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1 Introduction 

1.1 Epigenetics & DNA Methylation 

The term “epigenetics” is used to describe heritable alterations in gene expression that are not 

encoded in the DNA sequence1,2. Accordingly, epigenetics regulates gene expression by switching 

genes on or off and determining which proteins are transcribed. To accomplish this task, important 

epigenetic mechanisms are involved, including DNA methylation, histone modifications, nucleosome 

and higher-order chromatin structure and the processes mediated by non-coding RNAs1. 

In a eukaryotic nucleus, the nucleosome core (the basic packaging unit of DNA) consists of a histone 

octamer of four dimers of each core histone (H2A, H2B, H3, and H4) wrapped around 147 bp DNA3,4. 

The nucleosomes can be found every 200 ± 40 bp5 and their positioning throughout a genome has an 

important regulatory function. In cooperation with the binding of transcription factors (TFs), RNA 

polymerases or architectural proteins, nucleosomes facilitate different chromatin dynamics3 (Figure 

1.1) thus influencing processes such as transcription, DNA repair, replication and recombination4.  

 

 
 
Figure 1.1 Chromatin dynamics across the genome through a continuum of accessibility states 

In contrast to closed chromatin, permissive chromatin is more dynamic and allows for TFs to initiate sequence-specific 
accessibility remodeling towards an open chromatin conformation. Pol II, RNA polymerase II; TF, transcription factor 
(adapted from Klemm et al. 3). 

Considering that, in this thesis the analyses were primarily focused on mechanisms involved in loss 

of DNA methylation, this chapter provides an overview about the DNA methylation process, one of the 

most widely investigated epigenetic mechanisms of genome regulation. 
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DNA methylation exerts a fundamental role in cellular differentiation, development and disease6–10. Its 

role is particularly well established in hematopoeisis. For instance, previous work performed by Bröske 

and colleagues8 in mice, demonstrated that DNA methylation-associated mechanisms can control the 

ability of hematopoietic stem cells (HSCs) to differentiate into myeloerythroid versus lymphoid 

lineages. In addition, Lessard and colleagues11 verified that DNA methylation at erythroid enhancers 

is essential to determine transcriptional and development differences between human fetal and adult 

erythropoiesis. Also associated with enhancer methylation studies, Agirre and colleagues12 work 

revealed that DNA hypermethylation of B-cell specific enhancers is linked with the pathogenesis of 

multiple myeloma. 

Overall, DNA methylation is a key epigenetic process in self-renewal and differentiation of HSCs into 

different lineages (Figure 1.2) by promoting alternative lineage-specific gene expression6,8,13. Besides 

its function in regulating transcription, DNA methylation is also involved in genomic imprinting, X-

chromosome inactivation and suppression of mobile genetic elements14–17. 

 

Figure 1.2 DNA methylation patterns in the early stages of hematopoeisis 

The figure depicts the main events of methylation that occur during adult hematopoiesis, including data obtained from 
studies using human and mice primary cells as well as cell lines. The blue triangles indicate an overall increase in 
methylation, while the red triangles represent a loss of methylation at specific stages of hematopoiesis. HSC, 
hematopoietic stem cell; MPP, multipotent progenitor; CMP, common myeloid progenitor; CLP, common lymphoid 
progenitor; GMP, granulocyte-macrophage progenitor; DC, dendritic cell (adapted from Álvarez-Errico et al.13). 

 

DNA methylation is mediated by DNA methyltransferase (DNMTs) enzymes, which in mammals 

comprise a family of five members, DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L. However, 

only DNMT1, DNMT3A and DNMT3B possess confirmed methyltransferase activity14,18,19. These 

enzymes catalyse the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to the carbon 

at the fifth (C5) position of cytosines that are adjacent to guanines in DNA (known as CpG 
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dinucleotides).  As a result, regulatory elements become hypermethylated, which in turn leads to 

transcriptional repression2,18–20.  

The methylation activity of DNMT1 is tailored to hemimethylated cytosines in CpG dinucleotides 

sequences, thus maintaining the methylation pattern during DNA replication. On the other hand, 

DNMT3A and 3B are involved in de novo DNA methylation17. 

In the mammalian genome, about 60-80% of CpGs are methylated10,17,19,21, which actually 

corresponds only to 5% of all cytosines residues19. In addition, most of these CpGs sites are located 

in short CpG-rich DNA regions called CpGs islands (CGIs) that are preferentially located near the 

transcription start sites (TSS) of more than 50% of gene promoters2. 

Analyses of differentially methylated regions have shown the co-localization of hypomethylated 

regions with both promoters and enhancers of actively transcribed, tissue specific and developmental 

stage-specific genes6,19,22,23.  

Due to the importance of DNA methylation turnover for mammalian development and differentiation 

(as exemplified for the hematopoeitic system), the next chapters provide more insight into the DNA 

demethylation process with a major focus on the active DNA demethylation mechanism. 

1.2 DNA Demethylation 

Over decades DNA methylation was considered a stable, persistent and heritable mark2,24. Hence, 

loss of methylation was believed to take place in a replication-dependent manner in the absence or 

inhibition of the maintenance methylation machinery24. However, a major revolution in this field 

occurred in 2009, when Kriaucionis and Heintz25 identified higher levels of 5-hydroxymethylcytosine 

(5hmC) in mouse Purkinje neurons and granule cells. Another group reported independently that a 

family of enzymes called Ten-eleven Translocation (TET) oxidize 5mC to 5hmC, both in vitro and in 

mouse embryonic stem cells (mESCs)26. These two studies uncovered an enzymatic pathway to erase 

methylation in a process called active DNA demethylation.  

Since then, many reports have demonstrated the occurrence of this process in different biological 

settings, such as during embryonic and primordial germ cell development (PGC)10,27,28, HSC 

differentiation13 and in post-mitotic cells in the adult brain29,30. Similarly, our group also reported active 

DNA demethylation in post-mitotic human monocytes (MO)31,32. 

1.2.1 TET enzymes 

TET proteins are large (approximately 180-230 kDa) multidomain enzymes33 originally identified in the 

context of hematological malignancies34. TET1 was initially cloned and characterized as an acute 

myeloid leukemia (AML)-associated protein, which is fused to MLL (mixed-lineage leukemia) in 
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t(10;11)(q22;q23) translocations. Further sequence homology analysis identified two additional 

paralogues in human and mouse, namely TET2 and TET319,34,35.  

The catalytic activity of TET enzymes in the oxidation of 5mC, was predicted based on sequence 

homology with the trypanosome proteins, JBP1 and JBP2 that are known to oxidize the methyl group 

of thymine to 5-hydroxymethyluracil (5hmU)19,24,26. 

1.2.1.1 Function & Structure 

There is ample evidence supporting the role of TET enzymes in the iterative, stepwise oxidation of 

5mC to 5hmC, 5-formylcytosine (5fC) and then 5-carboxycytosine (5caC)19,36–39. Besides their function 

as demethylation intermediates, the oxidized forms of 5mC may also serve as relatively stable 

epigenetic modifications40,41 with essential regulatory functions19. Supporting this hypothesis, Raiber 

and colleagues42 reported that 5fC might affect transcription regulation in terms of chromatin 

remodeling through its effect on DNA conformation. Nevertheless, further work is necessary to 

elucidate the potential regulatory roles of these 5mC oxidized derivatives in biological processes. 

In addition to the participation of TET enzymes in the oxidation of cytosine-derived nucleobases, these 

enzymes were shown to catalyze the oxidation of thymine to 5hmU in mESCs, although in very low 

amounts43. Interestingly, TET enzymes were also reported to be involved in chromatin modifications 

and other cellular processes through the interaction with the O-linked b-N-acetylglucosamine (O-

GlcNAc) transferase (OGT)44. This enzyme catalyzes the addition of O-GlcNAc onto serine and 

threonine residues (O-GlcNAcylation) in vivo45–47. Accordingly, it was proposed that the interaction of 

TET2 with OGT facilitates OGT-dependent histone O-GlcNAcylation, emphasizing the role of the TET 

enzymes in gene transcription regulation by chromatin modifications44,45,48.  

TET proteins are iron (II)/α-ketoglutarate (Fe (II)/α-KG)-dependent dioxygenases. As illustrated in 

Figure 1.3, all TET isoforms contain a C-terminal core catalytic domain, comprising a double-stranded 

β-helix (DSBH) domain and a cysteine rich domain10,17,27,33. The DSBH domain contains the binding 

sites for Fe (II) and α-KG (essential for the oxidation of 5mC), while the cysteine-rich domain wraps 

around the DSBH core to stabilize the general structure and the TET–DNA interaction17. Moreover, 

TET1 and TET3 contain N-terminal CXXC zinc finger domains, allowing these enzymes to bind to 

unmethylated, methylated and hydroxymethylated DNA2. In contrast, the CXXC domain in TET2 was 

lost during evolution as a result of a genomic inversion and is now coded as a separated protein called 

CXXC finger protein 4 (CXXC4)24.  

Myeloid cells, including MO and MO-derived cells, primarily express the TET2 isoform32. Therefore, 

the present work focused on the TET2-mediated active DNA demethylation. 
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Figure 1.3 Domain structure of TET proteins 

All TET isoforms share an identical C-terminal catalytic domain, which includes the DSBH domain, a cysteine-rich (Csy) 
domain and binding sites for the Fe (II) and 2-OG (2-oxoglutarate, also known as α-KG) co-factors. The DSBH domain 
possesses a low complexity region of unknown function. In contrast to TET2 isoform, TET1 and TET3 have an N-terminal 
CXXC domain that can bind directly to DNA (adapted from Rasmussen and Helin33). 

1.2.1.2 Substrates & Co-factors 

TET enzymes use molecular oxygen (O2) and α-KG as substrates and Fe (II) as a co-factor to 

successively oxidize DNA, generating oxidized DNA, succinate and carbon dioxide (CO2) as co-

products (Figure 1.4)17,34,49. Consequently, the reaction kinetic is directly affected by the availability of 

substrates and co-factors.  

α-KG is generated by isocitrate dehydrogenase enzymes (IDH1-3), which convert isocitrate into α-KG 

as part of the tricarboxylic acid (TCA) cycle 17,34,50. 

 

Figure 1.4 Stepwise oxidation of 5mC to 5hmC, 5fC and 5caC by TET enzymes 

TET enzymes use O2 and 2-OG as substrates and Fe (II) as a co-factor to successively oxidize DNA, generating  5hmC, 
5fC and 5caC as well as the co-products succinate and CO2 (adapted from Rasmussen and Helin33). 
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Similarly, vitamin C has been repeatedly reported to act as a co-factor of TET enzymes, by maintaining 

the essential iron in the catalytic site in a reduced state (Fe2+) and enhancing the enzymatic activity. 

Consequently, there is an increase in the 5hmC content, which facilitates the DNA demethylation17,51–

56. Additionally, interaction of vitamin C with the TET enzymes catalytic domain may promote its folding 

and/or recycling of the co-factor Fe2+ 56.  

1.2.1.3 Dysregulation  

Myeloid cells express high levels of DNMT3A and TET2, epigenetic enzymes involved in cytosine 

modifications57. This fact, associated with the high frequency of recurrent mutations in TET2 and 

DNMT3A found in a wide spectrum of myeloid malignancies57–60, suggests a fundamental role of these 

proteins in the normal hematopoiesis13,44, as well as in the specification of myeloid identity57.  

Besides the genetic alterations in genes of these epigenetic regulators, changes in genes involved in 

cellular metabolism are also implicated in the pathogenesis of myeloid malignancies33,34,61. This 

includes perturbations of the TCA cycle that lead to accumulation of aberrant metabolites, which inhibit 

TET enzymes (Figure 1.5) and other α-KG-dependent dioxygenases34,62,63.  

Some key enzymes of the TCA cycle like IDH1/IDH2 that catalyze the conversion of isocitrate into α-

KG (critical co-factor for the activity of TET244) are recurrently mutated in hematological malignancies. 

Their gain-of-function mutations lead to the abnormal production of 2-hydroxyglutarate (2-HG), an 

oncometabolite that competes with α-KG for TET binding17,64,65. In fact, patients with mutations in 

IDH1/IDH2 present high levels of 2-HG66, which associate with DNA and histone hypermethylation 

and blocked differentiation of hematopoietic progenitor cells61.  

Likewise, mutations can be found in additional metabolic enzymes. For example, mutations in 

succinate dehydrogenase (SDH) and fumarate hydratase (FH) lead to the accumulation of succinate 

and fumarate. In a similar way as 2-HG, they can compete with α-KG to inhibit α-KG-dependent 

dioxygenases, such as TET enzymes, causing an increase in DNA methylation17,66–68. 
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Figure 1.5 Impact of small molecule metabolites on TET activity 

The TCA cycle is presented here in a simplified form, omitting enzymes and metabolites without clear link to TET activity. 
The co-substrate α-KG and the co-factor vitamin C as positive regulators of TET activity are highlighted in green, whereas 
fumarate, succinate and 2-(R)-HG as negative regulators of TET are highlighted in red. Enzymes that have been (in their 
mutant variants) implicated in TET inhibition are shown in blue. IDH, SDH, and FH have mitochondrial and cytoplasmic 
isoenzymes, encoded by separate genes in the case of IDH. Mutations in IDH, SDH and FH have been implicated in 
TET dysregulation (adapted from Bochtler et al.34). 

 

1.2.2 TET-mediated DNA Demethylation Pathways  

Since the discovery of TET oxidation activity as well as their related oxidized products, numerous DNA 

demethylation pathways involving TET enzymes have been proposed (Figure 1.6) both in vitro and in 

vivo. 

As mentioned before, if the maintenance methylation machinery is non-functional, 5mC can be 

passively diluted during successive rounds of DNA replication either globally or locally. Intriguingly, 

some studies also implicated TET proteins in passive DNA demethylation processes (during DNA 

replication). They assume that TET enzymes oxidize 5mC to their respective oxidized forms, which 

then might be successively diluted to regenerate unmodified cytosines in a replication-dependent 

manner10,17,66. This proposed pathway is based on the lower DNMT1 activity on hemi-5hmC containing 

DNA (>60 fold, in vitro)24,69,70 that leads to a passive dilution of the intermediate oxidized forms during 

replication. Although this mechanism was reported to occur during mouse erythropoiesis in vivo71, 

some observations argue against it. For example, the DNMT1 interaction partner UHRF1 binds 

5hmC72,73, which then may target DNMT1 to hemi-5hmC containing DNA. Secondly, contrary to 

DNMT1, DNMT3A and DNMT3B are not sensitive to hemi-5hmC DNA and can re-methylate the hemi-

5hmC DNA24. Thereby, further investigation is required to elucidate this potential TET demethylation 

replication-dependent mechanism. 

Another DNA demethylation pathway reported in the mouse brain74 involves the deamination of 5hmC 

to 5hmU by the AID/APOBEC family members. The 5hmU is then removed by DNA glycosylases, 

such as thymine DNA glycosylase (TDG), SMUG, MBD4 or NEIL29,74–76. Nevertheless, this mechanism 
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still remains controversial because TETs may also oxidize thymines to 5hmU followed by DNA 

demethylation through DNA glycosylases and base excision repair (BER) mechanisms24,43.  

Besides these suggested mechanisms, a biochemical demethylation pathway involving the direct 

decarboxylation of 5caC to unmethylated cytosine has been proposed. Nonetheless, a decarboxylase 

specific for 5caC in mammals has not been identified so far24,77,78. 

Extensive research suggests that an active demethylation pathway involving TET-TDG-BER 

represents the most likely demethylation mechanism triggered by TET enzymes in a replication-

independent manner10,17,27,79. In this process, the oxidized forms 5fC and 5caC (generated by TET 

enzymes) are recognized by a specific DNA glycosylase, namely TDG (5mC and 5hmC are not 

recognized by TDG)36,80,81. TDG is a DNA mismatch repair enzyme responsible for binding and 

excision of mismatched pyrimidines in G:U and G:T base pairs33. This enzyme cleaves the N-

glycosidic bond between the base and the sugar at 5fC and 5caC residues generating abasic 

(apyrimidinic, AP) sites82. Then, the abasic sites are processed by the BER machinery that generates 

an unmodified cytosine. The BER mechanism involves an AP endonuclease I (Apex 1) that cleaves 

the phosphodiester bond, generating a 3′-OH and 5′-deoxyribose phosphate. Then, the DNA 

polymerase β removes the sugar phosphate moiety and incorporates an unmodified cytosine. At the 

end, DNA ligase I or IIIα seal the nick82,83. 

Notwithstanding all the proposed mechanisms for processing of 5mC to unmodified cytosines (5C), in 

post-mitotic MO and MO-derived cells like iDCs, it is poorly understood which mechanisms and 

enzymes are involved in further processing of 5hmC to 5C. 
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Figure 1.6 TET-mediated DNA demethylation pathways 

During DNA replication, DNMT enzymes participate in the generation and maintenance of the DNA methylation patterns. 
In contrast, TET enzymes, which successively oxidize 5mC to 5hmC, 5fC and 5caC, are involved in DNA demethylation. 
Though still controversial, some reports hypothesize that TET enzymes may be implied in the passive DNA demethylation 
due to the lower activity of DNMT1 (maintenance methylation) on hemi-5hmC containing DNA, resulting in the passive 
dilution (during DNA replication) of the oxidized intermediate forms (5hmC, 5fC and 5caC) generated by TETs. Another 
unclear DNA demethylation pathway involves the deamination of 5hmC to 5hmU by the AID/APOBEC family members, 
which is then removed by TDG generating an abasic site as part of the BER that regenerates an unmodified cytosine. 
An alternative proposed pathway, implicates direct decarboxylation of 5caC to C. However, a decarboxylase specific for 
5caC has not been identified so far. Accordingly, the pathway involving direct removal of 5fC or 5caC by TDG followed 
by BER towards the replacement with a C, is the most likely mechanism triggered by TET enzymes (active 
demethylation). AID/APOBEC, activation-induced deaminase/apolipoprotein B mRNA editing enzyme (adapted from 
Scourzic et al.77). 
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1.2.3 Transcription Factors & DNA Demethylation Recruitment 

Transcription factors (TFs) are proteins that bind DNA in a sequence-specific mode and regulate 

transcription84. For this purpose, TFs bind to TF binding sites or motifs85 (6-10 bp regions) located in 

regulatory DNA regions (promoter and enhancers)86. They are also able to interact with each other or 

compete for DNA binding, suggesting that their binding sites may co-localize or overlap86,87. 

Although each TF is believed to possess DNA-binding domains, under certain circumstances, they 

may bind DNA indirectly by interacting with another TF86. In fact, critical TFs in the differentiation of 

hematopoietic lineages like PU.1 and GATA-1 are capable to interact with each other, allowing PU.1 

to bind to DNA both directly and indirectly (in cooperation with GATA-1)86,88. 

Interestingly, the same TF can regulate distinct genes in different cell types84. In line with this, TF 

networks define cell type identity by initiating and sustaining lineage-specific expression profiles85 as 

observed during cell differentiation.  

Biological processes like cell differentiation depend on the combined action of a set of TFs, specifically 

pioneer and non-pioneer TFs. The former TFs are able to bind “closed” chromatin and establish an 

open chromatin conformation that enables the latter TFs (lacking that feature) to bind DNA86. 

Examples of pioneer TFs include Early B-cell factor 1 (Ebf1), which is essential during B cell 

development89, and CEBPα, which is required for trans-differentiation of pre-B cells into macrophages 

(MAC)90. In a similar way, pioneer factors like Oct4, Kruppel-like factor 4 (Klf4), and Sox2 mediate 

reprogramming of fibroblasts into induced pluripotent stem cells91,92. 

Remarkably, recent work in two pituitary lineages, melanotropes and corticotropes93, proposed that 

Pax7 (pioneer TF) binds heterochromatin regardless of Tpit (non-pioneer TF), whereas the latter is 

required for Pax7-dependent open chromatin. Therefore, this work suggests that cooperation between 

pioneer and non-pioneer TFs may mediate lineage specific chromatin opening93. 

While TF binding patterns and DNA methylation strongly anti-correlate, it is still controversial whether 

TF binding occurs before DNA methylation or vice versa94. The established model suggests that DNA 

methylation patterns instruct TF binding with DNA methylation repressing the binding of TFs94,95 

sensitive to DNA methylation like NRF196. On the other hand, recent studies propose an emerging 

model where TF binding controls DNA methylation patterns97–99. Accordingly, TFs identified as 

insensitive to DNA methylation100 (e.g. OCT4101), bind to methylated regions and recruit TET enzymes 

to initiate DNA demethylation (Figure 1.7). 
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Figure 1.7 TF-mediated DNA demethylation 

TFs insensitive to DNA methylation were first shown in mouse ESCs to 
bind methylated CpGs (black lollipops) and recruit TET proteins to 
induce DNA demethylation. As a consequence, TFs sensitive to DNA 
methylation are then capable to bind to these sites (adapted from 
Héberlé and Bardet94).  

 

As previously mentioned, TET1 and TET3 possess a CXXC domain that mediates direct binding to 

DNA (methylated or unmethylated)102, and may thus facilitate their recruitment to the genomic target 

sites33. Conversely, TET2 lacks a CXXC interaction motif, suggesting that it may depend on other 

TF(s) for locus specific recruitment24 as proposed in the latter model. 

As a matter of fact, multiple TFs important in cell differentiation and lineage specification were reported 

to interact with TET2, modulating its activity and target gene expression. For example, in AML cells, 

Wilms Tumor 1 (WT1) recruits TET2 to their target genes103,104 and EBF1 was also reported to interact 

with TET2 in IDH-mutant cancers105. In a similar way, PU.1 interacts with TET2 during MO to 

osteoclast differentiation, which facilitates demethylation recruitment to PU.1 binding sites17,97. Another 

study showed physical interactions between Runt-related transcription factor 1 (RUNX1) and DNA 

demethylation machinery enzymes (TET2, TET3, TDG and GADD45) in hematopoietic cells, 

suggesting a potential function of RUNX1 in demethylation recruitment106.  

Chen and colleagues107 used a mammalian two-hybrid screen and identified the SMAD nuclear 

interacting protein 1 (SNIP1) as a physical interactor of TET2. They postulated that SNIP1 is involved 

in TET2 recruitment to the promoters of c-MYC target genes, comprising genes linked with DNA 

damage response and cell viability. Interestingly, Sardina and collaborators98 found that C/EBPα, Klf4, 

and Tfcp2l1 can recruit Tet2 to specific DNA sites, leading to enhancer demethylation and activation 

throughout reprogramming in mouse. 

Additional interaction partners of TET proteins (reported in mouse ESCs) that may contribute to their 

recruitment to specific loci, include the pluripotency factor NANOG108, PR domain zinc finger protein 

14 (PRDM14)109, Polycomb repressive complex 2 (PRC2)110 and LIN28A111. Some of these studies 

require further investigation to clarify whether the interaction of these factors with TET proteins 

mediates the recruitment, or instead, if these TFs interfere with the chromatin environment for TET 

binding17. 
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1.3 Human Mononuclear Phagocyte System 

The Mononuclear Phagocyte System (MPS) encompasses the mononuclear fraction of myeloid cells, 

which includes MO, MO-derived cells, MAC and DC populations. This system constitutes a complex, 

cellular compartment of phenotypically and functionally heterogeneous cells112,113. However, the 

functional significance of their diversity as well as the mechanism of diversification remain poorly 

understood114. 

MPS exhibit important functions that are essential, for example, to maintain homeostasis, to resolve 

inflammation and to heal wounds115, to activate innate immunity and to promote the crosstalk between 

innate and adaptive immunity116.  For this purpose, cells from the MPS possess specialized functions 

in phagocytosis, cell recruitment, antigen presentation to T cells and cytokine production117 that 

facilitate the regulation of innate and adaptive immune responses. For instance, under inflammation 

or infection, intermediate chemokines can migrate to these sites118 directed by these cells and trigger 

an immune response. This might be observed in chronic inflammatory diseases such as rheumatoid 

arthritis, neurodegenerative disorders and atherosclerosis119. 

Taken together, cells from the MPS can participate in numerous activities, such as infection defence, 

tissue homeostasis and control of T cell immunity113,120–122. Additional critical homeostatic functions 

are associated with tissue repair, remodeling, angiogenesis and neural networking in the course of 

embryonic, fetal and postnatal development123,124. 

1.3.1 In Vitro Models 

The differentiation steps of the MPS can be recapitulated in vitro using specific growth/differentiation 

factors such as granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin 4 (IL-4).  

Earlier work of Sallusto and Lanzavecchia125 demonstrated that isolated peripheral blood-MO upon 

stimulation with GM-CSF and IL-4 acquire a DC morphology and produce inflammatory cytokines. In 

addition, under further maturation by adding toll-like receptor ligands, tumor necrosis factor alpha 

(TNFα) or lipopolysaccharide (LPS)126, DCs display an efficient antigen cross-presentation capacity in 

vitro, which is characteristic of DCs in vivo125.  

Despite applicability of the in vitro systems to study cellular processes like cell differentiation, the in 

vivo conditions leading to the formation of mo‐DC remain poorly understood and difficult to reproduce 

by in vitro experiments127. Nevertheless, some in vivo studies suggest that at steady state, mo-DC are 

primarily found in the intestine128,129, while under inflammatory conditions these cells were described 

in atopic dermatitis and psoriasis patients130. In addition, mo-DCs were also detected in lung cancer 

and colorectal and breast tumors129,131,132. 

In contrast to in vitro mo-DCs, the in vitro differentiation of blood-MO into MAC can be explored using 

different strategies. The most common strategies include the cultivation of MO in the presence of 
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human AB-serum133 or with either GM-CSF or macrophage colony-stimulating factor (M-CSF)134. In 

addition, these cells can be activated in response to different stimuli like LPS, interferon-gamma 

(IFNγ), IL-4 and IL-10, producing distinct MAC phenotypes134. Interestingly, mo-MAC in vivo studies 

described the presence of these cells in the intestine and in the skin at steady state as well as in 

tissues with poorer self-renewal abilities129 such as in the heart135 lung136 and liver137. 

Generally, under proper stimulation, the in vitro MO-derived cells may resemble their in vivo 

counterparts as reported by Goudot and colleagues138. These authors showed that their system 

(human CD14+ MO cultured with M-CSF, IL-4 and TNF-α) to generate in vitro mo-DC and mo-MAC 

(in the same culture) strictly resembled the inflammatory mo-DC and mo-MAC observed in human 

tumor ascites. 

In this thesis, the in vitro model depicted in Figure 1.8 was used to differentiate peripheral blood human 

MO into iDC upon stimulation with IL-4 and GM-CSF cytokines. 

 
 
 
 
 
Figure 1.8 Post-mitotic differentiation model 
of in vitro MO differentiation  

Schematic representation of in vitro MO differentiation. 
Peripheral human blood MO can be differentiated into 
MAC in the presence of human AB-serum or into iDCs 
upon stimulation with GM-CSF and IL-4. In addition, MO 
do not proliferate (as indicated by the lack of nucleotide 
incorporation) and thus, DNA demethylation takes place 
as an active process (adapted from Klug et al.32). 

 

Based on many proliferation assays, our group previously confirmed that the differentiation of post-

mitotic MO into iDC occurs independent of any replication events31. Therefore, this system represents 

an ideal model to investigate cellular processes in the absence of DNA replication like the active DNA 

demethylation process. 

1.3.2 Monocytes 

MO represent the key members of the MPS, constituting between 4-10% of total leukocytes in the 

blood117. These circulating MO have the capacity to differentiate into different phagocytes like MAC, 

myeloid DCs, osteoclast and microglia in the central nervous system139.  

Considering that MO circulate in the bloodstream and traffic to tissues during steady state and at 

higher rates during inflammation140, they play a critical role in many diseases with an inflammatory 

component, such as infection, cardiovascular disease, type I diabetes and cancer141–145. 
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Besides their potential role in triggering inflammation responses, further evidences suggest that MO 

can carry antigens to lymph nodes146, patrol and clean up the vasculature147,148, recognize 

pathogens149 and help to kill tumor cells140,150. 

The development of MO from the common myeloid progenitor takes place in the bone marrow and is 

regulated by sequential expression of key TFs, including PU.1 (master regulator required for 

development of all myeloid cells) CCAAT/enhancer-binding protein beta (CEBPβ), IRF8 and 

KLF4140,151,152. During MO maturation KLF4 is upregulated while IRF8 is downregulated, which 

underpins the importance of IRF8 at an earlier step of MO development, whereas KLF4 and CEBPβ 

function in latter steps that lead to the development of patrolling MO141,153,154. 

In humans, MO can be divided into three subsets by their distinctive expression of the LPS-coreceptor 

CD14 and the Fcɣ III receptor CD16155. This includes classical MO (CD14++CD16-), non-classical MO 

(CD14dimCD16+) and intermediate MO (CD14+CD16+)140,155. Nonetheless, recent findings include 

additional surface markers for improving discrimination of MO subsets, such as HLA-DR, CCR2, 

CD36, and CD11c140,156. In addition, each MO subset is characterized by differential gene-expression 

patterns, transcriptional regulation and specific functions157.  

In general, classical MO encompass about 80–95% of circulating MO. These cells are highly 

phagocytic and are known as important scavenger cells. Intermediate MO comprise about 2–8% of 

circulating MO. They are fundamental to produce reactive oxygen species (ROS), antigen 

presentation, inflammatory responses, angiogenesis and are also involved in the proliferation and 

stimulation of T cells. Non-classical MO cover about 2–11% of circulating MO and their functions may 

include patrolling the endothelium in search of injury, secretion of inflammatory cytokines in response 

to infection, antigen presentation and T cell stimulation158–160. 

1.3.3 Dendritic Cells 

DCs were initially discovered in 1973161 and represent a heterogeneous class of bone marrow-derived 

professional antigen-presenting cells (APCs) widely distributed in both lymphoid and non-lymphoid 

tissues162,163. They originate from HSCs specialized progenitor subsets and are essential mediators 

between the innate and adaptive immune responses. The role of DCs in the innate immune response 

is to recognize and respond to pathogen-associated signals through pattern-recognition receptors, 

thus sharping the acute inflammatory response. In respect to the adaptive immune response, DCs 

participate in the processing and presentation of pathogen-derived peptides in the context of major 

histocompatibility complex (MHC) molecules to prime naïve T cells127,162. 

Despite immature DCs (in vivo) capacity to capture and process antigens, they represent poor 

inducers of immune responses164. However, upon recognition of exogenous and endogenous signals 

by Toll-like receptors (TLRs), they undergo a maturation process that correlates with upregulation of 

cell surface MHC gene products, co-stimulatory molecules (CD40, CD80, and CD86 and CD83) and 
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relevant chemokine receptors. Subsequently, all these stimuli improve the ability of DCs to migrate 

toward lymphoid tissues where they initiate antigen-specific T cell responses162,165. 

Although under normal conditions DCs are present at low density, they are critical in managing the 

balance between immunity and tolerance117,166. Indeed, DCs are able to regulate immune responses 

by producing both central and peripheral tolerance and controlling inflammatory responses through 

numerous mechanisms. Some of these mechanisms include, induction of T cell anergy and apoptosis 

of autoreactive T cells, expansion of regulatory T cells and limitation of other effector cell 

responses164,166. 

Based on their localization, phenotype and function167, DCs can be divided into three major subsets, 

which include plasmacytoid DC (pDC), myeloid/conventional DC (cDC) and DCs derived from 

monocytes (Mo-DCs). As illustrated in Figure 1.9, these DC subsets develop under the differential 

expression of IRF8 and IRF4 in collaboration with specific TFs, such as PU.1, ID2, E2-2, KLF4 and 

BATF3127. 

pDCs are a specialized subset of DCs with a critical role in the antiviral response168. Under steady-

state conditions, these cells possess an immature phenotype (plasma cell morphology (e.g., lack 

dendrites))162 and lack antigen presenting functions169. However, upon proper stimulation, such as 

during exposure to viral stimuli,  they can differentiate into immunogenic DCs and acquire the ability 

to secrete cytokines and to produce high levels of type I and type III interferons, thus priming T cells 

against viral antigens117,127,170. 

cDCs are a subset of DCs found in many lymphoid and non-lymphoid tissues. These cells upon 

antigen presentation to lymphocytes induce either immunity or tolerance toward that antigen169. There 

are consistent reports that further distinguish two population of cDCs, specifically cDC1 and cDC2, 

which play complementary functions in the delineating of immune responses169. Myeloid cDC1 have 

a high intrinsic capacity to cross-present antigens via MHC class I to activate CD8+ T cells and to 

promote T helper type 1 (Th1) and natural killer responses through IL-12127,171. Regarding to the 

myeloid cDC2 population, these cells are equipped with a wide range of lectins, TLRs, NOD-like 

receptors and RIG-I-like receptors and respond well to LPS, flagellin, poly IC and R848. Although 

cDC2 cells are specialized in presentation to CD4+ T cells, under appropriated activation, they also 

have the capacity of cross-presentation to CD8 cells127. 

