapping and fragmented. Repetitive indicates that the same motif was found

97

Chapter 3 Results

multiple times at different positions of the protein chain (compare Figure 3.23). Overlapping

indicates that the positions of the motifs overlap (compare Figure 3.24). Fragmented indicates

that for a bigger motif smaller sub-fragments were detected and interpreted as an individual

motif region (compare Figure 3.25). The classification into these categories was done by manual

inspection.

106 of the 113 cases were repetitive and mainly based on motifs detected between TIM barrel

and the Rossmann fold. Among the four cases that were non-repetitive and non-fragmented was

an in silico designed protein (PDB-ID 4J29_A). As no further data have been provided by the

authors, this protein was discarded. The remaining three cases are listed in Table 3.7 and will

be presented in the following.

Figure 3.22: CATH topologies of putative multi-motif proteins.
90 % of the detected cases belong to the three CATH topologies 3.20.20 (TIM Barrel, 53 %), 3.40.50
(Rossmann fold, 21 %) and 1.25.40 (Serine Threonine Protein Phosphatase 5, 16 %). The histogram
shows absolute counts of the different topologies.

98

https://www.rcsb.org/structure/4j29

3.4 A Large-Scale Scan for Ancestral Protein Motifs

Figure 3.23: A protein possessing a repetitive motif.
The transcription factor MalT, domain III (PDB-ID 1HZ4_A, gray, transparent) contains three regions
featuring similar motifs, show in green, red, and orange. All three motifs are helix-loop-helix combina-
tions.

Figure 3.24: A protein possessing two overlapping and repetitive motifs.
(a) The sporulation response regulator Spo0F (PDB-ID 1SRR_C, gray, transparent) contains two overlap-
ping motifs shown in green and red. b The motifs share a (βα)2 structure.

99

https://www.rcsb.org/structure/1hz4
https://www.rcsb.org/structure/1srr

Chapter 3 Results

Figure 3.25: Example of fragmented motifs.
For the mandelate dehydrogenase MDH (PDB-ID 1P4C_A, gray, transparent), two regions featuring motifs
were detected whereas on region includes the other, i.e. a smaller motif is part of a bigger motif. For each
detected region a representative fragment is shown in green and red. One motif features a sheet-helix-sheet
structure and the other one a βα2 structure.

Table 3.7: Putative multi-motif proteins.
The first column denotes the PDB-ID of proteins which represent a putative case of multi-motif utilization.
The second column gives the CATH classification of these proteins. The other columns give for each motif
region a list of the PDB-IDs which also feature a manifestation of the motif.

PDB ID CATH Motif region 1 Motif region 2 Motif region 3

2QFC_A 1.25.40.10 5K98_B,1.10.260.40
3EUS_B,1.10.260.40

3D3B_A,1.10.940.10
2RKL_A,1.20.5.420 1OM2_A,1.20.960.10

2XBL_B 3.40.50.10490 2NDP_A,4.10.520.10 1JCN_A,3.20.20.70 -
2YVA_A 3.40.50.10490 2NDP_A,4.10.520.10 1I4N_A,3.20.20.70 -

The transcriptional regulator PlcR (PDB-ID 2QFC_A) contains three distinct and separated mo-

tifs (compare Figure 3.26). This protein belongs to the CATH superfamily Tetratricopeptide

repeat (TPR) domain and all superfamily members share the repetition of TPR motifs. Motif

region 1 and motif region 2 describe a TPR motif. For the first motif region, the TPR-like motif

is found in two DNA-binding proteins (PDB-ID 5K98_B and PDB-ID 3EUS_B), both belonging

to the CATH superfamily of lambda repressor-like DNA-binding domains. The second TPR-like

motif region links PlcR to a transcription related protein (PDB-ID 3D3B_A) and a lipid transport

related protein (PDB-ID 2RKL_A), which belong to the CATH superfamily of NusB-like proteins

and the CATH superfamily of Immunoglobulin FC, subunit C proteins, respectively. In conclu-

100

https://www.rcsb.org/structure/1p4c
https://www.rcsb.org/structure/2qfc
https://www.rcsb.org/structure/5k98
https://www.rcsb.org/structure/3eus
https://www.rcsb.org/structure/3d3b
https://www.rcsb.org/structure/2rkl

3.4 A Large-Scale Scan for Ancestral Protein Motifs

sion, motif region 1 and 2 both feature a TPR-like structure and can be associated with the

same general type of motif. The third motif region links PlcR to a mitochondrial protein (PDB-

ID 1OM2_A), which belongs to the CATH superfamily Mitochondrial outer membrane translocase

complex, subunit Tom20 domain. This motif is structurally distinct from motifs of motif regions

1 and 2, however, as it seems to form an independent and isolated folding unit, it is questionable

whether it shouldn’t be classified as an individual domain, which would turn PlcR into a multi-

domain protein. In this case, the motif would have not been detected as it would not suffice the

definition of a putative ancestral motif.

Figure 3.26: Multiple motifs of the protein PlcR (PDB-ID 2QFC_A).
The manifestations of two repetitive TPR-like motifs are shown in green and orange. The manifestations
of a third, distinct motif are shown in red.

The isomerase GmhA (PDB-ID 2XBL_B) and the initiator-associating protein diaA (PDB-ID

2YVA_A) share 38 % identical residues (EMBOSS Needle, Madeira et al. 2019, Alignment S1).

Both proteins possess a Rossmann fold and belong to the CATH superfamily Glucose-6-phosphate

isomerase like protein. In both cases (Figure 2.27 a and b) a beta-alpha-beta motif is detected,

linking GmhA and diaA to two TIM barrel proteins (PDB-ID 1JCN_A and PDB-ID 1I4N_A,

motif region 2). The TIM barrel proteins belong to the CATH superfamily Aldolase class I. The

second motif in the GmhA and diaA, a alpha-beta motif, links them to a DNA-binding protein

(PDB-ID 2NDP_A) which belongs to the CATH superfamily of IHF-like DNA-binding proteins.

In conclusion, out of the 309 PDB protein chains in the CoMo set, only one (0.3 %) unique case,

represented by two proteins (GmhA and diaA) belonging to the same CATH superfamily, could

101

https://www.rcsb.org/structure/1om2
https://www.rcsb.org/structure/2xbl
https://www.rcsb.org/structure/2yva
https://www.rcsb.org/structure/1jcn
https://www.rcsb.org/structure/1i4n
https://www.rcsb.org/structure/2ndp

Chapter 3 Results

Figure 3.27: Multiple putative motifs in GmhA (PDB-ID 2XBL_B) and diaA (PDB-ID 2YVA_A).
GmhA (a) and diaA (b) share a sequence identity of 38 %. For both proteins the same two motifs were
detected: A beta-alpha-beta motif (green) and an alpha-beta motif (red).

be identified. This finding strongly argues against the frequent reuse of sub-domain sized motifs

evolved since the pre-LUCA era.

102

Chapter 4

Discussion

4.1 Alternative Approaches for the Detection of Ancestral Protein

Motifs

Since Dayhoff and Eck postulated the hypothesis that modern proteins emerged from the re-

combination of smaller reoccurring fragments (Eck and Dayhoff, 1966a,b), different studies have

shown that repetition does indeed play a fundamental role in evolution (Blaber and Lee, 2012;

Broom et al., 2012). It is generally assumed that gene duplication followed by fusion and diver-

sification is a “major force in evolution” (Magadum et al., 2013). For instance the (βα)8 barrel

fold supposedly evolved from the accretion of four quarter-barrel (βα)2 fragments (Richter et al.,

2010) (compare Figure 4.1). Similar cases of a conserved internal symmetry can be observed in

various protein folds (e.g beta propellers, beta barrels, TPR repeat folds, etc.), which further

substantiates Dayhoff and Eck’s hypothesis, that large globular protein domains can emerge

from relatively small protein fragments. Based on this observation the idea of proteins built

from smaller modules was developed. Similar as each element of a mathematical vector space

can be constructed from its basis vectors, the idea of a set of protein modules as the basis of the

protein space emerged.

As more an more individual relationships between ancient folds were reported, in the recent years

the focus in this research field shifted towards a more general comprehensive approach and efforts

were made to identify a basic set of putative ancient protein modules, with the ProVoc set (Alva

103

Chapter 4 Discussion

Figure 4.1: Evolutionary scenario of the (βα)8 barrel fold.
The three-stage model of Richter et al. suggests the formation of the (βα)8 barrel fold from four (βα)2
fragments. In the first step, four quarter barrels form a tetrameter facilitated by the formation of disulfide
bridges. Subsequently gene duplication and fusion leads to a dimer of (βα)4 and finally a monomeric
(βα)8 protein, the ancestor of modern (βα)8 barrel proteins. Figure adapted from Richter et al. (2010).

et al., 2015b) representing one of the most recognized ones. Recently, Ferruz et al. presented a

set of putative natural building blocks collected in their database Fuzzle (Ferruz et al., 2020).

The CoMo set generated by means of FragStatt constitutes a further orthogonal study aimed at

the identification of putative ancestral protein motifs.

4.2 Parameters Affecting The Sensitivity of FragStatt

When designing FragStatt, the main focus was to maximize its sensitivity for the detection of

very weak homologous signals. Former studies aimed at the detection of putative ancestral mo-

tifs relied on the classical HMM based software HHsearch (Alva et al., 2015b, 2010; Farías-Rico

et al., 2014). While being equally sensitive, HHblits is faster compared to HHsearch (Remmert

et al., 2012), which allows to employ the computationally expensive cascading of HHblits runs.

