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Introduction

1
In 1988, two groups from Delft [1] and Cambridge [2] reported their historical discovery
that the resistance of a Sharvin-type point contact, which they both implemented in
a GaAs/AlGaAs heterostructure, does not change continuously when the width of the
constriction is reduced. Instead, they found distinct steps in the resistance and conductance
curves to appear. Van Wees et al. [1] concluded their publication with the solemn words:
"A novel quantum effect is found: The conductance is quantized in units of 42/c~."
This finding constitutes a profound experimental confirmation of the Landauer formula,
already suggested in 1957 by Rolf Landauer [3], which was later generalized to the
Landauer-Büttiker formula [4]. Since then, in addition to GaAs-based electron systems
[5–9], conductance quantization has been realized in many other material systems as, e.g.,
GaN/AlGaN heterostructures [10], AlAs [11], InGaAs [12–16], InAs [17–20], InSb [21]
and Si/SiGe systems [22–24].
When considering such quantization effects in 1D in the context of materials with strong
spin-orbit interaction, new research fields have opened up as, for example, the high-topical
field of topological quantum computation [25–29]. Therein, the coupling of a high-
mobility 2D electron gas with large spin-orbit interaction to an s-wave superconductor
presents a fundamental part. In these experiments, quantum point contacts are employed
to measure the quantized conductance doubling - a manifestation of proximity-induced
superconductivity in the 2D electron system [30, 31]. To follow the theoretical recipe
for the creation of a spinless p-wave superconductor in which a single isolated Majorana
state arises [27, 28], quantum point contacts generate the required 1D subband structure
[30, 31].
As a second example, the physics of quantum point contacts has fueled a variety of device
applications and concepts [13, 16, 19, 32, 33], merging under the roof of spinorbitronics
[34]. One goal is the realization of a spin-transistor. This requires the implementation
of three key components to yield a fully functional system, i.e. a spin injector, a
spin detector and a tuning knob to manipulate the spin current between injection and
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1 Introduction

detection. Realizing the proposed spin-transistor generally entails twomain manufacturing
challenges: Firstly, using ferromagnetic electrodes for the generation and read-out of the
spin-polarized current, one is usually subjected to the conductance mismatch. Secondly,
spin-dephasing mechanisms inside the transistor channel impede a loss-free transmission
of spin-information. In an elegant, ballistic and all-electric spin-transistor concept
presented by Chuang et al. [13], these obstacles are readily eliminated. Therein, two serial
quantum point contacts, which are implemented in a 2D electron gas, are employed as a
spin injector and spin detector by adjusting the strength of lateral spin-orbit coupling inside
the 1D channel. By exploiting Rashba-type spin-orbit interaction, the spin precession
between spin injector and detector can be manipulated with an external electric field,
applied via a middle-gate electrode.
Given the examples outlined above, it is interesting to note that the key requirements
for topological quantum computation and the spinorbitronic device application are very
similar: Achieving large spin-orbit coupling in a highly mobile electron system with
a clean semiconductor surface. In this regard, InAs/InGaAs-based heterostructures
offer inherent advantages in their material properties, like a low effective mass, a large
Landé g-factor, as well as large Rashba spin-orbit interaction, making them attractive
candidates for these device applications. In addition to all of that, the absence of a
Schottky barrier for sufficiently large indium concentrations enables the fabrication of
metal-semiconductor interfaces with unique transparency. To harvest the undeniable
potential of this semiconductor system, material specific challenges have to be met. This
thesis focuses on those perspectives of the InAs-basedmaterial systemwhich would qualify
it as a reliable platform for the realization of reliable 1D spinorbitronic devices.
Due to the lack of a lattice-matched substrate for InAs and InGaAs with arbitrary indium
concentration, sophisticated buffer layer concepts have to be implemented during the
molecular beam epitaxy to achieve highly mobile electron systems [35–38]. Furthermore,
InAlAs, which is commonly applied as a high-band gap material in InAs/InGaAs layer
structures, introduces a significant arsenic-related background impurity density into the
system, which at the same time provides free charge carriers for the InAs/InGaAs 2D
system and thereby acts as an intrinsic dopant [37, 39]. On the upside, this yields the
advantage that the epitaxial incorporation of a modulation doping layer into the system,
which generally impedes the ballisticity of a 2D electron system, is not mandatory. On
the downside, the doping-providing and thus ionized InAlAs defect states introduce
a Coulombic disorder potential in the barrier layers surrounding the 2D electron gas,
whereby 1D transport is likely to be affected. Except for their doping properties, InAlAs
defect states have been scarcely addressed in the literature so far. Evaluating their impact
on the implementation of 1D spinorbitronic devices in these material systems is a central
part of this thesis, since a holistic study is not available yet.
Last but not least, a very elementary manufacturing challenge has to be met in III-V
systems: GaAs and InAs, as well as their ternary compound systems InxGa1-xAs lack
an electrically stable and defect-free oxide, which forms at the surface and influences
the gating response of the system [40, 41]. This entails the need for elaborated device
fabrication processes to avoid opacity of the semiconductor interface, being severely
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detrimental for 2D electron systems proximitized to a superconductor, as well as to prevent
hysteretic effects when the material system is gated.
From the above considerations it is apparent that a profound and comprehensive understand-
ing of the electrostatic properties of the employed hybrid semiconductor/insulator/metal
system is essential en route to spinorbitronic and topological applications. With our
work, we intend to contribute to the current investigations in this quite extensive field of
research.

This thesis is organized as follows:

In chapter 2, we briefly introduce the fundamental concepts of the herein analysed 2D
and 1D transport characteristics in external electric and magnetic fields.
Chapter 3 summarizes relevant aspects of band-related spin-orbit interaction, especially
in 2D electron systems. Furthermore, we address the spin-transistor concept as presented
in [13].
The structural and electrical characterisation methods used in this thesis are shortly
introduced in chapter 4.
In chapter 5, we summarize the key results of our epitaxial study, where we growth-
engineer our active layer system. The heterostructures are structurally analysed and
their magnetotransport properties are then tested with respect to their suitability for
spinorbitronic device application.
Chapter 6 is devoted to the realization of quantized conductance in the In0.75Ga0.25As/
In0.75Al0.25As layer system. Thereby, we test a split-gate design on the model system
GaAs/Al0.31Ga0.69As. We then provide a thorough study of the transport in electrically
defined quantum point contacts in the non-illuminated and illuminated state in the material
system InGaAs.
Based on the experimental results of the preceding chapter, we discuss the gate response
of several different metal/dielectric/semiconductor material combinations in the top-gated
Hall bar measurements in chapter 7. We introduce a holistic charge transfer model, which
is able to describe the electric transport properties under gating over a wide bias and
electron density range.
At this point, our detailed understanding of the material system allows us to demonstrate
the realization of robust ballistic conductance in different In0.75Ga0.25As/In0.75Al0.25As
active layer systems in chapter 8.
Chapter 9 addresses the peculiar magnetooscillations, which appear when we gate our
system. From these experiments, we are able to estimate the strength of Rashba spin-orbit
interaction in our heterostructures.
Chapter 10 concludes and evaluates the experimental results by means of their implications
on device applications.
The appendix IV yields supplementary information to sample fabrication and auxiliary
transport measurements in one and two dimensions.

3



1 Introduction

4



I

2 Fundamental concepts of 2D and 1D elec-
tric transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The two-dimensional electron gas . . . . . . . . . . . . 7
2.2 Ballistic electron transport in a 1D channel . . . . 16

3 Fundamental concepts of spin-orbit inter-
action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 SOI in 2D systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Evaluation of SOI strength . . . . . . . . . . . . . . . . . . . . 27
3.3 SOI in 1D systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Theoretical background





Fundamental concepts of 2D and
1D electric transport

2

This chapter briefly introduces the fundamental concepts of electric transport in band
structure-engineered semiconductor heterostructures in external electric and magnetic
fields. Therein, we give the relevant expressions for 2D and 1D electric transport, which
we will utilise in the course of this thesis.

2.1 The two-dimensional electron gas
The dispersion relation of an electron in a crystal lattice can be derived by means of
k · p-perturbation theory from the Bloch equation. By introducing the electron effective
mass <∗ as

1
<∗

=
1
<4

(
1 + 2<4%2

~2

)
,

with ~ = ℎ/2c being the reduced Planck constant, the dispersion relation of the nearly
free electron in a bulk crystal near the Γ-point can be described with

�2 (k) ≈ �2 +
~2:2

2<∗
, (2.1)

where �2 is the lower edge of the conduction band. The band edge parameter % can be
considered as the expectation value of the momentum in the vicinity of the Γ-point.
In the course of this thesis, we will analyse the electric transport in band structure-
engineered semiconductor heterostructures. The thereby introduced band discontinuities,
which present a perturbation to the periodic lattice potential, enable the confinement of
the electron’s motion in the semiconductor crystal. This perturbation of the translational
invariance in one direction, for example the I-direction, can be treated in the framework
of the envelope function approximation (EPA). Due to the still maintained translational
invariance in the directions G and H perpendicular to the confinement direction, the wave
function Ψ(r) of the electron can be decomposed into Ψ(r) = k(G, H)j(I). By means of
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2 Fundamental concepts of 2D and 1D electric transport

this ansatz and the appropriate boundary conditions, one finds that the energy spectrum
in the I-direction is quantized and can be described via discrete subband states j= (I),
where = is the corresponding quantum number. The total energy dispersion relation then
reads as

� = �= (: ‖) +
~2:2

‖
2<∗

, (2.2)

where : ‖ =
√
:2
G + :2

H is the in-plane wave vector. If only the lowest subband is occupied
one commonly refers to the system as a two-dimensional electron gas (2DEG). The
resulting density of states (DOS) of the 2DEG is

D2� (�) =
6B6E<

∗

c~2 ,

with 6B being the degree of spin degeneracy and 6E represents the valley degeneracy. For
In0.75Ga0.25As/In0.75Al0.25As heterostructures, we generally apply 6B = 2 and 6E = 1. The
sheet carrier density =B of the 2DEG can be expressed as

=B = D2� (�) · �� ,
where �� is the Fermi energy, referring to the highest occupied energy state of the system.
Thus, the corresponding Fermi wave vector :� is given by

:� =

√
2<∗��
~2 =

√
2c=B . (2.3)

2.1.1 Drude model

A basic theoretical model for the description of the motion of electrons in a crystal is
provided by the Drude model [42, 43]. In this semiclassical description, the electrons are
described as classical particles, that undergo collisions inside the crystal after an average
scattering time gCA when moving in an external electric field. In between two subsequent
scattering events, an electron gains on average the so-called drift velocity v� . The current
density j is determined as

j = fE = −4=B`E = −4=Bv� , (2.4)

with f being the conductivity and ` = |4 |gCA
<∗ is the electron mobility.

The motion of an electron, which is subjected to an additional magnetic field, is described
by

<∗

gCA
v� = −4(E + v� × B) . (2.5)

In the case of |B| ≠ 0, f transforms into a tensor. By choosing B = (0, 0, �), we can
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2.1 The two-dimensional electron gas

write the current density as(
9G
9H

)
=

(
fGG fGH
fHG fHH

)
·
(
�G
�H

)
=

f0

1 + l2
2g

2
CA

·
(

1 −l2gCA
l2gCA 1

)
·
(
�G
�H

)
, (2.6)

with the Drude conductivity
f0 = =B4

2 gCA
<∗

= =B4`

and the cyclotron frequency
l2 =

4�

<∗
.

By tensor inversion of the conductivity tensor, we gain the corresponding resistivity
tensor: f = d−1. It can be shown that the components yield the following form:

dGG = dHH =
fGG

f2
GG + f2

HH

=
<∗

42=BgCA
(2.7)

dGH = −dHG =
fGH

f2
GG + f2

HH

=
�

|4 |=B
. (2.8)

Measuring dGG and dGH independently from each other in a magnetotransport (MT)
measurement thus yields the sheet carrier density =B and the corresponding charge carrier
mobility `, which characterise the transport properties of a 2DEG:

=B =

(
4 ·
mdGH

m�

����
�=0

)−1

(2.9)

` =

(
4 · =BdGG (� = 0)

)−1
. (2.10)

Different device geometries can be employed to determine =B and ` in a MT measurement.
This will be subject of section 4.3. Depending on the sample geometry and also on
the applied evaluation method, we will distinguish between =E3%, =�0;; and =(3� as
introduced in the following sections.
An important length scale in the regime of diffusive - and also ballistic - transport is the
elastic mean free path ;< 5 ?, which can be expressed as

;< 5 ? = E�gCA =
~
4

√
2c=B` , (2.11)

where E� = ~:�
<∗ is the Fermi velocity .

Parallel transport

In the Drude model multisubband occupation and parallel conduction can be described
as a sum of the currents of all participating transport channels [44, 45]. Thus, the total

9



2 Fundamental concepts of 2D and 1D electric transport

conductivity fC>C of the system can be expressed in the form of a summation over all
contributing sheet conductivities f8, where 8 labels the individual transport channel:

fC>C = f1 + f2 + ... =
∑

f8 , (2.12)

with

f8 =
=84

2gCA,8

<∗
8

· 1
1 + l2

2g
2
CA,8

·
(

1 −l2gCA,8
l2gCA,8 1

)
. (2.13)

Inversion of the expression (2.12) for the total conductivity fC>C yields the corresponding
term for the total resistivity dC>C of the system.
The case of two non-interacting transport channels, labeled with the indices 1 and 2,
yields in the limit of small magnetic fields when following simplified expressions for dGG
and dGH:

dGG =
1
4
· 1
=1`1 + =2`2

=
1
4
· 1
=�0;; · `�0;;

(2.14)

dGH =
�

4
·
=1`

2
1 + =2`

2
2

(=1`1 + =2`2)2
=
�

4
· 1
=�0;;

. (2.15)

It is reasonable to assume, that the mobility `2 of a newly populated, higher subband is
much lower than the mobility `1 of the ground (first) subband, i.e. `2 � `1 [46]. In this
case, the above expression (2.15) for dGH can be further simplified to

=�0;; =
(=1`1 + =2`2)2

=1`
2
1 + =2`

2
2
≈ (=1`1 + =2`2)2

=1`
2
1

. (2.16)

This expression shows that the measured Hall density contains the individual charge
densities of the contributing channels, whose density values are further weighted by the
mobility of the respective channel.

2.1.2 The quantum Hall effect

For sufficiently high magnetic fields, i.e. l2gCA � 1, the description of the magneto-
transport in a 2DEG within the semiclassical Drude model breaks down. As was first
addressed by Landau [47], the corresponding Hamiltonian for electrons in a 2DEG, which
are subjected to an external magnetic field, reads as

H =
(p + |4 |A)2

2<∗
++ (I) , (2.17)

where + (I) is the confinement potential and A is the vector potential. In Landau gauge,
A can be written as A = (0, �G, 0) with B = (0, 0, �). With the ansatz Ψ(G, H, I) =
D(G)48:HHj(I) for the electron wave function, the problem can be reduced to the form of a

10



2.1 The two-dimensional electron gas

1D quantum mechanical harmonic oscillator. The quantized energy states �=GH are given
by

�=GH = ~l2
(
=GH +

1
2

)
, (2.18)

with =GH being the Landau quantum number. All states with different :H inside a Landau
level =GH are energetically degenerate. By means of periodic boundary conditions for :H,
the number of states in a Landau level per unit area are determined as

=! =
|4 |�
ℎ

. (2.19)

For a given electron density =B, the Landau level filling factor a, which is the amount of
populated Landau levels at a given magnetic field B, is calculated with

a =
=B

=!
. (2.20)

Oscillatory magnetoresistance

In the case of a constant 2D charge density =B, the magnetic field dependence of the DOS
of a Landau level manifests itself in an oscillatory behavior of �� . Correspondingly,
this results in a sinusoidal oscillation of the magnetoresistivity dGG in 1/�, the so-called
Shubnikov-de Haas oscillations. A semi-classical description of dGG (�) was first given
by Coleridge et al. [48]:

ΔdGG = d0+4 · 2c:�)<
∗

~4�
· 1
sinh 2c:�)<∗

~4�

·exp
(
− c<

∗

4g@
· 1
�

)
·cos

(2cE<∗
~4

· 1
�
−c

)
, (2.21)

with E = �� − �=, where �= is the energy of the nth subband and :� is the Boltzmann
constant. g@ is the quantum lifetime, which is also often referred to as single particle
lifetime. It specifies the lifetime of the quantum state, i.e. the time, in which one is able
to define an electronic momentum eigenstate in the system in the presence of scattering.
We can identify the second term in equation (2.21) as a description of the temperature-
dependent DOS of the Landau levels with a Lorentzian energy broadening, introduced by
scattering. Therein, the exponential term exp

(
− c<∗

4g@
· 1
�

)
, which is commonly referred to

as the Dingle factor, determines the magnitude of the Shubnikov-de Haas oscillations [43,
49–51].
In high-mobility samples g@ can be more than ten times smaller than the transport lifetime
gCA . This is due to the fact that the single particle lifetime g@ takes every scattering event
into account, irrespective of the scattering angle q. It is described by

1
g@

=
<∗

~2

∫ 2c

0
, (q) 3q

2c
,

11



2 Fundamental concepts of 2D and 1D electric transport

wherein, (q) is the scattering cross section into a particular direction. For high-mobility
systems, however, small-angle scattering predominates. In the description of the transport
lifetime gCA , which determines the mobility in a system, large-angle back-scattering is
more strongly weighted since it leads to a significant change of the momentum direction
[43, 50–52]:

1
gCA

=
<∗

~2

∫ 2c

0
, (q) (1 − cos(q)) 3q

2c
.

When the Fermi level lies in between two subsequent Landau levels and negligible
scattering of charge carriers into neighboring, extended energy states takes place, we find
a minima in the longitudinal resistivity of the system. A maximum in dGG (�) arises when
the Fermi level passes the center of the DOS of the topmost Landau level. Consequently,
by means of the above expression (2.21), the sheet density =B of the 2DEG can be
determined by evaluating the neighboring minima of the Shubnikov-de Haas oscillations
in 1/� via following relation:

Δ

( 1
�

)
=

1
�8+1
+ 1
�8
=

2|4 |
ℎ=B

. (2.22)

Within this thesis, values of =B, which are determined via this formula from the Shubnikov-
de Haas oscillations, are labeled as =(3� .

The integer quantum Hall effect

Simultaneously to the appearance of the Shubnikov-de Haas oscillations in the longitudinal
magnetoresistivity dGG (�), well-pronounced plateaus in the transversal resistivity dGH
emerge. This presents the so-called quantized Hall effect [53, 54]. Therein, steps in
dGH (�) arise at specific resistivity values, which are given by

d
?;0C40D
GH =

1
?

ℎ

42 =
1
?
' , (2.23)

with ? ∈ N\{0}. ' = 25812.807Ω is the well-known von Klitzing constant. Conse-
quently, plateaus in dGH occur when the Landau level filling factor is close to an integer
value of a. Utilising the relations (2.7) and (2.8) in order to calculate the corresponding
components of the conductivity tensor at the Hall plateau values, we find:

f
?;0C40D
GG = 0 (2.24)

f
?;0C40D
GH = 8

42

ℎ
. (2.25)

This means that in the case of an integer value of a, the transversal Hall conductance is
quantized in units of 42/ℎ, which is the so-called conductance quantum.
In the Landauer-Büttiker picture [4], the conductance quantization can be well described
as the perfect transmission of one-dimensional edge channels between the source and
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2.1 The two-dimensional electron gas

the drain contact. Due to the spatial separation of the edge channels at the opposing
Hall bar interfaces, these counterpropagating channels do not interact since energy states
inside the Hall bar region are localized. Each (spin-degenerate) edge channel contributes
a conductance of 242/ℎ to the total conductance of the system.

Zeeman effect

An external magnetic field B, which breaks the time reversal symmetry, lifts the spin
degeneracy. The corresponding Hamiltonian can be written as

H/ =
1
2
6∗`�2 · B , (2.26)

with the Pauli matrices 2 and `� being the Bohr magneton. For bulk semiconductors, in
first order, the energetical Zeeman splitting Δ�/ is isotropic in space and can be described
with

Δ�Z = 6
∗`�� , (2.27)

where 6∗ is the effective Landé g-factor. Thus, the spin-splitting strength is not only
proportional to the applied magnetic field �, but also to the prefactor 6∗. Deviations from
the free-electron g-factor arise due to a coupling of the electron’s spin to the angular
lattice-periodic part of the Bloch wave functions. For a system with reduced symmetry,
for example due to spatial confinement, and which additionally lacks bulk inversion
asymmetry, 6∗ has to be described by a tensor. The in- and out-of plane anisotropy arises
from the k · p -coupling between different subbands. The in-plane anisotropy is predicted
to be proportional to built-in electric fields in the system and scales with the strength of
the Dresselhaus contribution to spin-orbit interaction [55].
As we find later in chapter 3, the Dresselhaus contribution to spin-orbit coupling can
be neglected in our analysed heterostructures. Furthermore, solely magnetic fields
perpendicular to the sample surface are applied in the course of this work. We can
therefore treat 6∗ as a scalar in order to give an estimate of the Zeeman spin-splitting in
our MT measurements.
Including the Zeeman spin-splitting from equation (2.27) into the description of the
Landau level eigenstates in equation (2.18) yields the following expression:

�=GH = ~l2
(
=GH +

1
2

)
± 1

2
6∗`��. (2.28)

Correspondingly, the energy spin-splitting of the Landau levels enters the description
of the Landau level DOS, which thus provokes a modification of the periodicity of the
Shubnikov-de Haas oscillations for sufficiently high magnetic fields. Since in the spin-split
case the factor of two in equation (2.22) does not have to be included anymore, a transition
of the 1/�-periodicity of the magnetooscillations from a frequency 5 to a frequency 2 5
can be observed (as long as the description by means of equation (2.21) sill holds).
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2 Fundamental concepts of 2D and 1D electric transport

Magneto-intersubband scattering

In the case that an additional 2D electron system contributes tomagnetotransport, the Fermi
level crosses a second size-quantized subband. Thus, the description of the Shubnikov-de
Haas oscillations by means of equation (2.21) has to be extended. According to equation
(2.18), this second 2DEG contributes an additional set of Landau level eigenenergies to the
B-field-dependent energy spectrum of the system. In first approximation, the respective
resistivities dGG,8, where 8 = 1, 2 accounts for the two contributing 2D systems, can be
described by means of equation (2.21), with the corresponding quantum lifetime g@,8 and
electron density =B,8. In addition, a further effect in dGG (�) can arise, which is generally
referred to as themagneto-intersubband scattering effect (MIS). This term has been coined
by the work of Raikh and Shabazyan [56]. In the case of two spatially non-separated
2DEGs, i.e. two size-quantized subbands of a QW for instance, this interaction effect
has to be taken into account. As the name implies, MIS accounts for the increased
intersubband scattering processes when the Landau levels of the two size-quantized
subbands cross. This level crossing can be described by following energy-dependent
relation:

�1 + �!!,1 = �2 + �!!,2 = �1 + �1,2 + �!!,2 . (2.29)

�1 and �2 describe the onset of the first and second size-quantized subbands of the
QW and �1,2 = |�1 − �2 | represents the energy difference between the two subbands.
�!!,1 and �!!,2 constitute the Landau level energies of the first and second subband,
respectively. Inserting the (spin-degenerate) expression for the Landau level eigenstates
of equation (2.18) into the above equation (2.29) yields

�1 + ~l2
(
= + 1

2

)
= �1 + �1,2 + ~l2

(
< + 1

2

)
(2.30)

⇒ (= − <) = <∗

~4
· �1,2 ·

1
�
, (2.31)

with =, < being the Landau level indices of the two size-quantized subbands, respectively.
Note that = > < is always true, so that (= − <) > 0. The latter equation can be viewed
as a magnetic field-dependent condition for Landau level-crossing in a 2D system.
The modulation of dGG (�) due to MIS was first correctly described by Coleridge [57] and
was later refined by Leadley et al. [58] to

ΔdGG

d0
= �1

〈Δ61〉
60
+ �2
〈Δ62〉
60
+ �12

〈Δ61Δ62〉
62

0
, (2.32)

with

Δ68

60
= 2q()�8 ) cos

(
2c
�� − �8
~l2

+ c
)

(2.33)
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2.1 The two-dimensional electron gas

and

〈Δ61Δ62〉
60

= 2q()�1 + )�2)
(
� (2-) cos

(
2c

51 + 52
�

)
+ cos

(
2c

51 − 52
�

))
. (2.34)

The thermal damping factor -/sinh - , with - = 2c2:�)
~l2 , from equation (2.21) is labeled

here as � (-). 58 =
=4
2ℎ , with 8 = 1, 2, present the density-related magnetooscillation

frequencies of the first and second subbands of the 2DEG. The thermal broadening of
the Fermi distribution in formula (2.32) is expressed by means of the angular brackets in
〈Δ68〉. q()�) = exp

(
−2c2:�)�

~l2

)
represents the Dingle factor. The prefactors �8 and �12

incorporate intra- and intersubband scattering, respectively.
Thus, by means of the above formula (2.32), the resulting magnetoresistivity of the
system can be described in form of two contributing Shubnikov-de Haas-terms, i.e.
the first and second term in equation (2.32), plus a third term, which accounts for the
subband-interaction. This third term introduces two additional frequencies, the sum- and
the difference-frequencies 51 + 52 and 51 − 52 (see equation (2.34)), to the density-related
frequencies 51 and 52 of dGG (�) over 1/� of the two 2D systems.

2.1.3 The field-effect

Figure 2.1: Sketch of a gate stacking at which a
voltage +60C4 is applied between the metal gate
electrode and the semiconductor 2DEG. The
metal gate electrode and the 2DEG form the
two plates of a capacitor, which are separated by
a dielectric layer (grey) and a semiconducting
spacer material (bright green) of thickness B
and 1, respectively.

By exploiting the field-effect, we are able to manipulate the electron sheet density =B of
the 2D electron system. In good approximation, the 2DEG in our heterostructure and an
attached metal gate electrode on top of our layer system serve as two plates of a capacitor.
This situation is schematically illustrated in figure 2.1. The gate electrode and the 2DEG
are separated by an insulating dielectric layer and the semiconducting barrier material.
The capacitance � of a plate capacitor is given by

� =
&

+60C4
with � = Y0YA

�

3
,

where � is the area of a capacitor plate and 3 is the distance between the two plates.
Y0 presents the vacuum permittivity and YA is the permittivity of the spacer material in
between the two capacitor plates. +60C4 is the applied gate voltage between the metal gate
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2 Fundamental concepts of 2D and 1D electric transport

electrode and the 2DEG layer.
A key parameter which describes the electric response of the 2D system to a variation of
the applied +60C4 presents the capacitive coupling 2. Accordingly, 2 is defined as

2 =
m=B

m+60C4
=

�

4�
=
Y0YA
43

. (2.35)

Our layer configuration, which is displayed in figure 2.1, corresponds to a number of
individual capacitors connected in series. Thus, we describe the capacitive coupling 2 of
the gate stackings, which we will analyse in the course of this work, as follows:

2 =
Y0
4

(∑
8

38

Y8

)−1
⇒ 2 =

Y0
4

( B

Y384;42CA82
+ 1

Y10AA84A

)−1
. (2.36)

In the above formula for 2, we have omitted two band structure related terms, which
incorporate the quantum capacitance, accounting for the finite DOS of the 2DEG, and
the influence of the quantization energy in a size-quantized system. Due to their little
influence on 2, these quantum correction terms will be neglected in the course of this
work and we will thus treat the field-effect response of our systems classically by means
of the above equation (2.36). A more detailed description of the complete formula for 2 is
given in [43].

2.2 Ballistic electron transport in a 1D channel

If the motion of the conduction electrons in the 2DEG (free motion in G-H-plane) is further
reduced in one dimension, for example in the H-direction, additional size quantization
effects in the dispersion of the system become visible as soon as the Fermi wavelength is
of the order of the additional confining potential. The kinetic energy of the system is then
discretized in two directions: We obtain energy quantization for the motion in growth
(I-) direction, as well as energy quantization for the motion along the H-direction. In
this situation, free motion in G-direction is preserved. The energy eigenstates of this 1D
system are then described by the dispersion relation

�=,< (:G) = �= (:I) + �< (:H) +
~2:2

G

2<∗
, (2.37)

with =, < being the quantum numbers for the respective subbands in I- and H-direction.
The resulting 1D DOS (with 6B = 2 and 6E = 1) is described by

D1� (�) =
1
c

(3�<
3:G

)−1
=

1
cℎ

(<∗
2�

)1/2
. (2.38)

To obtain the exact solution for the 1D eigenstates and eigenenergies of the system, the
confinement can be treated in the envelope function and effective mass approximation.
Assuming an infinite barrier height in the I- and H-direction yields
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2.2 Ballistic electron transport in a 1D channel

�=,< (:G) =
~2c2

2<∗
( ( =
!I

)2 +
( <
!H

)2
)
+
~2:2

G

2<∗
, (2.39)

with =, < ∈ N and !I and !H being the potential well width in the corresponding
directions.
In the following, we consider a 2DEG, which is - by definition - only populated in
the lowest subband. Furthermore, we superimpose a confining potential in H-direction,
whereby we create a 1D wire structure, in which electrons can freely move in G-direction.
The electron transport in such a system is equivalent to transversal modes, travelling in
a waveguide. If the dimensions !G and !H of the probed 1D wire are smaller than the
mean free path ;< 5 ?, i.e. the electrons travel ballistically inside the 1D wire, remarkable
quantum effects arise in the transport properties of the system. The conductance �, being
the inverse of the resistance, exhibits well-pronounced quantization steps, which are given
by

� =
242

ℎ
# = 2# · �0 , (2.40)

with # ∈ N being an integer number. �0 ≡ 42/ℎ = '−1
 

is the conductance quantum,
which already appeared in equation (2.23) in the description of the quantum Hall
conductance plateaus in dGH.
In the following, we briefly present the key steps towards the derivation of this relation
for �, whereby we follow the deduction in [43].

2.2.1 Conductance quantization in an ideal 1D wire
structure

Let us consider the above described 1D wire structure, formed by an additional confining
potential in H-direction in the G-H-plane of a 2DEG. For simplicity, we assume the 1D
channel to be long, by which we exhibit translational invariance in G-direction. The wave
function inside the 1D wire can then be written as

k=k(r) = j= (H, I) ·
1
√
!
48:GG , (2.41)

with = being the quantum number of the transversal modes j= (H, I). The quantum
mechanical current density 3j=:G (r) reads as

3j=:G (r) = −
|4 |~
28<∗

(
k∗=:G (r)∇k=:G (r) − k=:G (r)∇k

∗
=:G
(r)

)
. (2.42)

Inserting the wave function (2.41) into equation (2.42) yields

3j=:G (r) = −eG
|4 |
2c
|j= (H, I) |2

~:G
<∗

3:G . (2.43)
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2 Fundamental concepts of 2D and 1D electric transport

This relation can be identified with the current density from the Drude picture j = 4=Bv� ,
whereby the sheet density =B is expressed as the 1D charge density D1� . Thus, we find
9 = 4D1��E� . The drift velocity E� in equation (2.43) is presented by the quantum
mechanical expectation value of the velocity in G-direction as

v= (:G) = eG
~:G
<∗

= eG
1
~
m�= (:G)
m:G

.

Converting the small interval 3:G in equation (2.43) into the corresponding energy interval
by means of 3:G = 3� m:G

m�=:G
yields an expression, which is identical to the 1D DOS from

equation (2.38) up to a factor of c. Consequently, the quantum mechanical current density
reads as

3j=� (r) = ±eG
2|4 |
ℎ
|j= (H, I) |23� . (2.44)

We obtain a minus (plus) sign for states with :G > 0 (:G < 0). Thus, we find that the
energy dependence of the group velocity and the energy dependence of the 1D DOS
exactly cancel each other.
Since 3�/|4 | has the units of a voltage and by exploiting the fact that the transverse modes
j= (H, I) are normalized, we can write for the total current �C>C in the case of a small
applied bias +(� between the ends of the 1D wire:

�C>C =
242

ℎ
· # · +(� . (2.45)

# presents the number of participating modes, described by the quantum number =, in the
1D channel. Thus, the conductance � of an ideal 1D wire in the limit of ) = 0 reads

� =
�C>C

+(�
=

242

ℎ
· # . (2.46)

2.2.2 Electron transmission in the adiabatic
approximation

Figure 2.2: Sketch of a 1D wire structure
in G-direction, which connects the left 2D
reservoir, exhibiting a chemical potential
`! , to the right 2D reservoir with `'. Two
transversal modes < = 1, 2 inside the con-
striction are indicated.

In a real device, the above assumed translational invariance of the 1D channel in G-direction
is not fulfilled since the 1D wire in the plane of the 2DEG is connected to larger 2D
reservoirs. This situation is illustrated in figure 2.2. Thus, for a realistic description of
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2.2 Ballistic electron transport in a 1D channel

the conductance through the 1D constriction, the transition from the large 2D reservoir
into the 1D wire structure (and vice versa) has to be taken into account.
A commonly applied method is the description of the conductance quantization in the
adiabatic approximation, i.e. the wave function changes smoothly in G-direction. Thereby,
the transition from the 2D reservoir into the 1D wire is assumed to be smooth on the
length scale of the Fermi wavelength _� [59, 60]. The corresponding single particle
Hamiltonian

H = − ~2

2<∗
∇ ++ (G, H, I)

can be separated into two parts

HG = −
~2

2<∗
m2

mG2

HH,I (G) = −
~2

2<∗
( m2

mH2 +
m2

mI2

)
++ (G, H, I) ,

in which G in the expression ofHH,I (G) parameterizes the wire-induced potential height
in G-direction. Based on the assumed adiabatic approximation, it can be shown that the
quantum mechanical wire problem reduces to a simplified 1D potential problem:

− ~2

2<∗
m2Z< (G)
mG2 ++ 4 5 5< (G)Z< (G) = �Z< (G) . (2.47)

+
4 5 5
< (G) is the effective potential which a conduction electron in the transversal mode <

experiences when traversing the 1D constriction. Z< (G) are the expansion coefficients
of the orthonormalized eigenfunctions ofHH,I (G). We now follow the deduction in the
preceding subsection 2.2.1, where we employed the quantum mechanical expression
for the current density in order to obtain the equation for the total conductance � (see
equation (2.46)). This way, we find in the limit of a small applied source-drain bias
between the 2D reservoirs with chemical potentials `! and `' the following expression
for � in a 1D wire structure in adiabatic approximation:

� =
242

ℎ

∑
<

∫ +∞

−∞
3�T< (�)

(
− m 5! (�)

m�

)
. (2.48)

T< (�) is the energy-dependent transmission probability of a transversal mode < through
the constriction. At low temperatures, the derivative of the Fermi-Dirac distribution at
the Fermi energy is sharply peaked and equation (2.48) simplifies to

� =
242

ℎ

∑
<

T< (��) . (2.49)

In order to obtain values for the transmission probabilities of a mode <, the constriction-
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2 Fundamental concepts of 2D and 1D electric transport

defining potential + (G, H, I) has to be further specified. The 1D wire structures, that we
analyse in the course of this work, are well-described by a saddle potential, which create
a short and narrow constriction. This structure is commonly referred to as quantum point
contact (QPC).
In the saddle point model, + (G, H, I) takes the form

+ (G, H, I) = −1
2
<∗l2

GG
2 + 1

2
<∗l2

HH
2 ++ (I) , (2.50)

where lG and lH parameterize the curvature of the confining parabolic potentials in G-
and H-direction. A sketch of the potential landscape in the G-H-plane is shown in figure
6.2 in chapter 6. The quantum mechanical problem of the saddle-point-defined QPC can
be again separated into the corresponding spatial contributions. For the confinement in
H-direction, we gain harmonic oscillator solutions of the form �H = ~lH (< + 1/2). For
the motion in G-direction, we obtain the simplified expression(

− ~2

2<∗
m2
G −

1
2
l2
GG

2
)
Z (G) = �GZ (G) . (2.51)

As shown in [6], the transmission of a transversal mode < through the parabolic potential
barrier in G-direction can be described as

T< (�) =
1

1 + 4−2cn<
, (2.52)

with the energy parameter

n< =
� − ~lH (< + 1/2) − �I

~lG
. (2.53)

Thus, from equations (2.52) and (2.53), it follows that a transversal mode < in a QPC
exhibits a high transmission probability when the condition lH/lG � 1 is fulfilled.

2.2.3 Non-ideal 1D transport

In a realistic QPC, non-idealities in the 1D transport through the constriction have to be
taken into account. A non-adiabatic transition from the 2D reservoirs into and out of the
QPC generally leads to transversal mode mixing in the QPC, whereby the transmission
coefficients, given in equation (2.52), can be altered. Furthermore, a deviation from
the above assumed smooth saddle potential may lead to the formation of local potential
minima in the channel. This introduces a particular energy-dependence of the transmission
probabilities in the 1D wire. For example, Coulombic impurities, which are located in
the direct vicinity of the QPC, are likely to impose a disorder potential on the QPC-
defining potential. This may lead to fluctuations of the conductance through the 1D
constriction.
Non-ideal 1D transport related phenomena in conductance measurements will be further
discussed in chapter 6 and 8.
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2.2 Ballistic electron transport in a 1D channel

2.2.4 1D transport in a perpendicular magnetic field

Applying an external magnetic field B perpendicular to the plane of the 2DEG in which
the QPC is created further modifies the energy dispersion inside the 1D constriction
[61–63]. In the above considered QPC, we assumed a harmonic confinement potential in
H-direction, i.e. + (H) = 1

2<
∗lHH2, where lH describes the strength of the confinement in

H, whereas we have free motion in the G-direction. The single-particle Hamiltonian of
the QPC when an additional external magnetic field is applied can be expressed in the
Landau gauge A = (�H, 0, 0) as

HGH = −
~2

2<∗
m2

mH2 +
(
− 8~ m

mG
+ 4�H

)2

2<∗
+ 1

2
<∗lHH

2 . (2.54)

The dispersion relation � (=, :G) of the resulting hybrid magnetoelectronic 1D subbands
can be written as

� (=, :G) = (= +
1
2
)~l +

~2:2
G

2<∗(�) = �= (�) +
~2:2

G

2<∗(�) , (2.55)

with

l2 = l2
H + l2

2 (2.56)

l2 =
4�

<∗
(2.57)

<∗(�) =
( l
lH

)2
. (2.58)

Thus, the external magnetic field results in an increased 1D subband separation Δ�= (�)
due to an increase of the oscillator frequencyl. With an increasing external magnetic field
B, the 1D subbands become successively depopulated. Additionally, the effective mass of
the electrons <∗(�) is increased, which leads to a flattening of the subband dispersion
curve. In the limit of a strong perpendicular magnetic field, the hybrid magnetoelectronic
subbands evolve into magneto subbands, i.e. the Landau levels, described by equation
(2.18). The evolution of the 1D subband dispersion with increasing magnetic field is
schematically depicted in figure 2.3.
Owing to the increased 1D subband spacing, the application of a perpendicular B-field in
1D transport measurements generally leads to an improvement of the ballisticity inside
the 1D channel since backscattering is reduced.
The 1D DOS (see equation (2.38)) in an external magnetic field is concomitantly modified
and we obtain

D�
1� (�, l) =

l

c~l2

( 2<∗

� − �=

)1/2
. (2.59)
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2 Fundamental concepts of 2D and 1D electric transport

Figure 2.3: 1D subband dispersion with an increasing perpendicular magnetic
field from left to right.

Accordingly, the 1D DOS peak is narrower as compared to the case when no external
magnetic field is applied to the system (see equation (2.38)).
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Fundamental concepts of
spin-orbit interaction

3

An electron, moving in an electric field E = −∇+ (r) experiences in its restframe an
effective magnetic field Beff via Lorentz transformation. This effective field, acting on
the electron’s spin, reads as Beff = − 1

22 v × E , where 2 is the velocity of light [55, 64].
Hence, the spin of the electron is affected by its orbital motion in the electric field which
is commonly referred to as spin-orbit coupling (SOC) or spin-orbit interaction (SOI).
In the case of an electron moving in a crystal, +0 is the Coulomb potential of the atomic
cores of the crystal. The so-called Pauli SOI-term, which enters the Hamiltonian of the
moving electron, can be expressed as

H($ = −
~

4<2
>2

2
2 · p ×

(
∇+0

)
, (3.1)

where p is the momentum operator and 2 is the vector of Pauli spin matrices. Calculating
the band structure of a semiconductor crystal by means of the k · p-perturbation theory
near band extrema, whereby the atomic SOI viaH($ is taken into account, reveals the
effect of atomic SOC on the electronic band structure in first approximation. Therein,
SOC is parameterized by matrix elements, which incorporate band edge parameters of the
system. By employing this method, one obtains a splitting of the topmost valence bands
with 9 = 3

2 and 9 = 1
2 , where 9 is the total angular momentum. The 9 = 3

2 and 9 = 1
2

states are separated by the so-called spin-orbit (SO) gap Δ0. Incorporating the effect of
the valence bands on the conduction band perturbatively via higher order terms unveils
the effect of SOC on the spin-state of the conduction electrons. This yields a further
modification of the band structure of the crystalline solid.
In the following chapter, we briefly introduce the effect of band-related SOI on 2D and
1D systems, together with thereby arising effects in (magneto)transport.
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3 Fundamental concepts of spin-orbit interaction

3.1 SOI in 2D systems

Spin degeneracy of electrons and hole states in a semiconductor system is a consequence
of the combination of inversion symmetry in space and time [64]. By breaking the space
inversion symmetry, we find the Kramers degeneracy

�+(:) = �−(−:)

to still be valid, yet the spin degeneracy of the system is lifted.
In the semiconductor material systems, analysed in this thesis, spatial inversion asymmetry
is generated by the asymmetry of the crystal potential, as well as by structure-related
confinement potentials.

3.1.1 Bulk inversion asymmetry (BIA)

The first contribution to band-related spin-splitting in our system is the so-called Dres-
selhaus term or the bulk inversion asymmetry (BIA). BIA arises due to a microscopic
electric field that is generated by a lack of inversion symmetry in the zinc blende lattice.
For a 3D crystal structure, the corresponding Hamiltonian takes the form

H 1D;:
� = W [fG:G (:2

H − :2
I ) + fH:H (:2

I − :2
G) + fI:I (:2

G − :2
H)] , (3.2)

where fG , fH and fI are the Pauli spin matrices. W is a material-dependent parameter,
describing the strength of the bulk inversion asymmetry. x, y, and z point into the direction
of the cubic axes. The Dresselhaus term can also be expressed in the form of an effective
momentum-dependent magnetic field Ω1D;:

�
(k), which acts on the spin 2. In the case of a

bulk semiconductor the corresponding energy splitting is cubic in k [65, 66].
Owing to energy quantization in 2D systems, where we take z as the quantization (growth)
axis, the Dresselhaus contribution H� to SOI is reduced to a linear term in : [67].
The exact form ofH� depends on the choice of the describing coordinate system. For
G ‖ [11̄0], H ‖ [110] and I ‖ [001] the Dresselhaus contribution can be written as

H� = V(:HfG + :GfH) = Ω� (k) · 2 , (3.3)

with

Ω� = V ·
©«
:H
:G
0

ª®¬ .

The prefactor V, which describes the strength of the linear Dresselhaus contribution to
SOI, can be expressed as: V = W 〈:2

I 〉 ∝ 1/!2
,
[66, 68]. 〈:2

I 〉 describes the expectation
value of the electron momentum in the size-quantized I-direction. Since W stems from the
crystal fields, the only way to modify the Dresselhaus contribution is thus by changing the
quantum well (QW) thickness !, , whereby the expectation value of :I is altered.
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3.1 SOI in 2D systems

3.1.2 Structure inversion asymmetry (SIA)

In semiconductor heterostructures another effect can give rise to SOI. This additional
contribution to SOI, often referred to as structure inversion asymmetry (SIA), was first
formulated by Bychkov and Rashba [69, 70] and is generated by rather macroscopic
electric fields, which act on the conduction electrons. It originates from built-in or
external electric fields, as well as from band edge discontinuities in the heterosystem. The
asymmetry of the confining potential results in an effective magnetic field Ω'(k) [55]. In
first approximation, the corresponding energy spin-split term is linear in : and can be
expressed with the single-particle Hamiltonian

H' = U(:HfG − :GfH) = Ω' (k) · 2 , (3.4)

with

Ω' = U ·
©«
−:H
:G
0

ª®¬ .

This Rashba Hamiltonian H' can be reformulated in a way, which underlines the
experimental access to tune the corresponding spin-splitting in the system:

H6262
' = A6262

41 f · k × E = A6262
41 EI · (:HfG − :GfH) . (3.5)

Hereby, A6262
41 is a material-specific prefactor [55] and the electric field E, corresponding

to the confining potential, points into the I-direction.

Figure 3.1: Spin-split dispersion � (k) of electrons in a 2D system with Rashba-
type SOI. The arrows indicate the spin orientation of the eigenstates. [55]

The resulting dispersion relation � (k) ≡ �±(k| |) of the conduction electrons inside the 2D
system is displayed in figure 3.1. The SO-induced effective magnetic field �4 5 5 is oriented
perpendicular to the growth direction and to the corresponding electron momentum. This
results in a vortex-like structure of �4 5 5 in :-space. The spin-resolved eigenstates can be
described with
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3 Fundamental concepts of spin-orbit interaction

�±(: | |) = 〈`2〉 k2
| | ±

〈
A6262

41 EI
〉
|k| | | , (3.6)

where `22/~2 is the reciprocal effective mass and :2
| | = :2

G + :2
H is the quasi-crystal

momentum of conduction electrons in the QW plane.
Thus, the strength of Rashba-type SOI, i.e. U =

〈
A6262

41 EI
〉
, is controlled by the total

electric field EI in I-direction, multiplied by a material-dependent prefactor A6262
41 . For

GaAs A6262
41 takes the value 5.2064�̊2, for InAs we find A6262

41 = 117.14�̊2 [55].
Nitta et al. [71] were the first to demonstrate the ability to experimentally modulate the
strength of Rashba-type SOI via the application of an external electric field in a top-gated
In0.53Ga0.47/In0.52Al0.48As 2D electron system.

3.1.3 Combination of SIA and BIA

In a 2DEG, both contributions to SOI, i.e. SIA and BIA, generally influence the energy
eigenstates of the conduction electrons. In the most general form, the resulting 2D
SOI-Hamiltonian can be expressed as a sum of H' from equation (3.4) and H� from
equation (3.3) as

H($� = H' + H� = U(:HfG − :GfH) + V(:HfG + :GfH) . (3.7)

De Andrada e Silva et al. [72] showed that the total electric field, entering the description
of SOI, can lead to a highly anisotropic spin-splitting in : since both effects interfere,
particularly when they become equal in strength, i.e. V = ±U ≡ _/2. For these two
special cases, the resulting effective magnetic field Ω%() can be expressed as

Ω%() = _ ·
©«
:H
0
0

ª®¬ and Ω%() = _ ·
©«

0
:G
0

ª®¬ ,

with the index PST being the abbreviation of the term persistent spin-texture [66]. For this
special form ofΩ%() , we see that the spin-splitting vanishes in certain directions in :-space
[73, 74]. Furthermore, it results in a spatially periodic mode of the spin-state, being
independent of the momentum direction. This effect is called the persistent spin-helix
(PSH) [75].
To evaluate the resulting spin-splitting in our 2D electron system, being hosted in an
(InAs/) In0.75Ga0.25As/ In0.75Al0.25As heterostructure in the form of a QWwith a thickness
of 20=< (see chapter 5), it is important to consider the relative strengths of Rashba- and
Dresselhaus-contributions to SOI. A first estimate is given by literature:
Lommer et al. [76] showed that in general SIA dominates over BIA for small band-gap
semiconductors, such as InAs and InSb, whereas for large band-gap materials like GaAs
the trend is often opposite. While Winkler [55] pointed out that In0.53Ga0.47As-based
material systems are in an intermediate regime where both contributions from BIA and
SIA have to be considered, Luo et al. [77] showed that for InAs heterostructures the SIA
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3.2 Evaluation of SOI strength

contribution clearly dominates over BIA. Furthermore, studying the magnetotransport
in a symmetrically doped, 10=< In0.53Ga0.47As QW, Faniel et al. [78] were able to
experimentally demonstrate that the BIA contribution to SOI is much smaller than the
contribution from SIA. The MT measurements of Schäpers et al. [79] found that the
BIA-term in their In0.77Ga0.23As/InP heterostructure can be neglected as compared to the
SIA contribution.
Based on these literature reports, we can summarize that for structures having a higher In
content and a larger QW thickness, the Rashba-mechanism is expected to clearly dominate
over the Dresselhaus contribution. Considering the comparably large thickness of our
20=< In0.75Ga0.25As QWs, we consequently infer that the PSH-state, as well as BIA spin
splitting can be neglected in the analysis of SOI-related effects in our heterostructure.