Mo-DCs are a subset of DCs that are believed to be inflammatory DCs. These cells function primarily 

at the site of inflammation rather than travelling to lymph nodes127. In humans, inflammatory mo-DCs 

have been described for example, in eczema, psoriasis, allergic rhinitis, coeliac disease and 

inflammatory bowel disease127. 

In terms of genetic regulation, there is a specific repertoire of TFs able to regulate Mo-DC 

differentiation, including CEBP α and β, IRF4, STAT5 and RELB122,167,172. In addition, KLF4, a TF with 
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an important role in inducing MO lineage-associated molecules, is also considered a key switching 

factor regulating the differentiation of MO into Mo-DCs167,173. 

As mentioned above, the production of mo-DCs can be recapitulated in vitro upon stimulation of 

hematopoietic progenitor cells or MO with GM-CSF and IL4167. Under these circumstances, in vitro 

mo-DCs  are characterized by upregulation of CD11c, HLA-DR, CD1a, DC-SIGN and downregulation 

of CD14 cell surface molecules174. 

Despite poor understanding of how the in vitro mo-DCs correlate with their in vivo counterparts, this in 

vitro system to differentiate peripheral MO into iDC represents an ideal model to investigate molecular 

processes occurring in the absence of cell divison like active DNA demethylation. 

 

 
 
Figure 1.9 Stages and TFs in DC development 

The figure depicts the myeloid lineage development from the CMP, showing TFs required for the appropriate transition 
between stages. Interestingly, Irf8 and Irf4 appear to be critical for Irf8 cDC (also known as cDC1), Irf4 cDC (also known 
as cDC2) and pDC commitment in the bone marrow. Relative level of cKit in progenitors is indicated by the vertical arrow. 
CDP, common dendritic cell progenitor; cMoP, committed monocyte progenitor; CMP, common myeloid progenitor; GMP, 
granulocyte-macrophage progenitor; MDP, macrophage-DC precursor (adapted from Murphy et al172). 
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2 Objectives 

DNA methylation turnover plays an important role during myeloid cell differentiation. Its dysregulation, 

for example due to the mutation of key enzymes like DNMT3A or TET2, is associated with various 

myeloid malignancies.  

This thesis particularly focuses on DNA demethylation processes that occur during the post-mitotic 

differentiation of human blood monocytes (MO). Previous work had established that TET2 is the main 

hydroxylase catalyzing the removal of 5mC during MO differentiation, but it has been unclear, how the 

demethylation machinery is recruited to its target sites, and how important this epigenetic process is 

for the differentiation of post-mitotic MO. 

Hence, one main objective of this thesis was to establish a system to deplete TET2 in primary MO to 

study the consequences of TET2 depletion on local DNA methylation, chromatin accessibility and 

transcription in the course of MO differentiation. This should address one of the key questions in DNA 

methylation research: Is DNA demethylation necessary for the activation of previously DNA 

methylated cis-regulatory modules, or is it the simple consequence of other processes? 

Another important unsolved question was, how the specificity of the enzymatic turnover is controlled. 

Previous work suggested that the oxidation of 5mC at regions undergoing active demethylation is an 

early event that may even precede the binding of transcription factors (TFs). To shed further light on 

the targeting mechanisms, the second major aim was to identify candidate TFs that may be involved 

in TET2 recruitment. Candidate factors should be identified from differentially methylated regions 

(DMRs) in published whole genome bisulfite sequencing data, validated using knock-down 

approaches and further characterized using high-throughput-based methods. Finally, biochemical 

approaches should be used to establish interaction partners of candidate TFs and to uncover targeting 

mechanisms of active DNA demethylation. 

This thesis aimed at expanding our knowledge of a process that is fundamental to normal 

hematopoiesis. Findings may not only be important for the general understanding of MO biology but 

also for our understanding of how mutations in the DNA methylation machinery might alter 

hematopoietic cells to drive leukaemogenesis. 
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3 Material & Equipment 

3.1 Equipment 

Autoclave Walter, Geislingen, Germany 

Avanti J25 Beckman Coulter, Munich, Germany 

Centrifuges Heraeus, Hanau; Eppendorf, Germany 

Electrophoresis equipment Bio-Rad, Munich, Germany 

Evos Digital Microscope Thermo Fisher Scientific, Waltham, MA USA 

Fusion Pulse Vilber Lourmat, Eberhardzell, Germany 

Gene Pulser Xcell Bio-Rad, Munich, Germany 

Heatblock Eppendorf, Hamburg, Germany 

Heat sealer Eppendorf, Hamburg, Germany 

Hemocytometer Marienfeld, Lauda-Königshofen, Germany 

Incubators Heraeus, Hanau, Germany 

J6M-E centrifuge Beckmann, Munich, Germany 

Laminar air flow cabinet Heraeus, Hanau, Germany 

Luminometer  Sirius Berthold, Oakville, Canada 

MassARRAY Compact System Sequenom, San Diego, CA, USA 

MassARRAY MATRIX Liquid Handler Sequenom, San Diego, CA, USA 

MassARRAY Phusio chip module Sequenom, San Diego, CA, USA 

Mastercycler Nexus M2 Eppendorf, Hamburg, Germany 

Megafuge 3.0 R Heraeus, Osterode, Germany 

Microscopes Zeiss, Jena, Germany 

Mini Centrifuge Carl Roth, Karlsruhe, Germany 

Mini-PROTEAN Tetra System Bio-Rad, Munich, Germany 

Multifuge 3S-R Heraeus, Osterode, Germany 

Multipipettor Multipette plus Eppendorf, Hamburg, Germany 

NanoDrop Spectrophotometer PeqLab, Erlangen, Germany 

NextSeq 550 Illumina, San Diego, USA 

PCR-Thermocycler 4800 Perkin Elmer, Uberlingen, Germany 

PCR-Thermocycler PTC-200 MJ-Research/Biometra,Oldendorf, Germany 

PCR-Thermocycler Veriti 384-well Applied Biosystems, Foster City, USA 

pH-Meter Knick, Berlin, Germany 
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Picofuge Heraeus, Hanau, Germany 

PowerPac Basic Bio-Rad, Munich, Germany 

Power supplies Biometra, Gottingen, Germany 

Qubit 2.0 Flurometer Thermo Fisher Scientific, Waltham, USA 

Realplex Mastercycler epGradientS  Eppendorf, Hamburg, Germany 

Sonifier 250 Branson, Danbury, USA 

TapeStation 2200 Agilent Technologies, Boblingen, Germany 

Thermomixer Eppendorf, Hamburg, Germany 

Typhoon 9200 Molecular Dynamics, Krefeld, Germany 

Vortex Genie Scientific Industries, New York, USA 

Water bath Julabo, Seelstadt, Germany 

Water purification system Merck Millipore, Darmstadt, Germany 

Whatman Fastblot B44 Biometra, Göttingen, Germany 

3.2 Consumables 

8-channel pipettor tips Impact 384 Thermo Fisher Scientific, Waltham, USA 

Adhesive PCR sealing film Thermo Fisher Scientific, Waltham, USA 

Cell culture flasks and pipettes Eppendorf, Hamburg, Germany 

Cell culture plates (6-well) Eppendorf, Hamburg, Germany 

Centrifuge tubes (15, 50, 225 ml) Falcon, Heidelberg, Germany 

CLEAN resin  Sequenom, San Diego, CA, USA  

Electroporation cuvettes (0.4 cm) PeqLab, Erlangen, Germany 

Heat sealing Film Eppendorf, Hamburg, Germany 

Loading tips for TapeStation 2200 Agilent Technologies, Böoblingen, Germany 

Luminometer vials  Falcon, Heidelberg, Germany 

MATRIX Liquid Handler D.A.R.Ts tips  Thermo Fisher Scientific, Hudson, NH, USA  

Micro test tubes (0.2 ml) Biozym Scientific, Oldendorf, Germany 

Micro test tubes (0.5, 1.5, 2, 5 ml) Eppendorf, Hamburg; Sarstedt, Numbrecht, 

Germany 

Multiwell cell culture plates and tubes Eppendorf, Hamburg, Germany 

nProteinG Sepharose 4 FastFlow GE Healthcare, Munich, Germany 

PCR plate Twin.tec 96 well Eppendorf, Hamburg, Germany 

PCR plate 384 well (MassARRAY)  Thermo Fisher Scientific, Hudson, NH, USA  
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Petri dishes Falcon, Heidelberg, Germany 

Pierce™ Streptavidin Magnetic Beads Thermo Fisher Scientific, Waltham, USA 

Qubit assay tubes Invitrogen, Carlsbad, USA 

Sepharose Cl-4 beads Sigma-Aldrich, Taufkirchen, Germany 

Slide-A-Lyzer MINI Dialysis Devices Thermo Fisher Scientific, Waltham, USA 

Sterile combitips Eppendorf, Hamburg, Germany 

Sterile micropore filters Merck Millipore, Darmstadt, Germany 

Sterile plastic pipettes Costar, Cambridge, USA 

Syringes and needles Becton Dickinson, Heidelberg, Germany 

Teflon foils Heraeus, Hanau, Germany 

3.3 Chemicals 

All reagents used were purchased from Sigma-Aldrich (Taufkirchen, Germany) or Merck Millipore 

(Darmstadt, Germany) unless otherwise mentioned.  

3.4 Enzymes, Reagents & Kits 

2-Mercaptoethanol GE Healthcare, Chalfont St. Hiles, UK 

Agencourt AMPure XP beads Beckman Coulter, Krefeld, Germany 

Alkaline Phosphatase Thermo Fisher Scientific, Waltham, USA 

Ammonium peroxodisulfate  MERCK, Darmstadt, Germany 

Annexin V MicroBead Kit  Miltenyi Biotec, Gladbach, Germany 

Beetle-Juice BIG KIT  PJK, Kleinblittersdorf, Germany 

ECL Prime Western Blotting System Sigma-Aldrich, Taufkirchen, Germany 

Disuccinimidyl glutarate Thermo Fisher Scientific, Waltham, USA 

DNeasy Blood & Tissue Kit  Qiagen, Hilden, Germany 

dNTP Mix Agena Bioscience, San Diego, USA 

dNTPs Thermo Fisher Scientific, Waltham, USA 

Dynabeads® Antibody Coupling Kit Thermo Fisher Scientific, Waltham, USA 

EZ DNA Methylation Kit Zymo Research, Irvine, USA 

Gibson Assembly Master Mix NEB, Frankfurt, Germany 

GM-CSF Berlex, Seattle, USA 

IL-4 (Human) Promokine, Heidelberg, Germany 

MinElute Gel Extraction Kit Qiagen, Hilden, Germany 

mMESSAGE mMACHINE T7 Ultra Kit Thermo Fisher Scientific, Waltham, USA 
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Monarch DNA Gel Extraction Kit NEB, Frankfurt, Germany 

Monarch PCR & DNA Cleanup Kit NEB, Frankfurt, Germany 

Monarch Plasmid Miniprep Kit NEB, Frankfurt, Germany 

NEBNext Ultra II DNA Library Prep Kit  NEB, Ipswich, Massachusetts, USA 

Nextera XT DNA Library Preparation Kit Illumina, San Diego, USA 

Nextera XT Index Kit v2 Illumina, San Diego, USA 

NextSeq 550 High Output v2 kit (75 cycles) Illumina, San Diego, USA 

Phusion Hot Start High-Fidelity  

DNA Polymerase  
Thermo Fisher Scientific, Waltham, USA 

Plasmid Plus Midi Kit Qiagen, Hilden, Germany 

Protease inhibitor Cocktail (50x) Thermo Fisher Scientific, Waltham, USA 

Proteinase K Thermo Fisher Scientific, Waltham, USA 

QuantiFast SYBR Green Kit  Qiagen (Hilden, Germany) 

ReBlot Plus Mild Solution, 10x Merck Millipore, Darmstadt, Germany 

Renilla-Juice BIG KIT  PJK, Kleinblittersdorf, Germany 

Restriction endonucleases NEB, Frankfurt; Roche, Penzberg, Germany 

Reverse Transcriptase SuperScript II Promega, Madison, USA 

RNeasy Mini Kit Qiagen, Hilden, Germany 

ScriptSeq™ Complete Kit  

(Human/Mouse/Rat) 
Epicentre, Chicago, USA 

ScriptSeq™ Index PCR Primers Epicentre, Chicago, USA 

Shrimp Alkaline Phosphatase (SAP)  Sequenom, San Diego, CA, USA  

T-Cleavage MassCleave Reagent kit  Sequenom, San Diego, CA, USA  

3.5 Antibodies 

Chromatin Immunoprecipitation (ChIP) 

Anti-FLAG M2 (F3165) Sigma-Aldrich, Taufkirchen, Germany 

Western Blot 

Anti-FLAG M2 (F3165) Sigma-Aldrich, Taufkirchen, Germany 

Anti-IRF4 (sc-6059X) Santa Cruz, Heidelberg, Germany 

Anti-EGR2 (sc-293195) Santa Cruz, Heidelberg, Germany 
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Anti-TET2 (MABE462) Merck, Darmstadt, Germany 

Anti-Actin (A2066) Sigma Aldrich, Taufkirchen, Germany 

Co-immunoprecipitation (CoIP) 

Anti-FLAG M2 (F3165) Sigma-Aldrich, Taufkirchen, Germany 

Anti-TET2 (MABE462) Merck, Darmstadt, Germany 

Anti-IgG (sc-2025) Santa Cruz, Heidelberg, Germany 

Anti-TET2 (A304-247A) Biomol, Bethyl, Hamburg, Germany 

Western Blot (Secondary Antibodies) 

m-IgGk BP-HRP (sc-516102) Santa Cruz, Heidelberg, Germany 

Goat anti-rabbit (P0448) Dako, Boblingen, Germany 

Rabbit Anti-goat (P0449) Dako, Boblingen, Germany 

3.6 Antibiotics 

Antibiotic Stock concentration Final concentration Company 

Ampicillin 100 mg/ml 100 μg/ml Roth, Karlsruhe, Germany 

3.7 Plasmids 

pEF6/V5-His Topo Thermo Fisher Scientific, Waltham, USA 

psiCHECK™-2  Promega, Madison, USA 

3.8 E.coli Strains 

DH10B F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 
ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU 
galK λ- rpsL nupG /pMON14272 / pMON7124 

3.9 Cell lines 

THP-1 Human acute monocytic leukemia (DSMZ ACC 16) 

3.10  Oligonucleotides 

Oligonucleotides were synthesized, purified and purchased from Sigma-Aldrich (Taufkirchen, 

Germany). T7 Promoter and BGH rev sequencing primers were obtained from Geneart (Thermo 

Fisher Scientific, Regensburg). 
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3.10.1 Real-time PCR primers 

ACTB_1 forw 5’-CGAGAAGATGACCCAGATCATGTTTGAG-3’ 

ACTB_1 rev 5’-CAGAGGCGTACAGGGATAGCACAG-3’ 

IRF4_2_forw 5´-TGGGAGAACGAGGAGAAGAGCA-3´ 

IRF4_2_rev 5´-AAACAGTGCCCAAGCCTTGAAGAG-3´ 

 

3.10.2 Sequencing primers 

T7 Promoter 5’-TAATACGACTCACTATAGGG-3’ 

BGH rev 5’-TAGAAGGCACAGTCGAGG-3’ 

3xFLAG_EGR2_biot_forw 5´-CTTTTCCCGATGATTCCAGA-3´ 

3xFLAG_EGR2_biot_rev 5´-CTGGATGTGCTTGTTGATGG-3´ 

 

3.10.3  EpiTYPER primers 

Amplicon  Primer Sequence (5´ -  3´)1 

SQ00031_HCRTR1 
10F aggaagagagTTTTGTAGATTAGTGAGTGAGTGGAAGG 

T7R cagtaatacgactcactatagggagaaggctCCAAAAAAAACAACCCCTAAAATTC 

SQ00044 
10F aggaagagagGGGTGATGTAGGGGTGAATTTTATT 

T7R cagtaatacgactcactatagggagaaggctAACAAACACCTACCCAAAAACCC 

SQ00060_PPCDC 
10F aggaagagagGGTATTTTGTGGTTGATTTTTTTGG 

T7R cagtaatacgactcactatagggagaaggctACCAAACTAATATTAAACTCCTAACCTCAA 

SQ00069_ITGAM 
10F aggaagagagTTTGTGTGTAAGTGTGTGTATATGTGTG 

T7R cagtaatacgactcactatagggagaaggctAAAAAAAATTCCTAATTCCACCCAC 

SQ00080_RAB15 
10F aggaagagagTGGTAATTAGGGTAGAAGGATAATGGTTAA 

T7R cagtaatacgactcactatagggagaaggctTCTCCTCCTAACACAAACACAAACTC 

Epi00109_CCL13.1 
10F aggaagagagTTTGTGGTTTGAATAGTTAGAAGGA 

T7R cagtaatacgactcactatagggagaaggctCAACAAACACAAAAACACTACAAAAA 

Epi00148_C1ORF78.3 
10F aggaagagagGGAATTTTGTTATTTTTTAGGGTGG 

T7R cagtaatacgactcactatagggagaaggctAAAACCACCATCCTCTAACTCTC 

SQ00004_TGM2_02 
10F aggaagagagTAGGAATTTTTATTGTTGGGTGGAGT 

T7R cagtaatacgactcactatagggagaaggctTAAAATATAAATAAAATCCCCCACCCTTCT 

SQ00012_SLC25A47 
10F aggaagagagTGGAGGGTTTGTTTGTGAGTTAGG 

T7R cagtaatacgactcactatagggagaaggctACCCTATTTCCCCTCTAACTTCCCTATA 

SQ00016_BAX_02 
10F aggaagagagTTGGGGGTTTTAGTTTATTTTTTTT 

T7R cagtaatacgactcactatagggagaaggctACCTAAATCCAACTCTTTAATACCC 

SQ00001_AK021415_01 
10F aggaagagagTGGGTTTTGGAATTTTATTATTTGGG 

T7R cagtaatacgactcactatagggagaaggctAAACTCACATAAATCCATCTCCTCC 

SQ00006_AK309785_01 
10F aggaagagagTGTTAGGTTGTTTTTGTTTTTTGATAAGTT 

T7R cagtaatacgactcactatagggagaaggctAAATCCCCTACTTCCATTCACAATC 

SQ00010_AK024310_01 10F aggaagagagGGGTAGGATAGTGTATTGTAGTGGAAGT 
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T7R cagtaatacgactcactatagggagaaggctCCTTAATAATCAAAAAATAACAACAAAAC 

SQ00012_DOCK2_01 
10F aggaagagagTGGTGAGAAGAGGTTGTTTGTTGTT 

T7R cagtaatacgactcactatagggagaaggctAATTAATCCCCACAATCAAAATTCATTATA 

SQ00018_ITGAM_03_2 
10F aggaagagagATTTTTTAGTGGGTATTTTTATTGGGTATT 

T7R cagtaatacgactcactatagggagaaggctAAAAAAAACTACCTAAACTCCCTTATAC 

SQ00021_JD117533_01 
10F aggaagagagAGAAGTAAATAAATGTTGAGAATGTGTTAG 

T7R cagtaatacgactcactatagggagaaggctTCCAAAACTCCATACAATAAAAATAC 

SQ00023_ITPR2_01_2 
10F aggaagagagTGAGTAAGGGGTAGGAAGGTTATTTT 

T7R cagtaatacgactcactatagggagaaggctAACTTTTAAAACCCAAAACTTTATACTTCA 

SQ00029_LOC541471 
10F aggaagagagTTTGTGGGTGTTTGGGTTTTTTTAT 

T7R cagtaatacgactcactatagggagaaggctATTCCAAAATTTTATCCTCTTCAAATATCA 

SQ00047_TBC1D1_01 
10F aggaagagagGTTATAGGTAGGTTGAGGTTAGATTTGGAA 

T7R cagtaatacgactcactatagggagaaggctAAATCCCATCAAAATTTCAATAAATC 

SQ00001_CABP4_01 10F aggaagagagTGTTTTAGAAGTTTAGGTAGATGATTAGGT 

T7R cagtaatacgactcactatagggagaaggctCTCCTTAAACTACCAACCAATAAATTAATA 

SQ00005_TMIGD3_01 10F aggaagagagTTTTGTTTGTTTATTAATTTTGGAGGTTTA 

T7R cagtaatacgactcactatagggagaaggctCCTAAAAAATAATTCAATAATTCCAACTTT 

SQ00008_MAN1C1_02 10F aggaagagagTTTTATTAGTATAAAGGGGTTTGTTTT 

T7R cagtaatacgactcactatagggagaaggctTCCAAATAACCTAATAATCTAAAATTCTAA 

SQ00012_MYRF_03 10F aggaagagagGGGGAGGGGTAGTTAATGTTTGAGT 

T7R cagtaatacgactcactatagggagaaggctAAAAAAACTAATTCTATAACTAATCCCAAA 

1Lowercase: reverse primers (T7R) tagged with the T7 promoter sequence; forward primers (10F) tagged with a 10 mer 
overhang. Uppercase: primer sequences 

 

3.10.3.1 Genomic location 

Amplicon Genomic location (GRCh38/hg38) 

SQ00031_HCRTR1 chr1:31625344-31625648 

SQ00044 chr8:143399602-143400034 

SQ00060_PPCDC chr15:75051084-75051292 

SQ00069_ITGAM chr16:31332112-31332381 

SQ00080_RAB15 chr14:64965677-64965967 

Epi00109_CCL13.1 chr17:34356259-34356559 

Epi00148_C1ORF78.3 chr9:129839252-129839471 

SQ00004_TGM2_02 chr20:38141132-38141388 

SQ00012_SLC25A47 chr14:100325124-100325387 

SQ00016_BAX_02 chr19:48961384-48961645 

SQ00001_AK021415_01 chr10:75070419-75070720 

SQ00006_AK309785_01 chr2:218005061-218005375 

SQ00010_AK024310_01 chr14:103889639-103889892 

SQ00012_DOCK2_01 chr5:169805716-169805911 

SQ00018_ITGAM_03_2 chr16:31332112-31332381 
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SQ00021_JD117533_01 chr8:8949947-8950168 

SQ00023_ITPR2_01_2 chr12:26728155-26728400 

SQ00029_LOC541471 chr2:111239165-111239537 

SQ00047_TBC1D1_01 chr4:37954547-37954793 

SQ00001_CABP4_01 chr11:67452163-67452604 

SQ00005_TMIGD3_01 chr1:111491097-111491464 

SQ00008_MAN1C1_02 chr1:25695856-25696293 

SQ00012_MYRF_03 chr11:61749586-61750085 

3.11 siRNAs (small interfering RNAs) 

Chemically modified siRNAs were designed, synthesized, purified and purchased from Axolabs 

(Kulmbach, Germany). siRNAs for initial testing were delivered in ultrapure water at a concentration 

of 50 µM. Tested siRNAs were then delivered as lyophilized powder that was dissolved in ultrapure 

water at a concentration of 10 µg/µl (stock solution) and stored at -80 °C. 

IRF4 siRNA sequences (for testing in THP-1 cell line) 

siRNA Strand Sequence1 

siRNA_1406 
Sense 5´-gcuAcGAuuuAccaGAAcAdTsdT-3´ 

Antisense 5´-UGUUCUGGuAAAUCGuAGCdTsdT-3´ 

siRNA_2102 
Sense 5´-agccucAcAcGuAaAAGAAdTsdT-3´ 

Antisense 5´-UUCUUUuACGUGUGAGGCUdTsdT-3´ 

siRNA_2309 
Sense 5´-gaAGccAGuuAGuaAAcuudTsdT-3´ 

Antisense 5´-AAGUUuACuAACUGGCUUCdTsdT-3´ 

siRNA_3724 
Sense 5´-ccAAGcGGAuGcuccAuuudTsdT-3´ 

Antisense 5´-AAAUGGAGcAUCCGCUUGGdTsdT-3´ 

siRNA_4223 
Sense 5´-guGAccGAcucAuuuAcAAdTsdT-3´ 

Antisense 5´-UUGuAAAUGAGUCGGUcACdTsdT-3´ 

siRNA_4228 
Sense 5´-cgAcucAuuuAcAacuGAAdTsdT-3´ 

Antisense 5´-UUcAGUUGuAAAUGAGUCGdTsdT-3´ 

siRNA_4316 
Sense 5´-uauuGGGuAuGAAcuAAAAdTsdT-3´ 

Antisense 5´-UUUuAGUUcAuACCcAAuAdTsdT-3´ 

siRNA_4449 
Sense 5´-gaGcGAGGGcAuAaAuAcAdTsdT-3´  

Antisense 5´-UGuAUUuAUGCCCUCGCUCdTsdT-3´  

1Chemical modification pattern:                    

A, G, U, C: RNA Nucleotide                                                          
a, g, u, c: 2´-O-Methyl-Nucleotide 
dT: desoxy-T residue 
s: Phosphorothioate 
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siRNA sequences (siRNAs used in knock-down experiments) 

siRNA Strand Sequence1 

siRNA_CTRL_luciferase 
Sense 5´-cuuAcGcuGAGuAcuucGAdTsdT-3´ 

Antisense 5´-UCGAAGuACUcAGCGuAAGdTsdT-3´ 

siRNA_TET2_1212 
Sense 5´-accucAGGGcAGAucAAuudTsdT-3´ 

Antisense 5´-AAUUGAUCUGCCCUGAGGUdTsdT-3´ 

siRNA_EGR2_1132 (a) 
Sense 5´-cucuAcAAuccGuaAcuuudTsdT-3´ 

Antisense 5´-AAAGUuACGGAUUGuAGAGdTsdT-3´ 

siRNA_EGR2_2665 (b) 
Sense 5´-guAAAuGGGuuGccuuAuudTsdT-3´ 

Antisense 5´-AAuAAGGcAACCcAUUuACdTsdT-3´ 

siRNA_IRF4_2931 (a)2 
Sense 5´-caGGAuAuuuAcuauuAcudTsdT-3´ 

Antisense 5´-AGuAAuAGuAAAuAUCCUGdTsdT-3´ 

siRNA_IRF4_2384 (b)2 
Sense 5´-uguccuAcAAucuaGuAAudTsdT-3´ 

Antisense 5´-AUuACuAGAUUGuAGGAcAdTsdT-3´ 
1Chemical modification pattern:                   2siRNAs with the best silencing efficiency after testing (sequences not shown 

A, G, U, C: RNA Nucleotide                               in the previous siRNA (IRF4) list)                              
a, g, u, c: 2´-O-Methyl-Nucleotide 
dT: desoxy-T residue 
s: Phosphorothioate 
 

3.12  Molecular Weight Standards 

1 kb Plus DNA Ladder Thermo Fisher Scientific, Waltham, USA 

50 bp DNA Ladder NEB, Frankfurt 

Precision Plus Protein Kaleidoscope Standards 

(10–250 kD) 

Bio-Rad, Munich, Germany 

3.13 gBlocks® Gene Fragments 

gBlocks gene fragments were synthesized, high pressure liquid chromatography purified and 

purchased from Integrated DNA Technologies (IDT, San Jose, USA). 

gBlocks Gene Fragments - Luciferase Reporter Assays 

psiCHECK2-IRF4.1 (5´- 3´) 

TGCATCTCGAGGAACCTCTGCTAGCCAGACAACTATATTATTTTGCTCAACAAAACAGTGGACATTTCCTGAGGGGCTACGATTTACCAGAACACATCAGCA

ATCCAGAAGATTACCACAGGCGGCCGCGTGCA 

psiCHECK2-IRF4.2 (5´- 3´) 

TGCATCTCGAGTGTAAATTGAAGAAGCCTCACACGTAAAAGAAATGTATTAATGTATGTAGGAGCTGCAGTTCTTGTGGAAGACACTTGCTGAGTGAAGGAA

ATGAATCTTTGACTGAAGCCGTGCCTGTAGCCTTGGGGAGGCCCATCCCCCACCTGCCAGCGGTTTCCTGGTGTGGGTCCCTCTGCCCCGCCCTCCTTCCCA

TTGGCTTTCTCTCCTTGGCCTTTCCTGGAAGCCAGTTAGTAAACTTCCTATTTTCTTGAGTCAAAAAACATGAGCGCTACTCTTGGATGGGACATTTTTGTC

TGTCCTACAATCTAGTAATGTCTAAGTAATGGTTAAGTTTTCTTGTTTCTGCATCTTTTTGACCCTCATTCTTTAGAGATGCTAAAATTCTTCGCATAAAGA

AGAAGAAATTAAGGAACATAAATCTTAATACTTGAACTGTTGCCCTTCTGTCCAAGTACTTAACTATCTGTTCCCTTCCTCTGTGCCACGCTCCTCTGTTTG

TTTGGCTGTCCAGCGATCAGCCATGGCGACACTAAAGGAGGAGGAGCCGGGGACTCCCAGGCTGGAGAGCACTGCCAGGACCCACCACTGGAAGCAGGATGG

AGCTGACTACGGAACTGCACACTCAGTGGGCTGTTTCTGCTTATTTCATCTGTTCTATGCTTCCTCGTGCCAATTATAGTTTGACAGGGCCTTAAAATTACT
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TGGCTTTTTCCAAATGCTTCTATTTATAGAATCCCAAAGACCTCCACTTGCTTAAGTATACCTATCACTTACATTTTTGTGGTTTTGAGAAAGTACAGCAGT

AGACTGGGGCGTCACCTCCAGGCCGTTTCTCATACTACAGGATATTTACTATTACTCCCAGGATCAGCAGGCGGCCGCGTGCA 

psiCHECK2-IRF4.3 (5´- 3´) 

TGCATCTCGAGTGTCTTCTTAATTCTCCAAGCGGATGCTCCATTTCAATTGCTTTGTGACTTCTTCTTCTTTGTTTTTTTAAATATTATGCTGCTTTAACAG

TGGAGCTGAATTTTCTGGAAAATGCTTCTTGGCTGGGGCCACTACCTCCTTTCCTATCTTTACATCTATGTGTATGTTGACTTTTTAAAATTCTGAGTGATC

CAGGGTATGACCTAGGGAATGAACTAGCTATGAAATACTCAGGGTTAGGAATCCTAGCACTTGTCTCAGGACTCTGAAAAGGAACGGCTTCCTCATTCCTTG

TCTTGATAAAGTGGAATTGGCAAACTAGAATTTAGTTTGTACTCAGTGGACAGTGCTGTTGAAGATTTGAGGACTTGTTAAAGAGCACTGGGTCATATGGAA

AAAATGTATGTGTCTCCCAGGTGCATTTCTTGGTTTATGTCTTGTTCTTGAGATTTTGTATATTTAGGAAAACCTCAAGCAGTAATTAATATCTCCTGGAAC

ACTATAGAGAACCAAGTGACCGACTCATTTACAACTGAAACCTAGGAAGCCCCTGAGTCCTGAGCGAAAACAGGAGAGTTAGTCGCCCTACAGAAAACCCAG

CTAGACTATTGGGTATGAACTAAAAAGAGACTGTGCCATGGTGAGAAAAATGTAAAATCCTACAGTGAAATGAGCAGCCCTTACAGTATTGTTACCACCAAG

GGCAGGTAGGTATTAGTGTTTGAAAAAGCTGGTCTTTGAGCGAGGGCATAAATACAGCTAGCCCCAGGGGTGGGCGGCCGCGTGCA 

gBlocks Gene Fragments – ChIP-seq and/or CoIP experiments 

pEF6-3xFLAG-EGR2 (5´- 3´) 

Fragment 1: 
TATAGGGAGACCCAAGCTGGCTAGGTAAGCTTGGTACCGAGCTCGGATCCGCCACCATGGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCG

