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Abstract: Road network performance (RNP) is a key element for urban sustainability as it has a 

significant impact on economy, environment, and society. Poor RNP can lead to traffic congestion, 

which can lead to higher transportation costs, more pollution and health issues regarding the urban 

population. To evaluate the effects of the RNP, the involved stakeholders need a real-world data base 

to work with. This paper develops a data collection approach to enable location-based RNP analysis 

using publicly available traffic information. Therefore, we use reachable range requests implemented 

by navigation service providers to retrieve travel times, travel speeds, and traffic conditions. To 

demonstrate the practicability of the proposed methodology, a comparison of four German cities is 

made, considering the network characteristics with respect to detours, infrastructure, and traffic 

congestion. The results are combined with cost rates to compare the economical dimension of 

sustainability of the chosen cities. Our results show that digitization eases the assessment of traffic 

data and that a combination of several indicators must be considered depending on the relevant 

sustainability dimension decisions are made from. 

Keywords: road network performance; urban sustainability; economic sustainability; traffic 

congestion; data collection methods; navigation services 

 

1. Introduction 

Rising urbanization around the globe leads to high requirements in terms of urban sustainability 

[1]. Therefore, indicators to measure urban sustainability are an extensively discussed topic in literature 

[2–5]. These indicators often contain terms such as “mobility” [6], “efficient transportation”, or 

“transportation and roads” [7]. When dealing with the sustainability of transportation and the efficient 

movement of people and goods, in addition to topics such as railways [8] and public transportation [9–

13], the urban road network is a major research area [14–20]. This stems from the fact that road network 

performance (RNP) can lead to significant negative impacts on all three dimensions of urban 

sustainability: 

Economic sustainability can suffer in several ways. Many authors found that poor RNP, in terms 

of traffic congestion, is a reason for higher costs and reduces efficiency significantly [21–26]. In addition 

to that, traffic congestion intensified in the past [27,28], causing as much as 23 percent of all truck 

transportation delays [29]. 

Environmental sustainability is mainly focused on pollution and greenhouse gas emissions. A lot 

of literature proves the relation between traffic congestion and air pollution [30–34]. Longer travel 

distances and congestion lead to more pollution and a lower level of sustainability. 
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Social sustainability focuses on the well-being of the population. Poor RNP can lead to several 

health issues. Traffic congestion implies a higher number of vehicles polluting engine noises on road. 

The generated noise has a significant health impact [35,36] such as sleep disturbance and anxiety [37]. 

In addition to that, the number of accidents happening can depend on the road network [38–40]. 

RNP in general has been studied extensively over the years, employing different methods and 

geared towards different purposes [41–45]. Especially the relation between the three-dimensional urban 

sustainability (economy, environment, and society) and the road network has been addressed. 

An extensive body of literature discusses the reduction in traffic congestion [46–48]. Russo and 

Comi [49] analyze the effects of logistics measures on the economy of the city, Baghestani et al., Armah 

et al., Borza et al. and Zhang et al. [32,50–52] deal with on-road emissions and Kleiziené et al., 

Ohiduzzaman et al. and Sirin [36,37,53] discuss vehicle noise reduction and the development of quieter 

pavements. 

To carry out these analyses, all stakeholders who are dealing with road networks and urban 

sustainability must gather a real-world data base to work with. Therefore, the research hypothesis of 

this paper can be formulated as follows: 

How can relevant data be collected programmatically to measure road network performance? 

The long-term trend towards digitizing the environment, including the logistical infrastructure 

such as road networks and vehicles, fundamentally eases the programmatical assessment of 

information and gives way to study new data collection methods [54–57]. Due to this, the purpose of 

this paper is to develop a new methodological approach to gather relevant RNP data on an area-wide 

scale. An exemplary application of the gathered data on the economic dimension is demonstrated on 

four selected cities in Germany to prove the usability of the proposed methodology. Thus, the paper 

deals with what Sun et al. [58] call the physical issues of RNP, i.e., we are concerned with the 

determination of travel times, travel speed, and traffic conditions. 

The paper is organized as follows: Section 2 provides theoretical information on RNP measurement 

and the underlying data collection procedure. In Section 3, a data collection method for measuring RNP 

is presented by providing an exemplary use case. In Section 4, this methodology is applied to four 

German cities and a comparison of these cities is carried out. In Section 5, theoretical and practical 

implications are discussed. An outlook for further research is provided in Section 6, followed by a short 

conclusion highlighting the main takeaways of this paper. 

2. Literature Review 

2.1. Fundamentals on Road Network Performance Measurements 

The assessment of RNP has been widely researched. We start by introducing our definition and 

will then give reference to the extant body of research. We suggest defining RNP generally as the 

network driven impact on sustainability. In the context of this paper, we particularly focus on the 

economic dimension, which leads to the refined definition of RNP as being the network driven 

economical costs of moving a vehicle from a specified origin to a specified destination using the road 

network. Although the definition is open, we confine our analysis to urban transportation, i.e., short 

distance traffic, sometimes called the last mile or urban cargo traffic [59,60]. The road network is defined 

as the set of roads that can be used by vehicles. Thus, our definition of RNP is geared towards the 

structural properties of the network that shapes the flows within the network and affects operational 

performance [61,62]. The definition acknowledges but excludes the analysis of further notions or 

indicators of network performance, such as levels of service, capacity, safety, smoothness of flow, 

reliability, vulnerability, accessibility, resource constraints, or travel time reliability [63], that, 

respectively, represent the functionality of the network for particular research goals. As our analysis is 

restricted to network driven costs only, it is confined to a share of the total cost only. The cost of moving 

a vehicle is determined by many factors such as vehicle type [64], toll [65] or fuel [66]. We restrict the 

analysis to those factors that are related to the road network. The definition of RNP borrows in part 

from Santosa and Joewono [67] who measure RNP by speed and vehicle cost. 
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We suggest measuring RNP by detour and travel speed. Detour is defined as “road distance from 

origin to destination” over “aerial distance from origin to destination” [68]. Thus, detour represents 

widely discussed network attributes such as density [62] or connectivity [69]. Travel speed is defined as 

the average speed that can be driven from origin to destination considering vehicle and road constraints. 

Thus, travel speed summarizes road network attributes such as speed limits, traffic lights, or the level 

of congestion within the network [70–72]. Travel speed can be easily converted into travel time [73]. 

Thoen et al. [74] demonstrate that longer travel times lead to higher transportation costs, emphasizing 

the importance of determining travel times objectively. 

Road distance is defined as the distance of a tour. A tour is defined as the network path a rational 

decision maker would choose to minimize the travel time from origin to destination. Thus, we assume 

an efficient use of existing road infrastructure and available traffic status information [75]. We suggest 

measuring RNP with reference to two factors only and thus depart from earlier approaches that suggest 

multi-criteria measurements such as Fancello et al. [42]. 

RNP results vary by tour since characteristics of the road network vary across space. Ciscal-Terry 

et al. [76] called this the origin-destination-distribution problem. Thus, a meaningful RNP statement 

must be specific on how to select the locations that enter the analysis. 

Fundamentally, RNP can be measured via three origin-destination settings. One is to measure 

across the complete network, i.e., from anywhere to anywhere. A second setting measures from defined 

origins to defined destinations [77], i.e., from somewhere to somewhere. We suggest following a third 

setting, given an origin, we do not specify a destination and then measure detour and travel speed for 

the origin-destination pair but specify the origin only and list all destinations that can be reached within 

a given range or time frame. 

Since we focus on studying RNP for general cargo moving purposes, typical logistics service 

providers’ locations such as freight transport centers, logistic zones or urban consolidation centers 

represent meaningful origins. For a case-specific analysis, Alho A.R. et al. [78] find that declared data 

regarding bases might not be as accurate as inferred data, suggesting the identification of central 

network nodes via algorithms instead of relying on survey data to determine meaningful points of 

origin. Referring to Saedi et al. [63] our approach does not report RNP across the complete road network 

but well-defined partitions. 

