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2-HPP 2-hydroxypropiophenone  

AcOH acetic acid 

AF amyloid fibrils 

APCI atmospheric pressure 

chemical ionization  

aq. aqueous 

ASP aspartic Acid 

BFD benzoylformate 
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dTGS deuterated triglycine sulfate 
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equiv equivalents 

ESI electrospray ionization  

Et ethyl 

EtOAc ethyl acetate 

FTIR fourier-transform infrared 
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IR infrared 
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Me methyl 
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Mp melting point 
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NMR nuclear magnetic 

resonance 

NST trans-β-nitrostyrene 
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1 Introduction‡ 

 

With around 7.79 billion human beings on our planet, living in 193 sovereign states and 

practicing dozens of different religions, one can definitely say: every individual is unique and 

different from each other. Certainly, there is one particular thing we, as humans, all have in 

common which was sung by the Bee Gees in 1977: “Stayin’ Alive”. Once a human being is 

born the main goal is to stay alive. To achieve this, the supply of oxygen, water and 

nourishment needs to be ensured. The latter developed mainly by the food industry and food 

processing, making groceries accessible from all around the world. 

The consumers choices are predominantly affected by two factors, safety and quality of food 

products. The quality can easily be determined by smell, color, flavor, texture and their 

nutritional values. However, the determination of food contaminations is more complicated 

since they are not detectable with the naked eye. When conventional food preservation and 

sterilization methods (thermal processing) are used to denature proteins and inactivate 

enzymes and microorganisms, several undesired changes in the food’s quality are often 

inevitable. A novel non-thermal food processing method is the treatment with high pressures 

up to 1000 MPa being applicable to both liquid and solid goods, with or without their packaging. 

It is a valuable germ-destroying method without any loss of quality and therefore without 

altering the nature of the food.[2] 

 

High pressure, or hydrostatic pressure, finds its applications not only in industrial processes 

but also in academic research in the fields of chemistry and physics. Chemical reactions do 

not occur spontaneously, in most cases, activation energy is required for the reaction to 

proceed with reasonable reaction rates. Going back to the 1950´s only a few laboratories all 

around the world were able to do proper high pressure research in organic chemistry. In these 

times, the misapprehension that high pressure experiments were exceptionally intricate to 

examine led to the dispartment of this research topic as an outstanding discipline in science, 

only accessible for the well-versed. However, these circumstances have drastically changed 

in the recent years. Equipment for high pressure experiments is now more affordable and more 

readily available than before. Additionally, due to technical innovations, conducting and 

carrying out these experiments became less challenging rendering high pressure a prominent 

method of activation.[3] 

 

The direct observation of hydrostatic pressure effects on (bio)organic molecules by spectros-

copic methods such as IR or NMR is still labor and equipment intensive and finds quickly its 

 
‡This chapter is partially based on T. Weinbender, M. Hofmann, O. Reiser, Biophys. Chem. 2019, 106280.[1] 
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limitation by the spectroscopically transparent materials available for a given solvent to carry 

out such measurements. On the other hand, many functional biomolecules such as enzymes 

display catalytic activity to promote organic reactions. Along these lines, various classes of 

small organic molecules have been identified that display catalytic activity related to enzymes, 

thus, such compounds might be considered as enzyme models. Given their much simpler 

structure, such entities, coined as organocatalysts, are readily available and moreover, the 

understanding of their mode of action is greatly simplified. Thus, evaluating reactivity (kinetics) 

and selectivity (chemo- and stereoselectivity) of enzymes and organocatalysts might provide 

an indirect approach to deduce the effect of pressure on such molecules and might be 

especially meaningful given that the catalytic process takes place in the active center 

of the enzyme. 

Moreover, a given reaction catalyzed by an enzyme or an organocatalyst might benefit from 

applying pressure, being a mild and non-destructive activation mode, thus enabling significant 

rate accelerations and the possibility of suppressing the formation of side products. Generally, 

acceleration of reactions by pressure is only possible if the volume of activation ΔV‡, being 

defined as the difference of the volume of the transition state V‡ and the volume of the 

corresponding reactants VA-B (Scheme 1) possesses a negative value.[4–6] Responsible for the 

negative volume of activation is the packing coefficient η, which is defined as the ratio of the 

van der Waals volume Vw (intrinsic molar volume) to the partial molar volume V. Given that the 

packing coefficient η of cyclic entities is larger than of the corresponding acyclic entities, the 

negative activation volume ΔV‡ of reactions proceeding through cyclic transition states such 

as pericyclic reactions can be rationalized.[7]
 

 

Scheme 1. Definition of the volume of activation and the Diels-Alder-reaction of butadiene and ethylene 
as a model reaction. 

 

Addition reactions, best established for cycloadditions such as the Diels-Alder reaction, 

generally fulfill this criterion (Table 1), and many examples demonstrate the beneficial effect of 
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pressure for these processes. The especially large negative ΔV‡ values that are found for 

Baylis-Hillman reactions illustrate the effect of electrostriction on the activation volume of a 

reaction: The occurrence of ionic intermediates causes an ordering of the components in 

solution based on charge attraction, thus resulting in a decrease of volume. In contrast, the 

formation of radicals by homolytic bond cleavage goes along with a positive ΔV‡ value, 

conveniently rationalized by the increasing number of molecules in the rate determining step. 

Table 1. Estimated range of ΔV‡ of selected reactions. 

Reaction Estimated range for ΔV‡ (cm3 mol-1) 

Diels-Alder[5] -20 to -40 

Baylis-Hillman[8] -40 to -50 

Menshutkin[9] -10 to -30 

[2+2] Cycloaddition[10] -10 to -30 

Michael-like[11] -5 to -40 

Homolysis[9] 0 to +15 

Activation Volumes for selected reaction classes of organic compounds[12] 

 

Since many organic reactions proceed with high selectivity being possible through a defined 

arrangement of substrates, changes of selectivity might reflect geometrical perturbations of the 

active center of a catalyst, e.g. of an enzyme, by pressure. Thus, analyzing the pressure 

dependence on selectivity, especially on stereoselectivity such as dia- and enantioselectivity, 

might be a sensitive tool to directly identify geometrical changes in the transition state. In turn, 

an increase of the rate of a reaction might serve as an indication for pressure to shift a 

conformational equilibrium towards an assembly with higher packing coefficients. 

Hereinafter, the development of high hydrostatic pressure in organic chemistry, aiming to 

deduce effects of pressure on bio(organo)molecules by analyzing their catalytic performance 

with respect to reaction rates and selectivities, is highlighted. Four different classes of catalysts 

are presented: (a) Enzymes, representing the catalysts of Nature, (b) amino acids and 

peptides, representing key building blocks of life, (c) primary amines and cinchona alkaloids, 

found in plants and, (d) thiourea derivatives, known as inhibitors of enzymes (Scheme 2). 
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Scheme 2. (A) General reaction mode of a catalytic triad of enzymes (black), (B) activation mode of 
amino acids and peptides via iminium/enamine intermediates, (C) activation mode of thioureas though 
hydrogen bonding with the substrate. 

 

Uncatalyzed reactions at high pressure – Diels-Alder and aldol reactions 

The preference for compact or more ordered transition states under pressure being reflected 

by larger packing coefficients became apparent in early studies on Diels-Alder reactions. 

Dauben and coworkers demonstrated that pressure not only affects the rate, but also the 

course of such a reaction in that the formation of products arising through open chain, i.e. less 

compact transition states, are suppressed. The pressure induced reaction of isophorone 

dienamines 1 with methyl acrylate (2a) or acrylonitrile (2b) exclusively gave the Diels-Alder 

adduct 3 (Scheme 3), while under heating only products 4 and 5 arising from enamine addition 

to the Michael acceptors 2 are observed.[13] 
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Scheme 3. Reaction of isophorone dienamine 1 with methyl acrylate (2a) and acrylonitrile (2b). 

 

Several years later Bellassoued et al. investigated the uncatalyzed Mukaiyama aldol reaction 

of trimethylsilyl ketene acetals 6 and benzaldehyde under ambient and high pressure 

conditions[14] (Table 2). 

 

Table 2. Condensation reaction of unsaturated silyl ketene acetal 6 with benzaldehyde. 

 

Entry Conditions γ-adduct 7 α-adduct 8 Yield 

1 200 MPa, 3 d 88 12 41% 

2 500 MPa, 6 d 83 17 57% 

3 1200 MPa, 3 d 35 65 51% 

4 1700 MPa, 3 d 25 75 68% 

 

Under „low pressure“ conditions (200 – 500 MPa) the γ-adduct 7 was predominantly formed, 

whereas the application of high pressure (1200 – 1700 MPa) favored the formation of the 

corresponding α-adduct 8. This preference for the latter under high pressure might be a 

consequence of a more compact six-membered Zimmermann-Traxler transition state 9 
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(Figure 1), while the formation of the conjugated, thus thermodynamically more favored 7, 

proceeds via a less dense, presumably open chain transition state.[14]  

 

 

Figure 1. Transition state 9 towards the α-adduct and γ-adduct. 

 

This preference for the latter under high pressure might be a consequence of a more compact 

six-membered Zimmermann-Traxler transition state 9 (Figure 1), while the formation of the 

conjugated, thus thermodynamically more favored 7, proceeds via a less dense, presumably 

open chain transition state.[14]  

 

Amino acids and peptides 

In 2000, List et al. and MacMillan et al. impressively demonstrated that small organic molecules 

can efficiently catalyze asymmetric reactions, rivaling the performance of enzymes.[15,16] For 

example, asymmetric aldol reactions can be catalyzed by L-proline acting as a micro-aldolase 

mimic.[15] Subsequently, Hayashi and coworkers investigated such reactions catalyzed by 

L-proline under pressure, e.g. the three-component List-Barbas-Mannich reaction.[17] 

It was shown that high pressure decreases the enantioselectivity but considerably enhances 

the reaction rate (Table 3).  
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Table 3. The three-component List-Barbas-Mannich reaction of p-nitrobenzaldehyde (11), p-anisidine 
(12) and acetone (10) under different conditions. 

 

Entry Pressure Temperature Yield e. r. 

1 0.1 MPa 23 °C 20% 95:5 

2 0.1 MPa -20 °C 5% 99:1 

3 200 MPa -20 °C 58% 95.5:4.5 

 

Here, the Mannich reaction follows again a compact Zimmerman-Traxler type transition state, 

in which the sterically less hindered but also less compact (E)-imine explains the sense of 

optical induction in the products. A key feature of the transition state is the hydrogen bond 

between the carboxylic acid and the imine, necessary for the activation of the latter towards 

nucleophilic attack. The increased rate being observed under pressure might be an indication 

of a more efficient formation of that bond. While conceivable, promoting an uncatalyzed 

pathway through pressure (control experiments without L-proline at high pressure were not 

reported) which could also explain the loss of selectivity, seems to be less likely given this way 

no hydrogen bond induced activation of the imine would take place. The loss of selectivity at 

high pressures could be explained by the partial formation of the more compact (Z)-imine, 

which would then give the other enantiomer, following the corresponding Zimmerman-Traxler 

transition state[18] (Figure 2). 
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Figure 2. Zimmermann-Traxler transition state with (E)-and (Z)-imine. 

 

Kotsuki et al. studied the organocatalyzed asymmetric Diels-Alder reaction between furan (14) 

and acrolein (15) under high pressure.[19] 
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Table 4. The Diels-Alder reaction of furan (14) and acrolein (15) under different pressures 
(HQ = hydroquinone). 

 

Entry Catalyst Pressure Yield 
e.r. 

16:17 ratio 
16 17 

1 18 200 MPa 5% 55.4:45.5 60.5:39.5 56:44 

2 18 400 MPa 33% 51.5:48.5 51:49 51:49 

3 19 200 MPa 22% 52:48 63:37 48:52 

4 19 400 MPa 33% 56.5:43.5 57:43 41:59 

5 19 800 MPa 45% 55:45 53:47 44:56 

 

Although furans as dienes for Diels-Alder reactions show low reactivity due to their aromaticity, 

it was possible to obtain products with reasonable yields, while only traces of product were 

formed at ambient pressure in all cases. An increase of the reaction rate was observed along 

with a decrease of enantioselectivity at high pressures, although the effect was small. Ratio of 

endo/exo was by and large unaffected by pressure[19] (Table 4). 

The increased reaction rate at high pressure is attributed to the iminium ion intermediate, since 

bond formation and ionization both have negative values for the volume of activation ΔV‡.[19] 

The drop of selectivity could be explained by pressure induced spatial rearrangement of 

substrate and catalyst-iminium species. At lower pressures the si-face is predominantly 

exposed to cycloaddition in the endo transition state, presumably representing the match 

between catalyst and substrate by minimizing steric interactions. With increasing pressure the 

sterically more hindered but also more compact transition state favoring the re-face is 

accessed for cycloaddition, thus resulting in a decrease of the enantiomeric excess (Figure 3). 
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Figure 3. Si- and re-face cycloaddition of furan (14) and the iminium intermediate formed from acrolein 
with L-proline. 

 

While the examples discussed so far made use of organocatalysts that had little degree of 

conformational freedom and thus there was little opportunity to observe pressure induced 

changes in selectivity, the situation is different in enzymes, given the many rotatable bonds 

present. Small peptides, i.e. short segments of amino acid monomers connected by amide 

bonds, that are able to catalyze organic reactions might serve as models for enzymes. 

Wennemers and coworkers demonstrated that tripeptides can show remarkable activity in 

conjugate additions and aldol reactions.[20,21,22] The impact of spatial proximity of functional 

groups to make a thriving catalysis was demonstrated in these studies, calling for the close 

positioning of the amino group at the N-terminus (NH) and the carboxylic acid (CO2H) group 

at the C-terminus to each other.[20,22,23] Based on this work Reiser et al. implemented rigid cis-

β-aminocyclopropane carboxylic acids (β-ACC, )[24] as the central unit into tripeptide 

catalysts, to limit the number of possible conformations to a compact, presumably catalytically 

active one, in which the C- and N-terminus would be close together, and to an extended, 

presumably inactive one (Figure 4).[25] 

H-Pro--Pro-OH (20) catalyzed aldol reactions at ambient pressure in up to 91% ee[25], 

however, for a comparative study to deduce pressure effects, the aldol reaction between 

acetone (10) and p-nitrobenzaldehyde (24) was chosen, which proceeded in 69% ee. An NMR 

study suggested that the extended trans-conformation trans-20 is in a 3:1 equilibrium with 
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cis-20, the latter bringing the C- and N-terminus in close proximity and thus deemed to be 

decisive for allowing the aldol reaction to proceed.  

 

 

Figure 4. The two major conformers cis/trans (1:3) of H-Pro--Pro-OH (20). 

 

Upon applying pressure (Table 5, entries 1, 2), a six-fold rate acceleration was observed. Since 

the enantioselectivity remained at the same level[26], this rate acceleration can not be a 

consequence of a pressure induced uncatalyzed background reaction. We therefore reason 

that the more compact cis-conformation becomes populated to a larger extend under pressure, 

being necessary for the catalytic turnover of the reaction. 

 

Table 5. Aldol reaction catalyzed by tripeptides with varying ring size. 

 

Entry Catalyst [XX] Conditions Yield e.r. 

1 (-)- 20 0.1 MPa, 24 h 68% 85:15 

2 (-)- 20 480 MPa, 4 h 73% 84:16 

3 (-)- 21 0.1 MPa, 24 h 45% 74:26 

4 (-)- 21 500 MPa, 7 h 66% 71:29 

5 (-)- 22 0.1 MPa, 24 h 82% 66:34 

6 (-)- 22 460 MPa, 6 h 57% 71:29 

7 (-)- 23 0.1 MPa, 24 h 71% 57:43 

8 (-)- 23 480 MPa, 7 h 65% 61:39 

 

Corroboration comes from NMR-studies with H-Pro--Pro-OH (20) up to 200 MPa. The amide 

NH-signal region H-Pro--Pro-OH (20) (Figure 5) clearly indicated the vanishing of one 
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conformer upon applying pressure, although a definite structural assignment was not possible 

yet.  

 

Figure 5. 1H-NMR spectral region of the amide signal of H-Pro--Pro-OH (20) at different pressures. 

 

Extending incrementally the ring size of the central β-amino acid from three to six in the 

tripeptides (Figure 6) allowed gradually a greater degree of freedom due to the different 

conformations possible in the larger rings, which includes different conformations in which the 

C- and N-terminus are in close enough proximity to catalyze the aldol reaction. Following this 

rational, not unexpectedly a drop in the e.r. values was observed, but now for the first time 

slight increases of the e.r. values were observed upon applying pressure (Table 5, entries 5-8). 

Apparently, in these cases the number of conformations is reduced by shifting their equilibrium 

towards the most compact one, which results in an increased level of enantioselectivity.[27] 

 

 

Figure 6. Different tripeptides containing cyclic β-amino acids of various ring sizes. 

 

200 MPa 

30 MPa 
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Enzymes 

The vast majority of enzymes are proteins. Although many proteins suffer from denaturation 

and thus losing their functionality when exposed to high pressure, approximately two dozen of 

enzymes have been so far discovered that show improved activity under such conditions.[28] 

Lipases itself often exhibit remarkable properties in terms of thermal stability, enantioselectivity 

and solvent-resistance and are, therefore, widely employed in industrial processes. 

Eisenmenger and Reyes-De-Corcuera were able to show that thermal stability along with 

increased activity might be further increased under high hydrostatic pressure.[29] 

 

 

Scheme 4. Lipase catalyzed esterification of acetic acid (26) with isoamyl alcohol (27) to isoamyl acetate 
(28). 

 

The question emerged whether this observation can be attributed to high pressure induced 

perturbances in the enzyme, e.g. to conformational changes along with a change in the 

reaction mechanisms, or to alterations of substrate and/or solvent packing, therefore having 

influence on the enzyme structure.[29] The catalytic triad is a set of three synergistically working 

amino acids found in the active site of the enzyme, and herein, the Ser-His-Asp/Glu triad is a 

well-studied catalytic motif in lipases. Taking the esterification of acetic acid (26) with isoamyl 

alcohol (27) as a representative example (Scheme 4), the reaction is initiated by the attack of 

a Ser-residue to 26 to form a tetrahedral intermediate A (Scheme 5). An acyl-enzyme complex 

B is subsequently formed by loss of a water molecule. B is attacked by alcohol 27 to form 

tetrahedral intermediate C, followed by release of ester 28 with concurrent regeneration of the 

lipase. The tetrahedral intermediates are stabilized by hydrogen bonds of the protein backbone 

amides with the transient oxyanion (Scheme 5).[30] This highly ordered assembly could be 

favored by pressure, which would account for the observed activity enhancement. 
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Scheme 5. The mechanism of lipase-catalyzed esterification of acetic acid (26) and isoamyl alcohol 
(27). 

 

However, besides a direct rate acceleration based on a pressure favored transition state 

different factors must also be taken into account. Exposure of the immobilized lipase at ambient 

and high pressure (Scheme 4) in the absence of substrate revealed that pressure protects the 

enzyme to be irreversibly inactivated, i.e. no inactivation of the lipase after 4 h at 80 °C and 

400 MPa was observed, while at ambient pressure under otherwise unchanged conditions a 

drop in activity by 60% was observed (Table 6). 

 

Table 6. Thermal inactivation of lipase after 4 h at 80 °C at different pressures. 

Temperature Pressure Residual activity 

80 °C 
0.1 MPa 40% 

400 MPa 99% 

 

In line with this observation, it was found that the initial lipase activity increases only slightly at 

ambient pressure, while at 350 MPa the activity is more than twice as high upon moving from 

40 to 80 °C (Table 7). 
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Table 7. Influence of pressure and temperature on the activity of immobilized lipase catalyzing the 

esterification of acetic acid (26) and isoamyl alcohol (27) in hexane at 40 °C and 80 °C. 

Temperature gradient Pressure Activity increased by 

40 to 80 °C (ΔT = 40 °C) 
0.1 MPa 110% 

350 MPa 240% 

 

Calculations of activation energies Ea from the rate constant of the reaction (Scheme 4) at 

different pressures did not show significant differences, pointing to similar and pressure 

independent transition states. While the volume of activation ΔV‡ was positive and did not 

significantly change upon variation of the temperature (range 40 to 80 °C between 300 and 

500 MPa; approx. +15 cm3 mol-1), the volume of activation was found to be negative between 

ambient pressure and 200 MPa, suggesting again that a more ordered conformation goes 

along with an enhanced activity.[29] The same authors reported even more pronounced 

pressure effects when the unimmobilized enzyme was investigated in an ionic liquid – alcohol 

biphasic system (1-butyl-3-methylimidazolium hexafluorophosphate, isoamyl alcohol) instead 

of hexane.[29] A rate acceleration of the free lipase by a factor of 14 to 15 was observed upon 

applying a pressure of 500 MPa (Table 8). 

 

Table 8. Influence of pressure and temperature on the rate of free lipase catalyzing the esterification of 
acetic acid (26) and isoamyl alcohol (27) in an ionic liquid. 

Temperature Pressure gradient Rate acceleration 

40 °C 0.1 to 500 MPa 
(ΔP = 499.9 MPa) 

15-fold 

80 °C 14-fold 

 

Again, based on the observed rate constant of the reaction, the activation energy was 

calculated to be by and large unaffected by pressure. The activation volume ΔV‡ however was 

determined to be significantly negative in value (0.1 MPa to 500 MPa) (40 °C: -16 cm3 mol‑1; 

80 °C: -17 cm3 mol-1).[31] 

Winter and coworkers examined the dependence of the catalytic activity of de novo designed 

amyloid fibrils Ac-LHLHLRL-CONH2 (AF1) and Ac-IHIHIQI-CONH2 (AF2). Exposing these to 

pressures up to 200 MPa led to an enhancement of the esterase activity for the hydrolysis of 

p‑nitrophenyl acetate (29, pNPA) (Scheme 6), being reflected by a negative volume of 

activation (approx. –14 cm3 mol-1).[32] 
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Scheme 6. Hydrolysis of pNPA (29) catalyzed by amyloid fibrils. 

 

Investigating the enzyme activity in a pressure range from 0.1 to 200 MPa, the reaction rate 

for both AF1 and AF2 was increased 3.5-fold at all temperatures (22 – 38 °C) and substrate 

concentrations (0.2 – 0.8 mM) in comparison to the ambient pressure reaction.[32] 

Beside esterifications and hydrolyses also biocatalyzed C-C bond formations are growing in 

importance. Benzoylformate decarboxylase (BFD) is a homotetrameric thiamine diphosphate 

(ThDP)-dependent enzyme, important for the mandelate catabolism.[33] 

 

 

Scheme 7. Carboligation of benzaldehyde (31) and acetaldehyde (32) catalyzed by BFD. 

 

Liese et al. showed the carboligation of benzaldehyde (31) and acetaldehyde (32) catalyzed 

by three different BFD species (BFD F464I, BFD A460I and the hybrid BFD A460I-F464I) to 

form 2-hydroxypropiophenone (2-HPP, 33, Scheme 7). Reactions were run at different 

pressures in the range of 50 MPa to 290 MPa. Besides the reaction rate, the enantioselectivity 

in favor of (R)-2-HPP significantly increased with pressure. The hybrid species BFD 

A460I-F464I performed especially well at high pressure (271 MPa), providing a (R)-2-HPP to 

(S)-2-HPP ratio of 9:1 compared to 3.9:1 at 50 MPa.[33]  

Since the BFD-mediated carboligation reaction shows an enamine-carbanion species and 

other ionic intermediates, it is conceivable that reaction rates are increased under high 

pressure due to charge attraction, resulting in a decrease of volume (Scheme 8). The pressure-

induced increase in enantioselectivity is not fully rationalized yet. Non-enzymatic background 

reactions and self-racemization of the product could be excluded by appropriate control 

experiments. Further experiments towards the changes in the active site or in the 

hydrophobicity and substrate binding are ongoing in the authors laboratory.[33] 
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Scheme 8. BFD-mediated carboligation mechanism. 

