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Abstract. We study and compare the two different notions of rational
lisse 1-motives due to Deligne and more recently due to Pepin Lehalleur.
We establish a Néron-Ogg-Shafarevich criterion over normal base schemes
of arbitrary dimension. As an application we obtain new “independence of
`”-results for `-adic cohomology of curves and commutative group schemes.
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6.1 The Néron-Ogg-Shafarevich criterion 54
6.2 Regular schemes and purity 59
6.3 Realization reflects being lisse 59
6.4 Comparing Deligne’s and Pepin Lehalleur’s categories 60
6.5 Application to the cohomology of curves 61

References 61



4



5

1. Introduction

To a scheme X of finite type over a field K and ` a prime different from the
characteristic of K, one can associate well-behaved `-adic cohomology groups

Hi
étpXKs ,Q`q,

which carry an action of the absolute Galois group GalpKs{Kq of K, hence
are naturally étale sheaves on SpecpKq. Suppose now that K is the function
field of a noetherian, finite dimensional, integral normal scheme S on which
` is still invertible. Then one can ask under what circumstances the sheaves
Hi

étpXKs ,Q`q are unramified over S, i.e. lie in the essential image of the fully
faithful restriction functor

res : Shls
étpS,Q`q Ñ ShétpK,Q`q

from constructible lisse étale sheaves over S to constructible étale sheaves over
SpecpKq.

This happens for instance if X is the generic fiber of a proper smooth S-
scheme. In general, the geometric meaning of unramified cohomology groups
seems to be somewhat mysterious. A seemingly more basic question is the
following:

Question 1.1. In the situation above, is unramifiedness of Hi
étpXKs ,Q`q inde-

pendent of `?

Outside of characteristic 0, it is not clear how to answer such a question
in general. In this work, we will use recent advances in the theory of motives
to show that the answer is positive if X is a curve. Let us first explain what
is known for smooth and proper curves, focusing on the case of i “ 1. Let
pSmPrCurvesq {K be the category of smooth and projective curves over K.
Then we can form a commutative diagram

(1.1)

pSmPrCurvesq{K ShétpK,Q`q

AbVarpK,Qq Shls
étpS,Q`q

AbSchpS,Qq

H1
étp´Ks ,Q`q

H1
Mp´,Qq R`

res

R`
res

where AbVarpK,Qq (resp. AbSchpS,Qq) is the isogeny category of abelian
varieties over K (resp. abelian schemes over S), and where H1

MpX,Qq and
R`pAq are slight variants of the Jacobian of a curve X and the `-adic Tate
module of an abelian scheme A. The key result in this situation is commonly
known as the Criterion of Néron-Ogg-Shafarevich:
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Theorem 1.2 ([ST68, Theorem 1], [Gro66b]). Assume that S is either Dedekind
or that all residue characteristics of S are 0. Then the square

AbVarpK,Qq ShétpK,Q`q

AbSchpS,Qq Shls
étpS,Q`q

R`

R`

resAb resSh

satisfies the following condition:

(NOS) The vertical arrows are fully faithful and the essential image of resAb

consists precisely of those objects which are mapped to the essential image
of resSh via R`.

In other words, an abelian variety A over K is the generic fiber of some abelian
scheme over S if and only if R`pAq is the restriction of a lisse étale sheaf over
S.

From this, it is easy to conclude the following

Corollary 1.3 ([ST68, Corollary 1]). If dimpSq “ 1 or all residue characteris-
tics of S are 0 and if X is a smooth, proper curve over K, then the answer to
Question 1.1 is positive.

Indeed, with i “ 1 being the only difficult case, we see that H1
étpXKs ,Q`q is

unramified over S if and only if H1
MpX,Qq extends to an abelian scheme over

S. The latter condition does not depend on `.
There are two directions in which we will generalize the above result: Allowing

general curves X and allowing general normal base schemes S.
Allowing general curves is not a difficult generalization: Deligne defined cate-

gories of lisse 1-motives MDel
1 pS,Qq [Del74, Définition 10.1.2, Variante 10.1.10],

which generalize abelian schemes and for which a diagram analogous to (1.1)
exists [Del74, Définition 10.3.4], without assuming the curves to be smooth or
proper. We will recall his theory below in Section 2.1. The analogue of Theo-
rem 1.2 for Deligne 1-motives was shown for Dedekind schemes in the thesis
of Matev [Mat14] and is shown for base schemes in characteristic 0 below, see
Corollary F. We do not whether this result can be extended to more general
base schemes.

Passing to general normal schemes S is by far harder, because we do not
know whether an analogue of Theorem 1.2 holds in this context. More precisely,
note that Theorem 1.2 actually holds before passing to the isogeny categories.
Such an integral statement is known to be false in positive and even in mixed
characteristic (see [Gro66b, Remarque 4.6] and [dJO97, §6], respectively). Even
rationally, Grothendieck expressed strong doubts about a positive answer1 and
the author is not aware of any substantial progress on this question since it
was first proposed. As the category of abelian schemes is a full subcategory of
Deligne’s category of 1-motives, the question is also open for the latter.

We thus have use different categories of 1-motives, relying on recent advances
in the theory of mixed motives. In full generality of Question 1.1, one would
expect the following motivic criterion of Néron-Ogg-Shafarevich:

1“[...] une réponse affirmative à la question generale qu’on vient de soulever me semble
cependant assez peu plausible.” [Gro66b, Rermarque 4.8]
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Conjecture 1.4. There are abelian categories MpT,Qq (and MlspT,Qq) of
(lisse) mixed motives, naturally associated to any scheme T . Moreover, there
are contravariant functors

Hi
Mp´,Qq : pSchq{T Ñ MpT,Qq

as well as covariant realization functors

R` : Mplsq
pT,Qq Ñ Sh

plsq
ét pT,Q`q

for any prime ` invertible on T . Finally, there is be a commutative Diagram

pSchq{K ShétpK,Q`q

MpK,Qq Shls
étpS,Q`q

MlspS,Qq

Hiétp´Ks ,Q`q

HiMp´,Qq R`

p:q

res

R`
res

for any i ě 0 and ` invertible on S, such that the square p:q satisfies the
condition pNOSq.

Such a result would immediately imply a positive answer to Question 1.1:
Indeed, then Hi

étpXKs ,Q`q would be unramified over S if and only if Hi
Mp´,Qq

is the restriction of an object of MlspS,Qq. The latter condition clearly does
not depend on `.

Conjecture 1.4 can be deduced from standard conjectures on rational motivic
sheaves DMp´,Qq: It would follow from conservativity of `-adic realizations
and the existence of a motivic t-structure, see Proposition 2.8. Unfortunately,
both of those assumptions seem to be far out of reach.

The outlook improves considerably if one restricts the attention from general
schemes over K to curves. In this setting, Pepin Lehalleur has recently estab-
lished a satisfying theory of mixed relative 1-motives. In particular, he defines
categories M1p´,Qq and M1,lsp´,Qq of (lisse) mixed 1-motives, which have
outstanding formal properties recalled in Section 2.4. As one would expect, they
are the heart of a t-structure on a suitable subcategory of DMp´,Qq. Moreover,
the `-adic realization functors are indeed conservative when restricted to these
subcategories. Finally, for a finite type separated morphism f : Y Ñ X, we have
an adjunction

f˚ : M1
pY q� M1

pXq : τ 1,ď0ω1f˚

defining a 1-motivic pushforward functor.
Unfortunately, deducing the analogue of Conjecture 1.4 in this setting is

not quite formal, because of two reasons: First, the 1-motivic pushforward
functor τ 1,ď0ω1f˚ does not coincide with the usual pushforward f˚, and its
interaction with the `-adic realization is unclear, see Question 1.5. An secondly,
the categories M1p´q are not symmetric monoidal, because the product of two
curves is no longer a curve. These two problems notwithstanding, we prove the
full analogue of Conjecture 1.4 for curves, under the mild assumption p‹q on
our schemes S.
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p‹q S is noetherian, finite dimensional and all finite type S-schemes satisfy
resolution of singularities by alterations.

This assumption is in particular satisfied for schemes of finite type over an
excellent noetherian surface.

Theorem A (Theorem 6.1). Let S normal integral scheme satisfying p‹q, let `
be a prime invertible on S, and let j : U Ñ S be an open immersion. Then the
following is true:

‚ For N P M1,lspS,Qq, the canonical map

N Ñ τ 1,ď0ω1j˚j
˚N

is an isomorphism.
‚ Let M P M1,lspU,Qq be a lisse 1-motive such that R`pMq is unramified

over S. Then the pushed forward motive

τ 1,ď0ω1j˚M

lies in M1,lspS,Qq.
In particular, the square

M1,lspU,Qq ShétpK,Q`q

M1,lspS,Qq Shls
étpS,Q`q

R`

R`

res res

satisfies pNOSq.

As a consequence, we obtain the following positive answer to Question 1.1.

Corollary B (Corollary 6.15). Let S satisfy p‹q and be normal, integral with
function field K. Let X be a curve or a semi-abelian scheme over K. If `, `1

are two primes invertible on S, then Hi
étpXKs ,Q`q is unramified over S if and

only if Hi
étpXKs ,Q`1q is.

We also deduce the Zariski-Nagata purity statement

Corollary C (Corollary 6.10). Let S be a regular scheme satisfying p‹q and
j : U Ñ S be an open dense immersion whose complement has codimension at
least 2. Then

j˚ : M1,ls
pS,Qq Ñ M1,ls

pU,Qq
is an equivalence of categories with inverse ω1j˚; no truncation is needed.

Finally, we get the following general fact

Corollary D (Theorem 6.11). Let S be a (not necessarily normal) scheme
satisfying p‹q. An object M P M1pSq is lisse if and only if R`pMq is a lisse
sheaf.

Besides the excellent formal properties of DMp´,Qq, our main tool in proving
Theorem A is Deligne’s category of 1-motives MDel

1 p´,Qq. Pepin Lehalleur
constructed a comparison functor

ΦS : MDel
1 pS,Qq Ñ M1,ls

pS,Qq
and showed that it is fully faithful if S is regular. We improve this result and
obtain the following comparison
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Theorem E (Corollaries 6.13 and 6.14). Let S be a normal integral scheme
satisfying p‹q. Then the comparison functor

ΦS : MDel
1 pS,Qq Ñ M1,ls

pS,Qq
is fully faithful. If dimpSq “ 1 or S is of characteristic 0, it is even an equivalence
of categories.