ATTACAAGGATGACGATGACAAAATGACCGCCAAGGCCGTAGACAAAATCCCAGTAACTCTCAGTGGTTTTGTGCACCAGCTGTCTGACAACATCTACCCGG

TGGAGGACCTCGCCGCCACGTCGGTGACCATCTTTCCCAATGCCGAACTGGGAGGCCCCTTTGACCAGATGAACGGAGTGGCCGGAGATGGCATGATCAACA

TTGACATGACTGGAGAGAAGAGGTCGTTGGATCTCCCATATCCCAGCAGCTTTGCTCCCGTCTCTGCACCTAGAAACCAGACCTTCACTTACATGGGCAAGT

TCTCCATTGACCCTCAGTACCCTGGTGCCAGCTGCTACCCAGAAGGCATAATCAATATTGTGAGTGCAGGCATCTTGCAAGGGGTCACTTCCCCAGCTTCAA

CCACAGCCTCATCCAGCGTCACCTCTGCCTCCCCCAACCCACTGGCCACAGGACCCCTGGGTGTGTGCACCATGTCCCAGACCCAGCCTGACCTGGACCACC

TGTACTCTCCGCCACCGCCTCCTCCTCCTTATTCTGGCTGTGCAGGAGACCTCTACCAGGACCCTTCTGCGTTCCTGTCAGCAGCCACCACCTCCACCTCTT

CCTCTCTGGCCTACCCACCACCTCCTTCCTATCCATCCCCCAAGCCAGCCACGGACCCAGGTCTCTTCCCAATGATCCCAGACTATCCTGGATTCTTTCCAT

CTCAGTGCCAGAGAGACCTACATGGTACAGCT 

 

Fragment 2: 
AGACTATCCTGGATTCTTTCCATCTCAGTGCCAGAGAGACCTACATGGTACAGCTGGCCCAGACCGTAAGCCCTTTCCCTGCCCACTGGACACCCTGCGGGT

GCCCCCTCCACTCACTCCACTCTCTACAATCCGTAACTTTACCCTGGGGGGCCCCAGTGCTGGGGTGACCGGACCAGGGGCCAGTGGAGGCAGCGAGGGACC

CCGGCTGCCTGGTAGCAGCTCAGCAGCAGCAGCAGCCGCTGCCGCAGCTGCCTATAACCCACACCACCTGCCACTGCGGCCCATTCTGAGGCCTCGCAAGTA

CCCCAACAGACCCAGCAAGACGCCGGTGCACGAGAGGCCCTACCCGTGCCCAGCAGAAGGCTGCGACCGGCGGTTCTCCCGCTCTGACGAGCTGACACGGCA

CATCCGAATCCACACTGGGCATAAGCCCTTCCAGTGTCGGATCTGCATGCGCAACTTCAGCCGCAGTGACCACCTCACCACCCATATCCGCACCCACACCGG

TGAGAAGCCCTTCGCCTGTGACTACTGTGGCCGAAAGTTTGCCCGGAGTGATGAGAGGAAGCGCCACACCAAGATCCACCTGAGACAGAAAGAGCGGAAAAG

CAGTGCCCCCTCTGCATCGGTGCCAGCCCCCTCTACAGCCTCCTGCTCTGGGGGCGTGCAGCCTGGGGGTACCCTGTGCAGCAGTAACAGCAGCAGTCTTGG

CGGAGGGCCGCTCGCCCCTTGCTCCTCTCGGACCCGGACACCTTGATAATCTAGAGGGCCCGCGGTTCGAAGGTAAGCCTATCCCTAACCCTCTCCTC 

pEF6-3xFLAG-IRF4 (5´- 3´) 
 

ATTGCGGATCCGCCACCATGGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGACAAAATGAACCTGGAGGGCG

GCGGCCGAGGCGGAGAGTTCGGCATGAGCGCGGTGAGCTGCGGCAACGGGAAGCTCCGCCAGTGGCTGATCGACCAGATCGACAGCGGCAAGTACCCCGGGC

TGGTGTGGGAGAACGAGGAGAAGAGCATCTTCCGCATCCCCTGGAAGCACGCGGGCAAGCAGGACTACAACCGCGAGGAGGACGCCGCGCTCTTCAAGGCTT

GGGCACTGTTTAAAGGAAAGTTCCGAGAAGGCATCGACAAGCCGGACCCTCCCACCTGGAAGACGCGCCTGCGGTGCGCTTTGAACAAGAGCAATGACTTTG

AGGAACTGGTTGAGCGGAGCCAGCTGGACATCTCAGACCCGTACAAAGTGTACAGGATTGTTCCTGAGGGAGCCAAAAAAGGAGCCAAGCAGCTCACCCTGG

AGGACCCGCAGATGTCCATGAGCCACCCCTACACCATGACAACGCCTTACCCTTCGCTCCCAGCCCAGCAGGTTCACAACTACATGATGCCACCCCTCGACC

GAAGCTGGAGGGACTACGTCCCGGATCAGCCACACCCGGAAATCCCGTACCAATGTCCCATGACGTTTGGACCCCGCGGCCACCACTGGCAAGGCCCAGCTT

GTGAAAATGGTTGCCAGGTGACAGGAACCTTTTATGCTTGTGCCCCACCTGAGTCCCAGGCTCCCGGAGTCCCCACAGAGCCAAGCATAAGGTCTGCCGAAG

CCTTGGCGTTCTCAGACTGCCGGCTGCACATCTGCCTGTACTACCGGGAAATCCTCGTGAAGGAGCTGACCACGTCCAGCCCCGAGGGCTGCCGGATCTCCC

ATGGACATACGTATGACGCCAGCAACCTGGACCAGGTCCTGTTCCCCTACCCAGAGGACAATGGCCAGAGGAAAAACATTGAGAAGCTGCTGAGCCACCTGG

AGAGGGGCGTGGTCCTCTGGATGGCCCCCGACGGGCTCTATGCGAAAAGACTGTGCCAGAGCAGGATCTACTGGGACGGGCCCCTGGCGCTGTGCAACGACC

GGCCCAACAAACTGGAGAGAGACCAGACCTGCAAGCTCTTTGACACACAGCAGTTCTTGTCAGAGCTGCAAGCGTTTGCTCACCACGGCCGCTCCCTGCCAA

GATTCCAGGTGACTCTATGCTTTGGAGAGGAGTTTCCAGACCCTCAGAGGCAAAGAAAGCTCATCACAGCTCACGTAGAACCTCTGCTAGCCAGACAACTAT

ATTATTTTGCTCAACAAAACAGTGGACATTTCCTGAGGGGCTACGATTTACCAGAACACATCAGCAATCCAGAAGATTACCACAGATCTATCCGCCATTCCT

CTATTCAAGAATGATAATCTAGAGTCAT 

pEF6-3xFLAG-NAB2 (5´- 3´) 

TATAGGGAGACCCAAGCTGGCTAGGTAAGCTTGGTACCGAGCTCGGATCCGCCACCATGGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCG

ATTACAAGGATGACGATGACAAAATGCATAGGGCTCCCAGCCCGACTGCTGAACAGCCTCCCGGGGGAGGCGACAGTGCAAGAAGAACCTTGCAACCGAGAT

TGAAACCCAGTGCCCGCGCCATGGCCCTGCCGCGGACTCTGGGAGAGTTGCAACTTTACCGCGTGCTGCAACGAGCCAATCTGTTGTCCTACTATGAAACGT

TTATCCAGCAGGGTGGAGACGATGTTCAGCAGTTGTGCGAAGCAGGTGAGGAAGAATTTCTCGAGATTATGGCGCTTGTAGGTATGGCAACGAAGCCGCTTC

ACGTGCGAAGGCTTCAGAAAGCATTGCGAGAATGGGCGACCAACCCGGGTTTGTTTAGTCAGCCCGTACCTGCTGTACCTGTCTCTAGTATTCCCCTTTTCA

AGATTAGCGAGACGGCTGGTACGCGCAAGGGATCAATGAGTAATGGGCATGGCTCTCCCGGAGAGAAGGCAGGTAGCGCGCGGAGCTTTTCTCCAAAGTCCC

CGTTGGAACTTGGTGAAAAGTTGTCTCCACTTCCAGGTGGGCCGGGTGCCGGAGATCCAAGAATCTGGCCAGGACGCTCCACACCAGAAAGTGATGTCGGGG

CGGGTGGCGAAGAGGAAGCCGGTTCACCACCATTCTCCCCTCCAGCTGGTGGAGGTGTACCTGAAGGCACCGGAGCCGGCGGGCTGGCGGCAGGTGGAACCG

GTGGTGGTCCCGATCGCTTGGAGCCTGAAATGGTCCGGATGGTTGTGGAATCTGTAGAACGGATCTTTCGATCTTTCCCAAGGGGTGATGCGGGGGAAGTCA

CTAGTTTGTTGAAGCTGAACAAGAAACTCGCTAGATCTGTGGGCCATATATTCGAGATGGATGATAACGATTCTCAAAAGGAGGAGGAAATCAGAAAATACT

CTATAATTTACGGCCGATTCGACTCTAAGCGGCGGGAAGGAAAGCAGCTGTCATTGCATGAACTTACTATTAACGAAGCCGCCGCACAATTCTGCATGCGGG

ATAACACCTTGCTGCTGCGCAGAGTCGAACTCTTCAGTTTGAGCCGGCAGGTCGCTCGAGAGTCAACCTACCTGTCCTCACTCAAAGGGTCCAGACTGCACC
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CAGAAGAACTCGGGGGGCCCCCACTCAAAAAGCTTAAGCAGGAGGTGGGGGAACAATCTCACCCCGAGATCCAGCAACCTCCTCCCGGTCCAGAGAGCTATG

TGCCCCCATATCGCCCGAGTCTTGAGGAGGATAGCGCCTCCCTCAGTGGTGAGTCCTTGGACGGACACCTTCAGGCAGTGGGGTCCTGTCCTCGACTTACTC

CTCCGCCAGCAGACCTGCCACTGGCGCTGCCCGCTCATGGCCTGTGGAGTAGACACATTCTCCAACAAACTCTTATGGATGAGGGATTGCGACTGGCTCGGC

TTGTCTCCCACGACAGGGTGGGCCGGCTCTCACCGTGCGTACCAGCGAAACCCCCGCTGGCTGAATTTGAAGAAGGCCTCCTCGATAGGTGCCCCGCGCCCG

GCCCACACCCTGCGCTTGTTGAGGGTAGGCGATCCAGCGTAAAGGTTGAAGCAGAGGCCTCCAGACAATGATCTAGAGGGCCCGCGGTTCGAAGGTAAGCCT

ATCCCTAACCCTCTCCTC 

gBlocks Gene Fragments – BioID experiments 

pEF6-3xFLAG-EGR2-linker-BirA* (5´- 3´) 

TATAGGGAGACCCAAGCTGGCTAGGTAAGCTTGGTACCGAGCTCGGATCCGCCACCATGGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCG

ATTACAAGGATGACGATGACAAAATGATGACTGCCAAAGCGGTGGACAAGATTCCAGTTACACTCTCCGGATTTGTACACCAATTGAGTGATAACATATACC

CTGTCGAGGATCTCGCAGCCACATCCGTTACTATATTCCCAAATGCTGAATTGGGTGGGCCGTTTGACCAGATGAACGGAGTCGCCGGTGATGGAATGATTA

ACATTGATATGACCGGTGAGAAGAGATCACTTGACTTGCCATATCCTTCCAGTTTCGCCCCAGTATCCGCTCCCAGGAACCAAACCTTCACTTACATGGGTA

AGTTCTCAATTGATCCGCAGTATCCAGGAGCTAGTTGCTATCCTGAAGGAATAATCAACATAGTTTCTGCTGGCATATTGCAAGGTGTTACCTCACCTGCGT

CCACTACAGCGTCCTCTAGTGTAACCTCAGCCAGCCCGAATCCTCTCGCGACGGGCCCACTGGGGGTATGTACAATGTCCCAGACTCAGCCTGATTTGGATC

ACCTTTACTCTCCACCACCCCCGCCTCCACCCTACAGTGGTTGCGCAGGGGACTTGTATCAAGATCCGAGTGCATTCCTGTCTGCCGCGACAACATCTACCT

CCTCAAGTCTCGCCTACCCACCTCCTCCCTCCTACCCCTCTCCCAAGCCAGCCACCGACCCGGGGCTTTTCCCGATGATTCCAGATTACCCTGGTTTCTTTC

CATCACAATGCCAGAGGGATCTCCACGGGACTGCCGGACCAGACAGAAAGCCTTTCCCATGCCCATTGGACACACTTCGAGTGCCACCGCCATTGACGCCTC

TTTCCACAATTCGAAATTTCACACTCGGAGGTCCAAGTGCGGGCGTCACCGGCCCTGGTGCCAGTGGCGGATCAGAGGGACCGCGCCTCCCGGGTTCCAGTA

GTGCGGCAGCCGCTGCAGCTGCCGCTGCTGCATATAATCCGCATCACCTTCCACTGCGACCCATACTGAGACCGCGCAAGTACCCAAATAGGCCGTCCAAGA

CCCCTGTTCACGAACGCCCATACCCATGTCCAGCGGAGGGATGTGACCGCCGGTTTTCTCGCAGTGATGAACTCACTAGGCACATTCGGATCCATACAGGTC

ATAAACCATTTCAATGCAGGATATGCATGCGGAATTTCAGTAGGAGCGACCATCTGACGACTCACATTAGAACGCACACTGGAGAAAAGCCATTCGCATGTG

ACTACTGTGGTCGCAAGTTCGCACGGTCCGACGAGCGGAAGCGACACACAAAGATTCATCTCCGCCAGAAAGAGCGCAAAAGTAGCGCTCCATCCGCTTCAG

TCCCGGCTCCTAGCACGGCAAGTTGTAGCGGTGGAGTTCAGCCTGGAGGGACATTGTGCTCCTCAAACTCCAGTAGCCTCGGAGGAGGTCCACTTGCCCCAT

GTAGCAGCAGAACCCGGACGCCTACTATGTCTGTGGACTCAAGCCTGCCCAGCCCCAACCAGCTGAGCAGCCCCAGCCTGGGTTTCGACGGCCTGCCCGGCC

GGAAGGACAACACCGTGCCCCTGAAGCTGATCGCCCTGCTGGCCAACGGCGAGTTCCACTCTGGCGAGCAGCTGGGAGAGACCCTGGGAATGAGCAGAGCCG

CCATCAACAAGCACATCCAGACACTGAGAGACTGGGGAGTGGACGTGTTCACCGTGCCTGGCAAGGGCTACAGCCTGCCTGAGCCTATCCAGCTGCTGAACG

CCAAGCAGATCCTGGGACAGCTGGATGGCGGAAGCGTGGCCGTGCTGCCTGTGATCGACTCCACCAATCAGTACCTGCTGGACAGAATCGGAGAGCTGAAGT

CCGGCGACGCCTGCATCGCCGAGTACCAGCAGGCTGGCAGAGGAGGCAGAGGACGGAAGTGGTTCAGCCCATTCGGAGCCAACCTGTACCTGTCCATGTTCT

GGAGACTGGAGCAGGGACCTGCTGCTGCCATCGGACTGAGTCTGGTGATCGGAATCGTGATGGCCGAGGTGCTGAGAAAGCTGGGAGCCGACAAGGTGAGAG

TGAAGTGGCCTAATGACCTGTACCTCCAGGACCGCAAGCTGGCTGGCATCCTGGTGGAGCTGACAGGCAAGACAGGCGATGCCGCTCAGATCGTGATCGGAG

CCGGAATCAACATGGCCATGAGAAGAGTGGAGGAGAGCGTGGTGAACCAGGGCTGGATCACCCTGCAGGAGGCTGGCATCAACCTGGACCGGAACACCCTGG

CCGCCATGCTGATCAGAGAGCTGAGAGCCGCTCTGGAGCTGTTCGAGCAGGAGGGACTGGCTCCTTACCTGAGCAGATGGGAGAAGCTGGACAACTTCATCA

ACAGACCTGTGAAGCTGATCATCGGCGACAAGGAAATCTTCGGCATCTCCAGAGGAATCGACAAGCAGGGAGCTCTGCTGCTGGAGCAGGACGGAATCATCA

AGCCCTGGATGGGCGGAGAAATCTCCCTGAGAAGCGCAGAGAAGCTCGAGTGATCTAGAGGGCCCGCGGTTCGAAGGTAAGCCTATCCCTAACCCTCTCCTC 

pEF6-3xFLAG-NLS-BirA* (5´- 3´) 

TATAGGGAGACCCAAGCTGGCTAGGTAAGCTTGGTACCGAGCTCGGATCCGCCACCATGGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCG

ATTACAAGGATGACGATGACAAACCGAAAAAGAAGCGCAAGGTTAAGGACAACACCGTGCCCCTGAAGCTGATCGCCCTGCTGGCCAACGGCGAGTTCCACT

CTGGCGAGCAGCTGGGAGAGACCCTGGGAATGAGCAGAGCCGCCATCAACAAGCACATCCAGACACTGAGAGACTGGGGAGTGGACGTGTTCACCGTGCCTG

GCAAGGGCTACAGCCTGCCTGAGCCTATCCAGCTGCTGAACGCCAAGCAGATCCTGGGACAGCTGGATGGCGGAAGCGTGGCCGTGCTGCCTGTGATCGACT

CCACCAATCAGTACCTGCTGGACAGAATCGGAGAGCTGAAGTCCGGCGACGCCTGCATCGCCGAGTACCAGCAGGCTGGCAGAGGAGGCAGAGGACGGAAGT

GGTTCAGCCCATTCGGAGCCAACCTGTACCTGTCCATGTTCTGGAGACTGGAGCAGGGACCTGCTGCTGCCATCGGACTGAGTCTGGTGATCGGAATCGTGA

TGGCCGAGGTGCTGAGAAAGCTGGGAGCCGACAAGGTGAGAGTGAAGTGGCCTAATGACCTGTACCTCCAGGACCGCAAGCTGGCTGGCATCCTGGTGGAGC

TGACAGGCAAGACAGGCGATGCCGCTCAGATCGTGATCGGAGCCGGAATCAACATGGCCATGAGAAGAGTGGAGGAGAGCGTGGTGAACCAGGGCTGGATCA

CCCTGCAGGAGGCTGGCATCAACCTGGACCGGAACACCCTGGCCGCCATGCTGATCAGAGAGCTGAGAGCCGCTCTGGAGCTGTTCGAGCAGGAGGGACTGG

CTCCTTACCTGAGCAGATGGGAGAAGCTGGACAACTTCATCAACAGACCTGTGAAGCTGATCATCGGCGACAAGGAAATCTTCGGCATCTCCAGAGGAATCG

ACAAGCAGGGAGCTCTGCTGCTGGAGCAGGACGGAATCATCAAGCCCTGGATGGGCGGAGAAATCTCCCTGAGAAGCGCAGAGAAGCTCGAGTGATCTAGAG

GGCCCGCGGTTCGAAGGTAAGCCTATCCCTAACCCTCTCCTC 
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3.14  Databases & Software 

Adobe Illustrator Adobe, San Jose, California, USA 

Bcl2fastq v2.20.0.422 Illumina, San Diego, USA 

BEDtools2 v2.27.1 Quinlan Laboratory, Virginia, USA 

BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi 

Bowtie2 v2.3.4 www.bowtie-bio.sourceforge.net/index.shtml 

Enrichr http://amp.pharm.mssm.edu/Enrichr/ 

EpiTYPER v1.2, agena Sequenom, San Diego, CA, USA 

ExPASy http://web.expasy.org/ 

FastQC v0.11.7 https://www.bioinformatics.babraham.ac.uk/ 
projects/download.html 

GENtle v1.9.4 University of Cologne, Cologne, Germany 

HOMER v4.11 http://homer.ucsd.edu/homer/index.html 

Illumina Experiment Manager v1.14.0 Illumina Inc., San Diego, USA 

Illumina Sequencing Analysis Viewer v2.1.18 Illumina Inc., San Diego, USA 

Inkscape 0.92.5 https://inkscape.org/ 

Integrative Genomics Viewer (IGV) v2.4.6 Broad Institute, Cambridge, USA 

IGVTools v2.3.98 Broad Institute, Cambridge, USA 

NCBI https://www.ncbi.nlm.nih.gov/ 

Metascape http://metascape.org/ 

MethPrimer http://www.urogene.org/methprimer 

Microsoft Office 2016 Microsoft Corporation, Redmond, USA 

PubMed www.ncbi.nlm.nih.gov/entrez 

R 3.4.3 http://www.r-project.org/ 

R Studio v0.97.551 http://www.rstudio.com/ 

SAMtools v1.9 https://sourceforge.net/projects/samtools/files/ 
samtools 

SnapGene Viewer v2.8.2 GSL Biotech LLC, Chicago, USA 

STAR v2.5.3a https://github.com/alexdobin/STAR 

STRING v11.0 https://string-db.org/ 

TapeStation A.01.05 (SR1) Agilent Technologies, Boblingen, Germany 

Typer 4.0 Sequenom, San Diego, CA, USA 

UCSC Genome Browser www.genome.ucsc.edu 
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4 Methods 

4.1 Cell Culture  

4.1.1 THP-1 Cell line 

THP-1 cell line was cultured at a density of 0,5x106/ml in RPMI-1640 (Gibco, Waltham, USA), 

supplemented with 10% FCS (fetal calf serum), L-glutamine (2 mM), sodium pyruvate (1 mM), 

antibiotics (50 U/ml penicillin, 50 μg/ml streptomycin), vitamins (2 ml), non-essential amino acids (1x) 

and ß-mercaptoethanol (50 μM). Media supplements were purchased from Gibco (Waltham, USA) 

and Merck Millipore (Darmstadt, Germany; L-glutamine), respectively. FCS was heat inactivated for 

20 min at 56°C before use. Each batch of FCS or culture medium was tested before use.  

Cell passaging was performed every 2-3 days in fresh medium and cells were maintained at general 

cell culture conditions in a standard incubator (37°C, 5% CO2 and 95% relative humidity). 

4.1.2 Isolation of Primary Human Monocytes by Elutriation 

Peripheral blood mononuclear cells (PBMCs) from healthy donors were enriched and collected by 

leukapheresis, followed by density gradient centrifugation over Ficoll/Hypaque. MO were then isolated 

from PBMCs by counter current centrifugal elutriation. Elutriation was performed in a J6M-E centrifuge 

equipped with a JE 5.0 elutriation rotor and a 50 ml flow chamber (Beckman, Munich, Germany). After 

sterilizing the system with 6% H2O2 for 20 min, the system was washed with 1x PBS. Following 

calibration at 2500 rpm with Hanks solution, MNCs were loaded at a flow rate of 52 ml/min. Fractions 

were sequentially collected according with their respective flow rate (see Table 4.1). MO from the last 

fraction were centrifuged (300xg, 4°C, 8 min) and washed with 1x PBS. After counting, MO (purity 

ranging from 85% to 95%) were resuspended in 40 ml of RPMI medium. 

Table 4.1 Elutriation parameters and cell types 

Fraction Volume (ml) Flow rate (ml/min) Main cell type recovered 

Ia 1000 52 platelets 

Ib 1000 57 

B and T lymphocytes, NK cells 

IIa 1000 64 

IIb 500 74 

IIc 400 82 

IId 400 92 

III 800 130 MO 

 

4.1.3 IL4/GM-CSF-mediated Monocyte Differentiation 

Peripheral human blood MO were cultured at a density of 1x106/ml in RPMI-1640 (Thermo Fisher 

Scientific, Waltham, USA) containing the supplements aforementioned in section 4.1.1. To promote 

the differentiation of MO towards iDCs, culture medium was supplemented with 20 U/ml recombinant 
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human IL-4 (Promokine, Heidelberg, Germany) and 280 U/ml GM-CSF (Berlex, Seattle, USA). Cells 

were kept in a standard incubator at 37°C, 5% CO2 and 95% of relative humidity. iDCs were cultured 

for 7 days and harvested at different time points (18 h, 66 h, 4 d and 7 d) during differentiation, unless 

otherwise stated. 

4.1.4 Assessing Cell Number and Viability 

The total number of cells and their viability was determined by Trypan blue exclusion. For this purpose, 

the cell suspension was diluted in Trypan blue solution (0.2% (w/v) trypan blue in 0.9 % NaCl solution) 

and immediately counted in a Neubauer hemocytometer. When counting the cells in the microscope, 

the dead cells appear dark blue and thus easily distinguishable from the live cells. The concentration 

of viable cells was determined according with the following formula: 

 

Number of viable cells/ml (C): C = N x D x 104
 

N: average number of unstained cells per corner square (1 mm2
 containing 16 sub-squares) 

D: dilution factor 

4.1.5 Transient Transfections of Primary Human Cells and THP-1 Cell line 

Immune cells activation after transfection is one of the main challenges when introducing foreign 

genetic material into these cells. Therefore, during transfection (by electroporation) were used mRNAs 

generated by in vitro transcription (IVT) (see section 4.5.3), which were reported to be well tolerated 

by DCs175 and backbone modified siRNAs (see section 3.11) with no effect on cell activation or 

survival.  

The siRNAs when injected into a cell, they form double stranded RNA molecules with the target 

mRNAs, thus blocking their further processing and translation into a protein. Consequently, siRNAs 

were used to transiently knock-down (KD) the expression of their target genes. In contrast, the ivt 

mRNAs were used to overexpress the fusion proteins, previously generated by molecular cloning (see 

section 4.3). 

For electroporation, cells were initially washed one time with RPMI (Gibco, Thermo Fisher Scientific, 

Waltham, USA; without phenol red) and Opti-MEM (Gibco, Thermo Fisher Scientific, Waltham, USA; 

without phenol red), followed by centrifugation (500xg, 10 min, RT) between washes. Afterwards, cells 

were gently resuspended in Opti-MEM at a final concentration of 3x106 cells in a final volume of 200µl, 

unless otherwise mentioned. Per electroporation in a cuvette (0.4cm electroporation cuvettes 

(PeqLab, Erlangen, Germany)) were combined 200 µl of resuspended cells with 3 µg siRNA (1 µg 

siRNA/1x106 cells) or with 5 µg (3xFLAG-EGR2; 3xFLAG-IRF4) and 3 µg (3xFLAG-PU.1) of ivt mRNA 

(for ChIP-seq experiments). Of note, for siRNA testing using the luciferase reporter assay, siRNAs at 

a final concentration of 40 pmol or 120 pmol were used. For analysis of EGR2, Cterm-3xFlag-EGR2-

BirA*, 3xFlag-NLS-BirA* and NAB2 fusion proteins kinetic were used 20 µg, 32 µg, 12 µg and 22 µg 
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of ivt mRNA (per 12x106 cells), respectively. For BioID (proximity-dependent biotin identification) and 

CoIP (co-immunoprecipitation) procedures the amounts of ivt mRNA utilized are given in sections 

4.6.4 & 4.6.5, respectively. 

Using the electroporator GenePulser Xcell (BioRAD), cells were electroporated according with the 

following conditions: 3 square waves, 400 V, 5 ms, 1 pulse interval. Immediately after electroporation, 

cells were placed in cell flasks containing pre-warmed RPMI medium supplemented as described in 

section 4.1.1  for THP-1 and in section 4.1.3 for iDCs. Cells were cultured at a density of 1x106/ml in 

a standard incubator (37°C, 5% of CO2, 95% of relative humidity) and harvested at the respective 

time points. 

4.1.6 Luciferase Reporter Assay 

For transfection, 1 µg of plasmid DNA (fused Renilla luciferase:gene of interest) together with 40 or 

120 pmol of the respective siRNA were introduced in THP-1 cells by electroporation. Twenty-four 

hours post-transfection, cells were transferred to 14 ml polystyrene round-bottom tubes, centrifuged 

at 300×g for 10 min and washed with 1x PBS. After, cells were lysed by adding 300 μl of 1x lysis buffer 

(Promega) and incubated for 15 min at RT. Then, cell lysate was precleared by centrifugation and the 

supernatant was used to measure the luciferase and firefly activities using the Dual-Luciferase 

Reporter Assay System (Promega) according with the manufacturer’s instructions. For data analysis, 

Renilla luciferase values were normalized to firefly luciferase values. 

4.2 Bacterial Culture  

4.2.1 Cultivation of E.coli strains 

Required solutions: 

 

LB-medium: 10 g Bacto Tryptone 

 10 g NaCl 

 5 g Yeast extract 

 Add ddH2O up 1000 ml, adjust pH to 7.5, autoclave 

 

LB-agar plates: 10 g Bacto Tryptone 

 10 g NaCl 

 5 g Yeast extract 

 15 g Agar 

 Add ddH2O up 1000 ml, adjust pH to 7.5, autoclave, cool to 

50°C and add the appropriate antibiotic. Pour the agar 
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solution into 10 cm petri dishes and store upside down at 

4°C 

 

E.coli strains were streaked out in solid LB-agar including the appropriate antibiotics (see section 3.6) 

to create a selection pressure for the bacteria growth, followed by overnight incubation at 37°C. In the 

next day, the single colonies in the LB-agar plates were picked out and transferred to LB medium 

supplemented with the same antibiotics as used before, and grown overnight at 37°C with shaking at 

200 rpm. The bacteria suspensions containing the correct constructs were long-term stored at -80°C 

in 20% glycerol, by adding 600 μl liquid culture to 200 μl of 80% glycerol. 

4.3 Molecular Cloning: upstream and downstream experiments 

4.3.1 Restriction Endonuclease Digestion 

Appropriated restriction enzymes were used to confirm the presence and orientation of an individual 

insert within a plasmid, due to their ability to cleave the DNA at specific sequences. Besides that, 

restriction enzymes were also used to linearize plasmid DNA for downstream applications, namely in 

vitro mRNA transcription (see section 4.5.3). In general, 1 μg DNA was digested with 1 U enzyme in 

a 10-50 μl reaction by incubation at 37°C or 65°C for 1 h. All the restriction enzymes and respective 

buffers were purchased from Sigma-Aldrich (Taufkirchen, Germany) or New England Biolabs (NEB, 

Frankfurt, Germany). 

4.3.2 Dephosphorylation of DNA with Alkaline Phosphatase 

To prevent self-ligation, digested vectors were treated with 1 U of AP (calf intestinal alkaline 

phosphatase) at 37°C for 30 min. 

4.3.3 Agarose Gel Electrophoresis 

Required buffers: 

 

TAE (50x): 242.3 g (2 M) Tris 

 20.5 g (250 mM) NaOAc/HOAc, pH 7.8 

 18.5 g (0.5 M) EDTA, pH 8.0 

 Add ddH2O to 1000 ml  

 

DNA loading dye (DNA LD 5x): 500 μl (50 mM) Tris (1 M), pH 7.8 

 500 μl (1%) SDS (20%) 

 1 ml (50 mM) EDTA (0.5 M), pH 8.0 

 4 ml (40%) Glycerol (100%) 
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 10 g (1%) Bromophenol blue 

 Add ddH2O to 10 ml, store at 4°C  

 

Agarose gel electrophoresis was routinely used to separate DNA fragments based on their size and 

charge. The agarose gel percentage varied between 0.8% - 2% depending on the fragments size 

(usually from 100 bp to 25 kb). The required agarose amount was weighted and added to the correct 

amount of 1x TAE buffer. The slurry was heated in a microwave until the agarose was completely 

dissolved. After cooling the solution to 50°C – 60°C, the gel was stained with Ethidium bromide (10 

mg/ml) and poured into a gel tray.  After agarose polymerization, the gel was mounted in the 

electrophoresis tank and covered with 1x TAE running buffer. Before loading the DNA samples into 

the gel, they were diluted 4:1 with DNA loading dye (5x). Depending on the size and the desired 

resolution, gels were run at 40-150 V for 30 min to 3 h. 

4.3.4 Purification of DNA Fragments by Gel Extraction 

The DNA fragments of interest were run in an agarose gel at a low voltage and for a longer time to 

allow more precise bands separation. After visualization of the gel under UV illumination, the bands 

containing the desired fragments were excised. Fragments were then purified by gel extraction using 

the Monarch DNA Gel Extraction Kit (NEB, Frankfurt, Germany) according to the manufacturer’s 

instructions. 

4.3.5 Gibson Assembly 

There are different cloning methods to insert recombinant DNA into a vector. One of these methods 

is named Gibson assembly® and was initially described by Gibson et al.176, allowing the generation of 

DNA constructs in a single round of cloning without using restriction enzymes. This method facilitates 

the assembly of multiple DNA fragments (up to 6 different fragments ranging from 500 bp to 32 kb) in 

a single isothermal reaction.  

For the assembly reaction, the gBlocks Gene Fragments (chemically synthesized, double-stranded 

DNA, see section 3.13) and the linearized vector (see section 4.3.4) were required. In order to 

assemble the gBlocks Gene Fragments into the vector, overlapping sequences (between 30 to 40 bp) 

with the vector and between gene fragments (in case of multiple DNA fragments for assembly) were 

also included in the ordered gBlocks. 

