
Detecting Blockchain Security Threats
Benedikt Putz, Günther Pernul

Chair of Information Systems
University of Regensburg

Regensburg, Germany
benedikt.putz@ur.de, guenther.pernul@ur.de

Abstract—In many organizations, permissioned blockchain net-
works are currently transitioning from a proof-of-concept stage
to production use. A crucial part of this transition is ensuring
awareness of potential threats to network operations. Due to
the plethora of software components involved in distributed
ledgers, threats may be difficult or impossible to detect without
a structured monitoring approach. To this end, we conduct
a survey of attacks on permissioned blockchains and develop
a set of threat indicators. To gather these indicators, a data
processing pipeline is proposed to aggregate log information
from relevant blockchain components, enriched with data from
external sources. To evaluate the feasibility of monitoring current
blockchain frameworks, we determine relevant data sources in
Hyperledger Fabric. Our results show that the required data
is mostly available, but also highlight significant improvement
potential with regard to threat intelligence, chaincode scanners
and built-in metrics.

Index Terms—distributed ledger, permissioned blockchain, in-
formation security, security monitoring, insider threat

I. INTRODUCTION

Enterprise applications based on Distributed Ledger Tech-
nology (DLT) are no longer just proof-of-concept. They are
now used in production environments to track shipping con-
tainers across the supply chain [1], settle trade finance deals
[2] and to handle the exchange of valuable aerospace parts
on a decentralized marketplace [3]. These use cases present
attractive targets for internal and external attackers to exploit.
While blockchains attempt to thwart attackers by replicating
the database and code execution, there is still no shortage
of attacks, as discovered by researchers and practitioners [4].
Attacks may target the consensus algorithm, flaws in smart
contract programming languages, or flaws in the blockchain
framework itself. Besides vulnerabilities, there are also oper-
ational security concerns such as private key or host system
compromise. Security professionals looking to protect against
these attacks need to have a clear idea what threats they are
facing, how to detect ongoing attacks and how to protect
against them. Commonly, Security Information and Event
Management (SIEM) systems are used for such tasks, but
currently no such SIEM system dedicated to permissioned
blockchains exists. It is challenging for off-the-shelf SIEM
systems to provide an integrated overview of a blockchain
network’s state, since there is a large number of components
within a single blockchain node [5], whose behavior also
depends on nodes outside the own organization’s confines.

To illustrate the contribution of this work we use Jaquith’s
model of IT security controls [6]. While there is plenty of
literature detailing threats [7] and exposures [4] of blockchains,
approaches for countermeasures are still scarce. In the model
shown in Figure 1, countermeasures consist of deterrent,
detective, preventative and corrective controls. While there are
some deterrent controls built into blockchains (such as the use
of hashes and signatures for integrity preservation), detective
controls to discover threats are still scarce.

To this end, we present a comprehensive study of attacks on
permissioned blockchains. Based on our findings, we develop
a set of threat indicators for automated attack detection based
on log data (detective control). We focus specifically on
the permissioned blockchain framework Hyperledger Fabric,
which is used by almost half of the world’s biggest companies
evaluating DLT (23 out of 50 companies with more than $1
billion valuation) [8].

In summary, we contribute to research by
• providing a comprehensive overview of possible attacks

on permissioned blockchains
• developing a set of blockchain threat indicators for

attacks on permissioned blockchains
• investigating the feasibility of monitoring attacks on

Hyperledger Fabric and identifying areas for future
research and development

The remainder of this paper is structured as follows. We
first provide an overview of related work in Section II, before
defining the threat model for monitoring in Section III. In
Section IV we present a study of possible attacks on permis-
sioned blockchain networks, and define threat indicators for
each attack. A suitable data processing architecture to gather

Fig. 1. Logical model of IT Security Controls [6], with the missing DLT
detective control highlighted

these indicators from blockchain data sources is defined in
Section V. We evaluate the developed monitoring approach
by investigating the feasibility of indicator collection with
Hyperledger Fabric in Section VI. Finally, we discuss SIEM
and organizational integration of blockchain monitoring in
Section VII.

II. RELATED WORK

Currently, the majority of proposed monitoring tools and
methods focus on isolated detection of anomalies within
specific components of a DLT node. BAD [9] is designed
to detect anomalous Bitcoin transactions to prevent transac-
tions with malicious payloads from spreading in the network.
LedgerGuard [10] monitors a Hyperledger Fabric peer’s ledger
and restores corrupted blocks from connected peers if needed.
Garcia et al. propose Lazarus [11], a solution for diversity
management of consensus nodes. Lazarus monitors the soft-
ware stack of each blockchain node for newly found or zero-
day exploits and quarantines affected replicas. A number of
tools exist for formal verification and vulnerability detection
of Ethereum smart contracts, including both offline scanners
[12], [13] and online detection frameworks [14].