In particular, Theorems A and E yield

Corollary F (Corollaries 4.14 and 4.15). Let S be a normal connected noether-
ian scheme with field of functions K and assume that either dimpSq “ 1 or that
S is a Q-scheme. Then a Deligne 1-motive over K whose `-adic realization is
unramified over S has good reduction over S.

In fact, we will prove a slightly more precise version of this result first, see
Theorem 4.10, and use it as a stepping stone in the proof of Theorem A. We
refer the reader to Section 3 for an overview of how to prove Theorem A.

Open questions and future work. Let j : U Ñ S be an open immersion
between normal schemes. Our main theorem can be seen as understanding for
lisse objects the behavior of the pushforward functor

τ 1,ď0ω1j˚ : M1
pUq Ñ M1

pSq

on 1-motives. Understanding this functor both for more general motives as well
as for more general morphisms seems very desirable. A positive answer to the
following question would be helpful, as it would allow to control the functor
using realizations:

Question 1.5. Let f : X Ñ Y be a finite type morphism of schemes and
M P M1pXq. Is the canonical transformation

H0
pf˚R`pMqq Ñ R`pτ

1,ď0ω1f˚Mq

an equivalence?

Note that Theorem A implies a positive answer if M is lisse, f is an open
immersion and Y is normal.

In another direction it would be very interesting to generalize the results of
[PL19, PL17] in some part from rational to integral motives (with all residue
characteristics still inverted, say). Indeed, consider the following question.

Question 1.6. Let j : U Ñ S be an open immersion between Dedekind schemes,
and let A be an abelian scheme over U with Néron model N over S. Is the
canonical morphism

ΦSpNq Ñ ω1j˚ΦUpAq

an equivalence?

Discussions with Pepin Lehalleur have made it very plausible to the author
that the answer is yes, and that indeed the component group of the Néron model
appears as first cohomology of ω1j˚ΦUpAq. With the component group being
rationally trivial, this becomes interesting only if one works with some integral
version of 1-motives. Finally, seeing that the pushforward for 1-dimensional
bases seems to recover Néron models, it is a tantalizing question what hap-
pens for dimpSq ą 1, where Néron models might no longer exist: Theorem A



10

implies that in the situation where A has unramified Tate module but no
semi-abelian continuation over S (see [Gro66b, Remarque 4.6] for an example),
the 1-motivic pushforward τ 1,ď0ω1j˚ΦUpAq behaves like a Néron model would
[BLR90, Corollary 8.3.6], even though no Néron model exists.
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2. Background and conventions

2.1. Schemes and Deligne 1-motives. All schemes in this paper are sup-
posed to be noetherian, separated and finite dimensional. Except in Section 4,
we will further assume that S is quasi-excellent and satisfies resolution of singu-
larities by Galois-alterations, which we recall to be the case for schemes of finite
type over an excellent noetherian scheme of dimension less or equal to 2 [dJ97,
Theorem 5.13]. For S a scheme, ` a prime invertible on S and Λ P tZ`,Q`u,
we write ShétpS,Λq for the categories of constructible étale sheaves with Λ-
coefficients defined in [SGA77, Exposé VI, Définition 1.1.1] and Shls

étpS,Λq for
constructible lisse étale sheaves with Λ-coefficients. We further write Dét,cpS,Z`q
for Ekedahl’s category Db

cpS ´ Z`q [Eke90, Theorem 6.3], a b-triangulated
category equipped with a t´structure having ShétpS,Z`q as heart. We set
Dét,cpS,Q`q “ Dét,cpS,Z`q bZ Q and direct the reader to [CD16, 7.2.20, 7.2.21]
for an explanation why we don’t need to worry about the finiteness hypotheses
of [Eke90, Chapter 6].

Definition 2.1 ([Del74, Variante 10.1.10]). Let S be a scheme. An integral
Deligne 1-motive is a two-term complex

rL
u
ÝÑ Gs

of commutative group schemes over S where L is an étale lattice and G is a
semi-abelian scheme sitting in an extension

(2.1) 1 Ñ T Ñ GÑ AÑ 1

with T a torus andA an abelian scheme. Morphisms are morphisms of complexes
of group schemes. We denote the resulting category by MDel

1 pS,Zq and we
write MDel

1 pS,Qq for MDel
1 pS,Zq bQ. Pulling back group schemes equips those

categories with contravariant functoriality.

Note that, contrary to some other conventions in the literature, we do not
Karoubi-complete MDel

1 pS,Qq. In all relevant cases, the category is going to
be abelian anyways, so that this distinction does not matter. We direct the
reader to [Mum65, Chapter 6] and [FC90, Chapter 2] for key facts about abelian
and semi-abelian schemes; see also [BVK16, Org04] for an extensive treatise
of Deligne 1-motives over a field and their relation to triangulated categories
of mixed motives. We recall that an étale lattice is a group scheme which is
étale locally isomorphic to a constant finitely generated free abelian group
scheme, and that a torus is a group scheme étale locally isomorphic to Gr

m. We
call a lattice (resp. a torus) split, if it is isomorphic to Zr (resp. Gr

m,S). We
also remind the reader that Homp´,Gm,Sq defines an anti-equivalence between
lattices and tori, which is a special case of general Cartier-Duality of 1-motives
[Del74, 10.2.10], which we recall as Proposition 4.5. Finally, recall that in (2.1),
the semi-abelian scheme G determines the abelian part A and the toric part T
uniquely. More generally, any Deligne 1-motive rL

u
ÝÑ Gs comes with a so-called

weight filtration given by

r0 Ñ T s Ñ r0 Ñ Gs Ñ rLÑ Gs
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whose graded pieces r0 Ñ T s, r0 Ñ As, rLÑ 0s are called pure 1-motives. Note

that this also gives a filtration on the `-adic realization of rL
u
ÝÑ Gs, which we

introduce now.

Proposition 2.2. Let S be a scheme, and Λ be Z or Q.

‚ Denote by pSm {Sqét the site given by the category of schemes smooth
over S equipped with the étale topology. Putting the lattice part L of a
Deligne 1-motive rLÑ Gs in degree 0 and the semi-abelian part G in de-
gree 1, we may see MDel

1 pS,Λq as a full subcategory of CplpShppSm/Sqet,Λqq,
the category of complexes of Λ-linear étale sheaves on pSm {Sqét. More
is true: The induced functor

Φ̂S : MDel
1 pS,Λq Ñ DpCplpShppSm/Sqet,Λqqq

into the derived category is fully faithful, i.e. any quasi-isomorphism
of complexes already is an isomorphism of Deligne 1-motives [PL19,
Lemma A.6].

‚ If k is a field, then MDel
1 pSpecpkq,Qq is abelian [Org04, Proposition

3.2.2]. If k1{k is a purely inseparable field extension, then the pullback
functor

MDel
1 pSpecpkq,Qq Ñ MDel

1 pSpecpk1q,Qq
is an equivalence of categories [PL17, Proposition 3.6].

Definition 2.3. Let S be a scheme and let ` be a prime invertible on S. We
define the `-adic Tate module functor

T` : MDel
1 pS,Zq Ñ Shls

étpS,Z`q
by sending a Deligne 1-motive rL

u
ÝÑ Gs to the inverse system given by

trL
u
ÝÑ Gs b Z{`rurPN

where the b is the (left derived) tensor product in DpCplpShppSm/Sqet,Zqqq. It
is an easy check that the above is well-defined, i.e. gives a complex concentrated
in degree 0. Rationalizing, we obtain a realization functor

R` : MDel
1 pS,Qq Ñ Shls

étpS,Q`q.

Let us make explicit how the sheaves in the inverse system look like. If
rL

u
ÝÑ Gs is a Deligne 1-motive and T Ñ S is étale, then the T -values of the

étale sheaf rL
u
ÝÑ Gs b Z{`r are given by

tpk, gq P LpT q ˆGpT q | upkq “ `r ¨ gu{xtp`rk, upkqquy.

2.2. Symmetric monoidal8-categories. As customary, we write “8-category”
for “p8, 1q-category” and work with quasi-categories as developed by Joyal and
Lurie. Except in Section 5 we do not distinguish between a 1-category and
its nerve. Derived categories of abelian categories are understood as stable
8-categories; we remind the reader that the notion of a t-structure is defined
purely in terms of the homotopy category. Some of the key arguments rely
on symmetric monoidal structures on the categories considered, see [Lur17,
Definition 2.0.0.7] for the notion of a symmetric monoidal 8-category and
[Lur17, Remark 2.4.2.6] for the definition of the 8-category of such gadgets.
We write Prst,b for the 8-category of stable presentably symmetric monoidal
8-categories, i.e. symmetric monoidal 8-categories whose underlying category
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is stable and presentable and such that the tensor product preserves small
colimits in each variable separately, see [Lur17, Propositions 4.8.1.15, 4.8.2.18]
for the definition of this category. We recall that Prst,b comes with a forgetful
functor

Prst,b Ñ zCat8

to the category of large 8-categories. This is a limit preserving functor be-
tween complete categories by [Lur17, Proposition 4.8.1.15, Corollary 3.2.2.5]
and [Lur09, Proposition 5.5.3.13].

Let Cb be a symmetric monoidal 8-category. Following [Lur17, Definition
4.6.1.7] we call an object c of C dualizable, if there is an object c_ such that
´b c_ is left and right adjoint to ´b c in the homotopy category hpCq. This
notion can also be found under the names strongly dualizable and rigid in the
literature. For later use, we record two well-known auxiliary statements:

Lemma 2.4 ([HPS97, Theorem A.2.5 (a)]). Let C be a symmetric monoidal
stable 8-category. The full subcategory Cls of dualizable objects is a thick sub-
category.

Lemma 2.5. Let S be a scheme and ` invertible on S. An object of ShétpS,Q`q

is lisse if and only if it is dualizable in Dét,cpS,Q`q.