 

Cinchona alkaloids 

Seminal contributions to organocatalysis with primary amines and cinchona alkaloids under 

high pressure were made by Kwiatkowski and coworkers. They investigated different reaction 

types like asymmetric Michael additions[34], Friedel-Crafts alkylations[35] and 

hydroxyalkylations[36], demonstrating that pressure is especially beneficial to overcome steric 

crowding in such transformations. For example, the 1,4-conjugate addition of nitroalkanes to 

prochiral β,β-disubstituted enones 34 proceeded in excellent yields to γ-nitroketones 36 

bearing a quaternary center (Table 9), while under ambient pressure conditions only low yields 

(1 – 9%) were obtained. 
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Table 9. The 1,4-conjugate addition of nitromethane to β,β-disubstituted enone (34a) under pressure. 

 

Entry Pressure Yield e.r. 

1 0.1 MPa <2% 99:1 

2 1000 MPa 80% 99:1 

 

Remarkably, the enantioselectivity kept at a high level (98 ± 1% ee) within the whole pressure 

range up to 1000 MPa (Figure 7). The reaction of 34a with MeNO2 is a bimolecular reaction 

which is assumed to be favored by pressure. Furthermore, ionic species are involved in this 

reaction so that a contraction of the overall volume by electrostriction can be expected during 

the course of reaction. 

 

Figure 7. Enantiomeric excess of 36a in dependence of pressure. 

 

A similar trend was observed for the high pressure induced organocatalytic Friedel-Crafts 

alkylation of indole (38) with α,β-unsaturated ketones 37, the latter process providing 

derivatives 39 (Table 10).[35] 
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Table 10. Pressure effect on the Friedel-Crafts alkylation of indole (38). 

 

Entry Pressure Yield e.r. 

1 0.1 MPa 6% 91:9 

2 1000 MPa 95% 92:8 

 

In contrast to the Michael addition of MeNO2 to 34a (Table 9), the enantioselectivity was slightly 

but consistently altered by pressure. The highest value for enantioselectivity was observed at 

600 MPa, pressures below and above that point resulted in a reduction (Figure 8). A possible 

explanation for this observation could be an influence on the E/Z-ratio of the iminium salt 

formed, which would expose opposite enantiotopic faces of the reacting C-C-π-bond to the 

incoming nucleophile, however, further investigations are necessary to understand the 

underlying mechanisms. 

 

Figure 8. Enantiomeric excess of 39a in dependence of pressure. 

 

The observed rate acceleration under pressure should be a result of the formation of the ionic 

iminium salt (Scheme 9), which should therefor result in a negative volume of activation due 

to electrostriction. 
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Scheme 9. Iminium transition state of amines and aldehydes/ketones. 

 

Thiourea derivatives 

In 2009, seven years after Schreiner et al.[37] introduced the first widely applicable thiourea 

catalyst 42, Kotsuki and coworkers investigated the influence of pressure in hetero-Diels-Alder 

reaction with carbonyl derivatives 41.[38] In difference to the activation of carbonyl compounds 

by iminium ion formation discussed in the previous chapter with cinchona alkaloids, the 

activation mode for carbonyl compounds with thiourea derivatives proceeds through hydrogen 

bonding.[38] 

The observed rate acceleration as a consequence of high hydrostatic pressure can be 

rationalized with the negative volume of activation for the hetero-Diels-Alder reaction that is 

generally observed. While only traces of product 43 were obtained at ambient pressure 

conditions, yields up to 91% were obtained at 1000 MPa (Table 11).[38] However, the fact that 

the reaction hardly proceeds in the absence of the thiourea catalyst even at 1000 MPa clearly 

indicates that no pressure accelerated, uncatalyzed background reaction takes place but 

rather that the catalyst is involved in the transition state. The d.r. of 43 was increased in the 

range of 400 – 800 MPa from 3.6:1 to 4.9:1 but experienced a decrease at 1000 MPa to 3.4:1. 

The assignment of the diastereomers was not done by the authors, but it seems plausible to 

assume that the transition state in which the sterically less compact but electronically preferred 

positioning of the smaller ester group in the endo position (43a) is competing at higher 

pressures with the more compact transition state placing the larger phenyl group endo (43b). 
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Table 11. Diels-Alder reaction of 1-methoxybutadiene (40) and methyl 2-oxo-2-phenylacetate (41) under 
different high pressure conditions. 

 

Entry Conditions Yield (d.r.) 

1 0.1 MPa, 72 h trace 

2 400 MPa, 72 h 58% (3.6:1) 

3 800 MPa, 72 h 82% (4.9:1) 

4 1000 MPa, 10 h 91% (3.4:1) 

5[a] 1000 MPa, 10 h 8% (1:2.1) 

[a]: no catalyst was used. 

 

Besides Diels-Alder reactions, asymmetric conjugate additions of stabilized nucleophiles to 

α,β-unsaturated carbonyl systems were also investigated utilizing a combination of thiourea 

catalysis and high-pressure. This way, sterically highly congested cyclohexenones could be 

synthesized in high yield and stereoselectivity[39], contrasting the sluggish reaction that is 

observed at ambient pressure (Table 12). 
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Table 12. Thiourea 46 catalyzed asymmetric desymmetrization of 4,4-disubstituted cyclohexadienone 
44 under high pressure. 

 

Entry 44:45 Conditions Yield dr (47/48) 
ee [%] 
(47/48) 

1[a] 1:1.5 0.1 MPa, 108 h 11% 9.0:1 92/82 

2[a] 1:1.5 800 MPa, 24 h 22% 7.3:1 94/86 

3[b] 1:1.5 800 MPa, 48 h 54% 6.7:1 88/82 

4[b] 3:1 800 MPa, 48 h 82% 5.2:1 92/86 

[a] Catalyst loading 10 mol%. [b] Catalyst loading 30 mol%. 

 

The diastereoselectivity, being most likely a consequence of substrate control, was decreased 

upon applying pressure, indicating that transition state leading to the sterically more congested 

product, i.e. placing phenyl and malonate on the same side of the cyclohexane ring, is 

populated to a larger extend. In contrast, the enantioselectivity of the reaction appears to be 

by and large unaffected by applying pressure, suggesting that the preferred catalyst-substrate 

interaction which dictates the selection between the two enantiotopic faces of the 

cyclohexadienone substrate is already compact.[39] Again, it is important to note that pressure 

does not deter the catalyst-substrate interaction or induces a non-catalyzed reaction pathway, 

which would have led to an erosion of enantioselectivity. 

The effect of hydrostatic pressure on organic transformations such as Diels-Alder reactions 

(as an example for a pericyclic reaction), Aldol and Mannich reactions, esterifications and 

hydrolyses, bimolecular reactions catalyzed by bio- and organocatalysts were described in the 

latter. The main activation modes of small molecules through the catalysts occur through 

hydrogen bonding or formation of covalently linked intermediates. All of the mentioned organic 

reactions benefit from high pressure with respect to rate acceleration. Especially a negative 

value for the volume of activation ΔV‡, which is attributed to the different packing coefficients 

of cyclic and acyclic compounds, electrostriction of ionic intermediates, or steric hindrance is 

responsible for rate accelerations. In contrast, only little changes in stereoselectivity are 
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observed when moving from ambient to high pressure. A rational for these observations might 

be that the catalyzed reactions already occur through compact assemblies of substrate-

catalyst species. Moreover, the chiral information of an organo- or biocatalyst is defined within 

a network of covalent bonds. This is different to metal asymmetric catalyzed processes, in 

which ligand exchange at the metal with solvent, generally accelerated by pressure[40], can 

lead to different, catalytically active but non stereoselective metal species.[41] Thus, an 

increased reaction rate along with unchanged selectivity might serve as evidence for pressure 

to shift a conformational equilibrium towards the more compact catalyst-substrate transition 

state which needs to be populated in any case for the catalyzed pathway to proceed. 
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2 Aim of the Work 

 

In the present work, the effect of high hydrostatic pressure on hydrogen bond acceptor-donor 

complexes was investigated. Firstly, thiourea-organocatalyzed Michael additions of diethyl 

malonate to various heteroaromatic nitroolefins have been studied under high-pressure 

conditions (up to 800 MPa), being conducive to enhanced product yields, high reaction rates, 

and high enantioselectivity. Elucidating the effects of solvents for maximizing reaction rates 

and yields has been carried out using the Perturbed-Chain Polar Statistical Associating Fluid 

Theory (PCP-SAFT), allowing for the first time a prediction of the kinetic profiles under high-

hydrostatic-pressure conditions. The PCP-SAFT modeling and all in-silico screenings were 

envisioned by Prof. Sadowski and co-workers at the TU Dortmund in the Laboratory of 

Thermodynamics. In addition, NMR- and IR-studies were conducted to examine the influence 

of high pressure on the hydrogen bond properties of acceptor-donor complexes as well as on 

intramolecular hydrogen bonds in different amides. 
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3 Main Part 

3.1 High-Pressure-mediated Thiourea-Organocatalyzed Asymmetric Michael 

Addition to (Hetero)Aromatic Nitroolefins‡ 

 

Michael addition reactions are an extremely powerful and convenient tool to build up molecular 

complexity by forming C-C bonds. This reaction, firstly discovered by Arthur Michael in 1887[43], 

describes the nucleophilic addition to an α,β-unsaturated carbonyl compound. In his initial 

study, Michael was able to obtain cyclopropane derivative 53, the same product which was 

described and published by Conrad & Guthzeit in 1884.[44] When dibromo ester 49 was 

replaced by olefin 51 it became apparent during the course of the reaction that, prior to the 

cyclopropane formation, an addition of diethyl sodiomalonate (50) to the double bond of 51 

must proceed (Scheme 10). 

 

 

Scheme 10. Cyclopropane synthesis by Conrad & Guthzeit vs. Michael. 

 

To prove his hypothesis, Michael conducted the reaction of cinnamic acid and diethyl 

malonate. With his successful reaction the figurehead of the Michael addition or 1,4-conjugate 

addition was born (Scheme 11). The launch of the Michael addition was the beginning of a 

powerful tool to form C-C bonds and henceforth different variants, as well as asymmetric ones, 

were developed. 

 

Scheme 11. Diethyl malonate (45) addition to cinnamic acid (54). 

 
‡This chapter is partially based on T. Weinbender, M. Knierbein, L. Bittorf, C. Held, R. Siewert, S. P. Verevkin, G. 
Sadowski, O. Reiser, ChemPlusChem 2020.[42] 
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Nowadays, Michael additions, especially the addition of 1,3-dicarbonyl compounds to 

nitroolefins, are well-explored transformations, as the resulting nitroalkanes can be easily 

transformed into a broad variety of synthetically useful building blocks harboring a wide 

assortment of functional groups[45] such as hydrogen[46], nitrile oxide[47], amine[48], ketone or 

carboxylic acid.[49] 

In the following, the influence of high hydrostatic pressure on the previous discussed Michael 

addition reactions is investigated on the example of thiourea-organocatalyzed asymmetric 

Michael addition to (hetero)aromatic nitroolefins supported by in-silico solvent predictions by 

PCP-SAFT. 

 

In general, the efficiency of chemical reactions in terms of reaction rate, yield and selectivity is 

influenced by several factors such as temperature, pressure, concentration, and solvent. 

Therefore, precise information and understanding of these factors are of paramount 

importance for fine-tuning reaction conditions in order to enhance rates and yields of the 

desired transformation. Following the first report in 1862 of Berthelot et al.[50], solvent effects 

on chemical reactions were correlated with the solvent’s polarity and were later explained by 

the solvation of the reacting agents.[51] Several groups have studied the effects of solvents on 

reaction rates and equilibria for chemical reactions[52] as well as for biochemical reactions.[53] 

The reaction medium strongly influences molecular interactions of the given reactants. Thus, 

analysis of thermodynamic activities, e.g. by computational thermodynamic models of the 

reagents in the given solvent allow precise prediction of certain solvent effects on the reaction 

performance. Therefore, different models have been proven to correctly predict the influence 

of solvent on liquid-phase reactions at atmospheric pressure.[54–56,57] However, the applicability 

of these computational methods for very-high-pressure conditions in liquid phases (100-

800 MPa) has not been validated until today. 

 

The effects of high pressure in solution on the reaction equilibria were first explored by Planck 

in 1887[58] followed by investigations regarding the reaction rates by Rothmund in 1896.[59] 

Since then, many groups explored pressure effects on biochemical[60] as well as on chemical 

reactions[9,61], whereas the pioneering study of Matsumoto and Uchida[62] stands out as the first 

report of pressure effects on asymmetric organocatalytic reactions. Apart from purely 

academic interest, high-pressure applications have also gained substantial industrial 

significance, e.g. in food processing.[63] High pressure is capable of improving reactions either 

indirectly by phase transition (especially towards supercritical fluids) or directly by volume 

effects. The latter typically occurs in liquid-phase reactions and is known to depend on the 

employed solvent. Hence, it was set out whether the effects of solvent on reactions are altered 

at high pressure and whether they can be predicted by thermodynamic models. Thus, in this 
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study Perturbed-Chain Polar Statistical Associating Fluid Theory (PCP-SAFT) was applied for 

the first time to an organic reaction at very-high-pressure conditions of up to 800 MPa. PCP-

SAFT was chosen for this purpose as it has been successfully applied to compute the reacting 

agent’s interactions in solution under ambient pressure and up to 2 MPa.[55] 

 

As a model system for this approach, the Michael addition of 1,3-dicarbonyl compounds to 

nitroolefins was chosen. In 2003, Takemoto and co-workers[64,65] developed an efficient method 

for the highly enantio- and diastereoselective, conjugate addition of 1,3-dicarbonyl compounds 

to nitroolefins. Thereby, in the presence of the newly designed bifunctional thiourea catalyst 

57, the transformation proceeds at ambient pressure and room temperature, however, 

prolonged reaction times and high catalyst loadings (10 mol%, 12-72 h) are required. 

 

 

Scheme 12. 1,4-Conjugate addition of diethyl malonate (45) to N-, S- and O-containing aromatic 
nitroolefins 56 catalyzed by thiourea derivative 57 at high pressure. 

 

Taking this precedent into account, it was investigated whether a rate acceleration can be 

achieved at high-pressure conditions without erosion of enantioselectivity and moreover, if 

solvent effects on reaction rate and yield at high pressure can be predicted using Perturbed-

Chain Polar Statistical Associating Fluid Theory[66] (PCP-SAFT) (Scheme 12). Michael-type 

reactions belong to the class of bimolecular addition reactions, which are known to be 

accelerated by high pressure due to a negative volume of activation (in the range of −5 to 

−40 cm3 mol-1).[1,4] The volume of activation is defined as the difference of the volume of the 

transition state V‡ and the volume of the corresponding reactants VA-B.[4,6,67] 

Aiming to find the optimal solvent for the title reaction, PCP-SAFT to the Michael additions 

between diethyl malonate (45) and trans-β-nitrostyrene (56a) was applied (Scheme 13). The 

following theoretical work was carried out by Michael Knierbein (Prof. Gabriele Sadowski, TU 

Dortmund University). 
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The pure-component thermodynamic data such as vapor pressure, density data and activity 

coefficients of the reacting agents were available in the literature[68], except for Michael adduct 

58a, which were therefore determined experimentally. Based on these reaction-independent 

data PCP-SAFT parameters were fitted. 

 

 

Scheme 13. Model reaction of diethyl malonate (DEM, 45) and trans-β-nitrostyrene (NST, 56a) in 
different solvents and at various pressures. 

 

Thermodynamics limits the equilibrium-yield of chemical reactions, depending on the reaction 

conditions. Further, reaction kinetics depend on the solvent, which can be expressed via 

thermodynamic activities of the reacting agents. These effects of solvent and pressure on yield 

and kinetics were investigated for the reaction shown in Scheme 13. The equilibrium constant 

for this reaction is given by Equation 1. 

 

𝐾𝑡ℎ =
𝑎𝐷𝐸𝑁𝑃𝐸𝑀

𝑎𝑁𝑆𝑇 ∙ 𝑎𝐷𝐸𝑀
 (1) 

 

Equation (1) is based on thermodynamic activities of the reacting agents 56a, 45 and 58a, 

which are defined as the product of the equilibrium mole fractions and activity coefficients of 

the respective component. 𝐾𝑡ℎ is a function of temperature and pressure, however, it is 

independent of concentrations and solvents. Consequently, solvent effects on the reaction-

equilibrium concentrations can be predicted for known 𝐾𝑡ℎ values based on the molecular 

interactions of the reagents with the solvent. Thermodynamic models, e.g. PCP-SAFT, give 

access to thermodynamic activities and are therefore well-suited tools that allow precise 

predicting of solvent effects on reaction equilibria.[54,55] 

Reaction kinetics are expressed in Equation (2) as change of the product mole fraction with 

time. 
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𝑑𝑥𝐷𝐸𝑁𝑃𝐸𝑀

𝑑𝑡
= 𝑘1 ∙ 𝑎𝑁𝑆𝑇 ∙ 𝑎𝐷𝐸𝑀 − 𝑘−1 ∙ 𝑎𝐷𝐸𝑁𝑃𝐸𝑀 (2) 

 

Here, 𝑘1 and 𝑘−1 denote the rate constants of the forth and back reactions, respectively, that 

are directly linked to the thermodynamic equilibrium constant according to Equation 3. 

 

𝐾𝑡ℎ =
𝑘1

𝑘−1
 (3) 

 

Owing to the activity-based expressions in Equation (1) and (2), also the kinetic constants 

𝑘1 and 𝑘−1 are independent of both concentration and solvent. Based on these physical 

relationships, thermodynamic models can be used to predict solvent effects on reaction 

kinetics.[54,56] 

The equilibrium constant 𝐾𝑡ℎ and the kinetic constants 𝑘1 and 𝑘−1 depend on pressure. These 

pressure effects on the reaction equilibrium are quantified by the standard volume of reaction 

∆𝑅𝑣0: 

(
𝜕𝑙𝑛(𝐾𝑡ℎ)

𝜕𝑝
)

𝑇

=
−∆𝑅𝑣0

𝑅 ∙ 𝑇
 (4) 

 

Applying transition-state theory allows quantifying pressure effects on the reaction rate as a 

function of the volume of activation: 

 

(
𝜕𝑙𝑛(𝑘)

𝜕𝑝
)

𝑇

=
−∆𝑣‡

𝑅 ∙ 𝑇
 (5) 

 

In order to determine the equilibrium constant as well as the kinetic constants, the reaction rate 

and the reaction-equilibrium mole fractions for the addition of diethyl malonate (DEM, 45) to 

trans-β-nitrostyrene (NST, 56a) were measured experimentally in toluene as the solvent at 

0.1 MPa and at 440 MPa, respectively. Based on these data, solvent effects on the reaction 

rate and equilibrium yield were predicted via activity coefficients at 0.1 MPa as well as at high-

pressure conditions: First, the in-silico solvent screening was performed at 0.1 MPa for 

solvents covering different solvent classes. The screening results showed that n-hexane has 

the strongest beneficial effect on the reaction. That is, among the solvents studied, PCP-SAFT 

predicted that n-hexane should lead to the fastest reaction rate and to the highest product yield 

at reaction equilibrium. In contrast, it was predicted that dichloromethane would have the most 

disadvantageous effect on the reaction yield and kinetics (Figure 9, lines). 
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Figure 9. Mole fraction of the reaction product DENPEM plotted against reaction time at 0.1 MPa and 
25 °C in different solvents. Symbols: experimental data (gray empty triangles: dichloromethane, blue 
triangles: toluene, red half-filled triangles: n-hexane/toluene). Lines: PCP-SAFT predictions (gray: 
dichloromethane, blue: toluene, solid red line: n-hexane/toluene, dashed red line: n-hexane). Reaction 
conditions: Nitroolefin 56a (1.0 equiv), diethyl malonate (DEM, 45) (2.0 equiv), catalyst 57 (1 mol%) in 
solvent (0.5 M, with respect to nitroolefin 56a). 

 

In order to validate the PCP-SAFT predictions, the kinetic profiles were measured in different 

solvents (see Figure 9, triangles). Dichloromethane, toluene and a solvent mixture of 

n-hexane/toluene mixture (1:1, v/v) were chosen for this purpose. The latter was necessary due 

to the insufficient solubility of the reactants in pure n-hexane as solvent. The experimental 

results were in excellent agreement with the PCP-SAFT predictions, both with respect to 

kinetics but also reflected the trend in yield at equilibrium for a given solvent. The data show 

that PCP-SAFT is a meaningful tool for solvent screening using thermodynamic activities as 

proposed in equations (1) and (2). 

Subsequently, the in-silico solvent screening was performed at 440 MPa to evaluate if 

PCP-SAFT can also be used to predict the reactants and product activities in Equations (1) 

and (2) at high hydrostatic pressure (Figure 10).  
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Figure 10. Mole fraction of the reaction product DENPEM plotted against reaction time at 440 MPa and 
25 °C in different solvents. Symbols: experimental data (gray empty diamonds: dichloromethane, blue 
diamonds: toluene, red half-filled diamonds: n-hexane/toluene). Lines: PCP-SAFT predictions (gray: 
dichloromethane, blue: toluene, solid red line: n-hexane/toluene, dashed red line: n-hexane). Reaction 
conditions: Nitroolefin 56a (1.0 equiv), diethyl malonate (DEM, 45) (2.0 equiv), catalyst 57 (1 mol%) in 
solvent (0.5 M, with respect to nitroolefin 56a). 

 

Also under high-pressure conditions, PCP-SAFT again predicts the influence of solvent with 

respect to kinetics with high accuracy (Figure 10, lines), being in strong agreement with the 

experimental results (Figure 10, diamonds). Yet, PCP-SAFT slightly underestimates the 

equilibrium endpoint in dichloromethane.  

The approach followed in this study was finally evaluated at even higher pressure (800 MPa), 

taken the reaction of 56a and 45 in toluene as a representative example (Figure 11). 

PCP-SAFT predicted a further rate acceleration but no significant change in the equilibrium 

compared to the reaction at 440 MPa, which was again verified by the experimental data 

obtained. 
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Figure 11. Mole fraction of the reaction product DENPEM plotted against reaction time at 25 °C in 

toluene. Symbols: experimental data at different pressures (triangles: 0.1 MPa, diamonds: 440 MPa, 

squares: 800 MPa), lines: PCP-SAFT predictions. Reaction conditions: Nitroolefin 56a (1.0 equiv), 

diethyl malonate (DEM, 45) (2.0 equiv), catalyst 57 (1 mol%) in solvent (0.5 M, with respect to nitroolefin 

56a). 