3.2 Evaluation of SOI strength

An experimental method to estimate the strength of Rashba-type SOI in a 2D system is
given by the evaluation of the magnetooscillations, arising in the longitudinal resistivity in
a MT measurement. In the following, we briefly summarize the two commonly employed
evaluation methods of the Shubnikov-de Haas oscillations to obtain the Rashba coefficient
U of the system.

3.2.1 FFT analysis of the magnetooscillations

The most commonly utilised approach to determine the SOI strength is by a fast Fourier
transformation (FFT) of the longitudinal resistivity dGG (�), acquired in aMTmeasurement.
Therein, the coefficient U is calculated on the basis of the determined 2D electron densities
in the FFT of dGG . Here, we shortly recapitulate the main steps towards the description
of Rashba-type SOI based on the electron densities of the 2DEG, wherein we follow an
envelope function approach as presented in [80] and [79]. Considering the k ·p-interaction
of the Γ6 conduction band with the remote valence bands to which the coupling is strongest,
i.e. the Γ7 and Γ8 valence bands, the corresponding Hamiltonian for a 2D electron system
can be written as

H2� =
(
� BD1I − ~2

2<∗
Δ2
‖ + i(A‖))

)
· 1 + 1

~
U ·

(
f × ~

8
∇
)
. (3.8)

� BD1I is the energy of the first size-quantized subband of the QW and I points along the
(001) growth direction. The effective mass <∗ in the above equation takes the form

<∗−1 =
〈
ΨI

��<∗−1(I)
��ΨI〉 ,

with |ΨI〉 being the wave function of the unperturbed electrons of the first subband. By
expressing <∗ in this form, the leakage of the wave function into the barrier material is
included in the calculations. It can be shown that the corresponding Rashba coefficient U
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3 Fundamental concepts of spin-orbit interaction

of the above equation (3.8) can be written as

U =
~2�?

6<0
{0′ 〈E�〉 + 1′(

〈
E�D

〉
+

〈
E�;

〉
) − 1

2
1( |ΨID |2 − |ΨI; |2)} . (3.9)

�? is a so-called k · p-interaction parameter, which describes the coupling strength of
the Γ6 conduction band to the coupled valence bands Γ7 and Γ8. 〈E�〉 represents the
expectation value of the electric field inside the QW, i.e. material �,

〈
E�D

〉
and

〈
E�;

〉
describe the expectation values of the electric field in the upper and lower barriers of the
QW, i.e. material �. |ΨID |2 and |ΨI; |2 are the wave function probabilities at the upper and
lower QW barriers. The prefactor 0′, 1′ and 1 contain material-dependent band structure
parameters, as well as the energy level � of the electronic state inside the QW. These
prefactors can be expressed as

0′ =
( 1
(� − � �

Γ7
)2
− 1
(� − � �

Γ8
)2

)
(3.10)

1′ =
( 1
(� − � �

Γ7
− Δ�Γ7)2

− 1
(� − � �

Γ8
− Δ�Γ8)2

)
(3.11)

1 =

( Δ�Γ7

(� − � �
Γ7
− Δ�Γ7)2

+
Δ�Γ7

(� − � �
Γ7
)2
−

Δ�Γ8

(� − � �
Γ8
− Δ�Γ8)2

−
Δ�Γ8

(� − � �
Γ8
)2

)
. (3.12)

The terms Δ�Γ7 and Δ�Γ8 present the valence band offsets of materials � and �.
By means of equation (3.9) with the prefactors as described by the above relations (3.10)
to (3.12), we deduce that the Rashba SOI is based on the coupling of the conduction
band with the valence bands. By partitioning the Rashba term as in expression (3.9), it
becomes clearly visible that the resulting Rashba-coupling coefficient U is comprised of
three contributing terms:
(1) The first term containing the prefactor 0′ parameterizes the SOI strength due to an
electric field inside the QW, i.e. material �, acting on the conduction electrons. It can be
simply written as the expectation value of the field inside the well, i.e. 〈E�〉, multiplied
by a material- and energy-dependent prefactor, 0′. For an infinitely deep QW, this would
be the only contribution to the Rashba spin-splitting.
(2) The second term takes the extension of the wave function |ΨI〉 into the barrier material
� into account. Thus, this contribution is proportional to the expectation value of the
electric field inside the barrier layers, i.e.

〈
E�D

〉
and

〈
E�;

〉
.

(3) The third contribution to U arises from the abrupt change of material the wave function
experiences at the interfaces between materials � and �. This contribution can be
described as the difference of the probability densities of the conduction electrons at the
upper and lower QW interfaces, multiplied by a band structure-dependent parameter 1,
which contains the corresponding band offsets [81, 82]. For a correct calculation of the
Rashba parameter the last term in equation (3.9) is of vital importance as was explicitly
shown in various publications in literature [79–85].
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3.2 Evaluation of SOI strength

Thus, we find that an external electric field, which is for example generated by a gate
electrode, enters into all of the three terms contributing to the expression (3.9) of U, since
it modulates the band profile, as well as the wave function probability distribution.
As already introduced in the preceding section, the resulting energy dispersion � (: ‖) of
the conduction electrons inside the QW splits into two spin-resolved parabolas, which are
shifted horizontally in :-space according to

� (: ‖) = � BD1I +
~:2
‖

2<∗
± U |: ‖ | . (3.13)

The horizontal shift of the two spin-split parabolas is determined by the above described
Rashba-coefficient U. The energy eigenstates for a specific value of :G are separated in
energy byΔ�: = 2U: . Commonly, one refers to this energy difference as the spin-splitting
energy Δ�BB for a specific : .
Furthermore, the effective mass of an electron in a spin-resolved eigenstate depends on
the particular energy branch: Electrons on the outer branch exhibit a larger effective mass
than electrons on the inner branch. Consequently, the energy spin-splitting manifests
itself in the 2D DOS, which is given by

D±(�) =
1
2
<∗

c~2

(
1 ∓ 1√

1 + [2(� − � BD1I )~2]/(U<∗)

)
. (3.14)

The individual DOS of each branch is found to resemble half the one of the spin-degenerate
2D system, i.e. D2� = 2<∗/(c~2), which is now further modified by an energy-dependent
correction factor. This factor takes the altered effective electron masses on the inner and
outer parabolas into account. Looking at a particular Fermi energy �� , we see by means
of equation (3.14) that an imbalance of the charge carrier densities in the two spin-splitted
energy branches is present. By integrating over the DOS D+(�) and D−(�) up to ��
yields the corresponding spin-degenerate electron densities, which are now labeled as =+
and =−.
In a MT measurement, these two spin-split branches in the 2DEG with the densities =+
and =− both contribute to the Shubnikov-de Haas oscillations, described by equation
(2.21). If the SOI lifts the spin degeneracy in this manner, a FFT of the longitudinal
resistivity dGG (�) over 1/�, which spectrally decomposes the signal, yields a prominent
double-peak structure, which thus serves as an experimental signature of the spin-split
dispersion. The two frequencies obtained in the FFT spectrum correspond to the densities
=+ and =−. The FFT process is described in detail in subsection 9.2.4.
As was first pointed out by Luo et al. [86], measuring =+ and =− in a MT measurement
therefore yields access to the SOC coefficient U via the relation

U =
Δ=~2

<∗

√
c

2(= − Δ=) . (3.15)

Here, Δ= is the difference of the electron concentrations of the two spin-split branches, i.e.
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3 Fundamental concepts of spin-orbit interaction

Δ= = =+ − =−, whereas = is the average value of the charge carrier densities = = =+ + =− .
If no further conducting channel contributes to the transport in the system, = can be
substituted by the measured Hall density =�0;; .

We want to point out that for the derivation of formula (3.15) Zeeman spin-splitting, as well
as contributions from BIA are neglected. Since we expect the Dresselhaus contribution to
spin-splitting to be small as compared to the SIA contribution in our system, the effect of
Zeeman spin-splitting will dominate potential deviations of the calculated U from reality
in our case.

3.2.2 Beating-node analysis of the magnetooscillations

Based on the analysis of the magnetooscillations in the longitudinal resistivity, there is a
second evaluation method to determine the SOI strength, which we will present in the
following. In contrast to the above presented method, however, Zeeman spin-splitting is
not incorporated in the estimation of the Rashba coefficient.
The total Hamiltonian describing a Rashba spin-orbit coupled system in an external
magnetic field can be expressed as

H = H$ + H/ + H' .

Therein, H$ is the Hamiltonian of a quasi-free electron in a magnetic field, H/ is the
contributing Zeeman term andH' takes the structure-induced inversion asymmetry into
account. The corresponding eigenenergy spectrum is given by [70, 87]:

�=± = ~l2 (= +
1
2
± 1

2
) ∓

√
(~l2 − 6∗`��)2 +

8U24�

~
(= + 1

2
± 1

2
) (3.16)

(+) and (−) denote the two spin-resolved eigenstates. Whereas the DOS of the Landau
levels and the Zeeman spin-splitting go linearly with the applied external magnetic field �
- if B is orthogonal to the 2DEG - the Rashba SOI causes a B-field-dependent enhancement
of the spin-splitting in the system. Hence, the ratio of the total spin-splitting energy XBB
and the Landau level separation Δ�!! = ~l2, i.e. XBB/Δ�!! , is not constant anymore
as it would be for an inversion-symmetric system subjected to a perpendicular magnetic
field. In this case, the ratio XBB/Δ�!! = 6∗`��/~l2 is constant. Owing to the presence
of Rashba SOI, the ratio becomes �-field-dependent.
The modification of XBB due to SOI becomes more dominant in the limit of small magnetic
field values. Here, Landau levels, described by equation (3.16), cross when the ratio
XBB/Δ�!! takes an integer value. The alteration of the energy separation of the eigenstates
by sweeping the external magnetic field manifests itself in an amplitude modulation
of the Shubnikov-de Haas oscillations: a beating in dGG (�) arises. A node in dGG (�)
corresponds to the situation where the energy separations of the neighboring eigenstates
from equation (3.16) exhibit equivalent distances, whereas a peak in the amplitude of the
envelope of dGG (�) is observed when the eigenstates are not equally spaced in energy.
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3.3 SOI in 1D systems

This can be translated into a mathematical relation: A node in dGG (�) appears when the
ratio XBB/~l2 becomes half-integer.
Via the amplitude modulation of the Shubnikov-de Haas oscillation, the Rashba SOI-
strength U can be determined. As was shown by Das et al. [83], to obtain a good estimate
for the SOI strength U, the total spin-splitting of the eigenstates (3.16) can be approximated
as

XBB ≈ Δ�B> + B6∗`�� .
The modulation of the amplitude � of the Shubnikov-de Haas oscillation in a MT
measurement of dGG is given by

� ∝ 2>B
(
c
X

~l2

)
.

Hence, the condition for a node-position reads as

XBB

~l2
= 8 − 1

2
,

with 8 ∈ R+ being the node index of the beating in dGG . Inserting `� = 4~
2<0

into the upper
equation yields

8 =
2<∗U:�

~4

( 1
�

)
+

(6∗<∗
2<0

+ 1
2

)
. (3.17)

Thus, from the slope of the linear dependence of the node-index 8 on 1/� the Zeeman
spin-splitting-independent estimation of the Rashba spin-orbit parameter U can be obtained
[79].
Yet, to give a meaningful estimation of U by means of this beating-node analysis at least
three clear nodes in dGG (�) have to be present. This often impedes the implementation of
this experimental evaluation method in reality.
Furthermore, from the intersection of the linear fit with the y-axis, the effective g-factor,
6∗, can be determined.

3.3 SOI in 1D systems
Additionally to the above described SOI terms in 2D, arising from the periodic microscopic
crystal potential (BIA term), as well as from electric fields, generated by the symmetry
breaking along the growth-direction (I-axis) due to heterointerfaces, doping and/or the
application of an external electric field (SIA term), a further contribution to SOI can be
identified in gate-defined 1D narrow constrictions. The electronic confinement potential
of a QPC introduces a lateral inversion asymmetry in the transversal direction (here
H-direction), generating electric fields at the opposing potential walls of the narrow
constrictions [63, 88, 89]. This may lead to a spin accumulation at the opposing sidewalls
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3 Fundamental concepts of spin-orbit interaction

of the QPC in a spin-orbit coupled system. For a symmetric confinement potential, the spin
polarizations inside the 1D channel cancel each other. Yet, for an asymmetric confinement
one particular spin polarization predominates. This effect was already implemented in a
proof-of-concept all-electric spin-polarizer device by Debray et al. [19].
In asymmetric QW systems the contribution of this lateral SOI (LSOI) is generally up to
three orders of magnitude smaller than SIA-type SOI for symmetric biasing of the QPC
[79, 88]. However, introducing a pronounced asymmetry in the confinement potential of
the 1D channel by means of a gate electric field between the QPC-defining finger-gate
electrodes leads to an enlarged LSOI, which is likely to dominate the SOI-terms of the
system [13]. Such an experimental situation is shown in figure 3.2(a), in which a split-gate
(SG) defined QPC is introduced in a 2DEG with high intrinsic SOI.

Figure 3.2: (a) Sketch of a SG-defined QPC, asymmetrically biased with+(�1 ≠
+(�2. An electron moving with :G through the 1D constriction experiences
the electric field E between SG1 and SG2 as an effective magnetic field �($

4 5 5
,

pointing in I-direction in their restframe. (b) Dispersion relation of electrons
inside a QPC, in which the 1D subbands are laterally shifted due to LSOC. The
green dashed line indicates the Fermi energy �� .

Biasing the SG-electrodes SG1 and SG2 asymmetrically with +(�1 ≠ +(�2 < 0+
introduces an electric field E = −∇+ (r) in the channel. For simplicity, we assume a linear
potential gradient between SG1 and SG2 with + (r) = 2 · ey. By means of relation (3.5),
the corresponding SOI Hamiltonian for electrons moving with momentum :G in the 1D
channel can be expressed as

H1�
' = U∇+ (r) · k × 2 = U2fI:G . (3.18)

The corresponding effective magnetic field �1�
4 5 5
≡ Ω!($� reads as

Ω!($� = U
©«

0
0
2:G

ª®¬ .

Accordingly, the conduction electrons inside the QPC experience an effective magnetic
field �1�

4 5 5
, directed along the I-axis, perpendicular to their direction of motion :G and to

the electric field E between the SG-electrodes.
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The LSOI results in a lateral shift of the 1D subbands for spin-up and spin-down
electrons against each other as displayed in figure 3.2(b). The strength of the LSOI,
and thus of the shift of the two spin-branches can be tuned by the applied offset-voltage
Δ+(� = |+(�1 − +(�2 | between the SG-electrodes. Tuning the Fermi energy �� under
the crossing point of the two branches and by applying a current between the source and
drain 2D electron reservoirs leads to a spin-polarized current in G-direction. Thus, the
QPC acts as an all-electrical spin filter with a theoretical spin-polarization efficiency of
100%. This concept of spin polarization can be employed in an all-electric spin-transistor
device [13], which is schematically depicted in figure 3.3.

Figure 3.3: Sketch of an all-electric spin-transistor concept, composed of two
serial QPCs, QPC1 with (�1

1 and (�
1
2 and QPC2 with (�

1
2 and (�

2
2, having a

distance 3 < ;< 5 ? in G-direction. Via Rashba-type SOI, the middle gate-electrode
"� controls the spin precession of the conduction electrons moving in : by
modifying the strength of Rashba-type SOI in the 2DEG underneath.

Therein, two serial SG-defined QPCs are formed in a 2DEG with large intrinsic SOI. The
SG-electrodes of QPC1 and QPC2 are biased asymmetrically with the corresponding
offset voltages being defined as Δ+1

(�
= |+1

(�1−+
1
(�2 | at QPC1 and Δ+

2
(�
= |+2

(�1−+
2
(�2 |

at QPC2. The distance 3 between the QPCs in G-direction has to be smaller than the elastic
mean free path of the conduction electrons travelling inside the device. Thereby, the
spin-polarized electrons flow ballistically from QPC1 to QPC2 and thus spin relaxation
can be neglected. In this device, QPC1 acts as a spin polarizer, whereas QPC2 serves
as a spin analyser. When �1�

4 5 5
in QPC1 and in QPC2 point into the same direction, the

conduction electrons can pass through both constrictions. For the opposite sign of �1�
4 5 5

in QPC1 and QPC2, the resistance of the device is increased.
The current flow through the constrictions can be further modified by an additional
middle-gate (MG) situated in between the two QPCs. Applying an external electric
field along the I-direction via the MG yields an effective magnetic field �2�

4 5 5
, pointing

along the H-direction for electrons with momentum :G . By tuning the voltage +"� at the
MG-electrode, the resulting spin precession angle of the conduction electrons impinging
on QPC2 can be adjusted, which eventually controls the current through the device.
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Experimental methods

4
This chapter shortly presents the applied structural and electrical characterisation methods
of the heterostructure devices, which we employ during the course of this thesis. We
further give technical details to the used molecular-beam epitaxy system, as well as to our
low-temperature setups.

4.1 Molecular-beam epitaxy
High-quality and monocrystalline semiconductor layer systems can be fabricated with
molecular-beam epitaxy (MBE), operating in an ultra-high vacuum (UHV) chamber. The
ability to fabricate heterostructures with atomic precision, the low density of incorporated
and growth-related background impurities and the wide variety of materials, which can
be deposited by this technique, present the advantages of this processing method of
heterostructures.

4.1.1 The MBE system

In this work, a modified Veeco GEN II solid source MBE system is used for the epitaxial
growth of the studied III-V heterostructures. The high-purity group III source materials
In, Al and Ga are stored in Knudsen-type effusion cells in the MBE system. The group V
materials As and Sb are provided by valved cracker cells. Furthermore, as doping material
Si, C and Mn are available in our system in form of filament cells and a sublimating
effusion cell, respectively. Via a beam flux ionization gauge we are able to determine the
beam equivalent pressure (BEP), as well as the beam flux ratio, which is a characteristic
parameter for MBE growth conditions. The background pressure in our UHV main
chamber is < 10−11<10A. The growth rate is regulated by the temperature-controlled
flux of the group III material while As is in abundance. Typically, we apply As4-rich
growth conditions by employing an As4-BEP of 6 − 8 · 10−6)>AA . The MBE chamber is
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further equipped with a reflection high energy electron diffraction (RHEED) gun, enabling
in-situ crystal growth analysis. In addition, RHEED is used for the calibration of the cell
temperature-controlled growth rates of the different materials. Further technical details
on the MBE system are given in [90–92].

4.1.2 Calibration of the In cell

In order to fabricate ternary InxAl1-xAs and InxGa1-xAs heterostructures of varying
composition (therefore see section 5.1), we need to precisely calibrate the flux of the In
effusion cell. The generally applied calibration method is based on the comparison of
the AlAs growth rate to the growth rate of InxAl1-xAs for different temperatures of the
In effusion cell via evaluating the corresponding RHEED oscillations. Commonly, we
use a GaAs (001) substrate for the RHEED calibration of the In cell since the costs of
an InAs wafer are several times higher. Furthermore, a GaAs substrate, dedicated for
growth rate calibrations, is readily available owing to the therewith conducted RHEED
calibration of the Ga and Al growth rates prior to each growth process with these materials.
An exemplary InAlAs/AlAs-RHEED calibration curve is shown in figure 4.1(a). The
temperature dependence of the In growth rate is determined to be logarithmic over a wide
temperature range. A difficulty in this calibration method is that InxAl1-xAs is not lattice
matched to the utilised GaAs substrate. Thus, the amplitude of the RHEED oscillations,
which reflect the smoothness of the wafer surface, is efficiently damped for higher In
cell temperatures, i.e. for a higher In flux. For lower In cell temperatures, however,
inaccuracies in the manual determination of the RHEED oscillation period present the
main source of error.

Figure 4.1: In calibration curves displaying the In growth rate as a function of
the In cell temperature in ◦C (a) prior to the chamber opening (b) after chamber
opening in November 2017.

During the course of this work, the III-V MBE chamber has been opened several times
for maintenance, as well as to restock source material. After a chamber opening it is
standard to re-calibrate the flux characteristics of the In effusion cell. To account for initial
changes of the emission characteristics of the cell, the InAlAs/AlAs-RHEED calibration is
repeated several times. In the course of this work further calibration methods are applied
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in order to test the validity and accuracy of the above described calibration method. To this
end, we calibrate the In growth rate via the evaluation of InAs-RHEED oscillations on an
InAs substrate. In addition, transmission electron microscopy images of cross-sectional
specimens of In-containing heterostructures are employed to determine the In growth rate
at a particular cell temperature. The corresponding calibration curves after a chamber
opening in November 2017 are shown in figure 4.1(b).
Moreover, secondary ion mass spectroscopy measurements (described in subsection 4.2.1)
from our heterostructures provide a precise experimental method to determine the In, Ga
and Al concentrations in the individual layers. In this way, we are able to further evaluate
the applied cell calibrations and analyse the composition of the individual InxAl1-xAs
buffer steps.

4.2 Postgrowth crystal characterisation
methods

To analyse the epitaxial crystal structure of our ternary alloy systems, as well as the
fabricated metal gate electrodes and working elements in our studied devices, we apply
several characterisation methods. These will be presented in the following.

4.2.1 Secondary ion mass spectroscopy

By means of secondary ion mass spectroscopy (SIMS) measurements, performed by
Probion Analysis, we gain information on the elemental composition of the individual
heterostructure layers and on the MBE-grown layer thicknesses. In a SIMS measurement,
the wafer surface is sputtered with a focused primary ion beam. A fraction of the ejected
atoms is ionized and presents the secondary ion beam. This second beam passes several
focus and filter elements (spatial, energy- and mass-filter), after which it is collected and
measured via a photo multiplier or a Faraday cup. Depending on the analysed elements,
different ion beams and acceleration voltages, ranging from 5004+ to 15:4+ , are applied.
To quantify the major elements in our MBE-grown heterostructures, i.e. In, Al and Ga,
the process is run in the so-called MCs+ mode. To quantify residual impurity elements,
such as for example C and Si, a higher impact energy is needed, which leads to a degraded
depth resolution.

4.2.2 Transmission electron microscopy

In transmission electron microscopy (TEM) imaging of our heterostructure, electrons
are transmitted through a thinned cross-sectional specimen of the wafer material. The
image contrast is generated by the interaction - and thus transmission - of the accelerated
electrons with the specimen. Owing to the small de-Broglie wavelength of the imaging
electrons, the resolution lies in the sub-�̊ range. Further information on the imaging
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process, as well as on technical details are given in [93].
The TEM images shown in this work are provided by Felix Schwarzhuber from the group
of Prof. Dr. Zweck at the university of Regensburg with a FEI Tecnai F30 operating at
300:+ .

4.2.3 Atomic force microscopy

In order to study the surface texture of our ternary alloy system, as well as the structure of
fabricated gate electrodes, a Veeco Dimension Icon Atomic Force Microscope (AFM) is
employed, operating in tapping mode. Thereby, the force between the sample surface
and the oscillating Si-tip is measured from which the mutual spatial separation can be
calculated.

4.3 Electric transport measurements
The utilised measurement setups, as well as the applied measurement concepts for the
experiments conducted in this work are presented in the following.

4.3.1 Device design

We use three different sample geometries of our heterostructures in the course of this
thesis: MT measurements are performed on samples in van der Pauw geometry, as well
as on lithographically defined Hall bar structures. The 1D transport characteristics are
analysed on a Hall bar mesa, being equipped with additional finger-gate electrodes.

Measurement concepts

Figure 4.2: (a) Sketch of the vdP sample geometry with an exemplary Hall
measurement configuration. The numbered, dark grey points at the sample
border present alloyed In contacts, deposited with a soldering iron. (b) Standard
Hall bar geometry of width , and length !. The dark grey squares present
lithographically defined ohmic contacts. The configuration of aHallmeasurement
is schematically sketched.
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4.3 Electric transport measurements

Van der Pauw measurements A convenient method for initial rapid sample char-
acterisation is provided by MT measurements in van der Pauw (vdP) geometry, with
which the charge density and the corresponding mobility can be determined [43, 94].
Figure 4.2(a) shows the measurement scheme of an exemplary vdP Hall measurement
in which the longitudinal voltage +24 and the transversal voltage +37 (with respect to the
applied current �15) are recorded as a function of the perpendicularly applied magnetic
field.
The transport properties =B and ` are determined by permutatively switching the employed
contacts in a four-terminal measurement. Thereby, the sheet resistivity dGG together with
the Hall resistivity dGH can be calculated. Therefore, we have to determine

'24,68 =
+68
�24

and '46,82 =
+82
�46

.

It can be shown that the sheet resistivity can be expressed as

dGG =
c

ln 2
·
'24,68 + '46,82

2
· 5

('24,68

'46,82

)
, (4.1)

with 5 being a function of only the ratio '24,68
'46,82

.
The Hall resistivity is determined as

dGH =
'62,48(�) − '62,48(0) + '48,62(�) − '48,62(0)

2
. (4.2)

The charge density =B and the mobility ` are then calculated with

=B =

(
4 ·
mdGH

m�

����
�=0

)−1

(4.3)

` =

(
4 · =BdGG (� = 0)

)−1
. (4.4)

Generally, we find that the determined values of the charge densities and mobilities
with a vdP sample are less accurate than when determined via MT measurements on a
lithographically defined Hall bar structure. We identified two main and generic error
sources in vdP measurements: Firstly, a possible misalignment of the manually soldered
contacts leads to an intermixing of the determined values of dGG and dGH. Furthermore,
the finite size of the soldered contacts distorts the applicability of the made assumptions
in the derivation of the formula (4.1) of the vdP evaluation method.

Hall bar measurements A more accurate electric characterisation of a 2D electron
system can be achieved via MT measurements on a lithographically defined Hall bar
structure, schematically sketched in figure 4.2(b). Fabrication details are summarized in
the appendix A. The dimensions of our employed Hall bar structure, the Hall bar channel
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width , and the Hall bar channel length !, are 20`< and 300`<, respectively. As
introduced in chapter 2, =B and ` are determined by measuring the B-field dependence of
+GG and +GH, with B ‖ z, when a source-drain (SD) current �(� is applied along the Hall
bar. With

dGG =
+GG

�(�

,

!
and dGH =

+GH

�(�
, (4.5)

where the ratio,/! accounts for the geometry of the sample, =B and ` can be calculated
via the equations (4.3) and (4.4).
Most of our Hall bar samples are equipped with a global Ti/Au top-gate (TG) above the
Hall bar mesa. The gate electrode is separated by an insulating layer of Al2O3 from
the semiconducting heterostructure. By varying the applied TG-voltage +)� , the charge
density =B can be controlled via the field-effect (see subsection 2.1.3).

MT measurements are performed with a standard low-frequency lock-in technique at
5 = 17�I or 5 = 37�I. The source-drain current �(� is generated via the internal
oscillator of the lock-in amplifier. We control the sinusoidal current �(� with a pre-resistor
at the lock-in output.

Figure 4.3: Schematic sketch of the utilised Hall bar geometry. Gate-defined
QPCs are located on top of the mesa in between two consecutive Hall crosses.
The inner three segments of the Hall bar mesa are equipped with SG-electrodes as
is shown in the zoom (SEM image). For the outer two segments a TrG-electrode
gate layout is chosen, shown in the corresponding zoom (AFM image) on the
right side. The SEM and AFM images are false color coded.

1D transport measurements In this work, we investigate the conductance �
through electrostatically defined QPCs in epitaxially grown In0.75Ga0.25As/In0.75Al0.25As
heterostructures. Our applied sample geometry is shown in figure 4.3. On top of a Hall bar
mesa, we lithographically define finger-gate electrodes, with which the 1D constrictions
in the underlying 2DEG are formed by employing the field-effect. This enables the
determination of the 1D and 2D transport characteristics of the very same device. The
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three inner Hall bar segments are equipped with so-called split-gate (SG) electrodes. The
zoom into the inner section of the Hall bar segment (right side of figure 4.3) shows a
scanning electrode microscopy (SEM) image of our generally utilised SG-electrodes.
During the course of this work several SG-layouts are tested. This topic is further
addressed in chapter 6. The two outer Hall bar segments are supplied with a triple-gate
(TrG) electrode, shown in the AFM image on the right side of figure 4.3. Therein, an
additional gate electrode, the center-gate (CG) is inserted in between the SG-electrodes
SG1 and SG2. The concept of a TrG-defined QPC is addressed in detail in subsection
6.3.2.

Figure 4.4: Sketch of the utilised measurement scheme of the differential
conductance of a QPC. A dc voltage +32 with a superimposed ac voltage +02 is
applied between the source and the drain contact of the sample. The voltage drop
over the QPC +&%�,02 is determined with a lock-in amplifier in a four-terminal
configuration. After amplification, �(�,02 is measured with a lock-in. A dc
voltage +(�1 and +(�2 is applied at the corresponding finger-gate electrodes
(�1 and (�2, whereby the 1D channel width can be electrically tuned via the
field-effect.

The conductance � through the constriction is detected differentially in order to reduce
residual noise in our setup. Moreover, this also extends the validity range of the calculation
of� via the applied source-drain current �(� and the measured voltage drop to non-ohmic
systems. The scheme of our measurement technique is displayed in figure 4.4. A dc
source-drain voltage +32 is superimposed with a small ac voltage +02 of 50`+ with a
frequency of 5 = 37�I or 5 = 137�I in a specially designed ac/dc voltage adder1. The
ac/dc adder signal is then applied between the source and the drain contact of the Hall
bar device. +32 is chosen small enough such that an adverse population of energetically
higher 1D subbands is prohibited. The voltage across the 1D constriction +&%�,02, as well
as �(�,02 is recorded via lock-in measurements. By taking the serial channel resistance
1The development of a convenient ac/dc adder, as well as our applied 1D measurement technique was part
of this work and is summarized in form of a master thesis in [95].
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'2ℎ of the 2DEG into account, the conductance of the constriction is calculated with

�&%� =
�(�,02

+&%�,02 − �(�,02 · '2ℎ
.

In a typical conductance measurement, we analyse the conductance � of a QPC as a
function of the 1D channel width, which is controlled by the applied SG-voltages +(�1
and +(�2. Further measurement details can be found in [95].

4.3.2 Measurement setups
4He dewar

Most of our samples are characterised in a 4He dewar at a temperature of ) = 4.2 or
) = 1.5 . With our setup, magnetic fields in the range of ±5) and ±6) perpendicular to
the sample plane can be applied. The sample rod is equipped with a red light emitting
diode (LED) with �?ℎ>C>= ≈ 1.6 − 24+ , which is positioned in direct proximity to the
sample holder. We refer to a sample as being in the illuminated state after illuminating
the sample for 60B with the LED at ) = 4.2 or ) = 1.5 .
Star-point grounding at the top of our sample rod prevents the formation of ground
loops. At the star-point, all shields of the coaxial lines are connected to each other. Our
measurements are recorded with either a Labview or a Matlab based program.
The 4He setup is used for rapid sample characterisation via vdP measurements, as well as
for gated Hall bar measurements to analyse the transport behavior of our heterostructures
under the application of an external electric field. Furthermore, the majority of our 1D
transport measurements is conducted in this setup, since the initial electric characterisation
of the MBE-grown wafer material requires repeated thermal recycling, as well as frequent
sample exchange. Further technical details on the setup are given in [95–98].

3He cryostat

Selected samples are characterised in a 3He cryostat at temperatures between ) = 350< 
and ) = 4.2 . For this setup, two sample rods are available, allowing transport
measurementswith an in-planemagnetic field aswell aswith amagnetic field perpendicular
to the sample surface. The sample chamber of the cryostat is a closed inner circuit, which
is filled with 3�4. The surrounding and separated outer circuit is filled with 4He and
serves to cool the 3He. Via pumping on the sample chamber, the temperatures in the
inner sample space can be lowered to 350< . The earthing is similar to the 4He dewar.
Further technical details are given in [98, 99].
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5

The implementation of the all-electric spin-transistor concept is based on two pillars: the
realization of robust ballistic 1D transport in a gate-defined QPC, which is implemented
in a 2D system, exhibiting a large zero-field spin splitting due to structural inversion
asymmetry. Owing to the large intrinsic SOI, InAs-based heterostructures present
themselves as promising materials for the implementation of spinorbitronic device
applications [55]. MBE growth engineering of these heterostructures gives us the ability
to actively influence the structural inversion asymmetry in the 2D system, with which the
strength of the Rashba-type SOI can be tuned. The application of an external gate electric
field provides a further possibility to tailor SOI in the 2DEG [13, 71, 79, 84, 100].
Along with research, targeting SOI effects in InAs-based heterostructures, there has been
put much effort into the achievement of high mobile 2D charge carrier systems as one
generally lacks a lattice matched substrate for these material systems [35–38].
This chapter provides a brief introduction into the applied buffer layer concepts in the
epitaxial growth process of InAs-based ternary alloy systems, which have been established
in preceding works in our group [90, 97]. For the realization of high-mobility 2D electron
gases we design our active layer structure by means of epitaxial growth-engineering.
In this context, we discuss modulation doped and undoped (InAs/)InGaAs/InAlAs
heterostructures in the view of spinorbitronic device applications.

5.1 Buffer layer growth
The lattice mismatch of Δ0 = 6.7%, with 0 being the lattice constant, between the zinc
blende InAs and GaAs crystal structures [101] prevents the epitaxial growth of InAs-based
compound systems on the commonly employed GaAs substrate. Thus, except for the
ternary compound In0.53Ga0.47As, which is lattice matched to available - yet expensive -
InP substrates, we lack a lattice matched substrate for In-containing ternary alloy systems.
To overcome this limitation in the choice of material system, sophisticated buffer layer
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concepts have to be applied to accommodate for the lattice mismatch between the active
layer and the employed substrate material whilst ensuring strain relaxation during the
buffer layer growth in order to achieve defect-free active layer structures [35, 36, 38,
102–108]. In this work, we use semi-insulating GaAs (001) as substrate material for the
MBE growth process. In order to achieve high zero-field spin-splitting, we choose an
(InAs/)In0.75Ga0.25As QW as host material for the 2D electron system. As the high band
gap material, we employ In0.75Al0.25As since it is lattice matched to In0.75Ga0.25As at this
particular In concentration.

Figure 5.1: (a) Schematic layer sketch of the applied step-graded InxAl1-xAs
buffer layer to accommodate for the lattice mismatch between the used GaAs
(001) substrate and the active In0.75Ga0.25As/In0.75Al0.25As layers, which exhibit
a significantly larger lattice constant than GaAs. (b) The aligned cross-sectional
TEM image along the [110] crystallographic direction illustrates the formation
of in-plane misfit dislocations due to plastic strain relaxation inside the buffer
layer. The constant composition layer, i.e. the In0.75Al0.25As VS, is almost free
of threading dislocations, implying a well-functioning buffer layer system. (c)
The HRTEM image of the VS shows the lattice planes of the In0.75Al0.25As zinc
blende lattice. (d) Evaluating the grey-scale oscillations of a line-cut along the
[110] direction yields the lattice constant of the corresponding In0.75Al0.25As
layer.

A key to defect-free strain relaxation is the minimization of the amount of threading
dislocations which reach the sample surface, whereby they penetrate the active layers and
hence the 2DEG. To this end, the interaction of misfit dislocations parallel to the sample
surface has to be reduced, which can be tailored by the applied buffer layer. Following the
epitaxial growth study of Capotondi et al. [103], we employ an InxAl1-xAs step-graded
buffer layer concept in the epitaxial growth process of our heterostructures. Therein,
the In concentration of the ternary compound material InxAl1-xAs is stepwise increased
during the growth process. A compositional overshoot to an In concentration of 85% is
commonly employed as it has been proven to be beneficial for the strain-free adaption
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of the lattice constant for the 75% In-containing In0.75Ga0.25As/ In0.75Al0.25As active
layers. Figure 5.1(a) displays a sketch of the employed buffer system. The epitaxial
growth process is initiated with a deoxidation of the GaAs substrate wafer, followed by
the growth of a 100=< GaAs seed layer. The subsequent incorporation of short-period
alternating Al0.50Ga0.50As/GaAs layers, i.e. the superlattice (SL), with each layer having
a thickness of 5=<, has been proven to be crucial for the screening of the following
InxAl1-xAs buffer layers from impurities, which reside at the GaAs substrate interface.
Our InxAl1-xAs step-graded buffer system starts with an In concentration of G ≈ 0.07 and
is increased in 5%-steps to G = 0.75 by keeping the Al flux constant and ramping the In
cell temperature. Each InxAl1-xAs buffer step has a thickness of 50=<. The step-graded
buffer is terminated by two broader, auxiliary InxAl1-xAs steps with G = 0.80 and G = 0.85,
presenting the compositional overshoot, whereby residual compressive strain is reduced.
Subsequently, the In concentration is reduced to 75% and several hundred nanometers
of In0.75Al0.25As, the so-called virtual substrate (VS), are grown. The VS provides the
strain-relaxed substrate for the following active layer system.
During the growth process, the BEP of As4 is commonly kept at 8 · 10−6)>AA. For
the growth of the GaAs seed layer and the SL, the temperature of the substrate holder
of the MBE system is set to ) = 620◦�. For the InxAl1-xAs buffer layer the substrate
temperature is reduced to )1D 5 ≈ 360◦� to prevent the formation of 3-dimensional crystal
islands during growth [37, 109]. Based on the work of Loher [97], who determined that
an increase of the substrate temperature during the growth of the VS and the active layer
system to )02C ≈ 460◦� proves to be beneficial to achieve a highly mobile 2D charge
carrier system, we employ a similar substrate temperature for the growth of our active
In0.75Ga0.25As/In0.75Al0.25As layers.
To investigate the functionality of the applied buffer layer system, detailed TEM-based
studies of the step-graded InxAl1-xAs buffer are conducted. Thereby, we are able to
analyse the crystalline quality of the semiconducting layers, the strain relaxation, as
well as the incorporation of structural defects in the system. Figure 5.1(b) shows an
exemplary cross-sectional TEM image of the InxAl1-xAs buffer system along the [110]
crystallographic direction, aligned to the schematic sketch of the buffer layer sequence
in figure 5.1(a). We find that misfit dislocations efficiently annihilate each other inside
the buffer layers since the VS is almost free of threading dislocations. This demonstrates
effective strain relaxation by means of the employed buffer concept. A single piercing
threading dislocation can be seen as dark line in the centre of the TEM image in figure
5.1(b). Figure 5.1(c) depicts a high-resolution TEM (HRTEM) image of the In0.75Al0.25As
VS layer from figure 5.1(b). The zoom into the image reveals the individual crystal lattice
planes as small grains. Since we know the crystal orientation of the HRTEM image, we
are able to determine the effective lattice constant 0(�=G�;1−G�B) of the VS layer from the
oscillation of the grey-value in a line-cut through this image. From the thereby obtained
value of 0(�=G�;1−G�B), we are able to deduce the material composition of the layer.
This presents an experimental opportunity to cross-check the applied In calibration in the
epitaxy of our heterostructure. The applied calculation method is illustrated in the sketch
in figure 5.1(d). With 0(�=�B) = 6.0583�̊ and 0(�0�B) = 5.65325�̊ at ) = 300◦�
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[101], we can write in first approximation 0(�=G�;1−G�B) = 5.65325�̊ + 0.40505�̊ · G.
Evaluating the grey-value oscillation period yields an In composition of G = 0.745. This
value is in excellent agreement with the targeted In concentration of 75% for the VS and
thus confirms our employed In-cell calibration. Further in-depth investigations of the
applied InxAl1-xAs step-graded buffer concept via TEM can be found in [93, 97].
Figure 5.2(a) displays an exemplary plan view AFM image of the wafer surface of an
In0.75Ga0.25As/In0.75Al0.25As heterostructure, for which the above described step-graded
buffer layer concept has been utilised.

Figure 5.2: Wafer C160428A: (a) 20 G 20`< plan view AFM image of the wafer
surface, revealing 5 − 15=< deep trenches along the 〈110〉 crystallographic
directions. (b) Profile sections along the H ‖ [1̄10] and G ‖ [110] direction. (c)
Three dimensional plot of the profile of the wafer surface shown in (a).

We see clear undulations in the surface structure of the wafer in form of a cross hatching
pattern, which is perfectly aligned along the [1̄10] and [110] crystallographic directions
with a pronounced anisotropy in the corresponding oscillation periods. Such a cross
hatched pattern is generally considered as characteristic for MBE-grown buffer layer
systems [103, 110–114]. The trenches in our samples generally exhibit a depth of 5−15=<
in both directions. As shown in figure 5.2(b), displaying two profile sections along the two
marked crystallographic directions, we find for the undulations along the [1̄10] direction
a periodicity of 1.0− 1.6`<, for the [110] direction the undulation period takes values of
0.4 − 1.0`<. The surface texturing is clearly visualized in the three dimensional plot
of the wafer surface in 5.2(c). It has been experimentally shown that locally varying
strain fields inside the heterostructure lead to anisotropic growth rates along the [1̄10]
and [110] directions, as well as to In segregation, which causes a modulation of the
underlying band structure. Such processes are likely to contribute to the generation of the
surface structuring in buffer systems. Yet, there is no unified explanation for the cross
hatching phenomenon, however, it is also widely suggested that the surface modulations
can be associated with the formation of an orthogonal network of the misfit dislocations
along the [1̄10] and [110] crystallographic directions during the epitaxial growth process.
Thus, the development of a cross-hatched surface texture is generally regarded as an
indicator of a well-functioning buffer system [103, 106, 111, 113, 115].
In a next step, building on the obtained strain-relaxed and defect-free In0.75Al0.25As
VS, we growth-engineer the active In0.75Ga0.25As/In0.75Al0.25As layer design under the
perspective of spinorbitronic device applications.
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5.2 Design of InGaAs/InAlAs active layer
systems

A peculiar material property of the In0.75Ga0.25As/ In0.75Al0.25As-based material system
presents the inherent n-type doping mechanism: Arsenic-related antisite defects inside the
In0.75Al0.25As semiconducting layers incorporate deep level donor states [37, 39]. With
an activation energy of 0.124+ and 0.174+ , these deep level donor states lie energetically
inside the conduction band offset of In0.75Ga0.25As and In0.75Al0.25As. Consequently, they
provide electrons for an In0.75Ga0.25As QW that is embedded in In0.75Al0.25As. Under
commonly applied MBE growth conditions, the density of the deep level donor states is
found to be as high as #� ≈ 1 − 3 · 10162<−3 [37, 38, 116, 117]. Except for their doping
properties [14, 37–39, 116–118], these InAlAs defect states have been scarcely addressed
in literature so far.

Inverted modulation doped InGaAs/InAlAs heterostructures

In order to realize highly mobile In0.75Ga0.25As/In0.75Al0.25As 2DEGs, we systematically
vary the active layer design of our heterostructures. Firstly, we analyse a modulation
doped near-surface In0.75Ga0.25As/In0.75Al0.25AsQWstructure, wafer C160229A,which is
schematically depicted in figure 5.3(a). The 2DEG is hosted in a 20=< In0.75Ga0.25As QW,
embedded in In0.75Al0.25As. To prevent the system from oxidation, a 5=< In0.75Ga0.25As
capping layer is grown on top of the heterostructure. In the course of this work, metal
gate electrodes are employed to control the transport properties of the 2DEG. Thus, the
Si X-doping layer is placed underneath the In0.75Ga0.25As QW, whereby we circumvent
a potential screening of the gate electric field at the QW. Additionally, by means of
the employed inversion doping, we avoid potential charge transfer between the QW
and the Si-doping layer when the band structure is tilted in an external electric field.
Furthermore, the doping layer gives rise to a structural inversion asymmetry in the
system, which contributes to Rashba-type SOI due to the induced internal electric field
in growth direction. For rapid sample characterisation, we perform vdP measurements
in the illuminated and non-illuminated state, with which we determine the 2D transport
properties =30A:

E3%
, `30A:

E3%
and =8;;

E3%
, `8;;

E3%
, respectively. The transport characteristics are

summarized in table 5.1. For the vdP sample C160229A, we determine an electron
mobility of only `30A:

E3%
= 210002<2/+B at a charge density of =30A:

E3%
= 8.8 · 10112<−2 in

the non-illuminated state. Illuminating the sample increases the measured sheet density
by almost a factor of two to =8;;

E3%
= 15.8 ·10112<−2. The mobility increases along with the

charge density to a value of `8;;
E3%

= 310002<2/+B. The elastic mean free path is calculated
as ;30A:

< 5 ?
= 0.33`< in the non-illuminated state and ;8;;

< 5 ?
= 0.64`< after illumination.

Generally, higher values of ;< 5 ? facilitate the realization of ballistic transport. Here,
we assume that segregation of the Si-doping atoms reduces the mobility in the sample.
This interpretation is in line with experimental findings of Loher [97], who determined
a significant diminishing of the mobility in Mn inversion-doped InAs/InGaAs/InAlAs
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Figure 5.3: Layer structure and vdP Hall measurements in the illuminated state at
) = 1.5 of wafer (a) C160229A (b) C160317A (c) C160323D (d) C160324A.

systems. A Hall measurement of the vdP sample C160229A in the illuminated state at a
temperature of ) = 1.5 is shown in figure 5.3(a). The MT measurement shows clear
indications of parallel conductance: a superimposed parabolic background in the sheet
resistance 'GG , together with distinct undulations of the magnetooscillations, as well as
a slightly s-shaped Hall resistance 'GH (therefore see chapter 2). This suggests that the
employed doping density of =3>? = 1.85 · 10122<−2 is chosen too high.
Thus, in order to minimize the effects of Si segregation and to simultaneously impede
parallel transport in the system, we stepwise decrease the applied doping density =3>? in
our heterostructures in a set of newly grown wafers. Hall measurements of two exemplary
vdP samples of this growth series are displayed in figures 5.3(b) and (c), for which a
doping density of =3>? = 1.2 · 10122<−2 (wafer C160317A) and =3>? = 3.3 · 10112<−2

(wafer C160323D) is chosen. The determined transport properties of the vdP samples
C160317A and C160323D are listed in table 5.1. As expected, a reduction of =3>? leads to
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wafer ndark
vdV

(·1011cm−2) -dark
vdV

(cm2/Vs) nil l
vdV

(·1011cm−2) -il l
vdV

(cm2/Vs)

C160229A 8.8 21000 15.8 31000
C160317A 7.3 21000 12.2 50000
C160323D 3.8 4900 7.1 70000
C160324A 3.1 3100 6.9 67000

Table 5.1: Transport properties determined via vdP measurements at ) = 4.2 .

a decreased sheet carrier density before and after illumination of the samples. However, the
decrease in electron density in the non-illuminated state has a rather adverse effect on the
electron mobility as can be seen for sample C160323D. In this device, `30A:

E3%
is reduced to

49002<2/+B. Illuminating the samples markedly increases the mobility of the conduction
electrons in contrast to the highly doped sample C160229A. Nevertheless, both samples
still exhibit substantial parallel conductance in the vdP Hall measurements as can be seen
in figures 5.3(b) and (c). We assign this overdoping even at low =3>? to an apparently
significant contribution of the deep level donor states inside the InAlAs spacer layers to
the epitaxially introduced modulation doping in the heterostructures. This can be nicely
seen by means of the determined value of =8;;

E3%
= 7.1 · 10112<−2 of sample C160323D,

which is twice as high as the employed Si-doping density =3>? = 3.3 · 10112<−2. In an
attempt to reduce the adverse effects of Si segregation in the 2DEG, we increase the
InAlAs spacer layer thickness between the X-doping layer and the QW to 35=<. The
corresponding heterostructure, wafer C160324A, is shown in figure 5.3(d). We find
similar 2D transport properties, listed in table 5.1, as for the equivalent sample C160323D
with an InAlAs spacer thickness of 20=<. We thus conclude that a mere increase of the
InAlAs spacer thickness is insufficient to achieve an enhancement of the mobility in the
2D system.
Due to the impaired electron mobility and the parallel conduction, which is present even
at low doping densities, we grow a new set of undoped heterostructures. By this, we also
gain insight into the inherent doping mechanism in the material system.

Undoped InGaAs/InAlAs heterostructures

Figure 5.4(a) shows the active layer structure of wafer C160331B, which is identical to
the active layer design of the above studied samples, yet without the incorporation of a
Si X-doping layer. The corresponding vdP transport properties are summarized in table
5.2. Even without the incorporation of an intentional doping layer, we find a conducting
2DEG to be developed. In the illuminated state, we determine a greatly enhanced electron
mobility of `8;;

E3%
= 1300002<2/+B at a charge density of =8;;

E3%
= 4.7 ·10112<−2 compared

to the modulation doped samples. This finding conformably points out that Si segregation
in the inverted modulation doped heterostructures strongly reduces the electron mobility
inside the 2DEG.
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Figure 5.4: Layer structure and vdP Hall measurements in the illuminated state at
) = 1.5 of wafer (a) C160331B (b) C160418B (c) C160316B (d) C160420A.