There are also several tools focusing on performance and
availability monitoring. Hyperledger Caliper [15] focuses on
performance benchmarking in an isolated testing environment.
Hyperledger Explorer [16] displays basic information about
running nodes, allows users to inspect blockchain state and
interact with deployed chaincode. However, its main purpose
is browsing activity on the underlying blockchain network, not
monitoring the network for security threats.

Compared to these approaches, the present work provides a
holistic perspective on blockchain security monitoring, instead
of only focusing on isolated aspects. Based on a comprehensive
survey of attacks on permissioned distributed ledgers, we deter-
mine suitable threat indicators and corresponding data sources
to compute them. Going beyond plain status monitoring offered
by tools like Hyperledger Explorer, we focus on extracting
security-relevant threat indicators from Hyperledger Fabric.

III. THREAT MODEL

Before going into detail on threat indicators, a threat model
of possible attackers and attacks needs to be established. In this
Section we provide a brief overview of DLT actors and DLT-
specific threats (split into vulnerabilities and malicious intent),
followed by a detailed enumeration of attacks in Section IV.

A. Actors

As a first step, we model the actors in a blockchain network.
Figure 2 shows a data flow context diagram containing relevant
actors. Each actor may cause a threat, either by acting as a
malicious insider or as an external attacker. Transactors are
regular users, which have read access to the blockchain and
can submit transactions. Peer, Orderer and Certificate Author-
ity (CA) Admins administrate the corresponding blockchain
components and have special privileges. External Users have
no privileges and are locked out of the system by access

Blockchain
System

CA Admin

Peer Admin

Transactor

External User

External
Blockchain
Systems

Orderer
Admin

Fig. 2. Level 0 data flow diagram of blockchain actors

Peer

Orderer

State

Database

Blockchain

Database

Identity

Provider

TransactorPeer Admin

CA Admin

External

Users

API

Orderer

Admin

Fig. 3. Level 1 data flow diagram of blockchain actors

control, barring vulnerabilities. Figure 3 shows a Level 1
data flow diagram detailing how these actors interact with the
processing nodes within the blockchain system (modeled after
Hyperledger Fabric). Each Admin controls the corresponding
blockchain component. Outside access is provided to Transac-
tors and External Users via an API.

B. Vulnerabilities

Vulnerabilities increase the exposure to threats by provid-
ing attackers with ways to compromise the protection goals
confidentiality, integrity and availability. Like any software,
distributed ledger frameworks are prone to software bugs,
which may result in vulnerabilities. A prime example are
vulnerable protocols, caused by implementation bugs in cryp-
tographic, networking or storage components or dependencies.
For example, Hyperledger Fabric uses gRPC for exchanging
blocks, which has been subject to a number of high and
critical severity Common Vulnerability Enumerations (CVEs)1.
Another type of exposure are vulnerable contracts, where
the intricacies of smart contract development can lead to
exploitable behavior [13].

Distributed ledger frameworks also offer a large number
of configuration options. Since these options are rarely doc-

1see https://nvd.nist.gov/

umented in a single place, negligence or oversight may lead to
misconfiguration by administrators. Bad configuration and a
lack of consideration for security on deployment of blockchain
nodes then increases exposure to attacks.

C. Malicious intent

Internal threats. Distributed Ledgers are subject to a variety
of threats by insiders and external insiders [17], who may
attempt to exploit the blockchain for personal or organiza-
tional gain. Besides inadvertent misconfigurations, insiders
may intentionally manipulate the configuration of blockchain
peers and threaten network security. Through initiation of
updates for smart contracts they may introduce vulnerabilities
or backdoors. For these reasons, administrators are potential
single points of failure for an organization’s blockchain node
and their actions should be monitored by an independent
information security team.

External attackers. External adversaries may attempt to
gain blockchain network access in order to read and possibly
manipulate ledger data. To this end, attackers may exploit
the aforementioned vulnerabilities. A successful attack could
result in subversion of a blockchain peer or identity provider,
which is a prerequisite for many attacks only possible from
inside the network. Denial of service attacks are an additional
attack vector, which may stall consensus if sufficient nodes are
affected.

IV. ATTACKS AND THREAT INDICATORS

To gain an overview of relevant attacks, we conducted
a literature review of attacks on permissioned blockchain
systems. We searched for the terms ("permissioned
blockchain" OR "hyperledger fabric") AND
("vulnerability" OR "attack"), using the ACM
digital library (106 results), SpringerLink (361 results),
ScienceDirect (218 results), IEEE Xplore (10 results) and the
Wiley Online Library (55 results). We filtered these results for
works dealing with attacks and vulnerabilities on permissioned
blockchains, which left us with 10 papers. The low number of
filtered results can be attributed to the fact that many papers
mention or cite existing vulnerabilities and attacks, but do
not contribute new vulnerabilities. We conducted additional
in-depth research on each of the found attacks by searching
for the attack’s name, which yielded additional literature [4],
[7], [18].