Proof. Both directions of the general case reduce to the strictly local case: On
the one hand, a sheaf is lisse if and only if its specialization morphisms are
isomorphisms by [Fu11, Proposition 5.8.9]. On the other hand, dualizability is a
statement about certain morphisms being isomorphisms, which can be checked
on stalks. Hence assume that S is strictly local. A lisse sheaf is then constant
and thus dualizable.

For the other direction, it is enough to consider specializations along discrete
valuation rings by our assumptions on the base scheme. Hence consider S to
be the spectrum of a strictly hensenlian dvr with i : Z Ñ S the inclusion of the
closed point and j : U Ñ S the inclusion of the open point. Take a constructible
Q`-sheaf F on S which is dualizable in Dét,cpS,Q`q. Denote by G the constant
sheaf on S taking as values the global sections of F . We thus get a canonical
morphism

φ : G Ñ F
which we claim to be an isomorphism. First observe that i!F is concentrated in
degree 2 by absolute purity and that we hence have an equality F – τď0j˚j

˚F .
This means that on the open point, φ is identified with the inclusion of the
invariants into a module with a Galois action, and is in particular injective.
Hence we see that φ is an injective morphism of sheaves. Denoting by H its
cokernel, we hence get a short exact sequence

G Ñ F Ñ H

of constructible étale sheaves. By Lemma 2.4 we see that H is still dualizable,
but now satisfies i˚H “ 0. We will prove in what follows that this is enough to
conclude H “ 0.

Indeed, let H_ be the dual of H in Dét,cpS,Q`q and consider the unit

η : Q` Ñ H bH_
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of the adjunction witnessing dualizability of H. As H bH_ is concentrated in
τ -nonnegative degrees, it factors over

η̄ : Q` Ñ τď0
pH bH_

q

which is again just a morphism of usual étale sheaves. But the right hand side
has

i˚τď0
pH bH_

q – τď0
pi˚H b i˚H_

q – 0

by i˚H – 0, hence has no global sections over S and does thus not admit a
nonzero map from the constant sheaf Q`. Thus, we see that η̄ and hence η is
the zero morphism. Now by the triangle identity for the dualizing adjunction,
we see that the identity on H factors as pεb idq ˝ pidbηq showing that it is the
zero morphism, and that H is hence already zero. This shows the claim. �

Remark 2.6. The author does not know whether the analogous statement for
general objects of ShétpS,Q`q is, or should expected to be, true. He once thought
it to be obvious and thanks Denis-Charles Cisinski for setting him straight.

2.3. Rational mixed motives. While the abelian categories of mixed mo-
tives from Conjecture 1.4 have not been constructed yet, we do have reasonable
candidates for its derived category. If the base is a field, such categories have
been independently constructed by Hanamura, Levine and Voevodsky. This
construction has been extended to more general bases by Ayoub, and later
again by Cisinski and Déglise. Indeed, Ayoub constructs in [Ayo14, §3] a closed
symmetric monoidal stable combinatorial model category whose homotopy cat-
egory he denotes by DAét

pS,Qq. Recall that with rational coefficients, this and
other candidate categories for the derived category of mixed motives are known
to agree, see [CD19] and [CD16] for comparison results. We will write simply
DMpSq for the underlying closed presentably symmetric monoidal compactly
generated stable 8-category, an object of Prst, see [Lur17, Proposition 4.1.7.10].
As usual, we denote by DMcpSq the subcategory of compact objects. This for-
malism has been worked out in 8-categorical language in [Hoy17] and [Kha16];
for a very nice synopsis, we direct the reader to [RS19, §2].

We write DMdl
pSq for the full subcategory of DMpSq spanned by dualizable

objects. We recall that the tensor unit is compact [Ayo14, Proposition 3.19], so
that DMdl

pSq is contained in DMcpSq.
Let ` be a prime invertible on S. We write R` for the `-adic realization functor

R` : hopDMcpSqq Ñ Dét,cpS,Q`q

defined by Ayoub [Ayo14, Definition 9.6] and extended by Cisinski-Déglise
[CD16, Theorem 7.2.24]. Beware that we define R` only on the level of closed
symmetric monoidal triangulated categories, because we have not put any kind
of 8-categorical enhancement on our categories of `-adic sheaves. We will
abuse notation by passing implicitly to the homotopy categories whenever
realization functors appear, as we never need additional structure. The reader
who dislikes leaving the realm of stable 8-categories may think about the
8-category presented by DMh,cpS,Q`q from [CD16], which effectively is an
enhancement of Dét,cpS,Q`q.

Finally, while not logically necessary for the rest of the paper, let us recall the
dream of a motivic t-structure (see [And04, Chapitre 21, Conjecture 22.1.4.1])
and how it would in particular imply Conjecture 1.4:
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Conjecture 2.7. Let S be a scheme and ` a prime invertible on S. Then there
is a t-structure on DMpSq restricting to DMcpSq such that the `-adic realization
DMcpSq Ñ Dét,cpS,Q`q is t-exact and conservative.

We note that by conservativity of the realization, the motivic t-structure is
uniquely determined if it exists (although it might a priori depend on `).

Proposition 2.8. Conjecture 2.7 implies Conjecture 1.4.

Proof. Define MpS,Qq to be the heart of the motivic t-structure τM on DMpSq.
For f : X Ñ S, set M ipXq “ Hi

MpMpXqq “ Hi
Mpf˚QXq and define further

MlspS,Qq to be the full subcategory of objects of MpS,Qq lying in DMdl
pSq.

The formula R`pM
ipXqq “ Rif˚Q` holds because the `-adic realization is

compatible with pushforwards and is t-exact. Let r : SpecpKq Ñ S be the
canonical map. The motivic restriction

res “ r˚ : Mls
pS,Qq Ñ MpK,Qq

is fully faithful because for any M P MlspS,Qq, the adjunction morphism

M Ñ τM,ď0r˚r
˚

is an isomorphism. This follows from conservativity of R` together with the
analogous statement for lisse étale sheaves. Let finally N P MpK,Qq be an
object such that R`pNq is the restriction of a lisse sheaf over S. Then

R`pτ
M,ď0r˚Nq “ H0 r˚R`pNq

is lisse, hence dualizable in Dét,cpS,Q`q by Lemma 2.5. But as R` is a symmetric
monoidal closed conservative functor, it reflects dualizability, so we can conclude
that

τM,ď0r˚N P Mls
pS,Qq

and hence the Conjecture follows. �

Remark 2.9. Given the conjectural definition of lisse motives above, one might
be tempted to write DMls

pSq instead of DMdl
pSq. We would like to reserve the

former notation for the full subcategory of DMpSq spanned by compact objects
whose cohomology groups under the motivic t-structure lie in MlspS,Qq (or, to
give an unconditional definition, whose realizations all have lisse cohomology
sheaves). Whether DMls

pSq and DMdl
pSq should be expected to agree is unclear

to the author and linked to remark 2.6.

2.4. Pepin Lehalleur’s 1-motives. As noted above, Deligne’s category of
1-motives MDel

1 pS,Qq is expected to be the right one if the base S is the
spectrum of a perfect field. As Pepin Lehalleur’s category M1pS,Qq proceeds
via DMpSq, it is worthwhile to quickly recall the relation between MDel

1 pS,Qq
and DMpS,Qq. By Proposition 2.2 we have an embedding of MDel

1 pS,Qq into
CplpShppSm/Sqet,Qqq. Postcomposing with first the A1-localization and then
the T -stabilization, we obtain a functor

Φ̃Sp1q : MDel
1 pS,Qq Ñ DMpSq

and then define

Φ̃S :“
`

Φ̃Sp1q
˘

p´1q.
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The final Tate twist is there for technical reasons: Using terminology introduced
just below, it is because the image of Φ̃Sp1q consists of homological motives and
we want to work with cohomological ones.

Definition 2.10 ([PL19, Definitions 1.1, 3.1]). Let S be a scheme.

‚ The category DMcoh
pSq is the smallest localizing subcategory of DMpSq

containing

tf˚QX | f : X Ñ S properu.

‚ The category DM1
pSq is the smallest localizing subcategory of DMpSq

containing

tf˚QX | f : X Ñ S proper and of relative dimension at most 1u.

‚ The inclusion DM1
pSq Ñ DMcoh

pSq preserves small sums, hence has a
right adjoint

ω1 : DMcoh
pSq Ñ DM1

pSq.

by adjoint functor theorems.

Replacing the pushforward f˚ along proper morphisms f by f7 for smooth
f yields analogous homological categories. It is however unclear whether an
analogue to ω1 exists in this setup. It is easy to see that some restriction on
f besides being of relative dimension less or equal to 1 is necessary for the
definition of DM1

pSq to make sense. Indeed, open immersion are of relative
dimension zero, but their pushforward picks up contributions from the closed
complement by localization sequences, hence should not be covered by a theory
of 1-motives. The categories introduced above satisfy the expected stability
properties and a version of localization.
Proposition 2.11 ([PL19, Propositions 1.17, 1.12, Corollary 1.19]).

‚ The subcategory DM1
p´q Ă DMp´q is preserved by f˚ for arbitrary

morphisms f and by f! for quasi-finite morphisms f .
‚ The subcategory DMcoh

p´q Ă DMp´q is preserved by pullback along
arbitrary morphisms as wells as by f !, f˚, f! as long as f is separated
and of finite type.

‚ Let M P DMpSq and let i : Z Ñ S and j : U Ñ S be complemen-
tary closed and open immersions. Then M lies in DMcoh

pSq (resp.
in DM1

pSq) if i˚M and j˚M lie in DMcoh
pZq and DMcoh

pUq (resp.
DM1

pZq and DM1
pUq).

If one restricts to compact objects, the last point gives rise to a punctual recon-
naissance criterion by continuity.