 

Next, the scope of the Michael addition of diethyl malonate (DEM, 45) and various 

heteroaromatic nitroolefins 56a at 440 MPa was explored.[69] PCP-SAFT predicted 

dichloromethane to be an inferior solvent, which was consequently not chosen. Due to 

solubility reasons, it had to compromise to run all reactions in toluene. The loading of the 

catalyst 57 was reduced from the typically employed 10 mol%[15,16] to 1 mol%, and for 

comparison, ambient pressure reactions under the same conditions were run in parallel. Under 

these reaction conditions, the corresponding Michael adducts 56b-j (Table 13, entries 1-9) 

were obtained at ambient pressure as well as at high pressure in a clean reaction: lower yields 

obtained are the results of an incomplete conversion of the reaction partners. Gratifyingly, the 

high enantioselectivities obtained at ambient pressures are mirrored at 440 MPa, indicating 

that pressure is not inducing an uncatalyzed background reaction or altering the catalyst-

substrate arrangement necessary for asymmetric induction. The benefit of the high-pressure 

conditions becomes apparent when comparing conversion and yield at a given time, being 

higher by a factor of 2-12, suggesting that the necessary, but entropically disfavored ternary 

arrangement of nitroolefin 56a, DEM 45 and catalyst 57 in the transition state has a negative 

volume of activation. 
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Table 13. Substrate scope of the Michael reaction of diethyl malonate (DEM, 45) with various 
nitroolefins 56. 

 

Entry Ar Pressure (MPa) Time Solvent Yield[a] ee[b] 

1 

 

0.1 
4 h toluene 

58b, 50% 94% 

440 58b, 99% 94% 

2 

 

0.1 
24 h toluene 

58c, 20% [c] 

440 58c, 50% [c] 

3 
 

0.1 
24 h toluene 

58d, 28% 92% 

440 58d, 93% 93% 

4 
 

0.1 
24 h toluene 

58e, 18% 86% 

440 58e, 67% 91% 

5 

 

0.1 
24 h toluene 

58f, 22% 91% 

440 58f, 79% 91% 

6 

 

0.1 
24 h toluene 

58g, 8% 85% 

440 58g, 80% 85% 

7 
 

0.1 
24 h toluene 

58h, 40% 91% 

440 58h, 83% 90% 

8 
 

0.1 
24 h toluene 

58i, 25% 88% 

440 58i, 32% 90% 

9 

 

0.1 
24 h toluene 

58j, 28% 87% 

440 58j, 67% 87% 

10 

 

0.1 
24 h THF 

58k, 5% 60% 

440 58k, 62% 60% 
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11 

 

0.1 
24 h THF 

58l, 9% 70% 

440 58l, 92% 70% 

12 

 

0.1 
24 h THF 

58m, 10% 69% 

440 58m, 84% 69% 

Reaction conditions: Nitroolefin 56 (0.40 mmol, 1.0 equiv), diethyl malonate (DEM, 45) (0.80 mmol, 2.0 equiv), 

catalyst 57 (1 mol%) in solvent (0.8 mL, 0.5 M with respect to nitroolefin 56). [a] Isolated yield. [b] Enantiomeric 

excess was determined by chiral HPLC. [c] HPLC analysis was not possible due to the instability of the product.  

 

In the case of pyridyl- (58k) and unprotected indolyl nitroolefins (58l and 58m) the solvent had 

to be changed to THF. The substitute solvent had to be more polar to overcome solubility 

limitations without interacting to much with the thiourea catalyst 57. While the reactions were 

greatly accelerated under pressure, a significant reduction in enantioselectivity (Table 13, 

entries 10-12) was observed. Interactions of solvent and catalyst 57 via hydrogen bonding lead 

to erosion of stereoinduction, which was kept at a minimum when THF was used, compared 

to MeOH or MeCN. Since it was shown that high pressure does not disrupt the stereoinduction 

but enhances the product formation enormous, THF represents a viable compromise as a 

solvent for the Michael addition at high pressures. Besides the aforementioned results, solvent 

effects of THF on reaction kinetics and equilibrium were also predicted (see Figure 12). 

 

Figure 12. Mole fraction of the reaction product DENPEM plotted against reaction time at 0.1 MPa (left) 
and 440 MPa (right) and 25 °C in different solvents. Symbols: experimental data (gray: dichloromethane, 
blue: toluene, red: n-hexane/toluene). Lines: PCP-SAFT predictions (gray: dichloromethane, orange: 
tetrahydrofuran, blue: toluene, solid red line: n-hexane/toluene, dashed red line: n-hexane). Reaction 
conditions: Nitroolefin 56a (1.0 equiv), diethyl malonate (DEM, 45) (2.0 equiv), catalyst 57 (1 mol%) in 
solvent (0.5 M, with respect to nitroolefin 56a). 
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In conclusion, it is demonstrated for the first time that thermodynamic-based PCP-SAFT 

screening can be applied at high hydrostatic pressures (up to 800 MPa) in liquid phase to 

predict solvent effects relevant for the reaction outcome with respect to kinetics and yield. 

Thus, the asymmetric Michael addition reaction of diethylmalonate to various heteroaromatic 

nitroolefins was significantly enhanced with respect to catalyst loading (from 10 down to 

1 mol%) and reaction time (from 24-72 h down to 4-24 h). No erosion of enantioselectivity is 

observed, proving that the application of pressure did not induce an uncatalyzed background 

reaction. The obtained products are valuable for the synthesis of analogs of Baclofen, a 

pharmaceutical agent used to treat spastic movement disorders such as multiple sclerosis, as 

demonstrated with the conversion of 58l (see next chapter). The combination of PCP-SAFT 

and high hydrostatic pressure appears to be promising for improving on the major drawbacks 

of sluggish process cycles generally encountered in organocatalyzed reactions. 
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3.2 Synthesis of a γ-Aminobutyric Acid (GABA) Derivative 

 

Approximately 70 years have passed since γ-aminobutyric acid (59) (GABA) (Scheme 14) was 

first discovered as a chief inhibitory neurotransmitter in the mammalian (vertebrate and 

invertebrate) central nervous system by Awapara[70], Udenfried[71], Roberts and Frankel.[72] 

Not just accumulation at presynapses as well as in postsynaptic densities, various GABA 

receptors were shown in extrasynaptic locations on different types of neurons and non-

neuronal cells. 

Moreover, beside the aforementioned excitatory neurotransmitter function, GABA serves as a 

paracrine/autocrine signal molecule, and plays an important role in the entire period of neural 

development. 

Baclofen (60) (Scheme 14), sold under the brand name Lioresal®, Liofen®, Gablofen® and 

others, is a pharmaceutical agent used to treat spastic movement disorders such as multiple 

sclerosis, and finds further application in the treatment of alcohol dependence.[73] It was first 

synthesized by the chemist Heinrich Keberle[74] in 1962 and was designed as a drug for 

epilepsy treatment. Although the effect on treating epilepsy was disappointing, it was found 

that certain spastic disorders can be successfully treated. 

 

 

Scheme 14. Structures of GABA (59), (S)- and (R)-Baclofen (60). 

 

To valorize the synthetic protocol of the Michael addition described in the previous chapter, a 

multi-step transformation towards a new γ-aminobutyric acid analogue was examined. 

Therefore, the racemic indolyl Michael adduct 58l (N,N'-bis[[3,5-bis(trifluormethyl)phenyl 

thiourea (42) and NEt3 as catalyst) was transformed. Adduct 58l was chosen as the model 

substrate due to its immanent indolyl moiety, which is known to be widely distributed in nature 

and producible by various bacterial cultures. The corresponding γ-amino acid is not known in 

literature and hence could show a promising pharmacologic activity. 

Furthermore, adduct 58l exhibits an increased inertness towards polymerization under acidic 

conditions compared to similar derivatives like adduct 58m[75], since it’s preferential linkages 

sites C2 and C3 are blocked through the methyl and the nitroalkane group. The only accessible 
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position for polymerization remains the N1-position through the unprotected NH-moiety. The 

formation of possible di- and tri- and oligomers is not considered here. 

 

 

Figure 13. Polymerization positions of indole. Red circled position: blocked. Blue circled position: 
accessible. 

 

In the first step of the GABA-analogue synthesis, the nitro group was reduced to provide lactam 

61 after intramolecular lactamization in 87% yield. NaBH4 and NiCl2 in MeOH was used as 

reducing agent, forming the active species Ni2B in situ. Nitroaliphatic compounds have 

traditionally been reduced in autoclaves by high-pressure hydrogenation. Research in 

reduction methods revealed that amorphous transition metal borides are of paramount 

importance as heterogeneous catalysts when it comes to the reduction of aliphatic nitro 

compounds[76]. Subsequently, the ester group was hydrolyzed by NaOH in EtOH and the 

corresponding carboxylic acid 62 was obtained in an almost quantitative yield of 93%. 

Conventional thermal decarboxylation of the carboxylic acid in high-boiling solvents was not 

successful. Compound 62 had to be heated over its melting point of 192° C to approximately 

230 °C with a heat gun to achieve a nearly quantitative decarboxylation with 96% yield. 

Lactams are known to hydrolyze under acid conditions and therefore the open chain species 

can be obtained. The desired γ-amino butyric acid derivative was formed after hydrolyzation 

with 6 M HCl under reflux conditions as its corresponding hydrochloric salt 64 with 62% yield. 

The moderate yield in the last step of the total synthesis can be attributed to undesired 

polymerization side reactions (Scheme 15).  
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Scheme 15. Synthesis of GABA analogue. Reaction conditions: [a] NiCl2·6H2O, NaBH4, MeOH, rt, 6 h. 
[b] NaOH, EtOH, rt, 16 h. [c] 230 °C, 5 min. [d] 6 M HCl, reflux, 24 h. 

 

In summary, Michael addition adduct 58l was successfully used as a starting point for the four 

step synthesis of γ-aminobutyric acid derivative 64 in 48% overall yield, clearly stating the 

synthetic utility of the obtained Michael adducts in the previous chapter. 
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3.3 Influence of High Pressure on Hydrogen Bonds 

 

The phenomenon of hydrogen bonding is an intermediate range inter- or intramolecular 

interaction between an electron-deficient hydrogen atom and an area of high electron density. 

These non-covalent bonds are quintessential for secondary and tertiary structures of proteins 

and the DNA, carrying the genetic instructions for the development of life. 

 

Table 14. Dissociation energy of different bond types. 

Bond type Dissociation energy 

Ionic lattice[77] 41 – 360 kcal mol-1[a] 

Covalent bond[78] 34 – 256 kcal mol-1 

Hydrogen bond[79,80] 2 – 40 kcal mol-1 

van der Waals forces[81] 0.5 – 1 kcal mol-1 

[a] Cited ranges for ionic dissociation energies vary. 

 

A hydrogen atom is formally capable of forming only a single chemical bond, according to the 

well-known valence bond theory. Frequently, the hydrogen atom is forming an additional bond, 

the so called “hydrogen bond”, becoming pseudo two-valent. In general, hydrogen bonds can 

connect atoms with higher electronegativity than hydrogen itself, which can be observed in 

water as H2O∙ ∙ ∙H–OH, as well as with atoms with lower electronegativity such as bonds in 

boranes B–H–B.[82] 

Besides the different types, hydrogen bonds can also be classified in two categories specifying 

the corresponding bonding symmetry. On the one hand, so called “single well hydrogen bonds” 

(SWHBs) describe symmetrical hydrogen bonds, the strongest of all hydrogen bonds, where 

the hydrogen atom is located equidistant in line with the heteroatoms and is ideally as close 

as possible to an 180° angle. The potential energy function for hydrogen consists of a single 

well between the heteroatoms, additionally SWHBs are very short in distance. On the other 

hand, the so called “low barrier hydrogen bonds” (LBHBs) were defined as shorter and 

asymmetric in character and hence possessing an intermediate strength. When it comes to 

LBHBs, the distance between one heteroatom and hydrogen atom is shorter than a 

“conventional” hydrogen bond. Here, the hydrogen atom is located in a double minimum 

potential well, where its zero point vibrational state is close to the barrier.[83,84] The 

“conventional” hydrogen bond is characterized as a weak dipolar attraction between a 

hydrogen and a heteroatom. The strongest representatives SWHBs are very rare, but both, 
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SWHBs as well as LBHBs can be referred to strong hydrogen bonds. However, the majority of 

hydrogen bonds are weak and are assigned to conventional hydrogen bonds.[85] 

The energy of the strongest covalent bond (C≡O 256 kcal mol-1) is about 7.5- fold higher than 

the weakest (O–O ≈ 34 kcal mol-1).[78] In comparison, the energy of hydrogen bonds ranges 

from 2 to 40 kcal mol-1.[79,80] Accordingly, the strongest hydrogen bond is 20-fold higher than 

the weakest, a huge gap compared to covalent bonds. Based on these data, it is important to 

combine the concept of SWBHs and LBHBs together with the model of dipolar attractions to 

understand the physiochemical properties of hydrogen bonds. Weak hydrogen bonds with 

nitrogen and oxygen usually exhibit enthalpies between 4 to 10 kcal mol-1. The enthalpy, for 

instance, of the O–H∙∙∙O hydrogen bond in alcohols and water has a value of 5 to 6 kcal mol-1, 

whereas for carboxylic acids the enthalpy is approximately 7 kcal mol-1.[80] The bond strength 

of LBHBs lies in the range of 12 to 24 kcal mol-1. However, the strength of stronger SWHBs 

starts at 24 kcal mol-1 and can reach values up to 40 kcal mol-1.[84] All these energies refer to 

the enthalpy of heteroatoms with and without the interaction of the hydrogen bond. The length 

of the corresponding hydrogen bond is directly correlated to its strength and thus, in general, 

the stronger a hydrogen bond the shorter its bonding distance. Moreover, the longer a covalent 

bond (O–H), the shorter the corresponding hydrogen bond (O∙∙∙H). In some cases, the covalent 

as well as the hydrogen bond become equal in distance forming a perfect symmetrical bond.[85] 

As a tool for detecting intra- and intermolecular hydrogen bonds, Raman spectroscopy, 

infrared (IR) spectroscopy as well as nuclear magnetic resonance (NMR) are the methods of 

choice. Raman scattering utilizes inelastic scattering of photons to detect vibrational modes as 

well as rotational and various low-frequency modes of molecules. The excitation wavelengths 

used for Raman spectroscopy ranges from the high-energy ultra-violet through the region of 

visible light to the low-energy infrared[86]. Related to Raman spectroscopy, IR spectroscopy 

yields similar and complementary molecular information, using wavelengths from the near IR 

to the far IR to provide insight into functional groups and their possibly concentration[87]. In 

contrast, the NMR spectroscopy is a technique to detect magnetic fields around atomic nuclei, 

and thus, the location of the detected nuclei in the spectrum is dependent on the shielding of 

electron density[88]. Hydrogen bonding interactions strongly influence the vibrational modes as 

well as the shielding of the involved nuclei and therefore detection with the techniques 

described in the latter are possible.  

The importance and influence of physiochemical properties of hydrogen bonds were already 

investigated to a large extant. Despite the fundamental role, the influence of high pressure on 

hydrogen bonds is an insufficient investigated area, especially when interactions in solution 

are considered. Since the application of high pressure in the solid state is more common, 
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scientists already explored that pressure can reduce the intermolecular distances and 

therefore can reach a higher packing resulting in a strengthening of hydrogen bonds in the 

crystal. The crystals force field perturbates the position of hydrogen bonds. Hence, pressure 

can “push” hydrogen bonds in a more optimal geometry.[89] 

Ohtaki et al.[90] investigated the effects of temperature and pressure on hydrogen bonds in 

water and formamide in their liquid structure. The liquid structure of formamide consists as a 

mixture of a ring- and open-chain dimer (Table 15). By applying pressure, the content of ring-

dimer was enriched and became predominant. Additionally, the 1H-chemical resonance of the 

formamide was shifted downfield with increasing pressure, indicating a strengthening of the 

respective hydrogen bonds. 

 

Table 15. Linear-chain A and ring-dimer B structure of liquid formamide. 

 

Entry Temperature Pressure 
mol% 

Linear A Ring B 

1 25 °C 0.1 MPa 57 43 

2 25 °C 20 MPa 50 50 

3 25 °C 40 MPa 43 57 
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3.3.1 NMR Studies of Hydrogen Bonds 

 

Oh and co-workers[91] investigated a highly diastereo- and enantioselective strategy for an 

Aldol reaction of methyl 2-isocyanoacetate using thiourea derivatives as hydrogen bond donor 

catalysts. To prove the existence of the hydrogen bonded catalyst-substrate complexes, NMR 

studies were examined (Figure 14). In favor to run this experiment, thiourea derivative 42 was 

used as a hydrogen bond donor. The advantage of thiourea 42 is its C2-symmetry resulting in 

only three different signals in the 1H-NMR spectrum and therefore simplifying subsequent NMR 

analysis. 

 

 

Figure 14. Thiourea 42, a hydrogen bond donor, and methyl 2-isocyanoacetate (65), a hydrogen bond 
acceptor, forming a catalyst-substrate complex. 

 

Thiourea 42 (0.04 mmol) was measured in THF-d8 (0.7 mL) prior to the addition of the 

hydrogen bond acceptor 65. After the addition of 65 (0.08 mmol) the NH-signal of thiourea 42, 

which is directly involved into the hydrogen bond, was shifted downfield from δ 8.00 to 

8.02 ppm. The signal of the four aromatic protons (Figure 14, red) were shifted from δ 6.39 to 

6.40 ppm. Only the signal of the two aromatic protons (Figure 14, green) remained unaffected 

by the hydrogen bond and remained at δ 6.07 ppm. These downfield shifts are giving evidence 

for the formation of a complex consisting of the hydrogen bond donor 42 and acceptor 65.  

 

Based on these literature precedence, high pressure NMR studies were performed to 

investigate the influence of pressure on hydrogen bonds, especially on similar hydrogen-

donor-acceptor-complexes as described in the latter. The NMR study was carried out in the 

institute of biophysics and physical biochemistry in collaboration with Dr. Markus Beck-Erlach, 

member of the working group of Prof. Sprangers. 

Hence, the same thiourea derivate 42 (0.04 mmol) was used as a hydrogen bond donor and 

nitroolefin 56a (0.08 mmol) as a hydrogen bond acceptor. These compounds are inspired by 

the reaction conditions of the Michael addition mentioned in Chapter 3.1. CD3CN was chosen 
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as the solvent, due to its low costs compared to THF-d8, but slightly higher hydrogen bond 

acceptor properties. Figure 15 shows the influence of pressure on the NH-resonance shift of 

thiourea 42. Notably, every signal in the NMR is shifted by pressure and signals need to be 

adjusted by the intrinsic pressure effect. Therefore, thiourea 42 had to be measured in the full 

pressure range up to 180 MPa with and without the addition of nitroolefin 56a (Figure 15).  

 

 

Figure 15. NH-Signal of thiourea 42 in dependence of pressure with and without the addition of 

hydrogen bond acceptor 56a. 

 

When the pressure induced signal shift of the red data-line (thiourea 42 with nitroolefin 56a) is 

subtracted with the blue data-line, the adjusted and absolute pressure shift can be obtained. 

A total signal downfield-shift of 0.0045 ppm in the pressure range from 0.1 to 180 MPa was 

observed (Figure 17). This value might seem very low and insufficient but, indeed, is already 

significant. The pressure induced shift of the NH-signal is presented in Figure 16. 

 

 

Figure 16. NH-signal shift of thiourea 42 influenced by pressure. 
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Figure 17. Absolute pressure shift of the NH-signal of thiourea 42 in presence of nitroolefin 56a. 

 

The same procedure was applied to the aromatic signals of thiourea 42 (Figure 14, red). The 

signal shift of the four aromatic protons in dependence of pressure with and without nitroolefin 

56a are displayed in Figure 18. 

 

 

Figure 18. Signal of the four aromatic protons of thiourea 42 in dependence of pressure with and without 
the addition of hydrogen bond acceptor 56a 

 

A total signal downfield-shift of 0.00086 ppm in the pressure range from 0.1 to 180 MPa was 

observed (Figure 20). This value is too low to be significant and can be neglected. The 

pressure induced shift of the four aromatic signal is presented in Figure 19. 
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Figure 19. Signal shift of the four aromatic protons of thiourea 42 by pressure. 

 

 

Figure 20. Absolute pressure shift of the four aromatic signals of thiourea 42 in presence of nitroolefin 
56a. 

 

The signal shift of the last two aromatic protons (Figure 14, green) in dependence of pressure 

with and without nitroolefin 56a is displayed in Figure 21. 
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Figure 21. Signal of the two aromatic protons of thiourea 42 in dependence of pressure with and without 
the addition of hydrogen bond acceptor 56a. 

 

A total signal upfield-shift of 0.00048 ppm in the pressure range from 0.1 to 180 MPa was 

observed (Figure 23). This value is too low to be significant and therefore neglected due to its 

upfield shift. The pressure induced shift of the two aromatic signal is presented in Figure 22. 

 

 

Figure 22. Signal shift of the two aromatic protons of thiourea 42 by pressure. 
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Figure 23. Absolute pressure shift of the two aromatic signals of thiourea 42 in presence of nitroolefin 
56a. 

 

In conclusion, the consideration of the aromatic protons of thiourea 42 and the pressure 

induced shifts are negligible due to the low ppm-values as well as their rather long distance to 

the hydrogen bond. The pressure induced shift of the NH-signal is indeed significant, but the 

assignment of the effect’s nature is ambiguous. The investigated downfield-shift of the NH-

signal could be contributed to two different phenomena. On the one hand, the amount of the 

formed substrate-catalyst-complex could be increased by increasing pressure what would lead 

to the resulted downfield-shift. In exchange, it has to be assumed, that at ambient pressure a 

certain percentage of the thiourea 42 exists without a formed hydrogen bond towards the 

nitroolefin 56a. To exclude the possibility that already the entire amount of thiourea is bound 

to the nitroolefin, appropriate experiments with a molar ratio of thiourea and nitroolefin of 1:1 

and 2:1 were carried out. Unfortunately, a downfield-shift with a lower molar ratio at ambient 

pressure was not observed and therefore it can be assumed that, to a certain extent, the 

thiourea compounds also exist without hydrogen bonding. On the other hand, the resulted 

downfield-shift could also indicate a strengthening of the formed hydrogen bond. The 

intramolecular distance is decreased by pressure, also decreasing the length of the hydrogen 

bond. The shorter a hydrogen bond, the stronger it is. Due to this ambiguous result received 

by NMR spectroscopy additional IR measurements were conducted.  
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3.3.2 IR Studies of Hydrogen Bonds 

 

For further mechanistic insights, in addition to the aforementioned NMR studies, also IR 

measurements were carried out to investigate the effect of pressure on hydrogen bonds on an 

expanded basis. IR measurements were examined in the inorganic chair of Prof. Scheer at the 

University of Regensburg. Spectra were recorded on a Thermo Scientific™ Nicolet™ iS™5 

FTIR, optics with KBr windows, high performance dTGS-detector, germanium coated KBr-

beam splitter and iD1 transmission with KBr cuvette. 

Oh[91] and co-workers investigated a strategy for an efficient Aldol reaction supported by NMR 

studies, but also extended their examination by IR measurements for further insights into the 

hydrogen bond donor-acceptor interaction. The free NH-signal of neat thiourea 42 (hydrogen 

bond donor) without hydrogen bonding interactions is located at a wavenumber of 

approximately 3435 cm-1. When methyl α-isocyanoacetate is added, a catalyst-substrate 

complex with hydrogen bond interactions is formed and the NH-signal at approximately 

3435 cm-1 completely disappears. The vanishing of the free NH-signal indicates a quantitative 

formation of a hydrogen bonded catalyst-substrate complex. The bonded NH-signal was 

shifted to lower wavenumbers in the range of 2985-3204 cm-1. When the NH group serves as 

a hydrogen bond donor, the length of the covalent bond between N and H is increased resulting 

in the weakening of the covalent bond through the hydrogen bond leading to a shift to lower 

wavenumbers. When acetone was employed as a weaker hydrogen bond acceptor, the signal 

of the free NH as well as the bonded NH are coexisting at the same time indicating a partial 

formation of a catalyst-substrate complex. 