In order to further enlarge the mean free path in the 2D electron systems, we aim to
reduce interface-related scattering by increasing the thickness of the upper InAlAs barrier
layer in the undoped layer design. Two exemplary heterostructures, wafer C160418B and
C160316B, for which we choose a spacer thickness of 90=< and 130=<, respectively, are
shown in figures 5.4(b) and (c). The vdP transport properties are summarized in table
5.2. Whereas we find very similar transport properties for both devices in the illuminated
state as for the near-surface heterostructure C160331B, the transport properties in the
non-illuminated state follow a clear trend: The larger the InAlAs spacer thickness is
chosen, the higher the achieved mobility `30A:

E3%
at a similar =30A:

E3%
. For sample C160316B

the mobility is even increased up to a value of `30A:
E3%

= 700002<2/+B at an electron density
of only =30A:

E3%
= 2.2 · 10112<−2. This presents a distinct enlargement of `30A:

E3%
compared

to all previously achieved values in our heterostructures. To test the reproducibility of
the intrinsic doping mechanism in the InAlAs/InGaAs layer system when the same MBE
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wafer ndark
vdV

(·1011cm−2) -dark
vdV

(cm2/Vs) nil l
vdV

(·1011cm−2) -il l
vdV

(cm2/Vs)

C160331B 3.6 2000 4.7 130000
C160418B 2.3 19000 5.3 166000
C160316B 2.2 70000 4.9 135000
C160420A 4.1 70000 6.2 145000

Table 5.2: Transport properties determined via vdP measurements at ) = 4.2 .

growth conditions are employed, we regrow the heterostructure of wafer C160316B for
several times, i.e. wafers C160428A, C160428B and C160429A. The corresponding
vdP transport properties are summarized in table 5.3, the Hall measurements of the vdP
samples are displayed in figure B.1 in the appendix. Within the limits of accuracy of a
vdP measurement (see section 4.3), we find very similar transport properties, in both,
the non-illuminated and the illuminated state. This demonstrates that a fixed amount
of intrinsic dopants is generated in the InAlAs spacer layers, being reproducible in
epitaxy.

Figure 5.5: Self-consistent Schrödinger-Poisson simulation of the conduction
band profile ��� (black curve) of the active layer structure of wafer C160316B.
The cyan curve displays the wave function probability |Ψ|2, the green line
indicates the Fermi energy �� in the QW.

We self-consistently simulate the band profile of the above analysed undoped heterostruc-
ture C160316B with a Schrödinger-Poisson solver [119–122]. For the calculation, we
assume a Fermi level pinning of 40<4+ under the conduction band edge [14, 37]. Further-
more, we introduce an InAlAs deep level donor density of # C>C0;

�
= 3 · 10162<−3 in the

InAlAs barrier layers of the InGaAs QW. The gained conduction band profile �21 of the
simulation, together with the Fermi energy �� and the electron wave function probability
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|Ψ|2 are shown in figure 5.5. With the above listed input parameters for the band structure
simulations, we are able to reproduce the experimentally determined transport properties
of our system. This confirms that the applied doping-providing InAlAs defect state density
of # C>C0;

�
= 3 ·10162<−3 in the calculation presents a correct value for our heterostructures.

Furthermore, the band structure calculations show that only the first subband of the 20=<
In0.75Ga0.25As QW is populated and no electron population of the energy states inside the
5=< In0.75Ga0.25As capping layer is present. These results agree with our experiments
since we find no signs of parallel transport in the undoped heterostructures.

wafer ndark
vdV

(·1011cm−2) -dark
vdV

(cm2/Vs) nil l
vdV

(·1011cm−2) -il l
vdV

(cm2/Vs)

C160316B 2.2 70000 4.9 135000
C160428A 1.9 110000 4.0 200000
C160428B 1.9 110000 3.9 200000
C160429A 1.7 130000 3.8 220000

Table 5.3: Transport properties determined via vdP measurements at ) = 4.2 .

As a next step, we analyse the 2D transport properties of a more intricate QW design: We
insert a thin layer of InAs into the In0.75Ga0.25As QW. This presents itself as an interesting
QW system since InAs offers a larger Rashba SOC parameter than In0.75Ga0.25As [55].
Additionally, experimental findings in literature suggest that the insertion of an InAs layer
into the QW generally leads to an increase of the electron mobility inside the 2DEG owing
to reduced alloy disorder the wave function is subjected to [104, 106, 108, 123, 124].
Since InAs exhibits a lattice mismatch of 1.7% to In0.75Ga0.25As, the pseudomorphic
growth of an InAs channel is limited to a thickness of around 4=< before plastic strain
relaxation sets in, which would decrease the mobility in the 2D system [108]. Accordingly,
we choose an InAs channel thickness of 4=<, which we symmetrically insert in the
In0.75Ga0.25As QW so that a total QW thickness of 20=< is attained. The corresponding
active layer sequence of this wafer, i.e. C160420A, is shown in figure 5.4(d) together with
a vdP Hall measurement in the illuminated state. The transport properties are summarized
in table 5.2. Contrary to our expectations, we find the mobility to be markedly reduced
at an equivalent electron density as compared to samples with an In0.75Ga0.25As QW.
This observation is yet not fully understood, however, we suspect partial plastic strain
relaxation to be responsible for the impaired transport properties.
We want to note that we find no indications of SOI effects in the MT measurements of our
samples. We attribute this observation to a rather symmetric conduction band profile,
reducing the effect of Rashba-type SOI. The tuning of the SOI strength with an external
gate electric field will be addressed at a later point in this thesis.
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Determination of the effective mass m∗ Cyclotron resonance measurements1
provide an experimental access to determine the effective mass <∗ of the conduction
electrons in our system. Thereby, the transmission of a THz pulse is probed as a function
of the applied magnetic field perpendicular to the sample plane. Varying the employed
THz frequency yields a 2D THz-transmission plot as shown in the false color-coded figures
5.6(a) and (b). Therein, <∗ can be determined with a linear fit of the reduced transmission
line, at which the resonance condition l?D;B4 = l2 is fulfilled, with l?D;B4 = 2c 5 being
the THz frequency, and l2 = |4 |�< is the cyclotron frequency.

Figure 5.6: Cyclotron res-
onance measurements of
wafer (a) C160420B with
a 20=< In0.75Ga0.25As QW
(b) C160420A with an
In0.75Ga0.25As QW and a
4=< InAs inset. The steps in
the linear fitting curves are
measurement related.

Figure 5.6(a) displays a cyclotron resonance measurement of a 20=< In0.75Ga0.25As QW
(wafer C160420B), whose active layer structure together with the vdP Hall measurement
are displayed in figure B.1 in the appendix. Figure 5.6(b) shows a cyclotron measurement
of the above analysed sample C160420A with the 4=< InAs inset inside the In0.75Ga0.25As
QW. For sample C160420B, we determine an effective mass of <∗ = <4 · 0.041, where
<4 is the free electron mass, in the case off sample C160420A, we find the effective
mass to be reduced to <∗ = <4 · 0.037. Our determined values for the effective masses
are in excellent agreement with experimental and theoretical findings in literature [13,
101, 125]. The lower effective mass of the conduction electrons in sample C160420A
nicely displays the effect of the InAs inset inside the In0.75Ga0.25As QW since InAs
exhibits a lower effective mass of <∗(�=�B) = <4 · 0.026 as compared to GaAs with
<∗(�0�B) = <4 · 0.067 [101].

5.3 Discussion and conclusion
In our MBE growth study of In0.75Ga0.25As/In0.75Al0.25As QW systems, we find the
mobility of inverted modulation doped heterostructures strongly impaired as compared to
non-intentionally doped layer systems. Furthermore, we find that doped heterostructures
show clear indications of a contributing parallel transport channel, which is also present
in samples with a low doping density. We assign this finding to the natural doping
mechanism, present in InGaAs/InAlAs-based systems, which arises from As-related deep
level donor states inside the InAlAs spacer layers providing fee electrons for the InGaAs
1The measurements are conducted by Maike Halbhuber from the group of Prof. Dr. Dominique Bougeard.
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QW. For non-intentionally doped heterostructures, we reproducibly find an electron
density of =30A:

E3%
≈ 2 ·10112<−2 in the non-illuminated state with a corresponding mobility

of approximately `30A:
E3%
≈ 1100002<2/+B. Illuminating the sample increases the electron

density by around a factor of two with a similar increase in mobility. This yields a mean
free path of several micrometers for the conduction electrons inside the 2DEG, providing
a suitable basis for the analysis of ballistic conductance in gate-defined 1D constrictions
in this material system.
By means of self-consistent Schrödinger-Poisson simulations, we are able to effectively
describe the transport characteristics in our heterostructures. From these calculations, we
determine a density of InAlAs deep level donor states of # C>C0;

�
= 3 · 10162<−3. This is in

line with values reported in literature [37–39].
For all analysed samples, we find no clear signs of SOI effects in the MT measurements.
We hypothesize that for modulation doped heterostructures, in which structural inversion
asymmetry is certainly present due to the nearby doping layer, the absence of measurable
SOI is caused by the impaired electronmobility we determined in these systems. This leads
to strongly obscured Shubnikov-de Haas oscillations, whereby a meaningful evaluation
of SOI-related effects on the magnetooscillations is impaired, especially in the presence
of parallel conductance, which further alters the magnetooscillations. For undoped
heterostructures, we assume the structural inversion asymmetry to be too small to induce a
significant zero-field spin-splitting. However, since we are able to control Rashba-type SOI
via the application of an external gate electric field [55, 71] and owing to the achieved high
electron mobility in these systems, we choose an undoped In0.75Ga0.25As/In0.75Al0.25As
QW system as depicted in figure 5.4(c) as initial testing platform for the realization of
ballistic 1D conductance. This will be addressed in the following chapter.

Figure 5.7:MTmeasurement of a Hall bar at) = 4.2 (a) in the non-illuminated
state (b) in the illuminated state.

On these grounds, we fabricate Hall bar devices, which are further equipped with SG-
electrodes on top of the Hall bar mesa (described in the appendix in A). By this, we are
able to analyse the 1D and 2D transport properties of the very same device. We choose
20=< of ALD-deposited Al2O3 as dielectric material, which insulates the finger-gate
electrodes from the underlying semiconducting materials. Figures 5.7(a) and (b) display
exemplary MT measurements of a Hall bar from wafer C160429A in the non-illuminated
and in the illuminated state. During a MT measurement, the SG-voltages +(�1 and
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+(�2 are set to 0+ . In the non-illuminated state, we determine a sheet carrier density of
=30A:B = 2.5 ·10112<−2 and a mobility of `30A: = 1500002<2/+B. Illuminating the sample
increases the sheet carrier density to =8;;B = 3.3 · 10112<−2 with `8;; = 1950002<2/+B.
For both measurements, we find the Hall plateaus in dGH to perfectly match integer values
of the Landau level filling factor a. Furthermore, the minima of the magnetooscillations
reach zero resistivity and we find a single frequency in dGG in 1/�, with the corresponding
Shubnikov-de Haas density =(3� being exactly equal to the determined Hall density,
i.e. =(3� = =�0;; ≡ =B. Thus, we expect a single highly mobile 2DEG without parallel
conductance to be present.
In addition, we further test Hall bar samples of identically grown wafers, i.e. wafer
C160316B, C160428A, C160428B and C160429A. The determined transport properties,
together with the corresponding fabrication details, are listed in table B.2 in the appendix.
We generally find a perceptible dependence of =30A:B and `30A: on the fabrication details:
Hall bar samples, which are equipped with Al2O3 as dielectric, exhibit a higher electron
density in the non-illuminated state as compared to samples without dielectric. This effect
seems to be further enhanced the closer the QW is located at the surface, i.e. the smaller
the InAlAs spacer thickness. This was tested with a supplementary Hall bar test series, in
which the InAlAs spacer thickness has been stepwise reduced. The transport properties
of the corresponding Hall bars are given in table B.1 in the appendix. Hall bar samples,
being equipped with a global TG-electrode above the mesa, exhibit a further increased
electron density =30A:B , even when a TG-voltage of +)� = 0+ is applied.
In conclusion, for samples with an InAlAs spacer thickness of 130=< and a 20=<
InGaAs QW, we determine =30A:B to vary in the range of 2.0 − 4.2 · 10112<−2 with
an electron mobility `30A: ≈ 70000 − 2000002<2/+B. After illumination, however,
all samples exhibit similar transport properties with =8;;B ≈ 3.6 − 4.6 · 10112<−2 and
`8;; ≈ 130000 − 2000002<2/+B. This photoconductivity is proven to be stable at least on
the timescale of approximately 24 hours at a temperature of ) = 4.2 .

We want to note that at a later point of this thesis, we were faced with temporal obstacles
in the MBE growth process of the InxAl1-xAs buffer system, which prevented further
growth optimizations of our heterostructure. At the present time, the InxAl1-xAs buffer
concept is working again. The underlying mechanisms of the deteriorated buffer layer
growth are still under debate. Within the scope of a doctoral thesis, the buffer concept is
currently optimized and refined [126].

5.4 Comment on other material systems

During the course of this work, other material systems were tested in regard to their
applicability as substrate material for the implementation of mesoscopic and spintronic
device concepts. InAs/AlSb heterostructures present themselves as attractive candidates
since they exhibit high intrinsic SOC [55] and generally large elastic mean free paths
can be achieved in these material systems [127, 128]. Our transport study of InAs/AlSb
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heterostructures is presented in detail in [129]. In contrast to other III-V and group
IV materials, we determined that the fabrication process of AlSb-containing devices
is rather complex: AlSb exhibits a pronounced hygroscopic behavior when exposed
to wet-chemical etchants, water or air. Furthermore, the oxidation of exposed AlSb
surfaces during device fabrication leads to the formation of a thin layer of elementary
Sb. This metal layer can cause a shorting of neighboring working elements on a device.
Furthermore, due to the high interface roughness of etched surfaces, we find that the
devices are prone to leakage current between the semiconducting layers and the metal
gate electrodes. Moreover, exposed InAs surfaces at the etched mesa sidewalls introduce
parasitic conducting edge channels, that cannot be fully electrically depleted by means of
gating [18, 130]. A possible solution to the error-prone fabrication process of InAs/AlSb
devices is presented in the application of a purely gate-defined device layout as was
recently realized in [20, 131]. Hence, further experiments on edgeless devices provide an
attractive approach for the realization of mesoscopic devices in this material system since
the above listed fabrication obstacles can be nicely circumvented.
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Realization of conductance
quantization in InGaAs/InAlAs

6

This chapter serves to present the experimental process in the course of this work towards
the realization of conductance quantization in In0.75Ga0.25As/In0.75Al0.25As heterostruc-
tures, which we discussed and characterised in the previous chapter 5. Using highly
mobile GaAs/Al0.31Ga0.69As heterostructures as a model system, we develop a finger-gate
electrode layout, suitable for the realization of an adiabatic 1D confining potential for
deeply buried 2DEGs (3B?024A ≈ 130=<), which are predominantly discussed in this
work. This finger-gate layout is then further modified to account for the lower electron
mobility in the In0.75Ga0.25As/In0.75Al0.25As system as compared to GaAs/Al0.31Ga0.69As
heterostructures. We provide a holistic study of the transport through the electrostatically
defined QPCs, with focus on the electric stability of the transport characteristics.
For clarity, the experiments presented here are mainly based on measurements of three
devices, being identical in structure. All the conclusions made are supported by multiple
other devices.

6.1 Finger-gate layout
In our 1D transport experiments, we define a QPC electrostatically by a pair of parabolic
finger-gate electrodes, placed on top of the heterostructures. This so-called split-gate (SG)
technique was pioneered by Thornton et al. [132] and Zheng et al. [133]. Biasing the
SG-electrodes negatively leads to a depletion of the underlying 2DEG via the field-effect.
This is illustrated in figure 6.1(a), showing a sketch of a semiconductor heterostructure,
hosting the 2DEG (dark green layer), together with the mounted SG-electrodes SG1
and SG2. The depletion of the 2D system is displayed in form of the white shaded
areas underneath the SG-electrodes. Further increasing the gate voltage squeezes the
transport channel laterally in width (figure 6.1(b)), until the channel is totally pinched
off. When the channel width F becomes comparable to the Fermi wavelength _� , the
conductance � of the channel becomes quantized and conductance steps at multiples of
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6 Realization of conductance quantization in InGaAs/InAlAs

Figure 6.1: Illustration of a layer structure, hosting a 2DEG (dark green) with
SG-electrodes SG1 and SG2 (yellow) attached on top of the heterostructure.
Negatively biasing the gate electrodes creates a narrow constriction between the
2D electron reservoirs, labeled as source and drain. (a) For a small negative
symmetrically applied bias +(�1 = +(�2, the 2DEG is depleted underneath the
gate electrodes, visualized as white shaded areas in the 2DEG plane. (b) For
sufficiently large negative SG-voltages, the channel becomes laterally depleted
and a QPC is formed when the 1D channel width F is in the order of the Fermi
wavelength _� .

2 · �0 = 242/ℎ, with �0 being the conductance quantum, arise. A necessary ingredient
for the observation of clear quantization steps in � is that both, the channel width F and
length ! are smaller than the mean free path ;< 5 ? of the conduction electrons, whereby
the ballistic transport regime is entered. Non-ideal conductance quantization arises for a
non-adiabatic coupling of the electron wave functions in and out of the QPC. For realistic
devices an energy-dependent transmission coefficient T< (�), with < being the transversal
mode index of the channel, enters the description of conductance quantization. Modelling
the gate-defined constriction in the form of a saddle potential, we find for the transmission
through the QPC (see section 2.2 and [6]):

T< (�) =
1

1 + 4−2cn<
, (6.1)

with
n< =

� − ~lH (< + 1/2) − �I
~lG

.

Here, �I denotes the energy eigenstates due to quantization in I-direction (growth
direction). lH indicates the strength of the lateral confinement potential and lG of the
longitudinal confinement potential in transport direction.
A saddle potential is schematically sketched in figure 6.2. By means of equation (6.1),
we find the transmission coefficient T< (�) to be maximum if the ratio lH/lG > 1. We
therefore have to meet the following requirements with our SG-layout for the generation
of pronounced conductance steps: The tips of the finger-gate electrodes have to exhibit
a weak curvature, i.e. a small lG , and the tip-to-tip distance has to be small in order to
guarantee for a steep confinement potential in H-direction, i.e. a large lH.
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6.1 Finger-gate layout

Figure 6.2: Illustration of a harmonic
confinement potential +?>C in G- and H-
direction, forming a QPC. The width of
the constriction in H-direction, as well as
the strength of the confinement is a func-
tion of the position G. The dark sphere
represents a conduction electron with the
wavenumber :G,H, evolving adiabatically
into an eigenstate of the QPC. < indicates
a mode of the QPC due to the confinement
in H-direction.

In the course of this work several layouts of SG-electrodes were tested, including line-
shaped electrodes, which are shown in the scanning electron microscopy (SEM) image
in figure 6.3(a). However, transport measurements through 1D constrictions defined
with such line-shaped finger-gate electrodes often exhibited unwanted features in the
conductance characteristics. We attribute these properties to the presence of local potential
minima in the vicinity of the SG-electrodes, whereby bound states inside the channel
are created. Such Coulomb blockade-like transport features can be seen in figure 6.3(b),
displaying an exemplary 2D-plot of a conductance measurement through a QPC with
line-shaped gate electrodes. The current � through the constriction is plotted as a function
of the symmetrically applied SG-voltage+(�1 = +(�2 ≡ +(� and the applied source-drain
voltage +(� at the 2D electron reservoirs. In this measurement, +(� is stepwise decreased
into the negative direction; for each value of +(� , the source-drain voltage is then swept
within the adjusted bias interval [−|+(� |, +|+(� |]. The maximum applied |+(� | is chosen
such that the energy bias window is smaller than the estimated energy-level separation due
to the confining potential in H-direction1. The plot corresponds to the situation of a 1D
channel in the vicinity of pinch-off. We see clear undulations in the current �, for example
when comparing the line-cut into the +(�-direction at +(� ≈ −2.2+ to the line-cut at
+(� ≈ −2.15+ , which evidences a modulation of the transmission probability, dissenting
from ideal quantized conductance of a QPC.
To prevent the formation of such localized bound states and to improve the adiabatic
coupling of the electron wave functions in and out of the QPC, we test a parabolic
SG-design, emulating the aspired saddle potential in the 1D constriction. We initially
test the parabolic SG-layout on a GaAs/Al0.31Ga0.69As heterostructure, as it presents
itself as a high-mobility 2D model system, exhibiting a comparable permittivity as
the In0.75Ga0.25As/In0.75Al0.25As layer system (see subsection 7.2.2). Thereby, we are
able to analyse and evaluate the SG-induced potential without the need to account for
intricacies such as for example disorder potentials, which are present in InGaAs/InAlAs

1This estimation is based on the assumption of a Fermi wavelength of _� ≤ 50=< and # ≈ 2F/_� , #
being the number of occupied channel modes. Near pinch-off, an almost rectangular 1D potential well
can be assumed, whereby the 1D subband spacing is calculated as ≥ 10<4+ .
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6 Realization of conductance quantization in InGaAs/InAlAs

Figure 6.3: (a) SEM image of line-shaped
SG-electrodes SG1 and SG2 on top of an
In0.75Ga0.25As/ In0.75Al0.25As/ Al2O3 het-
erostructure; linebar for scale. (b) 2D-scan
of the dc source-drain current � through the
finger-gate defined 1D constriction as func-
tion of the applied source-drain voltage+(�
and the symmetrically applied SG-voltage
+(� at a temperature of ) = 370< . The
undulations in � evidence local potential
minima (bound states), leading to Coulomb
blockade-like features in the transport mea-
surement.

heterostructures due to the ionized deep level donor states inside the InAlAs spacer
layers.

6.2 2D and 1D transport in the model system
GaAs/AlGaAs

In this section, we study the 1D transport in high-mobility GaAs/Al0.31Ga0.69As het-
erostructures to test the electric confining potential which is created with our parabolic
SG-electrode design. To yield significant results in this comparative analysis, we choose
a GaAs/Al0.31Ga0.69As modulation doped heterostructure with a similar 2DEG depth as
our In0.75Ga0.25As/ In0.75Al0.25As layer structures2.

6.2.1 2D magnetotransport properties

Figure 6.4 shows the layer structure of the employed GaAs/Al0.31Ga0.69As system. The
2DEG is formed in the triangular potentialwell, which is created at theGaAs/Al0.31Ga0.69As
interface. A 40=< Al0.31Ga0.69As spacer layer separates the 2DEG from the Si-doped
Al0.31Ga0.69As film. The sample is terminated with a 5=< GaAs capping layer that
prevents the heterostructure from oxidation and effectively pins the Fermi level near
midgap due to As-As dimer formation, creating a high density of energy states at the
interface [134–136]. As described in chapter 4, we fabricate Hall bar samples on top
of which SG-electrodes are deposited. Thereby, we yield access to the 2D transport
properties of the very same device of which we also study ballistic 1D transport.
Figure 6.5 displays the corresponding MT measurements, recorded in the non-illuminated
2Here, we focus on the highly mobile samples with 3B?024A = 135=<. Samples with varying spacer
thicknesses are analysed in chapter 8.
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Figure 6.4: Schematic sketch of the layer struc-
ture of the analysed GaAs/Al0.31Ga0.69As het-
erostructure, grown on GaAs (001). At the
GaAs/Al0.31Ga0.69As interface a triangular po-
tential well is formed, hosting the 2DEG. The Si
modulation doping starts 50=< below the sur-
face and fades in the growth direction, indicated
by the white shading. Due to the formation
of a sufficiently high Schottky barrier, the SG-
electrodes (yellow) are deposited right on top
of the GaAs cap.

and illuminated state. Without illumination, we determine a sheet carrier density of
=30A:B = 2.3 · 10112<−2 with a mobility of `30A: = 9.53 · 1052<2/+B. By means of

;< 5 ? =
~
4

√
2c=B` ,

we determine a mean free path of ;30A:
< 5 ?

= 7.6`<. Illuminating the sample for 60B
with a red LED ionizes the DX-centers3 inside the modulation doped region of the
sample, whereby the electron density in the 2D channel is increased. Figure 6.5(b)
shows a MT measurement of the sample after illumination. The charge carrier density is
increased to =8;;B = 4.4 · 10112<−2, while the mobility remains approximately the same
with `8;; = 9.54 · 1052<2/+B, yielding a mean free path of ;8;;

< 5 ?
= 10.4`<. Whereas the

MT measurements in the illuminated state are reproducible for various cool-downs, we
find variations in the 2D transport characteristics of the sample in the non-illuminated
state. Even though, the SG-electrodes are consistently set to the laboratory ground
potential at room temperature (RT) prior to each cool-down, whereby we aim to generate
a pre-defined and reproducible electrostatic situation underneath the gate electrodes,
the conductivity perceptibly differs when the sample is thermally recycled and then
cooled down again. Although no negative voltage is applied at the SG-electrodes, the
band structure is apparently altered by the sole presence of the gate electrodes attached
on top of the heterostructure, leading to a reduced electron density in the 2D channel
underneath. We find that after some cool-downs the 2D channel is even completely
pinched off so that we are not able to draw a current through the Hall bar. Illuminating the
samples leads to a much more reproducible situation for which we consistently determine
=8;;B = 4.4 · 10112<−2. We interpret the deviations of the 2D transport behavior in the

3ADX-center is a deep electronic state, located 0.12<4+ under the conduction band edge of Al0.31Ga0.69As,
which is negatively charged at cryogenic temperatures but can be discharged after illumination with
light of sufficiently high energy.
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6 Realization of conductance quantization in InGaAs/InAlAs

Figure 6.5: MT measurements of a Hall bar sample, fabricated from wafer
C120522B (a) at ) = 4.2 in the non-illuminated state, (b) at ) = 1.5 in
the illuminated state. The vertical dashed lines indicate the minima of the
Shubnikov-de Haas oscillations with the corresponding Landau level filling
factor a. For both measurements we find distinct Hall plateaus at integer values
of a. In the illuminated situation in (b), the B-field-induced Zeeman splitting
occurs for |� | > 3.7) .

non-illuminated state as a variation of the occupation of DX-centers with electrons at
RT. This fluctuating electron population of energy states is then brought to cryogenic
temperatures. On the microscopic scale of the SG-electrodes of only a few hundreds
of nanometers, these fluctuations do not average out as they do on the scale of a Hall
bar channel but distinctly influence the electrostatic potential in the 1D constriction.
Furthermore, due to a SG-induced band bending, more DX-centers underneath the
SG-electrodes seem to be populated with electrons, leading to an effectively applied
negative voltage at the externally unbiased SG-electrodes. This bottle-neck situation leads
to a decreased conductivity through the 2D channel when charge carriers have to pass the
SG-defined constriction.
In the following, we study the 1D ballistic transport through the SG-defined constrictions
in the GaAs/Al0.31Ga0.69As samples.

6.2.2 1D transport in SG-defined QPCs

As discussed in section 6.1, we model the targeted harmonic confinement potential
forming the QPC with parabolic SG-electrodes. This shape should guarantee an adiabatic
transition from the 2D reservoirs, i.e. source and drain, to the 1D channel without the
generation of localized states, that would increase backscattering and thereby hamper
ballistic transport. Figure 6.6 shows a SEM image of the tested SG-layout. The left
picture is false color coded: In blue, the underlying heterostructure is displayed, whereas
in yellow the deposited SG-electrodes with their much larger contacts are depicted. The
right image presents a zoom into the tip region of the SG-electrode pair SG1 and SG2. At
the foremost part, the finger-gates are shaped parabolically with a channel length ! of
about 480=<. The tip-to-tip distance of the SG-electrodes is approximately 350=<.
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Figure 6.6: SEM images of the SG-defined constrictions with linebars for scale:
The left image (false color coded) displays the finger-gate electrodes with their
much larger contacts (both in yellow), with which the QPCs are formed in the
semiconducting layer (blue area) underneath. The right figure shows a zoom
into the parabolic-shaped tip area of the SG-electrodes. The tip-to-tip distance is
about F ≈ 350=<.

Conductance quantization in the non-illuminated state

As already described above, during the process of cooling down the sample to cryogenic
temperatures, the SG-electrodes are set to the laboratory ground potential. In a conductance
measurement, we record the conductance � through the QPC as a function of the
symmetrically applied SG-voltage +(�1 = +(�2 ≡ +(� . Commonly, a sweep-rate of
2 − 5<+/B is chosen. Since we determine that � does not depend on the SG-bias history,
we do not distinguish between up- and downwards-swept curves, i.e. the depletion and the
opening of the 1D channel with +(� , respectively. The applied source-drain voltage at the
2D electron reservoirs consists of a small dc contribution (+ 32

B3
< 200`+), superimposed

to an ac voltage of +02
B3

of 50`+ (as described in chapter 4). We find that neither the
source-drain voltage nor the sweep rate influence the conductance characteristics of the
analysed QPCs when held under these values.
Figure 6.7(a) displays five subsequent conductance measurements at ) = 1.5 in the
non-illuminated state, for which � is plotted in multiples of twice the conductance
quantum, i.e. 2 · �0 = 242/ℎ, as a function of +(� . A serial channel resistance of
'2ℎ = 300Ω is subtracted to fit the conductance steps to integer multiples of 242/ℎ. The
SG-voltage is swept into the negative direction, thus depleting the 2D channel underneath
until total pinch-off, i.e. � = 0. The individual conductance curves are vertically offset for
clarity. Even at +(� = 0+ , we find that the conductance through the constriction is as low
as approximately 5 · �0, which indicates that the channel is already laterally confined in
size. With decreasing SG-voltage, the conductance � drops almost linearly with distinct
conductance steps developing before the channel is totally pinched off at +(� ≈ −0.275+ .
The small conductance step at 0.7 · 242/ℎ can be assigned to the 0.7-anomaly, a result of
electron-electron interactions, with its exact origin being still under debate [7, 137–143].
All measured curves in figure 6.7(a) show the same transport behavior, thus confirming
the reproducibility of the transport characteristics over time.
Figure 6.7(b) shows a single 1D conductance measurement (cyan curve), together with
the corresponding conductance derivative 3�/3+(� (dotted curve). By evaluating the
quantization value �<, with < ∈ N being the channel mode index, at the mathematical
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6 Realization of conductance quantization in InGaAs/InAlAs

Figure 6.7: Sample C120522B2 at ) = 1.5 in the non-illuminated state: (a)
Five subsequent conductance curves, displaying � as a function of +(� . The
curves are vertically offset for clarity. A serial channel resistance of '2ℎ = 300Ω
is taken into account to match the conductance steps to = · 242/ℎ, with = ∈ N.
(b) Single conductance curve (cyan line) of the same QPC as in (a), with the
corresponding conductance derivative 3�/3+(� (dotted curve).

minimum of the derivative-curve provides an easy access to the transmission probabilities
T< (�) of the individual 1Dmodes in the channel. The quantity&<, defined as&< = �<ℎ

2<42 ,
specifies the conductance of the <-th channel. The average quantization &0E can then
be calculated as &0E =

1
#

∑
&<, with # being the number of contributing transversal

channel modes<. By means of&0E , the 1D conductance quantization of different samples
and their congruency with ideality can be quantitatively compared [18]. All determined
conductance curves of the GaAs/Al0.31Ga0.69As samples in the non-illuminated state
show three distinct quantization steps with &0E = 0.97 − 0.99, indicating pronounced
ballistic conductance for each fully developed mode. Nevertheless, the steps in figure
6.7(a) are blurred. This can be ascribed to enhanced backscattering when a mode is newly
populated and electron momentum transfer for a scattering event is sufficiently small,
making momentum transfer more likely than for the case when the Fermi level lies in
between two subsequent levels. In the non-illuminated state, backscattering is likely to be
enhanced because of the poor screening in the channel due to the small electron density
=30A:B . Furthermore, scattering from potential fluctuations generated by remote dopants,
which are partially ionized, enhances the scattering probability inside the 1D channel
and creates quasi-localized states [144, 145]. We find that the ratio lH/lG is likely to
be reduced since solely a small SG-voltage +(� has to be applied to change the number
of participating modes, thus indicating a weak curvature of the confining potential in
H-direction. For the sake of completeness, temperature blurring can be listed here, which
smears out the mode-transitions.
In a next step, the sample is illuminated, whereby doping-providing DX-centers in the
spacer layer are ionized. This results in an enhanced sheet carrier density =8;;B with better
screening ability. Consequently, we expect the potential fluctuations in the remote doping
layer above to be minimized, leading to a sharpened conductance-step transition.
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Figure 6.8: Sample C120522B2 at ) = 1.5 in the illuminated state: (a)
Conductance � as a function of +(� . The Roman numerals (I) and (II) indicate
the two characteristic pinch-off areas of the QPC. The inset shows a sketch of the
QPC in area (II), where the channel is laterally depleted. (b) Zoom into gating
area (II) of the measurement in (a), displaying the conductance � (cyan line)
together with the corresponding derivative 3�/3+(� (dotted curve). A serial
resistance of '2ℎ = 100Ω is subtracted.

Conductance quantization in the illuminated state

Figure 6.8(a) displays the conductance curve of the same sample as in subsection 6.2.2
after illumination. The curve can be divided into two gating areas (I) and (II), characteristic
for a SG-defined QPC [146]: Decreasing the SG-voltage from 0+ into negative direction
steeply decreases the conductance through the constriction. Hereby, labeled as area (I)
in the plot, the 2DEG underneath the SG-electrodes is depleted. By further sweeping
+(� into the negative voltage direction, i.e. area (II), the channel starts to be depleted
laterally. This situation is illustrated by the QPC sketch in the inset of figure 6.8(a). In this
SG-voltage range well-defined conductance steps develop due to lateral size-quantization
effects. To match the conductance steps of our measurement to integer multiples of 242/ℎ
a channel resistance of '2ℎ = 100Ω is subtracted. We find more than 13 well-developed
conductance steps, which perfectly match integer values of 2 · �0. Analogously to the
non-illuminated case, the 0.7-anomaly is clearly developed. To analyse the transmission
probability of the individual modes of the 1D channel, 3�/3+(� is calculated, which is
shown in figure 6.8(b) as dotted curve. Taking the first distinct eight steps into account,
we find &0E = 0.99. This implies ideal conductance in the 1D channel when �� lies in
between two subsequent 1D subband levels. The sharpened conductance step-transition
when a new mode starts to contribute to the 1D transport indicates small-angle scattering
to be distinctly reduced compared to the non-illuminated case, which was shown in the
preceding subsection 6.2.2 in figure 6.7.

Time stability of photoconductance In Hall bar measurements of GaAs/AlGaAs
heterostructures (not shown here), we determined the photoconductance to be persistent at
least on the timescale of hours at ) = 4.2 . Figure 6.9(a) shows four conductance curves
of the QPC analysed above, recorded over 40 minutes, whereby the numbers (1) to (4)
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Figure 6.9: Sample C120522B2 at ) = 1.5 in the illuminated state: (a) Four
conductance curves, which are recorded over 40 minutes. Numbers (1) to
(4) give the chronological order of the measurements. (b) Two conductance
measurements between which the sample is re-illuminated. The conductance
curve (1) (blue curve) presents the same measurement as curve (1) in (a).

indicate the chronological order. We find the pinch-off point to vary distinctly between the
measurements, abruptly shifting towards less negative SG-voltages in subsequent sweeps.
With the relocation of the conductance curves, a degradation of the quantization steps
occurs: The steps are less pronounced, i.e. they have a smaller width in +(�-direction,
indicating a reduced 1D subband spacing, and exhibit increased conductance fluctuations
in form of small spikes superimposed on the signal. For &0E of measurements (1) to (4),
we find values between 0.98 and 0.99, implying again ideal conductance when �� lies in
between two subsequent 1D-mode subbands. This implies that small-angle scattering is
effectively reduced in the 1D transport.
Re-illuminating the sample does not succeed to restore the initial situation as is shown in
figure 6.9(b). Here, the blue curve, labeled as (1), displays the initial +(�-down sweep
after the first illumination of the sample (also curve (1) in figure 6.9(a)), whereas the
red curve, marked as (2), depicts the first recorded 1D conductance measurement after
re-illumination. Especially for SG-voltages close to 0+ , we find the conductance� to vary
distinctly in the different measurement sweeps, whereas for+(� < −1.5+ the conductance
characteristics converge. Additionally, the noise of curve (2) is enhanced as compared to
(1). Solely a thermal recycling fully recovers the initial electrostatic situation, i.e. curve
(1). A shift of the whole pinch-off curve into positive +(�-direction corresponds to an
intrinsic upwards band bending, induced by a newly formed negative space charge region
above the 2D channel. We assign this behavior to a reoccupation of the photoionized
DX-centers, which results in the observed shifting of the pinch-off point. Indeed, the
repeated strong band bending the sample encounters during the up- and down-sweeps
of the SG-voltage triggers charge transfer from the 2DEG towards the remote doping
region. This spatially varying electron migration apparently varies in space, leading to
an inhomogeneous charge distribution inside the doping layer. This negative charge acts
as an additional confinement potential to the QPC, causing an earlier pinch-off of the
channel at more positive +(� , and furthermore introduces potential fluctuations, visibly
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impeding ballistic transport. As we find that re-illumination of the sample does not restore
the initial charge configuration of measurement (1), we conclude that charge carriers
apparently relax into deeper lying energy states, that are not addressed by the photons of
the red LED.

Figure 6.10: Time stability mea-
surement of sample C120522B2
at ) = 1.5 : (a) � as a function
of +(� . The colored dots on the
curve mark the measuring points
of �, for which a dwell time of
several minutes is applied. (b)
+(� as a function of time C. (c) �
as a function of C. For (a) and (c)
a serial resistance of '2ℎ = 100Ω
is subtracted.

Figure 6.10 displays a time stability measurement of the conductance �, when +(� is
adjusted such that the measurement point is positioned in a transition area between two
subsequent conductance steps. Tested points on the conductance curve are indicated as
colored dots in figure 6.10(a). These measuring points offer the most sensitive control of
the time stability and robustness of the 1D conductance in the system. At these points, a
dwell time of several minutes is applied during which we test the electric stability of the
conductance �. Figure 6.10(b) displays +(� as a function of time C, applied to tune � to a
particular operating point. The SG-voltage areas are color-coded as in (a). Figure 6.10(c)
shows the resulting conductance � as a function of time C. We find the conductance
at the measuring points to be reasonably stable at least on a timescale of minutes at a
base temperature of ) = 1.5 . Whereas a slight decrease of the conductance takes place
at the first operating point (red area), � is stable at the second and third measurement
points (yellow and green area). We thus conclude that the conductance through the
1D constriction is reasonably stable, yet with the uncertainty of sudden charge transfer
processes, that modify the electrostatic 1D confinement potential.
In addition to the time stability of the 1D conductance properties, it is crucial to achieve a
high reproducibility of the transport characteristics in the 1D channels, defined with a
SG-layout. To this end, we test the conductance of different split-gated 1D constrictions,
formed in the same heterostructure.

Variance of the transport behavior of identical QPCs As described in chapter
4, our Hall bar mesas are equipped with several, nominally identical QPCs. In sample
C120522B2, five SG-defined QPCs are positioned in between the Hall crosses. Thereby,
we can study the transport behavior of these constrictions, fabricated in the same processing
run on the same device.
Figure 6.11(a) shows the depletion curves of four different QPCs on one sample in
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Figure 6.11: (a) Conductance � of four identical QPCs on the same sample
(C120522B2) at ) = 1.5 . (b) Zoom into the pinch-off area in (a). Each curve
presents the initial depletion measurement after the cool-down and illumination.
For the right plot a serial resistance is subtracted to match the conductance steps
to integer values of 242/ℎ.

the whole bias range from +(� = 0+ to −2.75+ (no channel resistance is considered
here). Figure 6.11(b) presents a zoom into the area near pinch-off. QPC 5, which we
already analysed in the previous section, exhibits the most pronounced conductance
quantization. More than 12 distinct steps are clearly visible. QPC 2 shows a comparable
conductance curve, however, with a smaller number of quantization steps being clearly
developed. In contrast, we find markedly smoothened quantization steps for QPCs 1 and
3, pointing towards an increased scattering rate between mode transitions. We attribute
the discrepancies in the transport properties to variations in the confinement potential for
the different QPCs due to variations in the lift-off process of the SG-electrodes, as well as
to intrinsic crystalline imperfections, such as for example impurities in the vicinity of the
1D channel. Furthermore, a non-uniform photoionization of the remote doping layer can
cause such deviations between the transport properties in different QPC devices on the
same sample. For &0E , we determine the values to range from 0.93 to 0.99, indicating for
all QPCs that backscattering is strongly suppressed.
Our experimental results are in line with findings in literature [7, 147]. In a statistical
study of 256 nominally identical GaAs/AlGaAs QPCs, Smith et al. [7] demonstrated the
impact of potential fluctuations on the 1D transport characteristics. In more than 59%
of the tested QPCs they found disorder-induced conductance variations in the form of a
smoothing of the conductance steps as we observe in our measurements.

6.2.3 Conclusion

In our analysis of 1D transport in SG-defined QPCs in the model system GaAs/AlGaAs,
we determine well-defined quantization steps in �, which ideally match integer multiples
of 242/ℎ in the non-illuminated, as well as in the illuminated state.
In non-illuminated measurements, the QPCs are already near pinch-off, exhibiting a
total conductance of around 5 · �0 at +(� = 0+ , with a smoothened transition of the
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conductance in between two subsequent steps when a new mode is (de-)populated. Due
to the low electron density of the 2DEG, the screening ability of remote impurities is
reduced, which leads to increased potential fluctuations acting on the 1D confinement
potential, thus obscuring a steep mode transition.
After illumination, our devices show more than ten well-defined conductance steps, with
the 1D transport properties reasonably reproducible for different, nominally identical
QPCs. However, after illumination, the samples are prone to abrupt recharging processes
inside the heterostructure, leading to a global shift of the conductance curve as a function
of +(� as well as to a deterioration of the conductance steps. Both effects are attributed to
additional negative charge, being transferred from the 2DEG towards the ionized remote
doping layer, thereby effectively increasing and modifying the SG-induced confining
potential.
To summarize, we find the here tested parabolic SG-layout suitable for studying 1D
transport in deeply buried 2DEGs. At the same time, this analysis provides first signs
for upcoming challenging aspects which we are likely to face with the InGaAs/InAlAs
heterosystem, being a ternary alloy with certainly present InAlAs defect states inside the
spacer layers.

6.3 1D transport in InGaAs/InAlAs systems

This section presents our approach towards the realization of 1D conductance quantization
in the ternary alloy system In0.75Ga0.25As/In0.75Al0.25As, characterised in chapter 5. By
means of exemplary devices, the 1D transport characteristics in the non-illuminated
and in the illuminated state are analysed. The measurements shown in this section are
representative for multiple devices, which have been tested in the course of this work. As
long as not stated otherwise, the samples are cooled down with all ohmic contacts set to
the laboratory ground potential and the SG-electrodes set to a voltage of +(� ≡ +�� = 0+
to predefine a reproducible initial electrostatic situation. Most of the measurements are
conducted at a base temperature of ) = 1.5 in a He dewar.

6.3.1 1D transport in SG-defined QPCs

The split-gated Hall bar sample layout is identical to the one, which we tested and approved
with the GaAs/AlGaAs devices as presented in the previous section 6.2.

Conductance quantization in the non-illuminated state (SG)

Figure 6.12 displays a sketch of the InGaAs/InAlAs heterostructure we choose for the first
1D conductance measurements in this material system. The 2D transport properties are
discussed in chapter 5. We find that for ungated Hall bar samples in the non-illuminated
state the charge carrier density values are in the range of =30A:B = (2.5 − 3.3) · 10112<−2

with a mobility of `30A: ≈ (1.0 − 1.7) · 1052<2/+B. These transport values yield a mean
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free path of ;< 5 ? ≈ (1.0 − 1.6)`<, being considerably smaller than the mean free path
we achieved in the GaAs/AlGaAs samples. As we described at the end of chapter 5,
some of the split-gated Hall bar samples exhibit an insulating transport behavior with
a markedly reduced sheet carrier density and mobility after the cool-down. This high
resistance state could solely be lifted by thermal recycling. These experimental findings
constitute first indications of the affect of (re)chargeable defect states inside our gate
stacking, influencing the 2D transport properties in this ternary alloy system.

Figure 6.12: Layer sketch of the anal-
ysed In0.75Ga0.25As/In0.75Al0.25As heterostruc-
ture. The charge carriers are provided by the deep
level antisite defect states inside the In0.75Al0.25As
spacer layers, surrounding the In0.75Ga0.25As QW.
The heterostructure is terminated with a 5=<
In0.75Ga0.25As capping layer. As dielectric Al2O3
is chosenwith a layer thickness of 20=< to separate
the SG-electrodes (yellow) from the semiconduct-
ing layers.

Figure 6.13(a) shows an exemplary conductance curve of an In0.75Ga0.25As/In0.75Al0.25As
QPC device in the non-illuminated state. The conductance � through the constriction
is plotted in multiples of 242/ℎ as a function of the symmetrically applied SG-voltage
+(�1 = +(�2 ≡ +(� . As for the GaAs/AlGaAs samples in the previous section 6.2, we
obtain the characteristic pinch-off areas in the conductance curve of a SG-defined QPC:
In area (I), the channel underneath the SG-electrodes is depleted, in area (II), we start to
pinch-off the channel laterally, thus forming a 1D size-quantized conducting channel until
the total pinch-off of the channel is reached at approximately +(� = −1.15+ . The inset in
figure 6.13(a) presents a zoom into the conductance curve near depletion after subtracting
a channel resistance of '2ℎ = 10:Ω. We find no clear steps in � to be developed. Solely
a weak modulation of the otherwise monotonous conductance indicates characteristic 1D
transport features.
Figure 6.13(b) shows four subsequent conductancemeasurements of the same SG-structure
as in (a). The odd-numbered curves depict the down-sweeps towards pinch-off, even-
numbered curves present the corresponding up-sweep measurements back to +(� = 0+ .
We find the individual up- and down-sweep curves to be perfectly congruent, with only a
small shift of less than 0.02+ between the developed up- and down-sweep branches. In
comparison to the studied GaAs/AlGaAs heterostructures, ballistic 1D conductance is
severely hampered, which infers that the SG-induced electrostatic confinement potential
is distinctly altered in the 2DEG. We assign this modification of the conductance to
originate from charged impurities in the vicinity of the 1D channel, which act on the
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Figure 6.13: Conductance curves of sample C160428A1 (QPC4) in the non-
illuminated state at ) = 1.5 : (a) � as a function of +(� , with (I) and (II)
indicating the characteristic gating areas of the depletion curve of a QPC. The
inset displays a zoom into the section, marked by the dashed rectangle, with
'2ℎ = 10:Ω being subtracted. (b) Four consecutive conductance curves of
QPC4: odd numbers depict down-sweeps towards depletion of the QPC, even
numbers show the corresponding up-sweeps. The inset presents a zoom into the
marked area with '2ℎ = 2:Ω taken into account.

confining potential of the constriction. Potential candidates are the doping providing
InAlAs defect states since they are located in the direct proximity of the QW, as well
as defect states at the In0.75Ga0.25As/Al2O3 interface and inside the dielectric layer. We
interpret the dependence of the conductance through the QPC on the SG-bias history,
i.e. the small shift between up- and down-sweep branch, as a further indication of the
influence of chargeable defect states in the system.
Figure 6.14 shows three conductance curves, which differ in the chosen final SG-voltage
+
5 8=0;

(�
which we apply for pinch-off. Furthermore, two different dwell times at + 5 8=0;

(�
are

employed. For the conductance measurement, where we choose + 5 8=0;

(�
= −1.3+ (royal

blue curve), we find the up- and down-sweep curves to be reasonably congruent. By
choosing + 5 8=0;

(�
= −5+ , which is far in the pinch-off of the QPC, we test the influence of

the bias history on the conductance characteristics. For the cyan curve we apply no waiting
time at + 5 8=0;

(�
before the up-sweep of +(� is conducted. For the measurement presented

by the yellow curve, we introduce a dwell time of 10<8= in pinch-off at + 5 8=0;

(�
. We find

the up- and down-sweep curves in both measurements with + 5 8=0;

(�
= −5+ to exhibit a

pronounced hysteretic behavior, i.e. the pinch-off point +? of the QPC shifts towards
more negative +(�-values for the up-swept curve. Furthermore, we find the hysteresis to
scale with the dwell time in pinch-off at + 5 8=0;

(�
= −5+ . A more negative +? indicates an

effectively more positive +(� as compared to the down-swept curve. We understand this
behavior as a migration of electrons, which were initially fixed in trap states underneath
the SG-electrodes. When a sufficiently negative+(� is applied these electrons are laterally
transferred towards energetically more favourable states. Consequently, the confining
potential of the 1D channel is altered.
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Figure 6.14: Three conductance curves (up- and down-sweep) of sample
C160429A1 (QPC4) in the non-illuminated state at ) = 1.5 : two differ-
ent + 5 8=0;

(�
of −1.3+ and −5+ are applied with no dwell time in pinch-off. The

yellow curve displays a conductance measurement with + 5 8=0;

(�
= −5+ and an

additionally applied dwell time of 10<8= in pinch-off. The arrows indicate the
sweep-direction.