The fact that DMcoh is preserved by pushforward along separated, finite type
morphisms f : S Ñ T distinguishes it from DM1 and is the reason to consider
it. Indeed, using the reflection ω1, we get an adjunction

f˚ : DM1
pT q� DM1

pSq : ω1f˚.

which, as we will see below, even restricts to compact objects.
The case where the base S “ Specpkq is the spectrum of a perfect field k

has been extensively studied rather early. Voevodsky announced and Orgogozo
proved the following comparison:
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Theorem 2.12 ([Org04][PL19, Lemma 3.12]). Let S be the spectrum of a
perfect field. Then Φ̃S has essential image in DM1

pSq and in fact induces an
equivalence of categories

Db
pMDel

1 pS,Qqq Ñ DM1
cpSq.

In particular, we can use this equivalence to transport the standard t-structure
from the left hand side to a nice t-structure on the right hand side, having
as MDel

1 pS,Qq as heart. Also, as `-adic realization of Deligne 1-motives is
conservative, we get a corresponding conservativity statement for DM1

cpSq.
In [BVK16], a “motivic Picard functor”

ω1 : DMcoh
c pSq Ñ DM1

cpSq

is constructed, again in the perfect field case. The t-structure and the motivic
Picard functor are investigated for not necessarily compact motives in [ABV09]
and [Ayo11].

Let us describe how to generalize these results to an arbitrary base scheme
S. First, we have the following result on the comparison functor Φ̃S.

Theorem 2.13 ([PL19, Corollary 2.19]). Let S be a scheme. The comparison
functor Φ̃S has essential image in DM1

cpSq, giving rise to

Φ̃S : MDel
1 pS,Qq Ñ DM1

cpSq.

If S is moreover geometrically unibranch, the essential image of Φ̃S lies also in
DMls

pSq.

This is a rather hard result. The difficult part is deriving the assertion
for the abelian scheme part A, which builds on the relation between Φ̃SpAq
and the motive of A explored in [AEWH15] and [AHPL16]. The restriction
to geometrically unibranch base schemes on the other hand is forced by the
toric and lattice part. Presumably one could avoid this assumption by working
systematically with the pro-étale topology instead of the étale topology. This
technical point is discussed in detail in [PL19, Appendix A]. An easier result is
the observation that conservativity of the `-adic realization functor still holds
over general bases, see [PL19, Proposition 4.1]. This follows quite directly from
the localization property of DMp´q and the punctual conservativity statement.

The two main results which we now discussed in the case of spectra of perfect
fields and we still have to generalize are ω1 restricting to compact objects and
the existence of a nice t-structure. Dropping the perfectness assumption is not
a problem, see [PL17, Propositions 3.6,3.7; Lemma 3.8]. In order to pass to
general bases, there are two different approaches available. Working exclusively
with compact objects, Vaish has found a way to glue together the punctual
motivic Picard functor as well as the punctual motivic t-structures to get global
results, see [Vai17]. Pepin Lehalleur’s approach [PL19, PL17] on the other hand
develops everything for not necessarily compact objects first and deals with
the problem of restricting to compact objects later. The first key result is the
existence of a geometric motivic Picard functor:

Theorem 2.14 ([PL19, Theorem 3.21] resp. [Vai17, Theorem 5.2.2]). The
functor ω1 : DMcoh

pSq Ñ DM1
pSq preserves compact objects.
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The proofs of this is result are rather nontrivial: Pepin Lehalleur relies on
explicitly relating ω1f˚Q to the relative Picard complex of f for a special class
of functions f , while Vaish’s method builds upon the results from [BVK16] on
the motivic Albanese and Picard functors. Finally, Pepin Lehalleur defined a
t-structure on DM1

pSq:

Definition 2.15 ([PL19, Definition 4.10]). The 1-motivic t-structure τ 1 on
DM1

pSq is the cohomological t-structure generated by the family

te#Φ̃SpMq | e : U Ñ S étale, M P MDel
1 pU,Qqu

of compact objects. We denote by M1pSq its heart and by M1,lspSq the full
subcategory of M1pSq spanned by objects which lie in DMdl

pSq.

We refer the reader to [Ayo07, Definition 2.1.68] for the notion of generated
t-structures. In the above setup, it means that the full subcategory DM1,ď0

pSq of
DM1

pSq is spanned by those objects which are left orthogonal to all e#Φ̃SpMq.
Note that contrary to the homological conventions of [Ayo07, PL19, PL17]
we use cohomological notation. We indicate this by using superscripts for the
truncation functors and hope that it does not lead to confusion. This 1-motivic
t-structure is non-degenerate by [PL19, Proposition 4.30] and agrees with the
already constructed t-structure if the base is the spectrum of a field by [PL19,
Proposition 4.21]. A key result is the fact that this t-structure restricts to
compact objects:

Theorem 2.16 ([PL17, Theorem 4.1], resp. [Vai17, Theorem 5.2.4]). The t-
structure τ 1 restricts to compact objects.

Let us also summarize the known exactness properties of the four functors
with respect to τ 1.

Proposition 2.17 ([PL19, Proposition 4.14]). Let f be a morphism of schemes.
Then f˚ is t-left exact and ω1f˚ is t-right exact with respect to τ 1. If f is quasi-
finite and separated, then f! is t-left exact, and hence ω1f ! is t-right exact.
Finally, if f is finite, then f˚ is t-exact.

Recall that f˚ preserves DM1
p´q Ă DMp´q for finite morphisms, hence we

do not need ω1 in this case. If we restrict to compact objects, we obtain the
following useful

Proposition 2.18 ([PL17, Theorem 4.1]). For any morphism f : T Ñ S, the
induced functor

f˚ : DM1
cpSq Ñ DM1

cpT q

is t-exact. Moreover, if ` is a prime invertible on S, the restriction of the rational
`-adic realization functor

R` : DM1
cpSq Ñ Dét,cpS,Q`q

is t-exact with respect to τ 1 on the left hand side and the standard t-structure
on the right hand side.

This is highly non-formal and relies on an explicit geometric analysis of
degenerating curves, which is the main content of [PL17].
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Having discussed the t-structure on DM1
pSq, we can now talk about compar-

ing MDel
1 pS,Qq to M1pSq. As a first step, we see that the comparison functor

Φ̃S has image in the heart.

Theorem 2.19 ([PL19, Corollary 2.19, Theorem 4.22]). The comparison func-
tor Φ̃S restricts to

ΦS : MDel
1 pS,Qq Ñ M1

pSq.

If S is geometrically unibranch, then, as noted above, its essential image even
lies in M1,lspSq.

Pepin Lehalleur also proved the following full faithfullness assertion:

Theorem 2.20 ([PL19, Theorem 4.31]). Let S be a regular scheme. Then

ΦS : MDel
1 pS,Qq Ñ M1,ls

pSq

is fully faithful.

As noted in the introduction, we will generalize this result to drop the
strong regularity assumption and also investigate essential surjectivity, see
Theorem 6.12 as well as Corollaries 6.13 and 6.14.

We also need compatibility of the two notions of realization along ΦS:

Lemma 2.21. Let S be a scheme, ` a prime invertible on S, and let M P

MDel
1 pS,Qq be a Deligne 1-motive. Then there is a canonical isomorphism

R`pMqp´1q – R`pΦSpMqq
in Shls

étpS,Q`q.

Proof. This is just unraveling the definitions. The additional Tate twist on the
left hand side is forced by our choice of baking such a twist into the definition
of ΦS. By construction of both rational realizations, we choose the obvious
integral model and reduce to understanding the mod `r-cases instead. There,
rigidity tells us that composing

DpCplpShppSm/Sqét,Z/`qqq Ñ DA1,étpS,Z{`q – Dét,cpS,Z{`q
is just the obvious restriction from Sm/S to Et/S. As the first functor on the
integral level is monoidal, we are finally reduced to comparing the restriction
to the small etale site of

Mb Z{`r,
the (derived) tensor product taking place inside DpCplpShppSm/Sqet,Zqqq, with
the `-adic realization of Deligne 1-motives and we notice that they coincide by
construction. �



21

3. Strategy of proof

In this section, we sketch the proof of the main theorem.

Theorem A (Theorem 6.1). Let S normal integral scheme satisfying p‹q, let `
be a prime invertible on S, and let j : U Ñ S be an open immersion. Then the
following is true:

‚ For N P M1,lspS,Qq, the canonical map

N Ñ τ 1,ď0ω1j˚j
˚N

is an isomorphism.
‚ Let M P M1,lspU,Qq be a lisse 1-motive such that R`pMq is unramified

over S. Then the pushed forward motive

τ 1,ď0ω1f˚M

lies in M1,lspS,Qq.
In particular, the square

M1,lspU,Qq ShétpK,Q`q

M1,lspS,Qq Shls
étpS,Q`q

R`

R`

res res

satisfies pNOSq.

We divide the statement in a uniqueness-type and a existence-type statement,
which are proven quite differently.

Lemma U (Lemma 6.6). Let j : U Ñ S be an open immersion of normal
schemes, and let N P M1,lspSq be a lisse 1-motive over S. Then the canoncial
map

N Ñ τ 1,ď0ω1j˚j
˚N

is an isomorphism.

Note that this statement is strictly stronger than the assertion that the
pullback

j˚ : M1,ls
pSq Ñ M1,ls

pUq

is fully faithfull.

Lemma E (Lemma 6.7). Let j : U Ñ S be an open immersion between normal
schemes, and let M P M1,lspUq be a lisse 1-motive whose `-adic realization has
good reduction over S. Then after passing to a finite étale cover of S, we find a
lisse 1-motive N P M1,lspSq with j˚N –M .

As the functor τ 1,ď0ω1j˚ is compatible with finite étale base change, the two
statements together clearly imply the main theorem.
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Proof of Lemma U. The proof the uniqueness statement is fairly straightforward.
If S is regular, this was communicated to the author by Pepin Lehalleur; in
that case, one can use absolute purity and dualizability of N to understand the
exceptional inverse image of N under the inclusion SzU Ñ S. As one knows
how ω1 interacts with Tate twists, this allows one to conclude. For the general
case, assume for simplicity that there is a resolution of singularities p : S̃ Ñ S
with S regular, which we can assume to be an isomorphism over U by shrinking
U . Then the already shown regular case allows to reduce to showing in fact
that

N Ñ τ 1,ď0ω1p˚p
˚N

is an isomorphism. This we can do locally in the h-topology. Using then that p
acquires a section after passing to the h-cover given by p itself, the statement
follows from faithfullness of `-adic realizations together with a similar statment
for lisse `-adic sheaves.