It has been shown that cascading of HMM searches can be used to further increase sensitiv-

104

4.2 Parameters Affecting The Sensitivity of FragStatt

ity (Kaushik et al., 2016). In this manner, the HHblits cascade was implemented. FragStatt

computes two HHblits cascades and combines them into a single graph and searches for paths of

pairwise alignments. By mapping all paths back to the root sequences it is able to combine many

individual pairwise alignments of HHblits. The traceback method implemented in the compo-

nent SWiFD identifies regions on the root proteins which are frequently hit. In this manner,

individually non-significant pairwise HHblits hits can be included in the analysis. False positive

hits, i.e “random hits” will not produce a continuous traceback in the match matrix evaluated

by SWiFD. The dotplot from the case of the ancestral barrel fragment treated in Section 3.3.1

illustrates this property of SWiFD (compare Figure 3.5). This implicit noise filtering allows

to apply very high E-value thresholds (defaults to 1) in the initial HHblits cascade hits. The

identified tracebacks are translated into a pairwise motif consisting of two fragments which is

submitted to a final scoring for structural similarity which helps to further reduced the amount

of false positive motifs.

The mentioned former studies applied a relatively conservative probability threshold for HH-

search. In the case of ProVoc, the authors mentioned that lowering this threshold leads to

additional putative motifs (Alva et al., 2015b). The implicit filtering methods implemented in

FragStatt allow to explore the option of lowering the thresholds. However, the method of cas-

cading HMM searches as implemented in FragStatt comes with a drawback. The links FragStatt

deduces, consist of a cascade of multiple HHblits hits. Each of the hits has an individual HHblits

score, E-value and probability. It is not trivial to evaluate the combined significance for the

complete path. For this, it would be necessary to create a statistical model of the cascading

approach. In the current implementation of FragStatt however, it was decided to solely use

the match count as stored in the match matrix to calculate a cumulative raw score for each

traceback.

The choice of a suitable database for the HHblits cascade is crucial. The computational costs of

the HHblits cascade scale exponentially with an increasing depth of the cascade. For example,

if in the first iteration 500 hits were generated for each of these 500 hits again a HHblits run

is carried out. If each subsequent run produces 500 hits, this means that in the third iteration

250,000 runs need to be carried out. In a fourth iteration 125 million runs would be needed, etc.

105

Chapter 4 Discussion

Depending on the maximum number of children per iteration the possible number of iterations

is reached fairly quickly, i.e. after three or four iterations. Thus it is crucial to reach the

desired point in sequence space within a minimum amount of hops (iterations). This can be

achieved by maximizing the distance each hop travels in sequence space. The average distance

between hops again is a property defined by the HHblits database (compare Figure 4.2). A very

fine grained database shows a small average distance between its elements (HMMs), reducing

oder minimizing the distance the HHblits cascade can travel per hop. Consequently, with such

a database many hops (iterations of the HHblits cascade) will be needed to reach the desired

point it sequence space (i.e reach P2 starting from P1 and vice versa). In this case, the possible

number of iterations can be exceeded and it is not possible to calculate the HHblits cascade

in a reasonable time. On the contrary, choosing a coarse database can have the effect that the

distance in sequence space between the HMMs can not be bridged with a HHblits hit, i.e. HHblits

can not detected a similarity between the HMMs. In this case, it is not possible to make a link

between two proteins P1 and P2 at all. These two examples show that it is vital to choose a

database which has a suitable average distance between its elements. For example it turned out

that the UniClust database (Mirdita et al., 2017) is too fine-grained to be used on a large-scale

with FragStatt. The Pfam database on the other hand has proven to be suitable.

Figure 4.2: Consequences of the choice of the HHblits database.
a A fine-grained HHblits database results in many “short distance hits” leading to long paths. In this
case, a high number of iterations of the HHblits cascade is required. Often this exceeds the available
computation resources. b With a suitable choice of the database, paths from P1 to P2 can be detected
without exceeding the limit for the depth of the HHblits cascade. c A coarse-grained database permits
to travel wide distances in the sequence space with a single hop. However, this can prevent that a path
from P1 to P2 forms, as the required distance to close the path can not be bridged with a single HHblits
hit.

106

4.3 Assessing the Capabilities of FragStatt

4.3 Assessing the Capabilities of FragStatt

When introducing improved algorithms (e.g. MSA algorithms, structural alignment algorithms,

etc.) it is common to assess their performance using an well-proven benchmark dataset. How-

ever, for specifically tailored algorithms like FragStatt there is no universal benchmark dataset

available. It was thus decided to use previously reported motifs as benchmark cases to obtain a

qualitative assessment of FragStatts capabilities. In this manner, it was shown that FragStatt is

able to detect a previously reported ancestral (βα)8 barrel fragment (Farías-Rico et al., 2014) and

correctly identify the ancestral relationship between the (βα)8 barrel fold and the flavodoxin-like

fold. Furthermore in this case FragStatt delivers additional insight: The results indicate that

the examined (βα)8 barrel originates from the repetition of the same (or homologous) (βα)8

fragment. This concords with the evolutionary model of (βα)8 barrels proposed by Richter et

al. (Richter et al., 2010) and the findings from a computational analysis studying the origin of

(βα)8 barrels (Söding et al., 2006).

Moreover, due to its cascading nature, FragStatt delivers additional information in the form of

intermediate nodes. It was shown that the intermediate nodes of the paths detected by FragStatt

concord with the findings of Farías-Rico et al. In general, the information on the intermediate

nodes can be used to gain deeper insights into the relationship of a specific pair of proteins: The

reported intermediate Pfam nodes can be used to identify links to additional superfamilies and

deduced possible evolutionary trajectories.

As a second data basis to evaluate the performance of FragStatt the ProVoc set was considered.

From the 40 ProVoc motifs, 34 (85 %) could be identified by FragStatt. Six motifs could not be

identified, presumably for two reasons: Firstly, Alva et al. exerted additional manual selection

when compiling the ProVoc by evaluating results from clustering HHsearch hits. A possible

manual intervention can not be reproduced by FragStatt. Secondly, the data bases differ, the

MSAs used to determine ProVoc were generated by means of PSI-BLAST. In contrast FragStatt

utilized the Pfam database. It is also notable that the six motifs which could not be detected

by FragStatt seem to be relatively uncommon as in each case these motifs occur in only two

different SCOP folds (Table 3.3). Furthermore, for the Fuzzle database Ferruz et al. reported

107

Chapter 4 Discussion

that they could only identify 37 of the motifs from the ProVoc set (Ferruz et al., 2020). The

methodology of Fuzzle and ProVoc is almost identical except for the usage of different variants

of the SCOP database. This supports the conjecture that a possible manual intervention of Alva

et al. and the varying choice of data basis are the reasons why not all motifs of the ProVoc set

could be detected by FragStatt. In general, the fact that FragStatt can detect 85 % of the ProVoc

motifs, despite using a different data basis, strongly suggests that the motifs identified by two

alternative approaches are shared between different protein folds.

4.4 A comparison of CoMo, ProVoc, and Fuzzle

The ProVoc set and the Fuzzle database are both founded on simple HHsearch hits between SCOP

domains. The CoMo set, however, is based on the HHblits cascade and the CATH database. The

different design choices were made because of the following two reasons: Firstly, as explained in

the previous section, the HHblits cascade can be expected to improve the detection sensitivity.

Secondly, most similar studies relied on the SCOP database. To explore the effect of the selected

structural classification scheme on the detection of putative ancestral protein motifs, it was

decided to use the CATH database in this work. By using an alternative approach, a comparison

of the orthogonal findings allows one to substantiate the reliability of the results.

The motifs of the ProVoc set are spread over 130 different SCOP folds which constitutes ap-

proximately 11 % of the 1,194 considered SCOP folds (Alva et al., 2015b). A slightly higher

fraction can be observed for the CoMo set in respect to the CATH database: The motifs are

spread over 245 of 1,391 (18 %) considered CATH topologies. The low abundance of the motifs

in the ProVoc set conflicts with the proposed hypothesis of universal building blocks. A main

consideration in the design of FragStatt was to allow the inclusion of low probability HHblits hits

to detect more motifs. Although the motifs in the CoMo set seem to be slightly more abundant

than those from the ProVoc set, the utilization of these motifs seems to be far from universal.

Alva et al. mention that their set of motifs, as of conservatively chosen thresholds, constitutes

a lower bound of ancestral motifs. For the CoMo approach it was tried to extend the homology

detection sensitivity. At the same time, however, a slightly more conservative threshold for the

108

4.4 A comparison of CoMo, ProVoc, and Fuzzle

structural similarity was applied: A TM-score > 0.55 for the CoMo set and a TM-score > 0.5

for the ProVoc set. The higher TM-score threshold was chosen as it delivered better results for

the clustering of the motifs. In this regard, the Fuzzle database was created with a relatively

low TM-score threshold of 0.3 in combination with a RMSD threshold of 3 Å. Moreover, no

upper or lower length threshold was used; as a consequence the average motif length in the

Fuzzle database is 64 residues and the motifs cover 519 of 1,221 considered SCOP folds which

equals to a fraction of approximately 43 %. However, the TM-score threshold of 0.3 is close to

the maximum of 0.2 of the null distribution of randomly sampled TM-scores.