In a next step, we study the 1D transport properties in the samples after illumination. The
1D transport study of GaAs/AlGaAs QPC structures showed that illumination generally
increases the ballisticity in the electron system due to ameliorated screening properties of
the 2DEG.

Conductance quantization in the illuminated state (SG)

Figure 6.15(a) shows the conductance through the same QPC as studied above after
illumination. As in the non-illuminated case, the conductance curve can be again divided
into the two characteristic depletion regimes (I) and (II). The inset of figure 6.15(a)
presents a zoom into the marked area near depletion, revealing at least three narrow
but quite clear conductance steps near integer multiples of 242/ℎ when we take a serial
resistance of '2ℎ = 6.5:Ω near pinch-off into account. Repeating the measurement
for several times displays the reproducibility of the conductance characteristics. Figure
6.15(b) shows eight subsequent conductance measurements of the same sample as in
(a): Odd numbers depict down-sweeps of +(� towards the pinch-off of the QPC, even
numbers show the corresponding up-swept curves. As can be seen more clearly in the
inset of figure 6.15(b), which presents a zoom into the area near depletion, solely the first
two conductance curves (1) and (2) slightly deviate from the following sweeps, for which
the measured curves coalesce into a bundle. The difference in the gating responses of
measurements (1) and (2) in comparison to all following measurements can be considered
as an initialization process of the QPC, during which charge reconfigurations inside the 1D
constriction take place. Apart from this, the depletion curves in figure 6.15(b) demonstrate
a good reproducibility of the 1D transport characteristics in the QPCs. However, as in the
non-illuminated state, we find a hysteresis between up- and down-sweeps to develop when
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Figure 6.15: (a) and (b): Conductance of sample C160428A1 QPC4 in the
illuminated state at ) = 1.5 . For the insets, displaying a zoom into the area
near depletion, '2ℎ = 6.5:Ω is subtracted. Plot (a) shows the initial depletion
curve after illumination with the characteristic depletion regimes (I) and (II).
Plot (b) displays eight subsequent conductance curves: Odd numbers depict the
down-sweeps, even numbers show the corresponding up-sweeps. (c) and (d):
Conductance of sample C160316B4 QPC1 in the illuminated state at) = 370< 
with '2ℎ = 1.7:Ω subtracted. Plot (c) shows the conductance curves for several
source-drain voltages +(� , plot (d) presents a zoom into the area near pinch-off
in (c).

a sufficiently negative + 5 8=0;

(�
and/or a longer dwell time in pinch-off are applied.

By cooling the device down to ) = 370< , we gain further insight into the electric
potential landscape in the QPC. Figure 6.15(c) shows several conductance measurements
of a SG-defined QPC, whereby each curve is recorded for a different applied dc source-
drain voltage +(�4. Figure 6.15(d) presents a zoom into the conductance area near
pinch-off. We find that the width and steepness of the conductance steps is increased
as compared to the measurements at ) = 1.5 . This indicates that the 1D subbands
are more clearly separated, whereby mode-intermixing is efficiently reduced by the
decreased temperature. Yet, the first steps exhibit a pronounced discontinuity in �, which
is reproduced when the measurement is repeated. Oscillatory features arise on � when
we sweep +(� .
Conductance oscillations in the ballistic transport characteristics have been reported to

4+ C>C0;
(�

= +32
(�
++02

(�
with +02

(�
= 50`+ and variable +32

(�
≡ +(�

77



6 Realization of conductance quantization in InGaAs/InAlAs

arise as a quantum interference pattern due to random potential disorder [144, 145, 148–
150]. As a second effect, the electric field of charged impurities, located in the SG-defined
channel area, may alter the saddle potential in such a way that local potential minima are
created, through which tunneling at a certain energy takes place. This resonant tunneling
process introduces a particular energy-dependence in the reflection and transmission
coefficients as is visualized by the +(�-dependence of the measured conductance in the
analysed QPC. These features, i.e. quantum interference and resonant tunneling, are most
pronounced at very low temperatures, since higher temperatures blur the fine structures of
� due to energy averaging. Moreover, at elevated temperatures, e.g. at ) = 1.5 in our
transport study, a reduction of the phase coherence length can lead to an annihilation of
these quantum interference patterns [144, 145]. Yakimenko et al. [145] studied the effect
of randomly distributed impurities in a modulation doped GaAs/AlGaAs heterostructure
on the conductance through a QPC on the basis of numerical calculations. They found
the conductance modulation to be most pronounced when the separation between the
2DEG and the ionized impurities is less than 50=<. Additionally, the fine structure in the
simulated conductance was washed out with increasing 2DEG depth. We can relate our
experimental results to the findings of Yakimenko et al.: In our heterostructures, we lack
the presence of a deliberately introduced modulation doping layer. The intrinsic InAlAs
defect states, being - most likely - evenly distributed inside the InAlAs spacer layers,
provide the charge carriers in our system. Due to the direct proximity of the InAlAs defect
states to the QPCs, we hypothesize that the electrostatic influence on 1D transport is
quite strong, thus creating conductance modulations. Furthermore, remote surface charge,
interface roughness, fabricational imperfections of the SG-layout, as well as ternary alloy
disorder additionally introduces a texturing of the SG-defined potential in the 2DEG.
Applying an offset voltage to the arms of the SG-electrodes shifts the QPC laterally in
space. We find the oscillatory conductance modulations to depend perceivably on the
offset bias. We assign this behavior to a spatial shift of the QPC in the 2DEG plane
whereby the electrostatic environment of the 1D constriction - and thus the ballisticity of
the channel - is consequently altered. Illustrative measurements of asymmetric biasing
are shown in chapter 8.

Conclusion Recapitulating, we find first clear characteristics of conductance quantiza-
tion near integer values of 242/ℎ in the InGaAs/InAlAs heterostructures after illumination.
However, the conductance steps are much less pronounced as compared to GaAs/AlGaAs
samples, which are equipped with the same pair of parabolic finger-gate electrodes.
Measurements conducted at ) = 370< reveal the influence of an inherent disorder
potential on the conductance quantization in form of oscillations in �, which are smeared
out at higher temperature. Besides, intrinsic defect states affect the 1D transport properties,
manifesting itself in form of a hysteresis between the depletion and opening of the channel.
The strength of the hysteresis further depends on the applied + 5 8=0;

(�
, as well as on the

dwell time in pinch-off.
In a next step, we attempt to improve the ballisticity in the 1D channel by a modification
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of the finger-gate layout, which is supposed to suppress adverse electrostatic effects of
impurities on the 1D confinement potential.

6.3.2 1D transport in TrG-defined QPCs

In order to facilitate ballistic transport in the QPC devices, we introduce an additional gate
electrode, the center-gate (CG), in our finger-gate layout. The CG-electrode is inserted
in-between the two SG-electrodes SG1 and SG2 as is shown in figure 6.16. Such a gate
arrangement has been used in the literature under the aspect of analysing Fabry-Pérot
interferences, which can be generated in a QPC that is tuned to act as a resonator [151].
In our 1D transport study, the CG constitutes a further tuning knob for the modification of
the electrostatic confining potential [8].

Figure 6.16: Sketch of the triple-gate layout for improving the electrostatic
potential, defining the QPC. The width of the additionally introduced CG is
F2 = 200=<, the SG tip-to-tip distance F is determined as ≈ 350=<.

The right sketch in figure 6.16 displays the characteristic lengths of the individual building
blocks of the device, i.e. the CG-electrode and the SG-electrodes, which we will term as
triple-gated (TrG) QPC in the remainder of this thesis. The tip-to-tip distance F between
the two SG-electrodes SG1 and SG2 is approximately 350=<. The CG-electrode, having
a width F2 = 200=<, is inserted symmetrically in the SG-electrode slit. The CG and the
SG-electrodes are fabricated in the same ESL step to circumvent adverse effects due to
misalignment in the lithographic process.
To improve ballisticity, we apply a positive voltage at the CG-electrode, which leads to a
narrowing and deepening of the confinement potential in H-direction. Thereby, the 1D
subband spacing is increased and detrimental influence of background disorder potentials
should be reduced [8, 144, 152, 153]. Zagoskin et al. [153] showed that by increasing
the 1D subband spacing, the density of quasi-bound states inside the constriction can be
exponentially decreased.

Conductance quantization in the illuminated state (TrG)

Figure 6.17(a) shows the conductance � through a TrG-defined QPC as function of
+(� in the illuminated state. A constant CG-voltage of +�� = 0+ is chosen, whereby
+(�1 and +(�2 are symmetrically swept. Even for +�� = 0+ , we find that the additional
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Figure 6.17: Conductance through a TrG-defined constriction (sample
C160428A1 TrG1) at ) = 1.5 in the illuminated state: (a) � as a func-
tion of +(� for +�� = 0+ , exhibiting three distinct gating areas (I), (II) and
(III). The inset presents a zoom into the depletion area with '2ℎ = 1:Ω being
subtracted. (b) Depletion curves for several +�� , increasing from 0+ to +0.5+
in 0.1+-steps with a suitable '2ℎ subtracted. For comparison the conductance of
a split-gated QPC (no CG) of the same sample is plotted (grey curve).

CG-electrode clearly modifies the conductance through the constriction as compared
to SG-defined QPCs. As depicted in the graph, the depletion curve of the TrG-defined
QPC exhibits three distinguishable gating areas (I), (II) and (III). Whereas the areas (I)
and (III) resemble the determined characteristic SG-induced depletion regimes, area (II)
is newly developed in this triple-gated device. In area (II), a further decrease of +(�
hardly changes the conductance through the constriction. Whereas in (I), the 2DEG area
underneath the SG-electrodes gets depleted, we relate the response of � in this second
+(�-area to the energetical lifting of the semiconductor band structure underneath the
positively biased CG. This requires a more negative SG-voltage in contrast to the purely
SG-defined QPCs. Yet, the reduced slope of the conductance curve in area (II) compared
to area (I) indicates a difference in the electrostatic situation in the area underneath the
SG-electrodes and the CG-electrode. In area (III), the channel is then laterally depleted.
The inset of figure 6.17(a) displays a zoom into the conductance curve near depletion.
Several clear conductance steps near integer multiples of 242/ℎ arise. This clearly
demonstrates the improvement of ballistic 1D conductance in triple-gated samples - even
in the zero-biased case - compared to SG-defined QPCs. In a next step, +�� is stepwise
increased, whereby we enhance the curvature lH of the confining potential in H-direction.
Figure 6.17(b) shows � as a function of +(� for various CG-voltages. +�� increases
from the right from +�� = 0+ (dark blue curve) to +�� = +0.5+ (yellow curve) in
0.1+-steps . For each SG-sweep, +�� is held constant and a suitable serial resistance '2ℎ
is subtracted to fit the first plateau to 242/ℎ. We find that '2ℎ decreases with increasing
+�� . The rightmost grey curve displays the conductance of a SG-defined constriction
on the same sample. For better comparison, this curve is horizontally shifted by −1.5+ .
For small values of +�� , i.e. +�� < +0.2+ , the CG does not significantly improve
the conductance quantization as compared to the SG-defined QPC. Further increasing
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+�� leads to well-defined and more widened conductance plateaus, demonstrating the
beneficial effect of the positively biased CG for realizing ballistic transport. As intended
with this gate layout, an increased 1D subband spacing is created by the steepened channel
potential with +�� > 0+ . Furthermore, we observe the pinch-off voltage +? to shift into
the negative +(�-direction the higher +�� is chosen. This is a consequence of the positive
applied CG-voltage, which has to be compensated by a more negative SG-voltage in order
to deplete the channel [8].

Figure 6.18: Sample C160429A1 TrG1 at ) = 1.5 in the illuminated state: (a)
� as function of +(� of several down-sweeps (solid line) with the subsequent
up-sweeps (dashed line) for different +�� , increasing from 0+ to +0.5+ in
0.1+-steps with '2ℎ = 1.5:Ω subtracted. (b) Evolution of hysteresis with +�� .

So far, we have only discussed depletion curves, i.e. the down-sweeps of +(� towards the
pinch-off of the TrG devices. Figure 6.18(a) depicts several depletion curves (solid lines)
together with the subsequent up-sweep conductance curves (dashed lines) for various
+�� . We find that the pinch-off points +? of all up-sweep conductance curves are shifted
towards more negative values of +(� , denoting that the channel conductance is recovered
at a more negative SG-voltages than for the preceding down-sweep. The shift of +?
scales with the applied +�� : The more positive +�� is chosen, the larger the shift of
+? into the negative +(�-direction. This is illustrated in figure 6.18(b), where the total
conductance curves (up- and down-sweep) for three different +�� , i.e. +�� = 0+ , +0.2+
and +0.4+ , of the measurements in (a) are depicted. The arrows indicate the sweep
direction of +(� . The hysteresis is enlarged the more positive the applied CG-voltage
is chosen. Most significantly, the ballistic conductance is severely deteriorated when
the channel is reopened again. Quantized conductance steps, which are developed in
the down-sweep, have vanished in the subsequent up-sweep. This is most prominently
illustrated by the opening curve of the QPC with +�� = +0.5+ in figure 6.18(a), where
the up-sweep exhibits a rather linear response of � to an increase in +(� .
This hysteretic behavior of the 1D conductance in triple-gated devices will be discussed
in detail in the following, where we analyse the transport in our TrG devices in the
non-illuminated state.
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Conductance quantization in the non-illuminated state (TrG)

In this subsection, we investigate the transport characteristics of triple-gated QPCs in
the non-illuminated state. The experimental analysis of the electrostatic stability of the
devices is further extended.
For all measurements shown in the following subsection a sweep rate of 20<+/B and
a small dc contribution of +(� = 0.5<+ to the source-drain voltage is chosen unless
otherwise noted.

Initialization of the QPC Figure 6.19 shows several conductance curves in the non-
illuminated state of the same sample (C160429A1 TrG1), which we analysed in the
preceding subsection. +�� is kept constant at +1+ during the measurements. The sample
is cooled down from RT to ) = 1.5 with all ohmic contacts set to the laboratory ground
potential and the TrG-electrodes held constant at a voltage of 0+ .

Figure 6.19: Conductance curves
of sample C160429A1 TrG1 at
) = 1.5 with +�� = +1+ after a
zero-biased cool-down (+�� = 0+)
in the non-illuminated state: Four
consecutive down-sweeps (solid
curves) with the corresponding up-
sweeps (dotted lines), enumerated
chronologically. A serial resistance
of '2ℎ = 5:Ω is taken into account.

The down-sweep measurements (solid lines) and the corresponding up-sweep curves
(dotted lines) are color-coded and numbered chronologically. As for the illuminated case,
we find the first two measurements (1) and (2) to deviate from all subsequent conductance
curves. For clarity, solely two consecutive measurements, i.e. (3) and (4), are displayed.
Subtracting a serial resistance of '2ℎ = 5:Ω matches the first two conductance steps
very well to 242/ℎ and 442/ℎ. For the up-swept curves, however, the plateaus are less
pronounced and narrowed in width as compared to the preceding depletion curves. This
hints towards a decreased subband spacing, which we assign to a less sharp confining
potential in H-direction due to a blurring of the electric potential by partially deionized
InAlAs defect states. As we also observed in the illuminated measurements, a hysteresis
develops between the depletion and the opening conductance curves of the QPC.
This hysteretic behavior is now investigated in the following.

Electronic stability in the non-illuminated state For the measurements shown
in this paragraph a CG-voltage of +�� = +1+ is chosen. Since we focus here on
the full-range conductance of the devices, no channel resistance '2ℎ is subtracted in
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the calculation of the conductance �5. All measurements shown in the following are
conducted after an initialization of the QPC, i.e. a repeated depletion and opening of the
QPC until the curves of the up- and down-sweep branches are congruent.
We first examine the dependence of the hysteresis on the employed + 5 8=0;

(�
. Figure 6.20(a)

displays three conductance curves for different applied + 5 8=0;

(�
. The depletion of the

channel by sweeping +(� into negative direction is immediately followed by an up-sweep
of +(� . The arrows indicate the corresponding sweep directions.

Figure 6.20: Conductance curves of sample C160429A1 TrG1 at ) = 1.5 
in the non-illuminated state for +�� = +1+ with no '2ℎ subtracted: (a) � as
function +(� for different + 5 8=0;

(�
of −5.5+ , −6+ and −7+ , color-coded. (b) � as

function+(� for different dwell times at+ 5 8=0;

(�
= −5.5+ . The dotted curve shows

a measurement with a sweep-rate of 200<+/B for which no dwell time is applied
at + 5 8=0;

(�
. (c) Zoom into the pinch-off area of the conductance measurements in

(b).

As we observed in the measurements with the split-gated samples, the hysteresis in the
triple-gated devices increases the more negative we choose + 5 8=0;

(�
. The shift of +? into

negative +(�-direction is accompanied by an obscuring of the conductance steps. This
indicates enhanced charge reconfiguration between the depletion and the opening process
of the QPC, which is clearly linked to the strength of the gate-induced band bending.
Figure 6.20(b) depicts five pairs of down- and upwards sweeps for which we choose
+
5 8=0;

(�
= −5.5+ . We vary the dwell time, whereby we unveil a distinct time-dependence

of the band bending-induced charge transfer processes inside the heterostructure. This
yields further information on the energy states towards which the electrons inside the
heterostructure are transferred to. The dwell time increases from 0<8= (blue curve) up to
20<8= (yellow curve). Additionally, the dotted curve displays a measurement, for which
we increase the sweep rate to 200<+/B and apply no dwell time at the chosen + 5 8=0;

(�
.

Figure 6.20(c) presents a zoom into the area near pinch-off. We determine the magnitude

5We generally find that the 2D channel resistance '2ℎ strongly depends on +(� and thus on the width of
the QPC constriction.
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of the hysteresis to be clearly linked to the time the band profile is held in a tilted state:
Whereas there is almost no deviation between up- and down-sweep in the case of the high
sweep-rate of 200<+/B, we find the pinch-off point +? to be continuously shifted towards
more negative voltages the longer the dwell time is chosen. Even after a waiting time of
20<8=, +? still shifts continuously with a rather long time constant into negative direction.
This reveals that the charge migration processes towards an energetically equilibrated
situation exhibits a rather small transfer rate.
For all preceding measurements, the QPC channels are pinched off and we subsequently
sweep +(� back to 0+ . This constitutes a reset of the charge transfer in the vicinity of the
QPC in depletion mode. +(� = 0+ has proven to be sufficiently high enough to completely
restore the charge reconfiguration of the QPC after the first initialization sweeps.

Figure 6.21: Sample C160429A1 TrG1 at ) = 1.5 in the non-illuminated state
for +�� = +1+ with no '2ℎ subtracted, +�� = 0+ : Upper panel shows +(� as
function of time C, lower panel displays the conductance � as function of +(�
for different +D?

(�
. The arrows indicate the sweep direction of +(� .

In a next experiment, we aim to determine the SG-voltage, which we have to apply in the
opening process of the QPC in order to restore the electrostatic situation of the preceding
down-sweep, which presents a reset of the device. Thus, after depleting the QPC channel,
+
D?

(�
is subsequently increased until the following down-sweep is congruent to the initial

depletion curve. The upper panel in figure 6.21 is a plot of +(� over time, while +�� is
held constant at +1+ . Firstly, the 1D channel is fully depleted, whereby a + 5 8=0;

(�
of −5.5+

is chosen (dark blue curve). The channel is then partially re-opened up to a SG-voltage
of +D?

(�
, followed by an immediate down-sweep back to +(� = −5.5+ . +D?

(�
is stepwise

84



6.3 1D transport in InGaAs/InAlAs systems

increased from −3+ (yellow curve), to −2+ (green curve) and finally to −1+ (cyan curve).
The resulting conductance through the QPC with respect to +(� is shown in the panel
below. The arrows indicate the corresponding sweep direction of +(� , the vertical dashed
lines mark the turning points of the up-sweep back to +(� = −5.5+ . The measurements
demonstrate that the wider the QPC constriction is re-opened, i.e. the more positive +D?

(�

is chosen, the more the subsequent down-sweep approaches the initial conductance curve
(dark blue line). We find that for a complete restoration of the initial depletion curve,
the QPC has to be driven into the characteristic gating area (I) (see figure 6.17(a)). This
behavior evidences a constant redistribution of charge carriers underneath the finger-gate
electrodes as long as the applied SG-voltage is changed. Thus, for a triple-gated QPC with
+�� > 0+ a total reset requires an increase of +(� of several volts. Such a 1D transport
property is adverse and impractical for the implementation of the QPC in more complex
device applications.

In addition, the time stability of� in the gating area before pinch-off presents an important
property for later QPC applications. In a next experiment, we thus test the time stability
of the conductance in a triple-gated QPC. Therefore, three strategic measuring points on
the conductance curve are chosen.

Figure 6.22: Time stability of sample C160429A1 TrG1 at ) = 1.5 in the
non-illuminated state for +�� = +1+ with '2ℎ = 6:Ω subtracted, +�� = 0+ :
The measuring points are chosen at (a) - (c): +(� = −4.5+ in pinch-off, (d) - (f):
+(� ≈ −4.16+ on the slope to the first conductance step, (g) - (i): +(� ≈ −4.1+
in the first conductance step. A dwell time of 30<8= is applied at each measuring
point. Figure (a), (d) and (g) display +(� as function of time C; (b), (e) and (h)
show � as a function of +(� ; (c), (f) and (i) show � as a function of C. Between
the individual measurement sets, +(� is sweeped back to 0+ .

Figure 6.22 shows three sets of measurements, each displaying an experiment, in which
the 1D channel is depleted up to a specifically chosen conductance value of �, where a
dwell time of about 30<8= is applied before the subsequent up-sweep is conducted. The
first measurement set (figures 6.22(a) to (c)) presents the situation, in which the QPC
is completely pinched off. A +

5 8=0;

(�
of −4.5+ is chosen, which is only slightly smaller

than the determined +? ≈ −4.27+ . During the dwell time in pinch-off, we find that
the channel becomes conducting again, whereby � increases continuously with time.
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6 Realization of conductance quantization in InGaAs/InAlAs

Thereby, a distinct hysteresis develops. Figures 6.22(d) to (f) display the situation in
which the measuring point is positioned on the slope of the first conductance step at about
0.13 · 242/ℎ. For the set shown in (g) to (i) the measuring point is positioned at the first
conductance plateau at 242/ℎ. In both measurements, � increases steeply during the first
period of the applied dwell time and then starts to saturate. Correspondingly, a hysteresis
between up- and down-sweep is recorded. Hence, we conclude that the equilibrated
situation to which the system evolves when it is subjected to band tilting clearly depends
on the applied finger-gate voltage.
Our investigation of a single conductance curve over time demonstrates a severe con-
ductance instability of the QPC transport properties. For the chosen measuring points,
we find adverse charge transfer inside the heterostructure to take place as a function of
dwell time. This leads to a degraded formation of the formerly well-defined conductance
steps. Thus, to attain constant conductance near channel depletion, the system requires a
gate-dependent relaxation time towards a +(�-dependent energy equilibrium.

Biased cool-down We further visualize the presence of chargeable defect sites
inside the heterostructure by a series of biased cool-down measurements. Therein,
we systematically vary the cool-down voltage +�� which we apply at the finger-gate
electrodes during the cool-down of the sample from RT to cryogenic temperatures6. After
the cool-down to ) = 1.5 , +(� is then set to 0+ and +�� to +1+ . Figure 6.23 displays
a series of conductance measurements, each curve recorded for a different +�� in the
bias-range of −1.0+ to +1.5+ after the QPC has been initialized. For all applied +�� the
depletion curves are reproduced in several cool-downs (not shown here). No channel
resistance is subtracted, as the full depletion curves are analysed.

Figure 6.23: Conductance of
sample C160429A1 TrG1 at ) =
1.5 in the non-illuminated state
for +�� = +1+ with no '2ℎ sub-
tracted. Various cool-down volt-
ages +�� in the range between
−1.0+ and +1.5+ are applied at
the CG and SG-electrodes dur-
ing the cool-down from RT to
) = 1.5 .

We find +? as well as the number and texture of the conductance steps to substantially
differ from each other. The higher +�� is chosen, the lower the conductance at +(� = 0+
at the beginning of each measurement. Furthermore, the conductance steps become less
well-defined at higher +�� . For large positive +�� as, e.g. +�� > +1.0+ , we determine
a complete extinction of the 1D transport features. Thus, we conclude that a positive
6For samples, being illuminated after the cool-down, the bias status during the cool-down has no influence
on subsequent transport measurements.

86



6.4 Conclusion and discussion

cool-down activates detrimental charge transfer inside the heterostructure at RT. This
charge configuration is then frozen out at ) = 1.5 . Consequently, we determine an
effectively more negative bias situation of the SG-electrodes, which shifts the pinch-off
point towards less negative SG-voltages. +�� < 0+ does not present itself to be evidently
beneficial as compared to a zero-biased cool-down. However, no detrimental charge
transfer at RT is thereby triggered.
We deduce that the application of a positive +�� leads to significant adverse effects on the
ballisticity in the 1D channel due to the transfer of electrons towards the heterostructure
interface.

6.4 Conclusion and discussion

In the study of 1D transport in InGaAs/InAlAs-based heterostructures, we systematically
analysed the electric transport characteristics of SG- and TrG-defined QPCs in the
illuminated and non-illuminated state.
For split-gated devices we solely observe conductance quantization near 242/ℎ at) = 1.5 
after illumination of the sample. The number of well-resolved plateaus increases when
the sample is cooled down to ) = 370< . Measurements at such low temperatures reveal
reproducible and energy-dependent conductance oscillations. This clearly demonstrates
the influence of adverse electric disorder potentials, acting on the confining potential of
the QPC. We attribute this disorder potential to the presence of remote ionized impurities
in the vicinity of the 1D constriction.
In order to facilitate ballistic transport in the QPC, we introduce an additional CG
in-between the two SG-electrodes as a further tuning knob of the electrostatic potential in
the 1D channel. Thereby, we are able to demonstrate improved ballisticity as we observe
well-defined conductance plateaus at integer multiples of 242/ℎ in the illuminated, as
well as in the non-illuminated state.
Furthermore, we fabricated several QPC samples with an additional global TG, attached
above the finger-gate electrodes to tune the electron density and thus the screening ability
of the 2D system, whereby the conductance should be altered. However, we found that
increasing the 2DEG electron density by applying a positive TG-voltage had no positive
effect on the 1D transport characteristics in our devices. Furthermore, for a fixed +�� and
+(� , no 1D conductance features developed when we recorded � as a function of +)�
(not shown here). Applying a small perpendicular magnetic field to the samples during a
conductance measurement did not prove to be beneficial for conductance quantization in
the system. This is in contrast to several experimental findings in literature [2, 5, 144,
145, 150] for which a small B-field normal to the sample plane generally leads to reduced
backscattering, thereby facilitating ballistic conductance.
In a systematic series of measurements, we test the electric stability and reproducibility
of the performance of the QPC devices. We find the conductance characteristics of
our studied QPCs to significantly depend upon the bias history: Clear 1D conductance
features that we observe when the QPC is pinched off are blurred or completely vanish in
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6 Realization of conductance quantization in InGaAs/InAlAs

a subsequent up-sweep of +(� . Additionally, a hysteresis develops between the depletion
and opening conductance curves of the QPC. This shift of the pinch-off point +? is then
further analysed. We find a distinct time- and voltage-dependence of the magnitude of the
hysteresis: To summarize, +? is a function of +�� , +�� , + 5 8=0;

(�
, as well as of the dwell

time in pinch-off and of the chosen sweep-rate of +(� .
We conclude that by sweeping +(� into negative direction, whereby we tilt the band
structure of the system, we drive the heterostructure out of an energetically equilibrated
situation. This introduces a +(�-dependent transfer rate of parasitic, trapped charge carri-
ers inside the layer system, constantly modifying the electrostatic confinement potential in
the QPC devices. This conclusion is further supported by probing the time stability of the
conductance at different strategic measuring points on the depletion curve, where we find
� to distinctly vary over time when the measuring points are chosen near or in pinch-off.
Owing to the dependence on the bias history and the instability of the conductance over
time, we were not able to record the transconductance of our 1D channel as a function
of +(� and +(� , by means of which a meaningful evaluation of the 1D subband spacing
could be conducted and further information on the confining potential could be gained.
Our experimental findings resemble the results of a study by Koester et al. [18] on the
1D transport behavior of SG-defined QPCs in an InAs/AlSb QW. Therein, impurities
inside the MBE-grown heterostructure, as well as surface states at the GaSb capping layer,
which provide the charge carriers in this material system [154], are identified to give rise
to similar 1D conductance instabilities as we observe in our devices. We want to point out
that our non-intentionally doped InGaAs/InAlAs heterostructures with Al2O3 as dielectric
offers several defect states as source for the observed instabilities: Defect states inside
the InAlAs spacer layers [37, 39], as well as a variety of surface states at the InGaAs
interface [14, 136, 155–158], together with energy states inside the dielectric [159–162]
are likely to play a major role in the gating ability of this material system. Furthermore,
other parameters, such as for example the finite curvature of the tip of the SG-electrodes
and fabrication-related gate-edge roughness, are likely to affect the transport behavior in
our devices besides the non-uniform impurity potential.

We thus dedicate the next chapter to a comprehensive understanding of the gating response
of the analysed heterostructures. On the basis of top-gated Hall bar samples, we study
the role of the above-mentioned defect states under gate operation. A holistic charge
transfer picture is then established, which is able to elucidate the experimental findings
of this chapter. On the basis of the newly gained understanding of the material system,
we identify an active layer design with which robust 1D conductance is then realized
(therefore see chapter 8).
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Gating response of various III-V
heterostructures

7

In the last chapter, we studied the 1D transport in SG- and TrG-defined QPCs in
In0.75Ga0.25As/In0.75Al0.25As systems. In a series of measurements, we investigated the
electric stability and quality of the ballistic 1D conductance in our devices. Therein, we
determined that the conductance in split-gated QPC devices was severely affected by
impurity-related Coulombic disorder potentials, acting on the confining potential. This
led to obscured conductance quantization at a measurement temperature of ) = 1.5 .
Decreasing the temperature to ) = 370< gave rise to the generation of localized energy
states inside the 1D channel, provoking energy-dependent conductance oscillations. By
introducing an additional CG in between the SG-electrodes which provides the possibility
of tuning the confining potential in the QPC, we were able to realize clear conductance
quantization steps even at a temperature of ) = 1.5 . Yet, all TrG devices exhibited
a markedly hysteretic behavior under the application of a positive CG-voltage in order
to facilitate ballistic conductance in the channel. Building on the experimental results
of the 1D transport study, we assigned the hysteresis to charge migration processes
in the heterostructures, provoked by the large voltage difference applied between the
CG-electrode and the SG-electrodes. We inferred that the ballisticity in the QPC devices
is substantially deteriorated owing to the reallocated charge carriers and the thereby
modified confining potential in the 1D channel.
The following chapter serves to gain deeper insight into the materials-related origins
of the electrostatic response of the InGaAs/InAlAs-based systems. To this end, we
systematically evaluate the field-effect tunability of the 2D transport properties in these
heterostructures.
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7 Gating response of various III-V heterostructures

Figure 7.1: (a) Schematic sketch of the analysed gate stacking. (b) Applied
TG-voltage +)� as a function of time during a MT measurement sequence. +<0G

)�

marks the maximum applied TG-voltage,MIT indicates the minimum applied
TG-voltage before the resistivity of the sample is significantly increased owing
to the onset of an apparent metal-to-insulator transition, impeding a meaningful
MT measurement in this +)�-range.

7.1 Sample fabrication and MT measurement
sequence

In order to analyse the observed charge migration processes in our heterostructures, we
employ a more controllable system than an electrostatically defined QPC: a top-gated
Hall bar. From the gate dependency of the 2D transport characteristics, i.e. the 2D
electron density and mobility, of the Hall bar device, we aim to deduce information on the
participating defect states in the system under gate operation. As described in subsection
2.1.3, we classically expect the electron density of the QW to scale linearly with the
applied TG-voltage +)� . From deviations of the textbook-like behavior, we gain access
to the spatial location and dynamics of participating defect states.
We start the 2D transport analysis with the same heterostructure that we used in the
preceding 1D transport study of our QPC devices. The corresponding gate stacking is
depicted in figure 7.1(a). To insulate the metal gate electrode from the semiconducting
layers and to passivate the In0.75Ga0.25As cap surface layer, we deposit Al2O3 as dielectric
material via atomic layer deposition (ALD) on top of the MBE-grown heterostructure.
This deposition process is often referred to as self-cleaning since during the first cycles
of ALD the native III-V oxides are largely eliminated, in particular, the Fermi level
pinning-dominating oxides As2O3 and As2O5. This has been the subject of various
experimental studies in literature, mostly employing CV, XPS and TEM measurements as
evaluationmethods [163–167]. InMTmeasurements on near-surface InAs/ In0.75Ga0.25As/
In0.75Al0.25As QWs, Prager [168] found clear evidence of an efficient unpinning of the
Fermi level after depositing Al2O3 via ALD, which points towards an effective reduction
of the Fermi level-pinning oxides.
TheMTmeasurements for the sample characterisation are conducted at a base temperature
of ) = 4.2 in a liquid He dewar. The sample is brought to cryogenic temperatures with
the TG-electrode set to +�� = +)� = 0+ and the ohmic contacts set to the laboratory
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ground potential. +)� is then varied while we monitor the electric response of the 2DEG.
For each adjusted value of+)� , we carry out a MT measurement in which the longitudinal
and transversal resistivities are recorded. Figure 7.1(b) displays the applied TG-voltage as
a function of time during our employed MT measurement sequence: After the cool-down
of the sample, we start at +)� = 0+ . The TG-voltage is then swept into the negative TG-
bias direction. This initial down-sweep is stopped when the metal-to-insulator transition
(MIT) of the system sets in. Subsequently, +)� is increased into positive TG-voltage
direction towards a maximum applied voltage+<0G

)�
. The sequence is then terminated with

a final down-sweep back to +)� = 0+ , or respectively to the onset of the MIT transition
as is indicated by the dashed line in figure 7.1(b). This MT measurement sequence will
be used for several representative samples in the following.

7.2 Chemical treatment and different surface
terminations

7.2.1 5nm In0.75Ga0.25As cap

Gating response of sample G

We start the analysis with a newly fabricated Hall bar device, labeled as sample �.
Figure 7.2 shows the gating response of sample �, i.e. the sheet carrier density =B
of the probed QW as a function of applied +)� . Here, the Hall density =�0;; (dots)
together with the calculated charge carrier density =(3� from the Shubnikov-de Haas
oscillations (triangles) are displayed. For all measurement points, we find =�0;; ≈ =(3� ,
which is commonly regarded as a proof for the absence of parallel conduction inside
the probed heterostructure. Via the field-effect, we are able to vary =B in the range
between channel depletion, i.e. =B < 1.5 · 10112<−2, and a maximum achievable electron
density =?40:B ≈ 3.75 · 10112<−2. The gating curve can be clearly divided into two areas,
I and II: In area I, the electron density increases linearly with +)� as it is classically
expected from the field-effect. The corresponding capacitive coupling is calculated as
2 = m=B/m+ = 1.27 · 10112<−2+−1. In regime II, i.e. for +)� > −0.5+ , the gating
response deviates from the linear behavior, whereby the measured charge carrier density
starts to saturate at =B0CB = =

?40:
B = 3.75 · 10112<−2 and cannot be further increased

even for an applied +<0G
)�

as high as +4.0+ . This saturation presents a loss of capacitive
coupling of the metal gate to the 2DEG. Indeed, to recover a variation of =B with +)� , we
have to reduce the TG-voltage to +)� ≤ +3+ . In the final down-sweep, =B is found to be
smaller than for the up-sweep at a given +)� . This hysteretic behavior has been observed
in various other material systems [95–99, 129]. Most of these literature references ascribe
it to an asymmetric charge transfer process between doping sites and/or interface trap
states and the probed transport channel. This topic will be addressed in detail in section
7.2.3. The inset of figure 7.2 displays the electron mobility ` as a function of +)� .
Throughout this chapter we use the value of =�0;; for the calculation of `. We find that `
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Figure 7.2: MT measurement sequence of sample � (wafer C160429A) in the
non-illuminated state for a cool-down voltage +�� = 0+ at ) = 4.2 , displaying
=B as a function of +)� . The Roman numerals I and II divide the measured
curve into two characteristic gating intervals. The inset shows the corresponding
electron mobility ` as a function of +)� .

shows a similar gating response as =B: Along with the increase in =B with rising +)� , `
increases as well. The simultaneous increase of ` with =B is attributed to an improved
screening of the wave function inside the QW from surrounding scattering centers at
a higher charge carrier density. Furthermore, smaller wave vectors of the conduction
electrons, corresponding to a small =B, are more prone to the interaction with surrounding
Coulomb disorder, generated by charged background impurities inside the heterostructure
as well as by remote surface charge [46]. Then, at the same +)� where =B reaches =?40:B ,
we find the electron mobility to saturate in gating area II as well.
The loss of capacitive coupling to the 2DEG in area II for +)� > +3+ is a clear
demonstration of the presence of a parasitic conductive layer above the QW, which
effectively shields the 2DEG from the TG-electrode. Given that we found clear evidence
for charge migration inside the gate stacking in 1D transport measurements as well as here
in 2DMTmeasurements, we test this hypothesis via biased cool-down measurements.

Biased cool-down

In the process of a biased cool-down, we apply a non-zero voltage +)� ≡ +�� at the
metal gate electrode at room temperature (RT). Due to the thereby induced band bending,
free electrons, provided by the InAlAs deep level donor states, are transferred to available,
more favourable energy sites. This electrostatic situation is then brought to cryogenic
temperatures, whereby the transferred electrons are frozen at these energy sites. In our
transport analysis of sample �, we choose positive TG-voltages (+�� > 0+) for the
different cool-down processes. Accordingly, the band profile is tilted downwards in
positive I-direction, facilitating electron transfer towards potential trap states which are
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located above the QW. To initialize our measurement sequence, we sweep +)� from the
chosen value of +�� to 0+ . Subsequently, the MT measurement sequence as described in
section 7.1 is conducted.

Figure 7.3: MT measure-
ment sequences of sample �
(wafer C160429A) in the non-
illuminated state at ) = 4.2 
for +�� = 0+ , +1.0+ and
+2.0+ , displaying =�0;; as
a function of +)� . The fi-
nal down-sweep from +<0G

)�

to 0+ is not shown here. The
inset displays the initial down-
sweep measurements of the
measurement sequences.

Figure 7.3 shows three MT measurement sequences from different cool-downs with
+�� = 0+ (black), +1+ (blue) and +2+ (green). For all three cool-down sequences,
we obtain similar gating responses with coinciding values of =B0CB . However, the curves
are horizontally shifted with respect to each other. The higher +�� is chosen, the
larger the overall shift of the curve into the positive +)�-direction. Consequently, a
+�� > 0+ decreases the charge carrier density obtained at a particular +)� as compared
to the zero-bias cool-down case. As a second observation, we find that after a non-zero
biased cool-down a hysteresis between the first down-sweep to the MIT transition and
the subsequent up-sweep of +)� develop: =B is increased in the up-sweep at a given
+)� . Yet, this increased value of =B during the up-sweep is still smaller at a given
+)� as compared to the determined value of =B in the MT measurement sequence with
+�� = 0+ . We attribute this gating behavior to an interplay of several defect states
inside the heterostructure: An overall horizontal shift of the measured gating curve into
positive direction as we observe for+�� > 0+ requires a negative and fixed charge density
between the metal gate electrode and the QW. The superposition of the applied TG electric
field and the electric field due to this additional negative charge results in an effective
decrease of +)� acting on the QW. Based on several studies in literature [159, 169], we
hypothesize that trap states inside the Al2O3 dielectric layer, which are created by oxygen
and aluminum vacancies and interstitials, to be involved in the charge migration processes
during the biased cool-down. Electrons, transferred to these energy states at RT, are
then efficiently frozen out at ) = 4.2 . This assumption is further supported by our
finding that after a cool-down with +�� > 0+ , we are not able to restore the electrostatic
situation equivalent to a zero-bias cool-down by applying a large negative +)� to the
heterostructure. According to the direction of band tilting, this would trigger free electron
transfer towards the QW. To reset the charge configuration after a biased cool-down, the
sample has to be thermally recycled, i.e. warmed up to RT.
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A partial back-transfer of electrons towards the QW after a positively biased cool-down
manifests itself in the additionally created hysteretic response of the heterostructure
between the initial down-sweep of+)� to the MIT transition and the subsequent up-sweep.
We mainly attribute this observation to electron transfer from InAlAs deep level donor
states, which were not ionized during the cool-down with +�� > 0+ as compared to the
case of +�� = 0+ , to the QW.
As a third observation, we find the loss of capacitive coupling for all three measurements
in figure 7.3 at the same electron density =B0CB = 3.75 · 10112<−2. For a complete loss
of capacitive coupling to the probed 2DEG as in gating area II, however, a sufficiently
conductive layer has to be present. A mere distribution of single acceptor states inside
an otherwise insulating dielectric would not be sufficient to cause such a behavior.
Furthermore, on the basis of supplementary transport measurements on an In0.75Al0.25As
layer at ) = 4.2 , we can exclude parasitic bulk conductance to be present in our system.
This result is supported by experimental findings from Capotondi et al. [37]: Even at RT,
they report the absence of free charge carriers in their nominally undoped In0.75Al0.25As
layers, exhibiting a similar deep level donor state density as our heterostructures.
We hypothesize that the observed parasitic conductive layer is formed at the InGaAs/Al2O3
interface. This finding is indeed not evident inasmuch the parasitic layer does not manifest
itself in any other way in our MTmeasurements such as for example in =�0;; . Furthermore,
the Schrödinger-Poisson simulations (see section 5.2) suggest a significant occupation of
the InGaAs cap-QW only for much higher electron densities.
The exact nature of the shielding layer cannot exactly be derived from our transport
measurements. We suspect a combination of 2D subband states, provided by the InGaAs
capping, together with energy states at the Al2O3/InGaAs interface (see [156]) to host
the screening electron accumulation. To test our assumption, we reduce the InGaAs
cap thickness in an attempt to prevent the formation of the shielding charge layer inside
the capping at such low charge density values. To this end, we grow a new wafer
(C160420B), which only differs in its cap thickness of 320? = 2.5=< to the previously
analysed heterostructures. The gating response of this new heterostructure is analysed in
the following.

7.2.2 2.5nm In0.75Ga0.25As cap

Gating response of samples H, I and J

Fabrication details From wafer C160420B, we fabricate three top-gated Hall bars,
labeled as samples �, � and �, in the same processing-run. For these samples, we choose
three different Al2O3 thicknesses 3�;2$3 as enlisted in table 7.1. In order not to interrupt
the deposition processes, we apply a separate ALD-run for each sample, yet on the same
day to ensure similar fabrication conditions. As in the processing of sample �, the only
chemical treatment prior to the ALD process is a degreasing of the wet-etched Hall bar
mesas in the solvents acetone and propanol.
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sample dcap (nm) HCl-treatment dAl2O3 (nm) ci (·1011cm-2V-1)
A 5 / 60 1.27
B 2.5 / 20 4.36
C 2.5 / 30 4.13
D 2.5 / 100 2.60
E 2.5 X 20 4.52
F 2.5 X 30 4.07
G 2.5 X 50 3.45

Table 7.1: List of specifications of samples � to �. The check mark (slash)
indicates that a HCl-dip is (not) applied prior to the dielectric deposition. The
capacitive coupling constants 28 are determined in the first linear gating area I.

Measurement sequence Figures 7.4(a) to (c) show the measurement sequences of
samples �, � and � after a cool-down with +�� = 0+ . We can distinguish between two
differing types of gating responses. On the one hand, the transport behavior of sample
� is equivalent to the gating response of sample �, which we previously discussed in
subsection 7.2.1: After a linear increase of =B with +)� , we find the charge density of
sample � to saturate at =?40:B ≈ 4.3 · 10112<−2 for +)� ≥ 0+ . For samples � and �, we
find the gating response to be altered as compared to samples � and �: After reaching a
peak electron density of =?40:B = 5.2 ·10112<−2 with sample� and =?40:B = 5.4 ·10112<−2

with sample �, =B starts to decrease when we further increase+)� . Furthermore, a settling
time of several minutes is required before dGG and dGH stabilize so that a meaningful MT
measurement can be conducted. After this stabilization, we find the MT measurements
to be perfectly reproducible on the timescale of hours at a temperature of ) = 4.2 ,
meaning that the equilibrium, that has been reached, is persistent. Moreover, in contrast to
samples � and �, we find for samples � and � that the measured Hall density =�0;; and
the calculated Shubnikov-de Haas density =(3� do not coincide anymore in the density
interval =?40:B > =B > =

B0C
B . In this density interval, the calculation of =(3� by evaluating

the inverse of the magnetooscillation minima in dGG seems no longer applicable since the
thereby determined curve cannot be described by a single linear fit, i.e. a single charge
density =(3� . For a sufficient increase of +)� , the charge density starts to saturate. The
determined value of =B0CB ≈ 4 · 10112<−2 with the samples �, � and � is approximately
equal to the value of =B0CB = 3.75 · 10112<−2 of sample �. In the saturation regime, we
find =�0;; and =(3� to coincide again. As in the case of sample �, in order to restore
the capacitive coupling for samples �, � and � the bias voltage has to be decreased
underneath a threshold value of +)� . We thus conclude that in samples �, � and � a
parasitic conductive layer at the interface is still generated for positive enough +)� .
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Figure 7.4:MTmeasurement sequences in the non-illuminated state at) = 4.2 ,
+�� = 0+ , displaying =�0;; (dots) and =(3� (triangles) as a function of +)� of
(a) sample � with 3�;2$3 = 20=<, (b) sample � with 3�;2$3 = 30=<, (c) sample
� with 3�;2$3 = 100=<.

Estimation of 9Gl2U3 From the evaluation of the linear dependence of =B on +)� in
gating area I, we are able to determine the permittivity Y�;2$3 of the dielectric material
Al2O3, based upon the differing dielectric thickness values 3�;2$3 of samples �, � and
�. The capacitive coupling 2 of the metal gate electrode to the InGaAs 2DEG can be
classically described as

2 =
m=

m+
=
Y0
4
·
(3�;32$3

Y�;2$3

+
320?

Y20?
+
3B?024A

YB?024A

)−1
, (7.1)

where 320? = 2.5=< presents the InGaAs cap thickness and 3B?024A = 130=< is the
InAlAs spacer width. Y20? and YB?024A are the corresponding permittivities. Combining
the dielectric contributions of the thin InGaAs cap and the much thicker InAlAs spacer
layer into a single expression by setting Y20?

!
= YB?024A in equation (7.1) and using

320? + 3B?024A ≡ 32+B = 132.5=<, we yield a simplified formula for 2:

2 =
Y0
4
·
(3�;2$3

Y�;2$3

+ 32+B
Y2+B

)−1
. (7.2)

2 is determined from the slope of the individual MT measurement sequences of samples
�, � and � via 2 = m=

m+
. The determined values of 28, with 8 = �,�, �, are listed in table

7.1. Since 3�;2$3 and 32+B are known quantities, we can formulate three equations on the
basis of equation (7.2), which then solely contain two unknown quantities, i.e. Y�;2$3

and Y2+B =̂ Y�=�;�B. In order to calculate one of them, for example Y�;2$3 , we take two
of the calculated 28 values as input. By combining the values for 28 pairwise, we thus
receive three separate values for Y�;2$3 from the different possible combination choices
of 28:
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7.2 Chemical treatment and different surface terminations

2� & 2� → Y���;2$3
= 14.17

2� & 2� → Y���;2$3
= 9.36

2� & 2� → Y���;2$3
= 8.93

Whereas Y��
�;2$3

= 14.17 deviates substantially from the other two determined values,
Y��
�;2$3

and Y��
�;2$3

are similar in magnitude and also in good agreement with reported
values in literature [170]. Owing to the discrepancies of the determined values of Y�;2$3 ,
we omit an evaluation of Y�=�;�B here.