Proof of Lemma E, Case of dimension less or equal 2. The existence part of the
statement is more involved. The essential idea is to construct the 1-motive N
locally in the rh-topology and then glue the local pieces. For a Deligne 1-motive
M , consider the following assumption

p‹q The lattice part and the character lattice of the toric part are constant
group schemes, and the `2-quotient T`pAq{`

2 of the `-adic Tate module
of the abelian part A of M is also constant.

The assumption on the lattice and toric part makes those 1-motives easier to
work with, but is not essential; the assumption on the abelian part could be
also called ”existence of a level `2-structure and is needed because the moduli
functor paramtrizing polarized abelian schemes with level ě 4-structure is
representable by a scheme and not merely a DM-stack. At any rate, every
Deligne 1-motive satisfies p‹q after pulling back along a finite étale cover, which
we allowed ourselves in the statement of the theorem. The following result
reduces extending Deligne 1-motives to extending abelian schemes:

Theorem 3.1 (Theorem 4.10). Let S be a normal connected noetherian scheme

of finite dimension and ` be a prime number invertible on S. Let M “ rL
u
ÝÑ Gs

be a Deligne 1-motive over the generic point η of S and suppose that its abelian
part A and its `-adic Tate module F both have good reduction. Then M has
good reduction.

This together with the classical criterion of Néron-Ogg-Shafarevich handles
the case dimpSq “ 1 directly. Assume now dimpSq “ 2. By continuity and the
uniqueness result, we can reduce to S being strictly local with closed point
s P S. By the 1-dimensional case, we can assume given a Deligne 1-motive
M P MDel

1 pU,Zq such that its `-adic Tate module extends to a lisse `-adic sheaf
F over S. In particular, M automatically satisfies condition p‹q. We outline
the construction of a lisse 1-motive N P M1,lspSq with j˚N – ΦUpMq.

Step 1: Extending M after modifying the base.

We find a proper morphism p : Ŝ Ñ S from a normal, connected Ŝ that is
an isomorphism over U together with a Deligne 1-motive M̂{Ŝ extending M ,
see Proposition 4.28. For the abelian part, this follows from the existence of a
moduli scheme of polarized abelian varieties with level structure together with
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our assumptions on existence of F . Theorem 4.10 allows us to then deduce the
statement for the whole of M .

Step 2: The 1-motive over the exceptional fiber is isoconstant.

In fact, Section 4.3 is devoted to proving the following

Theorem 3.2 (Theorem 4.18). Let k be a field of exponential characteristic
p and let ε : S Ñ Specpkq be a geometrically connected finite type reduced
k-scheme. Then the functor

ε˚ : MDel
1 pSpecpkq,Zr1{psq Ñ MDel

1 pS,Zr1{psq

is fully faithful with essential image those 1-motives M P MDel
1 pS,Zr1{psq whose

`-adic realization R`pMq is constant over S b k̄ for some (hence every) prime
` ‰ p.

In our situation, this produces a 1-motive Ms P MDel
1 ps,Zq together with an

isogeny

φs : Ms ˆ Ŝs Ñ M̂

of Deligne 1-motives over Ŝs, where we denote by Ŝs :“ pŜˆS sqred the reduced
special fiber.

Step 3: Using h-descent for motives.

As the square

Ŝ Ŝs

S s

p

i1

p1

i

is an abstract blow-up square (up to passing to reduced subschemes, which
is inconsequential), we get an equivalence of symmetric monoidal stable 8-
categories

DMpSq Ñ DMpŜq ˆDMpŜsq
DMpsq.

see Lemma 5.7.

Step 4: Input from category theory.

Objects of pullbacks of 8-categories are easy to describe. In particular, the
triple

´

ΦŜpM̂q,ΦspMsq,ΦŜs
pφsq : pp

1
q
˚ΦspMsq – pi

1
q
˚ΦŜpM̂q

¯

defines an object N in the pullback above, which is strongly dualizable by a
result of Lurie [Lur17, Proposition 4.6.1.11].
Step 5: End of the proof.

Observe that j˚N – ΦUpMq by construction, so it remains to check that N is
in DM1

pSq and actually in the heart of the t-structure. This can be checked
on points of the basis S [PL19, Proposition 1.25] and [PL17, Theorem 4.1 (ii)],
where it is obvious by construction: Over U , we have j˚N – ΦUpMq P M1,lspUq
and over s we have Ns – ΦspMsq P M1,lspsq.
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Proof of Lemma E, Higher dimensional case. The strategy of proof for the
surface case has to be adapted somewhat to work in the higher dimensional
case. To fix ideas, consider the case dimpSq “ 3 and assume as before that S
is strictly local, that j : U Ñ S has complement of codimension 2, and that
M P MDel

1 pU,Zq has `-adic Tate module with good reduction over S, hence
that M satisfies condition p‹q. We use the same numbering for steps as in the
2-dimensional case, and we will use the following notational convention: Starting
with S0 :“ S and U0 :“ U , schemes with upper indices will denote subschemes
of S. Modifications thereof will be denoted with a hat and upper indices in
curly brackets, e.g. Ŝt0u will denote a modification of S0. A collection of upper
indices refers to the reduced subscheme which underlies the fibered product of
all schemes over S, e.g

St0,1u,2 :“
´

Ŝt0u ˆS Ŝ
t1u
ˆS S

2
¯

red
.

Finally, canonical morphisms between such gadgets will be denoted with the
letter p, carrying as superscript the index of the source and as subscript the
index of the target. For example,

p
t0u
0 : Ŝt0u Ñ S0

will be a modification.

Step 1: Extending M over a modification.
As before, we construct a modification

p
t0u
0 : Ŝt0u Ñ S0

of S0 with Ŝt0u, such that pt0u is an isomorphism over U0 and such that we have
an extension M̂0 of M over Ŝt0u. As announced above, we set S1 :“ pS0zU0qred
and

Ŝt0u,1 :“ pŜt0u ˆS S
1
qred

to be the reduced exceptional locus of the modification, giving a commuting
diagram

Ŝt0u Ŝt0u,1

U0

S0 S1.

p
t0u
0 p

t0u,1
0

̂0

j0

Step 2: The 1-motive over the exceptional locus comes generically from a
1-motive downstairs.
As SzU is no longer 0-dimensional, we can not apply Theorem 4.18 directly;
however, by continuity, we do get a result generically on S1. In fact, we find
over a normal open dense j1 : U1 Ñ S1 a Deligne 1-motive M1 together with
an isogeny

φ1,0 :
´

q
t0u,1
1

¯˚

M1
– M̂0

|pŜt0u,1ˆS1U1q

where q
t0u,1
1 is the base change of p

t0u,1
1 along j1. Note that S1 has no reason to

be normal, so we cannot expect to extend M1 over the whole of S1. This forces
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us to repeat the first step with S1 in place of S0:

Step 1 again: Extending M1 over a modification.
As above, we construct a diagram

Ŝt1u Ŝt1u,2

U1

S1 S2

p
t1u
1 p

t1u,2
1

̂1

j1

and an extension M̂1 of M1 over Ŝt1u. More importantly, we can also extend
the constructed isogeny φ1,0 in the following sense: Setting

Ŝt0,1u :“
´

Ŝt1u ˆS0 Ŝt0u
¯

red

and we obtain an isogeny

φ̂1,0 :
´

p
t0,1u
1

¯˚

M1
Ñ

´

p
t0,1u
0

¯˚

M0

by extending φ1,0 using descent results for morphism of 1-motives, see Lemma 4.9.

Step 2 again: M1 is isoconstant over the special fiber of p
t0u
0 .

By our assumptions on S, we know that S2 is a single point and hence we find
a Deligne 1-motive M2 together with an isogeny

φ2,0 :
´

p
t0u,2
0

¯˚

M̂0 Ñ

´

p
t0u,2
2

¯˚

M2

on St0u,2. As an iportant technical point regarding choice of t0u, 2 over t1u, 2,

we note that in general Ŝt1u,2 will not be connected. However, p
t0,2u
0 still has

geometrically connected fibers. Additionally, we need for later reference also a
compatibility condition between M̂1 and M2 on the fibers over S2:

Step 2.5: A compatibility condition.
We need to construct additional isogenies

φ̂1,2 :
´

p
t1u,2
1

¯˚

M̂1
Ñ

´

p
t1u,2
2

¯˚

M2

which come out of the already constructed ones and our descent results. They
are constructed in a way to satsify an evident compatibility condition on Ŝt0,1u,2.
Constructing all those data is the content of Section 4.4, with Corollary 4.33
being the main existence result. Notice that at the end of the construction, we
only work on the modifications (except for S2, because Ŝt2u “ S2). In particular,

objects with mixed upper indices such as Ŝt0u,1 do not play a role in the end.
This is why we adopt a slightly different notational convention in Section 4.4,
dropping the curly brackets again.

Step 3: Using h-descent for motives.
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By an inductive h-descent argument, we see that we get a cartesian cube

DM
´

S0
¯

DM
´

Ŝt1u
¯

DM
´

S2
¯

DM
´

Ŝt1u,2
¯

DM
´

Ŝt0u
¯

DM
´

Ŝt0,1u
¯

DM
´

Ŝt0u,2
¯

DM
´

Ŝt0,1u,2
¯

of symmetric monoidal presentable stable 8-categories.

Step 4: Describing objects in the limit of the more complicated diagram
becomes more annoying in general. Calculating an explicit categorically fibrant
replacement of an equivalent diagram is the subject of Section 5. The upshot is
still the same, however: The constructed motives M̂0, M̂1,M2 and isogenies

φ̂0,1, φ0,2, φ0,1,
´

p
t0,1u,2
t0,1u

¯˚

φ̂0,1,
´

p
t0,1u,2
t0u,2

¯˚

φ0,2,
´

p
t0,1u,2
t1u,2

¯˚

φ1,2

together define (after applying the comparsion functors Φ) a dualizable object
N in the limit of this diagram.