Figure 4.3: Histogram of TM-scores.
The plot shows the relative frequencies of TM-scores for the detected motifs, i.e. pairs of fragments (or-
ange), and for scores resulting from the comparison of randomly generated fragments (blue) as presented
in Figure 3.17. For the detected pairs a significantly higher TM-score (mean value of 0.34, orange dotted)
compared to the randomly generated set of pairs (mean value of 0.26, orange dotted) can be observed.
The threshold of 0.3 chosen for the Fuzzle database is indicated with a red dotted line. The thresholds
used for the ProVoc set and the CoMo set are indicated with purple and green dotted lines.

Figure 4.3 shows the TM-score distribution of randomly sampled fragments and the motifs

detected by FragStatt. The TM-score distribution was previously treated in Section 3.4.5. It

is striking that the false positive rate increases drastically when choosing a TM-score threshold

below 0.5. Therefore it can be assumed that the threshold of 0.3 poses a limit of what is a

109

Chapter 4 Discussion

Figure 4.4: Number of folds/topologies per motif in the CoMoClust set and the ProVoc set.
The plot shows the distribution of the number of SCOP folds (ProVoc) or CATH topologies (CoMoClust)
in which a motif could be found. The distribution shows a power law like shape: Less universal motifs
are common and only few motifs occur in many topologies or folds.

reasonable choice for the required lowest structural similarity between the fragments constituting

a motif. At the same time it is remarkable that even with such a low TM-score threshold putative

ancestral motifs were detected in less than half of the SCOP folds. Further the analysis of TM-

score distributions presented in Section 3.4.5 clearly shows that the motifs detected by FragStatt

show a significantly higher TM-score than one would except by chance. This rebuts concerns

that common motifs between different folds may just be a result of mere chance.

A way to evaluate the universality of the detected motifs is to assess the fold/topology distri-

bution of individual motifs, i.e. the number of folds or topologies in which the motifs occur.

These numbers were presented in Table 3.6 for the CoMoClust set and are given in Figure 3.9

for the ProVoc set. Figure 4.4 shows a histogram of these counts. It can be seen that there are

only few motifs which cover many folds or topologies (a maximum of 13 for the CoMoClust set

110

4.4 A comparison of CoMo, ProVoc, and Fuzzle

and 14 for the ProVoc set). The majority of motifs occur in only two, three or four folds or

topologies. Consequently universal motifs seem to be relativity rare. For the Fuzzle database,

Ferruz et al. used a network-based approach instead of classical clustering to group the detected

pairwise motifs. The nodes represent proteins and links represent motifs; 2 % of their most con-

nected nodes possess 80 % of the links. Further, the authors of Fuzzle report that the number

of links per node in their network follows a power-law distribution. This finding concords with

the distributions observed for the ProVoc set and the CoMoClust set.

In conclusion, the CoMo set and the ProVoc set suggest that the detected motifs are not as widely

spread among modern proteins as one would expect. If one was to pick a random structure from

the PDB database, the chance that it includes a proposed ancestral motif of the ProVoc set or

CoMo set is small (the CoMo set includes 2870, and the ProVoc set 239 proteins, while the PDB

contains over 35,000 unique proteins at 30 % sequence identity). The Fuzzle approach shows that

lowering thresholds for structural similarity increases the number of detected motifs. However,

it seems that the occurrence of the majority of motifs still concentrates on a relatively small

set of folds or topologies. This concords with the striking dominance of motifs in the CoMo

set linking the TIM Barrel and the Rossmann fold CATH topology, which constitute nearly a

quarter of all detected motifs (Table S1).

The prevalence of the detected motifs seems to be relatively low which leads to the question of

the compatibility of the motifs amongst each other, i.e. how many cases of multi-motif utilization

can be observed. Alva et al. reported that they could detect multiple cases of repeated use of

the same motif (e.g. repeating TPR motifs). However, they could not observe the utilization of

multiple different motifs in the same protein. For the CoMo set multiple cases of different motifs

occurring in one protein chain could be detected. However, most of these cases were detected

in inherently repetitive protein topologies (e.g TPR like motifs or quarter (βα)8 barrel like

motifs). In the CoMo set only one convincing case of multi-motif utilization could be identified

(compare Figure 3.27). In contrast, for the Fuzzle 1,155 protein domains were reported to contain

multiple motifs. This – compared to the ProVoc set and CoMo set – high number most likely

results from the low structure similarity threshold required for the motifs in the Fuzzle database.

Furthermore, it seems that similar motifs and motifs occurring in inherently repetitive motifs

111

Chapter 4 Discussion

were not filtered out. For example the repeated utilization of TPR like motifs and quarter (βα)8

barrel like motifs, stated as exemplary cases by Ferruz et al., were neither considered multi-motif

cases in this work nor for the ProVoc set.

4.5 Protein Modules as the Building Blocks of Evolution

“Nature is a tinkerer, not an inventor.” With this phrase François Jacob condensates in his

famous 1977 essay (Jacob, 1977) the point that evolution is mainly driven by the reuse of existing

and available ”construction“ material and that the de novo emergence of genetic material is rare.

The results from this work and former studies substantiate the conjecture that at least to some

extent the reuse of small motifs played a role in the origin of protein folds and that the origins

of some folds possibly goes back to the formation of RNA-motif complexes in the RNA world

era (Alva et al., 2015b). However, the relatively low abundance of the motifs in modern proteins

does not provide sufficient evidence to conclude a general modular origin of proteins. This leads

to two opposing hypotheses: On the one hand it could be the case that a large portion of ancient

motifs is not detectable anymore in recent proteins (at least with the available methods), which

would render the currently known motifs a small subset representing the few conserved ones.

On the other hand, if one assumes that the detected motifs represent a large fraction of the

ancient building blocks, the idea of a modular assembly of protein folds is difficult to sustain,

as there is only a very limited number of folds which can be constructed from a combination

of the known motifs (e.g. the long-known cases of (βα)8 barrels or TPR repeat folds). In the

following these hypotheses will be discussed briefly.

The first option, that only a small subset of ancestral motifs is known yet, leads to the question

of how many motifs there could be. For example Alva et al. assume that the number of detected

motifs, will reach one hundred in the next decades (Alva et al., 2015b). However, this contrasts

with the high number of motifs in the Fuzzle database and highlights the inherently different

stringency criteria applied in different approaches. From the perspective of stringency, the CoMo

approach can be located between the Fuzzle and the ProVoc study. This estimation also complies

with the fact that the number of 134 unique motif clusters in the CoMo set is higher than the

112

4.5 Protein Modules as the Building Blocks of Evolution

number of motifs in the ProVoc but lower than the number of motifs in the Fuzzle database.

The varying number of motifs resulting from different approaches reveals a basic problem for the

detection of ancestral protein motifs: There is no agreed upon definition of an ancestral protein

motif. For example there is no consent regarding the required structural similarity or the length

limit of the motifs. The lack of a clear definition makes it difficult to estimate the number of

detectable motifs. However, similar to the estimate of Alva et al. the CoMo approach suggests

a few hundred detectable motifs. Provided that more sensitive motif detection methods exist

in the future, it can only be speculated whether the additional motifs, will cover the rest of the

fold space.

The second option, that most of the existing motifs are already known, leads to the question

of how folds which do not contain any ancestral motifs emerged. As stated before, all three

approaches found motifs in a small or at most moderate number of SCOP folds or CATH topolo-

gies: The fractions were 11 % for the ProVoc set, 18 % for the CoMo set, and 43 % for the

Fuzzle database. However, independently of the approach, an enrichment of folds proposed to

be ancient can be observed in all cases. The authors Caetano et al. proposed a set of the

five most ancient folds based on SCOP (Caetano-Anolles et al., 2009). Mapping them to the

CATH database showed that two of the proposed SCOP folds are subsumed in the Rossmann

fold topology of CATH. In this manner, the four supposedly most ancient CATH topologies are

Rossmann fold, TIM Barrel, Trp Operon Repressor and Alpha-Beta Plaits. In the CoMo set all

four CATH topologies can be observed. Similary, the authors of ProVoc and Fuzzle report an

enrichment of the corresponding SCOP folds, as well. The seemingly low abundance or lack of

putative ancestral motifs for most other folds could be explained if these had evolved after the

most ancient folds, i.e. in the post-RNA world era. A relatively recent study finds that random

sequences yield beneficial effects when expressed in bacteria (Neme et al., 2017). The authors

report that for 25 % of random sequences introduced in E. coli an enriched expression level and

a positive effect on the growth rate could be observed. In this manner, they concluded that

”random sequences are an abundant source of bioactive RNAs or peptides“ (Neme et al., 2017).

If this finding can be substantiated, it would render the possibility of a de novo emergence of

protein folds more likely than currently assumed. In this line of reasoning the lack of ancestral

113

Chapter 4 Discussion

motifs in such folds could be explained.

In conclusion, the results from this work and the other discussed studies support the hypothesis

that some of the most ancient protein folds evolved within the era of the RNA world from smaller

protein motifs. However, there is not sufficient evidence to conclude a similar evolutionary origin

for the complete fold space. It might be the case that only a few ancient folds emerged in the

RNA world, while for younger protein folds from the post-RNA world, another mode of origin

possibly by de novo emergence comes into question.

114

References

Abdelhamid, Y., P. Brear, J. Greenhalgh, X. Chee, T. Rahman, and M. Welch (2019). Evo-
lutionary plasticity in the allosteric regulator-binding site of pyruvate kinase isoform PykA
from Pseudomonas aeruginosa. Journal of Biological Chemistry, 294(42):15505–15516.

Abriata, L. A., G. E. Tamò, and M. Dal Peraro (2019). A further leap of improvement in
tertiary structure prediction in CASP13 prompts new routes for future assessments. Proteins:
Structure, Function, and Bioinformatics, 87(12):1100–1112.