Per reaction, around 50-100 ng of linearized plasmid DNA and a 2-3-fold molar excess of insert 

fragments was used. Reactions were prepared as shown in Table 4.2 and according with 

manufacturer’s instructions (NEB): 
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Table 4.2 Gibson Assembly setup and parameters 

Number of fragments plus plasmid 2 - 3 fragments 

Quantity 0.02-0.5 pmole ea. 

Gibson Assembly Master Mix (2x), NEB 10 μl 

ddH2O Add to 20 μl 

 

The reactions were incubated for 1 h at 50°C, resulting in different DNA fragments joined together. An 

overview and detailed protocol description of this method can be found in the instruction manual of 

Gibson Assembly® Master Mix from NEB. 

4.3.6 Transformation of Chemically Competent E.coli 

Required Medium: 

 

SOC medium: 20 g (2%) BactoTrypton (Difco) 
 5 g (0.5%) BactoYeastExtract (Difco) 

 0.6 g (10 mM) NaCl 

 0.2 g (3 mM) KCl 

                                       Add ddH2O up 1L, autoclave and add: 

 10 ml (10 mM) MgCl2 (1 M, sterile) 

 10 ml (10 mM) MgSO4 (1 M, sterile) 

 10 ml (20 mM) Glucose (2 M, sterile) 

 

Per transformation, 50 µl of chemically competent E.coli were gently mixed on ice with 1-25 ng plasmid 

DNA, following incubation on ice for 30 min. Cells were heat-shocked in a heat block at 42°C for 90 

sec and cooled on ice for 2 min before adding 250 μl of pre-warmed SOC (Super Optimal broth with 

Catabolite repression) medium. Bacteria were vigorously shacked at 37°C for 1 h, then 50 µl to 100 µl 

of transformation reaction were plated in a LB-agar including ampicillin. The plates were incubated 

overnight at 37°C, thus generating single colonies.  

4.3.7 Plasmid DNA Isolation 

Single colonies from LB-agar plates and resistant to ampicillin (see section 4.3.6) were picked out and 

placed in 4 ml LB-medium (supplemented with ampicillin). After shaking overnight at 37°C, 2 ml liquid 

bacterial culture were used for plasmid isolation with the Monarch Plasmid Miniprep Kit (NEB, 

Frankfurt, Germany) according to manufacturer’s instructions. To isolate larger amounts of ultrapure 

DNA (e.g. transfection experiments), plasmids were isolated using the endotoxin-free QIAGEN 

Plasmid Plus Midi Kit (Hilden, Germany) according to manufacturer’s instructions. 
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4.3.8 Sanger Sequencing and Data Analysis 

After plasmid DNA isolation (see section 4.3.7), the insert DNA sequence was checked by the Sanger 

sequencing method, which was performed by Thermo Fisher (Regensburg, Germany). To analyse 

and align the sequence files, the GENtle software or the BLAST function of the UCSC genome browser 

were used. 

4.3.9 Purification of DNA using Phenol-Chloroform Extraction and Ethanol 

Precipitation 

Before using the plasmid DNA for in vitro mRNA transcription (see section 4.5.3), it was initially 

linearized with restriction enzymes (see section 4.3.1) and purified according with the following 

protocol. Linearized plasmids DNA were vigorously mixed with 1 Volume (V) Phenol-Chloroform-

Isoamylalcohol (25:24:1, pH 8) and centrifuged for 5 min at 13000 rpm (RT). The upper aqueous phase 

containing the DNA was carefully transferred to a new tube. The precipitation was repeated twice with 

1 V of Chloroform p.a. (Merck, Darmstadt, Germany) to remove residual phenol. After extraction, the 

DNA-containing aqueous phase was transferred into a new RNase-free Eppendorf cup and 

precipitated with 0.5 V 5 M NH4OAc (pH 5.2) and 2.5 V 100% EtOH for 1 h at -80°C. After centrifugation 

at 13000 rpm for 30 min (4°C), the supernatant was removed and the precipitated DNA was washed 

with 70% ice-cold EtOH. Pellet was air-dried and dissolved in RNase-free water at a concentration of 

1 μg/μl. Purified linearized DNA was stored at 4°C for later use. 

4.4 DNA-based Methods 

4.4.1 Isolation and Quantification of Genomic DNA 

Genomic DNA was isolated using the DNeasy Blood & Tissue Culture Kit (Qiagen) according to the 

manufacturer’s instructions. Genomic DNA was quantified with the NanoDrop (peqLab) and used for 

DNA methylation analysis (see section 4.4.3). 

4.4.2 Real-Time PCR 

This method was used to evaluate the knock-down efficiency of different siRNAs targeting a specific 

gene. In the PCR step, a SYBR green dye was used for real time quantification of double-stranded 

DNA product in the reaction. PCR was performed using the QuantiFast SYBR Green Kit from Qiagen 

(Hilden, Germany) in 96-well plates adapted to the Eppendorf Realplex Mastercycler EpGradient S 

(Eppendorf, Hamburg, Germany) according with the following setup (Table 4.3) and PCR program 

(Table 4.4). 
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Table 4.3 Reaction setup for real-time PCR 

Component Volume [μl] Final Concentration 

SYBR Green mix (2x) 5 1x 

H2O 2 - 

Primer forward (10 μM) 0.5 0.5 μM 

Primer reverse (10 μM) 0.5 0.5 μM 

DNA 2  

 
Table 4.4 PCR program for real-time PCR 

Stage Temperature Time Cycles 

Initial melting 95°C 5 min  

Melting 95°C 8 sec 
45 

Annealing & Extension 60°C 20 sec 

Melting 95°C 15 sec 
Final cycle 

Annealing & Extension 60°C 15 sec 

Melting curve 
 10 - 20 min  

95°C 15 sec  

 
In addition to the unknown samples, the standard curve dilutions (1:10, 1:50, 1:100, 1:1000) were also 

measured and later used for quantification purposes. The Realplex software automatically calculated 

DNA amounts based on the generated slope and intercept parameters. Specific amplification was 

controlled in the melting-curve analysis. The data was exported from the software and analysed using 

Excel. All samples were measured in duplicate and for relative quantification they were normalized to 

β-actin (housekeeping gene). 

4.4.3 DNA Methylation Analysis using the MassARRAY® System 

(Sequenom) 

The MassARRAY system is a matrix-assisted laser desorption/ionization time of flight mass 

spectrometer (MALDI-TOF MS) used to detect and quantify DNA methylation of multiple CpGs in 

genomic regions between 100 to 600 bp.  

This technology is formally known as EpiTYPER, a bisulfite-based method involving several 

biochemical steps. Briefly, the bisulfite converted DNA is amplified by PCR followed by treatment with 

a shrimp alkaline phosphatase (SAP) to dephosphorylate unincorporated dNTPs from PCR. After, the 

T7 promoter-tagged reverse primer used in the PCR reaction allows the in vitro transcription of the 

PCR product by T7 RNA polymerase, yielding a single stranded RNA product. Then, the RNA is 

cleaved by a RNase A enzyme, resulting in a specific fragmentation of the RNA, and the digestion 

products are separated on mass with the mass spectrometer (MALDI-TOF MS). Depending on the 

number of methylated CpG sites within a RNA fragment, the difference in mass results in a 16 Da shift 

in the mass spectrum.  

A complete description of the method can be found in Ehrich et al.177 or in the EpiTYPER User Guide 

(www.sequenom.com). 



Methods 

38 

Primer Design 

The MethPrimer web tool (http://www.urogene.org/methprimer/) was used to design primers capable 

of amplifying bisulfite converted DNA. To allow the reverse transcription by T7 RNA polymerase, all 

reverse primers were tagged at the 5’ end with the T7 promoter sequence; a 10 mer overhang was 

added to all forward primers to balance for melting temperature differences (see section 3.10.3). 

Primers were ordered in 96-well format at 100 μM concentration (Sigma-Aldrich). 

Bisulfite Treatment 

The treatment of genomic DNA with sodium bisulfite leads to deamination of all unmethylated 

cytosines residues to uracil, whereas the methylated cytosines (5-methylcytosine) remain unaffected. 

Consequently, the 5-methylcytosines are transcribed to guanines, while unmethylated cytosines are 

transcribed to adenines. 

Bisulfite conversion was performed with the EZ DNA Methylation Kit (Zymo Research) according to 

the manufacturer’s instructions. The protocol was optimized with the following conditions as shown in 

the Table 4.5. 

Table 4.5 Cycling protocol for bisulfite treatment 

Cycle step Temperature Time Number of cycles 

Denaturation 95°C 30 sec 
20 x 

Sulfonation 50°C 15 min 

Cooling 4°C Hold - 

PCR, SAP treatment, in vitro transcription, RNA specific cleavage and MALDI-TOF mass spectrometry 

were performed according to the EpiTYPER application guide and protocols (Sequenom). 

EpiTYPER Analysis 

Raw data was processed using the EpiTYPER software (v1.2, Sequenom) generating quantitative 

results for each RNA product.  

DNA methylation ratios across amplicons and samples were exported to a text file and further analyses 

were performed using R software. 

Heatmaps presenting averaged CpG methylation levels across amplicons and samples were plotted 

using the heatmap2 function of the gplots package in R. Barplots of individual CpGs across samples 

were plotted in R using the ggplot2 package.  
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4.5 RNA-based Methods 

4.5.1 Isolation of Total RNA and Quality Control 

Total RNA was isolated and purified using the Qiagen RNeasy Mini Kit (Hilden, Germany) according 

with manufacturer’s instructions. RNA was quantified with the NanoDrop (peqLab) and the quality was 

assessed using the RNA ScreenTape Kit (Agilent, Böblingen, Germany) according to the 

manufacturer’s instructions. The RNA was then used for reverse transcription PCR (section 4.5.2) or 

RNA sequencing (section 4.7.3). 

4.5.2 Reverse Transcription PCR 

In the reverse transcription reaction a transcriptase is used to transcribe RNA to complementary DNA 

(cDNA), allowing for the quantification of mRNA transcripts. For this purpose, the reaction was setup 

as shown in Table 4.6: 

Table 4.6 Reaction setup for reverse transcription PCR 

Component Amount 

RNA 1 μg 

Random Decamers 1 μl 

dNTP's (10 mM) 1 μl 

H2O 15 μl 

After incubation at 65°C for 5 min, samples were shortly placed on ice, followed by the addition of 4 μl 

of 5x MMLV (Moloney Murine Leukemia Virus Reaction Buffer) (Promega) and further incubation for 

2 min at 42°C. While the samples were in the cycler, 1 μl of MMLV Reverse Transcriptase (Promega) 

was added to each sample, followed by an initial incubation at 42°C for 50 min and then at 70°C for 

15 min. The synthesized cDNA was stored at -20°C and later used for quantitative real-time PCR (see 

section 4.4.2). 

4.5.3 In Vitro Synthesis of Capped mRNA 

The in vitro synthesis of single stranded RNA (capped and polyadenylated) was performed using the 

mMESSAGE mMACHINE T7 Ultra Kit from Thermo Fisher Scientific (Waltham, USA) according to 

manufacturer’s instructions. In general, the T7 2 x NTP/ARCA and 10 x T7 Reaction Buffer were 

thawed at RT to prevent precipitation. The following components were pipetted according to the listed 

order in Table 4.7. 
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Table 4.7 Reaction setup for in vitro mRNA transcription 

Component Amount 

H2O (Nuclease free) x μl (add to 20 μl) 

T7 2 x NTP/ARCA 10 μl 

10 x T7 Reaction Buffer 2 μl 

Linear DNA template (1 μg) x μl 

T7 Enzyme Mix 2 μl 

 

The reaction was gently mixed and incubated for 1-3 h (depending on the transcript size) in a heat 

block at 37°C. In the next step, 1 μl TURBO DNase was added and the reaction was further incubated 

for 30 min at 37°C. For poly (A)-tailing production, the specific reaction components were mixed as 

shown in Table 4.8. 

Table 4.8 Reaction setup for poly (A)-tailing production 

Component Amount 

mMessage mMachine T7 Ultra reaction 20 μl 

H2O (Nuclease free) 36 μl 

5 x E-PAP Buffer 20 μl 

25 mM MnCl2 10 μl 

ATP solution 10 μl 

E-PAP enzyme 4 μl 

 

The reaction was incubated for 1 h at 37°C yielding a poly (A)-tail between 50 to 100 bases. 

Synthesized transcripts were then purified using the Qiagen RNeasy Mini Kit (Hilden, Germany) 

following manufacturer’s instructions, with slight modifications. The transcripts were initially mixed with 

350 µl of RLT buffer and 250 µl of absolute ethanol. After loading the sample into the column and 

centrifugation at 11000 rpm for 30 sec (RT), the samples were washed with 500 µl of RW1 buffer and 

twice with 500 µl of RPE buffer, always followed by centrifugation (11000 rpm for 30 sec, RT) between 

washes. At the end, the samples were eluted with 50 µl of RNase free water and centrifuged at 13000 

rpm, for 1 min, RT. 

After purification, transcripts were quantified using the NanoDrop (peqLab) and the quality was 

assessed using the RNA ScreenTape Kit (Agilent, Böblingen, Germany) according to the 

manufacturer’s instructions.  
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4.6 Protein-based Methods 

4.6.1 Preparation of Whole Cell Lysates 

Required buffer: 

 

SDS Sample Buffer (2x): 10 ml (150 mM) Tris (1.5 M), pH 6.8 

 6 ml (1.2%) SDS (20%) 

 30 ml Glycerol 

 15 ml β-mercaptoethanol 

 1.8 mg Bromophenol blue 

 Add ddH2O to 100 ml; aliquot in 10 ml stock solution (-20°C) and 

working solution (4°C) 

 

For whole cell lysates preparation, cells were washed with 1x PBS and after centrifugation, the 

supernatant was completely removed. The cell pellet containing around 3x106 cells was resuspended 

in 200 µl of SDS sample buffer (2x) and the samples immediately incubated in a heat block at 95°C 

for 10 min, shaking at 1000 rpm. After incubation, cell lysates were shortly vortexed and stored at -

80°C for use in downstream applications, as SDS-PAGE (see section 4.6.2) and Western blotting (see 

section 4.6.3). 

4.6.2 Discontinuous SDS-PAGE 

Required solutions and buffers: 

 

Tris/HCl, pH 8.8: 90.83 g (1.5 M)  

 Add ddH2O to 500 ml  

 

Tris/HCl, pH 6.8: 30 g (0.5 M)  

 Add ddH2O to 500 ml  

 

SDS (10%): 100 g (10%) SDS 

 Add ddH2O to 1000 ml, adjust pH to 7.2 

 

Ammonium Persulfate (APS): 1 g (10%) APS 

 Add ddH2O to 10 ml  

 

Laemmli Buffer (5x): 15 g (40 mM) Tris 
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 216 g (0.95 M) Glycine 

 15 g (0.5%) SDS 

 Add ddH2O to 3000 ml 

 

Protein samples were separated in a discontinuous gel system consisting of two layers of gel with 

different salt and polyacrylamide concentrations. Depending on the size of the proteins to be resolved, 

different acrylamide (AA) gel concentrations were prepared. Gels were prepared in the day before, as 

described in Table 4.9 & Table 4.10. After pouring the first gel (separating gel) into the chamber, 

isopropanol (70%) was immediately added on the top to facilitate the generation of a straight gel. After 

polymerization for 30 min, the isopropanol was removed and the stacking gel was added and a comb 

inserted into the top. After polymerization for 30 min, the gels were wrapped in wet paper and kept at 

4°C. 

 Table 4.9 Separating gel preparation using different acrylamide (AA) concentrations 

 

 
 
 
 
 

 

 
 
Table 4.10 Stacking gel preparation using 5% acrylamide (AA) concentration 

 
Component 

Final AA 
concentration 

5% 

Tris/ HCl pH 6.8 630 µl 

SDS (10%) 50 µl 

AA (30%) 830 µl 

H2O 3.4 ml 

TEMED 5 µl 

APS (10%) 50 µl 

Final Volume 5 ml 

 

Gel Running 

The gel was mounted in the electrophoresis tank, which was filled out with 1x Laemmli buffer. The 

protein samples (20-40 µl) were loaded into the gel and in parallel a precision plus standard was 

included in order to determine the size of the detected proteins. The gel was initially run at 80 V for 

approximately 30 min or until the bands reached the surface of the stacking gel. Then, the voltage was 

increased to 120 V and the gel was run for an additional 1-2 h until the bromophenol blue was detected 

nearly to the gel bottom. 

Component 
Final AA 

concentration 
12% 

Final AA 
concentration 

10% 

Final AA 
concentration 

8% 

Tris/ HCl pH 8.8 5 ml 5 ml 5 ml 

SDS (10%) 200 µl 200 µl 200 µl 

AA (30%) 8 ml 6.66 ml 5.33 ml 

H2O 6.6 ml 7.92 ml 9.25 ml 

TEMED 20 µl 20 µl 20 µl 

APS (10%) 200 µl 200 µl 200 µl 

Final Volume 20 ml 20 ml 20 ml 



Methods 

43 

4.6.3 Western Blot 

Required solutions and buffers: 

Anode Buffer A: 36.3 g (0.3 M) Tris 

 200 ml (20%) Methanol 

 Add ddH2O to 1000 ml  

 

Anode Buffer B: 3.03 g (25 mM) Tris 

 200 ml (20%) Methanol 

 Add ddH2O to 1000 ml  

 

Cathode Buffer C: 5.20 g (4 mM) ε-Amino-n-capron acid 

 200 ml (20%) Methanol 

 Add ddH2O to 1000 ml  

 

TBS (10x): 45.8 g (100 mM) Tris/HCl, pH 8 

 175.5 g (1.5 M) NaCl 

 Add ddH2O to 2000 ml  

 

Washing Buffer (1x TBST): 100 ml TBS (10x) 

 1 ml (0.05%) Tween-20 

 Add ddH2O to 1000 ml  

 

Blocking Buffer: 5.0 g (5%) nonfat dried milk 

 100 ml TBS 

 

Blotting 

Proteins were blotted electrophoretically onto a PVDF membrane (merck) using a three-buffer semi-

dry system. First, three Whatman3MM filter paper soaked with buffer A (bottom, on the anode) were 

placed in the blotting machine, followed by another three Whatman3MM filter paper soaked with buffer 

B. The hydrophobic PVDF membrane was first immersed in isopropanol and after in buffer B solution 

and then placed on the top of the previous paper layers. 600 µl of buffer B solution were spread out 

on the top of the membrane and the acrylamide gel containing the resolved proteins was added to the 

top. At the end three Whatman 3MM filter papers soaked with buffer C were placed on top of the gel 

followed by the cathode. Protein transfer was performed for 1 h at 11 V. 
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Washing and Staining 

After blotting, the membranes were washed for 3 min with water and immediately blocked with 5% 

non-fat milk in 1x TBS for 1 h at RT (shaking at 45-60 rpm). After blocking, membranes were washed 

and incubated with anti-TET2 (MABE462, Merck, 1:1000), anti-IRF4 (sc-6059X, Santa Cruz, 1:5000), 

anti-EGR2 (sc-293195, Santa Cruz, 1:200), anti-FLAG M2 (F3165, Sigma, 1:2000) or anti-Actin 

(A2066, Sigma, 1:2000) overnight at 4°C. After washing one time for 10 min with 1x TBS, the 

membranes were incubated for 1 h at RT with a horseradish-peroxidase (HRP)-coupled secondary 

antibody (Goat anti-rabbit, P0448, Dako, 1:5000; Rabbit Anti-goat, P0449, Dako, 1:5000; m-IgGk BP-

HRP, sc-516102, Santa Cruz, 1:5000). Then, membranes were washed eight times with TBST before 

using the ECL Prime Western Blotting System (Sigma-Aldrich, Taufkirchen, Germany) to visualize the 

bound antibody. Blots were developed using the Fusion Pulse imaging system from Vilber Lourmat 

(Eberhardzell, Germany). For re-blotting, blots were stripped with 1 x ReBlot Plus Mild Antibody 

Stripping Solution (Merck) for 15 min at RT. 

4.6.4 Proximity-dependent Biotin Identification (BioID) 

Required solutions and buffers: 

Cell buffer Mix (CBM): 0.5 ml (10 mM) HEPES/KOH (1 M), pH 7.9 

 4.25ml (85 mM) KCl (1 M) 

 0.1 ml (1 mM) EDTA (500 mM), pH 8.0 

 Add ddH2O to 50 ml  

 

 Add just prior to use to 1 ml of CBM: 

 10 μl (1 mM) PMSF (100 mM) 

 5 μl (1 mM) Sodium-o-vanadate (200 mM) 

 20 μl (1x) 50x Protease inhibitor cocktail 

 

Lysis buffer 1A (L1A): 0.9 ml CBM (including inhibitors) 

 0.1 ml (0.4%) ddH2O 

 

Lysis buffer 1B (L1B): 0.9 ml CBM (including inhibitors) 

 0.1 ml (1%) NP-40 (10%) 

 

Lysis buffer 2 (L2): 2.5 ml (50 mM) Tris/HCl, pH 7.4 (1 M) 

 2 ml (0.4%) SDS (10%) 

 0.5 ml (5 mM) EDTA pH 8.0 (0.5 M) 

 5 ml (500 mM) NaCl (5 M) 
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 Add ddH2O to 50 ml  

 

 Add just prior to use to 1 ml of L2: 

 10 μl (1 mM) PMSF (100 mM) 

 5 μl (1 mM) Sodium-o-vanadate (200 mM) 

 20 μl (1x) 50x Proteaseinhibitor cocktail 

 

Dilution buffer (DB): 2.5 ml (50 mM) Tris/HCl, pH 7.4 (1 M) 

 Add ddH2O to 50 ml  

 

 Add just prior to use to 1 ml of DB: 

 10 μl (1 mM) PMSF (100 mM) 

 5 μl (1 mM) Sodium-o-vanadate (200 mM) 

 20 μl (1x) 50x Proteaseinhibitor cocktail 

 

Triton X-100 (10%): 1 ml (10%) Triton X-100 

 Add ddH2O to 10 ml  

 

Wash buffer 1 (WB1): 5 ml (100 mM) Tris/HCl, pH 8.0 (1 M) 

 12.01 g (4 M) Urea (60.06 g/mol) 

 Add ddH2O to 50 ml  

 

Wash buffer 2 (WB2): 0.395 g (100 mM) NH4HCO3 (79.06 g/mol) 

 Add ddH2O to 50 ml  

 

BioID is a powerful method to study physiologically relevant protein interactions in living cells or 

tissues. This proximity labelling method was initially established by Roux et al.178 and it is based on 

the fusing of a bait protein to a promiscuous biotin ligase from E.coli (BirA*, harboring a R118G point 

mutation). After supplementation of the culture medium with biotin, the biotin ligase will biotinylate the 

vicinal proteins, which can then be selectively isolated and identified by mass spectrometry.  

For this purpose, constructs containing a protein of interest and a flexible linker region fused to a biotin 

ligase were ordered from IDT (San Jose, USA) (see section 3.13) and then cloned using the Gibson 

Assembly approach (see section 4.3.5). After transformation and plasmid DNA isolation (see sections 

4.3.6 and 4.3.7), linearized plasmids were used for in vitro transcription (see section 4.5.3) and the 

resulting mRNA transcripts utilized in transfection experiments.  



Methods 

46 

Briefly, 50 µg of 3xFlag-NLS-BirA* (construct used as reference to calculate the required amount of 

mRNA for the other construct) and 135 µg of C-term-3xFlag-EGR2-BirA*, were introduced by 

electroporation (see section 4.1.5) in iDC (50x106 cells per construct). Three hours after transfection, 

the cell culture medium was supplemented with 50 μM biotin and five hours later, cells were harvested 

for subsequent lysis and purification of biotinylated proteins. Of note, the optimal time points for 

addition of biotin and harvesting the cells were initially determined by Western blot.  

Before lysis, cell pellets were washed twice with ice-cold PBS and then resuspended in 1250 μl of 

L1A, followed by addition of an equal amount of L1B. Suspensions were incubated on ice for 10 min 

before nuclei were spun down at 700×g for 5 min at 4°C. In a next step, nuclei were resuspended in 

1 ml L2 buffer and sonified to fragment the genomic DNA. All sonification steps were carried out with 

a constant duty cycle, output control 2 for 10 sec using a Branson Sonifier 250 (Danbury, USA). After 

sonification in L2, a second sonification in Triton X-100 (10%) at a final concentration of 2% was also 

performed. Then, an equal amount of DB was added and suspensions were again sonified. Lysates 

were centrifuged at 11.000×g for 15 min at 4°C and supernatants were transferred into a new tube. 

To completely remove residual unbound biotin, a dialysis step using Slide-A-Lyzer MINI Dialysis 

Devices (Thermo Fisher Scientific, Waltham, USA) was performed overnight at 4°C according to the 

manufacturer’s instructions. In the next day, Pierce™ Streptavidin Magnetic Beads (Thermo Fisher 

Scientific, Waltham, USA) were prewashed according to manufacturer’s instructions and 150 μl 

prewashed beads were added to each lysate. Then, lysates were incubated on a rotating wheel at RT 

for 1-2 h. Following incubation, beads were washed on a magnet for three times with WB1 and WB2 

(400 μl each) at RT and transferred to a new tube with the last washing step. Protein-conjugated beads 

were finally resuspended in 50 μl of WB2 and sent to the Zentrallabor fur Proteinanalytik (ZfP) of the 

LMU (Prof. Dr. Axel Imhof) for subsequent on-bead digestion and mass spectrometry analysis. 

4.6.5 Co-immunoprecipitation (CoIP) 

CoIP associated with western blot is a powerful method to uncover physiological relevant protein-

protein interactions179.  

CoIP and reciprocal CoIP of TET2-containing complexes were performed using the Dynabeads 

antibody coupling kit provided by Thermo Fisher Scientific. Accordingly, 5 µg of anti-TET2 (MABE462, 

Merck), anti-FLAG M2 (F3165, Sigma) or anti-IgG (sc-2025, Santa Cruz) antibody were covalently 

coupled to 1 mg of Dynabeads® M-270 Epoxy beads (per IP) according with the manufacturer 

instructions.  

Per IP experiment were used 15x106 transfected THP-1/iDC cells. Before transfection, 3xFLAG EGR2 

and 3xFLAG NAB2 constructs were ordered from IDT (San Jose, USA) (see section 3.13), cloned 

using the Gibson Assembly approach (see section 4.3.5), transformed (see section 4.3.6), linearized 

(see section 4.3.1) and used for in vitro transcription (see section 4.5.3).  
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Briefly, 26 μg of 3xFLAG-EGR2 and 29 µg of 3xFLAG-NAB2 mRNA transcripts were introduced by 

electroporation (see section 4.1.5) into dendritic cells (day 3) or THP-1 cell line. After 3 h incubation 

at 37 °C, transfected (THP-1 and iDCs-d3) cells were harvested and washed with 15 ml ice-cold PBS 

(including PMSF). Following centrifugation at 1200 rpm for 5 min at 4°C, cells were lysed in 1 ml of  

Dyna-IP buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100, 2 mM EDTA, 1 x protease 

inhibitor  cocktail) and incubated on ice for 30 min with gentle shaking.  

After incubation, cell lysates were sonified three times, 10 sec each followed by 30 sec rest on ice, 

using a Branson Sonifier 250 (constant duty cycle, output control 2) and insoluble material was 

removed by centrifugation at 13000 rpm for 7 min at 4°C. Afterwards, the lysate protein concentration 

was determined using the Qubit Protein Assay Kit and 10 μg of each lysate were kept as input control.  

Then, lysates were incubated with the aforementioned anti-TET2, anti-FLAG M2 or anti-IgG-coupled 

Dynabeads for 2 h and 30 min at RT on a rotating wheel. After lysate incubation, beads were washed 

on a magnet three times each with PBS including 0.02% Tween 20 and ultrapure water respectively. 

In a next step, protein complexes were eluted from the beads with 50 μl 2 x SDS sample buffer without 

2-mercaptoethanol followed by incubation at 95°C for 10 min. Then, the supernatants were collected 

on a magnetic rack and 2.5 μl of 2-mercaptoethanol added to each sample.  Approximately 25 µl of IP 

samples along with 10 µg of input samples were loaded into a 8% polyacrylamide gel (see section 

4.6.2) and the western blot was performed as described in section 4.6.3, using the following antibodies: 

anti-TET2 (A304-247A, Bethyl, 1:1000) and anti-FLAG M2 (F3165, Sigma, 1:2000). 

4.7 High Throughput Sequencing-based Methods 

4.7.1 Chromatin Immunoprecipitation coupled with NGS (ChIP-seq) 

Required solutions and buffers: 

DSG (2 mM): 50 mg DSG Thermo Fisher Scientific 

 300 μl DMSO Sigma Aldrich 

 Dissolve DSG in DMSO and add 76,3 ml PBS  

 

Formaldehyde, methanol-

free: 

16% (w/v) Thermo Fisher Scientific 

 

Glycine (20x): 9.85 g (2,625 M) Glycine 

 Add ddH2O to 50 ml  

 

Cell Buffer Mix (CBM): 1 ml (10 mM) HEPES/KOH (1 M), pH 7.9 

 4.25 ml (85 mM) KCl (3 M) 



Methods 

48 

 200 μl (1 mM) EDTA (500 mM, pH 8.0) 

 Add ddH2O to 97 ml  

 

 Add just prior to use to 1 ml of CBM: 

 10 μl (1 mM) PMSF (100 mM) 

 20 μl (1x) 50x Protease inhibitor 

cocktail 

 

Nuclear Lysis Buffer (NL): 5 ml (50 mM) Tris/HCl (1M), pH 7.4 

 5 ml (1%) SDS (20%) 

 1.43 ml (0.5%) Empigen BB (35%) 

 2 ml (10 mM) EDTA (500 mM, pH 8.0) 

 Add ddH2O to 97 ml  

 

 Add just prior to use to 1 ml of NL: 

 10 μl (1 mM) PMSF (100 mM) 

 20 μl (1x) 50x Protease inhibitor 

cocktail 

 

Dilution Buffer (DB): 2 ml (20 mM) Tris/HCl (1 M), pH 7.4 

 2 ml (100 mM) NaCl (5 M) 

 400 μl (2 mM) EDTA (500 mM, pH 8.0) 

 5 ml (0.5%) TritonX-100 (10%) 

 Add ddH2O to 97 ml  

 

 Add just prior to use to 1 ml of DB: 

 10 μl (1 mM) PMSF (100 mM) 

 20 μl (1x) 50x Protease inhibitor  

 

Wash Buffer I (WBI): 2 ml (20 mM) Tris/HCl (1 M), pH 7.4 

 3 ml (150 mM) NaCl (5 M) 

 500 μl (0,1%) SDS (20%) 

 10 ml (1%) Triton X-100 (10%) 

 400 μl (2 mM) EDTA (500 mM, pH 8.0) 

 Add ddH2O to 100 ml  

 



Methods 

49 

Wash Buffer II (WBII): 2 ml (20 mM) Tris/HCl (1 M), pH 7.4 

 10 ml (500 mM) NaCl (5 M) 

 10 ml (1%) TritonX-100 (10%) 

 400 μl (2 mM) EDTA (500 mM, pH 8.0) 

 Add ddH2O to 100 ml  

 

Wash Buffer III (WBIII): 1 ml (10 mM) Tris/HCl (1 M), pH 7.4 

 10 ml (250 mM) LiCl (5 M) 

 10 ml (1%) NP-40 (10%) 

 10 ml (1%) Deoxycholat (10%) 

 200 μl (1 mM) EDTA (500 mM, pH 8.0) 

 Add ddH2O to 100 ml  

 

TE Buffer: 1 ml (10 mM) Tris (1 M), pH 8.0 

 0.2 ml (1 mM) EDTA (500 mM, pH 8.0) 

 Add ddH2O to 100 ml  

 

Elution Buffer (EB): 500 μl (0.1 M) NaHCO3 (1 M) 

 250 μl (1%) SDS (20%) 

 Add ddH2O to 5 ml  

 

Sepharose Cl-4B: 25 µl or 50 μl/IP  

nProtein A/G Sepharose: 25 µl or 50 μl/IP  

 wash 3x with TE, pH 8.0, before use 

 

ChIP-seq is a technique widely used to study protein interactions with DNA at the genome-wide level. 

This method is based on the principle that formaldehyde directly targets amino groups on amino acids 

and nucleotides, resulting in a covalent crosslink between adjacent proteins and DNA. For TFs that 

bind DNA as dimers, an additional fixation step with DSG (disuccinimidyl glutarate; Thermo Fisher 

Scientific, Waltham, USA) to crosslink protein-protein interactions is also performed.  