2.2. Road Network Data Collection: Developing A New Method 

Data sources to compute RNP have been mentioned in recent literature but have never been an 

explicit focus of the research community. Some papers model the variability of RNP via a stochastic 

framework and compute journey time estimators [79]. Figliozzi [22] uses tour data reported in the 

literature to perform a sensitivity analysis on changes in travel time and tour characteristics. The 

problem with this procedure is the availability of data as the current literature does not provide suitable 

or publicly available tour data for most areas around the world. Another way to gather road data is the 

usage of equipped single cars [80,81]. These cars are equipped with a range of sensors to record road 

data while driving. The extensive manpower and machinery required for this solution is multiplied as 

global coverage is attempted. Urban areas could be analyzed under consideration of induction loops, 

cameras, and sensors measuring current road traffic [82,83]. Data accessibility as well as processing data 

from a lot of different sources drive complexity of this data collection method. Mondschein and Taylor 

[21] interviewed people about personal trip data and corresponding travel times. Two major concerns 

arise when we take a closer look at this procedure. Global coverage is very weak as a lot of interviews 

must be conducted to gather enough data for one specific area. An additional problem are people’s 

privacy concerns when sharing their driving data [22]. A “digital version” of interviewing people is the 

usage of navigation service providers’ application programming interfaces (APIs) as these providers 

gather and compress anonymized data from all their users [84]. The anonymization of data also 

overcomes the privacy concerns mentioned before. Kellner et al. [77] used navigation service providers’ 

data to build distance matrices with customers’ locations and requested travel times at different times 

throughout the day. To generalize the approach by Kellner et al. [77] and bypass any problems related 
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to subjective trip generation, as for example experienced by Sun et al. [85], we use real-world floating 

car data (FCD) with compressed information collected over time. 

The use of FCD to evaluate traffic status has been studied intensively [86–92]. However, there is no 

research that exploits FCD, especially FCD processed into reachable ranges, to assess RNP. That is what 

we suggest doing. 

Processing FCD to measure RNP is challenging as traffic data can be considered big data due to its 

complexity and heterogeneity [78,93,94]. However, navigation service providers can produce the 

needed data efficiently [84]. Due to this, we suggest using navigation service providers’ APIs, especially 

retrieving so-called “reachable ranges”. 

A “reachable range” is defined as an area that can be reached by a specific vehicle under certain 

constraints such as maximum travel time or maximum travel distance starting at a specified location. 

The use of reachable ranges to assess networks has gained only limited attention so far. Hirako et al. 

[95] analyze reachable areas to understand the travel behavior of elderly citizens to medical facilities. 

Referring to Phan et al. [96], calculating a reachable range is one part of the algorithm for maximizing 

range sum queries turned inside out. 

In our case, we retrieve a reachable set �� that consists of 50 nodes that can be reached from origin 

node �� by the end of constraint � [97]. As a result, we obtain a subgraph showing only one origin and 

50 reachable destinations. Assuming a completely paved environment, the reachable range would 

resemble a circle. In a real-world scenario, it will be a snowflake-shaped object with some locations 

being closer to the origin (areas with poor RPN) and some locations further from the origin (areas with 

good RNP). 

By combining this information with the need for multi-time measurements, we obtain time-

dependent graphs. By varying the defined timeframe, the RNP measurement can be suited to different 

goals of the analysis. 

Our approach is considered efficient as wide areas can be analyzed by a few API calls. This allows 

measuring RNP on a large scale for defined origins without the need for second best solutions such as 

regional aggregation as suggested by Casadei et al. [98] for instance. 

3. Methodology 

3.1. Basic Idea 

To measure RNP and make regional comparisons using speed information, the following data are 

required: free flow and congested speeds, which can be derived from travel times and travel distances 

as well asair distances, which in relation to previously determined actual road travel distances enable a 

detour calculation. 

To investigate the relation between the time of day and congestion-induced delays, exemplary trips 

are simulated leading from the city center outwards (to the east, west, north and south) for every city 

considered in the comparison below (Section 4). The results generated via the TomTom routing API are 

shown in Figure 1. From 03:40 to 21:50 delays are occurring in every city. Two rush hours can be 

identified, the first one can be classified as the morning rush hour where large numbers of employees 

commute to work and more than 75 percent of commercial distribution tours depart from their origin 

as observed by Nuzzolo et al. [99]. It peaks at about 08:00, in accordance with the observations made in 

Italy. The second rush hour peaks at 17:00, when most people are heading home from work. In between 

these rush hours the congestion-induced delays settle in Hamburg, Munich and Stuttgart whereas 

Berlin shows a rise in level of delay until peak rush hour is reached. The interval from 22:00 to 03:30 the 

next day can be considered as free flow state as there are no congestion-induced delays measured. 



Sustainability 2020, 12, 8145 5 of 25 

 

Figure 1. Time-delay dependency. 

The data collection process uses the TomTom reachable range API. It returns the reachable area in 

the form of reachable destinations from a certain starting point in the form of a polygon. The restrictions 

for the reachability analysis can be as follows: maximum travel distance = “distance budget”, maximum 

travel time = “time budget”, or maximum fuel consumption = “fuel budget”. 

This API has become more and more interesting, especially during the electrification of vehicles 

because it is possible to determine which locations can be reached with a given battery capacity and a 

corresponding consumption. 

In the context presented in this paper, the API is used to determine all locations that can be reached 

within a time or distance restriction. Many parameters can be specified as input variables. The most 

important parameters in this context are shown in Table 1 below: 

Table 1. TomTom reachable range application programming interface (API) parameters. 

Parameter Unit/Format Description 

Origin Latitude, Longitude Origin describes the starting point of the request. 

Time Budget Seconds Time restriction that limits the maximum travel time. 

Distance 

Budget 
Meters Distance restriction that restricts the maximum travel distance. 

Route Type Fastest; Shortest; Eco 
Describes the routing mode. Fastest optimizes travel times, shortest 

travel distance, eco finds a compromise. 

Depart At 
Date in the RFC 3339 

Format 
Start time of all fictitious routes. Must be in the future. 

Travel Mode Van/Truck/Car 
Historical speed profiles that are used depending on the vehicle 

type. 

As a result, the API always provides a polygon with a maximum of 50 corner points (see Figure 2), 

regardless of the selected input parameters. The area described by the polygon includes all geolocations 

that can be reached considering the specified restrictions. For each corner point of the polygon, the 

corresponding air distance can be estimated using the great circle distance formula [100]. Consequently, 

the air distance can be used as a common base to compare queries for different restriction parameters. 

The data collection methodology to determine the attributes detour factor, infrastructure and traffic 

congestion is explained below. The parameters Origin, Travel Mode and Route Type are identical for 

all queries. In case of the following example, the starting point “Schäftlarnstraße 10, 81371 Munich, 

Germany” with the coordinates of 48.116431 degrees latitude and 11.556811 degrees longitude is 

selected. The parameter Travel Mode is set to “truck”, the Route Type requested is “fastest”. 
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Figure 2. Result of a TomTom reachable range request with a 30 km travel distance restriction. 

To summarize the data collection methodology, necessary variables are defined in Table 2. All three 

calculation steps are presented in Table 3 and explained in depth in the following sections. 

Table 2. Variables and descriptions. 

Variable. Description Explanation 

�� Travel distance The road distance from a start point to an end point 

�� Air distance 

Air distance with �� =
�

�
⋅ ∑ ��

�
���  where �� is the air distance between the 

polygon’s corner point � and the request’s origin and � is the number of 

polygon corner points (in our case 50). 

�� Travel time The time needed to travel from a start point to an end point 

��(��) 
Detour Factor 

regression 
Continuous Detour Factor regression based on discrete measures 

��(��) 
Free flow velocity 

regression 
Continuous free flow velocity regression based on discrete measures 

��(��) 
Congested 

velocity regression 
Continuous congested velocity regression based on discrete measures 

Table 3. Data collection overview. 

Calculation Step 1: Detour Factor 
2: Infrastructure/Free 

Flow 
3: Traffic Congestion 

API Restriction �� �� �� 

API Result Polygon to estimate average reachable �� 

Deduced 

information 

��
��

= ��(��) 

Polynomial regression 
��(��) 

�� ⋅ ��(��) = �� 
��
��
= ��(��) 

Power Regression ��(��) 

�� ⋅ ��(��) = �� 
��
��
= ��(��) 

Power Regression 
��(��) 

The next subsections focus on an in-depth explanation of the collection methodology to understand 

the requirements and results of every step. In addition, the generated data are visualized by individual 



Sustainability 2020, 12, 8145 7 of 25 

charts. Connections between marks within one chart indicate that the gradients are results of continuous 

regressions based on discrete measures. 

3.2. Detour 

Detour in general is defined as the difference between travel distance via road and the 

corresponding air distance. The detour factor is defined as the quotient of travel distance and calculated 

air distance between two points. It will always be greater-than or equal to 1.0, because the shortest travel 

distance is always a straight line and thus equals the air distance. The detour factor changes with the 

length of the travel distance/air distance (with increasing air distance, straight routes such as highways 

can be used, which reduces the detour factor). However, the API query only accepts one maximum 

travel distance value as a restriction at a time. Consequently, one query for each value between 1 km 

and 30 km travel distance (= distance budget) with a step size of 1 km is requested and the returned 

polygons analyzed. The parameter Depart At is not relevant here as the polygon is calculated via a 

traffic-independent shortest path algorithm. 