Discussion and conclusion The gating responses of samples �, � and � differ
significantly from each other: Whereas the transport behavior of sample � is similar to
sample � with a cap thickness of 5=<, for samples � and � an additional peculiar gating
interval developes, in which the charge density decreases with increasing +)� before
saturation at an equivalent density as for samples � and � sets in.
Thus, we infer that by solely reducing the InGaAs cap thickness, we are not able to
suppress the formation of the parasitic conductive layer at the InGaAs/Al2O3 interface,
at least in the regime of high +)� . This experimental observation cannot be explained
by means of our band structure simulation, in which we assumed a Fermi level pinning
of 40<4+ under the conduction band edge as it is suggested in literature [14, 37, 117].
Neither an unpinning of the Fermi level is able to reproduce our experimental results.
The differing gating responses of samples �, � and �, together with the deviations in
the estimated values for the permittivity Y�;2$3 reflect the unsystematic gating behavior
of this Hall bar series. Generally, we can identify several typical mechanisms for III-V
materials, which are responsible for the creation of midgap states at the surface: As-O
bond formation, interface intermixing, as well as dangling bonds can be named as root
causes [156]. In practice, X-ray photoelectron spectroscopy (XPS) measurements are
applied to gain experimental insight to the defect state formation and density [155,
163, 166, 167, 171–173]. Via XPS measurements on our samples before and after the
deposition of Al2O3 (not shown here), we were able to confirm a substantial reduction of
the Fermi level pinning native oxides As2O3 and As2O5, which we deduce from an almost
complete disappearance of the corresponding peaks in the XPS spectra for samples with
Al2O3. Yet, we observe further peaks in the XPS spectra of our samples. There is a vast
range of publications, dealing with the identification of the native III-V oxides, at the
head, photoemission experiments. Many of these studies focus on the analysis of the
modifications of arsenic and gallium native oxides, whereas less studies concentrate on
alternative oxidation states and other In-containing oxide compounds [155, 171, 174–176].
In their XPS measurements, Brennen et. al [155] were able to identify at least eight
different oxide peaks in the As33-spectrum, amongst them As2O3, As2O5 and GaAsO4.
As2O3 and As2O5 are found to be responsible to effectively pin the Fermi level at InGaAs
interfaces. Relevant oxides in the In43 and Ga33 spectra are stated to be In2O, In2O3,
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7 Gating response of various III-V heterostructures

Figure 7.5: MTmeasurement sequences in the non-illuminated state at) = 4.2 
at +�� = 0+ , displaying =�0;; (dots) and =(3� (triangles) as a function of +)�
of (a) sample � with 3�;2$3 = 20=<, (b) sample � with 3�;2$3 = 30=<, (c)
sample � with 3�;2$3 = 50=<.

InxGayOz (with x>y), as well as Ga2O and Ga2O3.
In order to test the effect of residual native oxides on the gating response of the analysed
heterostructure, we fabricate top-gated Hall bar devices, for which an additional cleaning
step prior to the ALD process is introduced.

Gating response of samples K, L and M

Fabrication details Three additional top-gated Hall bar devices, labeled as samples
� , � and �, from wafer C160420B are processed. Prior to the Al2O3 deposition with
ALD, the samples are dipped in aqueous hydrochloric acid (HCl) for one minute, followed
by a rinsing in deionized water. In an experimental study, Kobayashi et al. [177]
confirmatively found that the native oxides GaOx, InOx and AsOx are efficiently removed
by HCl. As for samples �, � and � in the preceding subsection, we choose three different
dielectric thicknesses 3�;2$3 for the samples � , � and �, summarized in table 7.1, to
determine the corresponding permittivities Y�;2$3 and Y�=0.75�;0.25�B.

Measurement sequence Figures 7.5(a) to (c) display the gating responses of
samples � , � and � in the MT measurement sequence for +�� = 0+ . All three samples
exhibit the same characteristic transport features in their gating response: After a linear
increase of the sheet density with +)� , =B starts to decrease after reaching =?40:B , until
a saturation at =B0CB ≈ 5 · 10112<−2 sets in. For the density interval =?40:B > =B > =

B0C
B ,

we find =�0;; ≠ =(3� . This gating behavior is equivalent to samples � and �. However,
we find =?40:B of samples � , � and � to be significantly larger with values for =B of up
to 7 − 7.8 · 10112<−2. We want to emphasize, that this presents almost a doubling of
the maximum achievable electron density in the 2DEG in comparison to the previously
studied samples � to �.
Yet, as can be clearly seen in the measurement sequence of sample �, we again loose
capacitive coupling to the 2DEG after a distinct drop of the charge density from =

?40:
B

to =B0CB . In addition, removing the residual native oxides at the InGaAs surface with
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7.2 Chemical treatment and different surface terminations

HCl clearly increases the reproducibility of the gating response of the heterostructure.
However, it does not lead to an annihilation of the parasitic conductive layer at sufficiently
positive +)� .

Estimation of 9On0.75Gl0.25Gs and 9Gl2U3 From the linear dependence of =B on +)� in
the density range =B < =?40:B , we determine the capacitive coupling constants 28 of samples
� , � and �. The corresponding values are summarized in table 7.1. As classically
expected, the capacitive coupling decreases with increasing 3�;2$3 in a linear fashion,
since 320? and 3B?024A are similar for all three samples.
As described in paragraph 7.2.2, the permittivity Y�;2$3 of the deposited Al2O3 is
calculated by pairs of 28:

2� & 2� → Y���;2$3
= 7.37

2� & 2� → Y���;2$3
= 7.89

2� & 2� → Y���;2$3
= 8.18

The calculated values of Y�;2$3 are all in good agreement and furthermore coincide with
reported values in literature [170]. On this basis, we are able to determine a meaningful
value of the permittivity Y�=0.75�;0.25�B of the In0.75Al0.25As spacer material. For this
purpose, we take the average value Ȳ 8, 9

�;2$3
from the calculated permittivities above, which

yields Ȳ�;2$3 = 7.81. With equation (7.2), we can write for Y2+B, which is approximately
Y�=0.75�;0.25�B:

Y�=0.75�;0.25�B =̂ Y2+B = 32+B ·
(3�;2$3

Ȳ�;2$3

− Y0
4 · 2

)−1
. (7.3)

Independent of the chosen value of 28, 8 = �, �, � (with the corresponding 3�;2$3,8) we
utilise for the above calculation, we consistently find: Y�=0.75�;0.25�B = 13.7. This value
for Y�=0.75�;0.25�B is in very good agreement with values reported in literature [178].

Comparison of samples H to M

To illustrate the severe influence of the residual native oxides on the gating response
of the heterostructure, we plot the MT measurement sequences of samples �, � and
�, for which the additional cleaning step in the fabrication process is omitted, in one
graph (figure 7.6(a)), and the gating curves of samples � , � to �, having experienced the
auxiliary HCl dip, in one graph (figure 7.6(c)). The corresponding mobility responses are
shown in figure 7.6(b) and (d) and will be discussed in more detail later in the course
of this chapter (see subsection 7.5.1). This graphical comparison further underlines the
lack of predictability of the gating responses of samples �, � and �. The remnant oxides
at the InGaAs/Al2O3 interface lead to an arbitrary surface potential and consequently
to an uncontrolled gating response of the heterostructure with a reduced linear gating
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7 Gating response of various III-V heterostructures

Figure 7.6: MT measurement sequences of (a)-(b): samples �, � and �,
for which no chemical removal of residual native oxides is conducted in the
fabrication process. Figure (a) displays the electron density =�0;; as a function
of +)� , figure (b) the electron mobility ` as a function of +)� . (c)-(d): samples
� , � and �, for which a wet-chemical removal of residual native oxides is
introduced in the fabrication process. Figure (c) displays the electron density
=�0;; as a function of +)� , figure (d) the electron mobility ` as a function of
+)� .

area I and differing values for =?40:B . From these experimental findings, we infer that
the onset of the charge migration towards the interface is clearly linked to the density of
parasitic interface states. The gating responses of samples � , � and �, in particular their
mobility response, is much more congruent, which demonstrates the efficiency of the
HCl treatment in removing residual oxides at the semiconductor surface. Building on the
experimental finding that a reduction of 320? from 5=< to 2.5=< results in an increase of
=
?40:
B to 5 · 10112<−2 for at least two out of three samples in our study even without the

removal of the surface oxides with HCl, we infer that energy states inside the InGaAs cap
also affect the interface density of states, and thus the onset of the charge migration from
the QW.
Recapitulating, by means of our experimental analysis of the gating response of samples
� to �, we are able to identify several types of defect states, which affect the transport
characteristics in the heterostructure. Charge migration towards the surface is clearly
linked to energy states at the semiconductor/dielectric interface, yet we find for all analysed
samples that a parasitic conductive layer develops at the interface for sufficiently positive
+)� . Before a saturation of the charge density sets in at an electron density =B0CB , we find a
distinct decrease of =B after reaching =?40:B with further increasing +)� . In the following,
we develop a microscopic model description of this rather peculiar gating behavior of the
system. This is done on the basis of the measurement sequence of sample �.
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7.2 Chemical treatment and different surface terminations

7.2.3 Charge transfer model

On the basis of the MT measurement sequence of sample �, we discuss the physical
origin of the different regimes in the gating response of the heterostructure. Based on
our observations, we create a model description of the charge transfer processes in the
gate stack, which is then further validated with a quantitative evaluation of the density
response under gate operation.

Figure 7.7: MT measure-
ment sequences of sample �
(wafer C160420B) in the non-
illuminated state for +�� =

0+ at ) = 4.2 : No. 1
(black) for+<0G

)�
= +4.0+ and

No. 2 (cyan) for+<0G
)�

= +1.6.
The Roman numerals I to VI
label the constituent gating
areas.

Figure 7.7 displays the gating curve of sample � with =�0;; and =(3� as a function of
+)� . Two separate measurement sequences are shown, for which two different maximum
applied voltages +<0G

)�
are chosen. To initialize each measurement sequence, we thermally

reset the sample in between the two gating sequences. For the first measurement sequence
(black curve), a +<0G

)�
of +4.0+ is chosen, whereas for sequence 2 (cyan curve), we

commence the final down-sweep after reaching a +<0G
)�

of +1.6+ . For measurement
sequence no. 1, we identify six different gating areas, labeled with Roman numerals I
to VI in the plot. +<0G

)�
= +1.6+ of the second gating sequence is chosen such that we

do not enter regime V before the final down-sweep back to +)� = 0+ is conducted. For
the following discussion, we also submit representative MT measurement curves of the
longitudinal resistivity dGG (�) of each gating regime I to VI, shown in figure 7.8.

Description of the gating response of sample G

The physics in region I, i.e. −1+ ≤ +)� ≤ +1+ , are well described by the classical
field-effect so that we can consider the active layer system as a plate capacitor. Thereby,
the QW and the TG-electrode serve as the two plates of the capacitor with area � and
distance 3 and a dielectric, i.e. the InAlAs spacer, in between:

� = &/+)� with � = Y0YA
�

3
,
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7 Gating response of various III-V heterostructures

Figure 7.8: Exemplary MT measurements of sample � (wafer C160420B) in
the non-illuminated state for +�� = 0+ at ) = 4.2 : longitudinal resistivity
dGG (�) of the constituent gating areas I to VI.

with � being the capacitance of the system. The sheet density =B increases as a function
of +)� in gating regime I. Thus, we can write for gating area I:

=B = Y0YA
3

4
+)� . (7.4)

Furthermore, we find that =B responds instantaneously to a change in +)� and is stable
over time. For +1+ < +)� < +1.5+ , however, the gating response of the system
diverges significantly from this linear behavior since we determine that the slope of the
density curve smoothly decreases and even changes its sign: The charge density peaks at
=
?40:
B = 7.8 · 10112<−2 and then starts to decrease with increasing +)� . In gating area III,

i.e. +1.5+ < +)� < +2.2+ , the charge density drops rapidly. In the experiment, when
a more positive +)� is adjusted in gating area II and III, dGG and dGH are unstable on
the timescale of minutes. They only sufficiently stabilize after a settling time of tens of
minutes so that a conclusive MT measurement can be conducted after each change of +)�
in this TG-range. Furthermore, it is characteristic for this second and third gating area that
=�0;; and =(3� do not coincide anymore. This can be clearly seen in figure 7.8, where
an undulation in dGG (�) arises in these gating areas. A FFT of dGG over 1/� reveals two
closely-spaced frequencies in the spectrum. This observation will be discussed in detail
in chapter 9. The arising texture in the Shubnikov-de Haas oscillations is accompanied by
a parabolic magnetic field dependency of dGG , that sets in at the end of gating regime I
when we reach =?40:B .
In measurement sequence 2, we conduct the final down-sweep after +<0G

)�
= +1.6+ in

gating regime III. During the down-sweep from +<0G
)�

back to 0+ , no additional settling
time is needed for dGG and dGH to stabilize.
For sequence 1, in which the TG-voltage is increased up to +<0G

)�
= +4.0+ , the decrease of

=�0;; starts to flatten smoothly in the gating interval +2.2+ < +)� < +3.1+ , i.e. regime
IV, until a saturation of the measured sheet density at about 4.5 · 10112<−2 sets in for
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7.2 Chemical treatment and different surface terminations

+)� > +3.1+ . This gating area is labeled as regime V. In regime IV and V, we find
that =�0;; and =(3� coincide again. The MT measurements of dGG (�) in these gating
areas display an absence of the parabolic background in contrast to regimes II and III.
Furthermore, we determine a single frequency for the magnetooscillations in dGG (�).
Further increasing +)� in regime V has no measurable effect on dGG (�), as well as on
=�0;; and =(3� . Thus, the capacitive coupling is lost - the probed QW is efficiently
screened from the applied TG-voltage. In the final down-sweep of +)� back to 0+ , i.e.
gating regime V and VI, =B stays at the saturation value of 4.5 ·10112<−2 at first, before the
capacitive coupling between the gate electrode and the 2DEG is restored for +)� < +3+
in regime VI, revealing a pronounced hysteresis. As compared to the linear gating area I,
the capacitive coupling in regime VI is reduced and depends on the applied +<0G

)�
(see

measurement sequences 1 and 2): The higher +<0G
)�

is chosen, the smaller the capacitive
coupling during the down-sweep and the larger the hysteresis.
In the following section, we will discuss this experimental analysis and interpret the
underlying microscopic mechanisms in terms of a phenomenological charge transfer
model, which is consistent with all our experimental observations.
For the sake of completeness, we want to note that a deviation of the linear field-effect
in the gating response of a 2DEG can be caused by the population of the second size-
quantized subband at sufficiently high TG-voltages. Here, we refer to section 9.3.1, where
this mechanism is excluded as possible origin.

Model description of the gating response

Figure 7.9: Cross sectional schematic sketch of
sample �: the metal gate electrode (dark grey) is
separated by a 50=< Al2O3 layer from the semicon-
ducting layers. The annealed ohmic contacts to the
QW are depicted in light grey as n+-contact regions.
The current path from source (S) to drain (D) is
depicted with the orange dots.

Figure 7.9 sketches the schematic cross section of the analysed gated Hall bar sample
�. In light grey, the annealed ohmic contacts of the heterostructure are depicted. They
penetrate through the whole heterostructure into the probed InGaAs QW. As already
pointed out earlier, we experimentally verified that no measurable charge transport across
the InAlAs spacer layer takes place, even though deep level donor states inside the ternary
alloy films are known to exist. These energy states, which provide the doping in our
system, are generated by arsenic antisite defects induced during the MBE growth process
of the system [37–39]. We therefore expect the current from the source to the drain
contact to flow through the InGaAs QW, as indicated in the sketch.
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7 Gating response of various III-V heterostructures

Figure 7.10(a) illustrates a sketch of the band profile of the heterostructure gate stack for
the case of +)� = 0+ . The deep level donor states inside the InAlAs layers are drawn
as dotted curves under the conduction band edge. A second surface QW is present in
the 2.5=< InGaAs cap, however, with the lowest subband energy �2,0 lying well above
the ground state of the deeply buried InGaAs QW, which has a much larger width of
20=<. Furthermore, we expect the cap-QW to be of much lower crystal quality due to
surface roughness and the presence of spatially varying trap states, since it is in direct
contact with the dielectric material. Even for zero applied gate voltage, the band profile
is tilted due to the ionization of the InAlAs defect sites. Electrons from the InAlAs
spacer and the VS are transferred into InGaAs/Al2O3 interface states, as well as into the
QW. From self-consistent calculations of the band structure with a Schrödinger-Poisson
solver1, we find the InAlAs donor sites in the spacer layer to be fully ionized, generating a
trough-shaped band profile in the InAlAs as shown in figure 7.10(a). Though the donor
sites of the InAlAs VS are fully ionized in the first tens of nanometers, the simulation
only predicts a partial ionization of these defect states as the distance to the QW increases.
Due to this asymmetric electron distribution inside the active region of the heterostructure
for +)� = 0+ , we find the QW to be even tilted downwards at the deeper lying QW
interface.
Increasing the applied voltage at the gate electrode in the linear gating area I tilts the band
profile downwards with respect to the QW and increases the charge density of the 2DEG
according to equation (7.4). This situation is shown in figure 7.10(b). The system is still
in equilibrium, since the most favourable energy state presents the first subband of the
InGaAs QW. Further increasing +)� leads to a non-equilibrium situation of the system as
is illustrated in figure 7.10(c): Deep level donor sites of the InAlAs spacer are pulled under
the Fermi level. Although the ohmic contacts are in contact with this layer, according
to our experimental observations no lateral charge transfer inside the InAlAs spacer
across the whole mesa length can take place to remedy this created system-imbalance.
Thereby, the TG-induced electric field creates a triangular-shaped potential barrier at
the upper interface of the QW between the lowest QW-subband and the InAlAs defect
states under the Fermi level. For a sufficiently large gate electric field, electrons start to
tunnel from the QW into the more favourable defect states as is illustrated by the dotted
arrows in the sketch. Spatial fluctuations in the band profile - and thus also of the tunnel
processes - lead to a smooth truncation of the linear density response in gating area II as
we would expect from the classical field-effect. We assume the deep level donor state
concentration # C>C0;

�
≈ 3 − 4 · 10162<−3 to be divided approximately equal into the two

defect state densities # C>C0;
�
/2 = #�,1 = #�,2. Thus, the distance between two doping

sites of the same type is calculated as ≈ 32=<. The effective Bohr radius 0∗0 =
YB2
<∗ ·

4cY0~2

42 ,
which is a measure of the spatial latitude of an electron bound to a doping site in a
semiconductor with a permittivity of YB2, yields 0∗0 = 18=< when using the previously
determined value YB2 = Y�=0.75�;0.25�B = 13.7 and an effective mass of <∗ = 0.041 ·<0 (see
chapter 5). Comparing 0∗0 of a defect-bound electron to the deep-level-donor distance,

1We assume the total density of the InAlAs defect sites to be # C>C0;
�

= 3 − 4 · 10162<−3 [37, 38].
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Figure 7.10: Schematic description of the evolution of the band profile of the
system during our MT measurement sequence: (a) displays the conduction band
edge �2 (thick solid line) for +)� = 0+ . Electrons from the InAlAs deep level
donor states (dotted lines) are transferred into the QW and into interface states.
The lowest cap-QW energy state �2,0 is well above the Fermi level �� (dashed
line). (b) +)� > 0+ (gating area I) increases the charge carrier density inside
the QW. Step-by-step, the system is driven into a non-equilibrated state, since
InAlAs defect states are pulled under �� . (c) Gating regime II and III: electrons
tunnel from the QW into InAlAs defect states as indicated by the dotted arrows.
The trough-shaped InAlAs band profile is flattened and the system is stuck in a
metastable state. (d) Gating regime IV and V: a second imbalance is created as
soon as �2,0 is pulled under �� . For sufficiently high +)� charge transfer into
these interface states sets in. (e) For =8=C > =2, the interface region is conducting,
whereby electrons flow laterally from the ohmic source contact (S) into the drain
contact (D) as shown in (f).
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we find electron transfer between two adjacent defect sites in an external electric field to
be feasible. We assume Fowler-Nordheim tunneling to be the dominant charge transfer
process between the QW and the InAlAs defect sites. In the literature [179, 180], this
mechanism is suggested to be responsible of charge transfer from a 2D system into the
cap through a spacer layer with the thickness in the range of 14 − 40=< in the case of a
sufficiently strong band tilting. In our case, multi-step tunnelling or hopping processes
manifest themselves in the experiment in the form of a long settling time on the timescale
of tens of minutes after a sweep of +)� . Increasing +)� further makes the triangular
potential barrier sufficiently transparent so that efficient tunnelling from the QW into
InAlAs deep level donor sites sets in. This process corresponds to the charge density
drop in gating regime III. Following the potential gradient induced by the applied electric
field, transferred electrons will populate the InAlAs defect states, which are located on
the base of the trough-shaped band profile. This additional negative charge in the spacer
material partially compensates the applied TG-field and leads to a flattening of the band
profile. This situation is schematically sketched in figure 7.10(d). Consequently, the
tunnel process is stopped before the system can reach its total equilibrium, meaning it is
stuck in a metastable state. The transferred electrons are localized and do not contribute
to transport according to our experimental observations. A further increase of +)� in
gating area III thus still leads to a tilting of the band profile with respect to the QW and
switches the triangular potential barrier again into a transparent state. With increasing
TG-voltage, however, we create a second imbalance in the system: Energy states �2,0
at the InGaAs/Al2O3 interface [136, 156–158] are pulled under the Fermi level, as it is
shown in figure 7.10(e). For sufficiently high +)� , i.e. gating area IV, electrons start
to tunnel locally from the InAlAs defect sites into �2,0. Interface roughness and the
non-uniform texture of the semiconductor/dielectric bonds create a strongly fluctuating
potential profile at the surface [181], which leads to the formation of so-called charge
puddles. A critical charge carrier density =2 has to be accumulated at the interface so
that the screening ability of the respective 2D system is reached and electrons start to
flow laterally from the ohmic contacts into the interface layer. This is further visualized
by the ground-symbol newly inserted at the InGaAs cap layer in figure 7.10(e). The
system relaxes into an equilibrated state, whereby the band tilting of the spacer and the
QW is reduced. This situation is visualized in figure 7.10(e) and (f). Owing to the poor
conductive quality of the interface layer, the 2D system inside the 20=< InGaAs QW will
dominate the density and mobility output of our MT measurements (see subsection 2.1.1).
A further increase of +)� now solely accumulates electrons at the interface region since
the QW is effectively short-circuited, leaving the charge density of the QW unchanged.
This situation corresponds to gating area V, in which no capacitive coupling to the QW is
present.
The +)�-dependencies of the three main contributing charge carrier densities of the
system are schematically illustrated in figure 7.11. The dashed curves represent the
+)�-dependence of the individual charge densities in equilibrium. We assume a linear
increase of =8=C and =&, with +)� according to the classical field-effect, described by
equation (7.4). The deep level donor sites inside the InAlAs layer of the system are
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Figure 7.11: Sketch of electron densities of the QW =&,
(black), the InAlAs deep level donor density =�=�;�B
(cyan) and the surface density =8=C (purple) as a function
of applied +)� . The thermally equilibrated situation
of the system is sketched with the dashed curve. The
black solid curve of =&, also presents the charge carrier
density we determine in our MT measurement sequence.

expected to be evenly distributed in space. In contrast to energy states of the QW and the
interface, these defect sites do not constitute a fully conducting band, whereby we cannot
describe the voltage dependence of their charge density, i.e. the ionization state of the
defect level, in the picture of the plate capacitor. However, as a simple approximation
for this illustration, we also assume a linear field dependence since with rising +)�
continuously more InAlAs defect states are pulled under the Fermi level whereby the
=�=�;�B-value in thermal equilibrium increases steadily. The solid lines represent the
situation in our experiment, which deviates from the dashed curves when the system is
driven out of equilibrium due to the band tilting imposed by the gate voltage and the low
temperature, preventing an equilibration of the system. While the charge carrier density
of the 2D system =B ≡ =&, increases with +)� , the deep level donor states =�=�;�B are
pulled under �� , indicated by the cyan-colored dashed curve. As soon as the transfer-path
towards these states is sufficiently transparent, =&, drops and =�=�;�B increases. A change
of =�=�;�B is linked to the gating regimes II and III. The second imbalance arises when
the TG-voltage is further increased and energy states at the interface, parameterized by
the density =8=C , are pulled under the Fermi energy (purple dashed curve). A population
of these states leads to a decrease of =�=�;�B, as well as to a saturation of =&, and =�=�;�B.
The equilibrium value of =8=C , i.e. when the solid and dashed purple curves match,
represents the beginning of gating area V.
Decreasing +)� into gating regime VI of our measurement sequence firstly leads to a
depopulation of the interface states =8=C . As soon as =8=C < =2, the screening of the gate
field-effect is lifted and capacitive coupling to the 2DEG sets in again by which we are
able to deplete the QW. The capacitive coupling in VI is decreased as compared to the
up-sweep in I. We assign this observation to a partial regain of electrons, which have
been previously transferred towards the interface in gating areas II to IV: While the band
profile is tilted upwards again in regime VI (corresponding to the sweep direction of +)�
back to 0+), the QW becomes energetically more favourable, triggering a repopulation of
the QW and thus decreasing the experimentally observed capacitive coupling 2 = m=

m+)�
.

The hysteresis between up- and down-sweep of +)� , i.e. a loss of charge carriers in
the QW, can be traced back to electrons that relaxed into energetically deep trap states,
in which they are robustly localized and do not contribute to the transport anymore.
Potential trap states in the amorphous Al2O3 layer can be found in literature [159–162].
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As shown by Choi et al. [159], inside the Al2O3 layer aluminum and oxygen vacancies
introduce acceptor levels, whereas aluminum interstitials generate deep donor states.
Oxygen interstitials, on the other hand, form deep electron trap states. Furthermore, the
antibonding state of an As-As dimer at the InGaAs interface generates energy states,
situated right under the conduction band edge. Since the As-As dimer state is not removed
by the self-cleaning ALD-process (see [136]), it forms a further acceptor state at the
interface. In total, this robust trapping of electrons leads to an asymmetric charge transfer
between up- and down-sweep of +)� . The electric field, caused by the electrons inside
the trap states, partially compensates the applied electric field from the TG during the
down-sweep. This results in a smaller electron density inside the QW for regime VI than
in regime I at the same +)� value. We want to note that the charge transfer rate back to
the QW is also influenced by the DOS of the initial and final states. According to Fermi’s
golden rule, the final-state DOS directly enters the transition probability, i.e. the charge
transfer rate from one state to another, creating an asymmetry for the charge transfer
process between energy states of different dimensions, i.e. from the 2DEG towards a
localized (zero dimensional) state and vice versa.
Further measurements on a top-gated Hall bar sample C160406B1 (shown in the appendix
B), in which the InAlAs spacer thickness is reduced from 130=< to 35=<, gives further
weight to our model: For small positive TG-voltages, i.e. +)� = +0.4+ , the charge density
inside the QW already starts to saturate at =B = 4 · 10112<−2 after the linear gating regime
I. Gating regimes II and III, which are based on the presence of a metastable state inside
the InAlAs spacer layer, are not developed in the gating response of this heterostructure.
We conclude that electrons tunnel directly from the QW into interface states, whereby
the charge density curve smoothly flattens and starts to evolve to the saturation density,
corresponding to the initial density situation of +)� = 0+ . This clear dependence of the
saturation mechanism on the spacer thickness is a further indication for the validity of
our charge transfer model, which, as we want to emphasize here, is based on step-by-step
tunnel processes via InAlAs defect states rather than lateral charge transfer from the
ohmic contacts into the interface states.
Furthermore, we want to note that to the best of our knowledge, there is no equivalent
undoped material system, which shows such a peculiar gating response as our heterostruc-
tures, i.e. a robust decrease in charge density with increasing +)� . Studies on undoped
Si/SiGe 2DEGs revealed a saturation of =B for sufficiently positive +)� , followed by a
total breakdown of the current at high TG-voltages [98, 179, 180]. This behavior can be
well understood in the framework of our charge transfer model. The general absence of
gating areas II and III in other undoped material systems point out the importance of the
InAlAs deep level donor sites for the electric stability of our system.
In the following, our qualitative model will be substantiated with quantitative considera-
tions.

Quantitative verification of charge transfer model To verify the developed
model above, we consider the first measurement sequence of sample � in figure 7.7:
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For the first linear gating regime I, ranging from −1+ ≤ +)� ≤ +1+ , we determine the
capacitive coupling 2� between the TG-electrode and the 2DEG as

2� =
m=

m+
= 3.45 · 10112<−2+−1 .

Extrapolating this linear dependence with 2� in gating area II to IV, i.e. +1.2+ ≤ +)� ≤
+2.4+ , yields =C0A64CB (+)� = +2.4+) = 11.7 · 10112<−2 at the end of regime IV. Yet, in
the experiment we find =B (+)� = +2.4+) ≡ =4G?B (+)� = +2.4+) = 4.6 · 10112<−2. This
corresponds to a charge deficiency Δ=� �→�+ of

Δ=� �→�+ = =
C0A64C
B (+)� = +2.4+) − =4G?B (+)� = +2.4+) = 7.1 · 10112<−2 .

In the saturation regime V, the electron accumulation at the InGaAs/Al2O3 interface leads
to a shorting of the QW and to the onset of screening. As a result, increasing +)� in
regime V solely leads to an increase of the interface charge density. Even though, we
do not measure any change of the electron density inside the QW in this gating area,
we are able to calculate the particular capacitive coupling 2+ from the gate electrode
to the interface conductive layer, since we know the values of the permittivity of the
participating layer. With Y�;2$3 = 7.81, experimentally deduced in subsection 7.2.2, we
find

2+ =
Y0 · Y�;2$3

4 · 3�;2$3

= 8.62 · 10112<−2+−1 .

By means of 2+ , we can estimate the charge density Δ=+ , which is accumulated in the
conductive layer at the interface in the bias interval V, which is Δ+)� = 4+ − 2.4+ =

1.6+ :

Δ=+ = 2+ · Δ+)� = 1.38 · 10122<−2 .

During the downsweep in regime VI, we experimentally determine the capacitive coupling
constant 2+� as

2+� =
m=

m+
= 1.16 · 10112<−2+−1 .

As described in our charge transfer model in the preceding subsection, we assign the
reduced capacitive coupling in VI as compared to I to the partial back transfer of electrons
from the interface and the dielectric to the probed QW.
In the following, we test our determined values for the density loss Δ=8 and the capacitive
coupling constants 28 by comparing the calculated size of the hysteresis with the experi-
mentally determined one. We exemplarily choose the measurement point +)� = +1+ (see
figure 7.7). The experimentally determined size of the hysteresis, i.e. Δ=4G?

(
(+)� = +1+),

short labeled as Δ=4G?
(

, is

Δ=
4G?

(
(+)� = +1+) = =� (+)� = +1+) − =+� (+)� = +1+) = 5.1 · 10112<−2 .
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From our charge transfer model, Δ=Cℎ4>
(
(+)� = +1+), short labeled as Δ=Cℎ4>(

, should be
composed as

Δ=Cℎ4>( =

[
Δ=� �→�+ + Δ=+

]
︸                ︷︷                ︸

(8)

−
[
2+ · (4+ − 3+)︸            ︷︷            ︸

(88)

+Δ2 · (3+ − 1+)︸             ︷︷             ︸
(888)

+ 2+� · (3+ − 1+)︸             ︷︷             ︸
(8E)

]
,

with Δ2 = 2� - 2+� . Here, the term (8) denotes the sum of the total density deviation of the
experiment from the theoretical estimation in the regimes II to IV, (88) accommodates for
the removed charge from the interface bypass via the field-effect during the down-sweep
from +)� = +4+ until capacitive coupling to the QW is restored at +3+ , (888) specifies
the parallel charge transfer back to the QW from the interface, expressed as the difference
in capacitive coupling for up- and down-sweep and (8E) describes the field-effect from
the TG downsweep. Correspondingly, we obtain

Δ=Cℎ4>( =

[
7.1 · 10112<−2 + 1.38 · 10122<−2

]
︸                                         ︷︷                                         ︸

(8)

−

−
[
8.62 · 10112<−2︸              ︷︷              ︸

(88)

+ 4.6 · 10112<−2︸            ︷︷            ︸
(888)

+ 2.32 · 10112<−2︸              ︷︷              ︸
(8E)

]
≈ 5.3 · 10112<−2 .

By comparing Δ=Cℎ4>
(

with Δ=4G?
(

, we find

Δ=
4G?

(
= 5.1 · 10112<−2 ≈ 5.3 · 10112<−2 = Δ=Cℎ4>( .

This shows a quantitative excellent agreement between experiment and calculation and
gives further weight to our developed charge transfer model as it proves our assignments
of the loss of capacitive coupling to the QW and the corresponding physical processes, to
be correct.

Conclusion

In this subsection, we studied the gating response of a newly grown In0.75Ga0.25As/
In0.75Al0.25As heterostructure with a reduced cap thickness (from 320? = 5=< to 2.5=<)
in order to eradicate the parasitic conductive layer at the semiconductor/dielectric interface
at small positive+)� . However, we find that a mere reduction of 320? does not substantially
improve the gating response of the system. To expand the density interval, in which we
are able to tune the charge density of the QW before charge migration sets in, we have
to apply an additional wet-chemical cleaning step prior to the ALD process, to remove
residual native oxides at the semiconductor interface. We find this additional cleaning step
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to be crucial in order to ensure a high reproducibility of the 2D transport characteristics
between different fabricated gated Hall bar devices. For these surface-treated samples,
we can generally identify six characteristic gating areas in our measurement sequence:
In gating area I, the charge density of the QW increases linearly with rising +)� . After
reaching a peak electron density, the density curve smoothly flattens into gating regime
II, followed by a significant drop of the charge density in regime III. Here, when we
adjust a new +)� , the system requires a settling time of several minutes before =B is
stabilized. In regime IV, the system smoothly transits into the saturation area V, which
is characterised by a total loss of capacitive coupling to the QW. Reducing +)� in the
down-sweep requires a sufficient decrease of +)� before coupling to the 2DEG is restored
in gating area VI. The final down-sweep reveals a pronounced hysteresis. By means of
our experimental results in the gating studies of samples � to �, we are able to describe
the underlying physical processes of the individual gating areas I to VI in terms of a
charge transfer model. This phenomenological model description is further validated by
a quantitative estimation: The linear gating area I is well described via the field-effect,
where the metal gate electrode and the QW can be viewed as two plates of a capacitor.
Increasing +)� leads to an increase of =B. In gating regime II, however, the system is no
longer in equilibrium as the deep level donor states inside the InAlAs spacer are pulled
under the Fermi level of the QW. A steep triangular potential barrier is created at the upper
QW interface due to the trough-shaped InAlAs band profile in the external electric field
of the TG. A sufficient increase of +)� enables tunneling of the electrons into the deep
level donor states. Initially, this process occurs only locally due to a non-uniform band
profile, and then starts to spread evenly over the whole length of the channel, which leads
to a drop in electron density in regime III. The additional electric field of the migrated
electrons flattens the InAlAs band profile of the spacer. This causes an enlargement
of the triangular InAlAs tunnel barrier, which thereby evolves towards opacity, i.e. a
diminishing of electron migration. After a sufficient settling time, the system is then
found to be in a metastable state, in which electron migration is effectively stopped. The
transferred electrons are localized at InAlAs defect sites of the spacer layer. Since these
defect states are laterally not conducting, capacitive coupling to the QW is still maintained
until the band profile is sufficiently tilted when +)� is further increased. Electron transfer
from the InAlAs deep level donor states into energy states at the InGaAs/Al203 interface
sets in (regime IV). As soon as the charge density at the interface exceeds a critical charge
density =2, the charge accumulation at the interface becomes fully conducting. This
leads to a shorting of the underlying QW, marked as gating area V in our measurement
sequence. Since the electron mobility at the interface is substantially lower than the
mobility inside the QW, we continue to predominantly measure the charge density of the
QW in a MT measurement. To restore capacitive coupling to the QW in the down-sweep
in regime VI, the parasitic interface channel has to be depleted again. This is achieved by
a sufficient reduction of +)� . The hysteresis between up- and down-sweep is caused by
residual electrons, which are effectively trapped in interface and acceptor states inside the
dielectric.
We conclude that the linear and non-hysteretic gating area I in the heterostructure is limited
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by charge migration from the QW into intrinsic deep level donor states for sufficiently
high TG-voltages. In comparison to other undoped material systems, such as for example
Si/SiGe heterostructures [98, 179, 180], charge migration from the QW towards the
interface at high values of+)� leads to a saturation of =B of the QW. In these studies, a total
breakdown of the current is expected for a sufficiently conductive charge accumulation
at the interface. This behavior differs from our experimental results in that it lacks the
creation of a metastable state of the system, i.e. gating areas II and III. A key distinction of
our studied system is the presence of the doping providing deep level donor states inside
the InAlAs layer, which lead to an intrinsic distortion of the band profile of the InAlAs
spacer layer in a trough-shaped manner. This important distinguishing feature further
confirms the crucial role of the InAlAs deep level donor states for our experimentally
observed gating behavior.
From the comparison of samples �, � and �, for which residual native oxides are still
present at the semiconductor/dielectric interface, to the surface-treated samples � , � and
�, we find the interface termination and thus the corresponding interface density of states
to significantly determine the onset of gating area II. By reducing the interface density
of states for samples � , � and �, we were able to gain full electrostatic control of the
system for charge densities as high as =B > 7 · 10112<−2. This presents a doubling of the
maximum achievable electron density as compared to the samples studied in chapter 6.
In a next step, we test the gating response of the heterostructure, for which the low-band gap
cap material InGaAs is completely removed by wet-chemical etching since it introduces
additional interface states.

7.2.4 In0.75Al0.25As surface termination

In the last subsection, we found charge migration into deep level donor states inside
the InAlAs spacer layer, as well as towards the semiconductor/dielectric interface to be
efficiently suppressed when the interface density of states is sufficiently reduced by the
chemical removal of residual native oxides on the semiconductor surface. However, due
to the lower band gap of InGaAs as compared to the spacer material InAlAs, the thin
InGaAs capping provides additional energy states at the interface. In an attempt to further
extend and stabilize the linear gating response of the 2DEG before charge migration sets
in, we completely remove the InGaAs cap layer by wet-chemical etching2, whereby we
create a surface termination with the high-band gap material InAlAs. As for the samples
with an InGaAs surface termination, we apply a HCl-dip to the etched InAlAs surface
prior to the ALD process in order to remove large parts of the residual oxides, which
would introduce additional parasitic energy states at the surface.
For InAlAs in contact to air, Chou et al. [182] found a weak and composition-dependent
Fermi level pinning. Their experiments clearly show that the pinning is related to
the thickness of the (undoped) InAlAs spacer layer that separates the surface from a
highly n-type doped conducting InAlAs channel, which is experimentally studied in

2etching-solution of C6H8O7 : H2O2 : H3PO4 : H2O = 22 : 2 : 1.5 : 88
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that publication. Shabani et al. [14] postulate a Fermi level pinning near midgap for
undoped In0.75Al0.25As, however, without further reference. Similar to InGaAs, reports in
literature imply that the self-cleaning effect of the TMA-pulse in the ALD process leads
to a decrease of the density of states at the InAlAs/Al2O3 interface, thus reducing the
Fermi level pinning at the interface [156, 183, 184].
In the following, we present the gating response of our newly fabricated top-gated Hall
bar device, sample �, with an InAlAs surface termination. Particularly, we focus on the
extension of the linear gating area I before charge migration sets in.

Description of the gating response of sample H

Figure 7.12: MT measure-
ment sequences of sample �
(wafer C160429A) in the non-
illuminated state for +�� =

0+ at ) = 4.2 . The Ro-
man numerals I to VI la-
bel the constituent gating ar-
eas. The inset shows three
additional measurement se-
quences (2) to (4) for differ-
ent+<0G

)�
in gating area II. Se-

quence (1) presents the mea-
surement shown in the main
plot.

The main plot of figure 7.12 displays a MT measurement sequence of sample � with a
+<0G
)�

= +5.5+ before the subsequent down-sweep of +)� is conducted. Again, we clearly
identify six different gating areas in the measurement sequence, accordingly labeled with
the Roman numerals I to VI in the plot. Furthermore, the inset of the figure displays three
additional MT measurement sequences, marked as (2), (3) and (4), for which +<0G

)�
is

chosen such that we do not exceed gating regime II before the final down-sweep back to
+)� = 0+ is conducted. Sequence (1) is the measurement shown in the main plot.
Complementary, we analyse the longitudinal resistivity dGG (�) of exemplary MT mea-
surements of the gating regimes I to VI as shown in figure 7.13. As for the InGaAs
surface-terminated samples � , � and �3, we find an extended linear gating interval I,
in which we can robustly adjust the charge carrier density. The maximum achievable
electron density is as high as =?40:B = 7.5 · 10112<−2. A further increase in +)� leads to a
deviation from the linear gating response. However, in this second gating area II, unlike
for InGaAs surface-terminated samples, we find =B to saturate at =?40:B and =�0;; = =(3�
3From now on, if we refer to InGaAs surface-terminated we assume surface-treated devices, i.e. samples
� , � and �.

113



7 Gating response of various III-V heterostructures

Figure 7.13: Exemplary MT measurements of sample � (wafer C160429A) in
the non-illuminated state for +�� = 0+ at ) = 4.2 : longitudinal resistivity
dGG (�) of the constituent gating areas I to VI as introduced in figure 7.12.

to be still valid. Yet, a settling time of several minutes is required for dGG and dGH to
stabilize after a preceding sweep of +)� . Decreasing +)� in this second gating area, as
it is shown in the inset of figure 7.12 for measurement sequences (2) to (4), reveals a
hysteresis, which is a clear indication for charge migration from the QW towards defect
states above. We find the magnitude of the hysteresis to scale with the applied +<0G

)�
.

The longitudinal resistivity dGG in gating areas I and II (see figure 7.13) shows no signs of
parallel conduction. For +)� > +2.5+ , i.e. gating area III, however, a parabolic back-
ground in dGG develops, together with a clear beating in the amplitude of the Shubnikov-de
Haas oscillations. Furthermore, we find =�0;; ≠ =(3� in this gating regime. A FFT of dGG
over 1/� reveals two closely-spaced frequencies in this newly entered gating area III. The
origin of this second frequency in dGG will be addressed in detail in chapter 9. Along with
the arising background in dGG , the charge density of the QW decreases with increasing+)� ,
resembling the gating response of the previously analysed sample �. For a sufficiently
high TG-voltage, i.e. regime IV with +)� > +5+ , a smooth saturation of the measured
sheet density at =B0CB ≈ 5 · 10112<−2 sets in where we find =�0;; = =(3� again. The MT
measurements of dGG (�) in figure 7.13 display the absence of the parabolic background
and also of the second frequency in the Shubnikov-de Haas oscillations. Decreasing +)�
in the down-sweep back to 0+ (regime VI) displays a pronounced hysteresis.
As supplementary information, biased cool-down measurements of sample � are shown
in the appendix in figure B.5(a). As for sample � (figure 7.3), we determine that a
positive +�� leads to an overall shift of the gating curve horizontally into positive
+)�-direction.

Discussion

The gating response of the InAlAs-terminated sample � is equivalent to the gating
behavior of InGaAs-capped samples: We find a similar =?40:B , which terminates the
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linear gating area I before charge migration sets in (regime II). In contrast to the charge
migration in regime II of sample �, we find =B of sample � to saturate at =?40:B in this
second gating area. Decreasing +)� in II reveals a +<0G

)�
-dependent hysteresis. From

this experimental observation, we infer that an increase of +)� , and thus of =B, in area
II is compensated by a charge migration towards the interface. The electric field of the
additional negative charge above the QW balances any increase of +)� , which leads to the
observed saturating behavior in =B. Only after a charge density =;>BB ≈ 6.4 · 10112<−2 is
transferred from the QW towards the interface4, a distinct decrease of =B in the QW sets
in at +)� > 2.5+ , i.e. the onset of gating regime III. Compared to sample �, the decrease
of =B with increasing +)� is less steep. Hence, we conclude that the charge transfer from
the QW into the InAlAs deep level donor states is hampered for the InAlAs-terminated
sample �, indicating a modified intrinsic potential profile of the InAlAs spacer layer. We
assume that the triangular potential barrier at the upper QW interface is less transparent
as a result of a less pronounced trough-shaped InAlAs band profile. A reduced density of
interface states for InAlAs surface-terminated samples results in less charge transfer from
the deep level donor sites into the interface region, thereby leading to a flattening of the
conduction band profile of the InAlAs spacer layer. A sufficient amount of negative charge
has to be transferred into the interface region in regime II, generating a trough-shaped
potential profile in the spacer. Only then, electrons can efficiently migrate into the deep
donor states, creating a metastable state of the system in regime III. The pronounced
hysteresis in gating area VI indicates that a larger portion of interface electrons remains
fixed at deep trap states when the TG-voltage is reduced in sample � as compared to
the InGaAs-capped case. For +)� < +3+ , i.e. =B < 2.8 · 10112<−2, no evaluable Hall
measurement can be conducted anymore due to an apparent MIT. As compared to the
gating regime I, this enlarged critical density, which is required for the system to become
sufficiently conducting, is attributed to increased scattering at remote charged impurity
sites, generated by the transferred electrons into deep trap states. This observation,
combined with the longer settling time needed to guarantee a stable charge configuration
inside the heterostructure after a change of TG-voltage, implies that there are less defect
states available to which electrons are transferred from the QW. A smaller density of final
transition states would cause smaller transition rates. This is also the case for regime II
where any increase of electron density in the 2DEG is compensated by a loss of charge
density of equal amount so that themeasured electron density inside theQWstays the same.

7.2.5 Conclusion

In an attempt to expand the linear gating response of the InGaAs/InAlAs-based heterostruc-
tures and to gain a comprehensive understanding of the charge migration processes under
the application of external gate electric fields, we studied the gating response of several

4With a capacitive coupling of 2� = 3.75 · 10112<−2/+ , increasing +)� in II from +0.8+ to +2.5+
corresponds to the charge density =;>BB = 2� · Δ+ � �)� ≈ 6.4 · 10112<−2.
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heterostructures, being equipped with differing surface terminations. For top-gated Hall
bar samples with an InGaAs cap thickness of 5=< (sample �), a parasitic conductive
layer at the InGaAs/Al2O3 interface is present already at +)� = 0+ . On the basis of a
phenomenological charge transfer model we developed to describe the physical processes
in our measurement sequences (see subsection 7.2.3), we explain this saturation behavior
of sample � via the presence of a high density of interface states, which are energetically
available even for +)� = 0+ . Electrons from the doping-providing InAlAs deep level
donor states are efficiently transferred into these interface states at RT. For samples with a
5=< InGaAs cap, the interface charge accumulation exceeds a critical density =2, above
which the interface layer becomes sufficiently conducting, whereby the underlying QW is
shorted.
To annihilate this parasitic conductive layer, a new wafer is grown for which the InGaAs
cap thickness is reduced to 2.5=<. Only in combination with a chemical removal of resid-
ual native oxides, which create detrimental energy states at the semiconductor/dielectric
interface, we achieve to substantially expand the linear gating area I, in which a robust
and non-hysteretic gating response of the 2D system is present (samples � , � and �). For
electron densities =B > 7 · 10112<−2, the gating responses deviate from the linear behavior
since charge migration from the QW into adjacent InAlAs deep level donor states sets
in. This initial charge migration process is linked to the intrinsic band tilting, generated
by the ionized deep level donor states inside the InAlAs spacer. Electron transfer from
these doping sites into the QW and towards the interface results in the formation of a
trough-shaped InAlAs band profile, facilitating charge migration at sufficiently high +)� .
Completely removing the InGaAs cap layer by wet-chemical etching leads to an apparent
decrease of interface energy states, which manifests itself in form of an extended saturation
area in gating regime II before a significant transfer of electrons into the deep level donor
states sets in. On the basis of our measurement sequences, no further information about
the exact Fermi level pinning and thereby on the intrinsic band tilting can be drawn for the
InAlAs terminated samples. To our knowledge, there is no comparable study of the gating
response of InAlAs surface terminated heterostructures. We are aware of a report in
literature [14], in which MT measurements on a gated InAs/In0.75Ga0.25As/In0.75Al0.25As
heterostructure with an InAlAs surface termination are conducted. However, only a
narrow density interval of the gating response up to a maximum electron density of
=<0G
�0;;

= 5 · 10112<−2 is shown. Therefore, we cannot compare our experimental findings
beyond gating area I to reports in literature for a better assessment of our results.