Alexandrov, N. N. and D. Fischer (1996). Analysis of topological and nontopological structural
similarities in the PDB: new examples with old structures. Proteins: Structure, Function,
and Bioinformatics, 25(3):354–365.

Altschul, S. F. and E. V. Koonin (1998). Iterated profile searches with PSI-BLAST–a tool for
discovery in protein databases. Trends in Biochemical Sciences, 23(11):444–447.

Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lip-
man (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Research, 25(17):3389–3402.

Alva, V., M. Remmert, A. Biegert, A. Lupas, and J. Söding (2010). A galaxy of folds. Protein
Science, 19(1):124–130.

Alva, V., J. Söding, and A. N. Lupas (2015a). elife-09410-fig3-data1-v2.docx. Elife, 4:e09410.
https://elifesciences.org/articles/09410#fig3.

Alva, V., J. Söding, and A. N. Lupas (2015b). A vocabulary of ancient peptides at the origin of
folded proteins. Elife, 4:e09410.

Andrade, M. A., C. Perez-Iratxeta, and C. P. Ponting (2001). Protein repeats: structures,
functions, and evolution. Journal of Structural Biology, 134(2-3):117–131.

Berman, H. M., T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng,
G. L. Gilliland, L. Iype, S. Jain, et al. (2002). The protein data bank. Acta Crystallographica
Section D: Biological Crystallography, 58(6):899–907.

Berman, H. M., T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng,
G. L. Gilliland, L. Iype, S. Jain, et al. (2019). PDB FTP server. ftp://ftp.wwpdb.org/pub/
pdb/derived_data/.

115

https://elifesciences.org/articles/09410#fig3
ftp://ftp.wwpdb.org/pub/pdb/derived_data/
ftp://ftp.wwpdb.org/pub/pdb/derived_data/

References

Betts, H. C., M. N. Puttick, J. W. Clark, T. A. Williams, P. C. Donoghue, and D. Pisani (2018).
Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin.
Nature Ecology & Evolution, 2(10):1556–1562.

Blaber, M. and J. Lee (2012). Designing proteins from simple motifs: opportunities in top-down
symmetric deconstruction. Current Opinion in Structural Biology, 22(4):442–450.

Božič, A. L., A. Šiber, and R. Podgornik (2013). Statistical analysis of sizes and shapes of virus
capsids and their resulting elastic properties. Journal of Biological Physics, 39(2):215–228.

Branden, C. I. and J. Tooze (2012). Introduction to protein structure. Garland Science.

Brocchieri, L. and S. Karlin (2005). Protein length in eukaryotic and prokaryotic proteomes.
Nucleic Acids Research, 33(10):3390–3400.

Bronson, J. (2019). bidict: The bidirectional mapping library for Python. https://github.com/
jab/bidict.

Broom, A., A. C. Doxey, Y. D. Lobsanov, L. G. Berthin, D. R. Rose, P. L. Howell, B. J.
McConkey, and E. M. Meiering (2012). Modular evolution and the origins of symmetry:
reconstruction of a three-fold symmetric globular protein. Structure, 20(1):161–171.

Caetano-Anolles, G., M. Wang, D. Caetano-Anollés, and J. E. Mittenthal (2009). The origin,
evolution and structure of the protein world. Biochemical Journal, 417(3):621–637.

Carugo, O. and S. Pongor (2001). A normalized root-mean-spuare distance for comparing protein
three-dimensional structures. Protein Science, 10(7):1470–1473.

CATHTeam (2020). CATH webserver. http://www.cathdb.info/browse/tree.

Chaudhuri, I., J. Söding, and A. N. Lupas (2008). Evolution of the β-propeller fold. Proteins:
Structure, Function, and Bioinformatics, 71(2):795–803.

Chavent, M. (2004). A Hausdorff distance between hyper-rectangles for clustering interval data.
In Classification, Clustering, and Data Mining Applications, Pp. 333–339. Springer.

Chothia, C. (1992). One thousand families for the molecular biologist. Nature, 357(6379):543–
544.

Chothia, C. and J. Gough (2009). Genomic and structural aspects of protein evolution. Bio-
chemical Journal, 419(1):15–28.

Cock, P. J., T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamel-
ryck, F. Kauff, B. Wilczynski, and M. J. de Hoon (2009). Biopython: freely available Python
tools for computational molecular biology and bioinformatics. Bioinformatics, 25(11):1422–3.

116

https://github.com/jab/bidict
https://github.com/jab/bidict
http://www.cathdb.info/browse/tree

References

Coles, M., S. Djuranovic, J. Söding, T. Frickey, K. Koretke, V. Truffault, J. Martin, and A. N.
Lupas (2005). AbrB-like transcription factors assume a swapped hairpin fold that is evolu-
tionarily related to double-psi β barrels. Structure, 13(6):919–928.

Csaba, G., F. Birzele, and R. Zimmer (2009). Systematic comparison of SCOP and CATH: a
new gold standard for protein structure analysis. BMC Structural Biology, 9(1):23.

Darwin, C. (1859). On the Origin of Species. London: John Murray.

Doolittle, W. F. (2000). Uprooting the tree of life. Scientific American, 282(2):90–95.

Eck, R. V. and M. O. Dayhoff (1966a). Atlas of protein sequence and structure. National
Biomedical Research Foundation, Silver Spring.

Eck, R. V. and M. O. Dayhoff (1966b). Evolution of the structure of ferredoxin based on living
relics of primitive amino acid sequences. Science, 152(3720):363–366.

Eddy, S. R. (2020). HMMER. http://hmmer.org.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research, 32(5):1792–7.

El-Gebali, S., J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, M. Qureshi, L. J.
Richardson, G. A. Salazar, A. Smart, et al. (2018). The Pfam protein families database in
2019. Nucleic Acids Research, 47(D1):D427–D432.

EMBL-EBI (2020). What are profile hidden Markov models (HMMs). https:
//ebi.ac.uk/training/online/course/pfam-database-creating-protein-families/what-are-
profile-hidden-markov-models-hmms. License: Attribution-ShareAlike 4.0 International (CC
BY-SA 4.0).

European Bioinformatics Institute (2020). Pfam FTP server. ftp://ftp.ebi.ac.uk/pub/databases/
Pfam.

Facebook (2012–2020). RocksDB: A persistent key-value store for flash and RAM storage.
https://rocksdb.org/.

Farías-Rico, J. A., S. Schmidt, and B. Höcker (2014). Evolutionary relationship of two ancient
protein superfolds. Nature Chemical Biology, 10(9):710–5.

Ferruz, N., F. Lobos, D. Lemm, S. Toledo-Patino, J. A. Farías-Rico, S. Schmidt, and B. Höcker
(2020). Identification and analysis of natural building blocks for evolution-guided fragment-
based Protein Design. Journal of Molecular Biology.

Fetrow, J. S. and A. Godzik (1998). Function driven protein evolution. A possible proto-protein
for the RNA-binding proteins. In Pacific Symposium on Biocomputing, volume 3, Pp. 485–
496.

117

http://hmmer.org
 https://ebi.ac.uk/training/online/course/pfam-database-creating-protein-families/what-are-profile-hi d d e n - m a r kov-models-hmms
 https://ebi.ac.uk/training/online/course/pfam-database-creating-protein-families/what-are-profile-hi d d e n - m a r kov-models-hmms
 https://ebi.ac.uk/training/online/course/pfam-database-creating-protein-families/what-are-profile-hi d d e n - m a r kov-models-hmms
ftp://ftp.ebi.ac.uk/pub/databases/Pfam
ftp://ftp.ebi.ac.uk/pub/databases/Pfam
https://rocksdb.org/

References

Fox, N. K., S. E. Brenner, and J.-M. Chandonia (2014). SCOPe: Structural Classification of
Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures.
Nucleic Acids Research, 42(D1):D304–D309.

Fox, N. K., S. E. Brenner, and J.-M. Chandonia (2020). SCOP web server. https://
scop.berkeley.edu/downloads.

Fu, Z., G. Indrisiunaite, S. Kaledhonkar, B. Shah, M. Sun, B. Chen, R. A. Grassucci, M. Ehren-
berg, and J. Frank (2019). The structural basis for release-factor activation during translation
termination revealed by time-resolved cryogenic electron microscopy. Nature Communications,
10(1):1–7.

Gilbert, W. (1986). Origin of life: The RNA world. Nature, 319(6055):618–618.

Glansdorff, N., Y. Xu, and B. Labedan (2008). The last universal common ancestor: emergence,
constitution and genetic legacy of an elusive forerunner. Biology direct, 3(1):29.

Gulbis, J. M., Z. Kelman, J. Hurwitz, M. O’Donnell, and J. Kuriyan (1996). Structure of the
C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell, 87(2):297–306.

Hall, B. K. (2012). Homology: The hierarchial basis of comparative biology. Academic Press.

Hofmockel, S. (2015). pyrocksdb: Python bindings for RocksDB. https://github.com/stephan-
hof/pyrocksdb.

Holm, L. and C. Sander (1995). Dali: a network tool for protein structure comparison. Trends
in Biochemical Sciences, 20(11):478–480.

Horning, D. P. and G. F. Joyce (2016). Amplification of RNA by an RNA polymerase ribozyme.
Proceedings of the National Academy of Sciences, 113(35):9786–9791.

Huang, P.-S., K. Feldmeier, F. Parmeggiani, D. A. F. Velasco, B. Höcker, and D. Baker (2016).
De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nature
Chemical Biology, 12(1):29.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engi-
neering, 9(3):90–95.