Based on this work[91], high pressure IR measurements were conducted to investigate the 

influence of pressure on hydrogen bonds for comparison with the prior described and obtained 

results by NMR studies. At first, ambient pressure measurements, similar to the work of Oh 

and coworkers, were performed. Prior to the addition of hydrogen bond acceptors, a solution 

of thiourea 42 in dichloromethane (17.33 mM) was measured. The signal of the free NH was 

found at a wavenumber of 3374 cm-1 (Figure 24). 
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Figure 24. NH-spectral region of thiourea 42 in dichloromethane (17.33 mM) without hydrogen bond 
acceptors. 

 

Subsequently, acetone (10) as well as methyl 2-cyanoacetate (66) were used as hydrogen 

bond acceptors in a range of 2.0 to 4.0 equivalents (Figure 25, Figure 26). 

 

 

Figure 25. Stacked IR spectrum with NH-spectral region of thiourea 42 with different equivalents of 
acetone. Left signal (red curve): acetone without thiourea 42 in dichloromethane (17.33 mM) for 
comparison. 
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Unfortunately, the ambient pressure measurements did not show the expected interactions of 

hydrogen bond donor and acceptor with respect to a spectral shift to lower wavenumbers. 

Even when 4.0 equivalents of hydrogen bond acceptor were used, the spectral shift was too 

low to be significant. However, the high pressure IR measurements conducted at the TU-

Dortmund with supervision of a co-worker from Prof. Winters group were more surprising. The 

high pressure measurements were conducted with the same conditions described in the latter. 

Here, it was not possible to detect signals and functional groups of the corresponding thiourea 

42 in solution. Even when a saturated solution in dichloromethane or chloroform was used the 

corresponding thiourea signals were not detectable. 

 

 

Figure 26 Stacked IR spectrum with NH-spectral region of thiourea 42 in dichloromethane (17.33 mM) 
with different equivalents of methyl 2-cyanoacetate (66). 

 

However, in order to gain reasonable information about hydrogen bonds and their properties 

under hydrostatic pressure, the concept of hydrogen bond acceptor-donor complexes had to 

be replaced by another more suitable and detectable system. 
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Figure 27: Different amino acids and a α-peptide showing the peptide bond. 

 

Therefore, the intramolecular formed hydrogen bonds of different small amides were studied. 

Small amide molecules are particularly suitable to be inverstigated and accessible for 

fundamental investigations since they can be considered as peptide mimics as well as mimics 

for oligoamides, proteins, enzymes and foldamers.[92] Amides as mimics are advantegous 

since these “model compounds” are structurally closely related to large peptides without 

harboring an enormous variety of functional groups or protons. This fact allows simple analysis 

by NMR or IR and therefore provides conformational information as well as hydrogen bond 

properties without the interference of unnecessary moieties. Accordingly, Gellman counts as 

a pioneer in the research field of foldamers and examined model studies for the folding of a 

variety of peptide backbones. In 1994, Gellmann[93] investigated the intramolecular hydrogen 

bond properties of β-alanine and γ-amino butyric acid derivatives with the aim to design 

unnatural polyamides and examine the specific folding pattern. Variable-temperature FTIR was 

the method of choice. The most benefitial solvent to perfom IR measurements in the amide A 

region are alkyl halides such as CH2Cl2 or CHCl3. These alkyl halides are exhibiting low 

polaraties and do not interact or interfere with hydrogen bonds. An amide concentration down 

to 1.0 mM was essential to avoid interference of intermolecular hydrogen bonds. 

When Using N-acetyl-β-alanine N'N'-dimethylamide (67) only a single NH-resonance at 

approximately 3440 cm-1 (293 K) was observed. This indicates, that a non-hydrogen-bonded 

NH is present, and thus, the formation of the six-membered-ring, usually available to β-alanine 

derivatives, does not occur. Additionally, aggregation of 67 can also be excluded. When the 

molecule length is increased by one carbon atom to N-acetyl-γ-aminobutyric acid N',N'-

dimethylamide (68), the intramolecular hydrogen bond properties changed dramatically. In this 

case, two distinct NH-signals were observed at the same time at approximately 3446 and 

3323 cm-1 (294 K). Again, the higher energy band can be attributed to the non-hydrogen-
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bonded NH, the lower energy band indicates an intramolecular hydrogen bonded NH. The 

signal with lower wavenumbers proves the formation of a seven-membered-ring available in 

γ-aminobutyric acid derivatives (Figure 28).  

 

 

Figure 28. Amide 67 and 68 with a potentially formed intramolecular hydrogen bond.  

 

Based on Gellmans findings[93], the effect of pressure on intramolecular hydrogen bonds were 

investigated. During the course of this evaluation, amides 68 and 79 were synthesized 

according to literature known procedures[26,93,94] (Scheme 16, Scheme 17). 

 

 

Scheme 16. Three step synthesis of amide 68. 

 

Both amides are present in their non-bonded species as well as in their hydrogen bonded 

species at the same time in solution, making them extremely valuable for this purpose. The 

special feature of amide 79 is particularly noteworthy. This compound was synthesized by 

Reiser et al.[94] for the first time and is structurally closely related to amide 67 but, other than 

amide 67, it exists predominantly in its hydrogen bonded form.  
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Scheme 17. Eight step synthesis of amide 79. 

 

The ambient pressure IR spectra were recorded on a Thermo Scientific™ Nicolet™ iS™5 

FTIR, optics with KBr windows, high performance dTGS-detector, germanium coated KBr-

beam splitter and iD1 transmission with KBr cuvette. An amide concentration of 1.0 mM in 

dichloromethane was chosen for both 68 and 79, inspired by Gellmans investigation set up. 

Both spectra are in a good agreement with the ones reported in literature[93,94] (Figure 29, 

Figure 30).  
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Figure 29. IR amide A region of amide 68. Blue circled signal: non-bonded NH. Red circled signal: 
hydrogen bonded NH. 

 

 

Figure 30. IR amide A region of amide 79. Blue circled signal: non-bonded NH. Red circled signal: 
hydrogen bonded NH. 

 

In order to investigate the effect of pressure on the intramolecular hydrogen bond, both 

samples of 68 and 79 were sent to the TU Dortmund under supervision of a co-worker from 

Prof. Winters group. Unfortunately, the measurements in organic solvents, especially in 

dichloromethane or chloroform, were no longer permissible due to the high risk of damaging 

the diamond window. Organic solvents would simply dissolve the glue, making high pressure 

measurements in organic solvents currently not possible. 
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Due to the unambiguous solvent problem, a theoretical discussion as well as a prognosis of 

the pressure effects will be evaluated in the following. When those amide solutions are put 

under pressure basically four phenomena could occur: 

▪ The system stays unchanged and the distribution of the bonded and non-bonded 

species do not alter. 

▪ The strength of the hydrogen bonds already formed at ambient pressure will increase 

without altering the distribution of the bonded and non-bonded species. The stronger a 

hydrogen bond the shorter its length is, therefore prolonging and weakening the 

covalent NH-bond. The weakening of the NH-bond would result in a shift to even lower 

wavenumbers. This phenomenon is relatively likely to happen since pressure forces 

molecules into a more compact packing by decreasing the total volume (Figure 31). 

 

 

Figure 31. Processed IR spectrum (gray) in the amide A region of amide 79 with a shift of the lower 

energy band to lower wavenumbers. 

 

▪ Pressure induces a change in the distribution of bonded and non-bonded species. As 

the hydrogen bonded species is expected to possess a smaller volume than the open 

chained form, pressure could shift the equilibrium towards the hydrogen bonded and 

compact species. This would result in a decrease of the higher energy band signal 

(non-bonded NH) and simultaneously in an increase of the lower energy band signal 

(bonded NH) (Figure 32). 
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Figure 32. Processed IR spectrum (grey) in the amide A region of amide 79 with decreasing of the 

higher energy band signal and increasing of the lower energy band signal. 

 

▪ The fourth phenomenon could be a mixture of enhancing the strength of the hydrogen 

bond and shifting the equilibrium towards the hydrogen bonded species. Both effects 

would benefit from pressure and exhibit a more compact assembly than the open chain 

amides. 

As soon as a suitable setup for high pressure IR measurements with the use of organic 

solvents is available, these investigations remain to be determined to shed light on this 

interesting field which could provide important information about the behavior of hydrogen 

bonds under pressure. Scientists working in different disciplines like enzyme catalysis, peptide 

folding and biochemical processes would benefit from these valuable information. 
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4 Summary 

4.1 Summary in English 

 

In the present PhD thesis, the thiourea-organocatalyzed Michael addition of diethyl malonate 

to various heteroaromatic nitroolefins has been studied under high-pressure conditions up to 

800 MPa, being conducive to enhanced product yields, high reaction rates, and high enantio-

selectivity. Elucidating the effects of solvents for maximizing reaction rates and yields has been 

carried out using the Perturbed-Chain Polar Statistical Associating Fluid Theory (PCP-SAFT), 

allowing a prediction of the kinetic profiles under high-hydrostatic-pressure conditions for the 

first time. The thermodynamic-based PCP-SAFT solvent and pressure screening were 

conducted by Prof. Sadowski and coworker (Michael Knierbein) at the Laboratory of 

Thermodynamics, TU Dortmund University. To demonstrate the synthetic utility of the 

synthesized Michael adducts as valuable building blocks in organic chemistry, racemic indolyl 

adduct 58l was transformed to its corresponding γ-amino acid analogue, a derivative of 

Baclofen (60) which serves as a highly bioactive pharmaceutical.  

 

Based on these studies, high pressure NMR measurements were performed to investigate the 

influence of pressure on hydrogen bonds, especially on hydrogen-donor-acceptor-complexes 

similar to the prior described Michael addition conditions. In favor to run this experiment, 

thiourea derivative 42 served as a hydrogen bond donor and nitroolefin 56a as a hydrogen 

bond acceptor. The NMR study was carried out in the institute of biophysics and physical 

----- -- ----- -- -- -- ----- --

- --------- -- ---- 

Hydrostatic 

Pressure 
Optimization of reaction 

parameters by PCP-SAFT 

modelling 

Figure 33. Graphical representation of the Michael addition of diethyl malonate to various 
heteroaromatic nitroolefins supported by PCP-SAFT predictions. 
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biochemistry in collaboration with Dr. Markus Beck-Erlach, member of the working group of 

Prof. Sprangers. 

 

Figure 34. Thiourea 42, a hydrogen bond donor, and trans-ß-nitrostyrene (56a), a hydrogen bond 
acceptor, forming a catalyst-substrate complex. 

 

Furthermore, additional IR measurements were conducted regarding the examination of the 

effect of pressure on hydrogen bonds with the aim to gain deeper mechanistic insights and 

understanding. Therefore, the same hydrogen bond-donor-acceptor-complexes were 

employed with dichloromethane serving as the solvent. Unfortunately, ambient pressure as 

well as the high pressure measurements did not show the expected interactions of hydrogen 

bond donor and acceptor with respect to a spectral shift to lower wavenumbers. Since the 

concept of hydrogen bond acceptor-donor-complexes did not lead to reasonable information, 

small amide molecules and their intramolecular formed hydrogen bonds were investigated. 

Ambient pressure measurenments and their corresponding results were in good agreement 

with the ones reported in literature. Unfortunately, high pressure measurements in organic 

solvents, especially in dichloromethane or chloroform, were no longer permissible due to the 

high risk of damaging the diamond window and remain to be determined.  
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4.2 Summary in German 

 

In der vorliegenden Doktorarbeit wurde die Addition von Diethylmalonat an verschiedenen 

heteroaromatischen Nitroolefinen unter Hochdruckbedingungen (bis zu 800 MPa) untersucht. 

Die Verwendung von Hochdruck führte zu einer erhöhten Produktausbeute, kürzeren 

Reaktionszeiten und einer hohen Enantioselektivität. Mit Hilfe der sogenannten Perturbed-

Chain Polar Statistical Associating Fluid Theory (PCP-SAFT) konnten zum ersten Mal 

Vorhersagen in Bezug auf Ausbeute, Reaktionsrate und den dementsprechenden kinetischen 

Profilen sogar unter Hochdruckbedingungen gemacht werden. Die in-silico Vorhersagen 

zeigten dabei eine besonders gute Übereinstimmung mit den Laborergebnissen. Diese 

thermodynamischen PCP-SAFT Lösungsmittel- und Druckscreenings wurden von Prof. 

Sadowski und Mitarbeitern (Michael Knierbein) am Lehrstuhl für Thermodynamik an der TU 

Dortmund durchgeführt. Um das Konzept der Michael Addition aufzuwerten wurde das Michael 

Adduct 58l in dessen entsprechende γ-Aminosäure, ein Baclofenderivat, transformiert. 

 

Angelehnt an dieses Projekt wurden Hochdruck NMR Untersuchungen an 

Wasserstoffbrücken-Donor-Akzeptor-Komplexen durchgeführt, um Informationen über den 

Einfluss von Druck auf Wasserstoffbrücken zu erhalten. Bei diesen NMR Untersuchungen 

wurde darauf geachtet, ein System zu wählen, dass dem der Michael Addition ähnlich ist. Im 

Zuge dessen wurde das Thioharnstoffderivat 42 als Wasserstoffbrücken-Donor und das 

Nitroolefin 56a als Wasserstoffbrücken-Akzeptor verwendet. Die NMR Messungen wurden am 

----- -- ----- -- -- -- ----- --

- --------- -- ---- 

Hochdruck Optimierung von 

Reaktionsparametern durch 

PCP-SAFT Modellierung 

Abbildung 1. Grafische Darstellung der Michael Addition von Diethylmalonat an verschiedene 
heteroaromatische Nitroolefine mit der PCP-SAFT gestützten Optimierung der Reaktionsparameter. 
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Institut für Biophysik und physikalische Biochemie in Zusammenarbeit mit Dr. Markus Beck-

Erlach, Mitarbeiter von Prof. Sprangers, durchgeführt. 

 

Abbildung 2. Thioharnstoff 42, ein Wasserstoffbrücken-Donor, und trans-β-nitrostyrol (56a), ein 
Wasserstoffbrücken-Akzeptor. Bildung eines Katalysator-Substrat-Komplex. 

 

Abschließend wurden zusätzlich zu den NMR Messungen IR Messungen durchgeführt, um 

den Effekt von Druck auf Wasserstoffbrückennetzwerke zu untersuchen. Der Einsatz von 

Infrarotspektroskopie war notwendig, um die uneindeutigen Ergebnisse der Kernspinresonanz 

zu ergänzen. Dazu wurden dieselben Wasserstoffbrücken-Donor-Akzeptor-Komplexe 

verwendet, jedoch kam Dichlormethan als Lösungsmittel zum Einsatz. Unglücklicherweise sah 

man die zu erwartenden Effekte von H-Brücken-Donor und Akzeptor sowohl unter 

Normaldruck als auch unter Hochdruck nicht und somit auch nicht die damit verbundenen 

Spektralverschiebung zu geringeren Wellenzahlen. Da das Konzept der H-Brücken-Komplexe 

nicht die erwünschten Ergebnisse lieferte wurden kleine Amide und deren intramolekulare 

Wasserstoffbrücken untersucht. Die Ergebnisse der Normaldruckmessungen zeigten dabei 

eine hohe Übereinstimmung mit den Ergebnissen der Literatur. Unglücklicherweise konnten 

die Hochruckmessungen in organischen Lösungsmitteln, besonders in Dichlormethan und 

Chloroform, nicht durchgeführt werden, da das Risiko das Diamantfenster zu beschädigen zu 

hoch war. Sobald eine geeignete Alternative gefunden wird sollten diese Untersuchungen 

nachgeholt werden. 
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5 Experimental Part 

5.1 General Information 

Commercially available chemicals were purchased in high quality and were used without 

further purification. Reactions with moisture or oxygen sensitive reagents were carried out in 

flame dried glassware under an atmosphere of predried nitrogen. Anhydrous solvents were 

prepared by established laboratory procedures. CH2Cl2, EtOAc and hexanes (40–60 °C) for 

chromatography were distilled prior to use. 

Thin Layer Chromatography  

Thin layer chromatography was performed with TLC precoated aluminum sheets (Merck) Silica 

gel 60 F254, 0.2 mm layer thickness. Visualization was done with UV light (λ = 254 nm) and 

staining with vanillin (6.0 g vanillin, 100 mL ethanol (95%), 1 mL conc. sulfuric acid), ninhydrin 

(300 mg ninhydrin, 3 mL conc. acetic acid, 100 mL ethanol) or potassium permanganate (1.0 g 

KMnO4, 2.0 g Na2CO3, 100 mL H2O) followed by heating. 

Column Chromatography 

Column chromatography was performed with silica gel (Merck, 0.063–0.200 mm particle size) 

and flash silica gel 60 (Merck, 0.040–0.063 mm particle size). 

NMR Spectroscopy 

1H-NMR spectra were recorded on FT-NMR-spectrometer of the type Bruker Avance 300 

(300 MHz for 1H, 75 MHz for 13C) or BRUKER Avance III 400 “Nanobay” (400 MHz for 1H, 

101 MHz for 13C). Chemical shifts for 1H-NMR were reported as δ, parts per million (ppm), 

relative to the signal of CHCl3 at 7.26 ppm, H2O at 4.79 ppm, D3COD pentet at 3.31 ppm and 

relative to the center line signal of the DMSO-d6 quintet at 2.50 ppm. Spectra were evaluated 

in 1st order and coupling constants J were reported in Hertz (Hz). The following notations 

indicate the multiplicity of the signals: s = singlet, bs = broad singlet, d = doublet, t = triplet, q 

= quartet and m = multiplet, and combinations thereof. Chemical shifts for 13C-NMR were 

reported as δ, parts per million (ppm), relative to the center line signal of the CDCl3 triplet at 

77.2 ppm, DMSO-d6 septet at 39.5 ppm and D3COD septet at 49.0 ppm. NMR-yields were 

determined using diphenoxymethane as internal standard. 

IR Spectroscopy 

FTIR spectroscopy was carried out on a Cary 630 FTIR Spectrometer. Solid and liquid 

compounds were measured neatly and the wave numbers are reported as cm-1. 
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Mass Spectrometry 

Mass spectra were recorded by the Central Analytical Laboratory (University of Regensburg) 

using Jeol AccuTOF GCX and Agilent Q-TOF 6540 UHD. High-resolution mass spectra were 

measured using atmospheric pressure chemical ionization (APCI), electron ionization (EI), 

electrospray ionization (ESI) with a quadrupole time-of-flight (Q-TOF) detector. 

Optical Rotation 

Determination of optical rotation was carried out on a MCP 500 Modular Circular Polarimeter 

by Anton Paar using 589 nm (Na-D-line) as measurement wavelength. 

Chiral-HPLC 

Enantiomeric excess was determined by chiral HPLC using Varian 920-LC with a photodiode 

array (PDA). For each compound a specified chiral stationary phase was used (Phenomenex 

Lux Cellulose-1/Phenomenex Lux Cellulose-2, 4.6 x 250 mm, particle size 5 µm). 

High Pressure Reactions 

High pressure reactions up to 440 MPa were performed using a self-custom-built hydraulic 

high pressure apparatus from Unipress (Warsaw) using melted PTFE tubes as reaction 

vessels. A 1:1 (v/v) mixture of decahydronaphthalene (mixture of cis and trans) and 2,2,4-

trimethylpentane was used as a pressurizing medium. 

Melting Points 

Melting points were measured on an SRS MPA 100 OptiMelt instrument. Values thus obtained 

were not corrected. 
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5.2 Experimental Procedures and Analytical Data 

All Substrates were prepared following the reported procedures and their analytical data were 

consistent with those published in the literature. 

 

5.2.1 High Pressure Technique 

 

The pressure vessel is a piston-cylinder reactor made of solid steel (Figure 35) including the 

reaction mixture encapsulated in sealed reaction vessels. The pressure vessel is then filled 

with a pressurizing medium. In this case, the reaction vessels are made from PTFE (Figure 

36). As PTFE is thermoplastic, tubes can be processed through thermal impact providing 

cheap reaction vessels. A certain set of know-how and practice is required for proper sealing 

to prevent leaking. Alternatively, screw cap vials consisting of thicker double-walled PTFE 

material can be used instead. These vials are indeed reusable, but they have a fixed reaction 

volume which cannot be adapted. In the figure below a step-by-step guidance for the thermal 

processing of PTFE tubes is given. 

 

 

Figure 35. A self-custom-built hydraulic high pressure apparatus from Unipress (Warsaw), middle: 

pressure vessel (cylinder) with the piston on top, right: pressure vessel inserted in the high pressure 

apparatus. 
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Figure 36. A: Little piece of the bulk stock PTFE tubes. B: One-sided thermally sealed PTFE tube. C: One-sided 

sealed tube filled with reaction mixture. D: Completely sealed tube containing the reaction mixture with a little 

residual air left. E: Self-made custom screw cap vial consisting of a double-walled PTFE tube sealed by two plugs. 

 

Diphenoxymethane (S1)[95] 

 

A 500 mL round bottom flask equipped with a magnetic stirring bar 

was charged with KOH (33.0 g, 590 mmol, 8.0 equiv) and H2O 

(100 mL) under cooling with an ice bath. After complete dissolving phenol (7.00 g, 74.4 mmol, 

1.0 equiv) was added, then CH2Cl2 (70 mL, 93.0 g, 1.1 mol, 15.0 equiv) and TBAB (2.88 g, 

8.90 mmol, 0.1 equiv). After the reaction mixture was stirred for 30 h at 50 °C the crude mixture 

was transferred to a separatory funnel, the organic layer was washed with sat. NaHCO3 (5 × 

100 mL) and brine (5 × 100 mL), dried over anhydrous MgSO4, filtered and the solvent was 

removed under reduced pressure to give S1 (6.00 g, 37.2 mmol, 81%) as a colorless oil. 

1H-NMR (300 MHz, CDCl3): δ 7.35 – 7.30 (m, 4H), 7.17 – 7.11 (m, 4H), 7.08 – 7.02 (m, 2H), 

5.75 (s, 2H). 13C-NMR (75 MHz, CDCl3): δ 157.1, 129.69, 122.57, 116.61, 91.29. 

 

1,3-bis(3,5-bis(trifluoromethyl)phenyl)thiourea (42)[96] 

 

A 25 mL round bottom flask equipped with a magnetic 

stirring bar and a reflux condenser was charged with 3,5-

bis(trifluoromethyl)aniline (619 mg, 2.70 mmol, 1.0 equiv) in 

anhydrous THF (5 mL). 1-Isothiocyanato-3,5-

bis(trifluoromethyl)benzene (732 mg, 2.70 mmol, 1.0 equiv) in anhydrous THF (5 mL) was 

added dropwise and the resulting mixture was heated to 50 °C for 115 h. The crude product 

was purified by recrystallization from CHCl3 to give 42 (1.35 g, 2.70 mmol, 99%) as a colorless 

solid. 
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1H-NMR (300 MHz, CD3CN): δ 8.79 (bs, 2H), 8.10 (s, 4H), 7.83 (s, 2H).  

 

(1R,2R)-(+)-1,2-Diaminocyclohexane L-tartrate (S2)[97] 

 

A 100 mL Erlenmeyer assembled with a stirring bar and a 

thermometer was charged with H2O (25 mL). L-(+)-Tartaric 

acid (7.5 g, 50.0 mmol, 0.5 equiv) was added with stirring 

in one portion. The solution was stirred as racemic trans-1,2-diaminocyclohexane (11.4 g, 

12 mL, 100 mmol, 1.0 equiv) was added carefully in one portion. A slurry was formed initially 

but complete dissolution was observed once addition was complete. Glacial acetic acid (5 mL) 

was then added in one portion. The product began to precipitate during the addition and 

continued to precipitate while the reaction mixture was allowed to cool to 5 °C, with stirring, 

overnight. The product was isolated by filtration, the filter cake was washed with cold H2O 

followed by MeOH (4 × 15 mL) at room temperature. The product was dried under reduced 

pressure to give S2 (8.5 g, 32.0 mmol, 32%) as a white powder. S2 obtained exhibits 

enantiomeric pure. The product was used without further purification in the next step. 