In the last step, the query’s restriction (= travel distance) can be related to the average value of the 

calculated air distances. Thus, for each travel distance a corresponding air distance and a detour factor 

is calculated. The relationship between air distance and detour factor can be displayed using a 

polynomial regression. In our example, this results in the chart shown in Figure 3: 

 

Figure 3. Detour factor for Munich, Germany. 

One can clearly see that the detour factor decreases with increasing air distance, which is due to 

the possibility of using relatively straight routes (e.g., access to inner-city highways or the German 

motorway network), until it reaches a nearly stable value (in this case about 1.5). 

3.3. Infrastructure 

After determining the detour factor regression, the API can be used to determine the average speed 

during free-flow state. The free-flow state describes the traffic flow without congestion exceeding an 

agreed upon norm [101]. This means that delays due to infrastructural influences such as speed limits 

or traffic light changes are considered part of the free flow. Consequently, the average free-flow speed 

provides a quantification of the existing infrastructure. In order to determine this average speed, queries 

are formulated sequentially to retrieve points that can be reached for a certain journey duration. For this 

purpose, the queries are restricted by applying a time budget restriction. To ensure free-flow conditions, 

the parameter Depart At is set to 00:00:00. This time is derived from Figure 1 as there is no delay 
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measured in any of the investigated regions. Using the returned polygon, the average air distance 

between all polygon corners and the starting point can be calculated per iteration step. The time steps 

and their corresponding free flow distances are shown in Figure 4. However, the magnitude of the travel 

distance is dependent on the air distance and implicitly manipulated via the detour factor. For this 

reason, a travel distance is estimated using air distance averages and the corresponding detour factor, 

as is shown by the formula in Table 3. The ratio of travel distance to travel time returns the average free 

flow travel speed. 

 

Figure 4. Distance covered during free flow for Munich, Germany. 

3.4. Traffic Congestion 

With the given definition of free-flow state in mind, the effect of traffic congestion can be measured 

by the difference between free-flow speed and congested speed. The travel speed in congested state can 

be determined by repeating the procedure for calculating the free-flow speed, setting the Depart At 

parameter at a time suitable for the analyzed scenario. In the context of this research, we set the Depart 

At parameter of the API query to 07:00:00. The results are shown in Figure 5. The ratio of travel distance 

(estimated by using the detour factor regression) to travel time again gives the average travel speed. 

 

Figure 5. Distance covered including traffic for Munich, Germany. 
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3.5. Speed Comparison 

To compare free flow and congested states more clearly, Figure 6 shows the average travel speed 

as a function of the travel distance for both states of the road network. By using a power regression 

model of the free flow and congested speeds, the speed difference can be determined continuously 

throughout the analyzed travel distance interval. 

 

Figure 6. Speed profile comparison for Munich, Germany. 

Both speed profile curves displayed in Figure 6 clearly show a degressive course. When reaching 

beyond the localized, urban space, both slopes approach a common value. The convergence of these 

curves can be explained as follows: as the travel distance increases, the traffic density usually decreases 

outside the inner-city boundaries and traffic volume considered with the API-calls corresponds more 

and more to the free flow state. The actual value that both graphs converge towards can be explained 

by referring to the route type, which is defined as fastest for all calls. This means that roads with the 

highest possible travel speed (usually motorways) are favored for the analysis. Consequently, the 

asymptote of the two speed graphs corresponds to the average speed at which the vehicle type defined 

in travel mode moves on motorways. 

3.6. Area Comparison 

Travel times needed to reach an end point from a start point are the result of travel distance and 

travel speed of the specific route. To compare different areas, a combination of detour based on the 

street layout and delays based on traffic influences must be considered. This means that both the detour 

and traffic factor for different areas must be calculated based on a comparable variable. Since in practice, 

the determination of air distances with the help of the great circle formula is easy to implement and free 

of location-specific influences, the air distance is chosen as the comparable variable. The goal of this area 

comparison is to derive a travel distance and travel time for free and congested states depending on the 

covered air distance. The travel distance on the one hand can already be determined by the air distance 

multiplied with the detour factor: �� = �� ⋅ ��(��). On the other hand, the travel time is calculated as 

follows: �� = �� ⋅ ��(��) ⋅ � (��). The travel time comparison is shown in Figure 7. 
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Figure 7. Travel time comparison for Munich, Germany. 

The combination of travel distance per air distance and travel time per air distance allows us to 

assess the considered area based on sustainability aspects. To show the applicability of our measures in 

the context of sustainability we focus on analyzing one specific sustainability dimension: the economical 

sustainability is measured by costs per air distance. Therefore, we assume EUR 0.7 per kilometer driving 

costs, an hourly wage of EUR 20.5 as driver costs and EUR 7.5 per hour of vehicle occupation costs, 

which is in line with other literature [102]. Continuing, the costs per air distance kilometer for Munich 

are shown individually and in total in Figure 8. 

 

Figure 8. Costs per air distance for Munich, Germany. 
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All curves are degressive. The costs during free flow (dashed lines) are always slightly below the 

congested graphs, although they become more and more similar over time due to the aforementioned 

reason of motorway access when the air distance increases. The relationship between driving costs and 

the combination of driver plus vehicle occupation costs is particularly noteworthy. With increasing 

distance, the driver and vehicle occupation costs are dominated by the driving costs. In this example, 

the driving costs exceed the driver and vehicle occupation costs in free flow/in the congested state from 

8/12 air kilometers. On average, the congested mode results in higher costs of about 12 cents per air 

distance kilometer compared to free flow, which corresponds to additional costs of about 6.7%. 

4. Case Study: Comparison of Four German Cities by Detour, Infrastructure and Traffic Congestion 

Indices and Their Impact on Road Network Performance 

In order to compare four different cities, data on detour factor, travel speed, and costs are 

determined in free flow and congested states for each city using the previously described methodology. 

The four selected cities are Berlin, Hamburg, Munich, and Stuttgart as they are ranked among the top 

six German cities within the 2019 TomTom traffic index ranking. The central starting locations shown 

in Table 4, mainly based on existing depots by local transportation service providers, were used in this 

case study: 

Table 4. Selected cities’ starting locations. 

City Latitude Longitude Street-Level Address 

Berlin 52.519051 13.408583 Berliner Innenstadt, 10,178 Berlin 

Hamburg 53.551181 9.992416 Alter Wall, 20,095 Hamburg 

Munich 48.116363 11.556560 Schäftlarnstraße, 81,371 Munich 

Stuttgart 48.776248 9.180116 Dorotheenstraße, 70,173 Stuttgart 

In the following paragraphs, all results are plotted and interpreted. In the descriptions of the 

diagrams, the keyword “collected” indicates that the data shown are displayed as it has been retrieved 

and has not been smoothed or modified in any way. “Calculated” means that the data were estimated 

by regression and therefore smoothing can occur. The curves of the different cities are always marked 

identically to allow for easy comparison as shown in Figure 9: 

 

Figure 9. General graph legend. 

4.1. Detour Factor 

The detour factors in Figure 10 describe the interaction between air distance, street network 

density, and straightforwardness of existing connections. By taking a closer look at the curves of the 

detour factors, it is noticeable that the detour factors of the three cities Hamburg, Munich, and Stuttgart 

develop nearly identically, starting at about 11 km air distance and approach a value of 1.4. In addition, 

the course of the curve for Hamburg is noteworthy, as it is rather constant at the beginning in contrast 

to the other curves. This indicates a strong deviation from a road network made up of straight 

connections around the centralized starting point, which is the case in Hamburg due to the river Elbe 

and its many waterways inside the inner-city area. Only after exiting the inner-city area and gaining 

motorway access, the detour factor decreases as more direct connections become available. Lastly, 

Berlin’s detour factor is consistently lower than all other detour factors, which indicates a well-

developed road network. 
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Figure 10. City comparison: detour factors (collected). 

4.2. Travel Times 

The travel time curves provide information on how cities position in terms of infrastructure and 

congestion measurement. Four different charts are generated. The two charts in Figure 11 show the 

travel distance in relation to the travel time both in free flow and congested states. The next two charts 

in Figure 12 focus on travel distance loss. The left chart in Figure 12 shows the absolute difference 

between these curves. The right chart shows the relative loss of travel distance from free flow to 

congested status. 

It is apparent that Stuttgart has the highest travel distances compared to the given travel times in 

both free flow and congested states. When looking at the relative loss curve for Stuttgart, we notice that 

it is relatively low compared to the other curves. This means that Stuttgart does not have a major 

congestion problem and the city has a very good infrastructure. 