Höcker, B., S. Schmidt, and R. Sterner (2002). A common evolutionary origin of two elementary
enzyme folds. FEBS Letters, 510(3):133–5.

Illergård, K., D. H. Ardell, and A. Elofsson (2009). Structure is three to ten times more conserved
than sequence—a study of structural response in protein cores. Proteins: Structure, Function,
and Bioinformatics, 77(3):499–508.

Jacob, F. (1977). Evolution and tinkering. Science, 196(4295):1161–1166.

Joyce, G. F. (2002). The antiquity of RNA-based evolution. Nature, 418(6894):214–221.

118

https://scop.berkeley.edu/downloads
https://scop.berkeley.edu/downloads
https://github.com/stephan-hof/pyrocksdb
https://github.com/stephan-hof/pyrocksdb

References

Kabsch, W. (1978). A discussion of the solution for the best rotation to relate two sets of vec-
tors. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General
Crystallography, 34(5):827–828.

Katoh, K., K. Misawa, K. Kuma, and T. Miyata (2002). MAFFT: a novel method for rapid multi-
ple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14):3059–
66.

Kaushik, S., A. G. Nair, E. Mutt, H. P. Subramanian, and R. Sowdhamini (2016). Rapid and
enhanced remote homology detection by cascading hidden Markov model searches in sequence
space. Bioinformatics, 32(3):338–344.

Kessel, A. and N. Ben-Tal (2010). Introduction to proteins: Structure, function, and motion.
CRC Press.

Kolodny, R. and N. Linial (2004). Approximate protein structural alignment in polynomial time.
Proceedings of the National Academy of Sciences, 101(33):12201–12206.

Kolodny, R., L. Pereyaslavets, A. O. Samson, and M. Levitt (2013). On the universe of protein
folds. Annual Review of Biophysics, 42:559–582.

Kolodny, R., D. Petrey, and B. Honig (2006). Protein structure comparison: implications for the
nature of ‘fold space’, and structure and function prediction. Current Opinion in Structural
Biology, 16(3):393–398.

Koonin, E. V. (2003). Comparative genomics, minimal gene-sets and the last universal common
ancestor. Nature Reviews Microbiology, 1(2):127–136.

Koonin, E. V. (2005). Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet.,
39:309–338.

Koonin, E. V., Y. I. Wolf, and G. P. Karev (2002). The structure of the protein universe and
genome evolution. Nature, 420(6912):218–223.

Kopec, K. O. and A. N. Lupas (2013). β-Propeller blades as ancestral peptides in protein
evolution. PLoS One, 8(10).

Kuhlman, B., G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, and D. Baker (2003). Design
of a novel globular protein fold with atomic-level accuracy. Science, 302(5649):1364–1368.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, Pp. 707–710.

Levitt, M. and C. Chothia (1976). Structural patterns in globular proteins. Nature,
261(5561):552–558.

119

References

Levitt, M. and M. Gerstein (1998). A unified statistical framework for sequence comparison and
structure comparison. Proceedings of the National Academy of Sciences, 95(11):5913–5920.

Li, W. and A. Godzik (2006). Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics, 22(13):1658–9.

Looger, L. L., M. A. Dwyer, J. J. Smith, and H. W. Hellinga (2003). Computational design of
receptor and sensor proteins with novel functions. Nature, 423(6936):185–190.

Madeira, F., Y. M. Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan, P. Basutkar, A. R.
Tivey, S. C. Potter, R. D. Finn, et al. (2019). The EMBL-EBI search and sequence analysis
tools APIs in 2019. Nucleic Acids Research, 47(W1):W636–W641.

Magadum, S., U. Banerjee, P. Murugan, D. Gangapur, and R. Ravikesavan (2013). Gene dupli-
cation as a major force in evolution. Journal of Genetics, 92(1):155–161.

McKinney, W. (2010). Data structures for statistical computing in Python. In Proceedings of
the 9th Python in Science Conference, S. van der Walt and J. Millman, eds., Pp. 51 – 56.

Meier, M. (2017). hh_reader.py. https://github.com/soedinglab/hh-suite/blob/master/scripts/
hh_reader.py.

Mirdita, M., L. von den Driesch, C. Galiez, M. J. Martin, J. Söding, and M. Steinegger (2017).
Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nu-
cleic Acids Research, 45(D1):D170–D176.

Mitchell, A., H.-Y. Chang, L. Daugherty, M. Fraser, S. Hunter, R. Lopez, C. McAnulla, C. Mc-
Menamin, G. Nuka, S. Pesseat, et al. (2014). The InterPro protein families database: the
classification resource after 15 years. Nucleic Acids Research, 43(D1):D213–D221.

Murzin, A. G., S. E. Brenner, T. Hubbard, and C. Chothia (1995). SCOP: a structural clas-
sification of proteins database for the investigation of sequences and structures. Journal of
Molecular Biology, 247:536–540.

Nagano, N., E. G. Hutchinson, and J. M. Thornton (1999). Barrel structures in proteins: Au-
tomatic identification and classification including a sequence analysis of TIM barrels. Protein
Science, 8(10):2072–84.

Neme, R., C. Amador, B. Yildirim, E. McConnell, and D. Tautz (2017). Random sequences are
an abundant source of bioactive RNAs or peptides. Nature Ecology & Evolution, 1(6):1–7.

Notredame, C., D. G. Higgins, and J. Heringa (2000). T-Coffee: A novel method for fast and
accurate multiple sequence alignment. Journal of Molecular Biology, 302(1):205–17.

Ohno, S. (2013). Evolution by Gene Duplication. Springer Science & Business Media.

120

https://github.com/soedinglab/hh-suite/blob/master/scripts/hh_reader.py
https://github.com/soedinglab/hh-suite/blob/master/scripts/hh_reader.py

References

Opitz, C. A., M. Kulke, M. C. Leake, C. Neagoe, H. Hinssen, R. J. Hajjar, and W. A. Linke
(2003). Damped elastic recoil of the titin spring in myofibrils of human myocardium. Pro-
ceedings of the National Academy of Sciences, 100(22):12688–12693.

Orengo, C., A. Bateman, and V. Uversky (2014). Protein families: Relating protein sequence,
structure, and function, Wiley Series in Protein and Peptide Science. Wiley.

Orengo, C. A., J. E. Bray, D. W. Buchan, A. Harrison, D. Lee, F. M. G. Pearl, I. Sillitoe,
A. E. Todd, and J. M. Thornton (2002). The CATH protein family database: a resource for
structural and functional annotation of genomes. Proteomics, 2:11–21.

Park, J., K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard, and C. Chothia (1998).
Sequence comparisons using multiple sequences detect three times as many remote homologues
as pairwise methods. Journal of Molecular Biology, 284(4):1201–1210.

Pearson, W. R. (2013). An introduction to sequence similarity (“homology”) searching. Current
Protocols in Bioinformatics, 42(1):3–1.

Peixoto, T. P. (2014). The graph-tool python library. figshare.

Pesquita, C. (2017). Semantic similarity in the gene ontology. In The Gene Ontology Handbook,
Pp. 161–173. Humana Press, New York, NY.

Pfam Team (2020). Pfam webserver. https://pfam.xfam.org/.

Remmert, M., A. Biegert, A. Hauser, and J. Söding (2012). HHblits: lightning-fast iterative
protein sequence searching by HMM-HMM alignment. Nature Methods, 9(2):173.

Remmert, M., A. Biegert, D. Linke, A. N. Lupas, and J. Söding (2010). Evolution of outer mem-
brane β-barrels from an ancestral ββ hairpin. Molecular biology and evolution, 27(6):1348–
1358.

Richter, M., M. Bosnali, L. Carstensen, T. Seitz, H. Durchschlag, S. Blanquart, R. Merkl,
and R. Sterner (2010). Computational and experimental evidence for the evolution of a
(αβ)8-barrel protein from an ancestral quarter-barrel stabilised by disulfide bonds. Journal
of Molecular Biology, 398(5):763–773.

Russell, A. (2001). On the evolution of protein folds: are similar motifs in different protein
folds the result of convergence, insertion, or relics of an ancient peptide world? Journal of
Structural Biology, 134:191–203.

Schrödinger, LLC (2019). The PyMOL Molecular Graphics System.

SCOPTeam (2020). SCOP webserver statistics. http://scop.mrc-lmb.cam.ac.uk/stats.

121

https://pfam.xfam.org/
http://scop.mrc-lmb.cam.ac.uk/stats

References

Shafee, T. (2016). Summary of protein structure (primary, secondary, tertiary, and
quaternary) using the example of PCNA. https://commons.wikimedia.org/wiki/File:
Ortholog_paralog_analog_(homologs).svg. License: Attribution 4.0 International (CC BY
4.0).

Shafee, T. (2018). Ancestral gene duplication. https://en.wikipedia.org/wiki/File:
Protein_structure_(full).png. License: Attribution-ShareAlike 4.0 International (CC BY-SA
4.0).

Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker (2003). Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Research, 13(11):2498–504.

Shindyalov, I. N. and P. E. Bourne (1998). Protein structure alignment by incremental combi-
natorial extension (CE) of the optimal path. Protein Engineering, 11(9):739–747.

Shindyalov, I. N. and P. E. Bourne (2000). An alternative view of protein fold space. Proteins:
Structure, Function, and Bioinformatics, 38(3):247–260.

Siew, N., A. Elofsson, L. Rychlewski, and D. Fischer (2000). MaxSub: an automated measure
for the assessment of protein structure prediction quality. Bioinformatics, 16(9):776–785.