 

(1R,2R)-Cyclohexane-1,2-diamine (S3)[97] 

 

A 100 mL round bottom flask equipped with a magnetic stirring bar was charged 

with a suspension of S2 (2.00 g, 7.57 mmol, 1.0 equiv) and CH2Cl2 (40 mL). 

While this mixture was stirred vigorously NaOH (728 mg, 18.2 mmol, 2.4 equiv) 

in a mixture of H2O (5 mL) and brine (5 mL) was added dropwise. After stirring for 30 min at 

room temperature the mixture was transferred to a separating funnel and the organic layer was 

separated. The aqueous layer was extracted with CH2Cl2 (4 × 20 mL). The combined organic 

layers were dried over anhydrous MgSO4, filtered and concentrated to give crude S3. The 

crude product was sublimated to give S3 (640 mg, 5.60 mmol, 74%) as a colorless solid  

1H-NMR (300 MHz, CDCl3) δ 2.30 – 2.16 (m, 2H), 1.88 – 1.76 (m, 2H), 1.73 – 1.59 (m, 2H), 

1.45 (s, 4H), 1.34 – 1.01 (m, 4H). 13C-NMR (75 MHz, CDCl3) δ 57.81, 35.64, 25.58. 

 

1-((1R,2R)-2-Aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (46)[98] 

 

A flame dried 50 mL Schlenk flask equipped with a magnetic 

stirring bar was charged with S3 (327 mg, 2.87 mmol, 1.0 equiv) 

in anhydrous THF (10 mL) and stirred under N2 atmosphere 

while cooling with an ice bath. 1-Isothiocyanato-

3,5-bis(trifluoromethyl)benzene (777 mg, 2.87 mmol, 1.0 equiv) in anhydrous THF (10 mL) was 
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added dropwise to the stirred solution over 30 min. After the reaction mixture reached room 

temperature it was stirred for another 15 h. The solvent was removed under reduced pressure 

and the resulting residue was purified on silica (CH2Cl2/MeOH/NEt3 40:1:0.1) to give 46 

(902 mg, 2.34 mmol, 82%) as a colorless solid. Spectral data are in agreement with those 

reported in literature.[99] 

1H-NMR (300 MHz, CDCl3): δ 8.03 (s, 2H), 7.58 (s, 1H), 6.27 (bs, 1H), 3.39 (bs, 1H), 2.79 – 

2.63 (m, 1H), 2.13 – 1.87 (m, 2H), 1.87 – 1.66 (m, 2H), 1.41 – 1.13 (m, 4H). 

 

1-(3,5-bis(Trifluoromethyl)phenyl)-3-((1R,2R)-2-(dimethylamino)cyclohexyl)thiourea 

(57)[100] 

 

A 25 mL round bottom flask equipped with a magnetic stirring bar 

was charged with 46 (500 mg, 1.30 mmol, 1.0 equiv) in 1,4-

dioxane (3 mL). To this mixture Zn powder (339 mg, 5.19 mmol, 

4.0 equiv), AcOH (623 mg, 10.4 mmol, 8.0 equiv) and aq. 

formaldehyde (37%, 117 mg, 3.89 mmol, 3.0 equiv) were added and the resulting reaction 

mixture was stirred for 72 h at room temperature. After the stirring aq. NH3 solution (32%, 3 mL) 

was added. The mixture was transferred to a separatory funnel, the aqueous phase was 

extracted with CH2Cl2 (3 × 10 mL), the organic layers were combined, dried over anhydrous 

MgSO4, filtered and the solvent was removed under reduced pressure. The residue was 

purified on silica (EtOAc/NEt3 100:1) to give 57 (227 mg, 548 µmol, 42%) as a colorless solid. 

Spectral data are in agreement with those reported in literature.[101] 

1H-NMR (300 MHz, CDCl3): δ 7.84 (s, 2H), 7.62 (s, 1H), 2.52 – 2.41 (m, 1H), 2.34 (bs, 6H), 

1.97 – 1.68 (m, 3H), 1.37 – 1.10 (m, 4H). 

 

Methyl 2-isocyanoacetate (66)[102] 

A 100 mL round bottom was charged with 2-isocyanoacetic acid (851 mg, 

10.0 mmol, 1.0 equiv) in methanol (40 mL) and Amberlyst 15 (1.6 g). The 

resulting mixture was stirred at room temperature for 7 h, Amberlyst 15 was 

filtered, washed with Et2O and the solvent was removed under reduced pressure to give 66 

(624 mg, 6.29 mmol, 63%) as a colorless oil. 

1H-NMR (300 MHz, CDCl3) δ 3.82 (s, 3H), 3.47 (s, 2H). 13C-NMR (75 MHz, CDCl3) δ 163.50, 

113.08, 53.71, 24.62. 
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5.2.2 Nitroolefin Synthesis 

 

(E)-(2-Nitrovinyl)benzene (56a)[103]  

 

A 250 mL Erlenmeyer flask equipped with a magnetic stirring bar, a 

thermometer and a dropping funnel was charged with benzaldehyde 

(10.2 mL, 10.6 g, 100 mmol, 1.0 equiv), nitromethane (5.4 mL, 6.16 g, 101 mmol, 1.0 equiv) 

and EtOH (20 mL). The mixture was cooled to 0 °C in an ice bath and a 2 M NaOH (55 mL, 

4.40 g, 110 mmol, 1.1 equiv) was added dropwise, keeping the temperature below 5 °C. After 

complete addition, the mixture was stirred for further 30 min at the same temperature, then 

diluted with H2O (50 mL). The reaction mixture was poured into a mixture of ice (50 g) and 

conc. HCl (16 mL, 37wt%, 1.9 equiv) and the resulting yellow precipitate was filtered and 

washed with cold H2O (2 × 10 mL). The crude product was recrystallized from EtOH to give 

56a (10.6 g, 68.8 mmol, 69%) as yellow needles.  

1H-NMR (400 MHz, CDCl3) δ 8.02 (d, J = 13.8 Hz, 1H), 7.59 (d, J = 13.6 Hz, 1H), 7.57 – 7.42 

(m, 5H). 13C-NMR (75 MHz, CDCl3) δ 139.18, 137.19, 132.26, 130.14, 129.50, 129.25. 

 

1H-Pyrrole-2-carbaldehyde (S4)[104] 

 

A 100 mL round bottom flask was charged with DMF (2.5 mL, 2.40 g, 32.8 mmol, 

1.1 equiv), POCl3 (2.9 mL, 4.94 g, 32.2 mmol, 1.1 equiv) was added dropwise and 

the reaction was stirred for 15 min at room temperature. DCE (10 mL) was added 

and the mixture cooled to 0 °C. A solution of pyrrole (2.1 mL, 2.00 g, 29.8 mmol, 1.0 equiv) in 

DCE (10 mL) was added dropwise and the reaction was heated to 85 °C for 15 min before 

cooling to room temperature. A solution of NaOAc (22.0 g, 268 mmol, 9.0 equiv) in H2O (30 mL) 

was added and the biphasic mixture stirred at 100 °C for 15 min. The reaction was cooled to 

room temperature and the phases separated. The aqueous phase was extracted with Et2O 

(3 × 30 mL). The combined organic layers were washed with NaHCO3 (80 mL), dried over 

MgSO4 and concentrated under reduced pressure to give S4 (2.15 g, 22.6 mmol, 76%) as a 

colorless solid. 

1H-NMR (400 MHz, CDCl3) δ 10.04 – 9.56 (m, 1H), 9.53 (s, 1H), 7.18 – 7.11 (m, 1H), 7.03 – 

6.96 (m, 1H), 6.40 – 6.32 (m, 1H). 13C-NMR (101 MHz, CDCl3) δ 179.43, 133.06, 126.41, 

121.38, 111.50. 
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(E)-2-(2-Nitrovinyl)-1H-pyrrole (S5)[105] 

 

A flame dried 100 mL Schlenck flask was charged with S4 (1.08 g, 

11.3 mmol, 1.0 equiv) dissolved in anhydrous methanol (30 mL) and treated 

with nitromethane (1.2 mL, 1.31 g, 21.5 mmol, 1.9 equiv), NaOAc (928 mg, 

11.3 mmol, 1.0 equiv), and methylamine hydrochloride (764 mg, 11.30 mmol, 1.0 equiv). 

Stirring at room temperature for 12 h afforded a yellow/brown mixture. The solvent was 

removed in vacuo without heating to give a brown oil. The oil was dissolved in EtOAc and 

passed through a pad of silica. The latter was washed with EtOAc until the washings were 

colorless. Evaporation of the solvent under reduced pressure without heating gave S5 

(900 mg, 6.52 mmol, 58%) as brown solid. 

1H-NMR (300 MHz, CDCl3) δ 8.78 (bs, 1H), 7.95 (d, J = 13.4 Hz, 1H), 7.40 (d, J = 13.4 Hz, 

1H), 7.14 – 7.08 (m, 1H), 6.83 – 6.78 (m, 1H), 6.43 – 6.36 (m, 1H).13C-NMR (75 MHz, CDCl3) 

δ 130.95, 129.76, 126.38, 124.01, 119.32, 112.78. 

 

tert-Butyl (E)-2-(2-nitrovinyl)-1H-pyrrole-1-carboxylate (56b)[106] 

 

A 50 mL round bottom flask, equipped with a magnetic stirring bar, was 

charged with S5 (400 mg, 2.90 mmol, 1.0 equiv) and was dissolved in THF 

(15 mL). Di-tert-butyl dicarbonate (758 mg, 3.48 mmol, 1.2 equiv) and NEt3 

(352 mg, 3.48 mmol, 1.2 equiv) were added subsequently. The reaction mixture was stirred 

for 16 h at room temperature, the solvent was removed under reduced pressure and the crude 

product was purified on silica (hexanes/EtOAc 6:1) to give 56b (538 mg, 2.26 mmol, 78%) as 

a yellow solid. 

1H-NMR (300 MHz, CDCl3) δ 8.76 (d, J = 13.5 Hz, 1H), 7.54 (dd, J = 3.2, 1.6 Hz, 1H), 7.48 (d, 

J = 13.5 Hz, 1H), 6.87 – 6.79 (m, 1H), 6.34 – 6.26 (m, 1H), 1.65 (s, 9H). 13C-NMR (101 MHz, 

CDCl3) δ 148.59, 135.12, 129.99, 127.64, 126.25, 118.05, 112.32, 86.06, 28.09. 

 

5-Chloro-1H-pyrrole-2-carbaldehyde (S6)[107] 

 

A flame dried 500 mL Schlenk flask was charged with pyrrole (2.00 g, 

29.8 mmol, 1.0 equiv) in THF (130 mL) under N2 atmosphere and was cooled 

to -78 °C. To the stirred pyrrole solution, a solution of NCS (3.98 g, 29.8 mmol, 

1.0 equiv) in THF (130 mL) was added dropwise over 15 min. The resulting mixture was stirred 

for 30 min at -78 °C and placed in the freezer for 16 h. The solution was brought to 0 °C and 

was stirred for 6 h at this temperature. The acylation agent was added dropwise over 10 min 

and the resulting solution was stirred for 16 h at room temperature. An aq. solution of NaOAc 
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(8.56 g, 104.3 mmol, 3.5 equiv, 260 mL H2O) was added and the mixture was heated to reflux 

for 30 min. The crude mixture was extracted with DEE (3 × 150 mL), washed with sat. NaHCO3 

(2 × 250 mL) and H2O (2 × 400 mL). The organic layer was dried over MgSO4, filtered and the 

solvent was removed under reduced pressure. The residue was purified on silica 

(CH2Cl2/EtOAc 9:1) to give S6 (1.12 g, 8.65 mmol, 29%) as a colorless solid. 

Acylating agent: A 100 mL round bottom flask was charged with POCl3 (5.03 g, 32.8 mmol, 

1.1 equiv) and cooled to 0 °C. DMF (2.40 g, 32.8 mmol, 1.1 equiv) was added dropwise and 

the resulting mixture was stirred at 0 °C until the corresponding salt was formed. The Vilsmeier 

reagent was dissolved in CH2Cl2 (70 mL) prior to addition. 

1H-NMR (400 MHz, CDCl3) δ 10.97 (bs, 1H), 9.38 (s, 1H), 6.95 (dd, J = 3.9, 2.7 Hz, 1H), 6.22 

(dd, J = 4.0, 2.4 Hz, 1H). 13C-NMR (101 MHz, CDCl3) δ 178.43, 131.91, 126.24, 122.72, 

110.16. 

 

(E)-2-Chloro-5-(2-nitrovinyl)-1H-pyrrole (S7) 

 

A 100 mL round bottom flask was charged with S6 (500 mg, 3.86 mmol, 

1.0 equiv) in anhydrous MeOH (10 mL). To this solution nitromethane 

(448 mg, 7.33 mmol, 1.9 equiv), NaOAc (317 mg, 3.86 mmol, 1.0 equiv) 

and methylamine hydrochloride (261 mg, 3.86 mmol, 1.0 equiv) was added and the resulting 

mixture was stirred at room temperature for 16 h. The solvent was removed under reduced 

pressure without heating, dissolved in EtOAc, passed through a pad of silica and washed with 

EtOAC until the washings were colorless. The solvent was removed under reduced pressure 

without heating to give S7 (462 mg, 2.68 mmol, 69%) as a yellow solid. 

1H-NMR (400 MHz, CDCl3) δ 9.24 (bs, 1H), 7.86 (d, J = 13.4 Hz, 1H), 7.45 (d, J = 13.4 Hz, 

1H), 6.73 (dd, J = 4.0, 2.8 Hz, 1H), 6.23 (dd, J = 4.0, 2.3 Hz, 1H). 13C-NMR (101 MHz, CDCl3) 

δ 131.11, 128.82, 124.05, 123.39, 120.72, 111.16. IR (neat): 3220, 1618, 1543, 1476, 1297, 

1252, 1141, 1040, 980, 951, 813, 757 cm-1. HRMS (EI) m/z calculated for C6H5N2O2Cl ([M]+∙) 

172.00341, found 172.00357. Mp: 97 °C. 

 

tert-Butyl (E)-2-chloro-5-(2-nitrovinyl)-1H-pyrrole-1-carboxylate (56c) 

 

A round bottom flask was charged with S7 (400 mg, 2.32 mmol, 

1.0 equiv) in anhydrous THF (10 mL), di-tert-butyl dicarbonate (607 mg, 

2.78 mmol, 1.2 equiv), NEt3 (282 mg, 2.78 mmol, 1.2 equiv) and DMAP 

(28 mg, 0.23 mmol, 0.1 equiv). The resulting mixture was stirred at rt for 3 h. The solvent was 

removed under reduced pressure without heating and the crude product was purified on silica 

(hexanes/EtOAc 6:1) to give 56c (348 mg, 1.28 mmol, 55%) as a yellow solid. 
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1H-NMR (400 MHz, CDCl3) δ 8.39 (d, J = 13.5 Hz, 1H), 7.41 (d, J = 13.4 Hz, 1H), 6.74 (dd, 

J = 4.0, 0.8 Hz, 1H), 6.27 (dd, J = 4.0, 0.5 Hz, 1H), 1.66 (s, 9H). 13C-NMR (101 MHz, CDCl3) δ 

147.42, 134.68, 129.42, 126.34, 124.21, 116.11, 113.39, 87.56, 28.01. IR (neat): 3116, 2982, 

2937, 1744, 1614, 1547, 1502, 1446, 1297, 1252, 1156, 1103, 1028, 962, 828, 787, 712 cm-1. 

HRMS (ESI) m/z calculated for C11H14N2O4Cl ([M+H]+) 273.0637, found 273.0634. Mp: 105 °C. 

 

(E)-2-(2-Nitrovinyl)furan (56d)[108] 

 

A 500 mL round bottom flask equipped with a magnetic stirring bar was 

charged with nitromethane (7.98 g, 7.0 mL, 130 mmol, 2.5 equiv), 2-furfural 

(5.00 g, 52.0 mmol, 1.0 equiv) and methanol (10 mL) and the reaction mixture was cooled to 

0 °C. Aqueous 1 M NaOH (5.21 g, 130 mL, 130 mmol, 2.5 equiv) was added via an addition 

funnel over 5 min then an ice/H2O mixture (25 mL) was added and the mixture was stirred at 

0 °C for 15 min. The mixture was then slowly added to aqueous 8 M HCl (50 mL) and allowed 

to stir for 24 h at room temperature. The mixture was extracted with CH2Cl2 (3 × 150 mL) and 

the combined organic layers were washed with brine (150 mL), dried over anhydrous MgSO4, 

filtered and concentrated to give a brown residue. The product was purified on silica 

(hexanes/EtOAc 6:1) to give 56d (5.85 g, 42.1 mmol, 81%) as a yellow solid. 

1H-NMR (300 MHz, CDCl3) δ 7.77 (d, J = 13.2 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.52 (d, 

J = 13.2 Hz, 1H), 6.89 (d, J = 3.6 Hz, 1H), 6.57 (dd, J = 3.6, 1.8 Hz, 1H). 13C-NMR (75 MHz, 

CDCl3) δ 146.96, 146.74, 135.00, 125.56, 120.15, 113.47. 

 

(E)-2-(2-Nitrovinyl)thiophene (56e)[108] 

 

A 500 mL round bottom flask equipped with a magnetic stirring bar was 

charged with nitromethane (7.98 g, 7.00 mL, 130 mmol, 2.5 equiv), 

thiophen carbaldehyde (5.84 g, 52.0 mmol, 1.0 equiv) and methanol (10 mL) and the reaction 

mixture was cooled to 0 °C. Aqueous 1 M NaOH (130 mL, 130 mmol, 2.5 equiv) was added 

via an addition funnel over 5 min then an ice/H2O mixture (25 mL) was added and the mixture 

was stirred at 0 °C for 15 min. The mixture was then slowly added to aqueous 8 M HCl (50 mL) 

and allowed to stir for 24 h. The mixture was extracted with CH2Cl2 (3 × 150 mL) and the 

combined organic layers were washed with brine (150 mL), dried over anhydrous MgSO4, 

filtered and concentrated to give a brown residue. The product was purified on silica 

(hexanes/EtOAc 6:1) to give 56e (7.12 g, 45.9 mmol, 88%) as a yellow solid. 

1H-NMR (300 MHz, CDCl3) δ 8.14 (d, J = 13.4 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.52 – 7.42 (m, 

2H), 7.14 (dd, J = 5.1, 3.7 Hz, 1H). 13C-NMR (75 MHz, CDCl3) δ 135.39, 134.78, 133.82, 

132.21, 131.76, 128.98. 
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1H-Indole-3-carbaldehyde (S8)[109] 

 

A 250 mL round bottom flask, equipped with a magnetic stirring bar, was 

charged with POCl3 (38 mL, 62.8 g, 409 mmol, 6.0 equiv) and DMF (80 mL) 

and was cooled to 0 °C. To this stirred solution indole (8.00 g, 68.3 mmol, 

1.0 equiv) in DMF (80 mL) was added. After stirring for 2 h at 0 °C the mixture 

was poured into 600 mL ice water. Then NaOH was added to adjust the pH to 9.0. The resulting 

mixture was filtered and washed with EtOAc. The filtrate was extracted with EtOAc (3 × 

100 mL). The organic layers were dried over Na2SO4 and the solvent was removed under 

reduced pressure to give S8 (8.96 g, 61.72 mmol, 90%) as a pale yellow solid. 

1H-NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 9.94 (s, 1H), 8.28 (s, 1H), 8.17 – 8.02 (m, 1H), 

7.60 – 7.44 (m, 1H), 7.35 – 7.11 (m, 2H). 13C-NMR (101 MHz, DMSO) δ 185.27, 138.64, 

137.18, 124.22, 123.66, 122.33, 120.96, 118.30, 112.58. 

 

(E)-3-(2-Nitrovinyl)-1H-indole (56m)[110]  

 

A 50 mL round bottom flask, equipped with a stir bar, was charged with S8 

(2.76 g, 19.0 mmol, 1.0 equiv), NH4OAc (1.47 g, 19.0 mmol, 1.0 equiv) and 

AcOH (14.3 mL). Nitromethan (3.48 g, 3.05 mL, 57.0 mmol, 3.0 equiv) was 

added dropwise and the mixture was stirred at reflux for 4 h. After cooling to 

room temperature, the reaction mixture was extracted with EtOAc (2 × 250 mL) 

and the organic layers were washed with H2O (3 × 200 mL) and dried over anhydrous Na2SO4. 

The solvent was removed under reduced pressure and the crude product was purified on silica 

(hexanes/EtOAc 9:1) and recrystallized from ethanol to give 56m (1.85 g, 9.83 mmol, 52%) 

deep purple crystals. 

1H-NMR (300 MHz, DMSO) δ 12.26 (s, 1H), 8.41 (d, J = 13.4 Hz, 1H), 8.26 (d, J = 3.2 Hz, 1H), 

8.01 (d, J = 13.4 Hz, 1H), 7.99 – 7.93 (m, 1H), 7.56 – 7.49 (m, 1H), 7.26 (pd, J = 7.2, 1.5 Hz, 

2H). 13C-NMR (101 MHz, DMSO) δ 137.68, 136.36, 134.73, 131.11, 124.61, 123.35, 121.91, 

120.52, 112.81, 108.24. 

 

tert-Butyl (E)-3-(2-nitrovinyl)-1H-indole-1-carboxylate (56f) 

 

A 25 mL round bottom flask equipped with a stirring bar, was charged with 56m 

(1.25 g, 6.64 mmol, 1.0 equiv) in anhydrous THF (10 mL), di-tert-butyl 

dicarbonate (1.74 g, 7.97 mmol, 1.2 equiv) and DMAP (81 mg, 664 µmol, 

0.1 equiv). The reaction mixture was stirred for 2 h at room temperature until full 

conversion was observed judged by TLC. The solvent was removed under 
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reduced pressure and the crude product was purified on silica (hexanes/EtOAc 6:1) to give 56f 

(650 mg, 2.25 mmol, 34%) as a pale green solid. 

1H-NMR (300 MHz, CDCl3) δ 8.26 – 8.22 (m, 1H), 8.19 (d, J = 13.7 Hz, 1H), 8.04 (s, 1H), 7.79 

(d, J = 13.7 Hz, 1H), 7.76 – 7.69 (m, 1H), 7.49 – 7.36 (m, 2H), 1.70 (s, 9H). 13C-NMR (101 MHz, 

CDCl3) δ 148.75, 136.52, 135.92, 132.32, 131.74, 126.98, 126.11, 124.40, 120.34, 116.06, 

112.65, 85.71, 28.24. IR (neat): 3131, 3049, 2982, 2933, 1737, 1632, 1580, 1547, 1495, 1450, 

1368, 1338, 1238, 1148, 969, 857, 749, 712 cm-1. HRMS (ESI) m/z calculated for 

C15H16N2NaO4 ([M+Na]+) 311.1002, found 311.1007. Mp: 146 °C. 