We extract all attacks applicable to permissioned
blockchains from the surveyed papers. For conciseness,
some attacks are grouped under a common term (i.e. Contract
Vulnerabilities). Based on the identified attacks and affected
blockchain components, we develop threat indicators that
allow a security expert to recognize ongoing attacks. While we
focus on applicability of the attacks on Hyperledger Fabric,
many of the attacks are applicable to other permissioned
blockchain frameworks as well. The categorized overview
of attacks is shown in Table I. Generally, threat indicators
may be proactive or reactive. Proactive approaches attempt
to detect the vulnerability before exploitation, while reactive

approaches detect the act of exploitation and attempt to limit
the damage.

For the remainder of this chapter, we go into more detail on
each attack and how it can be detected with suitable indicators.
Based on the threat model, we first focus on vulnerabilities
followed by attacks of malicious intent. These indicators are
then elaborated in Section VI with regard to Hyperledger
Fabric.

A. Vulnerabilities

Contract Vulnerability. A contract vulnerability refers to a
security bug in a smart contract that must be fixed through a
contract upgrade. Since an organization may not have control
over all contracts that it is sending transactions to, it is
important to also monitor contracts owned by other organi-
zations on the network. In general, contract vulnerabilities
are difficult to detect, since abuse transaction patterns vary
depending on the vulnerability. For example, the Re-entrancy
attack on Solidity smart contracts [19] may be detected by
excessive resource consumption from a single transaction.
Other vulnerabilities may require inspection of contract state
changes, such as the delegatecall injection [13]. Yamashita et
al. provide an overview of Hyperledger Fabric chaincode risks
related to non-determinism, phantom state database reads and
unchecked inputs [24]. Unchecked inputs may for example
result in JSON injection vulnerabilities [25]. By scanning each
contract deploy/upgrade transaction, new vulnerabilities can be
derived from in the scan logs. The number of scanned potential
vulnerabilities in deployed contracts is a useful indicator for
monitoring and reducing the attack surface of smart contracts.

Framework Vulnerability. The code of the blockchain
framework may be subject to vulnerabilities. This category
includes vulnerabilities such as insufficient smart contract
virtualization [20], [26] and injection of malicious code due
to improper input checking [26]. Correspondingly, framework
releases should be monitored for such vulnerabilities to up-
grade to new versions as soon as possible.

Dependency Vulnerability. Blockchain frameworks also
rely on a number of direct and transitive dependencies. A
major category of dependencies are database systems used for
storage of blockchain state. Most blockchain frameworks use
self-sufficient DBMS such as LevelDB, CouchDB or Postgres
[17]. As dependencies, their versions are often updated infre-
quently and insufficient default configurations are used. For ex-
ample, the CouchDB instance preconfigured with Hyperledger
Fabric was found to be susceptible to direct unauthenticated
manipulation by via the built-in web interface, voiding integrity
assumptions of the framework [20]. This vulnerable default
configuration is also present in the latest test-network provided
with Fabric 2.1. While this should be prevented by securely
configuring the dependency initially, monitoring configuration
changes and database container logs for foreign IP access
would also detect exploitation.

Cryptographic Vulnerability. Vulnerabilities in crypto-
graphic protocols are a serious threat, since blockchain frame-
works rely on hashes and digital signatures for integrity,

TABLE I
OVERVIEW OF ATTACKS AND CORRESPONDING THREAT INDICATORS (BOTH VULNERABILITIES AND MALICIOUS INTENT).

Attack Category Attack Examples Threat Indicators Type

Contract Vulnerability Reentrancy [19], delegatecall [13], Dependency in-
jection [17]

scanned potential vulnerabilities
threat intelligence on vulnerabilities

Proactive
Proactive

Framework Vulnerability Unrestricted Chaincode Containers [20] framework releases Proactive

Dependency Vulnerability CouchDB web interface [20] threat intelligence on vulnerabilities
dependency container logs

Proactive
Reactive

Cryptographic Vulnerability Quantum Computing Threat [17], Hash Collision
Resistance Attack [17]

threat intelligence on vulnerabilities Proactive

Denial of Service Dust transactions [4], Storage pollution [20] transaction throughput
transaction latency
incoming network messages
oustanding transactions

Reactive

Network Partitioning BGP hijacking [21], DNS attacks [4], [22], Eclipse
attack [4], [22], Attack of the Clones [21]

connected peers Reactive

Malicious Consensus Behavior Consensus Delay [4], Alternative History [7], [20],
Block Withholding [4], Transaction Reordering [20]

discarded blocks
latest block hashes
leader election frequency
outstanding transactions (age)
client application outgoing transactions

Reactive

Consensus Configuration Manipulation Batch Time attack [20], Block Size attack [20] configuration changes
configuration value bounds

Proactive

Identity Provider Compromise CA Attack [20], [22], Sybil attacks [18], [20], [23],
Boycott attack [20], Blacklisting attack [20]

certificate requests (successful/denied)
certificate revocations
transactor identities

Reactive

authentication and non-repudiation. If SHA256 were to be
affected by a collision-resistance attack similar to the one dis-
covered for SHA-1 (CVE 2005-4900), most major blockchain
frameworks would be affected [17]. Detecting such an attack is
only possible by monitoring threat intelligence, i.e. new CVEs
in the NIST database.