In a first attempt to fabricate QPCs on InAlAs surface-terminated samples, we find the
deposited Al2O3 layers on the etched InAlAs surface to be prone to leakage current for
3�;2$3 < 30=<. Commonly, this can be interpreted as an indication of a low-quality
oxide formation with a large density of parasitic defect states inside the oxide, as well
as at the semiconductor/dielectric interface. However, we find a high quality of the
ALD-deposited oxide on InGaAs capped samples, processed during the same time period.
The saturation of the charge density at =?40:B in gating regime II of sample � furthermore
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indicates a reduction of the interface defect density. Thus, we assume the etching process
to greatly enhance surface roughness, whereby a thicker dielectric layer is indispensable
to guarantee a closed and thereby insulating layer of Al2O3 on top. As a downside,
however, a thicker dielectric layer leads to a less well-defined potential profile created
by the SG-electrodes inside the 2D channel for QPC formation. We recommend further
tests on MBE-grown heterostructures with an InAlAs surface termination to study the
influence of surface roughness on charge instabilities in the heterostructure.

Here, we conclude this subsection with the acquired evidence that charge migration from
the 2DEG is induced by the presence of available InAlAs deep level donor states. We were
able to eradicate the parasitic conductive layer at the semiconductor/dielectric interface
and to double the electrostatically controllable charge density range in the heterostructures.
This led to a perceptible increase of reproducibility of the transport characteristics. The
acquired understanding of the electrostatic gating response of the heterostructure and
the thereby modified processing recipe form the foundation for elaborated 1D transport
measurements on QPCs in our high intrinsic SOI material system.
In the following section - as we learned from our measurement series that we are able to
actively influence the intrinsic band bending of the InAlAs spacer layer via a modification
of the interface density of states - we test a further approach to auxiliary suppress charge
migration from the 2DEG.

7.3 Post-deposition thermal annealing

Post-deposition thermal annealing (PDA) is often applied for the activation of dopants
after implantation processes, as well as for defect state passivation or healing of the bulk
crystal and its interface. Generally, this results in a reduction of the interface density of
states and also of the density of defect states inside the dielectric material [159, 162, 169,
171, 185].
In order to reduce the interface density of states in the gate stacking and to test whether
the gating interval, in which the charge density of the 2DEG increases linearly with the
applied TG-voltage, may be further extended, we apply an additional PDA step in our
fabrication process.

7.3.1 Gating responses of annealed samples I - L

Fabrication details

To study the influence of PDA on the gating response of the heterostructure, we fabricate
top-gated Hall bar devices, for which an additional annealing step is implemented. As
an ambient atmosphere, we choose forming gas (10%H2 + 90%N2) under a pressure of
900<10A. We rapidly heat our samples from ambient temperature to 350◦� and hold
this temperature for several minutes. To test the influence of the PDA process on the
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7 Gating response of various III-V heterostructures

Figure 7.14: MT measurement sequences in the non-illuminated state for
+�� = 0+ at ) = 4.2 : (a) Gating response of the annealed samples � and �
with an InGaAs surface termination, sample � for reference. The inset shows
the corresponding mobility. (b) Gating response of the annealed samples  and
! with an InAlAs surface termination, sample � for reference. The insets show
the corresponding mobilities.

different surface terminations, we fabricate two InGaAs-capped Hall bar devices, labeled
as samples � and �, from the same wafer as sample � (C160420B), and two further
samples, labeled as samples  and !, from wafer C160428A, being equipped with an
etched InAlAs surface. For samples � and  a hold time Cℎ = 900B at )%�� = 350◦� is
chosen, for samples � and ! the hold time is extended to Cℎ = 1800B.

Measurement sequences

Figure 7.14(a) shows the gating response of the InGaAs-capped samples � and �, together
with the previously analysed measurement sequence of sample � as a reference. In
figure 7.14(b), the measurement sequences of the InAlAs-terminated samples  and !
are displayed, along with the measurement sequence of the already discussed sample �
for reference. We find the gating curves of the annealed samples � and � to remarkably
align with the measurement sequence of the non-annealed reference sample �: All
curves can be divided into the previously defined characteristic gating areas I to VI,
exhibiting approximately the same value for =?40:B ≈ 7.5 · 10112<−2 before a drop of the
charge density in the 2DEG sets in (regime II and III). Furthermore, all three samples
saturate at the same charge density of =B0CB ≈ 4.8 · 10112<−2 in gating regime V. When
choosing the same +<0G

)�
for samples �, � and �, the strength of the hysteresis is also

equal in magnitude. Hence, based on the gating response of the charge density, we
cannot identify any difference between the InGaAs-capped samples with and without the
additional implemented annealing step. Yet, the corresponding mobility of the annealed
samples � and � (see inset of figure 7.14(a)) is lowered by about 10% as compared to the
non-annealed reference sample �.
In contrast, the gating responses of the annealed InAlAs-terminated samples  and
! differ from the response of the reference sample � (figure 7.14(b)). For all three
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7.3 Post-deposition thermal annealing

samples, we determine the same value of =?40:B of around 7.4 · 10112<−2. However,
whereas sample � saturates at this density value in regime II, the electron densities of
the annealed samples  and ! rapidly decrease and evolve into a gating regime similar
to the characteristic gating area V presented for sample � in subsection 7.2.3: Here, an
increase of +)� only leads to a small increase in =B. For sample  with Cℎ = 900B this
saturation already sets in at +)� = +1.8+ at =B = 5.9 · 10112<−2, and smoothly evolves
towards =B = 6.1 · 10112<−2 at +)� = +5.5+ . Sample !, however, for which a longer
annealing time of Cℎ = 1800B was applied, shows a less steep decrease of =B in gating area
II than sample  , and evolves into gating area V at+)� = +2.2+ with =B = 6.3 · 10112<−2,
steadily increasing towards =B = 6.5 · 10112<−2 at +)� = +5.0+ . This trend is in clear
contrast to the non-annealed reference sample �, for which saturation does not emerge
until +)� > +5.5+ . Remarkably, even though samples  and ! saturate at +)� = +1.8+
and +2.2+ , respectively, the capacitive coupling to the QW sets in almost immediately in
the down-sweep of +)� in gating area VI, in contrast to samples �, � and �. We are not
able to comment on sample � in regard to this experimental finding, since the chosen
+<0G
)�

is not located sufficiently far in regime V, where clear saturation effects would
be observable. Furthermore, for all three InAlAs-terminated samples �,  and ! (see
inset in figure 7.14(b)), we observe a very similar +)�-dependence of the mobility. The
mobility of sample  with Cℎ of only 900B, however, is reduced by approximately 10% as
compared to samples � and !.

Discussion

We find the gating responses of the InGaAs-capped samples � and � to be unaffected
by the PDA process. Thereby, we conclude that a heating of the semiconductor crystal
to )%�� = 350◦� has no measurable effect on the bulk crystal structure, as well as
on the interface between InGaAs and Al2O3. For the InAlAs-terminated samples  
and !, on the other hand, we find the gating behavior to be distinctly altered by the
additional annealing step. In the framework of our charge transfer model (see subsection
7.2.3), the gating responses of samples  and ! can be again divided into the previously
defined gating areas I to VI. For both samples, we find a shortened gating regime II,
that quickly evolves into gating area III. Therein, the charge density of the QW drops
and fairly quickly reaches a saturation. We assign this shortening of gating areas II
and III to a facilitated charge migration from the QW into upper lying defect states for
InAlAs-terminated annealed samples. As the intrinsic band bending determines the onset
of the charge transfer towards the interface, i.e. the onset of regime II, we conclude that a
higher density of energy states at the InAlAs/Al2O3 interface is likely to be present after
annealing. The enhanced interface state density leads to an amplified charge transfer from
the electron-providing deep level donor states inside the InAlAs spacer towards these
interface states during cool-down. As a consequence, the trough-shaped InAlAs band
profile (see figure 7.10) is more pronounced in the non-annealed case. In turn, this results
in a narrowing of the tunneling potential at the upper InGaAs QW interface, making the
barrier more transparent and creating a metastable state that provokes the earlier onset of
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7 Gating response of various III-V heterostructures

charge transfer.
A second remarkable observation in the gating response of the InAlAs-terminated samples
 and ! is the early saturation-like behavior in gating area V, i.e. +)� > +1.8+ and
+)� > +2.2+ , respectively. In these gating areas, we still have capacitive coupling to the
QW, as can be seen from the immediate onset of the decrease of =B in the down-sweep
of +)� (gating regime VI). We attribute this notable gating response in regime V to an
equilibrated state of our system: An increase in +)� leads to a charge transfer towards
the interface, thereby balancing the increase of the external TG-field. Yet, we find no
parallel conducting layer at the interface as in other samples, which indicates an increased
surface roughness since with an electron transfer of more than Δ=� �→+ > 18 · 10112<−2

we still find the interface electron density to be smaller than the critical charge density
=2. The exact charge configuration and interface density of states in our devices is not
directly accessible experimentally and we rely on probing it indirectly via measuring the
gating response of our heterostructure in transport measurements. At the same time, our
interpretation is in line with theoretical findings in the literature: In the framework of
DFT model calculations, Chagarov et al. [156] simulated the electronic and chemical
structure of annealed and non-annealed Al2O3/InGaAs and Al2O3/InAlAs interfaces.
They found no modification of the bonding order in the InGaAs case since no additional
defect states due to, e.g., material intermixing, are created, leaving the Fermi level position
near midgap after PDA. For InAlAs, on the other hand, additional acceptor states inside
the bandgap are created. In their simulations they found that substrate Al-atoms are pulled
towards the Al2O3 dielectric layer. Thereby, In-Al metal-metal bonds are created, as well
as energy states due to the generation of dangling bonds of the two As-atoms, which were
bonded to the Al-atom prior to the annealing process. These newly created energy states
lead to a higher charge transfer rate from the QW towards the interface for sufficiently
strong band-tilting.
Furthermore, there are reports in literature, describing an out-diffusion of In during
thermal annealing [171, 173, 185]. However, this process should be observable for both
of our studied surface terminations, i.e. InGaAs and InAlAs. Hence, we assume that this
mechanism does not dominate the experimentally observed modification in the gating
response of the InAlAs-terminated samples after PDA.
The differences observed between sample  with Cℎ = 900B and sample ! with Cℎ = 1800B
are still under debate. More statistics would be required to appreciate the reproducibility
of our observations for both Cℎ values and certainly a few more Cℎ values would be needed
to clearly detect any Cℎ-induced trend.

Conclusion

In order to reduce the interface density of states, we tested the effect of a post-deposition
annealing step of Al2O3 in forming gas on the gating response for samples with an InGaAs
cap layer, as well as for samples with an InAlAs surface termination. Whereas we find no
significant modification in the InGaAs case, the gating behavior of InAlAs-terminated
samples is distinctly altered. The experimentally observed shortening of the gating
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intervals II to IV, followed by an extended saturation regime V, in which capacitive
coupling to the QW is still maintained, implies an increased density of interface states
after the annealing process. This is likely to be caused by material intermixing at the
InAlAs/Al2O3 interface, creating additional energy states at the interface, in compliance
with the also observed reduced mobility in the gating areas II to VI.
On the bottom line, in terms of gating ability, we find no improvement of the transport
characteristics for both surface terminations via the application of an additional PDA
process. Since an In out-diffusion and an intermixing of the interface materials cannot be
excluded also for the InGaAs-capped samples, we decided to omit this additional annealing
step in the fabrication process of our devices for the remainder of this thesis.
Given the clear role of defect states at the interface, an interesting test presents the
variation of the utilised dielectric material. In the subsequent section, we test the effect of
MBE-grown MgO as dielectric, as well as Al2O3 in combination with HfO2 as interlayer
on newly fabricated top-gated Hall bar devices. As surface termination, we choose InAlAs
since we concluded in subsection 7.2.5 that the extended gating areas II and III of sample
� imply a reduced density of interface states.

7.4 Variation of the dielectric material

We test the gating response of our heterostructure with MBE-grown MgO and HfO2
in combination with Al2O3 as alternative dielectric materials. As we consider InAlAs
surface-terminated samples to exhibit a reduced interface density of states as compared to
heterostructures with a thin layer of InGaAs as capping, we fabricate two new top-gated
Hall bar devices, samples M and N, from wafer C160429A (same as for sample �), for
which the InGaAs cap layer is removed by wet-chemical etching.

Fabrication details

For sample " , we choose a thin layer of ALD-grown HfO2 as a physical separation barrier
between the Al-containing semiconductor surface and Al2O3 in an attempt to prohibit
material intermixing through exchange of Al atoms and the generation of additional
interface states. Furthermore, ALD-grown HfO2 presents a promising high-: dielectric
material, as it was found to reduce the charge defect formation at semiconductor/dielectric
interfaces and additionally controls the fixed charge density and polarity inside a subsequent
Al2O3 layer [186]. In addition, a self-cleaning effect of ALD-grown HfO2 is shown
in literature, as native oxides are efficiently removed from III-V surfaces during the
deposition process, leading to an unpinning of the Fermi level at the semiconductor
surface [177, 187–189].
For the ALD deposition of HfO2, we use tetrakis-ethyl-methyl-amino-hafnium (TEMAH)
as the precursor and H2O as the oxidation source. In contrast to Al2O3, the HfO2
deposition process highly depends on the applied process temperature [189], as well as
on the individual pulse times for TEMAH and H2O [190]. Thus, in order to guarantee
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7 Gating response of various III-V heterostructures

Figure 7.15: MT measurement sequences of sample � with Al2O3, sample "
with HfO2/Al2O3 and sample # with MgO/Al2O3 (wafer C160429A) in the
non-illuminated state for +�� = 0+ at ) = 4.2 : (a) Charge density =B as a
function of +)� of samples �, " and # . (b - d) Mobility responses of sample
� (b), " (c) and # (d). The different symbols indicate the corresponding sweep
directions of +)� . (e) Exemplary MT measurements of sample # , displaying the
longitudinal resistivity dGG (�) for different +)� ranging from −0.2+ (undermost
curve) to +3.0+ (topmost curve).

electric insulation between the metal gate and the semiconducting layers, we additionally
deposit several nanometers of Al2O3 on top of HfO2. This is done in a single ALD
process, whereby we thoroughly purge the reaction chamber with N2 between the HfO2
and Al2O3 deposition to reduce any intermixing of these two dielectrics.
For sample # , we use MBE-grown MgO as the dielectric material, which presents itself
as an attractive alternative to the ALD-deposited Al2O3 and HfO2. The MBE growth
process does not rely on iterative chemical reactions between two chemical compounds,
which is often accompanied by the formation of detrimental by-products, as is the case for
ALD. Instead, highly purified source materials are used in an UHV chamber, whereby, in
principle, the formation of intrinsic defect states is greatly suppressed. An illustration for
the superior quality of the bulk MgO crystal can be found in the application of MgO as a
tunnel barrier in spin-injection experiments [191, 192], in which a high-purity barrier
material is required. We choose a MgO layer thickness of 50=<, followed by a thin layer
of ALD-deposited Al2O3.

Measurement sequences

Figure 7.15(a) shows the gating responses of samples " (HfO2/Al2O3 as dielectric) and #
(MgO/Al2O3 as dielectric), together with the measurement sequence of sample � (Al2O3
as dielectric) as a reference. For sample " , a +<0G

)�
of +2.0+ is chosen; for sample # , we

apply a +<0G
)�

of +4.0+ . As supplementary information, positively biased cool-down MT
measurement sequences of sample �, " and # are shown in the appendix in figure B.5.
A positive +�� shifts the gating curves of samples " and # horizontally into positive
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+)�-direction as we also find for sample �. The gating responses of samples " and # in
figure 7.15(a) resemble the measurement sequence of sample � and can be divided into
the characteristic gating areas, defined in the charge transfer model in subsection 7.2.3.
The gating curve of sample # , however, is shifted horizontally into positive +)�-direction
as compared to the gating responses of samples � and ". As can be deduced from
the slope of the density curves in gating area I, all three samples exhibit a very similar
capacitive coupling 2 = m=

m+
to the 2DEG. Since for sample " , we only deposited a thin

layer of HfO2 in addition to the much thicker dielectric layer of Al2O3, the Al2O3 layer
dominates the contribution of the dielectric layers to the capacitive coupling between the
TG and the 2DEG. Thus, the gating response of sample " should indeed be equal to the
density response of our reference sample � in gating area I. For sample # , we understand
the similarity of the experimentally observed capacitive coupling to samples " and � by
means of the equivalent permittivity Y"6$ to Y�;2$3 [193]. At the end of gating interval
I, samples " and # both reach =?40:B = 7.4 · 10112<−2 just as the reference sample �,
and then evolve into gating regime II. For sample " , however, we find a shortened gating
interval II and III, before the charge density saturates at =B0CB ≈ 6 · 10112<−2 (see also
in the appendix B in figure B.5(b)). The charge density response of sample # follows
the gating behavior of the reference sample �, exhibiting an extended gating area II and
a comparable hysteresis between up- and down-sweep of +)� . At the same time, the
mobility responses of samples " and # , plotted in figure 7.15(b), (c) and (d), differ
significantly from sample �. During the first down-sweep of +)� from 0+ into negative
+)�-direction after the cool-down, sample " exhibits a similar mobility as the reference
sample �. In the following up-sweep of +)� , however, we determine that the mobility is
decreased by almost a factor of two as compared to sample �. The mobility of sample #
is generally about half the value of the reference sample �.

Discussion

In summary, for sample ", which is equipped with a thin interlayer of HfO2 between
InAlAs and Al2O3, we determine an earlier onset of charge migration towards the interface
compared to the reference sample �. Building on our charge transfer model, we assign this
behavior to the presence of an enhanced charge density at the interface. The significant
reduction of the electron mobility after the first down-sweep of +)� can be attributed to a
band tilting-induced reorganization of charge carriers in the gate stack, induced by the
HfO2 interlayer. Owing to the HfO2 layer, Coulomb scattering centers are additionally
introduced into the heterostructure, which increase the scattering rate of the conduction
electrons. Yet, we want to note that this hysteresis in mobility does not manifest itself in the
corresponding gating response of the charge density. For sample # withMgO as additional
dielectric for the physical separation of the Al-containing semiconductor surface and
Al2O3, we find the gating response to be equivalent to our reference sample �. In contrast
to the density response, the mobility is significantly reduced as compared to sample �.
This indicates a strongly increased large-angle backscattering with MgO as dielectric in
contrast to Al2O3. The horizontal shift of the gating curve into positive voltage direction
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implies an increased negative charge accumulation between the metal gate electrode and
the QW, which effectively reduces the electric TG-field at the QW. Accordingly, the
reduced mobility for device # can be assigned to increased Coulombic disorder due to
the additional negative charge. This deduction, however, is rather inconsistent to auxiliary
conducted biased cool-down measurements with sample # (see appendix B), with which a
similar horizontal shift of the gating curve can be deliberately induced with an appropriate
+�� . This shift is also understood as accumulated charge above the QW. Yet, we observe
no significant reduction in mobility in the respective measurement.
A peculiar experimental finding in the MT measurements of the longitudinal resistivity
dGG (�) of sample # is displayed in figure 7.15(e). Even for small values of =�0;; , we
find a distinct knot in the Shubnikov-de Haas oscillations, for example at � = 1.5)
at +)� = +0.4+ . Evaluating the FFT spectra of dGG (�), however, provides no further
insight into the origin of the B-field-dependent magnetooscillation damping, owing to
the limited number of available oscillations in dGG (�). Furthermore, with good reason,
we can exclude the population of a second size-quantized subband to be the origin of
our observed modulation of the Shubnikov-de Haas amplitude. Since we maintain the
capacitive coupling between the TG and the 2DEG even for higher +)� , we are able to
also exclude a parasitic conductive layer in the system as the possible cause. The exact
origin of this conspicuous effect is still unknown.

Conclusion

In our test of MBE-grown MgO and of HfO2 as interlayer dielectrics, we find both
materials to exhibit adverse effects on the gating response of the heterostructure compared
to reference samples with ALD-deposited Al2O3: We determine an enhanced charge
migration and a significant reduction of the electron mobility for samples " and # . It is
interesting to note that all of our tested dielectrics are based on oxidic-materials. Possible
As-O bond formation creates midgap states at the semiconductor/dielectric interface
[156], being likely responsible for enhanced charge migration towards the interface and
for charge trapping. We therefore propose to test non-oxide based materials, e.g. h-BN,
as dielectric materials.

7.5 Charge carrier mobility and scattering
sources

In the course of this chapter, the mobility responses of samples � to # have been already
displayed along with the corresponding gating responses of the charge density. In the
following, in order to determine the dominating scattering sources in the heterostructure
which limit the mobility and also affect the transport in our QPC devices, we evaluate the
density-dependence of the electron mobility in the system. Furthermore, we examine the
elastic mean free paths of the conduction electrons in the different heterostructures that
we analysed in the course of this chapter, enabling us to determine the most suitable gate
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stacking for QPC applications.

7.5.1 The charge carrier mobility

In a metal/dielectric/semiconductor heterostructure, there are several scattering mech-
anisms which may affect the resistivity of the system. The impact of an individual
scattering source on the conduction electrons further depends on the charge density of the
system since the screening ability of charged Coulomb disorder is linked to =B. We can
neglect scattering on acoustic and optical phonons in our mobility analysis owing to the
cryogenic temperatures at which our measurements are conducted. Furthermore, since our
semiconductor heterostructures are fabricated via MBE growth, various scattering mecha-
nisms such as growth-related roughness at the QW interfaces are typically suppressed
due to the utilisation of highly purified source material and the low residual ambient
pressure in the UHV chamber during the epitaxial growth process. The long-range
surface modulation due to cross hatching on the micrometer scale (see section 5.1) should
play a minor part in our observed scattering events, given that the analysed 2DEGs are
typically buried deeper than 100=< below the sample surface. We therefore assume
Coulombic scattering and alloy disorder to be the most prominent mechanisms in the
studied InGaAs/InAlAs heterostructures, limiting the electron mobility in the 2DEG. Our
assumption is further supported with findings in pertinent literature [37–39, 50, 181, 194].
To test our hypothesis, we experimentally determine the dominating mechanism in our
heterostructure by analysing ` as a function of =B. Therefore, we assume the power law
relation

` ∝ =UB , (7.5)

whereby the density-scaling exponent U is determined by the type of disorder, which
controls the resistivity and thereby the mobility in the system [181]. Furthermore, U
depends on a dimensionless parameter @( = @)�/2:� , with @)� being the Thomas-Fermi
wave vector and :� being the Fermi wave vector. @( characterises the screening regime of
the studied system: @( � (�) 1 implies a strong (weak) screening regime. The transition
between strong and weak screening can be expressed in terms of a charge carrier density
=:

= � (�)
( <∗
<4Y

)2
· 1.14 · 10162<−2 (7.6)

Y is the background static lattice dielectric constant and <∗ is the effective electron
mass [181]. Employing the determined permittivity for InAlAs of Y�=�;�B = 13.7 from
subsection 7.2.2 and the effective mass <∗ = 0.041 ·<0 from our cyclotron measurements
(section 5.2) yields a threshold value of = = 1.03 · 10112<−2 according to the above
equation (7.6). Accordingly, in our analysed density range of = > 1.5 · 10112<−2, we are
in the strong screening regime. Following the model of Das Sarma et al. [181], depending
on the dominating scattering source, U takes the following values:
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Figure 7.16: Log-log plot of ` as function of =B (dots) with linear fit (solid line)
to determine the density scaling parameter U for (a) sample � (up-sweep), (b)
sample � (down-sweep), (c) sample � (up-sweep), (d) sample � (down-sweep),
(e) sample " (up-sweep), (f) sample # (up-sweep).

U→ 1/2 for scattering at unintentional background (3D) impurities (7.7)
U→ 3/2 for scattering at remote (2D) impurities (7.8)

Figure 7.16 shows several log-log plots of ` as a function of =B of exemplary samples,
analysed in the gating study in this chapter. In our evaluation, we are restricted to a density
interval of approximately 1.5 · 10112<−2 ≤ =B ≤ 6.5 · 10112<−2 for the U-fit (cyan solid
curve) since for =B > 6.5 · 10112<−2 charge migration towards the interface sets in, i.e.
the end of the linear gating regime I, leading to a distinct modification of the Coulombic
disorder in the system. Consequently, we determine the density-scaling exponent U in
the linear gating regimes I (up-sweep) and VI (down-sweep) of our MT measurement
sequences.
The determined U-values for samples � to # are listed in table 7.2. For some samples no
meaningful value for U could be determined in regime VI due to an early onset of the
MIT. Evaluating regime I, we find 0.5 < UD? < 0.7. According to the relation (7.7), we
identify scattering on 3D charged background impurities as the dominating mechanism
in the gating area I. All of our analysed heterostructures are non-intentionally doped.
The electron-providing InAlAs defect sites, which we assume to be evenly distributed
in the InAlAs spacer layers, are partially ionized. Thus, we infer that these defect sites
introduce the Coulombic disorder background potential in our studied material system.
Evaluating the second linear gating regime in our MT measurement sequence, i.e. regime
VI, we determine the density-scaling exponent U3>F=. In comparison to UD?, we find the
values of U3>F= to be increased to approximately 0.8. This clear trend of U in all of our
analysed samples implies a modification of the dominating scattering mechanisms in
gating area VI as compared to area I. In our charge transfer model, we were able to clearly
relate the measured charge density decrease in the 2DEG during gating areas II to V to
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a substantial accumulation of electrons at the semiconductor/dielectric interface. This
negatively charged 2D remote electron layer is likely to act on the conduction electrons in
the QW as an additional scattering source. According to the model of Das Sarma et al.
[181], this type of scattering mechanism corresponds to a U-value of 1.5 (see relation
(7.8)). Thus, we infer that the distinct increase of U3>F= in regime VI as compared to
UD? in I reflects the effect of electron migration in gating areas II to V. Thereby, the
contribution of 2D remote scattering to 3D impurity scattering is enhanced in our samples
and the U-values shift from 0.5 towards higher values. This further consolidates our
developed charge transfer model.

sample surface "u p "down lmax
mfp (`m) nlmax

mfp
(1011cm−2)

A InGaAs 0.6 (2.2) 2.0 3.8
B InGaAs 0.6 0.8 1.7 4.3
C InGaAs 0.9 / 1.7 5.2
D InGaAs 0.6 / 2.0 5.4
E InGaAs 0.6 0.6 2.5 6.9
F InGaAs 0.5 0.8 2.5 6.9
G InGaAs 0.7 0.8 2.7 7.0
H InAlAs 0.7 0.8 3.4 7.4
I InGaAs 0.7 0.8 2.4 6.7
J InGaAs 0.7 1.0 2.4 6.9
K InAlAs 0.5 0.7 2.9 7.0
L InAlAs 0.7 0.8 3.3 7.4
M InAlAs 0.5 / 2.0 4.0
N InAlAs 0.7 / 1.3 7.0

Table 7.2: Density scaling exponent UD?, determined in gating interval I, and
U3>F=, determined in gating interval VI, together with ;<0G

< 5 ?
and the corresponding

=;<0G
< 5 ?

of samples � to # .

Our interpretation of the experimental findings with the U-analysis is consistent with
reports in literature: Shabani et al. [14] determined in their InAs/InGaAs/InAlAs
heterostructure, in which a parasitic conductive layer at the semiconductor surface is
present, an enlarged U-parameter of 0.8 as compared to an equivalent heterostructure of
Hatke et al. [108], for which the parasitic interface channel has been eliminated. There,
the U-value was found to be reduced to 0.5. They also attribute the enhancement of U in
[14] to the scattering at the remote surface channel, equivalently to our assignments of U.
Remarkably, we find no significant difference of the U-parameter for InGaAs- and InAlAs-
capped samples. Moreover, the variation of the dielectric material does not manifest itself
in an alteration of the dominating scattering mechanism in gating area I, even though,
we inferred in section 7.4 that the interface density of states, and thus the density of
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Figure 7.17: Elastic mean free path ;< 5 ? as a function of charge carrier density
=B, determined from the gating sequences of (a) sample � (b) sample � (c)
sample �. The dots indicate the determined =B during the up-sweep of +)�
in gating area I and II, the triangle symbol indicate that the values of ;< 5 ? are
determined in gating area VI.

charged remote 2D scattering centers, is enlarged for samples " and # as compared to
the reference sample � with Al2O3 as dielectric.
We want to note that we were not able to determine a meaningful U3>F=-parameter for
two out of three InGaAs-capped samples without a chemical cleaning of the surface, i.e.
sample � and �, as well as for sample " and # , being equipped with HfO2/Al2O3 and
MgO/Al2O3 as dielectric, respectively, since the curves could not be fitted with a single
density-scaling exponent U. This reflects the experimentally detected uncontrollability of
the transport properties in these devices (therefore see sections 7.4 and 7.2).

7.5.2 The elastic mean free path

The physical quantity which marks the limits of our ballistic mesoscopic system is the
elastic mean free path ;< 5 ?. This quantity defines the length scale for elastic impurity
scattering, evaluated at the Fermi energy:

;< 5 ? = E�gCA = ` ·
√

2c=B ·
~
4
.

The determined values for the maximum mean free paths ;<0G
< 5 ?

, together with the
corresponding charge density =<0G

;< 5 ?
for the samples � to # are listed in table 7.2.

Furthermore, figure 7.17 shows ;< 5 ? as a function of =B for three exemplary samples
�, � and �. Generally, we find ;< 5 ? to increase with =B. This can be attributed to
an increased screening ability of the system with a rising charge density. Before the
onset of the gating area II in the charge density response, we find the curve of ;< 5 ?
to flatten. We assign this behavior to the saturation in mobility in the corresponding
density range, which we interpret as commencing scattering into the second size-quantized
subband. This interpretation is further supported by the shift of the fully resolved Zeeman
spin-splitting Landau levels towards higher B-field values, indicating a reduced quantum
lifetime and thus an increase in scattering of the conduction electrons. However, before
a significant second subband population sets in, charge migration towards the interface
starts to take place, impeding a meaningful mobility analysis in gating areas II to V. A
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7.5 Charge carrier mobility and scattering sources

further remarkable observation in the plots in figure 7.17 is the only marginal reduction
of ;< 5 ? in the down-sweep of +)� in gating area VI as compared to the up-sweep in I.
This is astonishing given that we were not able to conduct a MT measurement below
=B < 2 · 10112<−2 due to an earlier onset of MIT, i.e. an increase of the critical density
=2. We interpret the increase of =2 in gating regime VI as follows: Electrons, which were
initially transferred towards the interface in gating intervals II to V, partially stay as fixed
additional negative charge at trap sites at or near the interface and in InAlAs defect states
inside the spacer layer (see figure 7.10). This electron distribution, residing above the
QW, effectively reduces the quantum lifetime g@ of the conduction electrons, thereby
obscuring the Landau level oscillation in our MT measurement (figures 7.8 and 7.13).
Since the mobility ` in the gating response in regime VI is solely marginally reduced
as compared to gating area I at the same charge density, we conclude that we obtain a
similar large-angle back-scattering rate in areas I and VI. Yet, the total scattering rate,
including small-angle scattering is enlarged in gating area VI, which thus influences g@.
A maximum mean free path ;<0G

< 5 ?
= 3.4`< is determined for the InAlAs-terminated

sample � at a charge density of 7.4 · 10112<−2. The values of ;<0G
< 5 ?

of the other analysed
InAlAs-terminated samples differ with respect to each other. For InGaAs-capped samples,
for which residual native oxides are removed by wet-chemical etching prior to the ALD
process, the values of ;<0G

< 5 ?
are consistently determined to be ≈ 2.5`< at a charge

density of approximately 7 · 10112<−2. This behavior reflects the high reproducibility
of InGaAs-capped samples in contrast to samples with an InAlAs-etched surface. A
MBE-grown InAlAs surface termination presents itself as interesting candidate to achieve
large values of ;<0G

< 5 ?
.

Conclusion

By studying the mobility response of our system, we find indications for the dominating
scattering mechanism to be generated by charged background impurities inside the
heterostructure. We ascribe the main contribution to this background Coulombic disorder
to be generated by the InAlAs deep level donor states inside the barrier layers with a
density of about 3 · 10162<−3. Depending on the density of available interface states,
which can be controlled by the application of an external electric field, scattering due to
remote 2D Coulombic disorder comes into play. This can be nicely seen as a shift of the
density-scaling exponent U towards higher values, determined in the gating interval VI.
The elastic mean free path in the systems is determined to be several times larger than the
dimensions of our finger-gate defined QPC constrictions. This is an essential prerequisite
to attain well-defined conductance steps in 1D transport measurements [18]. However,in
addition to the limitation of the mobility in our system, the background impurity-induced
disorder potential is still likely to impede the formation of a smooth saddle potential with
the SG-electrodes in the 2DEG. Thus, as a next step, we attempt to reduce the MBE
growth-related density of charged background impurities in our heterostructures, i.e. the
InAlAs deep level donor states.
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7 Gating response of various III-V heterostructures

7.6 Towards the reduction of InAlAs deep level
donor states

As described at the beginning of chapter 5, the electron-providing InAlAs deep level donor
states are assigned to As-related antisite defects in the InAlAs barrier layers. In order to
reduce the background Coulombic disorder potential in the system, we aim to decrease
the density of these MBE growth-related defect states. Thus, we follow an experimental
approach by Campion et al. [195], who reported a significant reduction of As-related
antisite defects by employing As2 instead of As4 at low substrate temperatures for the
epitaxial growth process of their GaMnAs layer films. Equivalently to a MBE growth
study of Chen et al. [38], we transfer these modified growth parameters from Campion et
al. [195] to the epitaxy of our In0.75Ga0.25As/ In0.75Al0.25As layer systems. By supplying
As2 instead of As4 as group-V material during the MBE growth process, we fabricate
two new wafer structures. The BEP of As2 is kept at 8 · 10−6)>AA. We furthermore
modify the substrate temperature )02C of the active layer to stress the influence of )02C
on the InAlAs defect state formation: For wafer C170731A, we choose )02C = 430◦�,
being similar to )02C of our previously analysed heterostructures during the course of
this thesis. For wafer C170731B, we apply a reduced temperature of )02C = 330◦�. For
better comparison with literature, we monitor and control the substrate temperature via a
BandiT system in addition to the standardly used optical pyrometer.

wafer ndark
vdV

(·1011cm−2) -dark
vdV

(cm2/Vs) nil l
vdV

(·1011cm−2) -il l
vdV

(cm2/Vs)

C170731A / / 3.0 3000
C170731B / / 2.1 3000

Table 7.3: Transport properties determined via vdP measurements at ) = 4.2 .

Figure 7.18: VdP Hall measurements of wafer (a) C170731A (b) C170731B in
the illuminated state at ) = 1.5 .

Figure 7.18 depicts a sketch of the newly grown heterostructure of wafers C170731A
and C170731B. Since we expect the intrinsic doping density to be reduced by means
of the adjusted growth-parameters, we introduce a 15=< Si modulation doping layer
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above the QW, whereby dopant segregation into the InGaAs QW is circumvented. The
introduced Si doping density is =3>? ≈ 2 · 10112<−2. For rapid transport characterisation,
we fabricate vdP samples. The corresponding Hall measurements in the illuminated state
are shown figure 7.18(a) and (b). The determined electric transport properties are listed
in table 7.3. As indicated by the backslash in the table 7.3, we are not able to drive a
current through the vdP samples of both wafers in the non-illuminated state. Only after
illumination, the samples become conducting, yet, we determine an exceptionally low
mobility of only `8;;

E3%
= 30002<2/+B for both samples. Remarkably, however, for sample

C170731A the determined electron density =8;;
E3%

after illumination is only slightly higher
than the introduced Si modulation doping density =3>?, for sample C170731B we even
find =8;;

E3%
to perfectly match =3>?. This is a clear indication of a tremendous reduction of

the As-related antisite defects inside the heterostructure via utilisation of As2 instead of
As4.

Figure 7.19: (a) 20 G 20`< plan view AFM image of wafer C170731A (b) 3D
plot of profile of wafer C170731A (c) 20 G 20`< plan view AFM image of wafer
C170731B (d) 3D plot of profile of wafer C170731B.

To comment on the tremendousmobility reduction in these heterostructures, we analyse the
wafer surface via AFM as displayed in figure 7.19. Wafer C170731A with )02C = 430◦�
exhibits a rough morphology in form of 3D islands instead of the typical cross hatching
pattern, whereas wafer C170731B with )02C = 330◦� shows a very close meshed cross
hatching surface texture. The transition from 2D layer-by-layer growth to 3D island
formation is ascribed to elastic strain relaxation at the edges of the formed islands, whereby
the crystal energy is minimized. A lowering of the substrate temperature, as in the case for
wafer C170731B, extends the 2D layer-by-layer growth regime since the surface diffusion
length of our growth material atoms is reduced, preventing the system from reaching
thermal equilibrium [38, 109, 196]. Accordingly, we assign the reduced mobility to
altered growth kinematics with As2 as compared to As4.
Nevertheless, this experiment clearly shows an enormous reduction of InAlAs deep level
donor states by applying As2 as group-V material together with an additionally lowered
substrate temperature )02C during the active layer growth.

7.7 Conclusion
In this chapter, we evaluated the response of In0.75Ga0.25As/ In0.75Al0.25As heterostructures
under gate operation, since the 1D transport behavior in the therein defined QPCs suffered
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7 Gating response of various III-V heterostructures

from intrinsic charge reconfigurations. In order to gain a better understanding of the
electrostatic response of the system, we conducted a series of measurements on top-gated
Hall bar samples, in which we focused on the aspect of surface termination of the
semiconductor layer system in particular.
For gate stackings, as the ones used in chapter 6 for our QPC devices, we find a parasitic
conductive layer already to be present at the interface of the 5=< InGaAs capping layer
and the Al2O3 dielectric for a TG-voltage of +)� = 0+ . To restore capacitive coupling to
the 2DEG, this interface layer has to be depleted via the application of a negative TG-
voltage. Furthermore, biased cool-down measurements on this heterostructure revealed
the presence of additional parasitic energy states above the InGaAs /Al2O3 interface. We
expect these defect states to be located inside the dielectric layer in the form of deep trap
states. A reduction of the InGaAs cap thickness to 2.5=< in combination with a chemical
removal of residual native oxides leads to a significant enlargement of the accessible
and non-hysteretic density range in the heterostructure. For =B & 7 · 10112<−2 charge
migration from the QW towards the interface still sets in, which manifests itself in form
of a two-stage charge transfer process, described in detail in our phenomenological charge
transfer model. We infer that the InAlAs deep level donor states inside the spacer layer,
as well as the interface density of states play a key role in the process of charge migration.
A high interface density of states, which can be effectively populated with free electrons
from the InAlAs deep level donor states, leads to the formation of a trough-shaped InAlAs
spacer band profile. During charge migration, electrons become effectively localized in
this potential dip, such that a metastable state inside the system is generated. This process
is characterised by a robustly adjustable decrease of the charge density inside the QW
when +)� is further increased, whereby capacitive coupling to the QW is still maintained.
For increasing positive TG-voltages, electrons are then transferred to the interface and a
parasitic conductive layer is created.
In an attempt to reduce the interface states of the heterostructure, we remove the low
band gap InGaAs capping by wet-chemical etching, whereby we create an InAlAs surface
termination. For these samples, the charge transfer rate from the QW towards the interface
during gating is effectively reduced as compared to InGaAs-terminated samples. Yet,
the maximum achievable electron density, marking the end of the linear gating regime
according to the field-effect, of InAlAs-terminated samples is equivalent in magnitude as
for the InGaAs case. Increased interface roughness due to the etching process increases the
probability of gate leakage in these InAlAs devices. This problem may be circumvented
for samples with MBE-grown InAlAs surface terminations.
We tested the possibility to reduce the defect density inside our gate stacking via rapid
thermal annealing in a forming gas atmosphere. For InGaAs-capped samples, we
determined no significant modification of the gating response after annealing. For
InAlAs-terminated samples, however, we found clear indications for a substantial material
intermixing at the interface.
In addition, we examined alternative dielectric materials, MBE-grown MgO and HfO2
in combination to Al2O3, in our samples. These devices exhibited a similar gating
response as samples with ALD-Al2O3, yet with a reduced mobility. Furthermore, we
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found indications for an increased density of interface states. We want to point out to the
fact that all of our tested dielectrics contain oxygen, presumably leading to the creation of
oxygen-metal-bonds at the interface. Non-oxide based dielectrics present themselves as
interesting alternatives for further tests.
By means of analysing the electron mobility in regard to the corresponding charge density,
we were able to identify the dominating scattering mechanism in the heterostructure to
be formed by scattering on 3D charged impurity sites. Charge migration towards the
interface introduces a remote 2D Coulombic disorder potential, which then effectively
contributes to the scattering in the 2DEG.
On the basis of the analysis in this chapter, we understand the determined 1D conduction
properties of our QPCs in chapter 6: The negative applied SG-voltage lifts the charged
interface states of the 5=< InGaAs-capped samples above the Fermi level. This imbalance
leads to charge transfer from electrons underneath the SG-electrodes towards surrounding
energy states at the interface. In our 1D transport measurements, this charge migration
then manifests itself in form of a hysteresis between the depletion and the opening of the
QPC, as well as in the experimentally observed time instability of the 1D conductance
near depletion. This behavior should be efficiently reduced by the elimination of interface
states in form of a reduced InGaAs cap thickness in combination with wet-chemical oxide
removal, or, alternatively, with InAlAs-terminated samples. We expect an equivalent 1D
transport behavior for both types of interface terminations.
As comprehended in our charge transfer model, we ascribe both, the limitation of the
linear gating area following the classical field-effect, as well as the hampered ballistic
transport in our finger-gate-defined 1D constrictions, to the InAlAs deep level donor
sites. Their effect in 2D measurements is well described in subsection 7.2.3; in 1D,
the Coulombic disorder potential leads to the generation of localized states in the QPC
channel and to less well-defined conduction steps due to enhanced energy broadening and
conductance oscillations at low temperatures.
By modifying the MBE growth parameters, we were able to tremendously reduce the
As-related antisite InAlAs defect states. We currently optimize the epitaxy process of
(InAs/) InxGa1-xAs/ InxAl1-xAs in the framework of a doctoral thesis with a view to
mobility enhancement and the controllability of SOI [126].
In the next chapter, newQPC devices are fabricated on InAlAs-terminated heterostructures,
as well as on structures with a thin InGaAs capping layer, to test the effect of the
reduced parasitic interface density of states in our QPC measurements. Since we
found the reproducibility of the 2D transport characteristics for InGaAs-capped samples
to be increased as compared to their InAlAs counterparts, we start the 1D transport
measurements with QPC samples of wafer C160420B, being equipped with a 2.5=<
InGaAs capping layer. Thereby, the risk of gate leakage for InAlAs-terminated samples
due to surface roughness is circumvented.
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Ballistic conductance in
InGaAs/InAlAs-based systems

8

In chapter 6, in which we thoroughly tested the 1D transport characteristics of our
finger-gate defined QPCs in highly mobile In0.75Ga0.25As/ In0.75Al0.25As heterostructures,
we found the ballisticity and electric stability of the devices severely deteriorated: A
hysteresis between the depletion and the opening of the QPCs develops, which scales in
magnitude with the dwell time in or near pinch-off, as well as with the chosen + 5 8=0;

(�
,

i.e. the minimum SG-voltage applied in pinch-off. Thus, no stable working point on
the conductance curve in the pinch-off area could be adjusted. In addition, ballistic
conductance was significantly diminished when the QPCs were reopened after pinch-off.
In a charge transfer model, which we developed in chapter 7, the electric instabilities of
the 1D devices were discussed and unveiled: Parasitic energy states at the InGaAs/Al2O3
interface, together with deep level donor states inside the InAlAs spacer layer are
responsible for the observed adverse charge reconfigurations inside the layer system under
gate operation. By means of a complete removal, respectively a sufficient reduction of
the InGaAs cap thickness, combined with a chemical elimination of residual III-V-based
oxides at the semiconductor surface, we could demonstrate electric stability of our gate
stacking over a wide bias (and thus electron density) range in MT measurements on
top-gated Hall bar devices.
In this chapter, our newly gained insight into the (InAs/)In0.75Ga0.25As/ In0.75Al0.25As-
based material system allows us to implement another step towards the realization of
reliable 1D transport in these heterostructures.
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8.1 Realization of robust ballistic 1D
conductance

Building on our experimental results of chapter 7, we choose a heterostructure with the
same active layer system as sample �1 on which we fabricate triple-gated QPCs. Thereby,
we employ the refined processing recipe for device fabrication with which we were able
to achieve a robust and reproducible gating response of the 2DEG in top-gated Hall bar
measurements. These newly fabricated TrG devices present an auspicious testing platform
to accomplish electric stability of our QPCs under gate operation.
All experiments in this chapter are conducted at) = 1.5 in the non-illuminated state since
we determined that illumination generally increases uncontrollable charge redistribution
processes in our devices. The samples are cooled down to cryogenic temperatures with
the ohmic contacts set to the laboratory ground potential and the finger-gate electrodes,
i.e. the SG-electrodes and the CG-electrode, fixed at +(� = +�� = 0+ . Some of
the samples are furthermore equipped with a global TG with which we are able to
control the electron density of the 2DEG. For these samples we apply a TG-voltage of
+)� = 0+ during cool-down. Unless otherwise specified, the TG-voltage is held constant
at +)� = 0+ during a 1D conductance measurement. For most measurements a sweep
rate of 5 − 10<+/B is applied.

8.1.1 Reproducibility

Figure 8.1(a) shows five subsequent conductance curves of a triple-gated QPC. The
conductance � is plotted as a function of the symmetrically applied SG-voltage +(�
in multiples of 242/ℎ, whereby the CG-voltage is held constant at +�� = +0.3+ . No
serial channel resistance '2ℎ is subtracted. All conductance curves exhibit two clear SG-
voltage regimes, i.e. area (I) and (II), which are characteristic for finger-gate-defined 1D
constrictions: In regime (I), the area underneath the SG-electrodes is depleted, in regime
(II) the 1D channel is laterally pinched off wherein quantized conductance features arise.
The presence of only two regimes in the total conductance curve here presents a significant
difference in the transport characteristics of the QPC under gate operation as compared to
the triple-gated devices, whichwe analysed in the preceding 1D transport study in chapter 6.
Therein, TrG-defined QPCs all exhibited a third gating area in-between the here observed
areas (I) and (II). We assigned the emergence of this third gating regime to a charge
accumulation underneath the positively biased CG-electrode: Negative charge carriers,
that were fixed at parasitic trap states at the semiconductor/dielectric interface underneath
the CG, had to be removed in these samples, whereby a more negative SG-voltage
was required as compared to solely SG-defined QPCs. The lack of this third depletion
regime for the newly fabricated QPC device demonstrates that we have effectively and
efficiently removed detrimental defect sites from the semiconductor/dielectric interface in
1Sample � from wafer C160420B (studied in subsection 7.2.2): 20=< InGaAs QW with 130=< InAlAs
spacer and 2.5=< InGaAs cap; chemical removal of residual oxides with HCl prior to Al2O3 deposition.
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Figure 8.1: Conductance measurements at ) = 1.5 in the non-illuminated
state with no '2ℎ subtracted, +�� = 0+ . (a) Sample C160420B3 TrG1 with
+�� = +0.3+ : Five subsequent conductance measurements with characteristic
gating areas (I) and (II). Odd numbers depict the depletion curves of the QPC,
even numbers mark the corresponding up-sweeps of +(� . The inset presents a
zoom into the area near pinch-off. (b) Sample C160420B2 TrG1 with +�� = 0:
Four subsequent depletion curves (chronologically numbered), being thermally
recycled after each measurement with +�� = 0+ .

the heterostructure. Furthermore, a significant achievement presents the elimination of
the formerly present hysteresis between the down-swept conductance measurements (odd
numbered curves) and the subsequent up-sweep measurements (even numbered curves).
The inset in figure 8.1(a) presents a zoom into the conductance area near pinch-off. Three
clear steps in � can be identified, the lowest step being most pronounced. We want to
note that the conductance steps do not match integer multiples of 242/ℎ since no channel
resistance is subtracted here. We find that the conductance curves of all SG-sweeps are
fully congruent. This clearly shows that we gained electric stability in our samples by
means of the ameliorated device fabrication method.
Figure 8.1(b) displays four depletion curves between which the device is warmed up to RT
and then cooled down again with +�� = 0+ . We find that all curves except measurement
(1), which is slightly shifted into the negative+(�-direction as compared to measurements
(2) to (4), are fully congruent. Generally, we obtain a good reproducibility of the 1D
transport properties in successive biased cool-downs for all of our newly fabricated
devices. This proves that we can efficiently preset the electronic configuration inside the
heterostructure. Furthermore, we find that the height of the individual conductance steps
after each cool-down is also well reproducible, meaning that the transmission coefficient
of a particular 1D mode is identical after each cool-down, which further confirms that we
have created the same electric potential environment in the QPC.
Accordingly, we are able to demonstrate reproducible and non-hysteretic 1D conductance
in our TrG-defined QPC devices by means of the refined device fabrication process.
A second key element towards the realization of robust, ballistic 1D transport in a QPC
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device is the attainment of reliable persistence of the conductance over time. This will be
analysed in the following.