The counterexample to this is Hamburg. The speed of movement tends to be lowest in Hamburg 

in free flow and congested states. The relative loss curve for Hamburg is above average. This suggests 

a poor infrastructure, as the possible travel distances without traffic are already relatively low. The 

congested state in Hamburg can be classified as slightly above average in comparison. 

The most congested cities are Munich and Berlin, with Berlin showing a relatively constant relative 

loss of around 16 percent (0.16) compared to free flow. Munich, on the other hand, is characterized by 

an increasing level of relative loss, which is approaching 17 percent (0.17). 

Depending on the observation interval, Berlin (up to 10 min of travel time) or Munich (from 10 min 

of travel time) can be classified as the most congested city in the comparison at 07:00:00 departure time. 

 



Sustainability 2020, 12, 8145 13 of 25 

 

 

Figure 11. City comparison: travel distances (collected). 



Sustainability 2020, 12, x FOR PEER REVIEW 14 of 25 

 

 

Figure 12. City comparison: absolute travel distance difference (collected) and relative travel distance loss (calculated). 



Sustainability 2020, 12, 8145 15 of 25 

 

4.3. Transportation Costs 

The economical sustainability of infrastructure, congestion and detour factor is reflected in total 

costs of transport. The cost rates from section 3 were used for this calculation. The first two curves 

from left to right shown in Figure 13 represent costs per air distance kilometer for free flow and 

congested conditions. The right curve in Figure 13 shows the cost difference between congested and 

free flow. 

The costs per kilometer are highest in both free flow and congested conditions in Hamburg. This 

can be explained by the fact that Hamburg has an average detour factor, a poor infrastructure, and a 

moderate traffic congestion level. Due to the average detour factor, the driving costs per air distance 

are also average, whereas the driver and vehicle occupation costs are far above average due to the 

low absolute speeds. 

The graphs for Stuttgart in free flow and congested states are slightly above the curves of Munich 

and Berlin, which describe a comparable course. The absolute speeds are highest in Stuttgart, which 

means that the higher costs can only be explained by the higher detour factor of Stuttgart. Stuttgart’s 

detour curve is always above average and to a large extent the highest amongst all cities. 

Munich and Berlin share the lowest costs per air distance kilometer. In Munich, the absolute 

speed is higher than in Berlin, both in free flow and congested states, with Berlin having a 

significantly lower detour factor. These two facts cancel each other out, resulting in both cities having 

an almost identical level of transport cost. 

The cost difference curves allow conclusions to be drawn as to how much additional cost per air 

distance kilometer is incurred depending on the choice of departure time. In Berlin, different 

departure times cause the highest difference, Stuttgart the least and Hamburg and Munich show 

almost identical cost difference curves. In addition, the costs induced by congestion can vary between 

EUR 0.07 and EUR 0.5 per air distance kilometer, depending on the distance and city, which results 

in a considerable total cost difference for a high number of kilometers travelled. 
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4.4. City Comparison 

When approaching a comparison of two or more regions from a RNP standpoint it is essential 

to define the scope of comparison. As we can derive from the subsections above it is not enough to 

know detour/travel speeds to conclude a transport cost related order of different regions. To order 

regions within the context of RNP, a clear perspective to interpret the data must be set. This 

perspective consists of the following three characteristics: (1) performance indicator; (2) daytime; and 

(3) air distance. To begin analyzing our four regions, one of the suggested (1) performance indicators 

must be chosen. This stems from the fact that analyzing only one regional performance indicator 

indicates high costs per kilometer but at the same time another performance indicator value 

compensates the first one and leads to lower costs per kilometer as we would have expected. For 

example, Stuttgart has a high detour factor, which—considered isolated—would lead to the 

expectation of high costs per kilometer. Stuttgart’s high travel speeds in contrast lead to low travel 

times and therefore result in transportation costs per kilometer being only slightly above average. 

Due to this, the interpretation of the level of different performance indicators must not be mixed up. 

Following that, a (2) daytime to compare regions must be set. This is of course necessary due to the 

fact that the level of traffic congestion and thus congested speeds/costs in congested state are highly 

time dependent as shown in Figure 1. As the peak congestion times are slightly different for specific 

regions the decision must be made whether different regions are analyzed at different times or 

whether one daytime for all regions is set. Individual daytimes for every region would allow 

comparison of peak congestion states whereas an identical starting time for every region increases 

comparability in cases where departure times are fixed (e.g., due to business and delivery hours/time 

windows). The last aspect to take care of is the air distance (3). Performance indicator values are 

dependent on the travelled air distance. Therefore, specific air distance intervals or fixed air distance 

values should be set to ensure context-specific analysis. To remotely compare regions without any 

knowledge about locations to be approached from the starting point, an average air distance of 

potential trips should be estimated. If precise information about locations to be approached is 

available, the distances between these locations and the starting point should be calculated and used 

for further analysis. 

5. Discussion 

The collection method presented in this paper assumes that the free flow condition in a traffic 

area occurs at midnight. This means that the time of departure influences the volume of traffic and 

thus the transportation costs incurred. To minimize these costs, the additional costs caused by the 

traffic volume must be included in scheduling algorithms. These are often offset by penalty costs for 

delayed deliveries. Scheduling algorithms should therefore not solely minimize the penalty costs but 

consider the addition of congestion costs and penalty costs. 

As previously described in literature [82,101], free flow is characterized by an accepted delay. 

This means that even in free flow, the maximum speeds allowed will mostly not be reached. On the 

one hand, this is due to a certain number of road users that are considered acceptable, on the other 

hand, parts of the infrastructure such as road conditions, traffic lights and traffic routing considerably 

influence the maximum speed any road user can be expected to reach. Traffic congestion therefore is 

not defined by a speed lower than the maximum speed, but as the excessive delay above an agreed 

upon norm. 

So far in literature, little attention has been paid to the explanation of the detour factor, its 

determination, and the investigation of its influencing factors. It has a direct influence on the cost per 

air distance kilometer. Driving costs are influenced because travel distance is dependent on the air 

distance and the detour factor. In addition, driver and vehicle occupation costs are influenced, since 

longer travel distances also increase travel times. 

As shown in section 3, the cost factors detour factor, infrastructure, and traffic change with 

increasing air distance. This means that describing regions by using only a single value for detour, 
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infrastructure, and traffic would be very imprecise. Therefore, when considering the individual 

performance indicators, a progressive function should be modelled to ensure accuracy. In addition, 

when comparing different regions, observation intervals must always be defined (here 15 min travel 

distance or 15 km air distance) and kept constant across all observations, since the arrangement of 

the curves can change relative to one another for increasing distances. 

The detour factor decreases with increasing air distance in urban areas. This means that the 

greater the air distance to be covered, the less detour is required. As previously explained, this stems 

mainly from the fact that motorways or inner-city highways, which usually follow a comparably 

straight or direct course, can be accessed as air distances increase. Consequently, when calculating 

costs, transportation companies must take a closer look at short distances, as the costs per kilometer 

can be many times higher than for longer distances. These short distances occur mainly in distribution 

between customer locations. 

The conducted studies show that the arrangement of the curves can differ considerably from 

detour, travel speed, and cost per kilometer. The transportation costs per kilometer are always the 

product of the factors detour, free flow speed, and delay by congestion. A consideration of individual 

cost drivers such as detour or traffic makes sense from certain interpretation points of view, but to 

estimate or even compare the transportation costs, an isolated consideration is not enough. 

Section 4 shows that significant cost differences can arise between different geographical 

regions. As transport companies mostly charge prices for distribution regardless of the region, the 

contribution margin of a single shipment will vary between regions. It is therefore advantageous to 

carry out the analysis presented prior to choosing a location for a terminal or depot. This will allow 

managers to compare all available locations and make a final choice dependent on future 

transportation costs. In addition, single customer locations could be evaluated by selecting a 

customer’s delivery address as the starting point for the analysis. The results obtained can be used to 

model or adjust customer-specific tariffs. 

6. Limitations and Further Research 

The results of our analysis are directly dependent on the choice of starting locations. This means 

that when comparing regions, care should be taken to ensure that the characteristics of the different 

starting locations are comparable. During the exemplary case study presented in this paper we have 

decided on terminals or depots of local transportation service providers. For a comparison that is not 

dependent on the distribution context, we recommend that the centrality of the location should be 

considered. Consequently, the most accessible and central point within the region to be investigated 

should be chosen. However, this is only a rule of thumb. Future research could focus even more 

intensively on the correct choice of starting location. 

Large areas where no passable infrastructure is available can influence the result of the analyses. 

All corner points of the retrieved polygons necessarily form accessible points and are therefore 

located directly on existing roads. In case of areas without (accessible) roads, the polygon points 

directly at the edge of the area and remains constant until a road can be reached. This distorts the 

result of the detour factor. In most cases, this leads to a higher detour factor since the points bordering 

the road-free area produce small air distances in relation to the increasing API query’s restriction. 