B. Malicious Intent

Denial of Service (DoS). While blockchain systems are
less threatened by DoS than centralized servers due to built-in
replication and fault-tolerance, targeted attacks still represent
a threat. To achieve DoS, an outsider may attempt to flood
specific or multiple blockchain peers with TCP syn packets.
In particular, DoS attacks targeting the consensus leader can
significantly reduce or stall consensus entirely [17]. Internal
attackers with access to the network can simply send a large
number of transactions (or transactions with a large size),
which must all be processed by endorsing peers [4]. Even if
they are invalid they are included in the blockchain by all peers,
polluting the storage [20]. Consequently, indicators for DoS
attacks are low transaction throughput and high transaction
latency [27]. Since these metrics are also affected by other
factors (such as network usage by regular Transactors), moni-
toring incoming network messages and incoming transactions
provides a more comprehensive picture.

Network Partitioning. Internal attackers may attempt to
partition a blockchain network by manipulating network rout-
ing [4]. The goal of such an attack is manipulation of the con-
sensus protocol. This can be accomplished through network-

level attacks such as BGP hijacking [21] and DNS attacks
[4], [22]. This attack can then be followed up with consensus
manipulation attacks. Examples of attacks based on network
partitioning include the Attack of the Clones on the Proof-of-
Authority consensus protocols [21]2 and Eclipse attacks [4]. In
permissioned networks, monitoring the number of connected
peers can be used to detect network partitioning attempts.

Malicious Consensus Behavior. Orderer Admins can
launch a variety of attacks by behaving maliciously during
consensus. A Consensus Delay attack can be initiated by
peers propagating invalid blocks [4]. The Intentional Fork
attack in Hyperledger Fabric describes a similar scenario where
the ordering service sends out conflicting versions of blocks
to peers [20]. Both attacks result in consensus delay since
the blockchain peers waste computing power on verifying
invalid blocks. They can be detected by monitoring the number
of discarded blocks that were received through peer-to-peer
communication.

If several Orderer Admins collude, they may attempt to
rewrite the blockchain in an Alternative History attack [7],
[20]. This requires > 50% of nodes to collude (crash-fault
tolerance), or > 2f nodes for byzantine-fault tolerant consen-
sus where 3f + 1 nodes tolerate f malicious nodes. To detect
any state forks or attempts at rewriting history, the latest block
hashes of all peers must be monitored and compared.

Byzantine attacks become possible when a non byzantine-
fault tolerant (BFT) consensus algorithm is used. Hyperledger
Fabric 2.1 only offers Kafka and Raft implementations, which

2applicable to permissioned networks based on Ethereum

Fig. 4. Proposed Blockchain Security Monitoring pipeline.

are merely crash-fault tolerant. A malicious Raft node may
prevent consensus indefinitely by constantly starting new
leader elections, or cause correctness violations if elected as
leader [28]. Leader election misbehavior can be detected by
monitoring leader election frequency.

A malicious leader (also possible in BFT consensus [4]) is
more difficult to detect, since it may cause different types of
correctness violations. For example, during a Block Withhold-
ing [4] or Sabotage [20] attack the consensus leader or ordering
service witholds blocks containing unwanted transactions, or
transactions from specific participants. This attack can be
detected by monitoring the age of outstanding transactions
in the transaction pool. Transactions with a large age indicate
that the orderer cluster is not reaching consensus on them.

Another example of a correctness violation is a Trans-
action Reordering attack, where the leader of the ordering
service reorders transactions to favor specific organizations
[20]. Orderer Admins might abuse this to gain an advantage
in smart contracts where timing is critical. If an organization
relies on such timing-critical contracts, it should track client
application outgoing transactions. When the transaction is
eventually included in a block, reordering can be detected by
comparing timestamps.

Consensus Configuration Manipulation. If an attacker
controls a majority of consensus nodes, it becomes possible
to manipulate the consensus process by changing configuration
values. For the Hyperledger Fabric Ordering service, the Batch
Time attack and Block Size attack are known [20]. Both can
delay transactions indefinitely by increasing the time until
transactions are included in a block. To mitigate this threat,
configuration changes should be monitored to detect unsafe
configuration values outside of specified bounds before they
are approved by Peer Admins.