 

2-Methyl-1H-indole-3-carbaldehyde (S9)[111] 

 

A 250 mL three-necked round bottom flask, equipped with a stirring bar, a 

thermometer and a reflux condenser was charged with anhydrous DMF 

(12.9 mL, 12.3 g, 168 mmol, 4.4 equiv) under N2 atmosphere and cooled to 

0 °C. POCl3 (3.83 mL, 6.43 g, 41.9 mmol, 1.1 equiv) was added dropwise and 

the mixture was stirred for 40 min at 0 °C. A solution of 2-methyl-1H-indole (5.00 g, 38.1 mmol, 

1.0 equiv) in DMF (7 mL) was added dropwise, maintaining the temperature below 10 °C. The 

solution was stirred 40 min at 0 °C and then 40 min at 35 °C. Pilled ice was added and a 

solution of NaOH (16.9 g, 422 mmol, dissolved in 44 mL H2O) was added via dropping funnel. 

The resulting mixture was heated to 100 °C for 30 min and cooled down to room temperature 

again. The brown precipitate was filtered off and washed with large amount of H2O. The 

product was dried under reduced pressure to give S9 (5.85 g, 36.8 mmol, 96%) as a brown 

solid. 

1H-NMR (300 MHz, DMSO) δ 11.99 (s, 1H), 10.05 (s, 1H), 8.12 – 7.97 (m, 1H), 7.47 – 7.31 

(m, 1H), 7.25 – 7.07 (m, 2H), 2.68 (s, 3H). 13C-NMR (101 MHz, DMSO) δ 184.23, 148.52, 

135.33, 125.56, 122.61, 121.85, 119.96, 113.63, 111.37, 11.50. 

 

(E)-2-Methyl-3-(2-nitrovinyl)-1H-indole (56l)[112]  

 

A 10 mL round bottom flask, equipped with a magnetic stirring bar, was 

charged with S9 (2.50 g, 15.7 mmol, 1.0 equiv), NH4OAc (1.82 g, 23.6 mmol, 

1.5 equiv) and nitromethane (1.3 mL, 1.44 g, 23.6 mmol, 1.5 equiv) and 

refluxed for 3 h. The resulting mixture was poured over crushed ice (200 g), 

the formed precipitate was filtered, dried and purified on silica (hexanes/EtOAc 

4:1) to give 56l (2.00 g, 9.89 mmol, 63%) as a red solid. 

1H-NMR (300 MHz, DMSO) δ 12.26 (s, 1H), 8.32 (d, J = 13.2 Hz, 1H), 7.91 (d, J = 13.2 Hz, 

1H), 7.88 – 7.81 (m, 1H), 7.47 – 7.37 (m, 1H), 7.28 – 7.13 (m, 2H), 2.61 (s, 3H). 
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13C-NMR (101 MHz, DMSO) δ 147.76, 136.40, 133.37, 129.69, 125.25, 122.89, 121.97, 

120.19, 111.92, 105.19, 11.91. 

 

tert-Butyl (E)-2-methyl-3-(2-nitrovinyl)-1H-indole-1-carboxylate (56g) 

 

A 25 mL round bottom flask equipped with a magnetic stirring bar, was 

charged with 56l (1.05 g, 5.19 mmol, 1.0 equiv) in anhydrous THF (10 mL), di-

tert-butyl dicarbonate (1.36 g, 6.23 mmol, 1.2 equiv) and DMAP (63 mg, 

519 µmol, 0.1 equiv). The reaction mixture was stirred for 2 h at room 

temperature until full conversion was observed judged by TLC. The solvent 

was removed under reduced pressure and the crude product was purified on silica 

(hexanes/EtOAc 6:1) to give 56g (550 mg, 1.82 mmol, 35%) as a pale yellow solid. 

1H-NMR (300 MHz, CDCl3) δ 8.33 (d, J = 13.6 Hz, 1H), 8.20 – 8.11 (m, 1H), 7.82 (d, 

J = 13.6 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.41 – 7.32 (m, 2H), 2.78 (s, 3H), 1.72 (s, 9H). 

13C-NMR (101 MHz, CDCl3) δ 149.80, 145.26, 136.60, 135.36, 131.43, 126.13, 125.16, 

124.32, 119.60, 115.99, 111.02, 85.85, 28.32, 14.71. IR (neat): 3131, 2978, 2933, 1733, 1618, 

1543, 1495, 1457, 1372, 1305, 1219, 1118, 1055, 977, 857, 805, 746 cm-1. HRMS (ESI) m/z 

calculated for C16H18N2NaO4 ([M+Na]+) 325.1159, found 325.1162. Mp: 125 °C. 

 

Benzofuran-2-carbaldehyde (S10)[113] 

 

A 100 mL flame dried Schlenk flask equipped with a magnetic stirring bar 

was charged with a solution of benzofuran (0.50 g, 4.23 mmol, 1.0 equiv) in 

anhydrous THF (20 mL) and cooled to -78 °C. To this solution n-BuLi (2.9 mL, 1.6 M in hexane, 

4.66 mmol) was added dropwise. After stirring for 1 h DMF (0.7 mL, 8.47 mmol, 2.0 equiv) was 

added dropwise. After 2.5 h at -78 °C the reaction mixture was quenched by addition of 

saturated aqueous NH4Cl solution (25 mL). The aqueous phase was extracted with EtOAc 

(3 × 50 mL) and the organic layer was washed with brine (50 mL), dried over MgSO4 and 

concentrated. The crude product was purified on silica (hexanes/EtOAc 95:5) to give S10 

(547 mg, 3.74 mmol, 88%) as a yellow oil.  

1H-NMR (300 MHz, CDCl3) δ 9.88 (s, 1H), 7.79 – 7.73 (m, 1H), 7.66 – 7.49 (m, 3H), 7.39 – 

7.31 (m, 1H). 13C-NMR (75 MHz, CDCl3) δ 179.91, 156.41, 152.83, 129.38, 126.79, 124.36, 

123.81, 117.94, 112.89. 
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(E)-2-(2-Nitrovinyl)benzofuran (56h)[113] 

 

A 25 mL round bottom flask was charged with a solution of S10 

(500 mg, 3.42 mmol, 1.0 equiv) in nitromethane (6.5 mL). To this 

solution NH4OAc (396 mg, 5.13 mmol, 1.5 equiv) was added and the 

resulting mixture was stirred for 3 h at reflux before quenching with H2O (9 mL). The aqueous 

layer was extracted with EtOAc (3 × 50 mL) and the combined organic extracts were dried over 

MgSO4, filtered and concentrated. The crude product was purified on silica (hexanes/EtOAc 

95:5 to 85:15) to give 56h (265 mg, 1.40 mmol, 41%) as a yellow solid. 

1H-NMR (300 MHz, CDCl3) δ 7.86 (d, J = 13.2 Hz, 1H), 7.72 – 7.60 (m, 2H), 7.54 – 7.40 (m, 

2H), 7.34 – 7.26 (m, 1H), 7.19 (s, 1H). 13C-NMR (75 MHz, CDCl3) δ 156.24, 148.15, 137.08, 

128.23, 128.13, 126.00, 124.08, 122.39, 116.37, 111.84. 

 

Benzo[b]thiophene-2-carbaldehyde (S11)[114] 

 

A 250 mL flame dried Schlenk flask equipped with a magnetic stirring bar 

was charged with a solution of benzothiophene (2.00 g, 14.9 mmol, 

1.0 equiv) in anhydrous THF (75 mL) and cooled to -78 °C. To this solution n-BuLi (10.3 mL, 

1.6 M in hexane, 16.4 mmol, 1.1 equiv) was added dropwise. After stirring for 1 h DMF (1.7 mL, 

22.4 mmol, 1.5 equiv) was added dropwise. After 2.5 h at -78 °C the reaction mixture was 

warmed slowly to room temperature and quenched by addition of sat. NH4Cl solution (50 mL). 

The aqueous phase was extracted with EtOAc (3 × 150 mL) and the organic phase was 

washed with brine (150 mL), dried over MgSO4 and concentrated. The crude product was 

purified on silica (hexanes/EtOAc 95:5) to give S11 (2.20 g, 13.6 mmol, 91%). 

1H-NMR (300 MHz, CDCl3) δ 10.11 (s, 1H), 8.03 (s, 1H), 7.99 – 7.86 (m, 2H), 7.56 – 7.39 (m, 

2H). 13C-NMR (101 MHz, CDCl3) δ 184.71, 143.35, 142.67, 138.58, 134.56, 128.21, 126.32, 

125.30, 123.30. 

 

(E)-2-(2-Nitrovinyl)benzo[b]thiophene (56i)[113]  

 

A 100 mL round bottom flask was charged with a solution of S11 

(2.03 g, 12.51 mmol, 1.0 equiv) in nitromethane (27 mL) and NH4OAc 

(1.45 g, 18.77 mmol, 1.5 equiv). The resulting mixture was stirred during 1 h at reflux before 

quenching with H2O. The aqueous layer was extracted with EtOAc (3 × 30 mL) and the 

combined organic extracts were dried over MgSO4, filtered and concentrated. The crude 

product was purified on silica (hexanes/EtOAc 92:2 to 95:5) to give 56i (1.08 g, 5.26 mmol, 

42%) as a yellow solid. 
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1H-NMR (400 MHz, CDCl3) δ 8.22 (d, J = 13.3 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.68 (s, 1H), 7.49 

(d, J = 13.4 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 141.20, 139.29, 137.15, 133.82, 133.12, 

132.79, 127.71, 125.53, 125.15, 122.75. 

 

3-Bromobenzo[b]thiophene (S12)[115] 

 

A 250 mL round bottom flask was charged with a solution of benzo[b]thiophene 

(5.09 g, 37.9 mmol, 1.0 equiv) in CHCl3 (37.5 mL) and AcOH (37.5 mL). N-

bromosuccinimide (8.43 g, 47.4 mmol, 1.3 equiv) was added stepwise for 4 h at 

0 °C and then allowed to stir at room temperature for 24 h. Then CHCl3 (15 mL) was added 

and the resulting mixture was successively washed with sat. Na2S2O3 solution (100 mL), sat. 

Na2CO3 solution (100 mL) and H2O (75 mL). The combined organic layers were then dried 

over MgSO4, filtered and the solvent was removed under reduced pressure. The resulting red 

liquid was then filtered through of a pad of silica, eluting with cyclohexane to give S12 (7.00 g, 

32.9 mmol, 87%) as a yellow oil. 

1H-NMR (300 MHz, CDCl3) δ 7.90 – 7.81 (m, 2H), 7.53 – 7.37 (m, 3H). 13C-NMR (101 MHz, 

CDCl3) δ 138.57, 137.51, 125.30, 125.03, 123.48, 123.06, 122.74, 107.69. 

 

Benzo[b]thiophene-3-carbaldehyde (S13)[116] 

 

A 250 mL round bottom flask equipped with a magnetic stirring bar was charged 

with a n-BuLi solution (10.3 mL, 1.6 M, 16.4 mmol, 1.0 equiv) and Et2O (45 mL). 

A S12 (3.50 g, 16.4 mmol, 1.0 equiv) solution in anhydrous Et2O (45 mL) was 

added over 5 min to the stirred n-BuLi solution. The mixture was stirred at -78 °C 

for further 30 min to give an ethereal suspension of 3-benzo[b]thienyllithium. A solution of DMF 

(1.53 mL, 19.7 mmol, 1.5 equiv) in Et2O (1.50 mL) was added dropwise to the stirred 

suspension of 3-benzo[b]thienyllithium at -78 °C and the mixture was stirred for 4 h. The 

mixture was then allowed to warm slowly to -5 °C and was stirred for 15 min. An excess of 2 M 

HCl was added, the organic layer was separated, and the aqueous layer was extracted with 

Et2O (2 × 40 mL). The organic layers were combined, washed with H2O (50 mL), dried over 

MgSO4, filtered and concentrated. The residue was purified on silica (CH2Cl2/hexanes 3:7) to 

give S13 (1.36 g, 8.38 mmol, 51%) as a colorless solid. 

1H-NMR (400 MHz, CDCl3) δ 10.16 (s, 1H), 8.73 – 8.65 (m, 1H), 8.33 (s, 1H), 7.94 – 7.86 (m, 

1H), 7.57 – 7.43 (m, 2H). 13C-NMR (101 MHz, CDCl3) δ 185.56, 143.32, 140.62, 136.67, 

135.32, 126.32, 126.27, 124.97, 122.57. 
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3-Vinylbenzo[b]thiophene (S14)[117] 

 

A flame dried 100 mL Schlenk flask equipped with a magnetic stirring bar was 

charged with methyltriphenylphosphonium iodide (2.96 g, 7.32 mmol, 1.1 equiv) 

and anhydrous THF (30 mL). To this suspension n-BuLi (2.71 mL, 2.7 M in 

toluene, 7.32 mmol, 1.1 equiv) was added dropwise at 0 °C under N2 

atmosphere. The mixture was further stirred for 30 min and the ylide can be visibly observed 

by its persistent yellow color. S13 (1.08 g, 6.66 mmol, 1.0 equiv) was dissolved in dry THF 

(8 mL) and added dropwise at 0 °C. The resulting mixture was stirred for another 20 min and 

allowed to warm to room temperature for further reaction. After 4 h, the reaction was quenched 

by saturated NH4Cl solution. CH2Cl2 (20 mL) was added and the aqueous phase was extracted 

with CH2Cl2 (3 × 30 mL). The organic layers were combined, dried over Na2SO4 and the solvent 

was removed under reduced pressure. The crude reaction mixture was purified on silica 

(hexanes) to give S14 (881 mg, 5.50 mmol, 83%) as a colorless oil. 

1H-NMR (400 MHz, CDCl3) δ 7.93 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.47 (s, 1H), 

7.44 – 7.34 (m, 2H), 6.99 (dd, J = 17.6, 11.1 Hz, 1H), 5.81 (dd, J = 17.6, 1.4 Hz, 1H), 5.39 (dd, 

J = 11.1, 1.1 Hz, 1H). 13C-NMR (101 MHz, CDCl3) δ 140.63, 137.79, 134.72, 129.39, 124.59, 

124.41, 123.03, 122.41, 122.10, 115.73. 

 

(E)-3-(2-Nitrovinyl)benzo[b]thiophene (56j)[118]  

 

A flame dried 50 mL round bottom flask was equipped with a magnetic stirring 

bar and a reflux condenser and was charged with S14 (1.04 g, 6.49 mmol, 

1.0 equiv), TEMPO (406 mg, 2.60 mmol, 0.4 equiv) and tBuONO (1.34 g, 

13.0 mmol, 2.0 equiv) in 1,4-dioxane (24 mL). The reaction mixture was then 

stirred for 16 h at 90 °C. The crude mixture was concentrated and purified on 

silica (hexanes/EtOAc 99:1) to give 56j (440 mg, 2.14 mmol, 33%) as a yellow solid. 

1H-NMR (400 MHz, CDCl3) δ 8.30 (d, J = 14.1 Hz, 1H), 8.00 – 7.91 (m, 3H), 7.76 (d, 

J = 13.7 Hz, 1H), 7.58 – 7.45 (m, 2H). 13C-NMR (101 MHz, CDCl3) δ 140.66, 136.86, 136.54, 

132.98, 131.22, 127.24, 125.86, 125.83, 123.47, 122.16. 

 

(E)-3-(2-Nitrovinyl)pyridine (56k)[119]  

 

A 25 mL round bottom flask equipped with a magnetic stirring bar was 

charged with methanol (4 mL) and nitromethane (6.3 mL, 117 mmol, 

2.5 equiv). With stirring methylamine hydrochloride (189 mg, 2.80 mmol, 

0.06 equiv), NaHCO3 (78 mg, 934 µmol, 0.02 equiv) and nicotinaldehyde (5.00 g, 46.7 mmol, 
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1.0 equiv) were added. The resulting mixture was stirred for 72 h at room temperature and the 

precipitate was filtered off and washed with a small amount of cold methanol. The solvent was 

removed under reduced pressure to give 56k (3.17 g, 21.1 mmol, 45%) as a pale yellow solid. 

1H-NMR (400 MHz, CDCl3) δ 8.78 (d, J = 2.5 Hz, 1H), 8.70 (dd, J = 4.8, 1.7 Hz, 1H), 7.99 (d, 

J = 13.8 Hz, 1H), 7.87 (dt, J = 8.1, 2.1 Hz, 1H), 7.62 (d, J = 13.8 Hz, 1H), 7.40 (dd, J = 8.0, 

4.8 Hz, 1H). 13C-NMR (101 MHz, CDCl3) δ 152.73, 150.47, 138.52, 135.56, 135.27, 126.27, 

124.20. 

 

5.2.3 General Procedure for High Pressure/ambient Pressure Reactions 

 

A 

Ambient pressure reactions were conducted in 5 mL round bottom flasks. The appropriate 

nitroolefin 56 (0.40 mmol, 1.0 equiv) and the thiourea catalyst 57 (1 mol%) were weighed into 

the flask and anhydrous solvent (0.8 mL) was added subsequently. Diethyl malonate (45, 

0.80 mmol, 2.0 equiv) was added to the flask and the reaction mixture was stirred for the 

indicated time. After that the solvent was removed under reduced pressure. The crude reaction 

mixture was analyzed by NMR-spectroscopy and the product was purified on silica. 

 

B 

High-pressure reactions were conducted in self-made PTFE tubes. A PTFE tube was sealed 

through melting off one side using crucible tongs and a brazing torch. The appropriate 

nitroolefin 56 (0.40 mmol, 1.0 equiv) and the thiourea catalyst 57 (1 mol%) were weighed into 

the tube. Anhydrous solvent (0.8 mL) was added subsequently. Diethyl malonate (45, 

0.80 mmol, 2.0 equiv) was added to the PTFE tube. After that the PTFE tube was sealed 

immediately, shaken and inserted into the high pressure reactor. The reactor was filled with 

the pressurizing medium, inserted into the apparatus and pressure was applied. After 

pressurizing for the indicated reaction time, the reaction mixture was filled into a round bottom 

flask and the solvent was removed under reduced pressure. The crude reaction mixture was 

analyzed by NMR-spectroscopy and the product was purified on silica. 
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5.2.4 Michael Addition Products 

 

Diethyl 2-(2-nitro-1-phenylethyl)malonate (58a)[65] 

 

Product 58a was prepared by following the general procedure A/B: 

Nitroolefin 56a (1.0 equiv), diethyl malonate (45, 2.0 equiv), solvent (0.5 M 

with respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 6:1) to give 58a as a colorless solid. 

1H-NMR (300 MHz, CDCl3) δ 7.35 – 7.20 (m, 5H), 4.97 – 4.80 (m, 2H), 4.29 – 4.16 (m, 3H), 

4.00 (q, J = 7.1 Hz, 2H), 3.82 (d, J = 9.3 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.1 Hz, 

3H). 13C-NMR (75 MHz, CDCl3) δ 167.57, 166.92, 136.31, 129.03, 128.45, 128.13, 77.76, 

62.28, 62.00, 55.07, 43.07, 14.08, 13.85. 

 

Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-1H-pyrrol-2-yl)-2-nitroethyl)malonat (58b) 

 

Product 58b was prepared by following the general procedure A/B: 

Nitroolefin 56b, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 4:1) to give 58b as a colorless oil (156 mg, 

392 µmol, 99%). 

1H-NMR (300 MHz, CDCl3): δ 7.20 (dd, J = 3.4, 1.7 Hz, 1H), 6.13 (dd, J = 3.4, 1.8 Hz, 1H), 

6.05 (t, J = 3.4 Hz, 1H), 4.86 – 5.09 (m, 3H), 4.04 – 4.25 (m, 5H), 1.61 (s, 9H), 1.24 (t, 

J = 7.1 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 167.76, 167.43, 149.29, 

129.56, 122.87, 113.90, 110.26, 84.71, 76.41, 62.00, 61.92, 53.47, 36.07, 28.08, 14.10, 14.00. 

IR (neat): 2982, 2937, 1729, 1554, 1479, 1416, 1371, 1323, 1244, 1155, 1125, 1069, 1025, 

846, 771, 730, 664 cm-1. HRMS (ESI) m/z calculated for C18H26N2O8Na ([M+Na]+) 421.1571, 

found 421.1587. Chiral HPLC (Phenomenex Lux Cellulose-1 4.6 × 250 mm, 5 µm, 

n-heptan/i-PrOH = 99:1, 1.0 mL/min, λ = 215 nm): tR(major) = 22.99 min, tR(minor) = 9.87 min, 

95% ee. Specific rotation [α]20
589 = +8.36° (c = 1.0, CH2Cl2). 
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Diethyl 2-(1-(1-(tert-butoxycarbonyl)-5-chloro-1H-pyrrol-2-yl)-2-nitroethyl)malonate 

(58c) 

 

Product 58c was prepared by following the general procedure A/B: 

Nitroolefin 56c, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 4:1) to give 58c as a colorless oil (72 mg, 

231 µmol, 50%). 

1H-NMR (400 MHz, CDCl3) δ 6.04 (q, J = 3.9 Hz, 2H), 5.05 – 4.85 (m, 2H), 4.75 (td, J = 8.2, 

4.3 Hz, 1H), 4.26 – 4.06 (m, 5H), 1.64 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H). 

13C-NMR (101 MHz, CDCl3) δ 167.67, 167.26, 148.54, 130.23, 118.03, 111.72, 111.27, 86.37, 

76.45, 62.15, 62.13, 36.24, 28.02, 14.13, 14.03. IR (neat): 2986, 2937, 1733, 1558, 1480, 

1372, 1308, 1252, 1215, 1156, 1096, 1021, 850, 783, 667 cm-1. HRMS (ESI) m/z calculated 

for C18H25ClN2O8Na ([M+Na]+) 455.1192, found 455.1203. 

 

Diethyl 2-(1-(furan-2-yl)-2-nitroethyl)malonate (58d)[120] 

 

Product 58d was prepared by following the general procedure A/B: 

Nitroolefin 56d, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 4:1) to give 58d as a colorless oil (107 mg, 356 µmol, 93%). 

1H-NMR (300 MHz, CDCl3) δ 7.34 (dd, J = 1.9, 0.8 Hz, 1H), 6.28 (dd, J = 3.3, 1.9 Hz, 1H), 6.21 

(dt, J = 3.3, 0.7 Hz, 1H), 4.97 – 4.82 (m, 2H), 4.37 (td, J = 7.9, 5.4 Hz, 1H), 4.26 – 4.09 (m, 

4H), 3.90 (d, J = 7.9 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H). 13C-NMR 

(75 MHz, CDCl3) δ 167.24, 166.94, 149.66, 142.85, 110.65, 108.57, 75.55, 62.27, 53.11, 

36.94, 14.08, 14.03. Chiral HPLC (Phenomenex Lux Cellulose-2, 4.6 × 250 mm, 5 µm, 

n-heptan/i-PrOH = 99:1, 1.0 mL/min, λ = 215 nm): tR(major) = 38.58 min, 

tR(minor) = 30.88 min, 93% ee. 

 

Diethyl 2-(2-nitro-1-(thiophen-2-yl)ethyl)malonate (58e)[65] 

 

Product 58e was prepared by following the general procedure A/B: 

Nitroolefin 56e, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 4:1) to give 58e as a colorless oil (109 mg, 312 µmol, 67%). 