Step 5: Up to some notational clutter, the rest of the proof proceeds exactly
as above, see Lemma 6.7.
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4. On Deligne 1-motives

This section contains various results on Deligne 1-motives which represent
the algebraic geometry backbone of this work.

4.1. Preliminaries on Deligne 1-motives. For any scheme V , denote by
CpV q one of the following categories:

‚ The category of abelian schemes over V ;
‚ The category of étale lattices over V ;
‚ The category of étale tori over V ;
‚ The category of semi-abelian schemes over V which are globally exten-

sions of abelian schemes by tori;
‚ The category of Deligne 1-motives over V ;
‚ The category of smooth `-adic sheaves over V , where ` is a prime number

invertible over V .

In all those cases, the following result is well known:

Proposition 4.1. Let S be normal connected with generic point η and let C be
one of the above. Then the restriction functor

ResC : CpSq Ñ Cpηq
is fully faithful.

Proof. The case of lattices, tori and `-adic sheaves follows from their descrip-
tion as representations of the étale fundamental group and [SGA71, Exp. V
Proposition 8.1]. The case of (semi-)abelian schemes is [FC90, Proposition 2.7],
and those cases are put together to obtain the result for Deligne 1-motives in
[PL19, Proposition A.11]. �

Definition 4.2. Let S, C be as above. An object in Cpηq is said to have good
reduction or to extend over S if it is in the essential image of ResC.

In this context, let us recall the following continuity result, which always
allows to extend objects over η to objects over some open U of S.

Proposition 4.3 (see [PL19, Proposition A.10]). Let S “ limiPI Si be a pro-
jective limit of qcqs schemes with affine transition maps. Assume that

(1) C is the category of abelian schemes or
(2) C is any of the categories listed above with exception of the last one and

all Si are connected normal.

Then
colim
iPI

CpSiq Ñ CpSq

is an equivalence of categories.

Proof. The case of abelian schemes follows from [Gro66a, Théorèmes 8.8.2,
8.10.5] and [Gro67, Proposition 17.7.8], which imply that the category of smooth
proper schemes of finite presentation over S is the colimit of those over the Si;
then use that taking group objects of a category is compatible with passage to
the colimit [Gro66a, Scholie 8.8.3] to deduce full faithfullness. In oder to see
essential surjectivity, start with an abelian scheme A over S and find, by the
observation above, a proper smooth group scheme Ai over some Si which pulls
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back to S. Replacing Ai by the relative connected component of the identity
we obtain an abelian scheme over Si which still pulls back to A.

For the second case we first observe that the category of finite étale connected
schemes over S is the colimit of the categories over the Si. As any étale lattice
on a connected normal scheme is split by a finite étale connected cover, we
can reduce full faithfullness and essential surjectivity to the case of constant
lattices and split tori everywhere. By a duality argument, the only thing left to
do is to spread out morphisms from split lattices to semi-abelian varieties. As
those morphisms are determined by their behavior on a basis which is a finitely
presented S-scheme, we are done by the references above. �

The duality between tori and lattices as well as Cartier duality of abelian
schemes (which works without assumption on the base scheme) extend to
give a Cartier duality theory on 1-motives. The following material is certainly
well-known to experts, but the author could find no adequate reference in the
literature. We thus give a quick sketch of the theory. Fix a base scheme S and
write as shorthand

D :“ DpCplpShppSm/Sqet,Zqqq,
a symmetric monoidal closed stable 8-category whose internal Hom we denote
by r, s, trusting that this does not cause confusion with the shift functor. We
see MDel

1 pS,Zq as a full subcategory of D and suppress the embedding functor
from the notation. For a 1-motive M in MDel

1 pS,Zq we set

M_ :“ rM,Gmr´1ss P D
where Gm “ Gm,S and we recall that by our grading convention Gmr´1s is a
Deligne 1-motive.

Lemma 4.4. Using the notations and conventions above, M_ is again a Deligne
1-motive. Its lattice, toric and abelian part are the Cartier duals of the toric,
lattice and abelian parts of M .

Proof. First, note that the result is well known for pure 1-motives; the second
sentence of the lemma being a tautology. Consider now M “ rLÑ Gs where G
sits in the extension 1 Ñ T Ñ GÑ AÑ 1, with T a torus and A an abelian
scheme. Write for simplicity B, S,X for the Cartier duals of A, T, L. Assume
first L “ 0 to obtain from the extension above a fiber sequence

A_r´1s ÑM_
Ñ T_

showing that M_ “ fibpT_ Ñ A_q is indeed just the Deligne 1-motive rT_ Ñ
A_s. Suppose on the other hand that T “ 0, and note that we have a fiber
sequence

LÑ AÑM r1s

inducing

A_ Ñ L_ ÑM_

and we claim that M_ “ Hr´1s, where H is a semi-abelian variety, extension
of B by S. Indeed, this follows from the above fiber sequence together with the
vanishing of HompB, Sq. We thus have seen that the duality maps the category
of 1-motives without lattice part to the category of 1-motives without toric part
and vice versa. This is the only instance of Cartier duality which is going to be
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used in this work, but for completeness, we further explain the case of general
1-motives M . From the fiber sequence

M Ñ L
u
ÝÑ G

we get a fiber sequence G_
u_
ÝÑ Sr´1s ÑM_. On the other hand, we have fiber

sequences
pGq_r1s Ñ X Ñ B

and
S Ñ H Ñ B

which yield a commutative diagram

G_ Xr´1s Br´1s

Sr´1s Hr´1s Br´1s

M_ M_

u_ φ

of fiber sequences, showing that M_ is indeed the 1-motive rX
φ
ÝÑ Hs. Note that

the vanishing of HompB, Sq guarantees that φ is unique, as it should be. �

Using this calculation, we obtain the full Cartier duality.

Proposition 4.5. The functor p´q_ defines an autoequivalence on MDel
1 pS,Zq.

There is a canonical natural isomorphism id Ñ p´q__. Finally, if ` is a prime
invertible on S, then we get a natural perfect pairing

R`pMq bR`pM
_
q Ñ Z`p1q.

Proof. With the category of Deligne 1-motives sitting fully faithfully inside D,
it is clear from the above lemma that the duality induces an endofunctor of
MDel

1 pS,Zq. From the adjunction between internal Hom and tensor product in
D, we get from the identity rM,Gmr´1ss Ñ rM,Gmr´1ss a canonical morphism

rM,Gmr´1ss bM Ñ Gmr´1s

which is classically called Poincaré Biextension of M , and which again by
adjunction yields the natural morphism

M Ñ rrM,Gmr´1ss,Gmr´1ss “M__.

By classical duality results, this is an isomorphism on the pure pieces of M , by
naturality it is hence an isomorphism for all 1-motives M . Similarly, applying R`

to the Poincaré Biextension yields the mentioned pairing on `-adic realizations,
coinciding with the Weil Pairing if M is an abelian scheme. Hence perfectness
of the pairing is known for pure 1-motives and thus for all 1-motives. �

We axiomatize a strategy of proving statements about 1-motives which relies
on this duality.

Lemma 4.6 (Duality trick). Let pPq be a statement about Deligne 1-motives
such that

(1) pPq is true for abelian schemes over S
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(2) pPq is true for a 1-motive of the form r0 Ñ Gs if and only if it is true
for its dual rX Ñ A_s.

(3) If pPq is true for a 1-motive r0 Ñ Gs in CsabpSq, it is also true for all
1-motives of the form rLÑ Gs in MDel

1 pSq.

Then pPq is true for all objects of MDel
1 pSq.

Proof. Let rL Ñ Gs be a 1-motive in MDel
1 pSq with toric part T and abelian

part A. As pPq is true for r0 Ñ A_s by 1q, it also holds for rX Ñ A_s by 3q and
hence for r0 Ñ Gs by 2q. Now we may apply 3q a second time to conclude. �

In particular, in order to generalize a statement from abelian schemes to
generalize 1-motives one can usually assume that the statement already holds
for globally semi-abelian schemes.

Lemma 4.7. Let S be a locally noetherian scheme, ` a prime invertible on S
and M1,M2 P MDel

1 pS,Zq. Then the canonical map

HomMDel
1 pSqpM1,M2q Ñ HomShls

étpS,Z`q
pT`pM1q, T`pM2qq

is an injection.

Proof. The statement is well known for abelian schemes by schematic density
of the `8-torsion and is easy for lattices and tori. Denote the graded pieces of
the weight filtration of Mi by GrjpMiq and denote by

Homfil
pT`pM1q, T`pM2qq Ă HompT`pM1q, T`pM2qq

the subset of homormorphism that are compatible with the filtration coming
from the weight filtration of 1-motives. The commutative diagram

HompM1,M2q
ś

j“´2,´1,0

HompGrjpM1q, GrjpM2qq

Homfil
pT`pM1q, T`pM2qq

ś

j“´2,´1,0

HompT`pGrjpM1qq, T`pGrjpM2qqq

HompT`pM1q, T`pM2qq

then finishes the proof. �

Lemma 4.8. Let S be locally noetherian reduced, M1,M2 be two Deligne 1-
motives over S whose toric and lattice parts are split. Then the functor which
associates to an S scheme S 1 the set

HomMDel
1 pS1,ZqppM1qS1 , pM2qS1q

is representable by an S scheme H which is unramified and essentially proper
(satisfies the valuative criterion for properness, but is not necessarily finitely
presented).

Proof. If M1,M2 are abelian schemes, the statement follows from a result of
Murre together with Proposition 4.1, as explained in [Gro66b, Proof of Proposi-
tion 1.2]. Applying the duality trick, we may assume that the statement is true
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for semi-abelian schemes. Let Li (resp. Gi) be the lattice (resp. semi-abelian)
part of Mi. The cartesian square of fppf-sheaves on S

HomMDel
1 pS1qpM1,M2q HomS1´grppG1, G2q

HomS1´grppL1, L2q HomS1´grppL1, G2q

reduces us to showing that the bottom morphism is an unramified and essentially
proper morphism of schemes. This is clear as L1 is assumed to be split. �

The following is an extension of [Gro66b, Proposition 1.2] to the context of
1-motives.