Identity Provider Compromise. In Hyperledger Fabric,
identity providers are referred to as Membership Service
Providers (MSPs) and the default implementation is called
Fabric-CA. A Fabric-CA MSP may be compromised through
private key theft, also referred to as a CA Attack [22].
The actual theft of private keys cannot be detected from
the blockchain framework’s perspective, but malicious actions
using these keys can be discovered. A frequently-cited example
are sybil attacks, where a single attacker forges multiple
identities [18], [23], i.e. with certificates from a compromised

MSP. These identities may be used to circumvent contract
endorsement policies, and thus manipulate contract execution
[20]. Sybil attacks can be detected by closely monitoring
newly issued certificates. Since this may not be possible for
certificates issued by external MSPs, Transactor identities
should also be monitored.

The Boycott attack refers to a scenario where two organiza-
tions are under the same MSP and one of them is denied new
certificates [20]. Consequently, the CA should be monitored
for denied certificate requests. The Blacklisting Attack is based
on revoked certificates and may result in peers or Transactors
losing network access [20], [23]. Since certificate revocations
should normally occur rarely, the number of revoked certifi-
cates is of interest.

V. DATA COLLECTION AND PROCESSING

To assemble the threat indicators developed above, a pipeline
for data collection and processing is needed. The goal of
data processing is to provide an aggregated view of the threat
indicators, enabling an expert to detect security threats.

We derive the data processing pipeline from the SIEM
pattern [29]. Initially, data is collected from internal blockchain
data sources (log collection) and enriched with external data.
Subsequently it must be normalized to a common data format
(enrichment & normalization). The following steps are outside
the scope of this paper, but briefly discussed in Section
VII. Correlating multiple indicators (Correlation & Analysis),
visualizing them (Visual Analytics) and triggering alerts (Alerts
& Incident Response) provide valuable aid to security experts.

Log Collection. Logs are collected from various sources
producing different types of information: numeric metrics (i.e.
transactions per second), application log events and blockchain
state events. Depending on the framework they are retrieved
via push or pull mechanisms. A summary of data sources
for Hyperledger Fabric is shown in Table II. The Operations
Service provides numeric metrics about current operation,
which can be consumed by a Prometheus (pull) or a StatsD
instance (push). Peer channel-based event services allow an
agent to subscribe to channel-specific block data (push), which
also includes application-level chaincode events. Log data is
provided by the Docker containers of the Hyperledger Fabric
components, which provide logs of configurable log level detail
(such as INFO and DEBUG). This includes auxiliary services

TABLE II
HYPERLEDGER FABRIC 2.1 DATA SOURCES AND METRICS [30].

Data Type Source Collection

Numeric Metrics Numeric Prometheus (Peer, Orderer, MSP) Pull
Numeric Metrics Numeric StatsD (Peer, Orderer, MSP) Push
Channel Events Application data SDK (Peer) Push
Logs Behavioral Docker (Peer, Chaincode, Orderer, MSP, CouchDB) Pull
Blockchain state/history Application data SDK (Peer) Pull

such as Fabric-CA (identity provider) and CouchDB (state
database provider). Finally, the full spectrum of blockchain
data is available via the Peer SDK, but data must be queried
on demand (pull). In addition to these built-in data sources,
chaincode vulnerability scanners provide log files for ingestion.

Enrichment & Normalization. Events occurring within the
organization are enriched with contextual data from external
systems. If accessible, data from connected blockchain peers’
APIs should be collected. Such external peer data can help
determine whether an incident is isolated or network-wide.

Depending on the blockchain setup, additional data sources
may be needed. There are several optional blockchain features
that involve external systems:

• Permissionless Blockchain Anchoring: The anchoring
status needs to be monitored in case the anchoring chain is
broken. Periodic API requests to a node on the anchoring
target blockchain can provide the required data.

• Oracles: Oracles provide external data to smart contracts.
If an oracle is manipulated or compromised the conse-
quences can be severe for the relying contract. Thus, data
provided by oracles should be monitored for anomalies.

• Cross-chain interactions: Cross-chain interactions such
as hash-timelocked contracts are used to exchange assets
between blockchains. The status of these asset swaps
on blockchains other than the primary monitoring target
should be tracked, in case there is an issue with contracts
on either side of the swap.

• Off-chain storage: Blockchain applications often link
data on the blockchain via hashes for timestamping and
non-repudiation purposes. The availability of the linked
data should be periodically checked.

VI. EVALUATION

To validate the detectability of the indicators outlined above
in Table I, we conducted experiments with a Hyperledger
Fabric deployment. We inspected log files and data sources
hands-on to determine whether attacks can actually be detected
with currently provided data sources. Hereafter, we elaborate
for each attack which data source is suitable, and how these
data sources could be improved to enhance detectability.