Due to the lack of suitable ChIP-grade antibodies for most of the TFs of interest, 3xFLAG tag fusion 

proteins were generated as described before (see sections 4.2 and 4.3). Then, the respective ivt 

mRNAs (see section 4.5.3) were introduced by electroporation into iDCs (day 4 of differentiation) (see 

section 4.1.5). 
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Dual Crosslinking with DSG (disuccinimidyl glutarate) and Formaldehyde 

Cells were harvested 6 h after transfection and centrifuged for 10 min at 300xg, 4°C. After 

centrifugation cells were resuspended in 1x PBS with 2 mM of DSG and crosslinked for 30 min at RT. 

Then cells were fixed with 1% formaldehyde for 10 min at RT and after incubation, the reaction was 

stopped with 0.125 M glycine. Followed by centrifugation at 300xg, 4°C for 10 min, cells were washed 

twice with 1x PBS including 1 mM PMSF (centrifugation at 300xg, for 8 min, at 4°C) and pellet was 

stored at -80°C. 

Sonification of Fixated Chromatin 

The fixated chromatin was resuspended in L1A buffer followed by lysis in buffer L1B. Then, samples 

were incubated on ice for 10 min and nuclei was pelleted at 700xg for 5 min. This pellet was 

resuspended in nuclear lysis buffer L2 and chromatin was sheared using a Branson Sonifier 250 

(Danbury, USA) using the following settings: 

Branson Sonifier 250 settings  

Duty cycle Constant 

Output control 2 

Time 10 sec (repeat 5x) 

Ice incubation 30 sec (repeat between each sonification) 

 

To clear the lysate, the solution was centrifuged at 13000 rpm, 4°C for 5 min and the supernatant 

transferred into a new Eppendorf. After centrifugation, 5% of the lysate was saved as input control and 

20 μl were used to check fragmentation (ideally fragments size around 200-500 bp) on the agarose 

gel. 

Immunoprecipitation 

In order to remove all unspecific binding fragments, the lysate was precleared with 50 μl Sepharose 

CL-4B beads (GE Healthcare, Munich, Germany) (blocked with 0.5% BSA and 20 μg glycogen) 

including dilution buffer for 2 h. Then, samples were immunoprecipitated overnight with 2.5 µg of 

antibody against FLAG M2 (Sigma Aldrich, F3165). In parallel, nProtein G Sepharose beads (GE 

Healthcare, Munich, Germany) were blocked with 0.5% BSA and 20 μg glycogen overnight at 4°C. In 

order to pull down antibody-chromatin complexes, blocked Protein G coated beads were added to the 

lysate antibody mix and rotated for 2-3 h at 4°C. After the antibody-chromatin-complex bound to the 

beads, they were thoroughly washed twice with WB I, WB II and WB II, and three times with TE buffer 

(400 μl each). At the end, DNA was eluted in 200 μl EB and 10 μl 5 M NaCl were added to reverse 

crosslinking, which was then conducted at 65°C overnight.  
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Chromatin Purification 

DNA was treated with 7 μl RNase (10 μg/μl) and 5 μl Proteinase K (20 μg/μl) for 1 h at 37°C to degrade 

the remaining RNA and proteins from the samples.  DNA was purified using the Monarch PCR & DNA 

Cleanup Kit (NEB, Frankfurt, Germany) according to the manufacturer’s instructions and eluted in 50μl 

EB to be used for library preparation. 

Generation of DNA Libraries for Next Generation Sequencing (NGS) 

To enable sequencing on an illumina platform, adaptors with specific barcodes were ligated to 

enriched DNA fragments. Library preparation was carried out using the NEBNext Ultra II DNA Library 

Prep Kit for Illumina (NEB, Frankfurt, Germany) according to manufacturer’s instructions. The quality 

of dsDNA libraries was analysed using the High Sensitivity D1000 ScreenTape Kit (Agilent) and 

concentrations were determined with the Qubit dsDNA HS Kit (Thermo Fisher Scientific). Sequencing 

was performed at the Biomedical Sequencing Facility (BSF) of the Research Center for Molecular 

Medicine of the Austrian Academy of Sciences (Ce-M-M, Vienna, Austria) using an Illumina HiSeq 

3000 sequencer.  

ChIP-seq Analysis 

Reads (single-end) were aligned to the human genome (GRCh38/hg38) using bowtie2180 in very 

sensitive mode, keeping only reads that map to a single unique genomic location for further analysis 

(MAPQ > 10). Initial quality control was performed by calculating the fraction of reads in peaks (FRIP) 

by running HOMER’s181 (v4.9) findPeaks program in ‘‘factor’’ or “histone” mode using default 

parameters and the appropriate matching background data set (either ChIP input, genomic DNA or 

control ChIP). For further analyses, chromosome scaffolds were removed. TF ChIP-seq peaks were 

called using HOMER’s findPeaks program in ‘‘factor’’ mode with -fdr 0.00001 to identify focal peaks. 

Peak sets were filtered by subtracting blacklisted genomic regions182, and by filtering out regions with 

a mappability <0.8. The latter was annotated to peak regions from mappability tracks generated with 

the GEM package183 using HOMER’s annotatePeaks.pl.  
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4.7.2 Assay for Transposase-Accessible Chromatin Sequencing (ATAC-

seq) 

 

Required buffers and solutions: 

Digitonin: 1% (w/v) Promega 

 

DNase: 35.5 U/μl Sigma-Aldrich 

 

NP-40: 10% (w/v) Sigma-Aldrich 

 

Tween-20: 10% (w/v) Sigma-Aldrich 

 

Resuspension Buffer (RSB): 0.5 ml (10 mM) Tris/HCl (1 M), pH 7.4 

 0.1 ml (10 mM) NaCl (5 M) 

 0.15 ml (3 mM) MgCl2 (1 M) 

 Add ddH2O to 50 ml  

 

ATAC lysis buffer: 970 μl RSB 

 10 μl (0.1%) NP-40 (10%) 

 10 μl (0.1%) Tween-20 (10%) 

 10 μl (0.01%) Digitonin (1%) 

 

RSB-Tween-20: 990 μl RSB 

 10 μl (0.1%) Tween-20 (10%) 

 

Transposition Mixture: 25 μl (1x) 2x TD buffer (Nextera, Illumina) 

 2.5 μl (100 nM) transposase (Nextera, Illumina) 

 16.5 μl PBS 

 0.5 μl (0.01%) Digitonin (1%) 

 0.5 μl (0.1%) Tween-20 (10%) 

 Add sterile ddH2O to 50 μl 

 

The ATAC-seq technique is widely used to study chromatin accessibility and to infer about 

nucleosome positioning (method overview in Figure 4.1). 
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Figure 4.1 Overview of 
ATAC-seq library preparation 

In this method, a hyperactive Tn5 
transposase is used to 
simultaneously fragment and insert 
sequencing adapters into 
nucleosome-free regions (open 
chromatin). Then, DNA fragments 
are amplified and subjected to high-
throughput sequencing, yielding 
reads that indicate regions of 
increased chromatin accessibility 
(adapted from Buenrostro et al.184). 

 

ATAC-seq was carried out as described by Corces et al.185. Briefly, cells were harvested and washed 

with 1xPBS. Due to the low cell viability, which was below than 50%, dead cells were excluded using 

the magnetic bead depletion based on Annexin V MicroBead Kit (Miltenyi Biotec, Bergisch Gladbach) 

according with the manufacturer’s instructions. To further increase the percentage of viable cells, a 

treatment with DNase at a final concentration of 200 U/ml in RPMI medium coupled with 30 min 

incubation at 37°C was performed. After incubation, cells were washed twice with ice-cold 1x PBS in 

order to remove DNase before proceeding to the transposition reaction. After counting the cells, 

50,000 viable cells were centrifuged at 2700 rpm at 4ºC for 5 min in a fixed angle centrifuge. The 

supernatant was discarded and cells were resuspended in 50 μl of cold ATAC lysis buffer by pipetting 

up and down three times. Next, the lysate was incubated on ice for 3 min, washed out with 1 ml of 

cold RBS-Tween-20 buffer and mixed by inverting the tube three times. The nuclei pellet was 

recovered by centrifugation at 2700 rpm for 10 min at 4ºC in a fixed angle centrifuge. The supernatant 

was carefully removed and the cell pellet was resuspended in 50 μl of transposition mixture by pipetting 

up and down 6 times. The reaction was incubated in a heat block at 37°C for 30 min and with constant 

mixing (1000 rpm). Then, reaction was cleaned up using the NEB Monarch PCR & DNA Cleanup Kit 

according with the manufacturer’s instructions. The samples were eluted in 21 μl of elution buffer and 

10 μl of purified DNA were used to PCR amplification. To generate a library compatible with next 

generation sequencing on an Illumina platform, Nextera XT i7- and i5-index primers (Illumina, San 

Diego, USA) were used in the PCR reaction mixture as shown in Table 4.11. After mixing all the 

components, the PCR program was conducted as indicated in Table 4.12. 
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Table 4.11 PCR reaction setup for DNA library preparation 

Component Volume  Final Concentration 

5x HF buffer 10 μl 1x 

H2O 10 μl - 

dNTPs (10 mM) 1.5 μl 0.3 mM 

Betaine (5 M, Sigma-Aldrich) 13 μl 1.3 M 

Nextera XT i7 index (25 μM, Illumina) 2.5 μl 1.25 μM 

Nextera XT i5 index (25 μM, Illumina) 2.5 μl 1.25 μM 

Phusion HF Polymerase (2 U/μl, Thermo Fisher) 0.5 μl 1 U 

DNA 10 μl - 

  
Table 4.12 PCR program for DNA library generation 

Temperature Time Cycles 

72°C 5 min 1 

98°C 30 sec 1 

98°C 10 sec 

12 63°C 30 sec 

63°C 1 min 

72°C 1 min 1 

4°C forever - 

 

DNA was purified and size selected using magnetic beads (Agencourt AMPure XP; Beckman Coulter, 

Krefeld, Germany). In terms of DNA purification the ratio sample:beads was 1:1.8 and for size selection 

(for fragments of  250 to 600 bp) the ratio was 1:0.55. Briefly, the addition of the beads to the samples 

was always followed by incubation for 10 min at RT. Then samples were placed in a magnetic rack for 

3 min and washed twice with 70% ethanol. After, beads were air dried and eluted in water (upon 

fragments size selection) or in 15 μl of EB, corresponding to the ultimate DNA purification step.  

ATAC libraries were analysed using the High Sensitivity D1000 ScreenTape Kit (Agilent) and 

sequenced using an Illumina NextSeq550 sequencer according to Illumina’s instructions.  

ATAC-seq Analysis 

Reads (paired-end) were aligned to the human genome (GRCh38/hg38) using bowtie2 in very-

sensitive and no-discordant modes, keeping only reads that map to a single unique genomic location 

for further analysis (MAPQ > 10). Initial quality control was performed by calculating the fraction of 

reads in peaks by running HOMER’s findPeaks program in using parameters “-region -size 150”. 

ATAC-seq peak regions were called by combining two different approaches: The basic peak region 
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set was called using HOMER’s findPeaks program in ‘region’’ mode using parameters “-size 150 -

minDist 250 -L 2 -fdr 0.00001” to identify regions of variable length by stitching nucleosome-size peaks. 

To exclude shallow peak regions, only those were kept that overlapped a second peak set that was 

generated in ‘‘factor’’ mode using parameters “-size 250 -minDist 250 -L 2 -fdr 0.00001” to identify 

focal peaks. Statistically significant differences in read counts across peaks between sets of replicate 

ATAC-seq experiments were determined with quantile (0.95) normalization and GC correction using 

edge R 3.20.8186 with the cqn package187 in R (3.4.3). Read coverage across individual peaks sets 

was calculated using HOMER’s annotatePeaks.pl with parameters “-hist 25 -ghist” using merged 

replicate ATAC-seq data sets and plotted in R using the image function. Average coverage data and 

95% confidence intervals were calculated in R and the ggplot2 package was used to draw histograms. 

Scatterplots were drawn in R using the ggplot2 package and corresponding correlation coefficients 

were calculated in R.  

Motif Analysis 

De novo motif discovery in peaks or regions was performed with HOMER’s findMotifsGenome.pl 

program and parameters “-len 7,8,9,10,11,12,13,14 -h”. For searches in ChIP-seq peaks we used a 

200 bp, peak-centered window, while for DMR or differential ATAC regions the given region sizes 

were used. De novo motifs were further filtered using HOMER’s compareMotifs.pl and parameters “-

reduceThresh .75 -matchThresh .6 -pvalue 1e-12 -info 1.5”. Motif log-odds scores for EGR, ETS and 

STAT motifs across DMR sets were calculated using HOMER’s annotatePeaks program.  

Footprints across motif-centered peak sets (centered using HOMER’s annotatePeaks.pl program) 

were generated using the -hist option of HOMER’s annotatePeaks.pl with parameters “-hist 1 -len 1” 

and plotted in R using the ggplot2 package. 

4.7.3 RNA-sequencing (RNA-seq) 

The RNAseq is used to genome-wide quantification of gene expression with high sensitivity and 

accuracy. For this purpose, the total cellular RNA was isolated, quantified and quality assessed as 

described in section 4.5.1. Only high quality RNAs with a RIN (RNA integrity number) equal or higher 

than 7 were used. Generation of libraries for Illumina sequencing was carried out using the 

ScriptSeq™ Complete Kit (Human/Mouse/Rat) – Low Input from Epicentre (Chicago, USA) according 

to the instructions provided by the manufacturer. The quality of dsDNA libraries was checked with the 

High Sensitivity D1000 ScreenTape Kit (Agilent) and concentrations were determined with the Qubit 

dsDNA HS Kit (Thermo Fisher Scientific). Sequencing was performed using an Illumina NextSeq550 

sequencer according to Illumina’s instructions. 
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RNA-seq Analysis 

Sequencing reads were mapped to the human genome using STAR v2.5.3a188. The human GRCh38 

genome index incorporated gene annotation from GENCODE 44 (release 27) was used to support in 

spliced alignment. Tables of raw uniquely mapped read counts per human gene were generated 

during mapping using the built-in --quantMode GeneCounts option in STAR. Differential expression 

analysis was carried out on raw gene counts using edgeR 3.20.8186 in R (3.4.3). Pairwise comparisons 

of indicated data sets were done using the quasi-likelihood test.  

Heatmaps of differentially expressed genes used batch-corrected, normalized and scaled CPM 

(counts per million) data and were generated using the heatmap.2 function of the gplots package in 

R. Dimensionality reduction based on the tSNE algorithm was done using the Rtsne package and 

visualized using the ggplot2 package in R. Statistically significant enriched Gene Ontology terms were 

identified using Metascape189 and barplots of significance levels were generated in R.  
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5 Results 

Our group previously established a post-mitotic in vitro model of MO differentiation as an ideal system 

to study active DNA demethylation31. Later on, this system was used to demonstrate that DNA 

demethylation during differentiation of MO is preceded by the local appearance of 5hmC32. Moreover, 

using a siRNA-mediated strategy to knock-down (KD) TET2 in primary MO, our group also showed 

that this enzyme is essential for the DNA demethylation process32. Nevertheless, transfected MO 

cultures showed massive cell death after 48h, making functional studies difficult. 

Taking the previous work into consideration, backbone-modified siRNAs (chemical modification 

patterns are shown in section 3.11) were used in this thesis to transiently knock-down TET2, as well 

as other TFs that might be involved in the demethylation process. Unlike the siRNAs mentioned before, 

backbone-modified siRNAs are well tolerated by MO with no significant effect on cell survival. Similarly, 

during differentiation, iDCs develop a normal morphology and are phenotypically indistinguishable 

from non-transfected cells. Hence, the work presented in this thesis contains the first reported data 

generated by our group using this improved siRNA-based system to knock-down target genes.  

For easier understanding of the present work, preliminary results generated before in our group will 

be shown. When this is the case, it will be clearly stated.  

5.1 Genome-wide DNA methylation changes during MO 

differentiation  

As already stated, the previously established in vitro model of MO differentiation was used to 

differentiate iDCs in culture for seven days. To obtain a global view of the epigenomic changes 

occurring during the differentiation process, cells were harvested and used in downstream applications 

as depicted in Figure 5.1. 

 

 
Figure 5.1 Schematic of the experimental setup for in 
vitro MO differentiation into iDCs and downstream 
methodologies 

Primary human MO were differentiated into iDCs (for 7d) upon 
stimulation with IL-4 and GM-CSF cytokines, including 
supplementation of culture medium with FCS. Then, iDCs were 
harvested and used in the following applications: 5mC (methylation 
analysis), 5hmC (hydroxymethylation analysis),   RNA-seq, ChIP-
seq and ATAC-seq.  
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5.1.1 Identification of iDC-specific differentially methylated regions 

(DMRs) 

To capture the entire dynamic changes in DNA methylation, published whole genome bisulfite 

sequencing (WGBS) data sets of MO (n=4) and iDC (n=6) were used. The analysis of these data sets 

allowed the identification of a group of regions that reproducibly lost DNA methylation during iDC 

differentiation (DC-specific DMR) as illustrated in Figure 5.2 (preliminary data generated in our group).  

Of note, the WGBS data was validated in our group by random selection of a number of regions 

showing dynamic changes in methylation and comparing them with the DNA methylation patterns 

determined by MassARRAY EpiTYPER. Accordingly, there was a tight correlation between EpiTYPER 

and WGBS data at demethylated regions (data previously generated by our group and not shown in 

this thesis). 

 

 

Figure 5.2 Identification of iDC-specific DMRs 

a Scatterplot showing the density distribution of average DNA methylation ratios (WGBS) in MO (n=4) and iDCs (n=6). 
Black lollipops indicate 5mC and white lollipops unmethylated 5C. b Genomic distance distribution of averaged DNA 

methylation ratios (at single CpG resolution) centered on MO-specific, DC-specific DMR and random regions. Lines 
represent spline curves across individual data points. Sample types are indicated by coloring. c Pie chart illustrating the 
genomic location distribution of iDC-specific DMRs (inner circle) relative to the entire genome. d Venn diagram depicting 

the overlap between iDC DMR-associated genes and genes up- or downregulated during MO differentiation. 

 

As shown in the scatterplot from Figure 5.2a, the majority of differentially methylated sites reside in 

the lower right half of the diagram, suggesting that demethylation is the predominant event during DC 

differentiation. 
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Figure 5.2b shows a total of 7610 regions (middle panel) that reproducibly lost DNA methylation during 

iDC differentiation (DC-specific DMR) whereas only 121 regions (top panel) gained DNA methylation 

(MO-specific DMR). On opposite to the latter regions, a total of 6098 random regions (bottom panel) 

did not exhibit any changes in DNA methylation ratios upon MO differentiation. 

Figure 5.2c illustrates the genomic location distribution of iDC-specific DMRs compared to the entire 

genome. Accordingly, iDC-specific DMRs were enriched in promoters, exons and transcription 

termination sites (TTS). The Venn diagram in Figure 5.2d shows the overlap between iDC DMR-

associated genes and genes that were found to be upregulated (1253 genes) or downregulated (1245 

genes) during MO differentiation into iDC. As indicated, only a small number of iDC-DMR associated 

genes (896 genes) overlapped with genes that were significantly regulated during MO differentiation, 

indicating that active demethylation processes occur independent of transcriptional changes. 

5.1.2 Genome distribution of 5hmC & ATAC signals in MO & iDC 

In this thesis, further analyses were focused on iDC-specific DMRs (7610) as described in section 

5.1.1. Figure 5.3 shows the dynamic changes in 5hmC enrichment (data generated by Sandra 

Schmidhofer) and open chromatin (ATAC-seq, see section 4.7.2) across DC-specific DMRs in MO 

and iDC.  

As shown in Figure 5.3a, the majority of hydroxymethylated sites reside in the upper left half of the 

diagram with a broader distribution of 5hmC enrichment in iDCs at day 7 (bottom panel) compared to 

iDCs after 18 h (top panel) of culture. These data suggest that DNA demethylation is a continuous 

process during differentiation of monocytic lineage.  

Figure 5.3b & Figure 5.3c show the distribution of 5hmC and ATAC signals across iDC-specific DMRs. 

As expected, the coverage of 5hmC signals is not uniformly distributed across the different stages of 

MO differentiation with higher 5hmC coverage in iDC-18h compared to MO. Interestingly, 5hmC 

coverage is broadening in iDC-d7, suggesting that demethylation spreads from the center. Parallel to 

the 5hmC turnover we also observe an increase of chromatin accessibility (as measured by ATAC-

seq).  

The Venn diagram in Figure 5.3d indicates that only 3751 DMRs overlapped with MO- and/or iDC-

specific ATAC-seq peaks, while the remaining DMRs (3859) did not overlap either with MO or iDC 

ATAC-seq peaks. These data suggest that only half of the DMR get detectably accessible during MO 

differentiation. 

Figure 5.3e displays the IGV genome browser tracks of two example regions for active demethylation 

characterized by a continuous increase on 5hmC and gains in chromatin accessibility (ATAC) in iDCs. 
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Figure 5.3 DNA demethylation during MO differentiation correlates with dynamic changes in 5hmC 
and increasing chromatin accessibility 

a Scatterplots showing the density distribution of 5hmC enrichment of MO compared to iDCs at 18h (top panel) or iDCs 

at d7 (bottom panel) across a merged set of 5hmC peaks. Black lollipops indicate 5mC, blue lollipops 5hmC, and white 
lollipops unmethylated 5C. b Genomic distance distribution of 5hmC enrichment and ATAC coverage centered on iDC-
specific DMR. c Distribution of the 5hmC and ATAC-seq signals across iDC-specific DMRs in MO and iDCs. d Venn 
diagram showing the number of iDC-DMRs overlapping with MO- and/or iDC-specific ATAC-seq peaks. e IGV genome 

browser tracks of example regions (DNASE1L3 and SLAMF1 loci) including CpG methylation ratios (WGBS), 5hmC and 
ATAC-seq coverage in MO and iDCs as well as the genomic locations of DMRs. 
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5.2 Role of TET2 in iDC differentiation & associated epigenetic 

processes  

As previously mentioned, an improved siRNA-mediated approach to knock-down target genes was 

established in our group. Considering that, a significant fraction of siRNAs designed for a specific gene 

is not always effective, the gene silencing efficiency of the siRNAs should be first evaluated. For the 

TET2 knock-down experiments, a siRNA set (ten siRNAs) was previously tested (data not shown) by 

Julia Wimmer and Claudia Kiesewetter and the siRNA with the best silencing efficiency was used in 

further experiments. 

In this thesis, the TET2 enzyme was transiently knocked-down in MO using a siRNA against TET2. A 

siRNA against luciferase (gene not present in the human genome) was also included as control 

(siCTRL). Then, its impact on iDC differentiation, gene expression (RNA-seq), chromatin accessibility 

(ATAC-seq) and DNA methylation (EpiTYPER) was measured using high-throughput techniques (see 

sections 4.4.3, 4.7.2 & 4.7.3).  

Figure 5.4 illustrates the general experimental setup to knock-down TET2 during MO to iDC 

differentiation, including the depletion effects on cell morphology/viability and the TET2 knock-down 

efficiency on protein level. 

 

 

Figure 5.4 Effects of TET2 KD on iDC  

a Schematic of the experimental setup and effect of siTET2 treatment on iDC viability (measured at d7). b Light microscopy 
images of iDC (d7) treated with siCTRL or siTET2 (40x magnification, bar represents 100 µm). c TET2 protein expression 

levels in MO, iDCs and siTET2- or siCTRL-treated iDCs at the indicated time points (18h, 66h and 7d). Blots were stained 
with α-TET2 and α-ACTIN antibodies (protein loading control). 
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As shown in both Figure 5.4a & Figure 5.4b, TET2 depletion had no impact on either cell survival or 

cell morphology when compared with control sample (siCTRL-treated iDC). 

Figure 5.4c depicts the TET2 knock-down efficiency on protein level as determined by Western blot 

(see section 4.6.3). As expected, TET2 was detected in MO, iDC and siCTRL-treated iDC at the 

indicated time points (18 h, 66 h and 7 d). Comparing with the protein loading control (actin) we verified 

a progressive reduction in siTET2-treated iDC on TET2 expression with almost complete protein 

depletion after three days of culture. 

5.2.1 Effects of TET2-depletion on DNA methylation  

The MassARRAY EpiTYPER platform was used to detect and quantify DNA methylation ratios upon 

TET2 KD. For this purpose, cells were harvested at distinct time points (0 h, 18 h, 66 h and 7 d) during 

iDC differentiation and DNA was purified and quantified (see section 4.4.1). EpiTYPER experiments 

were performed as described in section 4.4.3 using appropriated primers (primer sequences can be 

found in section 3.10.3) to amplify bisulfite-converted DNA. 

In general, different actively demethylated regions were analysed with this technique, and ten 

representative regions were selected to present in this thesis (Figure 5.5 & Figure 5.6).  
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Figure 5.5 Impact of TET2 KD on DNA methylation 

a-c IGV genome browser tracks for the indicated WGBS, 5hmC and ATAC data sets at regions around example DMRs. 

Corresponding DNA methylation ratios for the indicated regions are given below. For heatmaps, methylation ratios 
(representing means of n ≥ 5 in a,b and n=3 in c) are indicated by coloring (white: no methylation, dark blue: 100% 

methylation) with each column representing a single CpG. For each region the data of a single CpG (highlighted and marked 
by asterisks) is shown. Bars represent means ± SD, individual data points are shown as colored dots (each color represents 
a different donor). 
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Figure 5.6 Impact of TET2 KD on DNA methylation and chromatin accessibility 

IGV genome browser tracks for the indicated WGBS, 5hmC and ATAC data sets at regions around example DMRs. 
Corresponding DNA methylation ratios for the indicated regions are given below. For heatmaps, methylation ratios 
(representing means of n=3) are indicated by coloring (white: no methylation, dark blue: 100% methylation) with each 
column representing a single CpG. For each region the data of a single CpG (highlighted and marked by asterisks) is 
shown. Bars represent means ± SD, individual data points are shown as colored dots (each color represents a different 
donor). 

 

 

Figure 5.5 & Figure 5.6 illustrate the IGV genome browser tracks (top panels) for actively demethylated 

regions, including different epigenomic data sets (WGBS, 5hmC and ATAC). Each individual region 

exhibits enrichment in 5hmC and increase in chromatin accessibility in iDCs. The mild effects of TET2 

KD on open chromatin are also depicted on the bottom tracks.  

Below each IGV genome browser track a heatmap is given, which provides the mean DNA methylation 

ratios (EpiTYPER) for the indicated region upon different treatments (MO, siCTRL- and siTET2) and 

time points (18h, 66h and 7d) in Figure 5.5 and 7d only in Figure 5.6.  

As expected, in both cases (Figure 5.5 & Figure 5.6) the DNA demethylation was delayed in siTET2-

treated iDC (higher methylation ratios compared to siCTRL sample). This delay on demethylation was 

observed for all the indicated DMRs with single CpGs (highlighted in the barplots) showing changes 

in the mean methylation ratios equal and greater than 25% upon TET2 depletion. Changes in 

chromatin accessibility were only observed in few regions (Figure 5.6). 

5.2.2 Effects of TET2-depletion on gene expression  

While the effects of TET2 KD on DNA (de)methylation are well-documented, its impact on MO-derived 

iDC gene expression is poorly understood. Consequently, cells were harvested at day 7 (day 0 for 

MO) of differentiation and RNA was isolated and purified as previously described (see section 4.5.1). 

Afterwards, RNA-seq was performed in siTET2- and siCTRL-treated iDC as described in section 4.7.3. 

Mock (electroporation without siRNA), MO and iDC samples were used as additional controls. The 

gene expression data is summarized in Figure 5.7. 
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Figure 5.7 Impact of TET2 KD on gene expression 

a, b Heatmaps of differential expressed genes between control- (siCTRL) and siTET2-treated cells (left heatmap) and 

between MO and iDCs (right heatmap). Only genes that were significantly different (FDR ≤ 0.1, RPKM ≥ 1) in both 
comparisons are shown. Each column represents an individual donor and the expression data is scaled. The heatmap 
showing all differentially expressed genes of the TET2 knock-down experiments is shown in a. c Dot plot showing log fold 

change (logFC) in gene expression of 4386 genes associated with iDC-specific DMR. Genes were ranked by their logFC 
in gene expression upon TET2 knock-down (blue dotted line). Highlighted in yellow are the genes downregulated upon 
siTET2 treatment. Red dots represent logFC during MO to iDC differentiation. As indicated by the dark red spline curve, 
the highlighted genes tend to be upregulated during MO differentiation. 

 

Figure 5.7a depicts all significantly and differentially expressed genes affected by the TET2 KD, which 

are distributed into two major clusters (downregulated: 37 genes; upregulated: 12 genes; FDR ≤ 0.1, 

RPKM ≥ 1). From these 37 downregulated genes upon TET2 KD, a large fraction (22 genes) was 

normally induced during iDC differentiation as shown in Figure 5.7b. The same pattern was observed 

in Figure 5.7c, where the downregulated genes upon TET2 KD (highlighted in yellow) tended to be 

upregulated during MO differentiation as indicated by the dark red spline curve. Overall, these data 

suggest a mild but reproducible effect of TET2 KD on gene expression. 

5.2.3 Effects of TET2-depletion on chromatin accessibility  

To check whether the open chromatin dynamics would be affected by the depletion of TET2, cells 

were harvested at day 7 of differentiation and used for ATAC-seq experiments as described in section 

4.7.2. The ATAC-seq data is summarized in Figure 5.8. 
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Figure 5.8 Effect of TET2 KD on 
chromatin accessibility 

a MvA plots for ATAC-seq data comparing 

control- (siCTRL) and siTET2-treatment. 
Coloring indicates ATAC peaks 
overlapping DMR (top panel) or ATAC 
peaks that remain stable during MO 
differentiation. b ATAC-seq footprints 

across motif-centered, ATAC peaks that 
were either invariant during MO 
differentiation (control, left panels), or 
overlapping DMR and induced 
accessibility during MO differentiation 
(right panels). Footprints of control cells 
(siCTRL) are shown in gray, while 
footprints of TET2-deficient cells (siTET2) 
are colored. Smaller histograms in the 
upper right corner zoom into the central 
part of the main graph. The position of 
each motif (as labelled in the bottom left 
corner of the right histogram) is indicated 
by two vertical dashed lines. 

 

 

As illustrated in Figure 5.8, only few regions were significantly different in TET2 KD cells when looking 

at ATAC peaks that remain stable during MO differentiation (bottom panel). However, at DMR 

overlapping ATAC-peaks (top panel) some regions loose accessibility upon TET2 KD compared to 

siCTRL samples (several points dispersed at the upper part of the plot). In fact, the ATAC-seq 

footprints across motifs enriched through iDC-DMRs (see Figure 5.8b & Figure 5.9b) revealed a small 

reduction of ATAC signals across PU.1 and AP1 motifs at DMR in TET2-depleted cells. Of note, the 

binding sites for these TFs are protected from transposase activity (decrease on ATAC signal) by 

bound TF.  

Taken together, these data indicate a mild effect of TET2 KD on chromatin accessibility. 



Results 

67 

5.3 Transcription factors associated with active demethylation 

events 

As previously described in section 5.2, TET2 KD in MO was clearly associated with a reduction on 

DNA demethylation as reflected by the higher DNA methylation ratios in siTET2-treated iDC 

(compared to siCTRL samples). In addition, TET2-depletion impaired chromatin accessibility in few 

regions and caused slight changes on iDC transcriptional programs.  

Despite the mild effects of TET2 KD in our system, the results were reproducible among donors, 

supporting a critical role of TET2 in the DNA demethylation process during iDC differentiation. 

In a next step, we intended to identify potential TFs that are involved in TET2 recruitment to its target 

loci during IL-4/GM-CSF-driven MO differentiation. For this purpose, the following strategy (described 

below) was used and the main results are shown in Figure 5.9. 

As observed in Figure 5.3b,c, 5hmC signals are clearly detected in MO, suggesting that certain DMRs 

already initiated the DNA demethylation process at an earlier stage of MO development. Based on 

those preliminary findings, we checked the distribution of DNA methylation ratios in MO centered on 

iDC-specific DMRs to identify DMRs that are early or late demethylated. As illustrated in Figure 5.9a, 

this strategy allowed us to divide our DMRs into quintiles (represented by five pie charts) with 

decreasing methylation ratios in MO.  