After overcoming the road-free area by sufficiently large travel distances (= API restriction), the air 

distances, which have been constant before, increase dramatically and the error of the detour factor 

is corrected. 

Currently, all polygon corner points are included in equal parts in the air distance’s mean value 

calculation. However, if there are areas within the region to be investigated that are irrelevant for the 

analysis or that should not be considered, certain corner points could be excluded from the air 

distance calculation. The key points could also be weighted in relation to the customer locations. The 

modification of the point weights to individual business cases offers more room for further research. 

The TomTom API always returns a polygon with a maximum of 50 corner points. This means 

that regardless of the size of the accessible area, a maximum of 50 accessible points relates to straight 

lines and this polygon is used for further evaluation. However, depending on the restrictions of the 
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query, this number of points may be too low. Fifty points are too few if the result of a query with high 

restrictions (e.g., 120 min of travel time) is retrieved. In this case, many roads could be accessible, i.e., 

the polygon would have to show many more corner points. TomTom reduces this large number of 

accessible points to exactly 50 polygon points and thus distorts the average air distance. The 

methodology on when and especially how this reduction occurs is a black box as TomTom is not 

providing any details on the algorithm in use. A remedy could be the usage of the HERE maps API, 

because the maximum number of corner points is unlimited for this service and grows with the 

number of reachable points. However, the quality of the traffic data currently does not allow the use 

of HERE’s API. In the future, researchers could try to combine the two APIs, i.e., the accuracy of 

HERE’s presentation and the accuracy of TomTom’s traffic data. 

To estimate the environmental impact of RNP, our presented method can help to estimate 

pollution per air distance based on speed and detour. Therefore, we must combine our results with 

vehicle data such as power and fuel type. This information combined with speed values can be used 

as input variables to calculate energy consumption per kilometer via COPERT regression functions 

[103,104]. With the information derived by Deutsches Institut für Normung e.V. (DIN) [105], the 

energy consumption can easily be converted into pollution per driven kilometer. Based on aerial 

distance and the offset with detour factors travel distances can be derived. The combination of vehicle 

data, COPERT regressions, travel distance and speed leads to overall emissions produced by certain 

road users [106,107]. Following that, our method can be used to analyze the impact of the RNP on 

emissions of specific user groups and areas. 

One impact of RNP on social urban sustainability can be expressed by road noise emissions. A 

widely used calculation model for road noise is Calculation of Road Noise Emission (CoRTN) [108], 

which was originally designed by the Great Britain Department of Transport [109] and adapted by 

different researchers for several regions such as Tehran and the whole of the European Union 

[110,111]. In addition to the travel speed measurements, this model processes information such as 

traffic flow and road characteristics, which must be gathered from other resources. Combining all of 

the needed information to implement the CoRTN model, our method can help to quantify the impact 

of RNP on urban social sustainability. 

7. Conclusions 

The contribution of this paper is an efficient methodology of programmatical data retrieval, 

supplementation and analysis for RNP measurements utilizing publicly available traffic information. 

We base our methodology on the scarcely researched reachable range concept. Reachable range APIs 

allow for time and resource-efficient retrieval of area-wide results by outsourcing data processing. 

Due to this, the problem of defining the sum of all relevant destinations can be overcome by defining 

a centralized starting location and analyzing the retrieved polygons encompassing all possible, by 

definition reachable, destinations within a road network. 

We have quantified and shown that when examining the impact of road network performance 

on the economic dimension of sustainability, it is mandatory to consider two types of costs in tandem: 

distance-based as well as time-based costs. These cost factors are driven by the specific network 

performance characteristics of detour and travel speed as presented in this paper. Evaluating any of 

these two factors in isolation, for example by referencing the publicly available TomTom Traffic Index 

Ranking [112], does therefore not allow for reliable inference of total costs and might lead to wrong 

business decisions. 

Future studies could head in different directions. Considering our methodology, the accuracy 

can be increased by combining technology from different navigation service providers. Considering 

the three dimensions of sustainability, our methodology can be used to evaluate the RNP’s 

environmental and social impacts on urban sustainability with the combination of the retrieved data 

and a framework such as COPERT or CoRTN. 

  



Sustainability 2020, 12, 8145 20 of 25 

 

Author Contributions: Conceptualization, M.B. and J.K.; methodology, M.B. and J.K.; software, M.B. and J.K.; 

validation, F.K.; writing—original draft preparation, M.B.; writing—review and editing, J.K.; visualization, M.B. 

and J.K.; supervision, F.K.; project administration, M.B. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Cividino, S.; Halbac-Cotoara-Zamfir, R.; Salvati, L. Revisiting the “City Life Cycle”: Global Urbanization 

and Implications for Regional Development. Sustainability 2020, 12, 1151, doi:10.3390/su12031151. 

2. Ameen, R.F.M.; Mourshed, M. Urban sustainability assessment framework development: The ranking and 

weighting of sustainability indicators using analytic hierarchy process. Sustain. Cities Soc. 2019, 44, 356–366, 

doi:10.1016/j.scs.2018.10.020. 

3. Huang, S.-L.; Wong, J.-H.; Chen, T.-C. A framework of indicator system for measuring Taipei’s urban 

sustainability. Landsc. Urban Plan. 1998, 42, 15–27, doi:10.1016/S0169-2046(98)00054-1. 

4. Tang, J.; Zhu, H.-L.; Liu, Z.; Jia, F.; Zheng, X.-X. Urban Sustainability Evaluation under the Modified 

TOPSIS Based on Grey Relational Analysis. Int. J. Environ. Res. Public Health 2019, 16, 

doi:10.3390/ijerph16020256. 

5. Verma, P.; Raghubanshi, A.S. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 

2018, 93, 282–291, doi:10.1016/j.ecolind.2018.05.007. 

6. Gillis, D.; Semanjski, I.; Lauwers, D. How to Monitor Sustainable Mobility in Cities? Literature Review in 

the Frame of Creating a Set of Sustainable Mobility Indicators. Sustainability 2016, 8, 29, 

doi:10.3390/su8010029. 

7. Shen, L.-Y.; Jorge Ochoa, J.; Shah, M.N.; Zhang, X. The application of urban sustainability indicators–A 

comparison between various practices. Habitat Int. 2011, 35, 17–29, doi:10.1016/j.habitatint.2010.03.006. 

8. Li, F.; Su, Y.; Xie, J.; Zhu, W.; Wang, Y. The Impact of High-Speed Rail Opening on City Economics along 

the Silk Road Economic Belt. Sustainability 2020, 12, 3176, doi:10.3390/su12083176. 

9. Zhang, X.; Guan, H.; Zhu, H.; Zhu, J. Analysis of Travel Mode Choice Behavior Considering the 

Indifference Threshold. Sustainability 2019, 11, 5495, doi:10.3390/su11195495. 

10. Ortega, J.; Tóth, J.; Péter, T.; Moslem, S. An Integrated Model of Park-And-Ride Facilities for Sustainable 

Urban Mobility. Sustainability 2020, 12, 4631, doi:10.3390/su12114631. 

11. Li, X.-H.; Huang, L.; Li, Q.; Liu, H.-C. Passenger Satisfaction Evaluation of Public Transportation Using 

Pythagorean Fuzzy MULTIMOORA Method under Large Group Environment. Sustainability 2020, 12, 

4996, doi:10.3390/su12124996. 

12. Hamurcu, M.; Eren, T. Strategic Planning Based on Sustainability for Urban Transportation: An 

Application to Decision-Making. Sustainability 2020, 12, 3589, doi:10.3390/su12093589. 

13. Gumbo, T.; Moyo, T. Exploring the Interoperability of Public Transport Systems for Sustainable Mobility 

in Developing Cities: Lessons from Johannesburg Metropolitan City, South Africa. Sustainability 2020, 12, 

5875, doi:10.3390/su12155875. 

14. Castanho, R.A.; Behradfar, A.; Vulevic, A.; Naranjo Gómez, J.M. Analyzing Transportation Sustainability 

in the Canary Islands Archipelago. Infrastructures 2020, 5, 58, doi:10.3390/infrastructures5070058. 

15. Fernandes, P.; Vilaça, M.; Macedo, E.; Sampaio, C.; Bahmankhah, B.; Bandeira, J.M.; Guarnaccia, C.; Rafael, 

S.; Fernandes, A.P.; Relvas, H.; et al.. Integrating road traffic externalities through a sustainability indicator. 

Sci. Total Environ. 2019, 691, 483–498, doi:10.1016/j.scitotenv.2019.07.124. 