Scanned potential vulnerabilities. To our knowledge, only
two vulnerability scanners exist for Hyperledger Fabric, both
closed-source and only supporting Go chaincode (Chaincode
Scanner3 and an unnamed tool [24]). The coverage of these
tools can be augmented by language-specific ones such as

3https://chaincode.chainsecurity.com/

gosec4. However, there is a clear need for open-source chain-
code scanners with support for all chaincode languages.

Threat intelligence on vulnerabilities. To be able to detect
new vulnerabilities and upgrade network nodes as soon as pos-
sible, threat intelligence feeds need to be monitored constantly
for vulnerabilities relevant to blockchain components. How-
ever, searching the NIST National Vulnerability database for
"Hyperledger Fabric" yields 0 results. As of today, there are no
blockchain-specific sources of threat intelligence information.
Nevertheless, threat intelligence feeds can be monitored for rel-
evant keywords (i.e. gRPC, CouchDB, Golang, SHA256) and
manually filtered for applicable threats. Additional sources can
be community collaboration tools for open-source frameworks
(i.e. monitoring the Hyperledger JIRA5 or mailing list for the
keyword security).

Framework releases. Hyperledger Fabric provides a
GitHub feed with the latest releases6. Each release has sections
on known and resolved vulnerabilities, which can be used to
determine if a timely upgrade is needed.

Dependency Container Logs. If CouchDB is used with
Hyperledger Fabric, all requests are logged to the Docker
container logs including the IP address, time and request URL.
This information can be used to detect suspicious requests from
foreign IP addresses and other types of attacks.

Transaction throughput. Throughput can be
observed based on Fabric’s ordering service metric
broadcast_processed_count, which counts the
number of processed transactions over time. Alternatively, this
metric can be computed based on the transactions contained
in block data, which is needed for other metrics (i.e. latest
block hashes).

Transaction latency. Transaction latency can be computed
as the delay between transaction timestamp and the block
timestamp of the transaction’s block. This metric is thus
computed for each transaction upon block inclusion. By sub-
scribing to Hyperledger Fabric’s Channel Events, this metric
can be computed for each transaction in each block signed by
the ordering service.

Incoming network messages. The operations services pro-
vides numerous metrics for monitoring network communi-
cation. gossip_comm_messages_received tracks mes-
sages received via peer gossip, and the grpc_server_*
metrics track gRPC communication with clients.

4https://github.com/securego/gosec
5https://jira.hyperledger.org
6https://github.com/hyperledger/fabric/releases

Outstanding transactions. To our knowledge, there
is no metric that keeps tracks of outstanding unpro-
cessed transactions. This would be beneficial to deter-
mine the cause of unprocessed transactions (high system
load or deliberate exclusion). For transaction delay at-
tacks, the operations service provides the histogram metric
blockcutter_block_fill_duration, which monitors
the time from transaction enqueuing at the orderer to inclusion
in a block. By monitoring transactions fill duration over time,
the average age of outstanding transactions can be determined.

Connected peers. Ordering service outgoing
connections can be measured using the metric
cluster_comm_egress_tls_connection_count,
while peer connections are evident from grpc_comm_
conn_opened. While isolated disconnections may also
be caused by a benign crash fault, multiple can indicate a
network partition.

Discarded blocks. The peer container logs provide informa-
tion about received and validated blocks, which can be used to
determine which blocks were successfully validated. Since this
requires preprocessing, a built-in metric would be desirable.

Leader election frequency. For Hyper-
ledger Fabric’s Raft consensus, the metric
consensus_etcdraft_leader_changes provides
a counter for leader changes, and orderer log files indicate
which node was elected. Tracking leader changes over time
can provide an indication of potential attacks. It would be
beneficial if the consensus algorithm also indicated failed
leader elections, to be able to detect nodes continuously
proposing elections.

Latest block hashes. Block hashes can be computed based
on the block headers, which are obtained through channel
block event subscription. A block hash in Hyperledger Fabric
is the SHA256 hash of the block number, the block data hash
and the previous block’s hash. Tracking the correctness of
block hashes over time provides certainty that no blockchain
reorganization has occurred.

Client application outgoing transactions. Outgoing trans-
actions signed by a Hyperledger Fabric SDK contain the
transaction hash and timestamp. These can be sent to and
tracked by a monitoring service (push).

Configuration changes. Since timely notification about
configuration updates is essential, this metric should also
be derived through block subscription to the Channel Event
Hub. Configuration transactions are identified by the type
CONFIG_UPDATE. Additionally, the operations service pro-
vides the metric consensus_etcdraft_config_
proposals_received, which keeps tracks of configura-
tion transaction proposals.