Confirming our initial hypothesis, DNA methylation at iDC-specific DMR in MO represent a mixture of 

highly methylated regions (de novo demethylated) and regions that started the demethylation process 

at earlier stages of MO development (progressive demethylated) (Figure 5.9a,b). 

Afterwards, de novo motif searches across the DMR quintiles described in Figure 5.9a revealed five 

motifs corresponding to known candidate TF, including a PU.1 consensus motif, a composite ETS/IRF 

motif, as well as AP1, STAT and EGR motifs (Figure 5.9b).  

Remarkably, partially methylated regions (indicated by the light red pies) were highly enriched for 

constitutive TFs motifs, such as PU.1 and AP1, which are present in both MO and iDC. Conversely, 

de novo demethylated sites (indicated by the dark red pies) were more enriched for STAT and EGR 

motifs, factors that are strongly induced upon IL4-GM-CSF-driven MO differentiation. 
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Figure 5.9 TF signatures across progressive and de novo demethylated iDC-DMRs   

a Genomic distance distribution of mean methylation ratios in MO centered on iDC-specific DMRs. Pie charts represent 
the mean methylation level (in red) of DMR quantiles sorted by their mean methylation ratio in MO. b Heatmap of motif 

enrichment for the indicated TF contingent on DMR quintiles based on the methylation state of MO (pie charts shown on 
the top and in Figure 5.9a). c De novo identified sequence motifs across MO- and iDC-specific ATAC-peaks that loose 

(upper panel) or gain (lower panel) chromatin accessibility during differentiation. The fraction of motifs in peaks (background 
values are in parenthesis) and the significance of motif enrichment (hypergeometric test) are given for the top five motifs 
corresponding to known motif families. 

 

Figure 5.9c depicts de novo motif analysis across regions that loose (MO-ATAC peaks) or gain (iDC-

ATAC peaks) chromatin accessibility during differentiation. Interestingly, the motif signature across 

these regions resembled the one described in Figure 5.9b. Hence, regions that lost chromatin 

accessibility during differentiation were enriched for constitutive TFs (top panel), while regions that 

gained chromatin accessibility were enriched for TFs induced in iDCs (bottom panel). 

In a next step, we checked (in MO and iDC) the gene expression levels of two candidate family TFs 

(see Figure 5.9), namely IRF and EGR (data shown in Figure 5.10). 
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Figure 5.10 Gene expression levels of candidate TF family members in MO and iDC 

RPKM were converted from edgeR normalized and batch-corrected CPM. Bars represent means ± SD, individual data 
points are shown as colored dots (each color represents a different donor). Significance levels correspond to q-values 
derived from differential gene analyses using cqn and edgeR. (**q<0.01; *q<0.05; glmQLF test and BH correction for 
multiple testing). 

 

As observed in Figure 5.10, IRF4 and EGR2 are transcriptionally (and significantly) activated in iDCs 

compared to IRF8 or EGR1/EGR3 TFs. As a result, IRF4 and EGR2 represented valid candidates to 

drive de novo demethylation processes, and thus were investigated in more detail. 

5.3.1 Distribution of iDC-specific DMR into distinct groups 

To profile the genome-wide binding of IRF4 and EGR2, ChIP-seq was performed not only for these 

TFs but also for PU.1, a co-factor of IRF4.  

To compensate for the absence of ChIP-grade antibodies against EGR2 and IRF4, we previously 

generated FLAG-tagged versions (described in sections 4.3 & 4.5.3) of EGR2, IRF4 and PU.1 

(obtained from Julia Minderjahn) for which a ChIP-grade anti-FLAG antibody is available. Then, these 

constructs were introduced into iDCs (day 4 of differentiation) via mRNA electroporation (see section 

4.1.5). Cells were harvested six hours after transfection and subjected to ChIP-seq experiments 

(including dual crosslinking) as described in section 4.7.1. Since our group possesses a proper ChIP-

grade antibody against endogenous PU.1, ChIP-seq experiments for the native PU.1 protein 

(generated by Julia Minderjahn) were also included in our analyses (see Figure 5.11a). 

As illustrated in Figure 5.11a, there is a similar distribution of ChIP-seq peaks between endogenous 

PU.1 and its FLAG-tagged version, suggesting that the binding of the latter does not interfere with the 

normal binding patterns of wild type PU.1. 

Figure 5.11a also summarizes the distribution of ChIP-seq data for EGR2 and IRF4 FLAG-tagged 

versions as well as 5hmC enrichment (generated by Sandra Schmidhofer) and ATAC-seq coverage 

across the 7610 iDC-specific DMRs. Based on TF binding (ChIP-seq) and chromatin accessibility 

(ATAC-seq) patterns, the iDC-specific DMRs were divided into three groups. The “TF peak” group 

(blue coloring) encompasses the DMRs that overlapped with one or more TF peaks. The “open” group 

(yellow coloring) comprises the DMRs that exhibited open chromatin but no detectable binding by 
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PU.1, IRF4 or EGR2. The “no peak” group (red coloring) includes the remaining DMR that were neither 

accessible nor bound by any TF. 

 

 

Figure 5.11 Distribution of iDC-DMRs into three groups based on epigenomic landscapes  

a Distribution of ChIP-seq (native PU.1, and FLAG-tagged versions of PU.1, IRF4 and EGR2 derived from transfected, in 
vitro transcribed (ivt) mRNA), ATAC-seq and 5hmC signals across the 7610 iDC-specific DMR at the indicated time points 

of iDC differentiation. DMRs are divided into three majors groups characterized by detectable TF binding (blue, “TF peak”), 
the presence of open chromatin without detectable TF binding (yellow, “open”), and the absence of open chromatin and 
lack of detectable TF binding (red, “no peak”). b Genomic distance distribution of averaged DNA methylation ratios (left 

panel) and ATAC-seq coverage (right panel) in MO and iDCs centered on iDC-specific DMR in “TF peak”, “open” and “no 
peak” groups.  

 

As presented in Figure 5.11b (left panel), all DMR groups were actively demethylated during MO 

differentiation, even though the “TF peak” subset of regions (bottom panel) presented a more 

pronounced reduction in DNA methylation ratios compared to the “open” (middle panel) and “no peak” 

(top panel) groups. The number of iDC-specific DMRs included within each individual DMR group is 

depicted in the lower left corner of each panel. 

In Figure 5.11b (right panel), the ATAC-seq pattern (middle panel) in the “open” group suggests that 

DMR accessible sites (detected as peaks in the plot) are found in close proximity (separated by a 

single nucleosome) with neighboring accessible sites. As expected, the “no peak” group (top panel) 

did not show signs of open chromatin and the “TF peak” group (bottom panel) displayed a robust 

increase on chromatin accessibility upon differentiation (in iDCs). 

In addition, de novo motif searches as well as motif co-associations networks across the three DMR 

groups were also determined as given in Figure 5.12. 
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Figure 5.12 TF motifs associated with DMR groups (“TF peak”, “open” and “no peak”) 

a De novo identified sequence motifs across iDC-specific DMR in “TF peak”, “open” and “no peak” groups as defined in 
Fig. 5.11a. b Motif co-association networks for “TF peak”, “open” and “no peak” groups. The size of each node represents 

the motif enrichment (fraction of peaks) and co-associated TF motifs are indicated by coloring. Edge thickness indicates 
the frequency of motif co-association. The fraction of DMR with co-associated motifs and the fraction of DMR with any 
motif are given above and below each network, respectively. c EGR, ETS and STAT motif log odds score distribution is 

shown for “TF peak”, “open” and “no peak” groups. The median of the specific distribution across DMR is depicted inside 
the bean with a conventional boxplot. The asterisks on the top indicate the significance of the motif score enrichment 
between the different groups (***P<0.001; Mann-Whitney test). 

 

Despite a similar TF signature across the three DMR groups (de novo motif analyses, Figure 5.12a), 

the strength of TF motif co-associations across these regions was distinct. In particular, the “TF peak” 

group exhibited a higher frequency of motif co-associations (edge thickness) compared to “no peak” 

and “open” groups (Figure 5.12b). In addition, motif scores for EGR, ETS and STAT were generally 

higher in the “TF peak” group (Figure 5.12c) compared to the other DMR groups, suggesting that this 

subset contains higher affinity motifs as well as more opportunities for TF cooperativity. 

b 

c 

a 
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5.4 Effects of key TF-depletion on iDC differentiation & 

associated epigenetic processes 

As described in section 5.3, IRF4 and EGR2 were considered valid candidates to drive de novo 

demethylation processes through MO differentiation. As a consequence, both TFs were transiently 

(and individually) knocked-down in MO and their functional consequences on iDC differentiation, gene 

expression, chromatin accessibility and DNA demethylation were determined. Of note, in this set of 

experiments two different siRNAs targeting the same gene, specifically siRNA.a and siRNA.b were 

used as an additional control. The results are summarized in the next chapters. 

5.4.1 Impact of IRF4 knock-down on iDC differentiation & gene expression 

Several groups have previously investigated the importance of IRF4 on DC development and function, 

although most of these experiments were performed in murine models190–192. In this thesis, the role of 

IRF4 in iDC differentiation was determined using primary human MO and our well-established in vitro 

model of IL-4/GM-CSF-mediated MO differentiation. 

Initially, ten siRNAs against human IRF4 were designed/ordered from Axolabs and further tested using 

a dual-luciferase reporter assay system. 

As illustrated in Figure 5.13, three Gblock gene fragments including the different IRF4 siRNAs were 

designed and cloned into the Renilla luciferase vector. Each fusion construct (three in total) was 

electroporated together with the respective siRNA (in THP-1 cells) and twenty-four hours post-

transfection, Renilla and firefly luciferase activities were measured as described in section 4.1.6. A 

decrease in the Renilla Luminescence (Renilla luciferase signal) indicates that the siRNA is specific 

to the target mRNA. Compared to control (Renilla luciferase vector without target gene fragment) all 

ten siRNAs were specific to IRF4, but the siRNAs 2931 (siIRF4.a) and 2384 (siIRF4.b) exhibited the 

best silencing efficiency. In a next step, the knock-down efficiency of both siRNAs at the mRNA and 

protein expression level was determined as depicted in Figure 5.14.  

 



Results 

73 

 

Figure 5.13 IRF4 siRNAs selection based on luciferase activity 

Illustration of the Renilla luciferase data normalized to firefly luciferase data. Reporter plasmid alone was used as a positive 
control and two different concentrations (40 pmol and 120 pmol) of each siRNA (ten siRNAs) were tested. Below plot are 
depicted the positions for the ten siRNAs across the human IRF4 mRNA. Boxes correspond to the genomic region included 
in each predesigned gBlock (gBlocks were individually cloned into the Renilla luciferase vector). 

 

 

 

Figure 5.14 IRF4 KD efficiency at the mRNA and protein level 

Quantification of IRF4 mRNA (a) and protein (b) expression levels in MO, iDCs and siIRF4- (two different siRNAs) or 
siCTRL-treated iDCs at the indicated time points (18h, 66h and 7d). IRF4 real-time PCR data (n=2) in a was normalized 
to the β-actin (housekeeping gene). Blots in b were stained with α-IRF4 and α-ACTIN antibodies (the latter represents the 

protein loading control). 
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As shown in Figure 5.14a IRF4 was upregulated during in IL4-GM-CSF-driven MO differentiation with 

an increased expression at the later stages of differentiation (day 7). As expected, siRNA-IRF4 

treatment (si2931 or si2384) reduced IRF4 mRNA expression, which was more pronounced after 66h 

and 7d of culture. 

Figure 5.14b depicts the IRF4 KD efficiency on protein level as determined by western blot (see section 

4.6.3). Accordingly, IRF4 KD in MO prevented its upregulation during differentiation (18 h, 66 h and 7 

d) compared with control samples (iDCs and siCTRL). Moreover, the results between siIRF4.a and 

siIRF4.b were consistent and reproducible. 

A summarized view of IRF4 KD effects on iDC differentiation is given in Figure 5.15, including the 

general experimental setup to knock-down IRF4 during MO to iDC differentiation. 

As indicated in Figure 5.15b, IRF4-deficient cells (siIRF4) failed to differentiate into iDCs, leading 

instead to the acquisition of a MAC-like phenotype with no significant impact on cell viability when 

compared with the siCTRL sample (Figure 5.15a, bottom panel). 

 

 

 

Figure 5.15 Effect of IRF4 KD on iDC differentiation  

a Schematic of the experimental setup and effect of siIRF4 treatment on iDC viability (measured at day 7 of differentiation). 
b Representative light microscopy images of iDC (d7) treated with siCTRL or siIRF4.a (40x magnification, bar represents 

100 µm).   

 

In a next step, the effects of IRF4 depletion on gene expression were determined by RNA-seq. For 

this purpose, cells were harvested at day 7 of differentiation and RNA was isolated and purified as 
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previously described (see section 4.5.1). Then, RNA-seq was performed in siIRF4- and siCTRL-

treated iDCs as described in section 4.7.3. Mock (electroporation without siRNA) and iDCs samples 

were used as additional controls. Due to the MAC-like phenotype observed upon IRF4 KD, RNA-seq 

data from MAC samples (data generated by Julia Minderjahn) were also included in our analyses to 

facilitate the interpretation of results. The gene expression data is presented in Figure 5.16. 

 

Figure 5.16 Effect of IRF4 depletion on gene expression (RNA-seq) 

a Heatmap representing hierarchically clustered and scaled expression data of differentially expressed genes in control- 

(mock, siCTRL) versus siIRF4-treated cells (absolute logFC > 1, logCPM and logRPKM > 1 and a FDR < 0.05). Each 
column corresponds to an individual donor. Genes of interest in each cluster are highlighted. The boxed heat map 
represents scaled expression data of the same gene set (in the same order) of independent cultures of iDC and MAC. 
b Gene Ontology (GO) terms associated with genes upregulated (red bars) or downregulated (blue bars) in siCTRL– 

compared to siIRF4– treated cells, as analysed by Metascape. Bars represent corrected, log-transformed P values (q 
values) of the GO term enrichment. 

 

As illustrated in Figure 5.16a, the results for siIRF4.a and siIRF4.b were consistent and reproducible 

among donors. In total, 1751 differentially expressed genes between siIRF4-treated cells and control 

samples (mock and siCTRL) were detected, which are distributed into two major clusters. As shown 

in Figure 5.16a, 857 genes were downregulated in siIRF4-treated samples compared to controls, 

including genes involved in the regulation of the immune system in humans (genes highlighted in red). 

In contrast, 894 genes were upregulated in siIRF4-treated samples, encompassing genes that are 

a b 
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primarily expressed in MAC (genes highlighted in blue). Supporting these observations, the heatmap 

for iDC and MAC samples (right heatmap), matched gene expression profile observed in control (mock 

and siCTRL) and siIRF4-treated cells, respectively.  

The barplots (showing gene ontology (GO) analysis) in Figure 5.16b also indicate that genes 

downregulated upon siIRF4 KD are mainly associated with adaptive immune responses and MHC 

class II protein complex (top barplot). Conversely, genes upregulated in IRF4-deficient cells are 

matrisome associated and expressed in human MAC. Furthermore, these genes are also involved in 

myeloid leukocyte activation and regulation of exocytosis processes (bottom barplot). 

5.4.2 Impact of IRF4 knock-down on chromatin accessibility 

In addition to transcriptional profiling, we also intended to determine the effect of IRF4 depletion on 

chromatin accessibility (ATAC-seq). For this purpose, cells were harvested at day 7 of differentiation 

and ATAC-seq experiments were conducted as described in section 4.7.2. The ATAC-seq data results 

are given in Figure 5.17. 

As shown in Figure 5.17a, 2766 differentially accessible sites between siCTRL and IRF4-depleted 

samples were detected, which are distributed into two major clusters. Upon IRF4 depletion, 1298 sites 

lost accessibility (top cluster) and 1468 sites gained accessibility (bottom cluster). De novo motif 

searches across the less accessible regions (Figure 5.17a, top motifs) revealed ETS:IRF composite 

motifs (EIRE) as well as AP1, PU.1 and IRF motifs. On opposite, de novo motif searches across the 

more accessible sites (Figure 5.17a, bottom motifs) revealed an enrichment for CEBP, AP1, EGR and 

E-box TFs, which are key motifs associated with MACs. 

Focusing on DNA methylation changes during MO differentiation, results in Figure 5.17b (top panel) 

showed that most of the less accessible sites in IRF4-depleted cells were clearly demethylated during 

MO differentiation with a significant number of these sites already starting the demethylation process 

at MO stage (progressive demethylated regions). These findings suggest that sites that loose 

accessibility in IRF4-depleted cells are likely targets of DNA demethylation machinery.  

In contrast, the most of more accessible sites in IRF4-depleted cells did not show significant changes 

in DNA demethylation over differentiation when compared to MO (Figure 5.17b, bottom panel). These 

data suggest that most of the sites that gain accessibility in IRF4-depleted cells remain stably 

demethylated during MO differentiation. 
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Figure 5.17 Effect of IRF4 depletion on chromatin accessibility (ATAC-seq) 

a Distribution of ATAC-seq signals across the differentially accessible sites between siCTRL– and siIRF4– treated 
samples. De novo–derived motifs for each cluster are given along with the significance of motif enrichment 

(hypergeometric test) and the fraction of motifs in peaks (background values are in parenthesis). Top motifs corresponding 
to known factor families are shown for each cluster. b Genomic distance distribution of averaged DNA methylation ratios 

in MO and iDCs centered on differentially accessible sites (as introduced in a). 

 

5.4.3 Impact of EGR2 depletion on iDC differentiation & gene expression 

Like IRF4, EGR2 was also identified as a potential candidate for recruitment of DNA demethylation 

machinery during MO differentiation. Hence, in this chapter the effect of its depletion on iDC 

differentiation and cell survival was addressed. 

Initially, a siRNA set (ten siRNAs) against EGR2 was tested (data not shown) by Corinna Kirschner 

and siRNAs with the best silencing efficiency (si1132 (a) and si2665 (b)) were used in further 

experiments. 

The general experimental setup to knock-down EGR2 in MO and to assess its impact on iDC 

morphology and cell viability is shown in more detail in Figure 5.18.  

As indicated in Figure 5.18b EGR2 depletion strongly affected iDC morphology (e.g., lack of cell 

dendrites) compared to siCTRL sample, and was associated with a statistically significant reduction in 

cell viability (Figure 5.18a, bottom panel). 
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Figure 5.18 Effect of EGR2 depletion on iDC differentiation and survival 

a Schematic of the experimental setup and effect of siEGR2 treatment on iDC viability (measured at day 7 of 
differentiation). b Representative light microscopy images of iDC (d7) treated with siCTRL or siEGR2.b (40x magnification, 
bar represents 100 µm). c EGR2 protein expression levels in MO, iDCs and siIRF4- (two different siRNAs) or siCTRL-

treated iDCs at the indicated time points (18h, 66h and 7d). Blots were stained with α-EGR2 and α-actin antibodies (the 
latter represents the protein loading control). 

 

Figure 5.18c depicts the EGR2 KD efficiency on protein level as determined by Western blot (see 

section 4.6.3). Since some EGR2 protein expression was already detected in MO, the impact of EGR2 

KD was not immediate and only became more pronounced after 66 h and 7 d of culture as compared 

to control samples (iDCs and siCTRL). The results between siEGR2.a and siEGR2.b were consistent 

and reproducible. 

In a next step, the effects of EGR2 depletion on genome-wide gene expression were determined by 

RNA-seq. For this purpose, cells were harvested at day 7 of differentiation and RNA was isolated and 
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purified as previously described (see section 4.5.1). Then, RNA-seq was performed as described in 

section 4.7.3 and the results are summarized in Figure 5.19. 

 

 

Figure 5.19 Effect of EGR2 depletion on gene expression (RNA-seq) 

a Heat map presenting hierarchically clustered and scaled expression data of differentially expressed genes in control- 

(mock, siCTRL) versus siEGR2-treated cells (absolute logFC > 1, logCPM and logRPKM > 1 and a FDR < 0.05). Each 
column corresponds to an individual donor. Genes of interest in each cluster are highlighted. Genes typically expressed 
in contaminating lymphoid cells are marked in green. Each column corresponds to an individual donor and each row 
represents a single differential expressed gene.  b Gene Ontology (GO) terms associated with genes upregulated (red 

bars) or downregulated (blue bars) in siCTRL– compared to siEGR2– treated cells, as analysed by Metascape. Bars 
represent corrected, log-transformed P values (q values) of the GO term enrichment. 

 

As illustrated in Figure 5.19a, the results between siEGR2.a and siEGR2.b were consistent and 

reproducible among donors. In total, 1087 differentially expressed genes between siEGR2-treated 

cells and control samples (mock, siCTRL) were detected, which are distributed into two major clusters. 

As seen in Figure 5.19a, 615 genes were downregulated in EGR2-deficient samples compared to 

controls, including genes necessary for a normal iDC development and function, such as NCOR2, 

CCL22 and IRF4 (genes highlighted in red). Moreover, genes encoding DC cell surface markers, such 

as CD1A, CLEC10A and CD86 were also downregulated, emphasizing the strong impact of EGR2 

depletion on iDC differentiation.  
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On the other hand, 472 genes were upregulated in EGR2-deficient samples compared to controls, 

containing some important genes for the regulation of inflammatory processes and immune response 

(genes highlighted in blue) as reinforced by the functional annotation in Figure 5.19b, bottom panel. 

In addition, genes upregulated in MO cultures upon EGR2 KD also included a number of T-cell specific 

markers (genes highlighted in green), suggesting that few T cells contaminated the MO preparation. 

Functional annotation in Figure 5.19b unveiled a significant impact of EGR2 depletion on genes 

involved in the organization of actin filaments during MO differentiation (top panel), which in turn, fits 

well with the observed cell morphology (absence of cell dendrites in siEGR2-treated cells). 

In general, the gene expression data revealed a pronounced impact of EGR2 depletion on 

transcriptional programs, which supports the observed morphological effects. 

5.4.4 Impact of EGR2 depletion on chromatin accessibility 

Since EGR2 is essential for iDC differentiation, function and survival, we also checked whether the 

EGR2 depletion impairs chromatin accessibility. For this purpose, cells were harvested at an earlier 

time point of differentiation (day 3) since the assay failed to provide good quality data at later time 

points and ATAC-seq experiments were conducted as described in section 4.7.2. The ATAC-seq 

results are summarized in Figure 5.20. 

 

 

Figure 5.20 Effect of EGR2 depletion on chromatin accessibility (ATAC-seq) 

a Distribution of ATAC-seq signals across the differentially accessible sites between siCTRL– and siEGR2– treated 
samples. De novo–derived motifs for each cluster are given along with the significance of motif enrichment 

(hypergeometric test) and the fraction of motifs in peaks (background values are in parenthesis). Top motifs corresponding 
to known factor families are shown for each cluster. b Genomic distance distribution of averaged DNA methylation ratios 

in MO and iDCs centered on differentially accessible sites (as introduced in a). 
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As shown in Figure 5.20a, 2130 differentially accessible sites between siCTRL and EGR2-depleted 

samples were detected, which are distributed into two major clusters. Upon EGR2 depletion, 882 sites 

lost accessibility (top cluster) and 1248 sites gained accessibility (bottom cluster). 

De novo motif searches across the less accessible sites revealed a strong overlap with EGR motifs 

and also contained the co-associated motifs for PU.1, ETS:IRF (EIRE) or AP-1 (Figure 5.20a, top 

motifs). Supporting previous observations on transcriptional level (Figure 5.19a), de novo motif 

searches across more accessible sites (Figure 5.20a, bottom motifs) revealed a mixed motif signature, 

including myeloid (ETS, CEBP) and T cell motifs (e.g. RUNX, GATA). 

Focusing on DNA methylation changes during MO differentiation, results in Figure 5.20b (top panel), 

showed that most of the less accessible sites in EGR2-depleted cells were markedly demethylated 

during MO differentiation. These findings suggest that sites that loose accessibility in EGR2-depleted 

cells were targets of de novo DNA demethylation, thus proposing an epigenetic pioneering role of 

EGR2 in the DNA demethylation process. 

In contrast, the most of more accessible sites in EGR2-depleted cells did not show significant changes 

in DNA demethylation over differentiation when compared to MO (Figure 5.20b, bottom panel). These 

data suggest that most of the sites that gain accessibility in EGR2-depleted cells remained stably 

demethylated during MO differentiation. 

5.4.5 Impact of IRF4- & EGR2-depletion on DNA methylation  

Considering the impact of IRF4- and EGR2-depletion on iDC differentiation, gene expression and 

chromatin accessibility, their effect on DNA methylation was evaluated. Beforehand, cells were 

harvested at day 7 of differentiation and DNA (including MO) was purified and quantified as described 

in section 4.4.1. Then, we selected iDC DMRs normally bound by IRF4, EGR2 or PU.1 and the DNA 

methylation ratios at these regions in siIRF4- and siEGR2-treated cells as well as in control samples 

were determined by MassARRAY EpiTYPER.  

The EpiTYPER experiments were performed as described in section 4.4.3, using the aforementioned 

DNA samples and appropriated primers (primer sequences can be found in section 3.10.3) to amplify 

bisulfite-converted DNA. Eight example regions are shown in Figure 5.21.  

Figure 5.21 provides IGV genome browser tracks for the indicated epigenomic data sets at example 

regions around binding sites of EGR2, IRF4 or PU.1. As shown in Figure 5.21a, this region was bound 

by IRF4 (ChIP) and failed to gain accessibility (ATAC) upon IRF4 KD. However, EpiTYPER data 

(bottom panel) showed no significant changes on DNA methylation ratios (upon IRF4 KD) compared 

with siCTRL or even with EGR2 KD samples. Similar results were observed in a region bound not only 

by IRF4 but also by EGR2 and PU.1 (co-factor of IRF4) (Figure 5.21b). On the opposite, regions bound 

by EGR2 (Figure 5.21b-f) both failed to demethylate (high DNA methylation ratios in siEGR2-treated 

iDCs) or gain accessibility (ATAC) upon EGR2 KD.  
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Interestingly, at some genomic positions bound by EGR2, its depletion delayed DNA demethylation 

even at nearly inaccessible iDC-DMRs (Figure 5.21g,h).  

 

 

Figure 5.21 Effects of IRF4- and EGR2-depletion on DNA methylation (EpiTYPER) 

a–h IGV genome browser tracks for the indicated WGBS, ATAC- and ChIP-seq data sets at example regions around 

binding sites of EGR2, IRF4 or PU.1. Corresponding DNA methylation ratios for the indicated regions are given below. For 
heatmaps, methylation ratios (representing means of n ≥ 4) are indicated by coloring (white: no methylation, dark blue: 
100% methylation) with each column representing a single CpG. For each region the data of a single CpG (highlighted and 
marked by asterisks) is shown. Bars represent means ± SD, individual data points are shown as colored dots (each color 
representing a different donor). 
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These data suggest a critical role of EGR2 (and not of IRF4) in regulating de novo DNA demethylation 

processes during MO towards iDC differentiation. 

5.4.6 Overview of IRF4- & EGR2-depletion effects   

Overall, the effects of EGR2 depletion were distinct from those observed upon IRF4 KD. Despite their 

impact on iDC morphology (Figure 5.15b & Figure 5.18b), EGR2 depletion negatively affected cell 

survival (Figure 5.18a), while IRF4 KD did not impair cell viability compared to control sample (Figure 

5.15a). Similarly, both TFs-depletion showed marked effects on genome-wide gene expression (see 

Figure 5.16 & Figure 5.19), although the transcriptional programs were clearly distinct as summarized 

in Figure 5.22.  

 

 

Figure 5.22 Effects of IRF4- and EGR2- depletion 

a Two-dimensional visualization of the RNA-seq sample distribution using tSNE embedding. Replicates of the same 
treatment are indicated by coloring. b Side-by-side comparison of genomic distance distributions of averaged DNA 

methylation ratios in MO and iDCs centered on differentially accessible and TF bound sites (as introduced in Figure 5.17a 
and Figure 5.20a). 

 

The tSNE (t-Distributed Stochastic Neighbor Embedding) plot in Figure 5.22a illustrates the RNA-seq 

samples distribution, including all treatments and respective replicates. As shown, the siIRF4-treated 

iDCs (green coloring) cluster together and separate from siEGR2-treated iDCs (pink coloring). These 

data indicate distinct and pronounced (both treatments cluster far apart from iDC control samples) 

effects of IRF4- and EGR2-depletion on gene expression. 

Nevertheless, the effects of EGR2 depletion on DNA methylation (Figure 5.21) were clearly stronger 

compared to IRF4 depletion with many DMR failing to demethylate. Like EGR2, IRF4 KD also impaired 

chromatin accessibility, however, regardless of methylation changes (Figure 5.21a,b).   

Focusing on less accessible sites (upon KD, as shown in Figure 5.17a & Figure 5.20a) that were 

normally bound by either factor, we verified that less accessible sites in EGR2-depleted cells were 



Results 

84 

strongly demethylated during normal MO differentiation, whereas less accessible sites in IRF4-

depleted cells already initiated demethylation at an earlier stage of MO development (Figure 5.22b). 

These data suggest an epigenetic pioneering role of EGR2 in mediating de novo demethylation events. 

5.5 EGR2 function in de novo DNA demethylation processes  

As demonstrated in section 5.4.6, EGR2 is presumably involved in the initiation of de novo DNA 

demethylation processes during MO to iDC differentiation. Supporting these findings, we observed 

that CpGs inside of the EGR2 motif could be protected from demethylation (EGR2 motif overlaps with 

a highly methylated CpG while the surrounding CpGs appear demethylated). A more comprehensive 

and detailed analysis about this phenomenon can be found in Figure 5.23 & Figure 5.24.  

 

 

Figure 5.23 Methylation footprint of EGR2  

a Genomic distance distribution of averaged DNA methylation ratios in MO and iDCs in iDC-specific DMR in “TF peak”, 

“open” and “no peak” groups (in blue, yellow and red, respectively, as defined in Fig. 3c) centered on the consensus EGR 
(left panel) or AP1 motifs (right panel), which are shown on top of each panel (CpG positions that are highlighted by arrows 
in grey (MO) and black (iDCs) in the lower panels are circled). The number of motif-containing DMR is given in the lower-
left corner of each panel. b IGV genome browser tracks of example loci showing single CpG methylation ratios (WGBS), 

5hmC and ATAC-seq coverage in MO and iDCs and EGR2 ChIP-seq coverage in iDC. Genomic locations of DMR are 
shown (coloring according to the classification into DMR groups “no peak” or “TF peak” in red or blue, respectively). EGR 
motif sequences are given below each track and arrows in the top tracks mark the positions of the circled CpG. 
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As shown in Figure 5.23a, CpGs within the EGR motif remained methylated (left panel) during MO 

differentiation (black arrows) across all DMR groups (“no peak”, red; “open”, yellow and “TF peak”, 

blue). In contrast, CpGs within the AP1 motif (right panel) were markedly demethylated upon MO 

differentiation into iDC (black arrows) across all DMR groups. 

In Figure 5.23b some DMR examples are given that show protected CpGs (which remain methylated 

as indicated by the black arrows) at EGR2 motifs. The top panels and the left bottom panel (“no peak” 

DMR group, red coloring) are examples of actively demethylated regions (5hmC enrichment) that do 

not show any signs of open chromatin (ATAC coverage), nor EGR2 binding (track above EGR2 motif). 

Still, CpGs in EGR2 motif are protected from demethylation.  

The same methylation footprint in EGR2 motif is also observed on the right bottom panel, where the 

demethylated DMR is accessible and bound by EGR2. This DMR is part of the “TF peak” group as 

indicated by the DMR blue coloring. 

Additional examples, including methylation data (EpiTYPER) are provided in Figure 5.24.  

 

 

Figure 5.24 DNA methylation at largely inaccessible DMR 

a-d IGV genome browser tracks for the indicated WGBS, 5hmC and ATAC data sets at example DMR with EGR2 consensus 

motifs. CpGs included in the EGR2 motif that resist demethylation are indicated above each WGBS track with arrows. 
Corresponding DNA methylation ratios (as measured by EpiTYPER) for the indicated regions are given below. For 
heatmaps, methylation ratios (representing means of n ≥ 4) are indicated by coloring (white: no methylation, dark blue: 100% 
methylation, gray: not detected) with each column representing a single CpG. For each region the data of a single CpG 
(highlighted and marked by asterisks) is shown. Bars represent means ± SD, individual data points are shown as colored 
dots (each color representing a different donor). e Motif sequences for the six EGR2 motifs shown in a-d. The consensus 

EGR2 motif derived from DMR regions is shown on top. 