Lemma 4.9. Let S be noetherian reduced with maximal points tηiuiPI , ` be a
prime invertible on S and let M1,M2 be two Deligne 1-motives over S whose
toric and lattice part are split. Suppose we are given a morphism

u : R`pM1q Ñ R`pM2q

as well as morphism
fi : pM1qηi Ñ pM2qηi

with R`pfiq “ uηi. Then there is a unique morphism f : M1 ÑM2 with fi “ fηi
and R`pfq “ u.

Proof. By the continuity result Proposition 4.3, the morphisms fi extend to a
morphism fU over some open dense normal U Ă S. Denote by H the scheme
representing the functor from Lemma 4.8. The morphism fU corresponds to
a section φU : U Ñ H of H Ñ S over U , which we need to extend over S.
Applying [Gro66b, Lemme 1.2.1] we need to check that for any finite morphism
p : S 1 Ñ S with S 1 reduced such that U 1 :“ S 1 ˆS U is dense in S 1 and any
morphism u1 : S 1 Ñ H such that u1|U 1 “ φU ˝ p, the two composites in

S 1 ˆS S
1 ⇒ S 1

u1
ÝÑ H

agree. This follows by applying Lemma 4.7 to this situation and using that u is
defined over S. �

4.2. Good reduction of Deligne 1-motives. The main result of this section
is the following.

Theorem 4.10. Let S be a normal connected noetherian scheme of finite
dimension and ` be a prime number invertible on S. Let M “ rL

u
ÝÑ Gs be a

Deligne 1-motive over the generic point η of S and suppose that its abelian part
A and its `-adic Tate module F both have good reduction. Then M has good
reduction.

We will deduce Theorem 4.10 from the more specific Lemma 4.12 below.

Definition 4.11. Let S, ` be as above, let G be a semi-abelian variety that is
an extension of an abelian variety by a torus over S, and let v : S Ñ G be a
section. For r P N, let V`,rpvq be the locally constant étale sheaf of sets on S
which on T Ñ S evaluates to

V`,rpvqpT q :“ ty P GpT q | `r ¨ y “ vu.
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Lemma 4.12. Let S, `,G be as above, and assume in addition that the toric part
of G is a split torus. Let j : U Ñ S be an open dense inclusion and v : U Ñ G be
a section of G over U . Suppose that for all r P N, we are given locally constant
étale sheaves of sets Wr on S together with isomorphisms j˚Wr – V`,rpvq. Then
v extends to a (necessarily unique) section ṽ : S Ñ G.

Let us show that this lemma is enough to prove the main theorem.

Proof of Theorem 4.10. Denote the toric part of M by T , so G sits in an ex-
tension

1 Ñ T Ñ GÑ AÑ 1.

We first claim that extension of F implies in particular that T and L extend.
Since F extends, the Tate modules of L and T certainly extend because they are
subquotients of F and triviality of a group representation passes to subquotients.

To see that L extends we have to check that the associated homomorphism

πét
1 pη, η̄q Ñ GLpLη̄q

factors over πét
1 pS, η̄q. However, the composition

πét
1 pη, η̄q Ñ GLpLη̄q ãÑ GLpLη̄ bZ Z`q,

which describes the Tate module of L, does. For T , we can apply the same
argument to the cocharacter lattice and hence see that both L and T extend.

Hence assume that L, A, T and F have extensions L ,A, T and F over S.
Using the duality trick, it is enough to prove the theorem under the assumption

that G extends. Indeed, 1-motives of the form r0 Ñ Gs correspond via Cartier
duality of 1-motives to 1-motives of the form rX Ñ A_s where A_ is the dual
abelian variety to A and X “ HompT,Gmq, see 4.5, whose `-adic Tate module
is dual to that of G. Note that A extends if and only if A_ extends and X
extends if and only if T extends. Hence under our assumptions, both the lattice
part and the semi-abelian part of rX Ñ A_s extend. Hence, as explained before,
if we produce a proof under the assumption that the semi-abelian part extends,
we can apply it first to rX Ñ A_s and then dualize to obtain an extension of
G over S, and then apply it again to obtain an extension of rLÑ Gs.

Thus we assume that G extends to G in what follows, and we only need to
worry about extending u in the general case. As extensions of u are necessarily
unique, it is by descent sufficient to produce such an extension after passing
to an étale cover of S, so we can assume T to be a split torus and L to be a
constant lattice, and we directly reduce to the case L – Z. By continuity, see
Proposition 4.3, we can assume that the 1-motive extends over a dense open
subscheme j : U Ñ S, and we are reduced to showing that the section

v :“ up1q : U Ñ G

extends to a section ṽ : S Ñ G. Recall that, from the weight filtration of the
1-motive, we get a short exact sequence

0 Ñ T`pGq Ñ T`pMq
γ
ÝÑ Z` Ñ 0

of étale sheaves over η, which by full faithfullness of the restriction functors
extends to a short exact sequence over S. Consider for r P N the resulting
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sequence

0 Ñ T`pGq{`r Ñ F {`r
γr
ÝÑ Z{`r Ñ 0

of étale sheaves of Z{`r-modules over S and set Wr :“ γ´1
r pt1uq. Inspecting

the definition of T`pMq, one directly sees j˚Wr – V`,rpvq and we can apply
Lemma 4.12 to extend v, which concludes the proof of the theorem. �

Proof of Lemma 4.12. First assume dimpSq “ 1. By continuity and étale de-
scent, we may assume that S is the spectrum of a strictly henselian discrete
valuation ring OK with field of fractions K. By assumption on unramifiedness
of roots, we see that v has `r-th roots in GpKq for all r, so we get a map

Zr1{`s Ñ GpKq, 1 ÞÑ v

by choosing compatible roots of v. Considering the diagram

1 T pSq GpSq ApSq 0

1 T pKq GpKq ApKq 0

„

where the isomorphism on the right follows from the Néron mapping property
[BLR90, Proposition 1.2.8], we obtain

GpKq{GpSq – T pKq{T pSq – pKˆ
{Oˆ

Kq
r
– Zr,

which shows that the composite

Zr1{`s Ñ GpKq Ñ GpKq{GpSq
has to be the zero map (as they are no nonzero `-divisible elements in Zr), so
v P GpSq.

If dimpSq ą 1, we can extend the morphism v over any point of codimension
1 by the previous case. By continuity, see Proposition 4.3, we can hence assume
that the complement Z :“ SzU has codimension at least 2 in S. As the torus
T is assumed to be a split torus Gr

m, the first terms of the fppf-cohomology
sequence corresponding to 1 Ñ T Ñ G Ñ AÑ 1 give, using [Sta19, Tag 03P8],

1 // pOSpSq
ˆqr //

��

GpSq //

��

ApSq //

��

PicpSqr

��
1 // pOSpUq

ˆqr // GpUq // ApUq // PicpUqr.

Here the leftmost vertical arrow is an isomorphism, and the rightmost is injective
because S is normal and Z has codimension bigger or equal to 2 (combine [Gro67,
Corollaire 21.6.11] with [Ful98, Proposition 1.8]). After a short diagram chase,
we are reduced to finding a preimage under ApSq Ñ ApUq of the image of v in
ApUq, so we may assume that the toric part of G is trivial.

Now let ν : Y ãÑ A be the reduced closure of v : U Ñ A. Denoting by
π : Y Ñ S the projection, we see that π is proper and an isomorphism over U .
We want to show that π is quasi-finite, because then it will be an isomorphism
by [Sta19, Tag 0AB1] and [Sta19, Tag 02OG] and ν ˝ π´1 will be the extension
of v.

Let Ỹ be the connected component of the normalization of Y in which U is
dense and n : Ỹ Ñ Y be the induced map. Set π̃ “ π ˝ n and ν̃ “ ν ˝ n. As U
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and Ỹ are normal and U is dense in Ỹ , we get isomorphisms V`,rpν̃q – π̃˚Wr for
all r P N. Let i : s̄Ñ S be a geometric point and consider the cartesian square

Ỹs̄ Ỹ

s̄ S.

i1

π̃1 π̃

i

The induced section

ν̃s̄ : Ỹs̄ Ñ AˆS s̄
has V`,rpν̃s̄q – i1˚π˚Wr – π1˚i˚Wr, which is a constant sheaf. Hence ν̃s̄ has `r-th
roots for all r P N and hence factors on reduced connected components over
s̄ by Lemma 4.13 below. As Ỹs̄ has only finitely many connected components,
this then shows that π is quasi-finite and thus finishes the proof. �

Lemma 4.13. Let k be an algebraically closed field in which ` is invertible,
A{k an abelian variety, Y {k of finite type, reduced and connected and α P ApY q
a section that has `rth roots in ApY q for all r P N. Then α factors over
Y Ñ Specpkq.

Proof. Suppose the image of α in A is not a single closed point. Then we find
some point y P Y which is not mapped to a closed point of A, i.e. α gives rise
to a nonzero element β P Apyq{Apkq. By assumption on the existence of roots,
we find a nontrivial map

Zr1{`s Ñ Apyq{Apkq.

This is impossible because the group on the right hand side has no torsion
(as torsion points are k-rational) and is finitely generated by the Lang-Néron-
theorem [Con06, Theorem 2.1]. �

From Theorem 4.10 we can derive three variants of criteria for good reduction
for Deligne 1-motives. First, the classical criterion of Néron, Ogg and Shafarevic
[ST68] gives the following.

Corollary 4.14. Let S be a connected Dedekind scheme with generic point η
and ` be a prime invertible on S. Then a Deligne 1-motive rL Ñ Gs over η
extends over S if and only if its Tate module F does.

Grothendieck’s extension of this criterium for schemes in characteristic 0
[Gro66b, Corollaire 4.2] lets us generalize this.

Corollary 4.15. Let S be a connected normal scheme over Q with generic
point η. Then a Deligne 1-motive rLÑ Gs over η extends over S if and only
if its Tate module F does.

By Proposition 4.3, we get the following general result.

Corollary 4.16. Let S be connected normal with generic point η, and let
rLÑ Gs be a Deligne-1-motive over η whose Tate module extends. Then there
is an open subset V Ă S whose complement SzV has codimension at least 2 in
S such that rLÑ Gs extends over V .