Skolnick, J., A. K. Arakaki, S. Y. Lee, and M. Brylinski (2009). The continuity of protein
structure space is an intrinsic property of proteins. Proceedings of the National Academy of
Sciences, 106(37):15690–15695.

Smith, T. F., M. S. Waterman, et al. (1981). Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197.

Söding, J., M. Remmert, and A. Biegert (2006). HHrep: de novo protein repeat detection and
the origin of TIM barrels. Nucleic Acids Research, 34(suppl_2):W137–W142.

Steinegger, M., M. Meier, M. Mirdita, H. Voehringer, S. J. Haunsberger, and J. Soeding (2019a).
HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinfor-
matics, 473.

Steinegger, M., M. Meier, M. Mirdita, H. Voehringer, S. J. Haunsberger, and J. Soeding (2019b).
HHsuite: pre-built databases. http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/
hhsuite_dbs/.

Student (1908). The probable error of a mean. Biometrika, Pp. 1–25.

Söding, J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics,
21(7):951–60.

Söding, J. and A. N. Lupas (2003). More than the sum of their parts: on the evolution of
proteins from peptides. Bioessays, 25(9):837–46.

122

https://commons.wikimedia.org/wiki/File:Ortholog_paralog_analog_(homologs).svg
https://commons.wikimedia.org/wiki/File:Ortholog_paralog_analog_(homologs).svg
https://en.wikipedia.org/wiki/File:Protein_structure_(full).png
https://en.wikipedia.org/wiki/File:Protein_structure_(full).png
http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/
http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/

References

Theobald, D. L. (2010). A formal test of the theory of universal common ancestry. Nature,
465(7295):219–222.

UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids
Research, 47(D1):D506–D515.

UniProtConsortium (2020). UniRef UniProt release 2020_01. https://www.uniprot.org/
statistics/UniRef.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, and Reddy (2020). SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nature Methods, 17:261–272.

Waterhouse, A. M., J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton (2009). Jalview
Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics,
25(9):1189–91.

Webb, E. C. (1992). Enzyme nomenclature 1992. Recommendations of the nomenclature com-
mittee of the International Union of Biochemistry and Molecular Biology on the nomenclature
and classification of enzymes, volume 6. San Diego: Academic Press.

Weichenberger, C. X., A. Palermo, P. P. Pramstaller, and F. S. Domingues (2017). Exploring
approaches for detecting protein functional similarity within an Orthology-based framework.
Scientific Reports, 7(1):1–15.

Weiss, M. C., F. L. Sousa, N. Mrnjavac, S. Neukirchen, M. Roettger, S. Nelson-Sathi, and W. F.
Martin (2016). The physiology and habitat of the last universal common ancestor. Nature
Microbiology, 1(9):1–8.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in Statistics,
Pp. 196–202. Springer.

Woese, C. (1998). The universal ancestor. Proceedings of the National Academy of Sciences,
95(12):6854–6859.

Xu, J. and Y. Zhang (2010). How significant is a protein structure similarity with TM-score=
0.5? Bioinformatics, 26(7):889–895.

Zaher, H. S. and P. J. Unrau (2007). Selection of an improved RNA polymerase ribozyme with
superior extension and fidelity. RNA, 13(7):1017–1026.

Zemla, A. (2003). LGA: a method for finding 3D similarities in protein structures. Nucleic Acids
Research, 31(13):3370–3374.

Zhang, Y. and J. Skolnick (2004). Scoring function for automated assessment of protein structure
template quality. Proteins, 57(4):702–10.

123

https://www.uniprot.org/statistics/UniRef
https://www.uniprot.org/statistics/UniRef

References

Zhang, Y. and J. Skolnick (2005). TM-align: a protein structure alignment algorithm based on
the TM-score. Nucleic Acids Research, 33(7):2302–9.

124

Acknowledgement

First and foremost, I would like to thank my supervisor Prof. Dr. Rainer Merkl for his constant
support and guidance throughout this thesis and all other research projects I was involved in
during the course of my doctorate. Without his excellent scientific advice, encouraging words,
and his ingenuous way of problem solving, this work would not have been possible.

I am also very grateful to Prof. Dr. Reinhard Sterner for his mentorship during this thesis and
the excellent advice he provided on biochemistry related questions.

I would like to thank Prof. Dr. Wolfram Gronwald for beeing part of the examination committee
and reviewing this thesis.

Also, I am grateful to Prof. Dr. Jens Meiler for the valuable scientific advice he gave me as a
mentor in the context of the Regensburg International Graduate School of Life Sciences.

Financing by the SFB960 is gratefully acknowledged.

My special thanks go to Julian Nazet and Dr. Kristina Heyn. It has been a pleasure to share an
office with such companionable, clever, and fun colleagues. I’m very grateful for all the helpful
scientific discussions with them and the advice they provided in all kinds of situations.

My heartfelt thanks goes to all current and former members of the Merkl and Sterner groups.
It has been a privilege to be a part of such a competent, collegial, friendly and endearing
group. Special thanks go to Florian Semmelmann and Thomas Kinateder for countless inspiring,
encouraging, and enjoyable discussions during coffee breaks in the last years. Also, I’d like to
thank my former office colleagues Dr. Patrick Löffler and Dr. Maximilian Plach for their help
and advice, and the warm welcome they gave me when I joined the group.

Finally, my deep and sincere gratitude goes to my family. I’d like to thank my sisters, my
brother and especially my mother for their constant encouragement and support they gave me.

125

Supplementary Material

Table S1: Number of hits detected by FragStatt in respect of CATH topologies.

Topo 1 Name 1 Topo 2 Name 2 Count Fraction (%)

3.20.20 TIM Barrel 3.40.50 Rossmann fold 2986 23.8
1.20.960 Mitochondrial Import Receptor Subun... 1.25.40 Serine Threonine Protein Phosphatas... 353 2.8
2.30.30 SH3 type barrels. 2.40.50 OB fold (Dihydrolipoamide Acetyltra... 274 2.2
3.30.70 Alpha-Beta Plaits 1.10.10 Arc Repressor Mutant, subunit A 271 2.2
1.20.5 Single alpha-helices involved in co... 1.25.40 Serine Threonine Protein Phosphatas... 262 2.1
1.25.40 Serine Threonine Protein Phosphatas... 1.20.120 Four Helix Bundle (Hemerythrin (Met... 252 2.0
1.10.150 DNA polymerase; domain 1 3.40.50 Rossmann fold 251 2.0
2.40.10 Thrombin, subunit H 1.10.10 Arc Repressor Mutant, subunit A 224 1.8
4.10.520 HU Protein; Chain A 1.10.10 Arc Repressor Mutant, subunit A 215 1.7
1.25.40 Serine Threonine Protein Phosphatas... 1.10.3450 Hyaluronidase domain-like 211 1.7
1.25.40 Serine Threonine Protein Phosphatas... 1.10.10 Arc Repressor Mutant, subunit A 187 1.5
3.20.20 TIM Barrel 3.40.980 Molybdenum Cofactor Biosythetic Enz... 161 1.3
1.10.760 Cytochrome Bc1 Complex; Chain D, do... 3.40.50 Rossmann fold 147 1.2
2.70.230 Glycoprotein D; Chain: A; 2.60.40 Immunoglobulin-like 138 1.1
2.130.10 Methylamine Dehydrogenase; Chain H 2.40.10 Thrombin, subunit H 135 1.1
1.10.3910 SP0561-like 3.40.50 Rossmann fold 123 1.0
1.20.5 Single alpha-helices involved in co... 3.90.20 Hemagglutinin Ectodomain; Chain B 122 1.0
2.130.10 Methylamine Dehydrogenase; Chain H 2.40.128 Lipocalin 118 0.9
1.20.58 Methane Monooxygenase Hydroxylase; ... 1.10.287 Helix Hairpins 117 0.9
4.10.280 MYOD Basic-Helix-Loop-Helix Domain,... 1.20.5 Single alpha-helices involved in co... 106 0.8
1.10.10 Arc Repressor Mutant, subunit A 3.40.1570 Heme iron utilization protein-like ... 105 0.8
1.10.10 Arc Repressor Mutant, subunit A 3.40.50 Rossmann fold 99 0.8
1.10.10 Arc Repressor Mutant, subunit A 3.30.160 Double Stranded RNA Binding Domain 95 0.8
1.10.10 Arc Repressor Mutant, subunit A 1.20.225 Bacteriocin As-48; Chain A 94 0.8
2.60.120 Jelly Rolls 1.10.10 Arc Repressor Mutant, subunit A 92 0.7
1.10.10 Arc Repressor Mutant, subunit A 3.30.240 CRO Repressor 89 0.7
3.30.70 Alpha-Beta Plaits 3.20.20 TIM Barrel 83 0.7
1.10.10 Arc Repressor Mutant, subunit A 3.40.190 D-Maltodextrin-Binding Protein; dom... 80 0.6
3.80.30 pyruvate-formate lyase- activating ... 3.20.20 TIM Barrel 77 0.6
1.20.58 Methane Monooxygenase Hydroxylase; ... 1.10.10 Arc Repressor Mutant, subunit A 69 0.6
1.20.5 Single alpha-helices involved in co... 3.10.100 Mannose-Binding Protein A; Chain A 68 0.5
3.30.429 Macrophage Migration Inhibitory Fac... 1.10.10 Arc Repressor Mutant, subunit A 67 0.5
1.25.40 Serine Threonine Protein Phosphatas... 2.30.30 SH3 type barrels. 66 0.5
1.20.1280 Monooxygenase 1.10.10 Arc Repressor Mutant, subunit A 65 0.5
1.10.760 Cytochrome Bc1 Complex; Chain D, do... 3.10.450 Nuclear Transport Factor 2; Chain: ... 65 0.5
3.30.40 Herpes Virus-1 2.10.110 Cysteine Rich Protein 63 0.5
1.10.620 Ribonucleotide Reductase, subunit A 1.20.1260 Ferritin 62 0.5
1.20.58 Methane Monooxygenase Hydroxylase; ... 1.25.40 Serine Threonine Protein Phosphatas... 62 0.5
1.10.357 Tetracycline Repressor; domain 2 3.10.350 Membrane-bound Lytic Murein Transgl... 57 0.5
1.25.40 Serine Threonine Protein Phosphatas... 1.10.940 N-utilizing Substance Protein B Hom... 57 0.5
1.25.40 Serine Threonine Protein Phosphatas... 3.30.2320 hypothetical protein PF0899 fold 56 0.4
1.20.1260 Ferritin 1.10.357 Tetracycline Repressor; domain 2 56 0.4
1.10.10 Arc Repressor Mutant, subunit A 3.10.180 2,3-Dihydroxybiphenyl 1,2-Dioxygena... 55 0.4
1.20.190 Delta-Endotoxin; domain 1 1.25.40 Serine Threonine Protein Phosphatas... 51 0.4
1.10.437 Apoptosis Regulator Bcl-x 1.25.10 Leucine-rich Repeat Variant 50 0.4
1.10.260 434 Repressor (Amino-terminal Domai... 3.10.350 Membrane-bound Lytic Murein Transgl... 50 0.4
2.40.160 Porin 3.30.1300 Pantoate–beta-alanine Ligase; Chai... 50 0.4
1.10.260 434 Repressor (Amino-terminal Domai... 3.40.1570 Heme iron utilization protein-like ... 47 0.4
1.10.10 Arc Repressor Mutant, subunit A 1.20.120 Four Helix Bundle (Hemerythrin (Met... 46 0.4
1.20.930 Transcription Elongation Factor S-I... 1.25.10 Leucine-rich Repeat Variant 46 0.4
1.20.5 Single alpha-helices involved in co... 3.40.50 Rossmann fold 45 0.4
3.10.580 CBS-domain 3.90.1280 CBS domain Like 45 0.4
2.40.10 Thrombin, subunit H 2.120.10 Neuraminidase 44 0.4
3.10.450 Nuclear Transport Factor 2; Chain: ... 1.10.238 Recoverin; domain 1 44 0.4
1.10.10 Arc Repressor Mutant, subunit A 3.10.350 Membrane-bound Lytic Murein Transgl... 42 0.3
1.20.5 Single alpha-helices involved in co... 4.10.220 Light-harvesting Protein 41 0.3
1.10.1220 Arc Repressor Mutant 3.10.20 Ubiquitin-like (UB roll) 41 0.3