16. Mahmoudi, R.; Shetab-Boushehri, S.-N.; Hejazi, S.R.; Emrouznejad, A. Determining the relative importance 

of sustainability evaluation criteria of urban transportation network. Sustain. Cities Soc. 2019, 47, 101493, 

doi:10.1016/j.scs.2019.101493. 

17. Ruiz, A.; Guevara, J. Sustainable Decision-Making in Road Development: Analysis of Road Preservation 

Policies. Sustainability 2020, 12, 872, doi:10.3390/su12030872. 

18. Wang, S.; Yu, D.; Kwan, M.-P.; Zhou, H.; Li, Y.; Miao, H. The Evolution and Growth Patterns of the Road 

Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 

to 2017. Sustainability 2019, 11, 5307, doi:10.3390/su11195307. 



Sustainability 2020, 12, 8145 21 of 25 

 

19. Liu, J.; Lu, H.; Chen, M.; Wang, J.; Zhang, Y. Macro Perspective Research on Transportation Safety: An 

Empirical Analysis of Network Characteristics and Vulnerability. Sustainability 2020, 12, 6267, 

doi:10.3390/su12156267. 

20. Calvo-Poyo, F.; Navarro-Moreno, J.; de Oña, J. Road Investment and Traffic Safety: An International Study. 

Sustainability 2020, 12, 6332, doi:10.3390/su12166332. 

21. Mondschein, A.; Taylor, B.D. Is traffic congestion overrated? Examining the highly variable effects of 

congestion on travel and accessibility. J. Transp. Geogr. 2017, 64, 65–76, doi:10.1016/j.jtrangeo.2017.08.007. 

22. Figliozzi, M.A. The impacts of congestion on commercial vehicle tour characteristics and costs. Transp. Res. 

Part E: Logist. Transp. Rev. 2010, 46, 496–506, doi:10.1016/j.tre.2009.04.005. 

23. McKinnon, A. The Effect of Traffic Congestion on the Efficiency of Logistical Operations. International J. 

Logist. Res. Appl. 1999, 2, 111–128, doi:10.1080/13675569908901576. 

24. Dewees, D.N. Estimating the Time Costs of Highway Congestion. Econometrica 1979, 47, 1499, 

doi:10.2307/1914014. 

25. Weisbrod, G.; Vary, D.; Treyz, G. Measuring Economic Costs of Urban Traffic Congestion to Business. 

Transp. Res. Rec. 2003, 1839, 98–106, doi:10.3141/1839-10. 

26. Konur, D.; Geunes, J. Analysis of traffic congestion costs in a competitive supply chain. Transp. Res. Part E: 

Logist. Transp. Rev. 2011, 47, 1–17, doi:10.1016/j.tre.2010.07.005. 

27. Fernie, J.; Pfab, F.; Marchant, C. Retail Grocery Logistics in the UK. Int. J. Logist. Manag. 2000, 11, 83–90, 

doi:10.1108/09574090010806182. 

28. Golob, T.F.; Regan, A.C. Traffic congestion and trucking managers’ use of automated routing and 

scheduling. Transp. Res. Part E: Logist. Transp. Rev. 2003, 39, 61–78, doi:10.1016/S1366-5545(02)00024-8. 

29. McKinnon, A.; Edwards, J.; Piecyk, M.; Palmer, A. Traffic congestion, reliability and logistical performance: 

A multi-sectoral assessment. Int. J. Logist. Res. Appl. 2009, 12, 331–345, doi:10.1080/13675560903181519. 

30. Blagoiev, M.; Gruicin, I.; Ionascu, M.-E.; Marcu, M. A Study on Correlation Between Air Pollution and 

Traffic. In Proceedings of the 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 

November 2018; pp 420–425. 

31. Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 2013, 450-

451, 307–316, doi:10.1016/j.scitotenv.2013.01.074. 

32. Armah, F.; Yawson, D.; Pappoe, A.A.N.M. A Systems Dynamics Approach to Explore Traffic Congestion 

and Air Pollution Link in the City of Accra, Ghana. Sustainability 2010, 2, 252–265, doi:10.3390/su2010252. 

33. Figliozzi, M.A. The impacts of congestion on time-definitive urban freight distribution networks CO2 

emission levels: Results from a case study in Portland, Oregon. Transp. Res. Part C: Emerg. Technol. 2011, 19, 

766–778, doi:10.1016/j.trc.2010.11.002. 

34. Barth, M.; Boriboonsomsin, K. Real-World Carbon Dioxide Impacts of Traffic Congestion. Transp. Res. Rec. 

2008, 2058, 163–171, doi:10.3141/2058-20. 

35. Park, T.; Kim, M.; Jang, C.; Choung, T.; Sim, K.-A.; Seo, D.; Chang, S. The Public Health Impact of Road-

Traffic Noise in a Highly-Populated City, Republic of Korea: Annoyance and Sleep Disturbance. 

Sustainability 2018, 10, 2947, doi:10.3390/su10082947. 

36. Sirin, O. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 2: 

Factors Affecting Tire-Pavement Noise and Prediction Models. Sustainability 2016, 8, 692, 

doi:10.3390/su8070692. 

37. Ohiduzzaman, M.D.; Sirin, O.; Kassem, E.; Rochat, J. State-of-the-Art Review on Sustainable Design and 

Construction of Quieter Pavements—Part 1: Traffic Noise Measurement and Abatement Techniques. 

Sustainability 2016, 8, 742, doi:10.3390/su8080742. 

38. Casado-Sanz, N.; Guirao, B.; Attard, M. Analysis of the Risk Factors Affecting the Severity of Traffic 

Accidents on Spanish Crosstown Roads: The Driver’s Perspective. Sustainability 2020, 12, 2237, 

doi:10.3390/su12062237. 

39. Shah, S.A.R.; Ahmad, N. Road Infrastructure Analysis with Reference to Traffic Stream Characteristics and 

Accidents: An Application of Benchmarking Based Safety Analysis and Sustainable Decision-Making. Appl. 

Sci. 2019, 9, 2320, doi:10.3390/app9112320. 

40. Zhu, L.; Lu, L.; Zhang, W.; Zhao, Y.; Song, M.. Analysis of Accident Severity for Curved Roadways Based 

on Bayesian Networks. Sustainability 2019, 11, 2223, doi:10.3390/su11082223. 



Sustainability 2020, 12, 8145 22 of 25 

 

41. Chen, A.; Yang, H.; Lo, H.K.; Tang, W.H. Capacity reliability of a road network: An assessment 

methodology and numerical results. Transp. Res. Part B Methodol. 2002, 36, 225–252, doi:10.1016/S0191-

2615(00)00048-5. 

42. Fancello, G.; Carta, M.; Fadda, P. A Modeling Tool for Measuring the Performance of Urban Road 

Networks. Procedia Soc. Behav. Sci. 2014, 111, 559–566, doi:10.1016/j.sbspro.2014.01.089. 

43. Jenelius, E.; Mattsson, L.-G. Road network vulnerability analysis of area-covering disruptions: A grid-

based approach with case study. Transp. Res. Part A Policy Pract. 2012, 46, 746–760, 

doi:10.1016/j.tra.2012.02.003. 

44. Milevich, D.; Melnikov, V.; Karbovskii, V.; Krzhizhanovskaya, V. Simulating an Impact of Road Network 

Improvements on the Performance of Transportation Systems under Critical Load: Agent-based Approach. 

Procedia Comput. Sci. 2016, 101, 253–261, doi:10.1016/j.procs.2016.11.030. 

45. Loder, A.; Ambühl, L.; Menendez, M.; Axhausen, K.W. Understanding traffic capacity of urban networks. 

Sci. Rep. 2019, 9, 16283, doi:10.1038/s41598-019-51539-5. 

46. Afrin, T.; Yodo, N. A Survey of Road Traffic Congestion Measures towards a Sustainable and Resilient 

Transportation System. Sustainability 2020, 12, 4660, doi:10.3390/su12114660. 

47. Luca, S. de; Di Pace, R.; Memoli, S.; Pariota, L. Sustainable Traffic Management in an Urban Area: An 

Integrated Framework for Real-Time Traffic Control and Route Guidance Design. Sustainability 2020, 12, 

726, doi:10.3390/su12020726. 

48. Sun, X.; Lin, K.; Jiao, P.; Lu, H. The Dynamical Decision Model of Intersection Congestion Based on Risk 

Identification. Sustainability 2020, 12, 5923, doi:10.3390/su12155923. 

49. Russo, F.; Comi, A. Investigating the Effects of City Logistics Measures on the Economy of the City. 

Sustainability 2020, 12, 1439, doi:10.3390/su12041439. 