 

Nearly all DMR regions displayed in Figure 5.24 are actively demethylated (5hmC enrichment), 

inaccessible (ATAC) and unbound (ChIP) by IRF4, PU.1 and EGR2. In some cases, however, we 

detected a slight binding by EGR2 protein (Figure 5.24d).  
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In Figure 5.24 are depicted few examples of inaccessible DMR (lack of ATAC signal in iDC) that failed 

to demethylate in EGR2-depleted cells (compared to siCTRL and siIRF4 samples) and that are 

unbound by EGR2 (except region in Figure 5.24d). In addition, these regions contain CpGs in the 

EGR2 motif (Figure 5.24e, motif sequences (1-4)) that are protected from DNA demethylation (as 

indicated by the black arrows). These data suggest that at these regions, EGR2 may transiently 

interact with methylated CpGs at its binding sites and initiate the DNA demethylation. 

As illustrated in Figure 5.24d, EGR2 may also be able to initiate DNA demethylation at largely 

inaccessible DMR even in the absence of a methylation footprint in its binding motif sequence.  

Taken together, our findings from this section suggest that EGR2 may initiate the DNA demethylation 

at both transient and stable binding sites. 

5.5.1 EGR2 & DNA demethylation machinery recruitment 

5.5.1.1 Proximity-dependent Biotin Identification (BioID) 

To demonstrate the presence of an interaction between EGR2 and TET2 as well as to uncover other 

potential in vivo interaction partners of EGR2 in iDCs (obtained from in vitro MO differentiation) the 

BioID approach was used (see section 4.6.4). 

As a first step of this method, we designed a gBlock gene fragment including a 3xFLAG sequence and 

the EGR2 protein fused along with a flexible linker to the promiscuous biotin ligase to biotinylate the 

proteins located in close proximity. In parallel, a negative control gene fragment, containing a 3xFLAG 

sequence and the biotin ligase fused to a nuclear localization sequence (NLS) was also designed. The 

respective gBlock gene fragments can be found in section 3.13.  

Afterwards, gBlock gene fragments were cloned using the Gibson assembly method (section 4.3.5) 

and after isolation and linearization of plasmid DNA, the 5’-capped, poly-adenylated mRNAs were 

obtained by in vitro transcription as described in section 4.5.3. Then, we transfected the synthetic 

mRNAs by electroporation into iDCs-d3 (section 4.1.5) and harvested cells at different time points to 

measure the fusion proteins kinetic by Western blot (see section 4.6.3 and figure Figure 5.25). 
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Figure 5.25 Protein kinetic for the BioID fusion proteins at different time points after transfection  

Immunoblots depict the protein expression levels for the following BioID fusion proteins at the indicated time points (1 h, 
3 h, 6 h and 8 h): a 3xFLAG-NLS-BirA* (control) and b Cterm-3xFLAG-EGR2-BirA*. Blots were stained with an anti-FLAG 

antibody and anti-ACTIN antibody was used as protein loading control. A mock sample was also included as negative 
control. 

As depicted in Figure 5.25, both fusion proteins were overexpressed in iDC over the time course (1 h, 

3 h, 6 h and 8 h) after transfection as detected by the anti-FLAG (α-FLAG) antibody. As protein 

expression was most abundant between three and six hours after transfection, we added biotin to 

culture medium (biotinylation of vicinal proteins) three hours after transfection and harvested the 

respective lysates eight hours after transfection. 

To check whether EGR2 fusion protein would interfere with normal EGR2 binding patterns, we also 

performed ChIP-seq experiments (cells were harvested six hours after transfection) and an IGV 

genome browser representation of this data is given in Figure 5.26. 

 

 

Figure 5.26 IGV genome browser track of EGR2-fusion proteins in iDCs-d3 

ChIP-seq signals of EGR2 (obtained with an anti-EGR2 (blue) or anti-FLAG (green) antibody) and EGR2-BirA-antiFLAG 
replicate one and two (obtained with an anti-FLAG antibody (light blue)) across the indicated genomic loci. 

 

As shown in Figure 5.26, EGR2-BirA fusion protein (replicate one and two) showed a similar binding 

pattern compared to both endogenous EGR2 (ChIP-seq performed by David Dittmar) and EGR2-

antiFLAG. Since the fusion of EGR2 to the biotin ligase did not prevent its binding to DNA, we 

proceeded with the BioID approach. 

For this purpose, iDCs-d3 were individually transfected with EGR2-BirA and NLS-BirA (negative 

control) fusion proteins and the detailed BioID protocol can be found in section 4.6.4. Biotinylated 

proteins were bound on Streptavidin-coated magnetic beads and subsequent trypsin digestion and 
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mass spectrometry analysis was carried out in cooperation with Prof. Dr. Axel Imhof and Dr. Andreas 

Schmidt at the Zentrallabor fur Proteinanalytik of the University of Munich (ZfP, LMU). 

Preliminary mass spectrometry raw data analysis was performed at the ZfP and the subsequent data 

analyses were performed based on the reported protein iBAQs (intensity-based absolute 

quantification), a measure of protein abundance. To include peptides where the iBAQ value was equal 

to zero (and to avoid dividing by zero) a pseudo-count of two was used to replace these iBAQ values.  

Afterwards, iBAQ values were log2 transformed and all non-reversed, non-contaminated entries were 

summed for each replicate (two replicates per treatment). Then, iBAQ values were normalized by 

dividing the individual iBAQs from a given replicate by the respective summed iBAQ, yielding a relative 

iBAQ (riBAQ). For each protein, riBAQ values were averaged from both replicates to obtain the mean 

riBAQ for that protein under the respective treatment (NLS-BirA or EGR2-BirA). 

To get a list of enriched proteins upon EGR2-BirA treatment, each protein mean riBAQ value for EGR2-

BirA was divided by the mean riBAQ value for the NLS-BirA (negative control). Proteins that exhibited 

a ratio inferior at four were considered as not enriched. In total, we detected 169 proteins, which were 

enriched in the EGR2-BirA compared to the NLS-BirA. An overview of the GO term enrichment 

analysis (100 enriched clusters) is given in Figure 5.27. 
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Figure 5.27 GO-terms for enriched genes in EGR2-BirA samples 

Gene ontology (GO) analysis of EGR2-BirA enriched genes in iDCs-d3 analysed by Metascape. The significance of the 
enrichment of a particular term is depicted with the log10 of the p-value and bars are colored by p-values. 

 

Functional annotation in Figure 5.27 revealed that enriched proteins in EGR2-BirA were involved in 

distinct cellular processes including demethylation, which is consistent with a potential association 

between EGR2 and DNA demethylation machinery. 

Due to the extensive list of enriched EGR2-BirA-specific proteins, we further filtered some genes 

based on the information obtained from Metascape, thus allowing a better visualization of functional 

protein association networks (using the STRING platform). Only genes associated with chromatin 

remodeling, demethylation, immune system as well as known co-factors of EGR2 (e.g. NAB2 and 

HCFC1) are highlighted in Figure 5.28. 
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Figure 5.28 EGR2 protein-protein interactions in iDCs-d3 

STRING analysis illustrating the functional protein association network. The given network summarizes predicted 
associations for selected proteins enriched in the EGR2-BirA samples. The network nodes are the proteins, the edges 
represent the protein-protein associations and the line thickness indicates the strenght of data support. Seven types of 
evidence are used in predicting these associations (textmining, experiments, databases, co-expression, neighborhood, 
gene fusion and co-occurrence). 

 

As illustrated in the functional protein association network (Figure 5.28), chromatin remodeling 

enzymes (e.g EP400, SMARCA2/4 and ARID1A), histone demethylases (e.g JMJD1C and KDM6B) 

and also TET2 are likely associated with EGR2 in iDCs.  

Taken together, identification of TET2 protein in the EGR2-BioID experiments reinforces our 

hypothesis about the EGR2 critical role in TET2 recruitment during MO differentiation. Nevertheless, 

to facilitate further statistical analyses and to increase the reproducibility of our data, additional donors 

must be included in future BioID experiments. 
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5.5.1.2 Co-Immunoprecipitation (CoIP) 

Since the BioID approach only allows to study the vicinal proteins within close proximity (estimated to 

be within 10 to 20 nm)178 to the fusion protein, the actual direct/physical protein interactions might be 

poorly predicted using this method. Therefore, we performed co-immunoprecipitations (CoIPs) in iDC 

as well as in a myeloid cell line (THP-1) to confirm the presence of a direct interaction between EGR2 

and TET2. As NAB2 TF is a known co-factor of EGR2193, it was also included in the CoIP experiments. 

Due to the absence of proper antibodies against EGR2 or NAB2, CoIPs were performed using cells 

transfected with mRNAs encoding the FLAG-tagged proteins. Briefly, these in vitro transcribed (ivt) 

mRNAs were generated as described in sections 4.3.5-4.3.7 and 4.5.3, and transiently transfected by 

electroporation into iDCs (day 3) or THP1 cell line as described before (section 4.1.5). To check protein 

expression levels after transfection with the respective constructs, iDCs were harvested at different 

time points (1h, 3 h, 6 h and 8 h) and the whole cell lysates were used for western blot (see section 

4.6.3). The results are given in Figure 5.29. 

 

Figure 5.29 Protein kinetic for the EGR2 and NAB2 fusion proteins in iDC-d3 

The immunoblots depict the protein expression levels detected for a) Nterm-3xFLAG-EGR2 and b) Nterm-3xFLAG-NAB2 

fusion proteins at the indicated time points (1 h, 3 h, 6 h and 8 h) after cell transfection. Blots were stained with a α-FLAG 
antibody and a α-ACTIN antibody was used as the protein loading control. A mock sample was also included as control. 

 

As presented in Figure 5.29, the EGR2 and NAB2 constructs were overexpressed in iDCs over the 

time course (1 h, 3 h, 6 h and 8 h) after transfection as detected by the anti-FLAG (α-FLAG) antibody. 

Based on these observations, cells were harvested three hours after transfection to perform the CoIP 

experiments. 

CoIPs and reciprocal CoIPs were performed using the Dynabeads® Antibody Coupling Kit to crosslink 

the α-TET2, α-FLAG and α-IgG antibodies to the magnetic beads before co-immunoprecipitation of 

the protein complexes. The detailed protocol can be found in section 4.6.5 and the results are depicted 

in Figure 5.30. 
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Figure 5.30 TET2 interacts with EGR2 and NAB2  

CoIPs and reciprocal CoIPs of EGR2 or NAB2 (expressed as FLAG-tagged proteins via mRNA electroporation) and TET2 
in THP-1 and iDC. Interactions were assessed by IP using a α-FLAG antibody followed by immunoblot analysis with a α-
TET2 antibody (FLAG-IP) and conversely for the reciprocal CoIP. Moreover, input samples (cell lysate before CoIP) and 
α-IgG-IP were used as controls.  

 

As shown in Figure 5.30, in both CoIP and reciprocal CoIP, TET2 -EGR2 and TET2-NAB2 interactions 

were detected, emphasizing the involvement of EGR2 as well as NAB2 in the DNA demethylation 

process in iDC. Of note, the weak signals (low band intensity) on the blots are primarily due to the 

transient nature of these interactions.  

5.6 DNA methylation-spikes across different cell types 

In line with the results in Figure 5.23 & Figure 5.24, we observed the same methylation footprint of 

EGR2 at bound regions (“TF peak” DMR group) as well as regions that show no detectable EGR2 

binding (“open” DMR group) nor accessible chromatin (ATAC) (“no peak” DMR group).  

As exemplified in Figure 5.24, the methylation footprint at EGR2 binding sites was associated with a 

delay on DNA demethylation upon EGR2 depletion. Therefore, our data suggest that at certain loci, 

methylated CpGs can be protected from demethylation by transiently bound EGR2.  

Considering the importance of this methylation footprint of EGR2 for DNA demethylation processes 

around its binding sites, in a next step we checked if this phenomenon could also be found in other 

cell types and represent a feature of other factors. For this purpose, we extended our analyses and 

compared 5mC- spikes (which may indicate demethylation protection) in MO and iDC (Figure 5.31) as 

well as in other cell types like MAC, neutrophils, B and T cells. As an example of factor to support our 

observations, we focused on the pioneer CEBP (using published data). 
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Figure 5.31 DNA methylation-spikes in MO and iDCs 

a Strategy for identifying small (max. 6-bp wide) spikes of DNA methylation. b Genomic distance distribution of averaged 

DNA methylation ratios in MO and iDCs across iDC 5mC- spikes. Values of central CpGs are indicated by larger dots and 
the number of 5mC spikes is given in the lower-left corner. c Pie chart illustrating the genomic location distribution of iDC 
5mC spikes (inner circle) relative to CpGs across the entire genome. d Venn diagram depicting the overlap between 5mC 

spikes, DMR and accessible regions (ATAC peaks) in iDC. 

 

Figure 5.31a shows a strategy to identify small spikes of DNA methylation in MO and iDCs as indicated 

by a sharp increase in DNA methylation ratios greater than 50% followed by a similar reduction in CpG 

DNA methylation. As shown in Figure 5.31b, regions around iDC-spikes (larger dots) were less 

methylated in iDC when compared to MO. These data are consistent with our findings for EGR2, which 

assume that at certain positions, EGR2 binding sites overlap with methylated CpGs while the 

surrounding CpGs are demethylated. 

As illustrated in Figure 5.31c, iDC 5mC- spikes (DNA methylation-spikes) were enriched in promoter 

and TTS regions. Like DMR, only a limited number (372) of 5mC- spikes in iDC overlapped with iDC 

ATAC peaks. Interestingly, only 98 DMR overlapped with iDC 5mC- spikes and 107 DMR overlapped 

with both 5mC- spikes and ATAC peaks in iDCs. 

The Venn diagram in Figure 5.32a (left panel) illustrates the overlap between MO and iDC 5mC- 

spikes. 
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Figure 5.32 DNA methylation-spikes are cell type-specific and enriched for TF motifs 

a Venn diagram indicating the number of common and cell type-specific 5mC- spikes between MO and iDC. De novo–

derived motifs for each 5mC-spike set are given along with the significance of motif enrichment (hypergeometric test) and 
the fraction of motifs in peaks (background values are in parenthesis). Top motifs corresponding to known factor families 
are shown for each set. b Balloon plot depicting the motif enrichment of selected motifs across all 5mC- spikes identified 

in each cell type (blue-green-yellow coloring according to corrected enrichment p-value) or cell type-specific 5mC- spikes 
(red-pink-white coloring according to corrected enrichment p-value). The balloon size represents the fold-enrichment and 
the coloring indicates the corrected P-value (Hypergeometric test, Benjamini-Hochberg multiple testing correction) of the 
motif occurrence in 5mC- spikes. 

 

As expected, the motif signature across MO-, iDC-specific or common 5mC- spikes (Figure 5.32, right 

panel) revealed that iDC-specific 5mC- spikes were enriched for the EGR consensus motif whereas 

common and MO-specific 5mC- spikes were highly enriched for CEBP and KLF consensus motifs. 

These data suggested that DNA methylation-spikes are cell type-specific and not restricted to EGR2. 

In an effort to generalize our findings, published WGBS data sets from additional human cell types 

(including neutrophils, B cells, T cells, NK cells and hepatocytes) were used and the main results 

obtained from computational analyses are shown in Figure 5.32b.  
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The balloon plot in Figure 5.32b shows the TF motif enrichment across the total and specific 5mC- 

spikes in different cell types. The correlation between the total (blue-green-yellow gradient color) or 

specific (red-pink-white gradient color) 5mC- spikes in different cell types with their motif enrichment 

is also provided. Accordingly, we detected a strong cell type-specific enrichment of particular TF motifs 

(larger filled red balloons), including CEBP in MO and neutrophils, EGR2 in iDC, and EBF in B cells. 

To correlate the presence of 5mC- spikes in CEBP consensus motif with binding (ChIP-seq, published 

data) of CEBP TFs (CEBPα or β) across different human cell types (MO, MAC and liver) pie charts 

were generated as shown in Figure 5.33a. 

 

 

Figure 5.33 Typical 5mC- spikes in CEBP consensus motif and TF binding 

a Pie charts illustrating the overlap of 5mC- spikes with the indicated CEBP factor ChIP-seq peaks in MO, MAC and liver. 
b IGV genome browser tracks for the indicated WGBS and ChIP data sets at example regions around 5mC- spikes 

overlapping the CEBP consensus sequence. 

 

As illustrated in these pie charts, a significant overlap of ChIP-seq peaks for CEBPα or β in human 

liver, MO or MAC was observed, proposing that binding of CEBP TF may protect 5mC- spikes from 

DNA demethylation. 

Figure 5.33b displays IGV genome browser tracks for the specified WGBS and ChIP data sets at four 

loci overlapping CEBP consensus motifs.  As indicated by the black arrows, MO, iDC, neutrophil and 

liver cell types exhibited a typical 5mC-spike similar to the methylation footprint detected at EGR2 

binding sites (see Figure 5.23 & Figure 5.24).  
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In a similar way to EGR2, we also observed 5mC- spikes at CEBP motifs with no detectable CEBP 

binding (ChIP), suggesting that a transient interaction of CEBP with its binding sites may also be 

sufficient to mediate the recruitment of DNA demethylation machinery to its binding sites. 
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6 Discussion & Perspectives 

DNA methylation turnover is a critical process during normal hematopoiesis and its dysregulation is 

associated with numerous malignancies194,195. In fact, TET2, the most relevant hydroxylase initiating 

this process in hematopoietic cells196–198 is often mutated in myeloid60,199–201 and lymphoid202,203 

malignancies, although the latter have been reported to a lesser extent. 

To better understand, how mutations in the DNA demethylation machinery might affect normal 

hematopoiesis leading to malignant transformation, it is fundamental to gain deeper insight into the 

mechanisms involved in 5mC removal. This is why this thesis was mainly focused on the DNA 

demethylation process during post-mitotic MO differentiation. It combines high-throughput-based 

methods, biochemical, computational and functional analysis to identify mechanisms and TFs involved 

in DNA demethylation recruitment, which are currently poorly understood in these cells. 

Previous studies described DNA demethylation during hematopoietic cell differentiation as an active 

process13, thereby involving the enzymatic activity of TET enzymes to initiate DNA demethylation. To 

study the active DNA demethylation process, an in vitro system to differentiate peripheral human MO 

into iDC upon stimulation with IL-4 and GM-CSF cytokines has been repeatedly used by our group 

and others31,32,204–206. One of the greatest advantages of this model is that during differentiation32 or 

even in response to infection, cells do not proliferate207, which allows to investigate molecular 

mechanisms occurring in the absence of DNA replication, including active demethylation. Therefore, 

in this thesis this in vitro system was used to address our key research questions. 

In vitro studies using this model have contributed to identify dynamic changes in DNA methylation 

during post-mitotic MO differentiation, which are clearly associated with extensive losses of DNA 

methylation and only very few de novo methylation events31,32,206,208, thus reflecting our observations 

at iDC- and MO-specific DMRs, respectively (Figure 5.2). Although some studies were also focused 

on transcriptional changes during differentiation and how they correlate with DNA methylation 

events206,209, they failed to provide additional epigenetic landscapes analyses and also to compare 

genome-wide DNA methylation changes between MO and iDCs. To bypass this, we analysed 5hmC 

and ATAC-seq peaks distribution in MO and iDCs to capture active demethylation and chromatin 

accessibility changes, respectively. In addition, genome-wide binding patterns for certain TFs were 

also assessed by ChIP-seq, improving our understanding of how epigenetic changes correlate 

between each other to drive the normal differentiation of MO into iDC. 
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6.1 Genome-wide active DNA demethylation during MO 

differentiation 

Dynamic changes in chromatin structure and DNA methylation are critical during cell differentiation 

and lineage specification210. The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling 

complex is reported to be fundamental in these processes211–213, including its interplay with TET 

enzymes. For instance, Sepulveda and colleagues214 stated that Tet-mediated DNA demethylation is 

necessary for the activity of SWI/SNF-containing complexes that promotes the expression of Sp7 

master gene during osteoblast differentiation. 

In the present work, we verified a progressive enrichment in 5hmC (active demethylation) and 

chromatin accessibility (ATAC) (Figure 5.3) across our iDC-specific DMRs with some DMRs being 

demethylated even before open chromatin or TF binding detection (Figure 5.11a). Although these data 

indicate that at particular DMRs active demethylation can precede other epigenetic processes, the 

5hmC distribution across DMRs was more or less pronounced according to the time point of iDC 

differentiation. Indeed, the distribution of 5hmC was higher upon 18h of culture compared to iDCs-d7 

that exhibited a decreased but broader distribution of 5hmC (Figure 5.3). These data may suggest that 

iDCs at day 7 of differentiation might represent a mixture of regions where most of the demethylation 

is almost or even complete (5mC → 5C) and regions that are later demethylated (5hmC). 

It was previously reported that demethylation might be stalled at 5hmC215. In compliance with this 

study, Xiong and colleagues216 demonstrated that in mouse ESCs, SALL4A is recruited by TET1 to 

stabilize the chromatin association of TET2, and thus facilitate the further oxidation of 5hmC. This 

model, however, cannot be extrapolated to our system because TET1 expression is undetectable in 

MO or MO-derived cells32 and SALL4 is not associated with our iDC-specific DMRs. Although TET2 is 

capable to successively oxidize 5hmC to 5fC and 5caC, it is still unclear whether another enzyme or 

TF is required to promote TET2-mediated oxidation of 5hmC in MO-derived cells. 

A comprehensive analysis of DNA methylation ratios across all three DMR groups (“no peak”, “open” 

and “TF peak”) during iDC differentiation, revealed distinct DNA methylation turnover rates in these 

groups (Figure 5.11b). It seemed like the DNA demethylation was delayed at “no peak” and “open” 

groups compared to “TF peak” group. These data may suggest a low TET2 processivity at these 

regions, which in turn, might be associated with a repressed (“no peak” group, Figure 5.11b) or 

reduced (“open” group, Figure 5.11b) chromatin accessibility217. In addition, the “TF peak” group also 

showed more motif co-occurrences compared to “no peak” and “open” DMR groups (Figure 5.12). 

These findings might associate with a broader demethylation and an increased chromatin accessibility 

at the “TF peak” DMR group that create more opportunities for TF cooperativity in the course of iDC 

differentiation. 
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In line with previous observations31 only a fraction of iDC DMR associated genes overlapped with 

genes that are significantly regulated during MO differentiation, indicating that for many DMRs active 

demethylation processes occur independently of transcriptional changes. In addition, we also 

observed that at some DMRs, the active demethylation takes place even before chromatin remodeling 

and/or TF binding detection. These regions are presumably required for later processes like cell 

maturation to render them functional. These findings were partially observed by Vento-Tormo and 

colleagues206 work, who verified that for a subset of genes, the DNA demethylation during MO 

differentiation (using the same in vitro system) precedes their upregulation upon cell maturation. 

As observed for active demethylation (5hmC), the post-mitotic MO differentiation is also characterized 

by an increase in chromatin accessibility with different open chromatin dynamics across iDC-DMRs 

(Figure 5.11). Some DMRs can get early, later, transient or even not accessible during differentiation, 

suggesting that chromatin structure is not static during MO differentiation but a well-controlled process 

that directly correlates with stable TF binding detection (Figure 5.11). As previously described in other 

systems211–213, our findings indicate that chromatin remodeling at DMRs is triggered during MO 

differentiation and thereby its dysregulation may impair the normal differentiation process.  

Another important unsolved question was whether chromatin remodeling and active DNA 

demethylation are interdependent processes, or instead, both processes can occur independently of 

each other. To address that, we combined 5hmC, ATAC-seq and ChIP-seq data across iDC-DMRs 

and verified (as also mentioned above) that some DMRs were actively demethylated even before 

chromatin remodeling or TF binding detection. These observations confirmed that at particular DMRs 

chromatin remodeling and active demethylation can be independent processes. Although it was 

recently reported that Klf4-mediated enhancer active demethylation precedes open chromatin 

detection during reprogramming in mouse98, our work is the first to describe an independent 

relationship between chromatin remodeling and active DNA demethylation (at some DMRs) during in 

vitro differentiation of human MO. These findings unveiled a relevant hallmark of epigenetic gene 

regulation during post-mitotic MO differentiation. 

Previous studies confirmed the role of TET2 in active demethylation during MO differentiation into iDC 

(using the same in vitro system), however, they only focused on DNA methylation changes, which is 

insufficient to understand other potential functions of TET2 during MO differentiation. To overcome 

this, we used high-throughput sequencing technologies like RNA-seq and ATAC-seq to also study the 

role of TET2 in gene expression and chromatin accessibility, respectively. 

As mentioned before, TET2 is the main responsible enzyme for the iterative oxidation of 5mC to 5hmC 

in our system, while TET1 and TET3 are primarily involved in DNA demethylation in embryonic stem 

cells/adult brain29,218 and in the zygote219, respectively. Besides its essential role in MO-derived 

cells13,32,206, TET2 is also required for active demethylation processes in proliferating hematopoietic 

progenitor cells98,220,221. 
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The marked effects of TET2 depletion on different hematopoietic cell types have been extensively 

reported221–223. Together, TET2 KD was associated with DNA hypermethylation (gain of 5mC) and 

reduced hydroxymethylation (loss of 5hmC) as well as with aberrant HSC self-renewal (in mice)224. In 

addition, silencing of TET2 in human hematopoietic progenitor cells was found to disturb the 

granulocytic and erythroid differentiation favoring the monocytic development222. 

In the present work, silencing of TET2 was associated with very mild effects on gene expression (only 

few genes were differentially expressed between control and siTET2 samples), cell morphology and 

chromatin structure (slight effects upon TET2 depletion) in iDC. These effects are presumably due to 

the expression of TET2 already in MO that resulted in a delayed effect of siRNA treatment on protein 

expression (Figure 5.4c) with many sites initiating demethylation at earlier stages of MO development 

(Figure 5.5). Similarly, the presence of low levels of TET332 might compensate for the reduced levels 

of TET2 and likewise attenuate the effect of TET2 depletion in this system. Actually, Montagner and 

colleagues225 proposed that absence of TET2 during mast cell differentiation (cells obtained from bone 

marrow of Tet2−/− mice) could be compensated by the activity of other TET proteins.  

Nevertheless, our results were reproducible among donors and genes downregulated upon TET2-

silencing were normally induced during iDC differentiation (Figure 5.7). Furthermore, the impact of 

TET2-silencing on DNA methylation was consistent with its critical role in DNA demethylation during 

in vitro MO differentiation (as also reported by Vento-Tormo and colleagues206). DNA demethylation 

was impaired at many regions (Figure 5.5) and in compliance with previous findings31, demethylation 

did not occur simultaneously at all CpGs positions during differentiation (while some CpGs were early 

others were late demethylated).  

Interestingly, some iDC DMRs lost chromatin accessibility upon TET2 depletion, suggesting that TET2 

may be involved in both DNA demethylation and chromatin remodeling processes. In line with this, 

intragenic DMRs (upon TET2 KD) showed a delay in DNA demethylation and reduction in open 

chromatin (amplicons CABP4, TMIGD3 and MAN1C1 in Figure 5.5), which were correlated with 

downregulation of their associated genes (Figure 5.7b). These data indicate that at particular iDC-

DMRs, TET2-mediated DNA demethylation and chromatin remodeling processes are coupled with 

changes in the expression of genes206,214 typically induced during iDC differentiation. 

Overall, our findings suggested that active DNA demethylation (in cooperation with other epigenetic 

processes like chromatin remodeling) plays a critical role in the activation of previously DNA 

methylated cis-regulatory modules. For instance, we verified a local delay in DNA demethylation (upon 

TET2 depletion) at some DMRs overlapping promoter regions (e.g. EpiTYPER amplicon CCL13, 

Figure 5.5a). In line with previous work performed in the scope of hematopoietic differentiation226, our 

data indicate that promoter DNA demethylation is an essential process during post-mitotic MO 

differentiation.  
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Since the discovery of TET proteins as well as their involvement in DNA demethylation 

processes19,36,38, TET enzymes as well as their intermediate oxidative products have been largely 

studied and characterized19,42,66. However, the mechanisms controlling TET2 recruitment to individual 

target loci in hematopoietic cells is poorly understood. 

Unlike TET1 and TET3 full-length isoforms, TET2 lacks the CXXC DNA-binding domain and thus is 

not capable to bind methylated CpGs24 and to initiate the DNA demethylation process. To overcome 

this limitation, we proposed (as also suggested by several groups97,98,104–106) that TET2 might interact 

with other TF to induce local DNA demethylation. To address this possibility, we initially divided iDC-

DMRs into progressive and de novo demethylated regions according to the DNA methylation ratios in 

MO and investigated TF motif signatures across these regions to identify potential candidates for TET2 

recruitment (see section 5.3 & Figure 5.9).  

As expected, both region sets (progressive and de novo demethylated) displayed motif signatures for 

TFs previously associated with iDC differentiation like PU.1, IRF4 and STAT-family factors122,167,172. 

However, certain TFs were more enriched in regions where DNA demethylation already started at 

earlier stages of MO development (progressive demethylated regions), such as PU.1, EIRE composite 

motif and AP1-family factors. These data are in agreement with the expression of these TFs in MO227–

229. On the other hand, de novo demethylated regions (highly methylated regions in MO) were more 

enriched for TF induced upon culture, such as STAT and EGR206,230.  

Considering that, EGR2 and IRF4 are induced and transcriptionally activated in iDCs (Figure 5.10) 

they represented valid candidates to trigger de novo demethylation processes and thereby were used 

as target genes for genetic functional analyses. 

6.2 Effects of key regulator depletion on MO differentiation 

IRF4 and EGR2 represented valid candidates to mediate de novo DNA demethylation events during 

in vitro MO differentiation into iDC. Therefore, we assessed the consequences of TF knock-down on 

MO differentiation, including associated epigenetic processes like DNA demethylation and chromatin 

remodeling. 

IRF4 (also known as multiple myeloma oncogene-1 (MUM1)) belongs to the IRF family of TFs231,232. 

The IRF family is composed for nine members (IRF1–IRF9) with regulatory functions in virus-related 

defense, innate and adaptive immunity, cell development and oncogenesis233,234. 

Like in other IRF family members, the protein structure of IRF4 contains three domains (a DNA-

binding, an IRF-association domain 1 (IAD1) and an auto-inhibitory domain) and a nuclear-localization 

signal235. The IAD1 domain may facilitates homo- and heterodimerization between IRF4 and other 

TFs, including PU.1236. 

IRF4 is predominantly expressed in T cells, B cells, MAC and DCs and is critical for lymphoid and 

myeloid lineage development and function235. For instance, studies performed in murine models 
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showed that IRF4 is essential for DC190, myeloid‐derived suppressor cells (MDSC)237 and MAC 

differentiation238. Furthermore, IRF4 is necessary during immune responses for lymphocyte activation 

and production of immunoglobulin-secreting plasma cells. Its dysregulation is also associated with 

many lymphoid malignancies239,240.  

Despite previous reports of the pivotal role of IRF4 in DC development and function190–192, its functions 

in iDC-associated epigenetic processes like DNA (de)methylation and chromatin remodeling were 

largely unknown. In this work we addressed the functional importance of IRF4 in these processes 

during in vitro human MO differentiation into iDC. 

It is well-established that IRF4 is induced by LPS, IL-4, and CD40241–243, which is consistent with the 

observed IRF4 upregulation upon IL4/GM-CSF driven MO differentiation (Figure 5.15c). In turn, its 

depletion resulted in a marked reduction on IRF4 protein levels at earlier stages of differentiation 

(Figure 5.15c), that was accompanied by pronounced effects on cell morphology (Figure 5.15b) 

without affecting cell survival (Figure 5.15a). IRF4-depleted human MO acquired a MAC-like 

morphology (Figure 5.15b) despite culture in the presence of IL4/GM-CSF, which was equivalent to 

observations made in mice244.  

Supporting these findings, IRF4-deficient cells exhibited profound changes on transcriptional level 

(Figure 5.16), including loss of DC and gain of MAC gene expression signatures. Actually, silencing 

of IRF4 prevented the upregulation of important DC markers like CD1a, CD1b, CD1c and CD80245,246 

as well as many HLA genes with important functions in the regulation of the immune system247,248. In 

contrast, genes encoding integrins (e.g. ITGB2, ITGB5) and lysozymes (e.g. LYZ), essential for 

phagocytosis and inflammatory responses in MAC249–251 were upregulated in siIRF4-deficient cells. 