127

References

2.30.29 PH-domain like 3.30.70 Alpha-Beta Plaits 37 0.3
1.10.10 Arc Repressor Mutant, subunit A 3.20.20 TIM Barrel 35 0.3
3.90.20 Hemagglutinin Ectodomain; Chain B 3.40.30 Glutaredoxin 35 0.3
3.10.20 Ubiquitin-like (UB roll) 2.40.128 Lipocalin 34 0.3
1.10.20 Histone, subunit A 3.30.70 Alpha-Beta Plaits 32 0.3
1.10.260 434 Repressor (Amino-terminal Domai... 3.30.240 CRO Repressor 32 0.3
1.25.40 Serine Threonine Protein Phosphatas... 1.10.287 Helix Hairpins 31 0.2
1.20.5 Single alpha-helices involved in co... 4.10.860 DNA Excision Repair, Uvrb; Chain A 30 0.2
2.40.10 Thrombin, subunit H 1.10.357 Tetracycline Repressor; domain 2 30 0.2
4.10.520 HU Protein; Chain A 3.30.429 Macrophage Migration Inhibitory Fac... 30 0.2
1.20.1440 de novo design (two linked rop prot... 1.25.10 Leucine-rich Repeat Variant 30 0.2
3.90.550 Spore Coat Polysaccharide Biosynthe... 3.40.50 Rossmann fold 29 0.2
1.25.40 Serine Threonine Protein Phosphatas... 2.40.128 Lipocalin 29 0.2
1.10.260 434 Repressor (Amino-terminal Domai... 1.25.40 Serine Threonine Protein Phosphatas... 29 0.2
3.40.50 Rossmann fold 3.80.10 Leucine-rich repeat, LRR (right-han... 29 0.2
1.20.58 Methane Monooxygenase Hydroxylase; ... 1.10.3060 Helical scaffold and wing domains o... 29 0.2
4.10.520 HU Protein; Chain A 1.10.1220 Arc Repressor Mutant 28 0.2
1.10.260 434 Repressor (Amino-terminal Domai... 1.20.58 Methane Monooxygenase Hydroxylase; ... 28 0.2
1.10.260 434 Repressor (Amino-terminal Domai... 2.40.10 Thrombin, subunit H 28 0.2
3.20.20 TIM Barrel 3.30.1710 top7, de novo designed protein 28 0.2
3.90.226 2-enoyl-CoA Hydratase; Chain A, dom... 3.40.50 Rossmann fold 28 0.2
2.20.25 N-terminal domain of TfIIb 2.130.10 Methylamine Dehydrogenase; Chain H 28 0.2
4.10.520 HU Protein; Chain A 1.10.8 Helicase, Ruva Protein; domain 3 28 0.2
2.30.30 SH3 type barrels. 2.80.10 Trefoil (Acidic Fibroblast Growth F... 27 0.2
1.10.8 Helicase, Ruva Protein; domain 3 1.20.120 Four Helix Bundle (Hemerythrin (Met... 27 0.2
1.20.5 Single alpha-helices involved in co... 4.10.260 G Protein Gi Gamma 2 27 0.2
3.30.2310 YaeB-like fold 2.40.128 Lipocalin 26 0.2
3.90.70 Cathepsin B; Chain A 2.40.50 OB fold (Dihydrolipoamide Acetyltra... 25 0.2
1.10.260 434 Repressor (Amino-terminal Domai... 3.10.180 2,3-Dihydroxybiphenyl 1,2-Dioxygena... 25 0.2
3.40.525 Phosphatidylinositol Transfer Prote... 1.10.8 Helicase, Ruva Protein; domain 3 25 0.2
1.20.1440 de novo design (two linked rop prot... 1.10.10 Arc Repressor Mutant, subunit A 24 0.2
4.10.520 HU Protein; Chain A 3.40.50 Rossmann fold 24 0.2
3.30.429 Macrophage Migration Inhibitory Fac... 3.10.20 Ubiquitin-like (UB roll) 24 0.2
2.60.120 Jelly Rolls 2.40.128 Lipocalin 23 0.2
3.20.20 TIM Barrel 3.40.1380 Pyruvate Kinase; Chain: A, domain 1 23 0.2
2.120.10 Neuraminidase 2.40.128 Lipocalin 23 0.2
1.10.357 Tetracycline Repressor; domain 2 3.30.240 CRO Repressor 22 0.2
1.10.287 Helix Hairpins 1.20.120 Four Helix Bundle (Hemerythrin (Met... 22 0.2
1.10.1220 Arc Repressor Mutant 3.30.1660 Dodecin subunit-like 21 0.2
1.20.5 Single alpha-helices involved in co... 3.30.1310 Ybab; Chain: A; 21 0.2
1.10.150 DNA polymerase; domain 1 1.25.40 Serine Threonine Protein Phosphatas... 21 0.2
1.10.1220 Arc Repressor Mutant 3.30.2310 YaeB-like fold 21 0.2
1.10.3210 Hypothetical protein af1432 1.25.40 Serine Threonine Protein Phosphatas... 21 0.2
1.20.58 Methane Monooxygenase Hydroxylase; ... 1.10.3450 Hyaluronidase domain-like 21 0.2
3.30.70 Alpha-Beta Plaits 3.10.20 Ubiquitin-like (UB roll) 20 0.2
1.10.357 Tetracycline Repressor; domain 2 3.40.1570 Heme iron utilization protein-like ... 19 0.2
1.10.720 Transcription Termination Factor Rh... 3.40.30 Glutaredoxin 19 0.2
3.30.1300 Pantoate–beta-alanine Ligase; Chai... 2.40.128 Lipocalin 18 0.1
3.90.1820 LDH C-terminal domain-like 3.40.50 Rossmann fold 18 0.1
3.90.20 Hemagglutinin Ectodomain; Chain B 1.10.287 Helix Hairpins 17 0.1
1.20.1270 Substrate Binding Domain Of Dnak; C... 1.10.287 Helix Hairpins 17 0.1
3.20.20 TIM Barrel 3.90.226 2-enoyl-CoA Hydratase; Chain A, dom... 17 0.1
3.30.1490 Dna Ligase; domain 1 1.10.238 Recoverin; domain 1 16 0.1
4.10.520 HU Protein; Chain A 1.10.238 Recoverin; domain 1 16 0.1
1.10.760 Cytochrome Bc1 Complex; Chain D, do... 1.20.120 Four Helix Bundle (Hemerythrin (Met... 16 0.1
2.130.10 Methylamine Dehydrogenase; Chain H 1.20.5 Single alpha-helices involved in co... 15 0.1
1.10.1660 Multidrug-efflux Transporter Regula... 3.10.350 Membrane-bound Lytic Murein Transgl... 15 0.1
2.40.30 Elongation Factor Tu (Ef-tu); domai... 2.30.30 SH3 type barrels. 15 0.1
2.70.70 Glucose Permease (Domain IIA) 2.40.50 OB fold (Dihydrolipoamide Acetyltra... 15 0.1
2.30.29 PH-domain like 1.20.5 Single alpha-helices involved in co... 15 0.1
2.40.128 Lipocalin 3.40.190 D-Maltodextrin-Binding Protein; dom... 15 0.1
1.20.5 Single alpha-helices involved in co... 3.30.429 Macrophage Migration Inhibitory Fac... 14 0.1
4.10.520 HU Protein; Chain A 3.30.70 Alpha-Beta Plaits 14 0.1
4.10.280 MYOD Basic-Helix-Loop-Helix Domain,... 1.10.287 Helix Hairpins 14 0.1
1.10.1220 Arc Repressor Mutant 2.40.128 Lipocalin 14 0.1
1.10.1220 Arc Repressor Mutant 3.90.1520 H-NOX domain 14 0.1
1.20.5 Single alpha-helices involved in co... 3.30.910 Protein Binding, DinI Protein; Chai... 14 0.1
3.30.70 Alpha-Beta Plaits 2.40.128 Lipocalin 14 0.1
1.25.40 Serine Threonine Protein Phosphatas... 1.10.375 Human Immunodeficiency Virus Type 1... 14 0.1
4.10.520 HU Protein; Chain A 1.10.760 Cytochrome Bc1 Complex; Chain D, do... 14 0.1
3.30.1330 60s Ribosomal Protein L30; Chain: A... 2.40.128 Lipocalin 13 0.1
1.10.1660 Multidrug-efflux Transporter Regula... 3.30.240 CRO Repressor 13 0.1
3.40.980 Molybdenum Cofactor Biosythetic Enz... 3.90.226 2-enoyl-CoA Hydratase; Chain A, dom... 13 0.1
1.10.260 434 Repressor (Amino-terminal Domai... 2.60.120 Jelly Rolls 13 0.1
3.10.450 Nuclear Transport Factor 2; Chain: ... 3.30.1660 Dodecin subunit-like 13 0.1
1.20.58 Methane Monooxygenase Hydroxylase; ... 3.90.20 Hemagglutinin Ectodomain; Chain B 13 0.1