8.1.2 Time stability

Figure 8.2: Time stability of the conductance through TrG devices at ) = 1.5 
in the non-illuminated state with no '2ℎ subtracted and +�� = 0+ . (a) - (c)
Sample C160420B2 TrG1 with+�� = +0.05+ : (a)� as function of+(� , colored
dots mark the measurement points, at which the persistence of � over time C
is tested. (b) +(� over time C. (c) � as a function of time C. (d) - (e) Sample
C160420A1 TrG1 with +�� = +0.1+ : (d) � as function of +(� , the colored dot
marks the measuring point. (e) � as a function of time C.

Figure 8.2(a) displays a section of the conductance curve near depletion of a triple-gated
QPC (same as in figure 8.1(b)). The colored dots mark the positions along the conductance
curve at which we test the time stability of the conductance through the QPC. For this
experiment, we choose the first three conductance steps as measuring points. At these
points, we keep +(� fixed for a dwell time of 30 minutes before we sweep +(� to the next
testing point. Figure 8.2(b) displays the applied +(� as a function of time C. The obtained
conductance � over time C is shown in figure 8.2(c). We find � to be remarkably stable
over the whole dwell time. This indicates that charge redistribution in the vicinity of the
1D channel is efficiently suppressed when the Fermi level lies in-between two subsequent
1D subbands. The noise on the signal slightly increases with increasing G, implying an
increase of charge fluctuations as the width of the channel increases and the subband
distance reduces.
Figure 8.2(d) and (e) show the time stability measurement of an InAlAs-terminated QPC
device, with an additional InAs inset in the InGaAsQW. The corresponding heterostructure
is sketched in figure 8.6. For this device, we adjust the measuring points right before
the onset of the first conductance step (see figure 8.2(d)). The flank of a conductance
step presents the most sensitive measuring point on the transport curve. Here, a dwell
time of 70 minutes is applied. The time stability of the conductance is shown in figure
8.2(e). We find � to be reasonably stable during the whole dwell time. There is only a
slight increase of �, which occurs rather stepwise. We attribute this behavior to small
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but abrupt recharging processes in the spatial area of the 1D constriction, modifying the
transmission probability of the 1D channel modes.

8.1.3 Conclusion

In summary, for both surface terminations, InGaAs and InAlAs, we find that the
conductance through triple-gated QPCs is persistent over time. The conductance near
depletion is stable at least on the timescale of half an hour at ) = 1.5 . Furthermore,
the 1D transport properties of our tested QPCs are non-hysteretic and reproducible as we
confirm by means of successive up- and down-sweeps of +(� as well as with conductance
measurements after several cool-downs of the device.
Accordingly, we successfully demonstrated the realization of robust and ballistic 1D
conductance in triple-gated devices for samples with an InAlAs spacer thickness in the
range of 100 − 130=<.

8.2 Tuning the ballistic conductance

Until now, we have employed only small CG-voltages in order to facilitate ballistic
conductance through the 1D constrictions. Moreover, the SG-electrodes were mainly
biased symmetrically.
In this section, we analyse our ability to further tune the ballistic 1D transport properties
in the QPCs by the application of a more positive +�� with which we enlarge the 1D
subband spacing and thereby intend to reduce the effect of impurity scattering inside the
1D constriction [8, 18]. In addition, as a further tuning knob of ballisticity in the 1D
channel, we shift the QPC laterally in space by biasing the SG-electrodes asymmetrically,
i.e. +(�1 ≠ +(�2 [144].

8.2.1 Variation of VCG

In the preceding 1D transport characterisation of our QPC devices in chapter 6 a positive
CG-voltage led to a pronounced hysteresis of the conductance between up- and down-
sweep measurements, as well as to a severe deterioration of the 1D conductance features in
the opening curve of the QPC. Building on the 2D gating study of chapter 7, we understand
the emergence of the hysteretic behavior for positive +�� in these devices as follows: The
difference in the applied bias of several volts between CG-electrode and SG-electrodes,
in particular near channel depletion, constitutes a significant spatial potential imbalance
in the QPC devices. This potential difference provokes charge transfer between parasitic
energy sites at the semiconductor/dielectric interface, which we identified to be present
with a high surface and interface defect density for samples with an InGaAs cap thickness
of 5=<, at which residual native oxides are still present. Here, we test the effect of the
refined device fabrication process on the transport in QPC devices in the case of large
positive +�� .
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Figure 8.3: Conductance curves of sample C160420B3 TrG1 at ) = 1.5 : (a)
� as a function of +(� for various +�� , no channel resistance is subtracted.
Figures (b) and (c) present zooms into the gating area near depletion for (b):
0+ ≤ +�� ≤ +0.5+ , (c): +0.6+ ≤ +�� ≤ +1.0+ , with '2ℎ = 3.5:Ω subtracted.
The down-sweeps of +(� are marked with solid lines, the subsequent up-sweeps
with dashed lines.

Figure 8.3(a) shows the conductance of a TrG device for various CG-voltages. +�� is
increased from 0+ towards +1.0+ in 0.1+-steps. No channel resistance '2ℎ is subtracted.
Increasing +�� leads to a shift of the pinch-off voltage +? into the negative +(�-direction
since the positive CG-voltage has to be compensated by a more negative +(� to attain
channel depletion. Even though a +�� of up to +1.0+ is applied, we determine only a
little mismatch between the downwards (solid lines) and upwards (dashed lines) sweeps.
In the case of +�� < +0.5+ , the depletion and opening curves of the QPC are almost fully
congruent. We consider the elimination of the hysteretic behavior of the conductance
even for large positive +�� as a further proof of the effective removal of interfacial defect
states in the heterostructures. Furthermore, we find that the higher the applied +�� , the
more the first conductance plateau approaches � = 242/ℎ. This clearly shows that we are
able to efficiently improve the ballistic conductance in the 1D channel by increasing the
applied CG-voltage: Increasing +�� distinctly reduces intersubband scattering inside the
QPC channel, pushing the 1D mode transmission coefficients towards 1. Figures 8.3(b)
and (c), which display the measured conductance curves for 0+ ≤ +�� ≤ +0.5+ and for
+0.6+ ≤ +�� ≤ +1.0+ , respectively, present a zoom-in on the area near pinch-off. A
serial channel resistance2 of '2ℎ = 3.5:Ω is subtracted to match the first conductance
plateaus to values of approximately 242/ℎ. For all +�� , we find three to four clear steps
in the conductance curve. However, for measurements around +�� ≈ +0.5+ , the second
plateau is only poorly developed, whereas higher conductance modes are again more

2Generally, the channel resistance of our devices is highly dependent on +(� in a non-linear fashion. The
high channel resistance near depletion quickly decreases with increasing +(� .
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pronounced. For higher+�� , we find the second step to re-emerge. Since this phenomenon
scales with the applied CG-voltage, and thus with the confining potential of the channel,
we attribute this behavior to a mode-dependent scattering at impurity disorder potentials.
Additionally, a fine structure of � develops for +�� > +0.9+ : A kink right under the first
conductance plateau evolves, together with superimposed conductance oscillations on
the first conductance plateaus. Since the channel resistance strongly depends on �, it is
rather intricate to clearly relate the kink in our measurement to the 0.7-anomaly [7, 137,
138]. We attribute such features in the sublevel spectrum, which we already observed in
the 1D transport study in chapter 6, to arise due to the presence of quasi-bound states
inside the 1D constriction. Consequently, this leads to an energy-dependent transmission
coefficient [144, 145, 148–150].

8.2.2 Asymmetric biasing VSG1 ≠ VSG2

Figure 8.4: Conductance curves of sample C160420B3 TrG1 at ) = 1.5 in
non-illuminated state, +�� = 0+ . (a) � as function of +(� for various +�� ,
increased in 0.1+-steps with an offset bias of |Δ+ | = 1+ applied between the
two SG-electrodes. (b) - (d): Comparison of symmetric (light grey curves), i.e.
|Δ+ | = 0+ , and asymmetric (dark grey curves), i.e. |Δ+ | = 1+ , SG-sweeps for
(b) +�� = +0.2+ , (c) +�� = +0.6+ , (d) +�� = +0.8+ .

In a next step, we start to shift the QPCs laterally in space. This is done by asymmetrically
biasing the two SG-electrodes: An offset voltage Δ+ is applied between SG1 and SG2
so that +(�1 ≠ +(�2. The SG-electrodes are then parallely sweeped into negative
direction towards channel depletion. Due to the applied Δ+ , the QPC channel is laterally
displaced in space as compared to the symmetrically biased case. Accordingly, the electric
environment of the 1D constriction is altered since the respective impurity arrangement is
different as the position of the QPC in the 2DEG changes [144]. By utilising this method,
we are able to circumvent individual scattering centers, which act upon the QPC.
Figure 8.4(a) shows several depletion curves for different CG-voltages of the same device as
analysed in the preceding subsection 8.2.1. Here, an offset voltage of |Δ+ | = 1+ is applied
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8 Ballistic conductance in InGaAs/InAlAs-based systems

between SG1 and SG2. For clarity, solely one sweep-direction of +(� is displayed since
the opening and depletion curves coincide. As for the symmetrically biased case, with
increasing+�� the conductance plateaus shift towards integer multiples of 242/ℎ. The first
two conductance steps are much more pronounced than for the previous symmetric SG-
sweeps with |Δ+ | = 0+ , which have been shown in figure 8.3. This phenomenon is most
pronounced in the second conductance step. Higher-order conductance steps, however,
are hardly distinguishable. By means of three exemplary conductance measurements
with different +�� , we compare the conductance features of the asymmetrically and
the symmetrically biased transport measurements of QPC C160420B3 TrG1: Figure
8.4(b) displays the symmetrically biased conductance measurement together with the
asymmetrically biased curve for a CG-voltage of +�� = +0.2+ , figure 8.4(c) shows the
two conductance curves for +�� = +0.6+ and figure 8.4(d) displays the measurements at
+�� = +0.8+ . These two sets of measurements are representative for the majority of the
conductance curves that we obtain with our devices. The horizontal offset between the
two conductance curves is due to the offset voltage |Δ+ | in the asymmetrically biased case.
We find the height, as well as the width of the conductance steps of the two measurements
to differ from each other for all three +�� . This clearly demonstrates that we face unique
scattering situations in all of the six different potential configurations, which we adjust by
+�� and |Δ+ |. Consequently, we conclude that impurity disorder in the vicinity of the
QPCs strongly influences the 1D transport properties in the devices.

Figure 8.5: Conductance curves of sample C160420B2 TrG1 at ) = 1.5 in the
non-illuminated state with an offset bias of |Δ+ | = 50<+ . The inset displays a
zoom into the area near depletion with '2ℎ = 2.8:Ω taken into account.

Figure 8.5 displays a particularly well-resolved conductance curve measured with one of
the InGaAs/InAlAs QPCs. Hereby, a CG-voltage of 0+ and an offset bias of |Δ+ | = 50<+
are applied. Four very robust and well-defined plateaus are clearly visible. Subtracting a
channel resistance of '2ℎ = 2.8:Ω matches the first two conductance steps well to 242/ℎ
and 442/ℎ. For higher-order steps, this value of '2ℎ does not result in even order of�. As
the effective width of the channel increases for those modes, the actual channel resistance
decreases and thus deviates more and more from this value of '2ℎ.
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8.2.3 Conclusion

Generally, we are able to effectively tune the conductance in our TrG-defined QPC
constrictions via the CG-electrode. Furthermore, the asymmetrical biasing of the SG-
electrodes presents a further control knob for the ballisticity in the system. Thereby, a
device-dependent optimum of ballistic conductance can be adjusted. For the application
of the QPC as , e.g., a charge sensor in a qubit device, a fine-tuning of the conductance
characteristics by moving the QPC in space is commonly used. For the all-electrical
spin-FET device, however, this tuning knob is not well-suited: The device concept is based
on two QPCs, which have to be perfectly aligned in the transport direction (see section
3.3). Consequently, a lateral shift of one QPC with respect to the other leads to enhanced
backscattering, which would deteriorate the ballisticity and hence the spin signal. Thus,
for more complex device applications, we suggest to improve the ballistic conductance in
the heterostructure by eliminating the mobility-limiting scattering mechanisms which
impair the ballisticity in the 1D channels. In our 2D transport study in chapter 7, we
identified the InAlAs deep level donor states as the dominating scattering source in the
material system. A reduction of the density of these defect states presents itself as pivotal
for the realization of multi-component mesoscopic devices.

8.3 1D conductance in alternative
heterostructures

The spin-FET device, presented in section 3.3, consists of two serial QPCs, which
exploit Rashba-type SOI in 1D constrictions whereby a highly spin-polarized current is
created. The spin-polarization direction of the current is modulated by a middle-gate,
which modifies the structural inversion asymmetry of the 2DEG via the applied gate
electric field. Accordingly, more intricate InGaAs/InAlAs-based heterostructures are
interesting substrate materials for this device application: An In0.75Ga0.25As QW with an
additional InAs inset offers a larger intrinsic SOI than a pure In0.75Ga0.25As QW [55]. In
addition, 2D electron systems, which are closer to the semiconductor surface - and thus
to the QPC-defining finger-gate electrodes - would be beneficial in the above described
device application, since the electric field of the gate electrodes is more well-defined as
compared to heterostructures with a larger InAlAs barrier thickness. Thus, we conduct
further experiments with alternative active layer systems in addition to the so far utilised
heterostructure, which is composed of a 130=< InAlAs spacer and a 20=< InGaAs QW.
Figure 8.6 displays a sketch of the gate stacking of a newly fabricated QPC device (sample
C160420A1 TrG53). The QW is composed of 16=< In0.75Ga0.25As with a 4=< InAs
inset. This two-step QW is separated from the dielectric layer by an In0.75Al0.25As spacer
layer with a thickness of approximately 90=<.

3The time stability of the conductance of this device has been already analysed in subsection 8.1.2.
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Figure 8.6: Sketch of
layer structure of sample
C160420A.

Figure 8.7(a) shows the conductance through the TrG-defined
constriction for various +�� . The SG-electrodes are biased
symmetrically. For clarity, only depletion curves are plot-
ted here, since we find the downwards- and upwards-swept
curves to coincide. The conductance measurements show
the expected gating response to an increase of +�� : The
pinch-off point +? of the conductance shifts towards more
negative values of +(� . Furthermore, we find that the higher
+�� is chosen, the better the quality of the conductance steps.
For all applied +�� , three to four conductance steps clearly
develop. In contrast to the samples discussed in the preceding
sections, however, we find the quantization steps to be less
uniform. The step height of the individual plateaus differ
strongly, which indicates a particular mode-dependency of the

transmission coefficients. Furthermore, some of the conductance steps, e.g., the first step
of the measurements with +�� = 0+ and +�� = 0.2+ , are hardly visible, yet re-emerge
for higher CG-voltages. These observations point towards an increase of the disorder
potential inside the heterostructure, affecting the transport through the QPC. Since we
have applied the same MBE growth conditions as for the previously studied samples,
we attribute the enlarged potential disorder primarily to the etching process (which was
employed in order to obtain the InAlAs surface termination) of the semiconductor surface.
We suppose that this process generates additional interface roughness. The reduction of
the InAlAs spacer thickness from 130=< to 90=< further enhances the impact of the
interfacial disorder potential on the 1D channel. To support this hypothesis, investigating
a greater number of samples is required to eliminate a misinterpretation based on the
limited statistics.

Figure 8.7: Conductance curves at ) = 1.5 in non-illuminated state with
'2ℎ = 0:Ω, +�� = 0+ and |Δ+ | = 0+ (a) Sample C160420A1 TrG5 : � as
function of +(� for various +�� . (b) � as function of +(� of four different
samples: sample A: C160420B2 TrG1, sample B: C160420B3 TrG1, sample C:
C160406B1 TrG1, sample D: C160420A1 TrG5.

Figure 8.7(b) depicts four conductance curves of different triple-gated QPC-devices,
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labeled as samples A to D, at a CG-voltage of 0+ . Samples A and B, which we already
analysed in the previous sections in this chapter, stem from different positions of the
same wafer, i.e. wafer C160420B. The newly analysed sample C is composed of a 2.5=<
In0.75Ga0.25As capping layer, a 35=< In0.75Al0.25As spacer and a 20=< In0.75Ga0.25As
QW. Thus, the distance between the QW and the semiconductor/dielectric interface is
significantly smaller than for all other tested devices so far. Sample D is the above
discussed QPC device C160420A1 (see figure 8.7(a)), whose conductance response is
plotted here for comparison. All four samples exhibit the SG-characteristic depletion-form
of the conductance curve. The 1D transport quality and behavior of sample A is equivalent
to the conductance in sample B: Although the depletion curves are horizontally shifted
with respect to each other, the conductance steps are well resolved in both measurements.
Hence, we conclude that the 1D transport properties in different QPC devices, which are
identical in composition, are well reproducible. Sample C, however, shows a quite different
transport behavior: Even for +(� = 0+ , we determine a high channel resistance, whereby
the conductance is reduced to around 642/ℎ (no serial resistance '2ℎ is subtracted).
Furthermore, we find the ballisticity in this device to be severely impaired since no clear
conductance steps develop, even when we increase+�� up to +2+ . Also a variation of+)�
does not improve the ballistic conductance in this device. Adversely, a hysteresis develops
for all applied +��-values as shown in figure B.4 in the appendix. We attribute this
hysteretic behavior to charge migration between defect states at the In0.75Ga0.25As/Al203
interface and the QW. Our experimental findings with sample C point to a markedly
enhanced influence of potential disorder on the 1D transport in surface-near devices.
Analysing the 2D gating response of this top-gated Hall bar sample while+(� = +�� = 0+
is applied reveals a saturation of =B for +)� > 0+ . The corresponding MT measurement
sequence is shown in figure B.2 in the appendix. This early onset of the charge density
saturation resembles our experimental findings in chapter 7 of sample �4 and of samples
� to �5. For these devices, we determined a large density of parasitic energy states
inside the dielectric and at the semiconductor/dielectric interface. However, for sample C
here, we employed the ameliorated device fabrication process, whereby the detrimental
interfacial density of states is expected to be significantly reduced. We interpret the
recurrence of the hysteretic gating response, as well as the formation of the parasitic
conductive interface layer even at small +)� to a charge transfer from the QW towards the
interface, mediated by the deep level InAlAs donor states owing to the reduced InAlAs
spacer layer thickness of 35=<.
We summarize that the heterostructure/dielectric interface clearly affects the robustness
of the QPCs in two ways: For etched heterostructure surfaces with a reduced spacer
thickness, the disorder potential in the constriction is increased, whereby our ability
to control the formation of conductance steps is limited. For surface-near samples a

4Sample � (wafer C160429A): Hall bar sample of a deeply buried and undoped
In0.75Ga0.25As/In0.75Al0.25As QW with 5=< InGaAs cap and no chemical removal of residual oxides.

5Sample � to � (wafer C160420B): Hall bar samples of a deeply buried and undoped
In0.75Ga0.25As/In0.75Al0.25As QW with 2.5=< InGaAs cap and no chemical removal of residual
oxides at the interface.
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8 Ballistic conductance in InGaAs/InAlAs-based systems

hysteresis develops between up- and down-sweeps due to an increase in charge migration
between QW and interface.

8.4 Conclusion
In this chapter, we demonstrated robust ballistic transport through our triple-gated QPC
devices, defined in (InAs/)In0.75Ga0.25As/In0.75Al0.25As deeply buried 2DEGs. In these
samples, conductance characteristics of depletion and opening curves coincide and are
highly reproducible. Furthermore, we are able to adjust electrically stable working
points on the conductance curves even near channel depletion which is a clear proof
of the efficient reduction of interface states in the heterostructures. In addition, the
ballistic conductance can be essentially improved with the application of a positive
CG-voltage, whereby the lateral confining potential is narrowed and deepend. This leads
to a perceptible increase of the 1D subband spacing, which suppresses disorder-induced
intersubband scattering and inhibits the creation of quasi-bound states. By shifting the
QPC laterally in space via asymmetrically biasing the SG-electrodes, we are able to
circumvent single scattering centers. Consequently, ballistic transport in the 1D channel
can be further facilitated. For heterostructures, being equipped with an InAs inset inside
the InGaAs QW and an InAlAs-terminated semiconductor surface, we determined the
conductance steps to be less uniform than for InGaAs-terminated samples with a 20=<
InGaAs QW. Increased interface roughness due to the etching process and the reduced
InAlAs spacer thickness are likely to generate an enhanced disorder potential, which
adversely affects the 1D sublevel spectrum.
Although, we could eliminate the hysteretic behavior for deeply buried QW samples
for both surface terminations, InGaAs and InAlAs, we find a pronounced shift of the
pinch-off point between the depletion and the opening curve of the 1D channel for near
surface QW samples. The charge redistribution during the pinch-off of the QPC confirms
our model in which charge transfer from the 2DEG towards the interface is mediated by
the InAlAs defect states. In addition, for highly conducting channels near the surface the
conductance steps are obscured in comparison to samples with a deeper buried 2DEG.
We attribute this observation to a more strongly disordered potential inside the QPC
channel, owing to increased interface roughness. However, we want to point out that
our experimental findings for samples C and D, studied in section 8.3, need yet to be
substantiated by a relevant number of devices to gain statistical significance.
In conclusion, for the realization of robust 1D transport, we recommend to further optimize
the MBE growth process in order to reduce the amount of deep level donor states inside
the InAlAs spacer layers. This would be beneficial in two different ways: First of all,
the potential fluctuations, introduced by the InAlAs defect states, would be minimized,
whereby quasi-bound states inside the 1D channel could be reduced. This would lead to a
general improvement of ballistic conductance. Secondly, band bending-induced charge
transfer should be diminished, which would yield a more robust 1D transport in QPC
devices.
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Signatures of Rashba-type
spin-orbit interaction

9

In this chapter, the peculiar gating response of the heterostructure in gating areas II, III and
IV, as introduced in chapter 7, is discussed. These gating regimes are characterised by a
decrease of the measured 2D charge carrier density when the TG-voltage is increased. The
physical origin of this behavior is well described by the charge transfer model, which we
developed in the course of our 2D gating study in chapter 7. What we have left unaddressed
so far are the observed undulations in the magnetooscillations in these particular gating
areas, giving rise to a second frequency in the corresponding FFT spectra. This chapter
serves to give a comprehensive discussion of this experimental finding. Furthermore,
we give an estimation of the strength of Rashba-type SOI in the heterostructure via a
self-consistent calculation of the band structure with a Schrödinger-Poisson solver in
conjunction with calculations employing the envelope function approximation within the
k · p -method.

9.1 Gating response of undoped InGaAs/InAlAs
heterostructure

In the following, we want to briefly recapitulate the underlying processes during the gating
of the non-intentionally doped In0.75Ga0.25As/In0.75Al0.25As heterostructures, which were
analysed in detail in chapter 7. To this end, we review the MT measurement sequence of
an exemplary top-gated Hall bar sample, sample �1, of our preceding gating study.
Figure 9.1(a) shows the corresponding measurement sequence of this sample, which has
been already discussed in section 7.2.4. Figure 9.1(b) displays exemplary measurement
curves of the magnetoresistivity dGG in gating areas II and III. The individual measurement
points are marked with colored dots in the gating curve in figure 9.1(a). After a linear
increase of =B along with +)� in gating area I, we find the charge density to saturate at
1InAlAs surface termination with Al2O3 as dielectric
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Figure 9.1: (a) MT measurement sequence of sample �. Roman numerals I to
VI denote the constituent gating areas. (b) Exemplary measurements of dGG (�)
in gating areas II and III as is indicated by the colored dots in (a).

=
?40:
B = 7.5 · 10112<−2 in the gate interval II, i.e. +0.8+ < +)� < +2.6+ , after which
=B starts to decrease with increasing +)� (gating area III), until saturation starts to set
in for +4.5+ < +)� < +5.5+ (regime IV). This transport behavior can be described by
means of our developed charge transfer model (see subsection 7.2.3). In gating area
III, we obtain a pronounced modulation of the magnetooscillations, which is shown in
figure 9.1(b). These modulations in dGG (�) resemble a superimposed long-wave envelope,
generating a recurrent compression of the oscillation amplitude of the Shubnikov-de
Haas oscillations in form of distinct nodes. Determining the charge density of the 2DEG
from the minima of the Shubnikov-de Haas oscillations does not yield a single value
for =(3� . Hence, figure 9.1(a) solely displays the measured value of =�0;; in regime III.
Furthermore, the undulations of the Shubnikov-de Haas oscillations are accompanied by
a parabolic background in dGG (�). This beating effect and the parabolic background in
dGG (�) vanish as soon as =B starts to saturate in gating area IV and V (see figure 7.13).
Thus, we find these peculiar features in dGG (�) to be limited to gating area III, which we
interestingly found to be characterised by the charge migration from the QW via deep
level donor states inside the InAlAs spacer towards the interface.
In a next step, to gain further information on the magnetooscillatory behavior, we
spectrally decompose and analyse the longitudinal resistivity measurement signals of this
MT measurement sequence.

9.2 FFT of magnetooscillations

The longitudinal resistivity dGG (�) as a function of 1/� is transformed into its constituting
frequency spectrum via a FFT. This yields the individual signals, which contribute to
the measured dGG (�) and exhibit a 1/�-periodicity such as for example the Landau level
DOS.
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Figure 9.2: Exemplary FFT routine of dGG (�) of a MT measurement of sample
� at +)� = +4.0+ , ) = 4.2 : (a) Raw-data of dGG over � (black line) with
a polynomial fit (cyan line). (b) Residual resistivity after subtraction of the
polynomial fit in (a). (c) Residual resistivity of (b) as a function of 1/�. (d)
FFT spectrum of signal in (c) with a double-peak structure 50 = 12.06) and
51 = 15.41) .

9.2.1 Exemplary FFT in gating regime III

Figure 9.2 illustrates, step-by-step, the FFT process of an exemplary magnetoresistivity
measurement in gating area III of sample �. The thereby employed raw-data of dGG (�)
for +)� = +4.0+ is shown in figure 9.2(a). The superimposed background is fitted with
a polynomial curve (cyan curve) and subsequently subtracted. This yields the residual
resistivity of dGG (�), plotted in figure 9.1(b), in which we find the modulation of the
oscillation amplitude to be better resolved. Given the periodicity of the Shubnikov-de
Haas oscillations over 1/�, the residual resistivity is then plotted as a function of the
inverse magnetic field as displayed in figure 9.2(c). For the FFT a rectangular window
function is applied to avoid a weighting of particular data-points. The Fourier transform
of the signal in (c) is plotted in figure 9.2(d), displaying its spectral composition. The
spectrum yields a clear double-peak structure with the amplitude maxima located at
50 = 12.06) and 51 = 15.41) . These frequencies are converted into the corresponding
electron densities =B via

5 −1 = Δ
(
1/�

)
= 2 · 4

=Bℎ
, (9.1)

where ℎ is Planck’s constant. For a spin-degenerate system, the factor two must be
included. With equation (9.1), we determine 50 and 51 to correspond to a charge carrier
density of =0 = 5.8 · 10112<−2 and =1 = 7.5 · 10112<−2, respectively. Generally, if
more than just one 2D channel contributes to the transport in a system, e.g., if multiple
size-quantized subbands of a QW are populated, the individual charge densities of the
participating subbands are summed up in the measured Hall density =�0;; as long as no
additional bulk conductance is present. For the here considered measurement, however,
we determine =∑ = =1 + =2 = 13.3 · 10112<−2, which is exactly twice the measured Hall
density =�0;; = 6.5 · 10112<−2. Thus, it seems unlikely, at first sight, that two parallel
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2D systems are active here. We will discuss the assignment of these two frequencies in
the remainder of this chapter.
In literature, such a modulation of dGG (�) is often interpreted as a sign of SOI, which is
very interesting in the context of our employed high SOC material system. However, there
are several microscopic effects, which may impose similar features on the Shubnikov-
de Haas oscillations. These should be carefully considered before analysing possible
signatures of SOI. In the following, we will thus in particular discuss features in dGG (�)
related to our applied evaluation method, as well as features in the magnetooscillations,
originating from size-quantization effects and which are worth to be considered in our
field-effect analysis.

9.2.2 Large magnetic field limit

Usually, in the literature, the FFT of the Shubnikov-de Haas oscillations is restricted to
small magnetic fields. This limitation is mainly motivated by two effects: The Zeeman
spin-splitting, as well as the breakdown of the semi-classical model description of the
Landau level DOS as a sinusoidal function of 1/� both lead to a modification of the
frequency spectrum of the longitudinal resistivity at sufficiently high magnetic fields.
These two mechanisms are discussed in the following.

Limits of the semi-classical description

As introduced in subsection 2.1.2, we can describe the magnetoresistivity of a 2DEG in
the limit of small magnetic fields by means of a semi-classical formula:

ΔdGG = d0+4 · 2c:�)<
∗

~4�
· 1
sinh 2c:�)<∗

~4�

·exp
(
− c<

∗

4g@
· 1
�

)
·cos

(2cE<∗
~4

· 1
�
−c

)
, (9.2)

with E = �� − �=, where �= is the energy of the nth subband and g@ is the quantum
lifetime [48]. This semi-classical description of dGG (�) is roughly valid for magnetic fields
for which l2g@ 5 1 still holds. For largermagnetic fields, however, themagnetoresistivity
starts to deviate from this behavior as dGG (�) vanishes over finite magnetic field intervals.
This effect, referred to as quantized Hall effect [53, 54], sets in when the Fermi level lies
in between two consecutive Landau levels and only negligible scattering of charge carriers
into neighboring extended Landau states takes place. We can determine g@ by means of
equation (9.2) from the linear slope of a Dingle plot, in which the exponential decay of
the Shubnikov-de Haas oscillation amplitude as a function of 1/� is evaluated, as long as
further modulations of the oscillation amplitude in dGG (�) are not present. Accordingly,
we cannot give an estimation of g@ in gating area III since therein the magnetooscillation
amplitude is modulated by the additional envelope function (see figure 9.1(b)). To this
end, we evaluate the amplitude decay of the Shubnikov-de Haas oscillations in gating area
I. This yields an upper limit for g@ in our samples, as the charge migration in gating areas
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II and III will tend to reduce the electron mobility in the heterostructures (see section
7.5.1). Based on this evaluation method of dGG (�), we find g@ to decrease with increasing
+)� at the end of gating area I and in gating area II. This is shown in the appendix
B.2. At +)� = +1.4+ , g@ is as low as 1.3 · 10−13B, which is about 30-times smaller than
the corresponding transport scattering time gCA , pointing towards long-range scattering
potentials [43]. This value of g@ limits the legitimized FFT interval to � ≤ 2) . Since we
assume a further drop of g@ in gating interval III due to effects from charge migration, we
do no not consider the above determined boundary value to be a hard limit.

Zeeman spin-splitting

An external magnetic field, breaking the time reversal symmetry, lifts the spin degeneracy.
For bulk semiconductors, in first order, the Zeeman spin-splitting Δ�/ is isotropic in
space and can be described with

Δ�Z = 6
∗`�� , (9.3)

where 6∗ is the effective Landé g-factor and `� is the Bohr magneton. Thus, the spin-
splitting strength is not only proportional to the applied magnetic field � but also to the
prefactor 6∗. Including the Zeeman spin-splitting from equation (9.3) into the description
of the Landau level eigenstates of equation (2.18) simply yields

�=GH = ~l2
(
=GH +

1
2

)
± 1

2
6∗`�� (9.4)

in the case of B ‖ z, with z being the growth direction. This energy spin-splitting enters the
description of the corresponding DOS of the Landau levels, provoking a modification of
the periodicity of the Shubnikov-de Haas oscillations at sufficiently strong magnetic fields.
Since the factor of two in equation (9.1) is not included anymore in the spin-split case, a
transition of the 1/�-periodicity of the magnetoresistivity at a frequency 5 to a harmonic
at 2 5 in the spectrum takes place if the Zeeman splitting is fully resolved [197]. Winkler
[55] pointed out that Zeeman spin-splitting does not affect the determined frequency 5
of the spin-degenerate oscillations in the Fourier power spectrum of dGG . Yet, it alters
the amplitude and phase of the Shubnikov-de Haas oscillations. Consequently, for our
experiments, we conclude from these considerations that while Zeeman spin-splitting will
induce a modification of the FFT of the magnetooscillations, yet it cannot be responsible
for the observed double-peak structure in the Fourier transformed power spectra in
gating area III. Moreover, Zeeman splitting is not resolved in our MT measurements for
� < 3.5) . Correspondingly, we expect Zeeman spin-splitting-induced features in the
magnetooscillations to be less prominent as compared to samples, for which Zeeman-type
spin-splitting is already resolved at low magnetic field values.
In the following, in order to test the dependence of the FFT spectra on the utilised B-field
interval, we contrast the Fourier transformed spectra for two different upper magnetic
field limits.
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9 Signatures of Rashba-type spin-orbit interaction

Comparison of B-field intervals for FFT analysis Figure 9.3 displays two FFT
spectra of the magnetoresistivity measurement of sample � at +)� = +4.0+ , determined
in different magnetic field intervals. The cyan curve displays a FFT spectrum, determined
in the magnetic field interval � ≤ 2) , legitimized by the semi-classical description in
the framework of the QHE, for a corresponding quantum lifetime of g@ ≈ 1.3 · 10−13B.
In contrast, the grey curve displays the Fourier transformed magnetooscillations in an
extended magnetic field range of � ≤ 4) , which we transformed in the FFT process
in figure 9.1. By comparing the Fourier transformed signals, we find both spectra to
exhibit the equivalent spectral information. However, the double-peak structure is not
fully resolved in the reduced magnetic field interval. Instead, the second peak appears
as a shoulder at the right side of the main peak at 5 ≈ 12) . We assign the undulated
background, which arises in both spectra, to be caused by the finite amount of Fourier
transformed oscillations in 1/� and by the abrupt ending of the transformation interval,
as well as by the residual background in dGG , which has not been fully eliminated by the
polynomial fit (see figures 9.1(a) and (b)). Mathematically, an interaction between the
two transport channels, which correspond to the observed main frequencies 50 and 51, is
likely to generate sum- and difference-frequency peaks in the spectral decomposition of
the signal. This will be further addressed in subsection 9.3.1.

Figure 9.3: Comparison of two FFT spectra of the magnetoresistivity of sample
� at +)� = +4+ , determined in different magnetic field intervals.

From the above analysis, we infer that using an extended Fourier transformed magnetic
field interval (here up to 4)) is not responsible for the generation of the observed double-
peak structure in our spectra. Restricting the applied FFT magnetic field interval to
� ≤ 2) solely deteriorates the spectral resolution of the transformation due to the reduced
number of included magnetooscillations.
In the following, we thus deliberately employ an extended magnetic field range for our
FFT analysis of the MT measurements in gating regime III to improve our analysis of the
observed frequency components.

9.2.3 Semi-classical simulation of the magnetoresistivity

We can further test the accuracy of our determined FFT frequencies, i.e. the charge
densities of the participating channels, by using the gained frequencies 50 and 51 to give
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a description of dGG (�) on the basis of the semi-classical formula (9.2).

Mathematical description

To this end, we exemplarily simulate the measured longitudinal magnetoresistivity of
sample � at +)� = +4.0+ (see figure 9.1(a)). We describe dGG (�) as a superposition
of two transport channels with the two charge densities =0 = 5.8 · 10112<−2 and
=1 = 7.5 · 10112<−2, deduced from our experiments through equation (9.1). The values
of =0 and =1 are employed to calculate the energy intervals E8 = �� − �8, 8 = 0, 1, of
the cosine-terms in equation (9.2). For the calculation of E8, we employ the 2D DOS
D2� (�) = m#

m�
= <∗

c~2 =
=8
E8 , using our experimentally determined value <∗ = 0.041 · <0

from chapter 5. Furthermore, we employ a quantum lifetime of g@ = 1.5 · 10−13B as
determined from the Dingle plot analysis given in the appendix in B.2. We additionally
include interaction between the two participating transport channels in the form of a
modified Shubnikov-deHaas oscillation amplitude, togetherwith a superimposed parabolic
background in dGG (�). In this description of dGG (�), the Landau level spin-splitting due
to the external magnetic field is not included. By comparing the experimentally obtained
curve of dGG (�) to our fit - besides the verification of our determined charge densities - we
can expect to be able to identify Zeeman splitting-induced deviations from our assumed
semi-classical model description of the Shubnikov-de Haas oscillations.

Comparison of calculation and experiment

Figure 9.4(a) displays the experimentally determined longitudinal resistivity (solid line),
together with the semi-classical simulation of dGG (�) (dashed line) as described above
for � < 4) . The two curves are vertically offset for clarity. We find the simulated
curve of dGG (�) to be in excellent agreement with the experiment since we are able to
reproduce all important features of the measured magnetoresistivity, i.e. the extrema of
the Shubnikov-de Haas oscillations and the node positions of the superimposed envelope
of dGG (�). For � > 3.5) , however, we find the simulated curve to start to deviate from
the experiment. We attribute this variance to the Zeeman effect.
The good reproducibility of the measured curve with a simulation based on equation (9.2)
gives further weight to our input parameters: the estimated value of the quantum lifetime
g@, as well as the determined charge densities =0 and =1, stemming from the FFT in the
extended magnetic field range. Figures 9.4(b) to (e) display the step-by-step FFT method,
presented in subsection 9.2.1, which we now apply on the simulated curve of dGG . Hereby,
we can test the influence of the mathematical FFT process on the obtained results. For
the FFT of the fit signal, we receive two distinct frequencies 5 B8<0 and 5 B8<

1
. Converting

these frequencies into the corresponding spin-degenerate charge densities yields =B8<0 and
=B8<
1

, which are identical to the densities =0 and =1 that we used as input parameters to the
simulation. Unlike in the FFT of the experimental curve, however, we find no significant
background in the spectral decomposition of our simulated curve. Since we applied the
same FFT window function for the simulated curve as for the experiment, we attribute
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9 Signatures of Rashba-type spin-orbit interaction

Figure 9.4: (a) Solid curve: dGG
of sample � at +)� = +4.0+ ,
dashed curve: semi-classical
model description of dGG (�)
with =0 = 5.8 · 10112<−2 and
=1 = 7.5 · 10112<−2 for a spin-
degenerate system. (b) Polyno-
mial fit (cyan) to calculate dGG (�)
from (a). (c) Residual resistivity
as function of �. (d) Residual
resistivity over 1/�. (e) FFT of
residual resistivity from (d).

this difference in the arising background to the Zeeman splitting (not contained in the
simulation), as well as to interaction effects between the two participating channels.
In conclusion, the comparison between the FFT of the simulation and of the experiment
confirms our assumption that the FFT process itself does not significantly alter the charge
densities determined from the experimental data.

Determination of the g∗ factor

As introduced in subsection 9.2.2, the strength of the Zeeman spin-splitting Δ�/ and thus
its experimental resolution in a MT measurement depends on the energy broadening of
the Landau levels. There are two effects, which primarily determine the level broadening
in our system: Firstly, the thermal energy Δ�)ℎ blurs the sharpness of a Landau level,
and, secondly, scattering processes inside the extended states of a Landau level lead to
a level broadening Γ. By employing the experimentally determined resolution limit of
the Zeeman spin-splitting, we are able to give an estimation for the value of the effective
|6∗ |-factor of the material system.
In the MT measurements in the linear field-effect regime I of sample �, we determine
the Zeeman spin-splitting to be clearly resolved for � ≥ 3.5) . When assuming that the
Landau level broadening is dominated by the thermal energy at ) = 4.2 of the system,
we can write Δ�/ = Δ�)ℎ, with Δ�)ℎ = :�) = 0.36<4+ being the thermal energy and
:� the Boltzmann constant. Thus, considering only thermal broadening, the estimation
of |6∗ | yields: |6∗ | ≈ :�)

`��
= 1.8.

In the field-effect study in chapter 7, we found that the transport properties of the samples
are strongly affected by elastic and inelastic scattering processes. Consequently, we now
determine the value of the effective |6∗ |-factor by assuming the resolution of Zeeman
spin-splitting to be determined by the scattering-induced level broadening Γ. To this
end, we parameterize Γ by means of the single particle lifetime g@. For gating area I, we
determined g@ ≈ 1.3− 1.9 · 10−13B. Thus, the Lorentzian-shaped energetical Landau level
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9.2 FFT of magnetooscillations

broadening Γ is calculated as Γ = ~
2g@ ≈ 2.5<4+ [48] from which we can deduce 6∗.2

With 6∗`�� = Γ, we determine |6∗ | ≈ 10. This is congruent with findings in literature:
Holmes et al. [117] report an effective g-factor of |6∗ | ≈ 9 in their nominally undoped
In0.75Ga0.25As/In0.75Al0.25As heterostructure. By means of the coincidence method, Sato
et la. [199] experimentally deduce 6∗ to lie within the range of -7 to -14.
On account of the larger effect on the Landau level broadening, we conclude that the
resolution of Zeeman spin-splitting is controlled by scattering-induced level broadening.
Thus, we infer a |6∗ |-factor of 10 in our system.

9.2.4 Gate voltage dependence of FFT spectra

After validation of our FFT evaluation method, we now discuss the Fourier transformed
signal of the MT measurements of dGG of sample � in gating areas II, III and IV,
following the FFT procedure as we described in the preceding course of this section. The
corresponding measurement curves are displayed in figure 9.5(a). We find the beating
of the magnetooscillations to be most pronounced in the middle of gating regime III at
+)� ≈ +3.5+ and +)� ≈ +4.0+ . With the onset of regime IV, i.e. +)� ≥ +4.5+ , the
beating in dGG (�) starts to diminish. Figure 9.5(b) shows the spectral evolution of the
Fourier-transformed magnetoresistivity in the TG-voltage interval +0.8+ ≤ +)� ≤ +5.0+ .
The individual curves are vertically offset for clarity.

Figure 9.5: (a) MT measurements of dGG (�) of sample � in gating area II, III
and IV at ) = 4.2 . (b) FFT spectra for +)� interval from +0.8+ to +5.0+ ,
vertically offset for clarity.

During gating interval II, we solely find a single peak in the Fourier-transformed
curves, centered at 5 ≈ 15) , which corresponds to a charge density of =��) = 2 4

ℎ
5 ≈

7.3 · 10112<−2. In this gating interval II, we find =��) = =(3� = =�0;; . With the onset of
2Note, that this is a rough estimate for Γ since we neglected a B-field dependence of Γ, i.e. Γ� = Γ

√
�

[198].
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9 Signatures of Rashba-type spin-orbit interaction

gating area III, i.e. +)� > +2.0+ , in which a significant electron transfer from the QW
towards InAlAs defect states sets in, an additional peak develops as a shoulder to the main
peak in the Fourier spectrum. For increasing +)� the peaks become similar in height and
slightly shift in horizontal direction. Yet, and notably, the substantial loss of electrons in
the 2DEG in regime III does not manifest itself in a shift of the corresponding magnitude
in the FFT signal. Calculating the Shubnikov-de Haas charge density =(3� , we find that
the double-frequency structure translates into a set of two different electron densities
=+
(3�

and =−
(3�

, which do not coincide with the measured =�0;; . We determine =+
(3�

to be
slightly larger than =�0;; , and =−(3� to be slightly smaller than =�0;; . With the onset of
the saturation in =�0;; in gating area IV, one frequency starts to vanish, until a single peak
at 5 ≈ 12.3) is left, corresponding to a charge density of =��) ≈ 6.0 · 10112<−2 = =�0;; .
In regime V, we find =��) = =(3� = =�0;; to be valid again.
If we summarize at this point, we have excluded the double-frequency structure in regime
III to be a result of our choice of data sets and of the data processing. Also, we find
the evolution of this feature with gate voltage to be peculiar. Indeed, the mere decrease
of =B in regime III does not explain the occurrence of a double-peak signature and its
gate-dependent evolution. In the following, we will thus discuss in more details possible
physical mechanisms.

9.3 Double-peak generation in FFT

There are several relevant mechanisms in gated 2D systems, which can lead to the
generation of multiple frequencies in the FFT spectrum of the magnetoresistivity. At
high charge carrier densities, size-quantization effects need to be taken into account when
analysing and interpreting MT measurements. Furthermore, the impact of SOI needs
to be considered in our high intrinsic SOC material system. These two effects will be
discussed in the following.

9.3.1 Size-quantization effects

Influence of remote 2nd transport channel

One possible origin of the obtained modulation of magnetooscillations is the effect of a
spatially separated remote transport channel inside the system. However, as we thoroughly
discussed in chapter 7, we are able to exclude the participation of a second transport
channel in gating areas I to IV. The parasitic conductive layer, which is not fully developed
until area V, manifests itself only as a loss of capacitive coupling to the QW channel, yet
not in the form of a frequency modulation of the Shubnikov-de Haas oscillations. Thus,
we exclude a remote 2D transport channel to contribute to dGG (�) in gating areas II to
IV.
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9.3 Double-peak generation in FFT

Second subband population

A further possibility of the influence of size-quantization on the magnetooscillations is
the participation of a second subband of the QW-2DEG to the transport. In subsection
2.1.1, we introduced the effect of parallel transport on the Drude conductivity, and thus
on the obtained Hall density =�0;; . Therein, we determined =�0;; to be a function of the
individual charge densities of the participating channels, weighted by the corresponding
mobilities of the charge carriers. Considering two 2D subband channels to participate in
transport with =1 and `1 characterising the ground subband and =2 and `2 characterising
the second subband, we can write in the limit of `2 � `1, which will generally be true
for a newly populated second subband

=�0;; =
(=1`1 + =2`2)2

=1`
2
1 + =2`

2
2
≈ (=1`1 + =2`2)2

=1`
2
1

. (9.5)

After expansion, we get

=�0;; ≈ =1 + 2=2 ·
`2
`1

. (9.6)

From this relation we draw two main conclusions: Firstly, even in the case of a reduced
mobility in the ground subband due to scattering into the second subband, the weighting
of the density =1 with mobility `1 in equation (9.5) can be neglected. Thus, =1 does
not decrease significantly when a second subband is newly populated. This implication
is particularly interesting with regard to the density drop in gating areas II to IV. We
thus find equation (9.6) to further confirm our developed charge transfer model from
chapter 7, where we assigned the density drop beyond the linear gating regime I to charge
migration towards the interface. Secondly, in the limit of a newly populated second
subband, implying =2 ≪ =1 and `2 ≪ `1, we find =�0;; ≥ =1 clearly to be valid since
=�0;; contains both subband contributions.
Moreover, the FFT peak of a newly populated subband should evolve from the low
frequency side towards the main peak as soon as the subband becomes sufficiently mobile.
Such an evolution is not observed for any of our analysed undoped Hall bar devices. In
addition, self-consistent band structure calculations with a Schrödinger-Poisson solver
yield a significant onset of second subband population to take place for charge densities
of =B ≥ 8 · 10112<−2, that is densities that are larger than the ones that we encounter in
our samples.
Hence, we exclude the population of a second size-quantized subband to be responsible
for the double-frequency generation in the FFT spectra.

Magneto-intersubband scattering

As we introduced in subsection 2.1.2, there is a further effect how a second size-quantized
subband can affect the magnetooscillations in a 2D system: The simultaneous Fermi
level crossing of two sets of Landau levels, corresponding to two spatially non-separated
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9 Signatures of Rashba-type spin-orbit interaction

size-quantized subbands of the 2DEG, gives rise to the generation of additional terms
in dGG (�) due to subband interaction. This effect is commonly referred to as magneto-
intersubband scattering (MIS). These terms contain the sum- and difference-frequencies
of the participating subbands, i.e. 51 + 52 and 51 − 52 in equations (2.32) - (2.34) in
subsection 2.1.2. 51 corresponds to the ground subband with a respective charge density
=1 and 52 to the second subband with charge density =2.
We now follow the hypothesis of MIS to be present in our system to discuss its effect
on the transport properties. Since the mobility `2 and the density =2 of the second
subband are generally distinctly smaller than `1 and =1, 52 can be solely resolved for a
sufficiently strong second subband population. Thus, the second term in equation (2.32)
can be neglected in our analysis, in accordance with our argumentation in subsection
9.3.1. Consequently, the two additional sidebands with frequencies 51 + 52 and 51 − 52
from equation (2.34) to 51 would be most likely to emerge in the FFT spectra in our
heterostructures. With 52 � 51 , the sum- and difference-frequency terms would give
rise to nearby peaks to the fundamental frequency 51, similar to the double-frequency
peak in our FFTs in regime III. For higher temperatures, the sum-frequency-contribution
to the total magnetoresistivity is strongly damped due to the � (2-)-factor in equation
(2.34), whereas the difference-frequency contribution experiences no thermal damping
at all. The latter contribution is therefore considered as the leading term in the limit of
higher temperatures, since the Shubnikov-de Haas oscillations also attenuate with rising
temperature. Correspondingly, we infer that the frequency contribution of the ground
subband 51 together with the difference-frequency 51 − 52 would be likely to dominate the
FFT spectra of our MT measurements in the case of MIS. Following the evolution from
the single peak FFT spectra in gating area I and II to the double-peak structure in gating
area III (see figures 9.1 and 9.5), we assign the FFT peak at 51 = 15.3) to the ground
subband. Consequently, in the hypothesis of MIS, we would interpret the newly arising
second peak in the FFT spectra in regime III as an MIS peak, expected at 51 − 52. This
assignment would also fulfill the mandatory condition ( 51 − 52) < 51.
Taking the exemplary MT measurement at +)� = +4.0+ , we determine a second
frequency 51 − 52 ≈ 12) , indicating 52 ≈ 3.3) . Calculating the corresponding charge
carrier densities via = = 2 4

ℎ
5 yields =1 = 7.3 · 10112<−2 and =2 = 1.6 · 10112<−2.