1H-NMR (300 MHz, CDCl3) δ 7.22 (dd, J = 5.0, 1.4 Hz, 1H), 6.99 – 6.87 (m, 2H), 4.98 – 4.83 

(m, 2H), 4.55 (td, J = 8.0, 5.5 Hz, 1H), 4.22 (qd, J = 7.1, 2.5 Hz, 2H), 4.11 (q, J = 7.1 Hz, 2H), 
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3.86 (d, J = 8.1 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H). 13C-NMR (75 MHz, 

CDCl3) δ 167.30, 166.81, 138.63, 127.11, 126.90, 125.66, 78.16, 62.35, 62.25, 55.66, 38.49, 

14.07, 13.95. Chiral HPLC (Phenomenex Lux Cellulose-2, 4.6 × 250 mm, 5 µm, 

n-heptan/i-PrOH = 90:10, 0.5 mL/min, λ = 215 nm): tR(major) = 24.88 min, 

tR(minor) = 21.87 min, 91% ee. 

 

Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-1H-indol-3-yl)-2-nitroethyl)malonat (58f)  

 

Product 58f was prepared by following the general procedure A/B: 

Nitroolefin 56f, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 4:1) to give 58f as a colorless oil (153 mg, 

340 µmol, 79%). 

1H-NMR (400 MHz, CDCl3): δ 8.12 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.52 (s, 1H), 

7.33 (td, J = 7.7, 1.2 Hz, 1H), 7.27 (td, J = 7.5, 1.2 Hz, 1H), 5.01 (dd, J = 13.3, 8.0 Hz, 1H), 

4.97 (dd, J = 13.3, 5.3 Hz, 1H), 4.54 (td, J = 8.0, 5.4 Hz, 1H), 4.14 – 4.27 (m, 2H), 4.03 – 4.14 

(m, 2H), 4.01 (d, J = 8.4 Hz, 1H), 1.66 (s, 9H), 1.24 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3) δ 167.58, 167.15, 149.36, 135.38, 128.78, 125.10, 124.23, 122.99, 

118.63, 115.98, 115.56, 84.28, 76.76, 62.22, 62.12, 54.00, 34.25, 28.24, 14.04, 13.86. 

IR (neat): 3123, 2981, 2937, 1729, 1610, 1554, 1453, 1367, 1308, 1256, 1151, 1095, 1021, 

857, 745 cm-1. HRMS (ESI) m/z calculated for C22H32N3O8 ([M+NH4]+) 466.2184, found 

466.2190. Chiral HPLC (Phenomenex Lux Cellulose-2 4.6 × 250 mm, 5 µm, 

n-heptan/i-PrOH = 95:5, 1.0 mL/min, λ = 215 nm): tR(major) = 15.25 min, 

tR(minor) = 11.68 min, 91% ee. Specific rotation [α]20
589 = -4.52° (c = 1.0, CH2Cl2). 

 

Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-2-methyl-1H-indol-3-yl)-2-nitroethyl)malonat 

(58g) 

 

Product 58g was prepared by following the general procedure A/B: 

Nitroolefin 56g, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 6:1) to give 58g as a colorless oil (160 mg, 

350 µmol, 80%). 

1H-NMR (300 MHz, CDCl3): δ 8.08 – 8.17 (m, 1H), 7.40 – 7.49 (m, 1H), 7.16 – 7.28 (m, 2H), 

4.90 – 5.02 (m, 2H), 4.66 (ddd, J = 11.2, 8.8, 6.1 Hz, 1H), 4.18 – 4.36 (m, 2H), 4.10 (d, 

J = 11.2 Hz, 1H), 3.80 – 3.99 (m, 2H), 2.60 (s, 3H), 1.66 (d, J = 7.1 Hz, 9H), 1.30 (t, J = 7.1 Hz, 

3H), 0.88 (t, J = 7.2 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ 167.70, 166.72, 150.34, 136.99, 
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136.10, 126.92, 123.71, 122.74, 117.93, 115.93, 112.04, 84.34, 76.22, 62.44, 61.77, 53.16, 

34.88, 28.29, 14.09, 13.55. IR (neat): 2981, 2937, 1729, 1606, 1558, 1457, 1367, 1319, 1256, 

1226, 1159, 1028, 976, 913, 853, 745 cm-1. HRMS (ESI) m/z calculated for C23H30N2O8Na 

([M+Na]+) 485.1894, found 485.1896. Chiral HPLC (Phenomenex Lux Cellulose-1 4.6 × 

250 mm, 5 µm, n-heptan/i-PrOH = 70:30, 0.5 mL/min, λ = 215 nm): tR(major) = 9.90 min, 

tR(minor) = 11.77 min, 85% ee. Specific rotation [α]20
589 = +1.28° (c = 1.00, CH2Cl2). 

 

Diethyl 2-(1-(benzofuran-2-yl)-2-nitroethyl)malonate (58h) 

 

Product 58h was prepared by following the general procedure A/B: 

Nitroolefin 56h, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on 

flash silica (hexanes/EtOAc 4:1) to give 58h as a colorless oil (109 mg, 312 µmol, 83%). 

1H-NMR (300 MHz, , CDCl3) δ 7.56 – 7.46 (m, 1H), 7.46 – 7.37 (m, 1H), 7.32 – 7.16 (m, 2H), 

6.63 (s, 1H), 5.12 – 4.93 (m, 2H), 4.53 (td, J = 8.1, 4.3 Hz, 1H), 4.30 – 4.19 (m, 2H), 4.14 (q, 

J = 7.1 Hz, 2H), 4.03 (d, J = 7.7 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3) δ 167.15, 166.88, 154.94, 152.51, 127.89, 124.74, 123.21, 121.31, 

111.24, 105.64, 75.11, 62.43, 62.41, 52.88, 37.32, 14.08, 13.97. IR (neat): 2986, 2941, 1730, 

1558, 1454, 1371, 1252, 1219, 1178, 1156, 1096, 1025, 932, 857, 813, 753, 678 cm-1. HRMS 

(ESI) m/z calculated for C17H19NO7Na ([M+Na]+) 372.1054, found 372.1064. Chiral HPLC 

(Phenomenex Lux Cellulose-1, 4.6 × 250 mm, 5µm, n-heptan/i-PrOH = 50:50, 0.5 mL/min, 

λ = 215 nm): tR(major) = 19.08 min, tR(minor) = 13.87 min, 90% ee. Specific rotation 

[α]20
589 = +7.41° (c = 1.0, CH2Cl2). 

 

Diethyl 2-(1-(benzo[b]thiophen-2-yl)-2-nitroethyl)malonate (58i) 

 

Product 58i was prepared by following the general procedure A/B: 

Nitroolefin 56i, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on 

flash silica (hexanes/EtOAc 6:1) to give 58i as a colorless solid (42 mg, 116 µmol, 32%). 

1H-NMR (300 MHz, CDCl3) δ 7.81 – 7.65 (m, 2H), 7.38 – 7.27 (m, 2H), 7.20 (s, 1H), 5.10 – 

4.93 (m, 2H), 4.68 – 4.56 (m, 1H), 4.32 – 4.18 (m, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.96 (d, 

J = 8.0 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ 

167.26, 166.77, 139.62, 139.44, 139.25, 124.89, 124.73, 123.90, 123.84, 122.39, 62.48, 62.42, 

55.33, 39.21, 14.10, 13.98. IR (neat): 3053, 2982, 2930, 1730, 1554, 1439, 1368, 1290, 1238, 

1178, 1088, 1059, 1029, 861, 809,753, 708 cm-1. HRMS (ESI) m/z calculated for 

C17H19NO6SNa ([M+Na]+) 388.0825, found 388.0827. Chiral HPLC (Phenomenex Lux 
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Cellulose-1, 4.6 × 250 mm, 5 µm, n-heptan/i-PrOH = 50:50, 0.5 mL/min, λ = 215 nm): 

tR(major) = 18.17 min, tR(minor) = 23.81 min, 90% ee. Mp: 95 °C. Specific rotation 

[α]20
589 = +4.94° (c = 0.5, CH2Cl2). 

 

Diethyl 2-(1-(benzo[b]thiophen-3-yl)-2-nitroethyl)malonate (58j) 

 

Product 58j was prepared by following the general procedure A/B: 

Nitroolefin 56j, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 4:1) to give 58j as a colorless oil (72 mg, 

231 µmol, 67%). 

1H-NMR (300 MHz, CDCl3) δ 7.89 – 7.81 (m, 2H), 7.49 – 7.34 (m, 3H), 5.17 – 4.93 (m, 2H), 

4.74 (td, J = 8.1, 4.8 Hz, 1H), 4.19 (qd, J = 7.1, 2.5 Hz, 2H), 4.10 – 4.00 (m, 3H), 1.21 (t, 

J = 7.1 Hz, 3H), 1.04 (t, J = 7.1 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ 167.57, 167.13, 140.38, 

137.54, 131.15, 125.07, 124.68, 124.51, 123.11, 121.22, 76.64, 62.26, 62.23, 54.08, 36.06, 

14.05, 13.85. IR (neat): 3079, 2982, 1726, 1554, 1461, 1431, 1372, 1297, 1245, 1178, 1096, 

1025, 850, 760, 731 cm-1. HRMS (ESI) m/z calculated for C17H19NO6SNa ([M+Na]+) 388.0825, 

found 388.0832. Chiral HPLC (Phenomenex Lux Cellulose-1 4.6 × 250 mm, 5 µm, 

n-heptan/i-PrOH = 50:50, 0.5 mL/min, λ = 215 nm): tR(major) = 21.66 min, 

tR(minor) = 16.54 min, 87% ee. Specific rotation [α]20
589 = +6.12° (c = 1.0, CH2Cl2). 

 

Diethyl 2-(2-nitro-1-(pyridin-3-yl)ethyl)malonate (58k) 

 

Product 58k was prepared by following the general procedure A/B: 

Nitroolefin 56k, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 4:1) to give 58k as a colorless oil (72 mg, 231 µmol, 60%). 

1H-NMR (300 MHz, CDCl3): δ 8.55 (s, 2H), 7.63 (ddd, J = 8.0, 2.1, 1.4 Hz, 1H), 7.33 – 7.27 (m, 

1H), 5.01 – 4.84 (m, 2H), 4.32 – 4.15 (m, 3H), 4.05 (q, J = 7.1 Hz, 2H), 3.83 (d, J = 9.0 Hz, 

1H), 1.26 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). 13C-NMR (75 MHz, CDCl3): δ 167.19, 

166.62, 149.69, 135.90, 132.38, 123.85, 77.07, 62.58, 62.37, 54.57, 40.70, 14.11, 13.93. IR 

(neat): 2986, 2941, 1730, 1554, 1476, 1431, 1372, 1297,1260, 1234, 1178, 1025, 857, 809, 

716 cm-1. HRMS (APCI) m/z calculated for C14H19N2O6 ([M+H]+) 311.1238, found 311.1241. 

Chiral HPLC (Phenomenex Lux Cellulose-1 4.6 × 250 mm, 5 µm, n-heptan/i-PrOH = 70:30, 

0.5 mL/min, λ = 215 nm): tR(major) = 19.32 min, tR(minor) = 22.67 min, 60% ee. Specific 

rotation [α]20
589 = +1.08° (c = 0.25, CH2Cl2). 
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Diethyl-2-(1-(2-methyl-1H-indol-3-yl)-2-nitroethyl)malonat (58l) 

 

Product 58l was prepared by following the general procedure A/B: Nitroolefin 

56l, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with respect to 

nitroolefin), 57 (1 mol%). The product was purified on flash silica 

(hexanes/EtOAc 4:1) to give 58l as a colorless solid (122 mg, 336 µmol, 

92%). 

1H-NMR (300 MHz, CDCl3): δ 7.93 (bs, 1H), 7.43 – 7.53 (m, 1H), 7.16 – 7.25 (m, 1H), 

7.02 – 7.14 (m, 2H), 4.89 – 5.04 (m, 2H), 4.49 – 4.62 (m, 1H), 4.19 – 4.36 (m, 2H), 4.12 (d, 

J = 11.2 Hz, 1H), 3.75 – 3.93 (m, 2H), 2.35 (s, 3H, signal doubling due to rotamers), 1.30 (t, 

J = 7.2 Hz, 3H), 0.80 (t, J = 7.2 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ 167.97, 167.12, 135.36, 

134.40, 126.10, 121.25, 119.73, 117.90, 110.86, 105.35, 105.32, 62.24, 61.51, 53.63, 

35.33+35.25 (signal doubling due to rotamers), 14.05, 13.42, 11.74. IR (neat): 3395, 2981, 

2937, 1722, 1621, 1546, 1461, 1371, 1300, 1244, 1177, 1155, 1017, 890, 857, 741, 670 cm-1. 

HRMS (ESI) m/z calculated for C18H23N2O6 ([M+H]+) 363.1551, found 363.1555. Chiral HPLC 

(Chiralpak AS-H, 4.6 × 250 mm, 10 µm, n-heptan/i-PrOH = 90:10, 1.0 mL/min, λ = 215 nm): 

tR(major) = 25.27 min, tR(minor) = 21.67 min, 70% ee. Mp: 107 °C. Specific rotation 

[α]20
589 = +7.21° (c = 1.0, CH2Cl2). 

 

Diethyl-2-(2-(1-(1H-indol-3-yl)-2-nitroethyl)malonat (58m) 

 

Product 58m was prepared by following the general procedure A/B: 

Nitroolefin 56m, diethyl malonate (45, 2.0 equiv), solvent (0.5 M with 

respect to nitroolefin), 57 (1 mol%). The product was purified on flash 

silica (hexanes/EtOAc 4:1) to give 58m as a colorless oil (111 mg, 

320 µmol, 84%). 

1H-NMR (400 MHz, CDCl3): δ 8.23 (bs, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.9 Hz, 1H), 

7.20 (td, J = 7.5, 1.3 Hz, 1H), 7.15 (td, J = 7.5, 1.2 Hz, 1H), 7.10 (d, J = 2.5 Hz, 1H), 5.03 (dd, 

J = 12.8, 8.1 Hz, 1H), 4.96 (dd, J = 12.8, 5.2 Hz, 1H), 4.55 – 4.64 (m, 1H), 4.11 – 4.27 (m, 2H), 

4.08 (dd, J = 8.7, 1.6 Hz), 4.01 (qd, J = 7.1, 2.7 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H), 1.01 (t, 

J = 7.1 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 167.98, 167.54, 136.09, 126.05, 123.12, 122.68, 

120.14, 118.42, 111.60, 110.85, 110.83, 62.11, 61.95, 54.57, 34.96, 14.05, 13.79. IR (neat): 

3407, 3123, 3060, 2981, 1722, 1621, 1550, 1461, 1423, 1371, 1233, 1177, 1155, 109.6, 1062, 

1025, 909, 857, 823, 678 cm-1. HRMS (ESI) m/z calculated for C17H20N2O6Na ([M+Na]+) 

371.1214, found 371.1215. Chiral HPLC (Chiralpak AS-H, 4.6 × 250 mm, 10 µm, 

n-heptan/i-PrOH = 70:30, 0.5 mL/min, λ = 215 nm): tR(major) = 18.66 min, 

tR(minor) = 15.71 min, 69% ee. Specific rotation [α]20
589 = +3.74° (c = 0.5, CH2Cl2). 
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5.2.5 Synthesis of γ-amino acid 4-amino-3-(2-methyl-1H-indol-3-yl)butanoic acid 

 

Rac. Ethyl 4-(2-methyl-1H-indol-3-yl)-2-oxopyrrolidine-3-carboxylate (61) 

 

A 100 mL round bottom flask, equipped with a stir bar, was charged with 

racemic 58l (230 mg, 635 µmol, 1.0 equiv), NiCl2·6 H2O (151 mg, 

635 µmol, 1.0 equiv) and MeOH (3.3 mL). The suspension was cooled 

to 0 °C and NaBH4 (288 mg, 7.62 mmol, 12.0 equiv) was added. After 

stirring for 6 h at room temperature the reaction mixture was quenched 

with sat. NH4Cl solution and diluted with CHCl3 (20 mL). The organic layer was separated and 

dried over MgSO4, filtrated and the solvent was removed under reduced pressure. 61 was 

obtained as a beige solid (159 mg, 555 µmol, 87%). 

1H-NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.19 – 

7.05 (m, 2H), 6.37 (s, 1H), 4.46 – 4.34 (m, 1H), 4.28 – 4.09 (m, 2H), 3.90 (d, J = 10.3 Hz, 1H), 

3.82 (t, J = 9.3 Hz, 1H), 3.66 (t, J = 9.4 Hz, 1H), 2.44 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). 13C-NMR 

(101 MHz, CDCl3) δ 172.95, 169.76, 135.74, 132.68, 126.46, 121.55, 119.79, 118.36, 110.99, 

110.11, 109.02, 61.85, 53.42, 45.59, 36.04, 14.27, 11.91. IR (neat): 3384, 3228, 2919, 1674, 

1491, 1461, 1439, 1349, 1301, 1267, 1156, 1103, 1077, 1040, 854, 742, 686 cm-1. HRMS 

(ESI) m/z calculated for C16H19N2O3 ([M+H]+) 287.1390, found 287.1395. Mp: 119 °C. 

 

Rac. 4-(2-methyl-1H-indol-3-yl)-2-oxopyrrolidine-3-carboxylic acid (62) 

 

A 10 mL round bottom flask, equipped with a magnetic stirring bar, was 

charged with 61 (118 mg, 412 µmol, 1.0 equiv) and was dissolved in 

EtOH (1.7 mL). 1 M NaOH solution (0.5 mL) was added and the reaction 

mixture was stirred for 24 h at room temperature. The resulting mixture 

was diluted with H2O (2 mL) and 1 M HCl was added to adjust a pH of 5. 

The solvents were removed under reduced pressure and the residue was dissolved in EtOH, 

filtrated and the solvent was removed under reduced pressure to give 62 (94.0 mg, 365 µmol, 

93%) as a beige solid. 

1H-NMR (400 MHz, CD3OD) δ 7.39 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.07 – 6.80 

(m, 2H), 4.25 (s, 1H), 3.90 – 3.50 (m, 3H), 2.35 (s, 3H). 13C-NMR (101 MHz, CD3OD) δ 175.58, 

173.35, 137.49, 134.05, 127.50, 121.61, 119.77, 118.68, 111.98, 109.04, 55.50, 47.03, 37.95, 

11.43. IR (neat): 3396, 3280, 2363, 1685, 1487, 1439, 1353, 1327,1226, 1021, 1096, 1055, 

921, 753, 682 cm-1. HRMS (ESI) m/z calculated for C14H15N2O3 ([M+H]+) 259.1077, found 

259.1081. Mp: 192 °C. 
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Rac. 4-(2-methyl-1H-indol-3-yl)pyrrolidin-2-one (63) 

 

A 10 mL round bottom flask was charged with 62 (84.0 mg, 325 µmol, 

1.0 equiv) and was heated with a heat gun for 60 seconds (heat gun 

temperature 290 °C). No further purification was needed. 63 was obtained 

as a light brown solid (67.0 mg, 313 µmol, 96%). 

1H-NMR (400 MHz, CDCl3) δ 8.29 (s, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.30 (d, 

J = 7.9 Hz, 1H), 7.17 – 7.11 (m, 1H), 7.11 – 7.05 (m, 1H), 6.93 (s, 1H), 3.97 – 3.85 (m, 1H), 

3.76 – 3.69 (m, 1H), 3.68 – 3.62 (m, 1H), 2.86 (dd, J = 17.3, 9.5 Hz, 1H), 2.65 (dd, J = 17.3, 

9.7 Hz, 1H), 2.39 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 178.88, 135.69, 131.51, 126.50, 

121.25, 119.41, 118.48, 111.02, 110.89, 48.11, 36.70, 31.66, 11.97. IR (neat): 3396, 3280, 

2363, 1685, 1487, 1439, 1353, 1327,1226, 1021, 1096, 1055, 921, 753, 682 cm-1. HRMS (ESI) 

m/z calculated for C13H15N2O ([M+H]+) 215.1179, found 215.1182. Mp: 90 °C. 

 

Rac. 4-amino-3-(2-methyl-1H-indol-3-yl)butanoic acid hydrochloride (64) 

 

A 5 mL round bottom flask, equipped with a magnetic stirring bar, was 

charged with 63 (21.0 mg, 98.0 µmol, 1.0 equiv) and 6 M HCl (0.5 mL). 

The reaction mixture was stirred for 24 h at room temperature, the 

solvent was removed under reduced pressure and 64 was obtained 

as a brown solid (16 mg, 60.0 µmol, 62%). 

1H-NMR (300 MHz, CD3OD) δ 7.57 – 7.49 (m, 1H), 7.28 – 7.20 (m, 1H), 7.03 – 6.87 (m, 2H), 

3.58 – 3.45 (m, 1H), 3.28 – 3.10 (m, 2H), 2.83 (dd, J = 14.8, 9.1 Hz, 1H), 2.59 (dd, J = 14.8, 

5.7 Hz, 1H), 2.43 (s, 3H). 13C-NMR (75 MHz, CD3OD) δ 179.63, 136.14, 132.62, 126.68, 

119.94, 118.11, 118.06, 110.25, 109.43, 44.21, 41.96, 35.40, 10.50. IR (neat): 3392, 3213, 

3053, 2919, 1558, 1461, 1394, 1304, 1245, 1156, 1129, 1100, 1018, 947, 850, 742, 686 cm-1 

HRMS (ESI) m/z calculated for C13H17N2O2 ([M+H]+) 233.1285, found 233.1290. Mp: 169 °C. 

 

5.2.6 Amide Synthesis 

 

4-((tert-Butoxycarbonyl)amino)butanoic acid (69)[93] 

 

A 250 mL round bottom flask was charged with γ-aminobutyric acid 

(5.00 g, 48.5 mmol, 1.0 equiv) and was dissolved in H2O (60 mL) and 

dioxane (120 mL). Subsequently K2CO3 (13.4 g, 97.0 mmol, 

2.0 equiv) was added, the resulting solution was cooled to 0 °C in an ice bath and di-tert-butyl 

dicarbonate (11.6 g, 53.3 mmol, 1.1 equiv) was added. The reaction mixture was warmed to 
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room temperature and was stirred for 3 h. The solvent was removed under reduced pressure, 

the crude mixture dissolved in H2O (140 mL) and washed with EtOAc (2 × 250 mL). The 

aqueous layer was again cooled to 0 °C and acidified by 1 M HCl (approx. 190 mL) to pH 3. 

The aqueous phase was extracted with EtOAc (5 × 250 mL), the combined organic layers were 

dried over MgSO4, filtered and the solvent was removed under reduced pressure to give 69 

(9.79 g, 48.2 mmol, 99%) as a colorless oil. 

1H-NMR (400 MHz, CDCl3) δ 8.75 (bs, 1H), 6.04 (bs, 0.34H), 4.80 (bs, 0.64H), 3.10 (s, 2H), 

2.31 (t, J = 7.3 Hz, 2H), 1.37 (s, 9H). 13C-NMR (101 MHz, CDCl3) δ 178.16, 156.34, 79.56, 

39.89, 31.35, 28.43, 25.17. 

 

tert-Butyl (4-(dimethylamino)-4-oxobutyl)carbamate (70)[93] 

 

A 500 mL round bottom flask was charged with 69 in DMF (200 mL), 

NHS (4.25 g, 36.9 mmol, 1.5 equiv) and DCC (6.35 g, 30.8 mmol, 

1.25 equiv) were added subsequently and the mixture was stirred 

under N2 atmosphere for 1 h. Thereafter, dimethylamine hydrochloride (6.02 g, 73.8 mmol, 

3.0 equiv) and NEt3 (13 mL) were added and the mixture was stirred for 20 h under N2 

atmosphere. The formed precipitate was filtered off and the solvent of the filtrate was removed 

under reduced pressure. The residue was purified by three columns on flash silica (first 

column: CHCl3/MeOH 96:4, second column: EtOAc followed by CHCl3/MeOH 97:3, third 

column: EtOAc) to give 70 (3.95 g, 17.2 mmol, 70%) as a colorless oil. 