50. Baghestani, A.; Tayarani, M.; Allahviranloo, M.; Gao, H.O. Evaluating the Traffic and Emissions Impacts 

of Congestion Pricing in New York City. Sustainability 2020, 12, 3655, doi:10.3390/su12093655. 

51. Borza, S.; Inta, M.; Serbu, R.; Marza, B. Multi-Criteria Analysis of Pollution Caused by Auto Traffic in a 

Geographical Area Limited to Applicability for an Eco-Economy Environment. Sustainability 2018, 10, 4240, 

doi:10.3390/su10114240. 

52. Zhang, W.; Lu, J.; Xu, P.; Zhang, Y. Moving towards Sustainability: Road Grades and On-Road Emissions 

of Heavy-Duty Vehicles—A Case Study. Sustainability 2015, 7, 12644–12671, doi:10.3390/su70912644. 

53. Kleizienė, R.; Šernas, O.; Vaitkus, A.; Simanavičienė, R. Asphalt Pavement Acoustic Performance Model. 

Sustainability 2019, 11, 2938, doi:10.3390/su11102938. 

54. Astarita, V.; Giofrè, V.P.; Guido, G.; Vitale, A. A review of traffic signal control methods and experiments 

based on Floating Car Data (FCD). Procedia Comput. Sci. 2020, 175, 745–751, doi:10.1016/j.procs.2020.07.110. 

55. Creutzig, F.; Franzen, M.; Moeckel, R.; Heinrichs, D.; Nagel, K.; Nieland, S.; Weisz, H. Leveraging 

digitalization for sustainability in urban transport. Glob. Sustain. 2019, 2, doi:10.1017/sus.2019.11. 

56. Kong, L.; Liu, Z.; Wu, J. A systematic review of big data-based urban sustainability research: State-of-the-

science and future directions. J. Clean. Prod. 2020, 273, 123142, doi:10.1016/j.jclepro.2020.123142. 

57. Yu, B.; Wang, Z.; Mu, H.; Sun, L.; Hu, F. Identification of Urban Functional Regions Based on Floating Car 

Track Data and POI Data. Sustainability 2019, 11, 6541, doi:10.3390/su11236541. 

58. Sun, D.; Leurent, F.; Xie, X. Floating Car Data mining: Identifying vehicle types on the basis of daily usage 

patterns. Transp. Res. Procedia 2020, 47, 147–154, doi:10.1016/j.trpro.2020.03.087. 

59. Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A Review of Last Mile Logistics Innovations in an 

Externalities Cost Reduction Vision. Sustainability 2018, 10, 782, doi:10.3390/su10030782. 

60. Oliveira, C.; Albergaria De Mello Bandeira, R.; Vasconcelos Goes, G.; Schmitz Gonçalves, D.; D’Agosto, M. 

Sustainable Vehicles-Based Alternatives in Last Mile Distribution of Urban Freight Transport: A Systematic 

Literature Review. Sustainability 2017, 9, 1324, doi:10.3390/su9081324. 

61. Wang, S.; Yu, D.; Ma, X.; Xing, X. Analyzing urban traffic demand distribution and the correlation between 

traffic flow and the built environment based on detector data and POIs. Eur Transp. Res. Rev. 2018, 10, 

doi:10.1186/s12544-018-0325-5. 

62. Wang, S.; Yu, D.; Kwan, M.-P.; Zheng, L.; Miao, H.; Li, Y. The impacts of road network density on motor 

vehicle travel: An empirical study of Chinese cities based on network theory. Transp. Res. Part A Policy 

Pract. 2020, 132, 144–156, doi:10.1016/j.tra.2019.11.012. 



Sustainability 2020, 12, 8145 23 of 25 

 

63. Saedi, R.; Saeedmanesh, M.; Zockaie, A.; Saberi, M.; Geroliminis, N.; Mahmassani, H.S. Estimating network 

travel time reliability with network partitioning. Transp. Res. Part C Emerg. Technol. 2020, 112, 46–61, 

doi:10.1016/j.trc.2020.01.013. 

64. Serper, E.Z.; Alumur, S.A. The design of capacitated intermodal hub networks with different vehicle types. 

Transp. Res. Part B Methodol. 2016, 86, 51–65, doi:10.1016/j.trb.2016.01.011. 

65. Lagarda-Leyva, E.A.; Bueno-Solano, A.; Vea-Valdez, H.P.; Machado, D.O. Dynamic Model and Graphical 

User Interface: A Solution for the Distribution Process of Regional Products. Appl. Sci. 2020, 10, 4481, 

doi:10.3390/app10134481. 

66. Leung, A.; Burke, M.; Cui, J.; Perl, A. Fuel price changes and their impacts on urban transport—A literature 

review using bibliometric and content analysis techniques, 1972–2017. Transp. Rev. 2019, 39, 463–484, 

doi:10.1080/01441647.2018.1523252. 

67. Santosa, W.; Joewono, T.B. An evaluation of road network performance in Indonesia. In Proceedings of the 

Eastern Asia Society for Transportation Studies, Bangkok, Thailand, 21–24 September 2005; pp. 2418–2433. 

68. Berens, W. The suitability of the weighted lp-norm in estimating actual road distances. Eur. J. Oper. Res. 

1988, 34, 39–43, doi:10.1016/0377-2217(88)90453-5. 

69. Chowdhury, S.; Ceder, A.; Velty, B. Measuring Public-Transport Network Connectivity Using Google 

Transit with Comparison across Cities. JPT 2014, 17, 76–92, doi:10.5038/2375-0901.17.4.5. 

70. He, F.; Yan, X.; Liu, Y.; Ma, L. A Traffic Congestion Assessment Method for Urban Road Networks Based 

on Speed Performance Index. Procedia Eng. 2016, 137, 425–433, doi:10.1016/j.proeng.2016.01.277. 

71. Mohan Rao, A.; Ramachandra Rao, K. Measuring Urban Traffic Congestion—A Review. IJTTE 2012, 2, 286–

305, doi:10.7708/ijtte.2012.2(4).01. 

72. Altintasi, O.; Tuydes-Yaman, H.; Tuncay, K. Detection of urban traffic patterns from Floating Car Data 

(FCD). Transp. Res. Procedia 2017, 22, 382–391, doi:10.1016/j.trpro.2017.03.057. 

73. Chen, B.Y.; Lam, W.H.K.; Sumalee, A.; Li, Q.; Shao, H.; Fang, Z. Finding Reliable Shortest Paths in Road 

Networks Under Uncertainty. Netw. Spat. Econ. 2013, 13, 123–148, doi:10.1007/s11067-012-9175-1. 

74. Thoen, S.; Tavasszy, L.; Bok, M. de; Correia, G.; van Duin, R. Descriptive modeling of freight tour formation: 

A shipment-based approach. Transp. Res. Part E: Logist. Transp. Rev. 2020, 140, 101989, 

doi:10.1016/j.tre.2020.101989. 

75. Moraes Ramos, G. de; Mai, T.; Daamen, W.; Frejinger, E.; Hoogendoorn, S.P. Route choice behaviour and 

travel information in a congested network: Static and dynamic recursive models. Transp. Res. Part C Emerg. 

Technol. 2020, 114, 681–693, doi:10.1016/j.trc.2020.02.014. 

76. Ciscal-Terry, W.; Dell'Amico, M.; Hadjidimitriou, N.S.; Iori, M. An analysis of drivers route choice 

behaviour using GPS data and optimal alternatives. J. Transp. Geogr. 2016, 51, 119–129, 

doi:10.1016/j.jtrangeo.2015.12.003. 

77. Kellner, F.; Otto, A.; Brabänder, C. Bringing infrastructure into pricing in road freight transportation—A 

measuring concept based on navigation service data. Transp. Res. Procedia 2017, 25, 794–805, 

doi:10.1016/j.trpro.2017.05.458. 

78. Romano Alho, A.; Sakai, T.; Chua, M.H.; Jeong, K.; Jing, P.; Ben-Akiva, M. Exploring Algorithms for 

Revealing Freight Vehicle Tours, Tour-Types, and Tour-Chain-Types from GPS Vehicle Traces and Stop 

Activity Data. J. Big Data Anal. Transp. 2019, 1, 175–190, doi:10.1007/S42421-019-00011-X. 

79. Shao, H.; Lam, W.H.K.; Sumalee, A.; Chen, A. Journey time estimator for assessment of road network 

performance under demand uncertainty. Transp. Res. Part C Emerg. Technol. 2013, 35, 244–262, 

doi:10.1016/j.trc.2012.12.002. 

80. Greenwood, I.D.; Dunn, R.C.; Raine, R.R. Estimating the Effects of Traffic Congestion on Fuel Consumption 

and Vehicle Emissions Based on Acceleration Noise. J. Transp. Eng. 2007, 133, 96–104, 

doi:10.1061/(ASCE)0733-947X(2007)133:2(96). 