128

References

4.10.520 HU Protein; Chain A 1.10.287 Helix Hairpins 12 0.1
3.10.580 CBS-domain 3.40.50 Rossmann fold 12 0.1
2.60.200 Tumour Suppressor Smad4 3.10.20 Ubiquitin-like (UB roll) 12 0.1
3.20.20 TIM Barrel 2.40.128 Lipocalin 12 0.1
3.90.20 Hemagglutinin Ectodomain; Chain B 1.20.120 Four Helix Bundle (Hemerythrin (Met... 12 0.1
1.10.20 Histone, subunit A 3.30.2310 YaeB-like fold 12 0.1
1.10.1660 Multidrug-efflux Transporter Regula... 3.10.180 2,3-Dihydroxybiphenyl 1,2-Dioxygena... 12 0.1
1.10.10 Arc Repressor Mutant, subunit A 2.40.128 Lipocalin 12 0.1
1.10.3910 SP0561-like 3.40.630 Aminopeptidase 12 0.1
1.20.1260 Ferritin 1.10.287 Helix Hairpins 12 0.1
2.40.128 Lipocalin 1.10.238 Recoverin; domain 1 11 0.1
4.10.520 HU Protein; Chain A 2.40.128 Lipocalin 11 0.1
2.20.25 N-terminal domain of TfIIb 2.120.10 Neuraminidase 11 0.1
1.10.238 Recoverin; domain 1 3.40.50 Rossmann fold 11 0.1
1.10.620 Ribonucleotide Reductase, subunit A 1.20.910 Heme Oxygenase; Chain A 11 0.1
2.40.128 Lipocalin 3.40.30 Glutaredoxin 11 0.1
3.10.580 CBS-domain 3.20.20 TIM Barrel 11 0.1
2.40.10 Thrombin, subunit H 2.140.10 Methanol Dehydrogenase; Chain A 11 0.1
1.10.760 Cytochrome Bc1 Complex; Chain D, do... 3.30.1740 first zn-finger domain of poly(adp-... 11 0.1
3.20.20 TIM Barrel 3.40.30 Glutaredoxin 11 0.1
1.10.10 Arc Repressor Mutant, subunit A 3.10.290 Structural Genomics Hypothetical 15... 11 0.1
1.10.357 Tetracycline Repressor; domain 2 3.10.180 2,3-Dihydroxybiphenyl 1,2-Dioxygena... 10 0.1
3.30.1660 Dodecin subunit-like 2.40.128 Lipocalin 10 0.1
1.10.287 Helix Hairpins 4.10.860 DNA Excision Repair, Uvrb; Chain A 10 0.1
3.90.20 Hemagglutinin Ectodomain; Chain B 3.40.50 Rossmann fold 10 0.1
1.10.760 Cytochrome Bc1 Complex; Chain D, do... 3.40.1350 Trna Endonuclease; Chain: A, domain... 10 0.1
3.40.1530 hypothetical protein tt1805 1.10.10 Arc Repressor Mutant, subunit A 10 0.1

#=======================================
#
Length: 203
Identity: 77/203 (37.9%)
Similarity: 118/203 (58.1%)
Gaps: 12/203 (5.9%)
Score: 352.0
#
#=======================================

2YVA_A 1 -MQERIKACFTESI-QTQIAAAEALPD-----AISRAAMTLVQSLLNGNK 43
|:.|.....|.|| :.|...|..|.| .:.:.|...:.|:..|.|

2XBL_B 1 SMENRELTYITNSIAEAQRVMAAMLADERLLATVRKVADACIASIAQGGK 50

2YVA_A 44 ILCCGNGTSAANAQHFAASMINRFETERPSLPAIALNTDNVVLTAIANDR 93
:|..|||.|||:|||.|...::||..:||.|||:||.||..:||||.||.

2XBL_B 51 VLLAGNGGSAADAQHIAGEFVSRFAFDRPGLPAVALTTDTSILTAIGNDY 100

2YVA_A 94 LHDEVYAKQVRALGHAGDVLLAISTRGNSRDIVKAVEAAVTRDMTIVALT 143
.:::::::||:|||:.||||:..||.|.|.:|:.|...|..:.||.|..|

2XBL_B 101 GYEKLFSRQVQALGNEGDVLIGYSTSGKSPNILAAFREAKAKGMTCVGFT 150

2YVA_A 144 GYDGGELAGLLGPQDVEIRIPSHRSARIQEMHMLTVNCLCDLIDNTLFPH 193
|..|||:..|. |:.:.:||..:.:|||.|::..:.:|.|:::::|..

2XBL_B 151 GNRGGEMRELC---DLLLEVPSADTPKIQEGHLVLGHIVCGLVEHSIFGK 197

2YVA_A 194 QDD 196
|

2XBL_B 198 Q-- 198

Alignment S1: Alignment of PDB-ID 2XBL_B and PDB-ID 2YVA_A.
Alignment generated using EMBOSS Needle (Madeira et al., 2019)

129

References

Figure S1: A survey of motifs shared between CATH topologies.
The nodes represent CATH topologies, which are connected by an edge, if FragStatt detected shared
common motifs between members of the topologies. The width of the edges represents the number of
detected motifs. Exact values can be found in Table S1.

130

	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	The Origin of Life
	Homology
	Protein Sequence, Structure, and Function
	Hierarchy of protein architecture
	The protein domain as a folding unit
	Protein folds

	Measuring Similarity of Proteins
	Sequence similarity
	Pairwise sequence alignments
	Multiple sequence alignments
	HMMs

	Structure similarity
	RMSD
	TM-score and TM-align

	Classification of Proteins
	Sequence-based classification
	Structure-based classification

	Aim and Scope of this Work

	Materials and Methods
	Databases
	FragStatt
	GraphCreator
	Pathfinder
	Pathanalyzer
	SWiFD

	Testing and Benchmarking FragStatt
	Detecting a previously reported ancestral barrel fragment
	Reevaluation of a set of putative ancestral motifs

	Large-scale Scan for Ancestral Protein Motifs
	Data acquisition and preparation
	All-vs-all based on CATH

	Evaluation of Motifs
	Filtering of the hits
	Hit count statistics
	Generation of CATH classification networks
	Evaluation of length distribution
	Generation of random fragments
	Evaluation of TM-score distribution

	Clustering
	Additional redundancy removal
	All vs. all TM-align

	Search for Multi-Motif Proteins

	Results
	FragStatt: An Algorithm to Detect Putative Ancestral Protein Motifs
	Working Principle and Implementation of FragStatt
	Testing and Benchmarking FragStatt
	Assessing FragStatt in identifying an ancestral barrel fragment
	Assessing FragStatt in detecting putative ancient motifs

	A Large-Scale Scan for Ancestral Protein Motifs
	Data basis and basic strategy
	Defining a set of candidate hits
	CoMo motifs are spread unevenly amongst CATH
	Length distribution of the CoMo motifs
	Structure similarity of the CoMo motifs
	Clustering the CoMo set to identify unique motifs
	Identifying proteins possessing more than one motif

	Discussion
	Alternative Approaches for the Detection of Ancestral Protein Motifs
	Parameters Affecting The Sensitivity of FragStatt
	Assessing the Capabilities of FragStatt
	A comparison of CoMo, ProVoc, and Fuzzle
	Protein Modules as the Building Blocks of Evolution

	References
	Acknowledgement