Accordingly, the sum of the charge densities of the two participating transport channels is
=∑ = =1 +=2 = 8.9 ·10112<−2. The corresponding measured Hall density at+)� = +4.0+
is =�0;; = 6 · 10112<−2, whereby we find =�0;; < =1 � =∑. This is in contradiction to
formula (9.6), which implies =�0;; ≥ =1. Consequently, we have refuted our above made
hypothesis and conclude that MIS is not responsible for the second frequency generation
in our system.
A further, yet more hand-waving argument, which additionally disprovesMIS to be present
in our system, is given by following considerations: To ascribe the double-peak structure
in regime III to the MIS would imply that intersubband scattering gets more pronounced
as the QW density decreases and thus, the Fermi level descends. This reasoning leads the
assumption of MIS to be present ad absurdum.
Thus, we are able to clearly exclude MIS to be responsible for the observed second
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frequency in the MT measurement in gating regime III.

To summarize, we have carefully analysed the signatures that size-quantization would
induce in the magnetooscillations of our system and we were able to exclude these effects
to be responsible for the observed double-frequency generation in the FFT spectra. Since
we have also excluded evaluation artifacts to be accountable for the obtained second
frequency in dGG , we correspondingly conclude SOI to give rise to the modulation of the
Shubnikov-de Haas oscillations in gating regime III. This assignment is rather surprising
since the electric field at the QW in gating area III is decreasing due to the migrated
electrons towards the interface and shall be discussed in more details in the remainder of
this chapter.

9.3.2 SOI effect

Even without the application of an external magnetic field, spin degeneracy can be
effectively lifted in non-centrosymmetric crystals. This relativistic effect couples the spin
of the electron to its motion and results in a :-dependent effective magnetic field Beff ,
which acts on the spin. Generally, as we discussed in chapter 3, zero-field spin-splitting
can arise due to a microscopic crystal potential (BIA), as well as due to a structure-induced
inversion asymmetry (SIA), generated by a macroscopic potential. Both types of SOI
lead to a modification of the dispersion relation of the 2D electron systems, consequently
affecting the magnetooscillations.
In the following, we discuss the origin and strength of the experimentally observed SOI
in our 2D electron system.

9.4 SOI in undoped InGaAs/InAlAs systems

9.4.1 SOI effects in magnetooscillations

In chapter 3, we deduced that Dresselhaus-type SOI can be neglected in our heterostructure
as compared to the Rashba-type SOI. This conclusion is based on experimental and
theoretical findings in literature. Furthermore, Winkler [55] showed in his calculations
that at an external electric field of around 40:+/2< the SIA contribution clearly dominates
over BIA in 2D systems. We can further exclude that our system is in a stable persistent
spin helix (PSH) state, since we find no signs of spin-splitting in the measurement of the
magnetoresistivity in the linear gating area I, in which the electric field at the QW interface
is changed by more than 70:+/2<. An externally applied electric field modulates the
Rashba spin-splitting, yet leaves SOI due to BIA unaltered. Correspondingly, we reason
that even if the condition V = ±U, with U being the SOC constant due to SIA and V being
the SOC constant due to BIA, is fulfilled at a particular +)� , the PSH state is clearly
detuned in the course of the MT measurement sequence. Consequently, we attribute the
amplitude modulation of the magnetooscillations to Rashba-induced SOI and neglect
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Figure 9.6: (a) FFT spectra of the MT measurements of dGG in gating area III,
vertically offset for clarity. (b) U��) and =�0;; as a function of the applied +)� .
The solid vertical lines denote the particular error bar for the calculated value of
U��) .

Dresselhaus-type SOI in the following analysis of SOI strength in the heterostructure.

9.4.2 Evaluation of SOI strength

In subsection 3.2, we presented two evaluation methods with which the strength of
Rashba-type SOI can be deduced by analysing the beating in the magnetooscillations
in a MT measurement. These two methods are employed in the following to give an
estimation of the strength of SOI in our heterostructure.

9.4.3 FFT analysis

The spectral analysis of the magnetooscillations via FFT provides one possibility to
experimentally determine the strength of SOI in the system. When employing this method,
one should recognize that Zeeman spin-splitting is included in this quantitative evaluation
approach of spin-splitting.
We analyse the FFT spectra of sample � of gating area III, which are shown in figure
9.6(a). To this end, we convert the obtained two frequencies into the corresponding
electron densities, now for the spin-split case, i.e. = = 4

ℎ
5 , whereby we gain the charge

densities =+B and =−B . Following the evaluation approach we presented in section 3.2, we
are able to calculate the Rashba parameter U��) of the 2D electron system with equation
(3.15). Figure 9.6(b) shows the thereby determined values of U��) as a function of the
applied +)� , together with the corresponding Hall density =�0;; . The error bars indicate
the uncertainty of U��) when deduced from our MT measurements. The magnitude of
the assumed error is composed as follows: Primarily, the resolution of the determined
Rashba parameters is limited by the energetical Landau level broadening Γ, determined by
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Figure 9.7: Resolution limit of U��) under the condition of Δ�BB > Γ under the
assumption of a constant g@ = 0.15?B during gating area I.

the quantum lifetime g@, in our MT measurements. Furthermore, the finite temperature,
the length of the Fourier-transformed magnetic field interval, as well as the charge
carrier density, which is related to the number of Shubnikov-de Haas oscillations in the
analysed magnetic field interval, affect the FFT resolution and thus the accuracy of the
calculated value of U��) . With Δ�BB = 2U: , we can convert the above determined
Landau level broadening of Γ = ~

2g@ ≈ 2.5<4+ , for which we assumed a constant value of
g@ ≈ 0.15?B, into the corresponding uncertainty of the determined value of U��) . The
thereby determined resolution limit of the Rashba coefficient U��) as a function of the
total charge density =B is plotted in figure 9.7. At the end of gating area I at a charge
density of =B ≈ 6 · 10112<−2, we find that Rashba-type SOI is not resolved in our MT
measurements until U��) > 0.56 · 10−114+<. For a charge density of 3 · 10112<−2, the
SOI strength has to be as high as 0.8 ·10−114+< so that we are able to resolve spin-splitting
via FFT of dGG in the system. This demonstrates a rather poor and strongly g@-dependent
resolution of the SOI strength in the system. Correspondingly, we neglect uncertainties
induced by the temperature and the finite number of analysed magnetooscillations in our
evaluation of U��) , since we expect them to be comparably small. Given that only one
frequency in the FFT spectrum of dGG is observed, we were not able to determine a value
for U��) in the gating areas I, II, IV, V and VI of our MT measurement sequence. A
meaningful evaluation of SOI strength in these gating regimes is thus not possible owing
to the poor resolution.
The determined values of the Rashba parameters via the FFT analysis are shown in
figure 9.6(b) as a function of the applied TG-voltage. At the beginning of gating regime
III at +)� = +2.5+ , we find a Rashba parameter of U��) = 1.85 · 10−114+< . The
determined values of U��) peak in the middle of gating area III, where the modulation of
the magnetooscillations is also found to be most pronounced. The maximum value is as
high as 2.4 · 10−114+<. To our knowledge, this is one of the highest Rashba parameters
reported for nominally undoped top-gated In0.75Ga0.25As/In0.75Al0.25As heterostructures.
To the end of gating regime III at +)� = +4.5+ , where we find the beating in dGG (see
figure 9.5(a)) to be less pronounced, we determine U��) = 1.5 · 10−114+<.

161



9 Signatures of Rashba-type spin-orbit interaction

Figure 9.8: (a) U=>34 and U��) with (b) the corresponding spin-splitting energies
ΔEBB,=>34 and ΔEBB,��) as a function of +)� . The vertical lines indicate the
respective error bars.

We determine the Rashba-type SOI strength for the top-gated samples � to # - when
possible - analogously. Clear double-peak features always solely appear in gating regime
III and yield maximal Rashba parameters U��) in the range of 1.7 − 2.7 · 10−114+<.
Generally, for InGaAs-capped samples a smaller number of Shubnikov-deHaas oscillations
is resolved, which leads to a further degraded spin-splitting resolution in these samples.
For sample �, for example, only one MT measurement exhibited a fully conclusive FFT
spectrum with a clear double-peak structure with U��) ≈ 2.7 · 10−114+<. Figure B.7
in the appendix B shows the FFT spectra and the determined SOI strength of an InAs/
InGaAs/ InAlAs heterostructure (not included in our 2D gating study in chapter 7).

9.4.4 Beating-node analysis

In the previous FFT evaluation method of the Rashba SOI, the influence of the Zeeman
effect on the magnitude of the estimated spin-splitting has been neglected. Even though
we argued in subsection 9.2.2 that Zeeman spin-splitting should play a minor role for
spin-splitting in our samples for � < 3.5) , we assume the determined values of U��)
include a contribution to spin-splitting due to the Zeeman effect. As presented in chapter
3, there is a second evaluation method of SOI via the magnetooscillations. Therein, the
beating-node position of the Shubnikov-de Haas oscillations is analysed.
We employ this evaluation procedure for the top-gated Hall bar samples � to # from
chapter 7. A meaningful value of the Rashba coefficient by means of this evaluation
method can only be determined for measurements where at least three clear nodes in
dGG (�) are identified, so that the determined node-position can be described with a linear
fit. Figure 9.8(a) shows the determined values for U=>34 for sample � in gating regime III,
together with the determined values of U��) for comparison. The error bars of U=>34 are
set by the linear fitting procedure. In the measurement of the magnetoresistivity of sample
�, we find at least three distinct nodes at +)� = +3.0+ , +3.5+ and +4.0+ . The values
of U=>34 lie within the estimated error range of the determined values of U��) and thus
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confirm the occurrence of this giant SOI in gating regime III. For all three measurements,
we find U=>34 ≤ U��) . This is consistent with the expected overestimation of the SOC
strength with the FFT analysis due to the impact of Zeeman spin-splitting. Generally,
as determined from the ratio U��)/U=>34 , we determine that the Zeeman contribution
makes up 5 - 10% of the total spin-splitting. As in the evaluation of SOI via the FFT
analysis, we find the beating-node position evaluation method to be less often applicable
for InGaAs-capped samples since the node positions are less clear developed.
Figure 9.8(b) displays the corresponding :-dependent spin-splitting energies Δ�BB for the
SOC parameters U��) , (Δ�BB,��) ) and for U=>34, (Δ�BB,=>34). A maximum spin-splitting
of Δ�BB of almost 10<4+ is obtained for sample � at a total 2D electron density of
= = 6.5 · 10112<−2. With the determined value of |6∗ | = 10 in our samples, the Zeeman
spin-splitting energy takes the value of Δ�I = 2<4+ at a magnetic field of � = 3.5) .3
Comparing Δ�I to the SOI-induced spin-splitting energy Δ�BB, we find Δ�I � Δ�BB
in the whole analysed B-field range via FFT. Thus, the overestimation of the Rashba
parameter via our employed FFT analysis is small. This is also reflected in the rather good
agreement of U��) with U=>34, where Zeeman spin-splitting is not incorporated.
In the next subsection, the microscopic origin of this peculiar gating-dependence of
Rashba-type SOI is discussed.

9.4.5 Discussion

All analysed top-gated Hall bar samples � to # from chapter 7 exhibit an equivalent
gating response as sample �, which we have discussed in more detail: After the
linear gating response of the charge carrier density =B in regime I, =B decreases with
increasing TG-voltage (regime II, III and IV). The density decrease in gating areas II,
III and IV is attributed to a pronounced charge migration from the QW towards the
semiconductor/dielectric interface via the deep level donor states inside the InAlAs spacer
layer according to our charge transfer model. In gating area III, we find clear evidence
of a large Rashba-type SOI in our MT measurements in the form of a beating in the
longitudinal resistivity dGG (�). These undulations of the Shubnikov-de Haas oscillation
amplitude vanish when we enter the transitional regime IV (+)� > +4.5+) to the saturation
regime V, in which we have no longer capacitive coupling to the 2DEG due to the formed
parasitic conductive layer at the semiconductor/dielectric interface. The assignment of our
experimental observations in dGG (�) to SIA-induced SOI is not evident at first sight since
the total electric field at the QW is a superposition of the positive applied TG-voltage
and the electric field, which is generated by the migrated electrons. Additionally, the
ionized impurity potential of the InAlAs defect sites acts on the 2DEG. From this simple
view, one would expect the electric field acting on the conduction electrons and thus the
Rashba-type SOI to be reduced in regime III as compared to the end of the linear regime

3As described in 3.2.2, via the node analysis we acquire values for the 6∗-factor from the linear fitting of
the node-positions. However, these values scatter strongly. They accumulate around values of 6∗ = −15,
yet exhibiting an error bar almost equal in size.
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I (in which no beating in dGG (�) is present).
A key observation in our experiments is that measurable SOI effects in our heterostructures
solely arise in gating area III in which charge migration from the QW towards the interface
takes place and a significant amount of electrons is located at InAlAs defect sites in
the upper barrier layer. To visualize this situation, we self-consistently calculate the
band structure of our gate stacking with a Schrödinger-Poisson solver [119–122]. In our
simulations, we compare three exemplary electrostatic situations in the heterostructure,
which are assigned to different gating areas in our MT measurement sequence. These
band structure simulations are further evaluated by calculations in the envelope function
approximation within the k · p -method, in which we use the total electric potential,
calculated with the Schrödinger-Poisson solver, as input parameter. Performing a general
folding-down procedure, the Rashba SOC parameter is calculated [55, 79, 200, 201].4 We
want to emphasize that we do not intend to give an exact value of the Rashba coefficient
with these calculations since we are aware that we lack an exact knowledge of the complex
electrostatics in our gate stacking, i.e. the distribution and ionization of the deep level
donor states inside the InAlAs barrier layers, as well as of the electron population of
semiconductor/dielectric interface states. Instead, we aim to analyse the experimentally
observed trend of the evolution of the Rashba-induced SOI strength in our heterostructure
during gating. To this end, we employ simplified model assumptions of the density
and ionization state of the InAlAs deep level donor states in the Schrödinger-Poisson
simulations.
A sketch of the utilised layer system is shown in figure 7.1(a). The metal gate electrode
is separated by a layer of 50=< Al2O3 from the underlying semiconducting layers: a
2.5=< InGaAs capping, a 130=< InAlAs spacer and the 20=< InGaAs QW. The electron
accumulation at the semiconductor/dielectric interface, arising due to residual energy
states at the interface (see chapter 7) is accounted for as a thin negatively charged layer
in these simulations. Since we want to give a qualitative picture, we choose an InAlAs
deep level donor density of =�,1 = =�,2 = 3 · 10162<−3, which is rather large compared to
literature, being evenly distributed inside the InAlAs layers, for the calculations. The TG
electric field inside the heterostructure is modeled by the applied bias at the metal gate
electrode. Figure 9.9(a) displays the conduction band profile ��� at the Γ-point (black
solid line) as a function of the growth-direction I for which the applied TG-voltage +)�
is set to 0+ . The heterostructure is arranged in such a way that the InGaAs cap ends at
I = 0. Thus, the top InGaAs-QW interface is positioned at I = 132.5=<, the bottom
QW interface at I = 152.5. In negative I-direction, we find the high-band gap insulator,
followed by the metal gate electrode. The blue dashed line indicates the InAlAs deep
level donor density in the heterostructure, the black dashed lines indicate the density of
the ionized InAlAs deep level donor states. The negatively charged interface layer and
the asymmetric ionization of InAlAs defect states above and beneath the QW lead to
an asymmetric conduction band profile even in the zero-biased case. A zoom into the

4The calculations were performed by Dr. Paulo E. de Faria Junior from the group of Prof. Dr. Jaroslav
Fabian.
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Figure 9.9: (a)−(c): Band structure simulation, corresponding to regime I, with
VTG = 0V, nD1 = nD2 = 3·1011cm-2 evenly distributed in the InAlAs spacer layers.
(d)−(f): Band structure simulation, corresponding to the end of regime I, with
VTG = +1V, nD1 = nD2 = 3·1011cm-2 evenly distributed in the InAlAs spacer
layers. (g)−(i): Band structure simulation, corresponding to regime II, III and
IV, with VTG = +1V, nD1 = nD2 = 3·1011cm-2 evenly distributed in the InAlAs
spacer layers and artificially deionized in the z-interval [50nm, 120nm].
The plots (a), (d) and (g) display the conduction band edge ��� at the Γ-point as
solid line (a.u.) with the total density of the InAlAs defect states (cyan dotted
line) and the ionized density of the InAlAs defect states (black dotted line).
Figures (b), (e) and (h) show the conduction band edge (solid line) with the
wave function probability |Ψ|2 (dotted line). Figures (c), (f) and (i) present the
conduction band edge (dotted line) with the derivative of the potential weighted
by the wave function probability, i.e 3i/3I |Ψ|2 (solid line).
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band profile in the vicinity of the QW, shown in figure 9.9(b), displays an asymmetric
tilting of the QW towards the bottom QW interface. The wave function probability
|Ψ(I) |2 is indicated as dotted line. Figure 9.9(c) shows a plot of the electric field in the
heterostructure, i.e. 3i(I)/3I, weighted by |Ψ(I) |2. According to equation (3.9), the
barrier contribution to the Rashba coefficient scales with the band offsets weighted by
|Ψ(I) |2 at the bottom and top barrier QW interfaces [80–82, 84]. For the electrostatic
situation shown here in figures 9.9(a) to (c), we find the contributions of the top and
bottom QW interfaces to almost cancel each other. Furthermore, the strength of the
electric field inside the QW, giving rise to a non-interfacial contribution to the Rashba
coefficient, is small. We thus may expect the Rashba-induced SOI in the case of+)� = 0+
to be below our limit of detection with MT measurements. From the calculations of the
strength of SOI by means of the band structure simulations, we find a Rashba coefficient of
U = −0.1 ·10−124+<. This value is far below the resolution limit in ourMTmeasurements.
The calculation also tells us that the interface and the non-interface contribution terms
(see section 3.2) are comparable in magnitude. Both, the value and the comparable small
contributions of interface and non-interface, are consistent with the observed absence of
SOI effects in the longitudinal resistance in gating regime I.
Figure 9.9(d) displays an electrostatic situation that corresponds to the end of the linear
gating area I of our MT measurements, for which +)� = +1.0+ is applied. As compared
to figure 9.9(a) with+)� = 0+ , we find the conduction band profile to be tilted downwards
here. Figure 9.9(e) displays a zoom into the conduction band profile in the vicinity of
the QW, for which the corresponding wave function probability is plotted as a dotted
line. This configuration presents itself as more symmetric than the band profile in the
zero-bias case. We assign this development to a compensation of internal electric fields
and the external TG-field. As illustrated in figure 9.9(f), the symmetric arrangement of
the wave function probability inside the QW manifests itself in an almost total balancing
of the interface contributions to Rashba-type SOI. Consistently, the calculation of the
Rashba coefficient shows a decrease of U by a factor of four to U = −0.024 · 10−124+<.
The simulated situation in figures 9.9(d) - (f) corresponds to the end of gating regime
I in our MT measurement sequence, in which we find no indications of SOI in the
magnetooscillations in our experiments. This in line with the calculations of U.
Figure 9.9(g) displays the conduction band profile for +)� = +1.0+ , for which we
artificially deionize the deep level donor states inside the upper InAlAs barrier layer in the
I-interval between 50=< and 120=<. This corresponds to the electrostatic situation in
gating areas II, III and IV in our MT measurement sequence, in which significant charge
migration from the QW via InAlAs deep level donor states takes place. Evaluating the
gained electron density in the QW in this situation yields an equivalent charge density
as for the case depicted in figure 9.9(a) with +)� = 0+ . A zoom into the band profile
in the vicinity of the QW in figure 9.9(h) reveals a pronounced structural asymmetry.
The band profile is tilted towards the bottom QW interface, which leads to an equivalent
shift of the wave function probability. Figure 9.9(i) depicts the wave function probability
weighted with the electric field. The plot clearly shows the modification of the spatial
symmetry due to charge transfer from the QW into the top InAlAs barrier. This leads to a
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significant change in the strength of the SOC. The calculations of the Rashba coefficient
yield an increase of U by around a factor of 12, as compared to the situation in figure
9.9(d) with +)� = +1.0+ without the artificial deionization of InAlAs defect states. This
is in line with our experimental observation of a significant increase of the Rashba-type
SOI, as we experimentally find it to rise above our experimental resolution limit (see
figure 9.7) in gating area III. Even though, our calculated values of U do not coincide with
the experimentally determined values, the above band structure simulations together with
the corresponding calculations of U clearly reflect the evolution of the SOI strength in our
heterostructure and underline the central role of intrinsic electric fields on the structural
inversion asymmetry in the layer system.

9.4.6 Comparison to literature

Due to the complex electrostatic situation in the heterostructure, it is rather difficult to
give a meaningful assignment of the individual contributions to SOI, i.e. interface and
non-interface contribution, in the system. According to our calculations of U, we find
no clear predominance of one contribution over the other. Surprisingly large Rashba
parameters have been reported previously. However, the results and interpretations are
very contradictory and differ from our analysis:
Studying the oscillatory behavior of the magnetoresistance in a non-intentionally doped
In0.75Ga0.25As/In0.75Al0.25As heterostructure with an upper InAlAs barrier thickness
of 120=< as in our samples, Holmes et al. [117] determined a Rashba coefficient of
U = 1 · 10−114+ at an electron density of =B = 1.45 · 10112<−2 in an ungated Hall bar
sample. They attribute this large Rashba coefficient at this particularly low electron
density to a pronounced structural inversion asymmetry, which they claim is created by
built-in electric fields due to the Fermi level pinning and an asymmetric background
impurity density in their heterostructure. By external gating of their devices, they claim
to exclude the interface contribution to the Rashba parameter to be the dominating origin
of Rashba-type SOI in their devices.
This assignment of the SOI strength is in contrast to a study from Sato et al. [199].
Analysing the magnetoresistivity of modulation doped InxGa1-xAs/InxAl1-xAs heterostruc-
tures, they found a Rashba coefficient as large as U = −3 · 10−114+ for G = 0.75 and a
QW-width of 30=<. They assign their exceptionally large SOI strength to a pronounced
difference of the wave function probability at the top and bottom QW interfaces. They
test this hypothesis by means of MT measurements on the same heterostructure, yet with
the QW width being reduced to 10=<. Thereby, they find no indications of SOI in the
magnetoresistance.
The Landau level broadening of the magnetooscillations prevents a study of certainly
present SOI in the linear gating area I. This impedes a comparison of the giant SOI in the
rather complex gating area III to the evolution of SOI strength with the TG electric field
in gating area I, where there is no contribution of the migrated electrons to the potential
landscape of the QW. Reducing the InAlAs deep level donor density, which leads to a
small quantum lifetime in our heterostructures, presents itself as vital for the study of SOI
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effects via MT measurements in our devices.

9.5 Conclusion
In this chapter, we explored the physical origin of the second frequency generation in the
FFT of the longitudinal resistivity in gating area III of our MT measurement sequences
with top-gated Hall bar samples. After carefully excluding evaluation and measurement
artifacts, as well as size-quantization related effects, we conclude that we are in the
presence of a giant SOI. Through a qualitative Schrödinger-Poisson based picture, we
suggest that this giant SOI is directly related to the charge migration processes in gating
areas II, III and IV. We deduced that Rashba-type SOI gives rise to the experimentally
observed beating in dGG (�). By evaluating the FFT spectra of the MT measurements, we
determined the Rashba coefficient in gating area III to be as high as U��) ≈ 2.4 ·10112<−2,
which corresponds to a spin-splitting energy of Δ���)BB ≈ 10<4+ . Employing a second
evaluation method, i.e. the analysis of the node position in the oscillations of the
magnetoresistance, we are able to determine the Rashba coefficient without incorporation
of the Zeeman effect. By means of the beating-node analysis, we find a slightly smaller
SOI strength, yielding an overestimation of 5 - 10% of the Rashba coefficient via the
FFT analysis. Yet, the determination of U on the basis of the node position is less
often applicable in our MT measurements, since in the majority of magnetooscillation
measurements less than three distinct nodes can be identified.
In order to gain comprehension about the microscopic origin leading to this significant
increase in SOI strength in gating area III, we performed self-consistent band structure
simulations with a Schrödinger-Poisson solver for different electrostatic situations during
our MT measurement sequence. The Rashba coefficient is obtained via calculations in
the envelope function approximation within the k · p -method. To emulate the charge
migration processes in gating areas II to IV, in which a substantial amount of charge
carriers is located in InAlAs deep level donor states, we artificially deionize these defect
states in between 50=< and 120=< in the upper barrier layer to analyse the effect on SOI.
We determine an increase of SOI strength by a factor of 12 as compared to the ionized
case of InAlAs deep level donor states. Our calculations clearly mimic the observed
evolution of SOI strength in our MT measurement sequence, even though we are not able
to calculate meaningful values of U, since we lack an exact knowledge of the complex
electrostatic situation in the heterostructure.
Note that besides the giant SOI occuring in the gating regime III, we are not able to
analyse certainly present SOI in the linear gating area I due to the poor resolution limit of
U by evaluating the magnetooscillations, which we employ as sensing probe for SOI. To
gain a better resolution of the frequency modulation in the magnetooscillations, it seems
crucial to reduce the density of background impurities in the heterostructure.
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10
In this thesis, we evaluated the different aspects, which are critical for the realization of
reliable 1D spinorbitronic devices from a materials perspective. For this purpose, we stud-
ied the electric transport behavior in one and two dimensions in the InGaAs/InAlAs-based
material system, which offers high electron mobility and in principle gives access to high
spin-orbit interaction. In our initial 1D transport measurements with electrically defined
quantum point contacts, we found severe conductance instabilities near depletion of the
1D channel, which furthermore led to a significant hysteretic behavior with impeded
ballisticity. In a systematic study of the electric transport in different InGaAs/InAlAs
layouts, we identified energy states at the InGaAs surface, together with ionized deep
level donor states inside the InAlAs barrier layers to limit the field-effect control of the
transport properties in one and two dimensions. On the basis of the obtained results - all
merging in a conclusive charge transfer model which we developed in the course of this
thesis - we eventually achieved reliable control of the electric transport characteristics and
accomplished to significantly enlarge the charge density range in the 2DEG accessible via
external gating. In the course of this evaluation, we reveal a top-gate voltage field regime,
in which we create a metastable charge configuration state in the system that yielded a giant
and surprising magnification of Rashba-type spin-orbit interaction. We provide an inter-
pretation for the origin of this effect bymeans of self-consistent band structure calculations.

In the beginning of this thesis, we explored different active layer designs of InAs/
InGaAs/ InAlAs systems. Building on the state of the art at that time, we explored their
applicability for spinorbitronic devices. In our analysis, we compared modulation doped
and non-intentionally doped heterostructures (also denoted as undoped heterostructures
in this thesis). In these latter structures, we exploited the peculiar and unavoidable, crystal
impurity-driven intrinsic doping property observed in InAlAs to implement 2DEGs. By
means of self-consistent Schrödinger-Poisson simulations of these heterostructures, we
were able to determine an ionized background impurity density of # C>C0;

�
= 3 · 10162<−3
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in our system, which is in line with findings in literature [37, 38, 108].
Given the high mobilities at moderately low densities we achieved in undoped layer
systems and by relying on the possibility to tune the Rashba spin-orbit interaction strength
in the system with an external gate electric field, we chose non-intentionally doped
InGaAs/InAlAs heterostructures as the initial testing platform for the realization and
evaluation of 1D conductance in this ternary alloy system.
Our analysis of 1D transport in electrically defined quantum point contacts, which were
formed via different finger-gate layouts, provided important insights into the inherent
limitations of ballisticity in the employed material system. We identified electrostatic
disorder to induce localized states inside the 1D transport channel, giving rise to a
particular energy-dependence of the transmission coefficient. At low temperatures of
) ≈ 370< the disorder potential manifested itself in form of conductance oscillations,
imposed on the integer conductance steps.
By introducing a center-gate electrode in between the two split-gates, we achieved to
significantly improve quantized conductance inside the 1D channel, using the center-gate
as an additional knob to tune the lateral confinement potential. The positively biased
center-gate allows to steepen the potential inside the constriction and thus to enlarge the
1D subband spacing. Engendered by the positive center-gate voltage, a more negative
split-gate voltage was required to drive the quantum point contact into depletion. The
corresponding enlarged band tilting in real space led to the emergence of a substantial
bias history dependence of the 1D transport properties in form of a hysteresis in the
conductance curves, as well as to unstable conductance properties.
In order to gain deeper insight into the material-related origins of the electrostatic response
of the system, we systematically evaluated the field-effect tunability of the transport
properties in 2DEGs in our heterostructure. For this purpose, we use the sheet carrier
density and mobility as sensing probes, which we determined from magnetotransport
measurements on top-gated Hall bar samples. In the first step of our detailed study, we
identified a large density of energy states to be present within 5=<-thin InGaAs surface
layers used as protection from oxidation of the heterostructure, as well as energy states
inside the subsequently deposited gate-dielectric insulating material Al2O3. Both types of
defect energy states clearly limit the field-effect control of the transport properties in the
system. We revealed that these interfacial energy states will easily induce the generation
of a parasitic conductive layer at the semiconductor surface, which induces a loss of
capacitive coupling to the quantum well. It is interesting to note, that the conductivity
of this parasitic conductive interface layer was so low that its presence could not be
experimentally detected from its contributions to the conductivity of the samples. Instead,
its existence had to be deduced indirectly. With our model, we are able to explain the
experimentally similar observations, but so far incomprehensible results reported in [14],
in which an incapacity to control the electron density in top-gated InAs/ InGaAs/ InAlAs
heterostructure was observed in a large bias range for samples with a 10=< InGaAs
surface layer.
Based on the results of our 2D transport study, we identified that local variations of the
real space band profile, which are generated during a 1D conductance measurement,
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provoke charge reconfigurations within the constriction area at the surface. These occurred
on the timescale of minutes, consequently being the origin of the previously observed
experimental instability of the conductance in our QPC experiments. Additionally, the
migrated charges lead to an impaired confinement potential, resulting in a deterioration
of quantized conductance features.

Building on these materials-related insights, we were able to greatly reduce the density
of surface states in our hybrid dielectric/heterostructure system. We found a new
wet-chemical cleaning step of the heterostructure surface to be pivotal in the sample
fabrication process. Therein, residual native oxides at the semiconductor surface, which
were previously only insufficiently annihilated during the self-cleaning atomic-layer
deposition process of the Al2O3 dielectric layer and thus introduced parasitic energy states
at the semiconductor/dielectric interface, are effectively removed by the etchant.
By further reduction of the InGaAs cap thickness (2.5=< instead of previous 5=<) in
combination with the additional wet-chemical cleaning step, we achieved a very significant
and reproducible expansion of the charge density range in 2DEGs, which we are able to
reliably induce via the linear electric field-effect. We further analysed the compound
InAlAs as the semiconductor heterostructure surface termination, whereby we determined
a similar field-effect control as for the InGaAs-capped devices when Al2O3 was applied
as dielectric.
Using these newly developed fabrication processes to inhibit interface state formation
allowed us to demonstrate robust and non-hysteretic 1D conductance in triple-gate
defined quantum point contacts. The devices exhibit well-pronounced quantization steps
even at ) = 1.5 . Remarkably, this significant progress was achieved in all studied
types of heterostructures: in InGaAs- and InAlAs-terminated samples, as well as in
heterostructures with an InAs inset inside the InGaAs quantum well.
At this point of the conclusion, let us point out the pivotal role of the analysis of a
second step in our detailed study of 2D systems - the top-gate voltage regime beyond
the linear capacitor behavior - for our microscopic understanding of the material system.
In particular, it was this analysis which delivered important hints, from which we de-
duced the above mentioned significant amelioration of the operation of 2D and 1D devices.

Indeed, our comprehensive study in 2DEGs conducted over a larger than usual range of
top-gate voltages, allowed us to develop a novel consistent microscopic model, explaining
many peculiarities of gated InGaAs/InAlAs heterostructures, reported in this thesis and
in the literature. Our model is qualitatively consistent with all the major experimental
signatures observed in 2D and 1D devices in this thesis. While being phenomenological,
the model is also consistent with quantitative verifications that we could access in this
impurity-governed system.
A main element of our model – which at the same time identifies the key challenge in
the engineering of such InAlAs-based heterostructures – is the uncovering of the major
role played by the impurity-based deep level donor states in the gate operation - a point
which has been overlooked in many literature reports up to now. The gate operation

171



10 Conclusion and outlook

inevitably results in electron migration from the quantum well into ionized deep level
donor states inside the InAlAs spacer layer above a certain threshold gate voltage. This
induces the formation of a metastable state in the system, introducing a pronounced
structural asymmetry into the heterostructure.
These implications of our model are supported by the analysis of the functional dependence
of the electron mobility in our 2DEGs to the corresponding electron density. Indeed, we
identified scattering at 3D Coulombic disorder potential, i.e. ionized deep level donor
states inside the InAlAs barrier layers, to be the limiting scattering mechanism in the
system. With increasing top-gate voltages, we found that scattering at 2D remote Coulomb
potentials arises from the negative charges transferred towards the interface. This process
increasingly contributes to the total scattering in the system, which is consistent with our
charge transfer model.

Our newly developed model also allowed us to develop an understanding of Rashba
spin-orbit coupling in our 2D systems and to interpret experimental signatures which were
surprising at first sight. In the above mentioned metastable regime, we experimentally
encountered giant values of the Rashba coefficient from evaluating the magnetooscillations
of the resistivity. The value of approximately U ≈ 2 · 10−114+< in our quantum well at a
charge density of =B ≈ 6 · 10112<−2 is among the highest values reported in literature
for an undoped InGaAs-based heterostructure so far. Similar values have only been
reported in two instances in the literature [117, 199], but had so far been inconsistently
interpreted. In this thesis, we present self-consistent Schrödinger-Poisson simulations in
combination with calculations, employing the envelope function approximation within
the k · p -method, which reproduce the observed phenomenology, and in particular the
occurrence of giant Rashba coefficients, extremely well. Again, the ionized deep level
donor states, which are partly neutralized under gate operation, play a central role in the
understanding of the origin of this phenomenon.
Note that the analysis of the magnetooscillations allowed us to estimate the resolution
limit of the SOI via magnetotransport measurements. We found this experimental method
of sensing the SOI strength to be strongly limited by the small quantum lifetime g@ of the
conduction electrons in the system. We inferred that the absence of certainly present SOI
effects in the linear field-effect regime of our top-gated samples (denoted as gating regime
I in the thesis) is owed to this poor resolution via analysing the magnetooscillations.
Actually, the short g@ again points out the major role of the deep level impurities in the
InAlAs barrier. The g@ value indicates that scattering at potential fluctuations of the
conduction electrons causes a significant Landau level broadening in our system [43, 50,
51]. Additionally, the ratio gCA/g@ > 10, where gCA is the mean scattering time deduced
from the electron mobility `, indicates that long-range scattering potentials dominate
the transport in our system. Typically, these can be expected to be predominantly of
Coulombic nature in our material system. Given their presence in the direct vicinity of
the quantum well and their high concentration of the order of > 10162<−3, we conclude
the random arrangement of the ionized deep level donor states inside the InAlAs to
be the origin of these long-range scattering potentials. This 3D Coulombic disorder,
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resulting from impurity-induced deep level donor states, on the one hand limits the
conductivity in the 2D electron system, while, on the other hand, it dominates the density
of states-broadening of the Landau levels.
Summarizing, one key conclusion of this thesis is the importance to realize the om-
nipresence of the deep level donor states inside the InAlAs layer in the gate operation of
1D and 2D devices in InGaAs/InAlAs-based systems. More precisely, we attribute the
experimentally observed impeded ballisticity in our 1D devices to the introduced potential
disorder in the 1D channel, as well as the poor resolution of SOI effects owing to mobility
limitations in the system to the InAlAs defect states. Furthermore, they play a major
role in the charge migration processes under gate operation. These points illustratively
demonstrate the broad and diverse influence of InAlAs deep level donor states on the
(magneto)transport in one and two dimensions.
In this work, we have developed a significant level of control, which allowed reproducible
and stable operation of 1D quantum point contact devices in heterostructures where
the 2DEG is buried 130=< below the surface. At the same time, we note that first
measurements on near-surface QW devices indicated that, even when employing our
improved device fabrication recipe, 1D transport through quantum point contacts is prone
to instabilities due to charge migration processes inside the heterostructure, still mediated
by InAlAs deep level donor states. Thus, looking into future developments of this material
system for spinorbitronic devices, our experimental results and the interpretation strongly
point out the need that finding strategies to significantly decrease the density of deep
level donor impurities in the InAlAs will represent a major advancement in the use of
InAlAs-based heterostructures for spinorbitronic applications. In the preliminary growth
study presented in this thesis, we achieved to substantially reduce the doping-providing,
arsenic-related InAlAs defect states. Yet, the electron mobility in these structures was
still impaired, evidencing the necessity to further refine the epitaxial process for these
heterostructures. This goal is currently pursued through a systematic MBE growth study
in a dedicated Ph.D. project [126].
Given the significant charge transfer under gate operation, controlling the interface
between the semiconductor heterostructure and the dielectric will certainly represent a
second important factor to achieve robust device operation. In the present thesis, we
point out that it may be useful to reconsider the role of oxygen at this interface. Indeed,
studying the gate operation of devices with MgO and HfO2 as dielectric materials led to
similar results as for devices for which Al2O3 is employed.
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Sample fabrication

A
I. Wet etch process of Hall bar mesa

• Standard cleaning of sample in acetone (Ac) (60s in ultrasonic bath), aceton (2min),
propanol (Prop) (2min)

• Spin resist S1813: 30s, 2000rpm/s, 8000rpm

• Softbake: 4min at 90◦�

• Exposure in mask aligner, Hall bar mask, 80s at 275W

• Develop in AR300-26 : H2O = 1 : 3 for 45s, rinsing in deionized (DI) water

• Etching of mesa with C6H8O7 : H2O : H2O2(30%) : H3PO4(98%) = 22 : 88 : 2 :
1.2, rinsing in DI water

• Lift-off in Ac (60◦�), Ac, Prop

II. Processing of ohmic contacts

• Procedure I

• Standard cleaning: Ac, Ac, Prop 2min each

• Prebake 5min at 120◦�

• Spin resist LOR 3A: 45s, 2000rpm/s, 2000rpm

• Softbake: 4min at 120◦�

• Spin resist: S1813: 30s, 2000rpm/s, 8000rpm
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A Sample fabrication

• Softbake: 4min at 90◦�

• Optical lithography: UV exposure in mask aligner, ohmic contact mask, 81s at
275W

• Develop in MF26A for 50s, rinsing in DI water

• Oxide removal with HCl-dip: H2O : HCl(37%) = 1 : 1 for 60s, rinsing in DI water

• Evaporation of 240nm/60nm AuGe(88% / 12%)/Ni

• Lift-off in Remover PG (60◦�), Remover PG, Prop, Prop

• Forming gas annealing at 10mbar: 350◦� for 120s, 450◦� for 75s

III. Processing of top-gate on Hall bar

• Procedure I and II

• HCl-dip: H2O : HCl(37%) = 1 : 1 for 60s, rinsing in DI water

• Al2O3 deposition with ALD: flow N2 20sccm, purge time 4s, T = 300◦�

• Standard cleaning: Ac, Ac, Prop 2min each

• Spin resist: S1813: 30s, 2000rpm/s, 8000rpm

• Softbake: 4min at 90◦�

• Optical lithography: UV exposure in mask aligner, top-gate mask, 81s at 275W

• Develop in AR300-26 : H2O = 1 : 3 for 45s, rinsing in deionized (DI) water

• Evaporation of 20nm/100nm Ti/Au

• Lift-off in Ac (60◦�), Ac, Prop

IV. Processing of split-gate electrodes on Hall bar mesa

• Procedure I and II

• HCl-dip: H2O : HCl(37%) = 1 : 1 for 60s, rinsing in DI water

• Al2O3 deposition with ALD: flow N2 20sccm, purge time 4s, T = 300◦�

• Standard cleaning: Ac (150◦�), Ac, Prop 2min each

• Spin resist PMMA 950k 4.5%:
(1) 3s, 4000rpm/s, 800rpm
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(2) 40s, 4000rpm/s, 6000rpm

• Softbake: 2min at 150◦�

• Electron beam lithography: acceleration voltage 30kV, aperture 10`m

• Develop in AR500-56 for 1min30s, 10s Prop

• Evaporation of 5nm/35nm Ti/Au

V. Processing of contacts to split-gate electrodes on Hall bar mesa

• Procedure I, II and IV

• Standard cleaning: Ac (150◦�), Ac, Prop 2min each

• Spin resist PMMA 950k 4.5%:
(1) 3s, 4000rpm/s, 800rpm
(2) 40s, 4000rpm/s, 4000rpm

• Softbake: 2min at 150◦�

• Electron beam lithography: acceleration voltage 5kV, aperture 30`m

• Develop in AR500-56 for 1min30s, 10s Prop

• Evaporation of 15nm/100nm Ti/Au

VI. Processing of split-gated Hall bar sample with global top-gate

• Procedure I, II, IV and V

• Al2O3 deposition with ALD: flow N2 20sccm, purge time 4s, T = 300◦�

• Standard cleaning: Ac, Ac, Prop 2min each

• Spin resist: S1813: 30s, 2000rpm/s, 8000rpm

• Softbake: 4min at 90◦�

• Optical lithography: UV exposure in mask aligner, top-gate mask, 81s at 275W

• Develop in AR300-26 : H2O = 1 : 3 for 45s, rinsing in deionized (DI) water

• Evaporation of 20nm/100nm Ti/Au

• Lift-off in Ac (60◦�), Ac, Prop
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A Sample fabrication
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Supplementary measurements

B
B.1 1D and 2D transport measurements

wafer ds pacer ndark
s -dark nil l

s -il l

C160406B 35 / / 3.5 182000
C160406B/Al2O3 35 0.7 27000 3.5 200000

C160418A 50 / / 3.5 192000
C160418A/Al2O3 50 0.7 28000 3.6 178000

C160418B 90 0.9 170000 3.4 120000
C160418B/Al2O3 90 1.2 260000 3.3 130000

C160429A/Al2O3 130 2.5 150000 3.5 190000

Table B.1: Test series of Hall bar samples with increasing InAlAs spacer
thickness 3B?024A , given in units of =<, and with and without Al2O3 as dielectric
deposited on the semiconductor surface. The charge densities =30A:B and =8;;B are
given in units of 10112<−2, the mobilities `30A: and `8;; in units of 2<2/+B.
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B Supplementary measurements

wafer ndark
s -dark nil l

s -il l

C160316B-vdP 2.1 61000 4.9 132000
C160316B-1/Al2O3+SG 2.2 61000 4.9 130000
C160316B-4/Al2O3+SG 3.0 101000 4.6 120000
C160316B-5/Al2O3+SG 5.0 137000 4.8 153000
C160316B-6/Al2O3+SG 3.1 95000 4.7 115000

C160316B-9/Al2O3+SG+TG 3.3 85000 4.9 123000
C160316B-10/Al2O3+SG+TG n.a. n.a. 4.6 131000

C160428A-1/Al2O3+SG 2.8 149000 3.5 181000
C160428A-2/Al2O3+TG 3.4 189000 3.5 181000

C160428B-vdP 1.8 110000 3.9 200000
C160428B-1/Al2O3+TG 4.1 178000 n.a. n.a.
C160428B-3/Al2O3+TG 4.2 172000 n.a. n.a.
C160428B-4/Al2O3+TG 4.2 188000 n.a. n.a.

C160429A-vdP1 2.0 67000 3.4 180000
C160429A-vdP2 1.4 100000 3.5 100000
C160429A-vdP3 1.9 51000 3.4 160000

C160429A-1/Al2O3+SG 2.6 152000 3.3 190000
C160429A-1/Al2O3+TG 3.6 192000 n.a. n.a.

Table B.2: Hall bar and vdP samples, equipped with different functional layers
and gate electrodes. The charge densities =30A:B and =8;;B are given in units of
10112<−2, the mobilities `30A: and `8;; in units of 2<2/+B.
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B.1 1D and 2D transport measurements

Figure B.1: VdP Hall measurements of wafer (a) C160316B (b) C160428A (c)
C160428B (d) C160429A (e) C160420B in the illuminated state at ) = 1.5 
with sketches of the corresponding active layer structures.

Figure B.2: Gating response of top-gated Hall bar sample C160406B1 at
) = 1.5 in the non-illuminated state: =B and ` as a function of +)� .
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B Supplementary measurements

Figure B.3: Conductance curves of sample C160420B3 at ) = 1.5 in the
non-illuminated state with no channel resistance subtracted: (a) � of TrG1 as
function of +(� at +�� = +0.3+ for various +)� . (b) � of TrG5 as function of
+(� at +�� = +0.1+ and +)� = 0+ for small perpendicular magnetic fields.

Figure B.4: Conductance curves of sample C160406B1 TrG1 at ) = 1.5 in the
non-illuminated state with no channel resistance subtracted: (a) � as function
of +(� at +)� = 0+ for various +�� . (b) � as function of +(� at +�� = +0.2+
for various +)� . Down-sweeps of +(� are indicated by solid lines, subsequent
up-sweeps by dashed lines.

Figure B.5: MT measurement sequences of samples �, " and # (wafer
C160429A) in the non-illuminated state for various biased cool-down voltages
+�� at ) = 4.2 : (a) Sample � with Al2O3, (b) sample " with HfO2/Al2O3,
(c) sample # with MgO/Al2O3 as dielectric.
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B.2 Estimation of the quantum lifetime

B.2 Estimation of the quantum lifetime

Figure B.6: Logarithmic plot of Shubnikov-de Haas oscillation amplitude A
against inverse magnetic field 1/� of sample � (wafer C160429A) (a) at
+)� = +0.4+ in gating area I, (b) at +)� = +0.8+ in gating area I, (c) at
+)� = +1.4+ in gating area II.

Themagnetoresistivity dGG (�) of a 2DEGcan be described by the semi-classical expression
given in equation (9.2). The oscillation amplitude of dGG (�) decays exponentially with
increasing 1/�. Calculating the logarithm of the amplitude of the Shubnikov-de Haas
oscillations in dGG (�) yields a linear dependence on 1/�, solely originating from the
exponential factor in formula (9.2):

;=(�) ∝ c<
∗

4g@
· 1
�
.

The slope of the linear fit of ;=(�) over 1/� gives an estimate for the quantum lifetime:

g@ ≈
c<∗

B;>?4 · 4 .

Figures B.6(a) to (c) show the Shubnikov-de Haas amplitude � of sample � on a
logarithmic scale as a function of 1/� at different TG-voltages. Following the above
described evalution method yields for the quantum lifetime g@:

g@ ≈ 2.7 · 10−13B for +)� = +0.4+
g@ ≈ 1.9 · 10−13B for +)� = +0.8+
g@ ≈ 1.3 · 10−13B for +)� = +1.4+ .
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B Supplementary measurements

B.3 Determination of SOI strength

Figure B.7: Sample C160420A1: (a) FFT of the magnetooscillations in gating
areas II, III and IV, vertically offset for clarity. The bottom curve corresponds
to +)� = +4.0+ , the top-most curve to +)� = +7.5+ . (b) Rashba parameters
U��) and U=>34 extracted from FFT and node analysis as a function of +)� . (c)
Rashba spin-splitting energies Δ���)BB and Δ�=>34BB , calculated with U��) and
U=>34 from (b).
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