Interestingly, it has been stated that interactions of IRF members with transcriptional partners like IRF4 

(or IRF8) and the co-acting transcriptional regulator PU.1, allow IRFs to control distinct transcriptional 

programs252. In fact, the majority of IRF4 binding sites in DC are composite ETS:IRF (EIRE) elements 

that require PU.1 for IRF4 to bind DNA253.  

The transcription factor PU.1 (also known as Spi-1) belongs to the erythroblast transformation specific 

(ETS) family and in the same manner as most ETS proteins, PU.1 can bind alone to a specific core 

motif (A/GGAA) 254 or in a complex with IRF4 or IRF8. Hence, PU.1, Spi-B and IRF4, IRF8 can 

cooperatively assemble on composite DNA elements (ETS:IRF) and regulate transcription in the 

immune system253. For instance, the heterodimer composed by PU.1 and IRF4 has been implicated 

in dendritic cell gene expression255 as well as in leukemia suppression256.  

Therefore, during MO to iDC differentiation the transcription regulation of genes containing ETS:IRF 

(EIRE) composite elements (that require IRF4 binding) was likely disrupted by silencing of IRF4, 

contributing to the marked changes on DC-specific transcriptional programs. 

Taken together, our observations are in line with previous reports that highlight the IRF4 pivotal role 

in DC development and function138,190–192,244. 
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IRF4 along with other TFs (BATF, a FOS-like and AP-1 family TF) was suggested to mediate 

chromatin accessibility during T cell differentiation257. However, a function of IRF4 in chromatin 

structure and how this event may correlate with active DNA demethylation during MO differentiation 

remain unclear. 

To better understand the role of IRF4 not only in chromatin remodeling but also in DNA methylation, 

we investigated the functional consequences of IRF4 depletion on these processes using ATAC-seq 

and EpiTYPER techniques, respectively. Data analysis revealed a clear impact of IRF4 depletion on 

chromatin accessibility (ATAC-seq) (Figure 5.17) in IL4/GM-CSF-MO-derived iDC with loss of IRF4 

containing motifs (see Figure 5.17a). In addition to its critical function during iDC differentiation, our 

data highlight a previously unreported potential role of IRF4 in chromatin remodeling processes, which 

may contribute to get better profiles of epigenetic landscapes in the course of MO differentiation. 

As a secondary impact of IRF4 depletion on chromatin accessibility, we found that more accessible 

sites were strongly enriched for CEBP, AP1, EGR2 and E-box motif, which are not related to IRF4 

binding but were previously identified as being part of a MAC-enhancer signature227. These data are 

then consistent with the MAC-like morphology and gene expression signatures observed upon IRF4-

silencing.  

Focusing on DNA methylation changes during MO differentiation, sites that loose accessibility in IRF4-

depleted cells (and bound by IRF4) are targets of the demethylation machinery during normal MO 

differentiation (Figure 5.22b, right panel). However, most sites affected by the IRF4 KD already 

initiated DNA demethylation during earlier stages of MO development (Figure 5.17b), suggesting that 

IRF4 could be involved in active DNA demethylation processes at progressive and not at de novo 

demethylated regions. 

Notably, regions normally bound by IRF4 and even by PU.1 (resembling their binding at ETS:IRF 

(EIRE) composite elements) were still demethylated despite their failure to gain accessibility (upon 

IRF4 KD) during MO differentiation (Figure 5.21). These data suggest that IRF4 mediates accessibility 

changes regardless of active demethylation, and that IRF4 is likely not involved in the recruitment of 

TET2 to its individual or composite binding sites (ETS:IRF (EIRE)). 

As previously mentioned, another valid candidate for TET2 recruitment during IL-4/GM-CSF-driven 

MO differentiation was EGR2. 

EGR2 along with the other three members, EGR 1, 3 and 4 (EGR1/Krox24, EGR3 and EGR4) is part 

of the family of EGR genes. Their expression is induced in response to mitogens258, differentiation, 

apoptotic signals and tissue injury, implicating them in multiple biological processes259.  

EGR proteins are TFs composed of three zinc fingers that recognize a G:C-rich DNA motifs in the 

promoters of target genes258,260,261. Their transactivation activity is modulated by coactivators like the 

host cell factor C1 (HCF-1)262 and corepressors such as NGFI-A Binding Protein 1 (NAB1)263 and 

NGFI-A-binding protein 2 (NAB2)264.  
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EGR genes are expressed in many cell types, including for example cells within the nervous 

system265,266 and immune system267–269. In particular, EGR2, is described as an essential 

transcriptional regulator of immune cells and can act either as repressor or activator of gene 

expression259,270,271. During monocytic maturation (in a murine model for MAC differentiation) EGR2 

was found to repress neutrophil-specific genes229,272 through its association with the NAB2 

corepressor264. NAB2 was also reported as an important co-factor for the recruitment of the mediator 

subunit INST13 to EGR1/2-bound enhancer elements in human MO/MAC273. EGR2 is also involved 

in upregulation of genes (Tbx21 and Notch1) relevant in T-cell activation274 as well as in upregulation 

of major factors driving T cell anergy275. Therefore, its function in hematopoietic cells is complex and 

requires further elucidation. 

EGR2 has been previously involved in many hematopoietic differentiation processes, such as T 

cell274,276, B cell276, neutrophil272, natural killer cell277 and human MO-derived macrophages227 

differentiation. Yet, a role in IL4/GM-CSF-driven MO differentiation has not been demonstrated. 

This is why this thesis combines different high-throughput-based methods to understand the role of 

EGR2 not only in MO differentiation but also in associated epigenetic processes, including active DNA 

demethylation. 

In line with a role of EGR2 in inducing active DNA demethylation events, the low levels of EGR1 

observed in MO (Figure 5.10) could indicate that this factor initiates 5mC oxidation in MO and its 

function is later replaced by EGR2. At present, however, we are unable to confirm this theory and 

thereby further analyses were only focused on EGR2. 

In this thesis, we used our well-established approach to deplete EGR2 in MO and to investigate the 

functional consequences of EGR2 depletion on iDC differentiation and associated epigenetic 

processes. Unexpectedly, in some of our experiments EGR2 protein expression was already detected 

in MO (Figure 5.18c), which may explain the later effects of EGR2 depletion on protein level (only after 

66h and 7d of culture). Supporting these observations, RNA-seq data from the BLUEPRINT 

epigenome project also revealed medium expression levels of EGR2 in classical MO (CD14+CD16-). 

In contrast, another group showed no signs of EGR2 protein expression in MO227. These inconsistent 

data are presumably related with different cell purification methods, culture or individual donors, which 

might induce the premature expression of EGR2 in MO. 

EGR2-deficient cells showed marked morphological changes and a significant reduction in cell viability 

compared with cells treated with a siRNA control (Figure 5.18a,b), suggesting that EGR2 has a critical 

role in the IL4/GM-CSF-driven MO differentiation, which has not been previously described. Therefore, 

our findings contribute to a better characterization of in vitro iDC (obtained from human MO). 

Corroborating the negative effects of EGR2 depletion on iDC differentiation, profound changes on DC 

transcriptional programs were detected (Figure 5.19). Genes downregulated upon EGR2 KD were 

largely enriched for functional categories involving actin cytoskeleton organization which is known to 
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unfavourably affect DC functions like T cell adhesion and activation278–280, phagocytosis281, or 

migration behaviour282,283. Furthermore, EGR2-silencing resulted in downregulation of important DC 

markers like CD1a, CD86 and CD80162,174 as well as other genes reported as essential for IL4/GM-

CSF-driven MO differentiation, such as IRF4244 and NCOR2205 (also identified in our EGR2 BioID 

experiments in iDC, Figure 5.28). 

Conversely, genes upregulated upon EGR2 depletion, such as APOE284 and MYD88285 were primarily 

enriched for functional categories involving adaptive immune responses. Another functional category 

was related to processes mediated by lymphocytes, which is in compliance with detection of a T-cell 

gene signature (Figure 5.19) in the differential gene expression analysis. Despite some potential 

contamination of our cultures by T cells, we identified different myeloid specific markers in the 

transcriptional analysis like S100A8/S100A9286. 

Besides the pronounced effects of EGR2-silencing on iDC differentiation and gene expression, its 

silencing also impaired chromatin remodeling (ATAC-seq) (Figure 5.20) and DNA methylation (Figure 

5.21), suggesting that EGR2 may be involved in both chromatin remodeling and active DNA 

demethylation processes. 

To better understand the role of EGR2 in both processes, we focused our analyses on DNA 

methylation changes during MO differentiation and verified that the most of less accessible sites 

affected by EGR2 depletion (and bound by EGR2) were de novo demethylated during MO 

differentiation (sites did not show marked signs of previous demethylation in MO) (Figure 5.20b). 

Similarly, our local DNA methylation analyses as determined by EpiTYPER, showed that EGR2 

depletion impaired DNA demethylation at many DMRs independently of their chromatin accessibility 

state and EGR2 binding detection. These observations suggest that EGR2 might be able to initiate 

the DNA demethylation at both accessible and inaccessible DMRs. Together, these results support 

the novelty and importance of our findings, suggesting an epigenetic pioneering role of EGR2 in 

triggering de novo demethylation events during post-mitotic MO differentiation. 

6.3 Epigenetic pioneering role of EGR2 in triggering de novo 

demethylation processes 

As previously mentioned, IRF4 is presumably associated with progressive demethylation events, while 

EGR2 might be involved in de novo demethylation events. In contrast to the very little effects of IRF4-

silencing on DNA methylation, EGR2-silencing clearly impaired the DNA demethylation at its binding 

sites. In particular, EGR2 was also postulated to initiate the DNA demethylation at inaccessible DMRs, 

suggesting an epigenetic pioneer role of EGR2 in mediating de novo demethylation processes. 

Summarizing the relevant properties of pioneer factors, they should be able to recognize their target 

DNA sequences within “closed” chromatin, to initiate chromatin remodeling, to allow binding of non-

pioneer TFs and to establish epigenetic stability of the accessible DNA state287. These features allow 
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pioneer factors to play a critical role in different biological processes, such as during cell 

reprogramming (e.g. Oct4288) and cell-lineage specification (e.g. EBF189). In fact, some of these 

characteristics are partially shared by the epigenetic pioneer EGR2. For instance, EGR2 has the ability 

to induce DNA demethylation in closed chromatin regions and also might be able to participate in 

chromatin remodeling processes as reflected by the ATAC-seq data (Figure 5.20).  

Despite our knowledge about the potential role of EGR2 in mediating de novo demethylation, the 

mechanisms involved in TET2 recruitment to its binding sites were not fully understood until we 

focused our analyses on all EGR2 consensus motifs containing DMRs. Computational analyses 

revealed that CpGs within the EGR2 core consensus are usually protected from demethylation during 

differentiation and that this phenomenon occurs across all DMRs groups regardless of EGR2 binding 

detection (Figure 5.23). Similarly, we verified that this methylation footprint of EGR2 at iDC DMRs is 

likely lineage-specific as well as a feature shared by certain epigenetic pioneer factors, such as CEBP 

and KLF. 

Members of CEBP and KLF family factors (CEBPα and Klf4) were previously reported to bind 

methylated DNA289,290 and recently shown to interact and recruit Tet2 to induce DNA demethylation 

during reprograming in mouse98. In compliance with our observations for EGR2 (also previously 

reported to bind methylated DNA101,291), these data suggest that DNA methylation-spikes overlap with 

TF binding sites, which may have a pivotal role in cellular processes like active DNA demethylation. 

Previous studies (in other systems) that described the ability of some TFs to bind methylated DNA 

and induce TET2-mediated DNA demethylation at its binding sites, showed a particular interaction 

between the candidate factor and TET2. To check the presence of an interaction between EGR2 and 

TET2 in our system as well as to identify candidate interaction partners of EGR2, we used biochemical 

approaches, such as BioID and CoIP. 

Preliminary EGR2 BioID data in iDC (Figure 5.28) unveiled TET2 as a candidate interaction partner of 

EGR2 (proteins in close proximity) and further CoIP experiments confirmed the TET2-EGR2 

interaction (Figure 5.30). These data reinforced our findings, which suggested that EGR2 is essential 

for TET2 recruitment to its binding sites during in vitro MO differentiation.  

Complementarily, NAB2, a known co-factor of EGR2193, was also identified in our EGR2-BioID 

experiments (Figure 5.28). In a similar way to EGR2, it also co-immunoprecipitated with TET2 (Figure 

5.30), indicating a potential involvement of the EGR2:NAB2 complexes in demethylation processes. 

The EGR2:NAB complexes have been demonstrated to regulate gene expression during peripheral 

nerve myelination292–294 as well as in the hematopoietic system229,272, where the association between 

EGR2 and the NAB corepressors represses specific target genes. It was also established that NAB2 

represses transcription by interaction with the chromodomain helicase DNA-binding protein 4 (CHD4) 

subunit of the nucleosome remodeling and deacetylase (NuRD) chromatin remodelling complex193. 

Taking into consideration that work, we may hypothesize (in our system) that EGR2:NAB2 complexes 
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through NAB2-mediated recruitment of the NuRD complex, might mediate changes in chromatin 

structure around EGR2 binding sites facilitating stable TF binding. This process would be coupled with 

changes in DNA methylation triggered by EGR2-mediated recruitment of TET2 to its stable binding 

sites as shown in Figure 6.1.  

Holding our hypothesis, preliminary mass spectrometry data (EGR2-BioID, Figure 5.28) identified 

chromatin remodeling enzymes (e.g EP400295, SMARCA2/4296 and ARID1A297) and proteins involved 

in the epigenetic control of gene transcription (e.g. histone demethylases like JMJD1C and KDM6B298) 

within close proximity to EGR2. 

 

 

Figure 6.1 Model of EGR2-mediated DNA demethylation at transient and stable binding sites 

 

In addition to EGR2-mediated recruitment of TET2 to its stable binding sites, in a fraction of genomic 

regions that are actively demethylated regardless of open chromatin or TF binding detection (“no peak” 

and “open” DMR groups), we assume that EGR2 transiently binds its methylated binding sites and 

recruits TET2 to induce local demethylation (as represented in the model from Figure 6.1). 

Generalizing our findings for EGR2, we also hypothesize that pioneer factors like CEBP (showing 

methylation-spikes at their motifs and no detectable protein binding (Figure 5.33b)) may also be able 

to transiently bind to its binding sites and induce DNA demethylation at those regions. 

In conclusion, the presence of EGR2 consensus motif in iDC-specific DMR, as well as its ability to 

recognize and bind methylated DNA make EGR2 an epigenetic pioneer in targeting de novo 

demethylation processes at its transient and stable binding sites. Importantly, our data suggest that 

EGR2 recruits TET2 even in the absence of open chromatin (ATAC) or TF binding (ChIP) detection, 

and that at some transient sites (“no peak” DMR group) active DNA demethylation and chromatin 

accessibility changes are uncoupled. In addition, we assume that 5mC- spikes (perhaps indicating 

DNA demethylation protection) are cell type-specific and usually associated with consensus motifs for 

known epigenetic pioneer factors like CEBP, KLF of EBF family members. 
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Therefore, these findings provide novel evidences to better understand how the specificity of 

demethylation is controlled during post-mitotic MO differentiation. Similarly, the work presented in this 

thesis represents an important advancement in our understanding about MO biology and in our 

understanding of how mutations in DNA demethylation machinery might affect the normal 

hematopoiesis driving malignant transformation. 

6.4 Perspectives 

This thesis improved and expanded our understanding about MO biology as well as its differentiation-

associated epigenetic processes. 

In the present work, the investigation of two key regulators in iDC differentiation (IRF4 and EGR2) 

allowed us to confirm that both TFs are necessary to control iDC-specific transcriptional programs and 

chromatin remodeling processes. In contrast to IRF4, EGR2 also revealed to be an epigenetic pioneer 

TF driving de novo DNA demethylation processes during MO differentiation.  

Although our knowledge of active DNA demethylation processes during MO differentiation, the 

mechanisms and TF(s) that might be involved in the induction of DNA demethylation at earlier stages 

of MO development are largely unknown. Therefore, to investigate these processes at earlier MO 

progenitor cells, we could use CD34+ HSCs from cord blood (CB) in future experiments. Actually, 

CD34+ HSCs from CB can be used to expand DC precursors cells (CD14+) and to differentiate them 

into DC in the presence of GM-CSF and IL4 as recently reported by Bedke and colleagues299. Hence, 

using this system in future TET2 knock-down experiments, we could perhaps bypass problems 

associated with attenuation of TET2 knock-down effects in the current system and may interfere with 

the DNA demethylation process from an earlier step. 

An alternative strategy to counteract attenuation of TET2 knock-down effects in our system would 

involve the specific inhibition of TET2 protein in the cell before its siRNA-mediated knock-down. 

However, an effective TET2 inhibitor is currently unavailable. 

As previously mentioned, preliminary BioID-EGR2 results revealed potential candidate proteins 

interacting with EGR2, which may have a pivotal role not only in DNA demethylation but also in other 

cellular processes like chromatin remodeling. Nevertheless, further BioID experiments are required to 

increase the reproducibility of our data among different donors and to allow robust statistical analyses. 

Then, some candidate proteins may be targeted and further investigated in our lab. 

Despite the efforts to understand the target specificity of the DNA demethylation machinery during MO 

differentiation, the processing of 5hmC to 5C in iDCs remains unclear. 

While in mouse work216 it was previously demonstrated that TET2 requires association with another 

protein to further oxidize 5hmC, in iDCs the presence of such protein or TF is unknown. Similarly, it is 
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still unclear whether uracil DNA glycosylases like TDG are involved in the 5fC/5caC excision repair in 

iDCs as reported in other systems36,300,301.  

Although initial work in our group32 suggests that neither MBD4, nor TDG knock-down lead to an 

accumulation of 5fC, problems associated with transfection procedures might have masked any 

specific knock-down effect. Therefore, our well-established transfection protocol can be used in future 

experiments to knock-down these genes and to study the long-term effects of their depletion on the 

processing of 5mC. Likewise, this strategy may also be used to interfere with the expression of other 

genes previously implicated in DNA demethylation, such as NEIL DNA glycosylases302 and 

GADD45A303,304 to increase our understanding about the complete DNA methylation turnover process 

(5mC → 5C). 
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7 Summary 

Epigenetic processes, such as DNA (de)methylation and chromatin remodeling are fundamental for 

hematopoietic cell differentiation and lineage specification. Hence, their dysregulation is associated 

with many hematological malignancies. 

In this thesis, the analyses were focused on DNA demethylation processes during monocyte (MO) to 

immature dendritic cell (iDC) differentiation in the presence of the cytokines IL4 and GM-CSF. Due to 

the absence of cell proliferation in this system, we were able to investigate TET-mediated active 

demethylation events occurring in a replication-independent context.  

In hematopoietic cells, comprising MO and MO-derived cells, the TET2 enzyme is the main 

hydroxylase catalysing the initial oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine 

(5hmC) and likely the remaining oxidative steps as well. In this thesis, the TET2 gene was transiently 

knocked-down in MO using a well-established siRNA-mediated approach and its functional 

consequences during iDC differentiation were assessed. 

Overall, TET2 depletion was associated with very mild effects on iDC differentiation, transcriptional 

programs and chromatin remodeling processes. Nevertheless, the data was reproducible among 

donors and corroborated the importance of TET2-mediated active DNA demethylation processes 

during MO differentiation. 

Based on preliminary genome-wide methylation analyses in MO and iDCs, 7610 iDC-specific 

differentially methylated regions (DMRs) were identified. These regions were characterized by a 

progressive active DNA demethylation (5hmC enrichment) and an increase in chromatin accessibility.  

Since we were mostly interested on differentiation-associated processes, the analyses were centered 

on transcription factors (TFs) enriched across DMRs and strongly induced in iDCs, such as IRF4 and 

EGR2. Consequently, both TFs were individually and transiently knocked-down in MO and their effects 

on iDC differentiation and associated epigenetic processes were determined. 

IRF4 depletion prevented the differentiation of iDC, and instead cells acquired a macrophage-like 

morphology confirming previous mouse work244. Interestingly, we found that IRF4 might be involved 

in open chromatin at its binding sites regardless of changes in DNA demethylation, as reflected by the 

reduced chromatin accessibility and the minor effects on DNA methylation upon its depletion.  

Remarkably, this work is the first to describe an essential role of EGR2 in IL4/GM-CSF-mediated MO 

differentiation. Indeed, data showed a strong impact of EGR2 depletion on cell morphology and 

viability as well as profound changes in iDC transcriptional programs. 

Besides its importance on MO biology, EGR2 is implicated in active DNA demethylation and chromatin 

remodeling processes as indicated by iDC DMRs that remained methylated and failed to gain 

accessibility upon EGR2-silencing. 
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Notably, the presence of a methylation footprint in the EGR2 motif associated with its ability to bind 

methylated DNA, suggest that the epigenetic pioneer EGR2 can target de novo demethylation 

processes at its transient and stable binding sites. In fact, co-immunoprecipitation data showed an 

interaction between EGR2 and TET2, emphasizing the EGR2 role in targeting the DNA demethylation 

machinery. 

In summary, this thesis provides new insights into dynamic epigenetic changes through IL4/GM-CSF-

mediated MO differentiation. Accordingly, we identified key regulators on MO biology and 

differentiation-associated epigenetic processes, specifically IRF4 and EGR2. Importantly, EGR2 was 

found to recruit TET2 to its binding sites even before chromatin opening or TF binding detection, 

suggesting that at certain iDC DMRs active DNA demethylation and chromatin accessibility changes 

are uncoupled. In addition, this work demonstrated that DNA methylation-spikes (identified in EGR2 

as well as other consensus motifs of TFs) are cell type-specific and protected from demethylation by 

bound key epigenetic pioneer factors. 

 

 

 



Zusammenfassung 

112 

8 Zusammenfassung 

Epigenetische Prozesse wie DNA (De)Methylierung und „Chromatin-Remodeling“ sind für die 

Differenzierung hämatopoetischer Zellen und für ihre spezifische Zellabstammung grundlegend. 

Daher ist deren Dysregulation mit vielen hämatologischen Malignitäten verbunden. 

Diese Doktorarbeit beschreibt in wesentlichen Zügen die DNA-Demethylierungsprozesse während der 

IL4 / GM-CSF-gesteuerten Differenzierung von Monozyten (MO) zu inaktiven dendritischen Zellen 

(iDCs). Da die Zellen in diesem System nicht proliferieren, konnten wir die enzymatischen TET-

vermittelten aktiven Demethylierungsereignisse untersuchen, die in einem Replikations-

unabhängigen Kontext auftreten. In hämatopoetischen Zellen, welche unter anderem die MO- und 

MO-abstammenden Zellen umfassen, ist das TET2-Enzym hauptsächlich die Hydroxylase, welche die 

anfängliche Oxidation von 5 mC zu 5 hmC und wahrscheinlich auch die verbleibenden 

Oxidationsschritte (5fC und 5caC) katalysiert. In dieser Doktorarbeit wurde das TET2-Gen in MO 

vorübergehend mittels siRNA unterdrückt und dessen funktionelle Konsequenz während der iDC-

Differenzierung untersucht. 

Insgesamt hatte die TET2-Depletion sehr geringe Auswirkungen auf die iDC-Differenzierung, das 

Transkriptionsprogramm und die Chromatin-Remodeling-Prozesse. Dennoch waren die Daten unter 

den Spendern reproduzierbar und bestätigten die Bedeutung von TET2-vermittelten aktiven DNA-

Demethylierungsprozessen während der MO-Differenzierung. 

Basierend auf vorläufigen genomweiten Methylierungsanalysen in MO und iDCs wurden 7610 iDC-

spezifische differentiell methylierte Regionen (DMRs) identifiziert. Diese Regionen waren durch eine 

fortschreitende aktive Demethylierung der DNA (5hmC-Anreicherung) und eine erhöhte 

Zugänglichkeit von Chromatin (Euchromatin) charakterisiert. 

Da wir hauptsächlich an differenzierungsassoziierten Prozessen interessiert waren, wurden 

diejenigen Transkriptionsfaktoren (TFs), welche in den iDC-DMRs angereichert sind, analysiert. 

Zusätzlich zeigten die TFs IRF4 und EGR2 eine starke Induktion in iDC. Folglich wurden beide TFs in 

MO einzeln und vorübergehend unterdrückt und dessen Auswirkungen auf die iDC-Differenzierung 

und die damit verbundenen epigenetischen Prozesse bestimmt. 

Die IRF4-Depletion verhinderte den iDC-Differenzierungsprozess und die Zellen erwarben 

stattdessen eine makrophagenähnliche Morphologie, was auch in früheren Arbeiten in Mausmodellen 

gezeigt werden konnte. Interessanterweise wurde beobachtet, dass IRF4, unabhängig von 

Änderungen in der DNA-Demethylierung, an seinen Bindungsstellen an der Regulierung von offenem 

Chromatin beteiligt sein könnte. Dies zeigte sich zusätzlich in der verringerten Zugänglichkeit des 

Chromatins und den geringen Auswirkungen auf die DNA-Methylierung nach  IRF4 Gen-Knock-down. 

Bemerkenswerterweise ist diese Arbeit die erste, die eine wesentliche Rolle von EGR2 bei der IL4 / 

GM-CSF-gesteuerten MO-Differenzierung beschreibt. In der Tat zeigten die Daten einen starken 
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Einfluss der EGR2-Depletion auf die Zellmorphologie und -lebensfähigkeit sowie signifikante 

Veränderungen in den iDC-Transkriptionsprogrammen. 

Neben seiner Bedeutung für die MO-Biologie ist EGR2 an aktiven DNA-Demethylierungs- und 

Chromatin-Remodellierungsprozessen beteiligt, was durch eine Reihe von charakteristischen iDCs-

DMRs angezeigt wurde. Diese blieben methyliert und erlangten auch nach EGR2-Stummschaltung 

keine Zugänglichkeit. 

Insbesondere das Vorhandensein einer spezifischen DNA-Methylierung im EGR2-Motiv (im Einklang 

mit seiner Fähigkeit, methylierte DNA zu binden) schlagen vor, dass die EGR2 zu einem 

„epigenetischen Pionier“ am Beginn von De-novo-Demethylierungsprozessen an seinen transienten 

und stabilen Bindungsstellen.  

Tatsächlich zeigten die CoIP-Daten eine Interaktion zwischen EGR2 und TET2, was die Rolle von 

EGR2 als Teil der DNA-Demethylierungsmaschinerie unterstreicht. 

Zusammenfassend liefert diese Arbeit neue Einblicke in dynamische DNA-Methylierungsänderungen 

während der IL4 / GM-CSF-gesteuerten MO-Differenzierung. Dementsprechend wurden 

Hauptregulatoren für die MO-Biologie und differenzierungsassoziierte epigenetische Prozesse 

identifiziert, insbesondere IRF4 und EGR2. Es wurde festgestellt, dass EGR2 TET2 bereits vor dem 

Öffnen des Chromatins oder dem Nachweis der TF-Bindung an seine Bindungsstellen rekrutiert, was 

darauf hindeutet, dass bei bestimmten iDC-DMRs Änderungen der aktiven DNA-Demethylierung und 

der Zugänglichkeit des Chromatins entkoppelt sind. Insgesamt zeigt diese Arbeit, dass DNA-

Methylierungsanreicherungen, die möglicherweise den Methylierungsfußabdruck an EGR2-

Bindungsstellen widerspiegeln, zelltypspezifisch sind und durch gebundene epigenetische 

Schlüsselpionierfaktoren vor Demethylierung geschützt werden können. 
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10 Appendix 

The following tables list all published high-throughput-sequencing data used in this thesis.  

 

Table 10.1 Published ChIP-sequencing data 

Cell type Sample IP Accession number 
Total 

reads1 
FRIP (%)2 Peaks3 Reference 

MO freshly isolated 
CEBPB 

ChIP 
SRR333633 5489459 4.45 13275 227  

MAC 
7d culture in 2% 

AB serum 
CEBPB 

ChIP 
SRR333649, SRR333650, 
SRR333651, SRR333652 

14793649 14.01 67734 227 

MO/MAC 7d IL4/GM-CSF 
IgG 

control 
SRR333634, SRR333635, 

SRR333636 
13754210 – – 227 

Liver  CEBPA 
ChIP 

ERR235748, ERR235729, 
ERR235723, ERR235766 

37071639 12.76 72762 305 

Liver  Input ERR235788, ERR235759 30055419 – – 305 

1Unique reads after mapping to human reference genome GRCh38 

2Fraction of reads in peaks (FRIP), determined by running HOMER’s findPeaks program in ‘‘factor’’ mode using default parameters and the 

matching background (input) 

3Number of peaks (determined by HOMER’s findPeaks program in ‘‘factor’’ mode using default parameters and the matching background 

(input)) 

 

Table 10.2 Published ATAC-sequencing data 

Cell type Accession number Total read pairs FRIP (%) Peaks Reference 

MO SRR2920543 63854968 33.86 63647 306 

MO SRR2920487 21181211 21.25 24324 306 

MO SRR2920475 9713700 29.68 36278 306 

iDC SRR1725732 204024037 41.00 285569 207 
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Table 10.3 Published WGBS-sequencing data 

 
Cell type Accession number 

 
Data 

 
CpGs 

 
Reference 

iDC GSM1565940 
methylation levels for each covered CpG 

(hg19) converted to bedGraph 
24617968 207 

iDC GSM1565942 
methylation levels for each covered CpG 

(hg19) converted to bedGraph 
23551701 207 

iDC GSM1565944 
methylation levels for each covered CpG 

(hg19) converted to bedGraph 
24445760 207 

iDC GSM1565946 
methylation levels for each covered CpG 

(hg19) converted to bedGraph 
24479420 207 

iDC GSM1565948 
methylation levels for each covered CpG 

(hg19) converted to bedGraph 
24427703 207 

iDC GSM1565950 
methylation levels for each covered CpG 

(hg19) converted to bedGraph 
24560919 207 

CD14+CD16– MO 
from venous blood 

EGAX00001086967 
methylation levels for each covered CpG 
(hg19), bigWig converted to bedGraph 

22667869 http://dcc.blueprint-epigenome.eu/ 

CD14+CD16– MO 
from venous blood 

EGAX00001086968 
methylation levels for each covered CpG 
(hg19), bigWig converted to bedGraph 

23768442 http://dcc.blueprint-epigenome.eu/ 

CD14+CD16– MO 
from venous blood 

EGAX00001086970 
methylation levels for each covered CpG 
(hg19), bigWig converted to bedGraph 

23652501 http://dcc.blueprint-epigenome.eu/ 

CD14+CD16– MO 
from venous blood 

EGAX00001097774 
methylation levels for each covered CpG 
(hg19), bigWig converted to bedGraph 

24145754 http://dcc.blueprint-epigenome.eu/ 

CD38- B cells ERS214672 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

24601631 https://epigenomesportal.ca 

CD38- B cells ERS214675 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

24932472 https://epigenomesportal.ca 

CD38- B cells ERS222266 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

23878548 https://epigenomesportal.ca 

CD38- B cells ERS523625 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

23633379 https://epigenomesportal.ca 

CD8+ T cells ERS214674 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

25029123 https://epigenomesportal.ca 

CD8+ T cells ERS222241 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

24488031 https://epigenomesportal.ca 

CD8+ T cells ERS317233 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

25482590 https://epigenomesportal.ca 

CD8+ T cells ERS433791 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

22165393 https://epigenomesportal.ca 

NK cells ERS222243 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

24729720 https://epigenomesportal.ca 

NK cells ERS317235 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

25327131 https://epigenomesportal.ca 

NK cells ERS763560 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

26961816 https://epigenomesportal.ca 

Neutrophils ERS208313 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

26244136 https://epigenomesportal.ca 

Neutrophils ERS227748 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

24960155 https://epigenomesportal.ca 

Neutrophils ERS227749 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

26025313 https://epigenomesportal.ca 

Neutrophils ERS661057 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

25195761 https://epigenomesportal.ca 

Neutrophils ERS661059 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

23925309 https://epigenomesportal.ca 

Neutrophils ERS661060 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

24906321 https://epigenomesportal.ca 

Hepatocytes IHECRE00001879.2 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

21708615 https://epigenomesportal.ca 

Hepatocytes IHECRE00001876.2 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

22059276 https://epigenomesportal.ca 

Hepatocytes IHECRE00001878.2 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

21382628 https://epigenomesportal.ca 

Hepatocytes IHECRE00001877.2 
methylation levels for each covered CpG 
(hg38), bigWig converted to bedGraph 

22177806 https://epigenomesportal.ca 
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