Certificate requests and revocations. When using Fabric-
CA server, certificate creation can be monitored by counting
POST requests to /enroll ([INFO] log level). Successful
requests have status code 2xx, while denied requests are
evident from status codes 4xx and 5xx. For details such as the
name of the registered identity, [DEBUG] log level is required.

Revocations are monitored using log entries for requests to the
/revoke endpoint.

Transactor identities. The node.JS SDK provides a way to
subscribe to new blocks of a channel (registerBlock
Event method). The listener receives all transactions as part
of the block, and each transaction contains the full sender
certificate as part of the signature. Using these certificates, a
monitoring system can keep track of existing identities.

VII. DISCUSSION

After demonstrating practical feasibility of our concept, we
now take a broader perspective and focus on integration with
existing security monitoring facilities. This includes SIEM
systems, but also Security Operations Centers (SOCs), which
interpret data provided by monitoring systems.

A. SIEM integration

The monitoring architecture shown in Figure 4 can be
implemented by connecting the data sources in Table II to
SIEM software. In the next step, the available data needs to
be normalized to a common format. Based on normalized data,
correlation rules can be derived that pinpoint the source attack
of the issue with certainty. If sufficient data is available to
indicate an ongoing attack, security alerts can be triggered to
prompt a detailed investigation. Thereto there is also significant
potential to help experts interpret blockchain data and metrics
by providing appropriate visualizations, for example as part of
a monitoring dashboard.

B. Organizational aspects

Figure 5 shows how a Blockchain Security Monitor (short-
ened BCSM) interacts with human and software compo-
nents. The security operations team monitors activities on
the blockchain network and identifies the origin of potential
threats. The BCSM only monitors blockchain components
running on systems controlled by its operating organization.
Data from nodes controlled by other organizations in the
consortium may contribute to a complete overview of the threat
situation, but cannot be relied upon.

To be able to detect manipulation by blockchain adminis-
trators, the security operations team must be separate from
the blockchain operations team. It assumes a watchdog role
that can help prevent insider attacks. BCSM is the technical

Security

Operations

Blockchain

Operations

Blockchain

Software Components

Blockchain

Security Monitor

watches over

managesobserves

monitors

alerts

Fig. 5. Organizational integration of blockchain security monitoring.

component that supports this organizational function with
informationa and alerts.

VIII. CONCLUSION

In this paper, we presented a review of attacks on permis-
sioned blockchains. Based on the attacks, we developed indica-
tors for an individual organization in a blockchain network to
detect ongoing attacks, either proactively or reactively depend-
ing on the attack. For these metrics, we proposed a suitable
data processing architecture inspired by SIEM systems. The
feasibility of this architecture was demonstrated by closely
examining the data sources that Hyperledger Fabric offers.

We also identified several areas of improvement for
blockchain security. For example, adding metrics such as dis-
carded blocks and failed leader elections to Hyperledger Fabric
facilitates security monitoring. Additionally, open-source threat
scanners for Hyperledger Fabric chaincode and blockchain-
specific threat intelligence feeds can help patch vulnerabilities
before they can be exploited. Finally, potential for mali-
cious consensus behavior could be significantly reduced by
introducing an ordering service based on BFT consensus for
Hyperledger Fabric.

REFERENCES

[1] T. Jensen, J. Hedman, and S. Henningsson, “How TradeLens delivers
business value with blockchain technology,” MIS Quarterly Executive,
2019.

[2] IBM, “we.trade | IBM,” 2020. [Online]. Available: https://www.ibm.
com/case-studies/wetrade-blockchain-fintech-trade-finance

[3] The Linux Foundation, “Honeywell Case Study – Hyperledger,” 2020.
[Online]. Available: https://www.hyperledger.org/resources/publications/
honeywell-case-study

[4] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang,
and A. Mohaisen, “Exploring the Attack Surface of Blockchain: A
Systematic Overview,” 2019.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick,
“Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” in Proceedings of the Thirteenth EuroSys Conference, ser.
EuroSys ’18. New York, NY, USA: ACM, 2018, pp. 30:1–30:15.

[6] A. Jaquith, Security Metrics: Replacing Fear, Uncertainty, and Doubt.
Addison-Wesley Professional, 2007.

[7] I. Homoliak, S. Venugopalan, Q. Hum, D. Reijsbergen, R. Schumi, and
P. Szalachowski, “The Security Reference Architecture for Blockchains:
Towards a Standardized Model for Studying Vulnerabilities, Threats, and
Defenses,” 2019.