81. Thurgood, G.S. Development of A Freeway Congestion Index Using An Instrumented Vehicle. Transp. Res. 

Rec. 1995, 21–29. 

82. Hansen, I. Determination and Evaluation of Traffic Congestion Costs. Eur. J. Transp. Infrastruct. Res. 2001, 

1, 61–72, doi:10.18757/ejtir.2001.1.1.2627. 

83. Sun, D.J.; Liu, X.; Ni, A.; Peng, C. Traffic Congestion Evaluation Method for Urban Arterials. Transp. Res. 

Rec. 2014, 2461, 9–15, doi:10.3141/2461-02. 

84. Cohn, N. Real-Time Traffic Information and Navigation. Transp. Res. Rec. 2009, 2129, 129–135, 

doi:10.3141/2129-15. 



Sustainability 2020, 12, 8145 24 of 25 

 

85. Sun, D.; Zhang, C.; Zhang, L.; Chen, F.; Peng, Z.-R. Urban travel behavior analyses and route prediction 

based on floating car data. Transp. Lett. 2014, 6, 118–125, doi:10.1179/1942787514Y.0000000017. 

86. Yong-chuan, Z.; Xiao-qing, Z.; li-ting, Z.; Zhen-ting, C. Traffic Congestion Detection Based on GPS Floating-

Car Data. Procedia Eng. 2011, 15, 5541–5546, doi:10.1016/j.proeng.2011.08.1028. 

87. Zhao, N.; Yu, L.; Zhao, H.; Guo, J.; Wen, H. Analysis of Traffic Flow Characteristics on Ring Road 

Expressways in Beijing. Transp. Res. Rec. 2009, 2124, 178–185, doi:10.3141/2124-17. 

88. Wang, X.; Liu, H.; Yu, R.; Deng, B.; Chen, X.; Wu, B. Exploring Operating Speeds on Urban Arterials Using 

Floating Car Data: Case Study in Shanghai. J. Transp. Eng. 2014, 140, 4014044, doi:10.1061/(ASCE)TE.1943-

5436.0000685. 

89. Kong, X.; Xu, Z.; Shen, G.; Wang, J.; Yang, Q.; Zhang, B. Urban traffic congestion estimation and prediction 

based on floating car trajectory data. Future Gener. Comput. Syst. 2016, 61, 97–107, 

doi:10.1016/j.future.2015.11.013. 

90. Rempe, F.; Franeck, P.; Fastenrath, U.; Bogenberger, K. A phase-based smoothing method for accurate 

traffic speed estimation with floating car data. Transp. Res. Part C Emerg. Technol. 2017, 85, 644–663, 

doi:10.1016/j.trc.2017.10.015. 

91. Xu, L.; Yue, Y.; Li, Q. Identifying Urban Traffic Congestion Pattern from Historical Floating Car Data. 

Procedia Soc. Behav. Sci. 2013, 96, 2084–2095, doi:10.1016/J.SBSPRO.2013.08.235. 

92. Kellner, F. Insights into the effect of traffic congestion on distribution network characteristics—A numerical 

analysis based on navigation service data. Int. J. Logist. Res. Appl. 2016, 19, 395–423, 

doi:10.1080/13675567.2015.1094043. 

93. Zhang, D.; Shou, Y.; Xu, J. The modeling of big traffic data processing based on cloud computing. In 

Proceedings of the 12th World Congress on Intelligent Control and Automation (WCICA), IEEE, 

Piscataway, NJ, USA, 12–15 June 2016; pp. 2394–2399. 

94. Gong, Y.; Rimba, P.; Sinnott, R. A Big Data Architecture for Near Real-time Traffic Analytics. In Companion 

Proceedings of the10th International Conference on Utility and Cloud Computing; Anjum, A., Ed.; ACM: New 

York, NY, USA, 2017; pp. 157–162. 

95. Hirako, K.; Kani, S.; Morisaki, Y.; Fujiu, M.; Nishino, T.; Takayama, J. Estimations of Bus Stop Territories 

using Reachable Area Analysis Focusing on Travel Behavior of Elderly to Medical Facilities. Int. J. Eng. Res. 

Technol. 2020, 9, 516–522. 

96. Phan, T.-K.; Jung, H.; Kim, U.-M. An efficient algorithm for maximizing range sum queries in a road 

network. Sci. J. 2014, 541602, doi:10.1155/2014/541602. 

97. Williams, M.J.; Musolesi, M. Spatio-temporal networks: Reachability, centrality and robustness. R. Soc. 

Open Sci. 2016, 3, 160196, doi:10.1098/rsos.160196. 

98. Casadei, G.; Bertrand, V.; Gouin, B.; Canudas-de-Wit, C. Aggregation and travel time calculation over large 

scale traffic networks: An empiric study on the Grenoble City. Transp. Res. Part C Emerg. Technol. 2018, 95, 

713–730, doi:10.1016/j.trc.2018.07.033. 

99. Nuzzolo, A.; Comi, A.; Polimeni, A. Urban Freight Vehicle Flows: An Analysis of Freight Delivery Patterns 

through Floating Car Data. Transp. Res. Procedia 2020, 47, 409–416, doi:10.1016/j.trpro.2020.03.116. 

100. Sofwan, A.; Soetrisno, Y.A.A.; Ramadhani, N.P.; et al. Vehicle Distance Measurement Tuning using 

Haversine and Micro-Segmentation. In Proceedings of the 2019 International Seminar on Intelligent 

Technology and Its Applications (ISITIA), IEEE, Surabaya, Indonesia, 28–29 August 2019; pp. 239–243. 

101. Levinson, H.S.; Lomax, T.J. Developing a Travel Time Congestion Index. Transportation Research Record 

1996, 1564, 1–10, doi:10.1177/0361198196156400101. 

102. Brabänder, C.; Braun, M. Bringing economies of integration into the costing of groupage freight. J. Revenue 

Pricing Manag. 2020, 12, 191, doi:10.1057/s41272-020-00237-3. 

103. European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook; European 

Environment Agency: København K, Denmark, 2019. 

104. Kellner, F. Exploring the impact of traffic congestion on CO2 emissions in freight distribution networks. 

Logist. Res. 2016, 9, doi:10.1007/s12159-016-0148-5. 

105. DIN Deutsches Institut für Normung e.V. DIN EN 16258:2012: Methodology for calculation and 

declaration of energy consumption and GHG emissions of transport services (freight and passengers). 

2013. Available online: https://www.en-standard.eu/csn-en-16258-methodology-for-calculation-and-

declaration-of-energy-consumption-and-ghg-emissions-of-transport-services-freight-and-passengers/ 

(accessed on 21 September 2020). 



Sustainability 2020, 12, 8145 25 of 25 

 

106. Lejri, D.; Can, A.; Schiper, N.; Leclercq, L. Accounting for traffic speed dynamics when calculating COPERT 

and PHEM pollutant emissions at the urban scale. Transp. Res. Part D Transp. Environ. 2018, 63, 588–603, 

doi:10.1016/j.trd.2018.06.023. 

107. O'Driscoll, R.; ApSimon, H.M.; Oxley, T.; Molden, N.; Stettler, M.E.J.; Thiyagarajah, A. A Portable 

Emissions Measurement System (PEMS) study of NOx and primary NO2 emissions from Euro 6 diesel 

passenger cars and comparison with COPERT emission factors. Atmos. Environ. 2016, 145, 81–91, 

doi:10.1016/j.atmosenv.2016.09.021. 

108. De Lisle, S Comparison of Road Traffic Noise Prediction Models: CoRTN, TNM, NMPB, ASJ RTN. Acoust. 

Aust. 2016, 44, 409–413, doi:10.1007/s40857-016-0061-8. 

109. Great Britain Department of Transport, Welsh Office. Calculation of Road Traffic Noise; H.M.S.O: London, 

UK, 1988. 

110. Givargis, S.; Mahmoodi, M. Converting the UK calculation of road traffic noise (CORTN) to a model 

capable of calculating LAeq,1h for the Tehran’s roads. Appl. Acoust. 2008, 69, 1108–1113, 

doi:10.1016/j.apacoust.2007.08.003. 

111. O’Malley, V.; King, E.; Kenny, L.; Dilworth, C. Assessing methodologies for calculating road traffic noise 

levels in Ireland—Converting CRTN indicators to the EU indicators (Lden, Lnight). Appl. Acoust. 2009, 70, 

284–296, doi:10.1016/j.apacoust.2008.04.003. 

112. TomTom International BV Traffic Index 2019. https://www.tomtom.com/en_gb/traffic-index/ranking/ 

(accessed on 21 September 2020). 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