1H-NMR (400 MHz, CDCl3) δ 4.62 (bs, 1H), 3.17 (t, J = 6.7 Hz, 2H), 3.01 – 2.93 (m, 6H), 2.36 

(t, J = 7.2 Hz, 2H), 1.83 (p, J = 7.0 Hz, 2H), 1.43 (s, 9H). 13C-NMR (101 MHz, CDCl3) δ 172.73, 

156.27, 79.25, 40.61, 30.72, 28.56, 25.36. 

 

N-Acetyl-γ-aminobutyric acid N',N'-dimethylamide / 4-Acetamido-N,N-

dimethylbutanamide (68)[93] 

 

A 100 mL round bottom flask was charged with 70 (1.19 g, 5.17 mmol, 

1.0 equiv), 4.2 M HCl in dioxane (35 mL) was added and the resulting 

mixture was stirred for 1 h under N2 atmosphere. The solvent was 

removed under reduced pressure, the resulting precipitate was dissolved in dioxane (35 mL) 

and NEt3 (2.09 g, 2.9 mL, 20.7 mmol, 4.0 equiv) was added. The reaction mixture was cooled 

to 0 °C in an ice bath and acetyl chloride (1.08 g, 981 µL, 13.7 mmol, 2.7 equiv) was added 

dropwise under N2 atmosphere. The mixture was allowed to warm to room temperature and 

was stirred for 20 h under N2 atmosphere. The formed precipitate was filtered off and the 

solvent of the filtrate was removed under reduced pressure. The residue was purified by four 
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columns on flash silica (first and second columns: CHCl3/MeOH 95:5, third and fourth columns: 

EtOAc followed by CHCl3/MeOH 95:5) to give 68 (399 mg, 2.32 mmol, 45%) as a colorless oil. 

1H-NMR (400 MHz, CDCl3) δ 6.60 (bs, 1H), 3.27 (t, J = 6.6 Hz, 2H), 3.00 (s, 3H), 2.94 (s, 3H), 

2.39 (t, J = 6.6 Hz, 2H), 1.95 (s, 3H), 1.86 (p, J = 6.6 Hz, 2H). 13C-NMR (101 MHz, CDCl3) δ 

173.09, 170.57, 39.96, 37.45, 35.72, 31.36, 24.07, 23.32. 

 

2-(tert-Butyl) 6-methyl-2-azabicyclo[3.1.0]hex-3-ene-2,6-dicarboxylate (72)[26] 

 

A flame dried Schlenk tube was charged with Cu(OTf)2 (637 mg, 1.76 mmol, 

0.02 equiv) in anhydrous CH2Cl2 (10 mL) and stirred for 30 min under N2 

atmosphere at room temperature. Another flame dried 500 mL Schlenk flask 

was charged with N-Boc-pyrrole (14.7 g, 88.0 mmol, 1.0 equiv) in anhydrous 

CH2Cl2 (100 mL) under N2 atmosphere. The Cu(OTf)2 solution was added in one portion and 

PhNHNH2 (190 mg, 1.76 mmol, 0.02 equiv) was added dropwise. A solution of methyl 

diazoacetate (10.6 g, 106 mmol, 1.2 equiv) in CH2Cl2 (80 mL) was added slowly by an 

electronically controlled dropping system for 5 d. The resulting mixture was filtered through 

basic alumina and washed with CH2Cl2 (800 mL). The solvent was removed under reduced 

pressure and the crude mixture was purified on flash silica (hexanes/EtOAc 50:1) to give 72 

(7.09 g, 29.6 mmol, 34%) as a colorless oil. 

1H-NMR (300 MHz, CDCl3) δ 6.66 – 6.35 (m, 1H), 5.47 – 5.27 (m, 1H), 4.52 – 4.22 (m, 1H), 

3.75 – 3.60 (m, 3H), 2.87 – 2.74 (m, 1H), 1.50 (s, 9H), 1.00 – 0.95 (m, 1H) (signal broadening 

and doubling due to rotamers). 

 

Methyl-2-(N-(tert-butoxycarbonyl)formamido)-3-formylcyclopropane-1-carboxylate 

(73)[26] 

 

A 250 mL round bottom flask was charged with 72 (1.50 g, 6.27 mmol, 

1.0 equiv) in CH2Cl2 (170 mL) and the solution was treated with ozone 

at -78 °C until the solution maintained a deep blue color. The excess of 

ozone was removed by passing oxygen through the solution, dimethyl sulfide (1.95 g, 

31.4 mmol, 5.0 equiv) was added and the resulting mixture was stirred for 16 h at room 

temperature. The solvent was removed under reduced pressure and the crude product was 

purified on flash silica (hexanes/EtOAc 5:1) to give 73 (1.51 g, 5.58 mmol, 89%) as a colorless 

solid. 

1H-NMR (400 MHz, CDCl3) δ 9.53 (s, 1H), 9.07 (s, 1H), 3.75 (s, 3H), 3.24 – 3.16 (m, 1H), 

3.00 – 2.91 (m, 1H), 2.80 – 2.70 (m, 1H), 1.52 (s, 9H). 13C-NMR (101 MHz, CDCl3) δ 193.19, 

170.10, 163.50, 152.01, 85.50, 52.72, 36.78, 35.06, 27.99, 27.89. 
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2-(N-(tert-Butoxycarbonyl)formamido)-3-(methoxycarbonyl)cyclopropane-1-carboxylic 

acid (74)[26] 

 

A 100 mL round bottom flask was charged with 73 (1.00 g, 3.69 mmol, 

1.0 equiv) in CH3CN and cooled to 0 °C. A solution of KH2PO4 (301 mg, 

2.21 mmol, 0.6 equiv in 2.3 mL H2O) and H2O2 (35%, 1.1 mL) were added. 

NaClO2 (733 mg, 8.11 mmol, 2.2 equiv in 6.8 mL H2O) was added and the mixture was stirred 

for 2 h at room temperature. Then Na2SO3 (372 mg, 2.95 mmol, 0.8 equiv) was added and 

stirred for 1 h. After addition of 1 M KHSO4 (8 mL) the solution was extracted with EtOAc (3 × 

30 mL). The combined organic layers were dried over Na2SO4, filtered and the solvent was 

removed under reduced pressure to give 74 (1.06, 3.69 mmol, 100%) as a colorless oil. 

1H-NMR (400 MHz, CDCl3) δ 9.13 (s, 1H), 3.78 (s, 3H), 3.23 (dd, J = 7.7, 5.0 Hz, 1H), 2.70 – 

2.64 (m, 1H), 2.64 – 2.58 (m, 1H), 1.52 (s, 9H). 13C-NMR (101 MHz, CDCl3) δ 173.16, 170.04, 

163.45, 152.05, 85.35, 52.86, 36.03, 29.71, 27.94, 27.91. 

 

2-((tert-Butoxycarbonyl)amino)-3-(methoxycarbonyl)cyclopropane-1-carboxylic acid 

(75)[26] 

 

A 25 mL round bottom flask was charged with 74 (1.06 g, 3.69 mmol, 

1.0 equiv) in MeCN (12 mL) and DEAEA (879 mg, 7.56 mmol, 2.1 equiv). 

The resulting mixture was stirred for 24 h at room temperature, the 

solvent was removed under reduced pressure, EtOAc was added and the solution was 

adjusted to pH 2 with 1 M KHSO4. The aqueous layer was extracted with EtOAc (4 × 30 mL) 

and the combined organic layers were dried over Na2SO4, filtered and the solvent was removed 

under reduced pressure to give 75 (794 mg, 3.06 mmol, 83%) as a colorless solid. 

1H-NMR (400 MHz, CDCl3) δ 10.09 (bs, 1H), 6.76 (s, 0.65H), 5.51 (s, 0.35H), 3.89 (s, 0.36H), 

3.72 (s, 3H), 3.44 (s, 0.64H), 2.50 – 2.38 (m, 1H), 2.31 (t, J = 5.0 Hz, 1H), 1.47 (s, 9H). 

13C-NMR (101 MHz, CDCl3) δ 172.16, 170.61, 158.41, 82.54, 52.48, 37.65, 29.61, 28.35, 

26.97. 

 

1-Benzyl 2-methyl-3-((tert-butoxycarbonyl)amino)cyclopropane-1,2-dicarboxylate 

(76)[26] 

 

A 50 mL round bottom flask was charged with 75 (749 mg, 2.89 mmol, 

1.0 equiv) in DMF (11 mL), NaHCO3 (485 mg, 5.78 mmol, 2.0 equiv) 

and BnBr (544 mg, 3.18 mmol, 1.1 equiv) were added and the mixture 

was stirred at room temperature for 48 h. EtOAc (15 mL) and H2O (15 mL) were added, the 
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phases separated and the aqueous layer was extracted with EtOAc (3 × 30 mL). The combined 

organic layers were washed with H2O, dried over Na2SO4, filtered and the solvent was removed 

under reduced pressure. The crude mixture was purified on flash silica (hexanes/EtOAc 5:1) 

to give 76 (1.01 g, 2.89 mmol, 100%) as a colorless solid. 

1H-NMR (400 MHz, CDCl3) δ 7.44 – 7.29 (m, 5H), 5.52 (s, 1H), 5.21 (d, J = 12.2 Hz, 1H), 5.13 

(d, J = 12.3 Hz, 1H), 3.86 (s, 1H), 3.69 (s, 3H), 2.52 (dd, J = 8.4, 5.3 Hz, 1H), 2.32 – 2.25 (m, 

1H), 1.44 (s, 9H). 13C-NMR (101 MHz, CDCl3) δ 169.90, 155.18, 134.91, 128.48, 128.36, 

128.16, 80.16, 67.16, 52.16, 37.40, 28.63, 28.09, 26.06, 23.65. 

 

1-Benzyl 2-methyl-3-acetamidocyclopropane-1,2-dicarboxylate (77)[94] 

 

A 25 mL round bottom flask was charged with 76 (500 mg, 1.43 mmol, 

1.0 equiv), 3 M HCl (4.3 mL in EtOAc) and was stirred at 0 °C for 3 h. 

The solvent was removed under reduced pressure and the salt was 

resuspended in CH2Cl2 (25 mL). Then, acetyl chloride (202 mg, 2.58 mmol, 1.8 equiv) was 

added, cooled to 0 °C and NEt3 (463 mg, 4.58 mmol, 3.2 equiv) was added dropwise. The 

resulting mixture was stirred at room temperature for 16 h. The solvent was removed under 

reduced pressure and the crude product was purified on flash silica (CHCl3/MeOH 60:1) to 

give 77 (315 mg, 1.08 mmol, 76%) as colorless solid. 

1H-NMR (400 MHz, CDCl3) δ 7.44 – 7.31 (m, 5H), 6.48 (d, J = 8.0 Hz, 1H), 5.22 (d, J = 12.2 Hz, 

1H), 5.14 (d, J = 12.3 Hz, 1H), 4.16 (td, J = 8.3, 4.8 Hz, 1H), 3.70 (s, 3H), 2.56 (dd, J = 8.3, 

5.1 Hz, 1H), 2.27 (t, J = 5.0 Hz, 1H), 1.96 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 170.61, 170.51, 

169.93, 135.10, 128.86, 128.80, 128.51, 67.66, 52.59, 36.37, 29.00, 26.08, 23.43. 

 

2-Acetamido-3-(methoxycarbonyl)cyclopropane-1-carboxylic acid (78)[94] 

 

A flame dried 25 mL Schlenk flask was charged with 77 (385 mg, 

1.32 mmol, 1.0 equiv) in anhydrous MeOH (10 mL), 1,4-cyclohexadiene 

(106 mg, 1.32 mmol, 1.0 equiv) and Pd/C (10wt%, 80 mg) under N2 

atmosphere. The reaction mixture was stirred at room temperature for 16 h, then filtered 

through a pad of celite, washed with MeOH (15 mL) and the solvent was removed under 

reduced pressure to give 78 (220 mg, 1.09 mmol, 83%) as a colorless solid. 

1H-NMR (400 MHz, CD3OD) δ 3.72 (s, 3H), 3.63 – 3.45 (m, 1H), 2.48 – 2.32 (m, 2H), 1.94 (s, 

3H). 13C-NMR (101 MHz, CD3OD) δ 174.52, 174.41, 172.07, 52.92, 36.88, 28.75, 28.00, 22.39. 
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Methyl-2-acetamido-3-(diethylcarbamoyl)cyclopropane-1-carboxylate (79)[94] 

 

A 100 mL round bottom flask was charged with 78 (132 mg, 654 µmol, 

1.0 equiv) in CH2Cl2 (40 mL) and DMF (2 mL). To this solution EDC 

hydrochloride (125 mg, 0.654 mmol, 1.0 equiv) and HOBt (88 mg, 

654 µmol, 1.0 equiv) were added. The mixture was cooled in an ice bath 

and diethylamine (72 mg, 981 µmol, 1.5 equiv) was added and stirred at room temperature for 

16 h. The solvent was removed under reduced pressure and the crude product was purified 

on flash silica (CHCl3/MeOH 50:1) to give 79 (143 mg, 558 µmol, 85%) as a colorless solid. 

1H-NMR (400 MHz, CDCl3) δ 7.33 (d, J = 8.1 Hz, 1H), 4.01 (td, J = 8.2, 4.4 Hz, 1H), 3.66 (s, 

3H), 3.48 (dq, J = 14.4, 7.2 Hz, 1H), 3.41 – 3.24 (m, 3H), 2.50 (dd, J = 8.4, 5.3 Hz, 1H), 2.29 

(dd, J = 5.2, 4.4 Hz, 1H), 1.91 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3) δ 171.03, 170.69, 167.21, 52.08, 42.46, 40.91, 36.39, 27.04, 

25.12, 22.93, 14.45, 12.79. 
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5.3 NMR Spectra 

 

1H-NMR  first image 

13C-NMR  second image 
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Diphenoxymethane (S1) 

 

NMR-Solvent: CDCl3 
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1,3-bis(3,5-bis(trifluoromethyl)phenyl)thiourea (42) 

 

NMR-Solvent: CD3CN 
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(1R,2R)-Cyclohexane-1,2-diamine (S3) 

 

NMR-Solvent: CDCl3 
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1-((1R,2R)-2-Aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (46) 

 

 

 

 

NMR-Solvent: CDCl3 
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(E)-(2-Nitrovinyl)benzene (56a) 

 

NMR-Solvent: CDCl3 
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1H-Pyrrole-2-carbaldehyde (S4) 

 

NMR-Solvent: CDCl3 
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(E)-2-(2-Nitrovinyl)-1H-pyrrole (S5) 

 

NMR-Solvent: CDCl3 
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tert-Butyl (E)-2-(2-nitrovinyl)-1H-pyrrole-1-carboxylate (56b) 

 

NMR-Solvent: CDCl3 
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5-Chloro-1H-pyrrole-2-carbaldehyde (S6) 

 

NMR-Solvent: CDCl3 
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(E)-2-Chloro-5-(2-nitrovinyl)-1H-pyrrole (S7) 

 

NMR-Solvent: CDCl3 
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tert-Butyl (E)-2-chloro-5-(2-nitrovinyl)-1H-pyrrole-1-carboxylate (56c) 

 

NMR-Solvent: CDCl3 
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(E)-2-(2-Nitrovinyl)furan (56d) 

 

NMR-Solvent: CDCl3 
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(E)-2-(2-Nitrovinyl)thiophene (56e) 

 

NMR-Solvent: CDCl3 
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1H-Indole-3-carbaldehyde (S8) 

 

NMR-Solvent: DMSO 
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tert-Butyl (E)-3-(2-nitrovinyl)-1H-indole-1-carboxylate (56f) 

 

NMR-Solvent: CDCl3 
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2-Methyl-1H-indole-3-carbaldehyde (S9) 

 

NMR-Solvent: DMSO 
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tert-Butyl (E)-2-methyl-3-(2-nitrovinyl)-1H-indole-1-carboxylate (56g) 

 

NMR-Solvent: CDCl3 
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Benzofuran-2-carbaldehyde (S10) 

 

NMR-Solvent: CDCl3 
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(E)-2-(2-Nitrovinyl)benzofuran (56h) 

 

NMR-Solvent: CDCl3 
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Benzo[b]thiophene-2-carbaldehyde (S11) 

 

NMR-Solvent: CDCl3 
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(E)-2-(2-Nitrovinyl)benzo[b]thiophene (56i) 

 

NMR-Solvent: CDCl3 
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3-Bromobenzo[b]thiophene (S12) 

 

NMR-Solvent: CDCl3 
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Benzo[b]thiophene-3-carbaldehyde (S13) 

 

NMR-Solvent: CDCl3 
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3-Vinylbenzo[b]thiophene (S14) 

 

NMR-Solvent: CDCl3 
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(E)-3-(2-Nitrovinyl)benzo[b]thiophene (56j) 

 

NMR-Solvent: CDCl3 
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(E)-3-(2-Nitrovinyl)pyridine (56k) 

 

NMR-Solvent: CDCl3 
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(E)-2-Methyl-3-(2-nitrovinyl)-1H-indole (56l) 

 

NMR-Solvent: DMSO 
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(E)-3-(2-Nitrovinyl)-1H-indole (56m) 

 

NMR-Solvent: DMSO 
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1-(3,5-bis(Trifluoromethyl)phenyl)-3-((1R,2R)-2-(dimethylamino)cyclohexyl)thiourea 

(57) 

 

 

 

NMR-Solvent: CDCl3 
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Diethyl 2-(2-nitro-1-phenylethyl)malonate (58a) 

 

NMR-Solvent: CDCl3 
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Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-1H-pyrrol-2-yl)-2-nitroethyl)malonat (58b) 

 

NMR-Solvent: CDCl3 
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Diethyl 2-(1-(1-(tert-butoxycarbonyl)-5-chloro-1H-pyrrol-2-yl)-2-nitroethyl)malonate 

(58c) 

 

NMR-Solvent: CDCl3 
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Diethyl 2-(1-(furan-2-yl)-2-nitroethyl)malonate (58d) 

 

NMR-Solvent: CDCl3 
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Diethyl 2-(2-nitro-1-(thiophen-2-yl)ethyl)malonate (58e) 

 

NMR-Solvent: CDCl3 
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Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-1H-indol-3-yl)-2-nitroethyl)malonat (58f) 

 

NMR-Solvent: CDCl3 
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Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-2-methyl-1H-indol-3-yl)-2-nitroethyl)malonat 

(58g) 

 

NMR-Solvent: CDCl3 
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Diethyl 2-(1-(benzofuran-2-yl)-2-nitroethyl)malonate (58h) 

 

NMR-Solvent: CDCl3 
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Diethyl 2-(1-(benzo[b]thiophen-2-yl)-2-nitroethyl)malonate (58i) 

 

NMR-Solvent: CDCl3 
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Diethyl 2-(1-(benzo[b]thiophen-3-yl)-2-nitroethyl)malonate (58j) 

 

NMR-Solvent: CDCl3 
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Diethyl 2-(2-nitro-1-(pyridin-3-yl)ethyl)malonate (58k) 

 

NMR-Solvent: CDCl3 
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Diethyl-2-(1-(2-methyl-1H-indol-3-yl)-2-nitroethyl)malonat (58l) 

 

NMR-Solvent: CDCl3 
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Diethyl-2-(2-(1-(1H-indol-3-yl)-2-nitroethyl)malonat (58m) 

 

NMR-Solvent: CDCl3 
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Rac. Ethyl 4-(2-methyl-1H-indol-3-yl)-2-oxopyrrolidine-3-carboxylate (61) 

 

NMR-Solvent: CDCl3 
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Rac. 4-(2-methyl-1H-indol-3-yl)-2-oxopyrrolidine-3-carboxylic acid (62) 

 

NMR-Solvent: CD3OD 
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Rac. 4-(2-methyl-1H-indol-3-yl)pyrrolidin-2-one (63) 

 

NMR-Solvent: CDCl3 
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Rac. 4-amino-3-(2-methyl-1H-indol-3-yl)butanoic acid hydrochloride (64) 

 

NMR-Solvent: CD3OD 
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Methyl 2-isocyanoacetate (66) 

 

NMR-Solvent: CDCl3 
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N-Acetyl-γ-aminobutyric acid N',N'-dimethylamide / 4-Acetamido-N,N-

dimethylbutanamide (68) 

 

NMR-Solvent: CDCl3 
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4-((tert-Butoxycarbonyl)amino)butanoic acid (69) 

 

NMR-Solvent: CDCl3 

 



NMR Spectra 

 
150 

 

tert-Butyl (4-(dimethylamino)-4-oxobutyl)carbamate (70) 

 

NMR-Solvent: CDCl3 
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2-(tert-Butyl) 6-methyl-2-azabicyclo[3.1.0]hex-3-ene-2,6-dicarboxylate (72) 

 

NMR-Solvent: CDCl3 
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Methyl-2-(N-(tert-butoxycarbonyl)formamido)-3-formylcyclopropane-1-carboxylate (73) 

 

NMR-Solvent: CDCl3 
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2-(N-(tert-Butoxycarbonyl)formamido)-3-(methoxycarbonyl)cyclopropane-1-carboxylic 

acid (74) 

 

NMR-Solvent: CDCl3 
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2-((tert-Butoxycarbonyl)amino)-3-(methoxycarbonyl)cyclopropane-1-carboxylic acid 

(75) 

 

NMR-Solvent: CDCl3 
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1-Benzyl 2-methyl-3-((tert-butoxycarbonyl)amino)cyclopropane-1,2-dicarboxylate (76) 

 

NMR-Solvent: CDCl3 
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1-Benzyl 2-methyl-3-acetamidocyclopropane-1,2-dicarboxylate (77) 

 

NMR-Solvent: CDCl3 
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2-Acetamido-3-(methoxycarbonyl)cyclopropane-1-carboxylic acid (78) 

 

NMR-Solvent: CD3OD 

 



NMR Spectra 
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Methyl-2-acetamido-3-(diethylcarbamoyl)cyclopropane-1-carboxylate (79) 

 

NMR-Solvent: CDCl3
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5.4 HPLC Chromatograms 

 

Racemic Chromatogram first image 

Enantiomeric enriched Chromatogram second image 
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Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-1H-pyrrol-2-yl)-2-nitroethyl)malonat (58b) 
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Diethyl 2-(1-(furan-2-yl)-2-nitroethyl)malonate (58d) 
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Diethyl 2-(2-nitro-1-(thiophen-2-yl)ethyl)malonate (58e) 
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Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-1H-indol-3-yl)-2-nitroethyl)malonat (58f) 
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Diethyl-2-(1-(1-(tert-butyloxycarbonyl)-2-methyl-1H-indol-3-yl)-2-nitroethyl)malonat 

(58g) 
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Diethyl 2-(1-(benzofuran-2-yl)-2-nitroethyl)malonate (58h) 
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Diethyl 2-(1-(benzo[b]thiophen-2-yl)-2-nitroethyl)malonate (58i) 
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Diethyl 2-(1-(benzo[b]thiophen-3-yl)-2-nitroethyl)malonate (58j) 

 

 



HPLC Chromatograms 

 
175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HPLC Chromatograms 

 
176 

 

Diethyl 2-(2-nitro-1-(pyridin-3-yl)ethyl)malonate (58k) 
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Diethyl-2-(1-(2-methyl-1H-indol-3-yl)-2-nitroethyl)malonat (58l) 
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Diethyl-2-(2-(1-(1H-indol-3-yl)-2-nitroethyl)malonat (58m) 

 

 

Chiral HPLC measurement of the racemic mixture was not possible due to technical 

problems caused by the sample. 
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