[8] M. del Castillo and M. Schifrin, “Blockchain 50,” 2020. [Online].
Available: https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/
blockchain-50

[9] M. Signorini, M. Pontecorvi, W. Kanoun, and R. D. Pietro, “BAD:
Blockchain Anomaly Detection,” CoRR, vol. abs/1807.0, 2018. [Online].
Available: http://arxiv.org/abs/1807.03833

[10] Q. Zhang, P. Novotny, S. Baset, D. Dillenberger, A. Barger,
and Y. Manevich, “LedgerGuard: Improving Blockchain Ledger
Dependability,” pp. 1–8, 2018. [Online]. Available: http://arxiv.org/abs/
1805.01081

[11] M. Garcia, A. Bessani, and N. Neves, “Lazarus: Automatic Management
of Diversity in BFT Systems,” in Proceedings of the 20th International
Middleware Conference, ser. Middleware ’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 241–254. [Online].
Available: https://doi.org/10.1145/3361525.3361550

[12] M. D. Angelo and G. Salzer, “A Survey of Tools for Analyzing
Ethereum Smart Contracts,” in IEEE International Conference on
Decentralized Applications and Infrastructures, DAPPCON 2019,
Newark, CA, USA, April 4-9, 2019. IEEE, 2019, pp. 69–78. [Online].
Available: https://doi.org/10.1109/DAPPCON.2019.00018

[13] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A Survey on Ethereum
Systems Security: Vulnerabilities, Attacks and Defenses,” CoRR, vol.
abs/1908.0, 2019. [Online]. Available: http://arxiv.org/abs/1908.04507

[14] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He, Y. Tang, X. Lin, and X. Zhang, “SODA: A Generic
Online Detection Framework for Smart Contracts,” in 27th Annual
Network and Distributed System Security Symposium, NDSS 2020. The
Internet Society, 2020.

[15] The Linux Foundation, “Hyperledger Caliper,” 2020. [Online]. Available:
https://www.hyperledger.org/use/caliper

[16] ——, “Hyperledger Explorer,” 2020. [Online]. Available: https:
//www.hyperledger.org/use/explorer

[17] B. Putz and G. Pernul, “Trust Factors and Insider Threats in
Permissioned Distributed Ledgers,” Transactions on Large-Scale Data-
and Knowledge-Centered Systems, vol. XLII, pp. 25–50, 2019. [Online].
Available: http://link.springer.com/10.1007/978-3-662-60531-8_2

[18] D. Dasgupta, J. M. Shrein, and K. D. Gupta, “A survey of blockchain
from security perspective,” Journal of Banking and Financial Technol-
ogy, 2019.

[19] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum
smart contracts (SoK),” in Lecture Notes in Computer Science, 2017.

[20] A. Dabholkar and V. Saraswat, “Ripping the Fabric: Attacks and
Mitigations on Hyperledger Fabric,” in Applications and Techniques
in Information Security, V. S. Shankar Sriram, V. Subramaniyaswamy,
N. Sasikaladevi, L. Zhang, L. Batten, and G. Li, Eds. Singapore:
Springer Singapore, 2019, pp. 300–311.

[21] P. Ekparinya, V. Gramoli, and G. Jourjon, “The Attack of the Clones
Against Proof-of-Authority,” in 27th Annual Network and Distributed
System Security Symposium, NDSS 2020. The Internet Society, 2020.

[22] A. Davenport, S. Shetty, and X. Liang, “Attack Surface Analysis of
Permissioned Blockchain Platforms for Smart Cities,” in 2018 IEEE
International Smart Cities Conference, ISC2 2018, 2019.

[23] J. Holbrook, “Blockchain Security and Threat Landscape,” in
Architecting Enterprise Blockchain Solutions. Wiley, 2020, pp.
323–347. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781119557722.ch11

[24] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Potential Risks
of Hyperledger Fabric Smart Contracts,” in 2019 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE),
2019, pp. 1–10.

[25] S. Riedesel, P. Hakimian, K. Buyens, and T. Biehn, “Tineola:
taking a bite out of enterprise blockchain,” 2018. [Online]. Available:
https://github.com/tineola/tineola

[26] G. Shaw, “Hyperledger Fabric Security Audit,” Nettitude, Tech. Rep.,
2017. [Online]. Available: https://wiki.hyperledger.org/display/fabric/
Audits?preview=/2393550/2393584/technical_report_linux_foundation_
fabric_august_2017_v1.1.pdf

[27] N. Andola, Raghav, M. Gogoi, S. Venkatesan, and S. Verma, “Vulnera-
bilities on Hyperledger Fabric,” Pervasive and Mobile Computing, 2019.

[28] C. Copeland and H. Zhong, “Tangaroa: a Byzantine Fault Tolerant Raft,”
2016.

[29] M. Vielberth and G. Pernul, “A Security Information and Event
Management Pattern,” in 12th Latin American Conference on Pattern
Languages of Programs (SLPLoP), nov 2018. [Online]. Available:
https://epub.uni-regensburg.de/41139/

[30] The Linux Foundation, “Hyperledger Fabric 2.1 Documentation,”
2020. [Online]. Available: https://hyperledger-fabric.readthedocs.io/en/
release-2.1