One final application:
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Corollary 4.17. Let S be either a Dedekind scheme or a normal scheme over
Q. Then for U in S open, the categories MDel

1 pU,Qq of Deligne 1-isomotives
are abelian and satisfy Zariski-descent: For an open cover S “ U YV , we obtain
a 2-cartesian square

MDel
1 pS,Qq MDel

1 pU,Qq

MDel
1 pV,Qq MDel

1 pU X V,Qq

which, as all functors are fully faithful, is just an existence statement for objects.

Proof. If there is a prime ` invertible on S, then Corollary 4.14 or Corollary 4.15
show an equivalence

MDel
1 pU,Qq – MDel

1 pη,Qq ˆShls
étpη,Q`q

Shls
étpU,Q`q

from which the claim follows. Otherwise, let `1, `2 be two prime numbers and
Si :“ Sr1{`is the corresponding open cover of S. Given M1 P MDel

1 pS1q,M2 P

MDel
1 pS2q and an equivalence pM1qη – pM2qη, we can first assume that this

equivalence is given by an honest morphism of Deligne 1-motives: Indeed, we
may replace M2 by the extension of pM1qη over S2. We can now use the fact
that the integral categories satisfy descent to show the equivalence

MDel
1 pS,Qq Ñ MDel

1 pS1,Qq ˆMDel
1 pS1XS2,Qq MDel

1 pS2,Qq

which proves the claim. �

The author does not know whether the assumptions in the above corollary
are optimal.

4.3. 1-motives with geometrically constant Tate module. The aim of
this section is to prove the following theorem.

Theorem 4.18. Let k be a field of exponential characteristic p and let ε : S Ñ
Specpkq be a geometrically connected finite type reduced k-scheme. Then the
functor

ε˚ : MDel
1 pSpecpkq,Zr1{psq Ñ MDel

1 pS,Zr1{psq
is fully faithful with essential image those 1-motives M P MDel

1 pS,Zr1{psq whose
`-adic realization R`pMq is constant over S b k̄ for some (hence every) prime
` ‰ p.

We note that full faithfullness holds integrally if there are no inseparable
field extensions floating around.

Lemma 4.19. Let k be a field of exponential characteristic p and let ε : S Ñ
Specpkq be a geometrically connected finite type reduced k-scheme which is also
geometrically reduced. Then

ε˚ : MDel
1 pSpecpkq,Zq Ñ MDel

1 pS,Zq

is fully faithful.
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Proof. Fix a prime ` ‰ p. As S is geometrically connected, ε induces a surjection
on étale fundamental groups and hence

ε˚ : Shls
étpSpecpkq,Z`q Ñ Shls

étpS,Z`q
is fully faithful. For M,N P MDel

1 pSpecpkq,Zq we obtain a commutative square
of abelian groups

HomkpM,Nq HomkpR`pMq, R`pNqq

HomSpε
˚M, ε˚Nq HomSpR`pε

˚Mq, R`pε
˚Nqq

which shows that pulling back 1-motives is faithful. As S is moreover geometri-
cally reduced, we find a finite Galois extension γ : Specplq Ñ Specpkq such that
S has an l-rational point, pulling back along which gives a diagram

HomSpε
˚M, ε˚Nq Homlpγ

˚M,γ˚Nq

HomkpR`pMq, R`pNqq Homlpγ
˚R`pMq, γ

˚R`pNqq

and we see that elements in the image of

HomSpε
˚M, ε˚Nq Ñ Homlpγ

˚M,γ˚Nq

come with a canonical Galois-descent-datum from which we obtain an element
of HomkpM,Nq showing the claimed fullness. �

We fix a set of prime numbers P such that all primes not in P are invertible
on all schemes we consider in the following. As always, ` is a prime number
not contained in P . In practice, P might consist of one prime number or of all
prime numbers except `. The reason we do so is that we hope to eventually
generalize the results of this paper from Q to Zr1{P s-coefficients. The following
terminology allows us to restrict to isogenies of degree only divisible by primes
in P .

Definition 4.20. We call the morphisms (resp. isomorphisms) in MDel
1 pS,Zr1{P sq

admissible quasi-morphisms (resp. admissible quasi-isogenies). An admissible
quasi-isogeny is called admissible isogeny if it is induced by a morphism in
MDel

1 pS,Zq.

We recall the following consequence of the Tate Conjecture for abelian vari-
eties proved by Zarhin and Faltings:

Theorem 4.21. Let S be a reduced connected scheme, locally of finite type
over a field or the integers, A,B P AbSchpSq abelian schemes over S and let
u : T`pAq Ñ T`pBq be a morphism of `-adic sheaves. Suppose that there is a
point s P S such that us : T`pAsq Ñ T`pBsq is induced by a honest morphism
v : As Ñ Bs of abelian schemes. Then there is an admissible quasi-morphism
v : AÑ B with T`pvq “ u.

That this result follows from the now known Tate conjecture for abelian
varieties is already mentioned in the introduction of [Gro66b]. However, the
author is not aware of any proof in the literature except an answer by Keerthi
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Madapusi Pera on mathoverflow [MP13]. For the convenience of the reader, we
repeat his argument here.

Proof. Applying [Gro66b, Proposition 1.2], it is enough to construct the mor-
phism over the normalization of S. Using that S is connected and applying an
inductive argument, we reduce to S connected normal. We want to reduce to
the case that the function field F of S is finitely generated, which is automatic if
S is of finite type over the integers. Let S be of finite type over some field k; we
can assume S to be geometrically connected. We are going to apply essentially
the argument of [Gro66b, 2.2], with a slight modification because we do not
assume the characteristic of k to be 0. Namely we write k as inductive limit
over its finitely generated subfields and obtain, via [Gro66a, Théorèmes 8.8.2,
8.10.5] and Proposition 4.3, a finitely generated subfield k1 of k, a finite type
normal integral scheme S 1 over k1, two abelian schemes A1, B1 over S 1, a point
s1 of S 1 and a morphism v1 : A1s1 Ñ B1s1 such that S 1, A1, B1, s1, v1 base change
to S,A,B, s, v along Specpkq Ñ Specpk1q. Factor k1 Ñ k into k1 Ñ k2 Ñ k
with k Ñ k2 separable and k2 Ñ k purely inseparable, and denote with p´q2

the base changes along Specpk2q Ñ Specpk1q. Then S Ñ S2 is radicial, so u
gives rise to a morphism u2 by topological invariance of the étale site. We claim
that u2 gives rise to a unique u1 : T`pA

1q Ñ T`pB
1q with pu1qs “ T`pv

1q. Indeed,
setting S3 :“ S2 ˆS1 S

2, we obtain a commutative diagram

HomS1pT`pA
1q, T`pB

1qq Homs1pT`ppA
1qs1q, T`ppB

1qs1qq

HomS2pT`pA
2q, T`pB

2qq Homs2pT`ppA
2qs2q, T`ppB

2qs2qq

HomS3pT`pA
3q, T`pB

3qq Homs3pT`ppA
3qs3q, T`ppB

3qs3qq

of homomorphism groups of locally constant sheaves, where the columns are
equalizers because S2 Ñ S 1 is pro-étale [BS14, Proposition 2.3.3, Lemma 5.1.2].
Now using that T`pv

2q descends to T`pv
1q, one directly gets that u2 gives rise to

a unique u1. Dropping the p´q1, we may thus assume that k and hence F and
kpsq are finitely generated. We now consider

HomSpA,Bq HomSpT`pAq, T`pBqq

HomspAs, Bsq HomspT`pAsq, T`pBsq

φ φ`

where Hom denotes homomorphisms of commutative groups schemes and of
locally constant sheaves, respectively. In this diagram, all arrows are injective
and the horizontal arrows become isomorphisms after applying ´bZ Z` to the
left hand side by the Tate conjecture for abelian varieties [Fal83, Zar75]. In
particular, the canonical map

cokerpφq bZ Z` Ñ cokerpφ`q

is an isomorphism. As the cokerpφ`q does not have `-torsion, we deduce that
cokerpφq does not have `-torsion, which is moreover true for any prime not
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contained in P . Hence we see that

cokerpφq bZ ZrP´1
s ãÑ cokerpφ`q

is an injection, from which one easily deduces the theorem. �

We next show that MDel
1 pSpecpkq,Zr1{P sq satisfies Galois-descent for objects.

Lemma 4.22. Let k be a field of exponentiation characteristic in P , l{k a
Galois extension and M{l a Deligne 1-motive. Suppose we have for σ P Galpl{kq
admissible quasi-isogenies bσ : σ˚M ÑM such that

σ˚bτ ˝ bσ “ bτ˝σ,

then there is a 1-motive N{k and an admissible quasi-isogeny φ : Nl –M such
that bσ ˝ φ “ φ ˝ pidˆ σq.

Proof. The case where M is an abelian variety is a result of Ribbet [Rib04,
Theorem 8.2] (note that his statement is slightly weaker in that it only covers
P “ tall primesu, but the proof is adequate also for the above formulation).

In order to prove the general case, we apply the duality trick and can assume
that we are able to descend the semi-abelian part G of M . Write M “ rL

u
ÝÑ Gs

and blatσ (resp. bsabσ ) for the restriction of bσ to the lattice and semi-abelian part
of M . Descending the lattice part up to isogeny is easy, so we are put in the
following situation: We are given a lattice K and a semi-abelian variety H over
k together with admissible isogenies φsab : Hl Ñ G and φlat : Kl Ñ L such that
for any σ P Galpl{kq, the diagram

σ˚Kl σ˚L σ˚G σ˚Hl

Kl L G Hl

σ˚φlat

idK bσ

σ˚u

blatσ

σ˚pφsabq´1

bsabσ idH bσ

φlat u
pφsabq´1

commutes. Let m be a unit in Zr1{P s such that, setting rms ˝ pφsabq´1 “: ψ,
the admissible quasi-isogeny ψ ˝u ˝φlat is an admissible isogeny of semi-abelian
varieties. The above diagrams then induce new diagrams

σ˚Kl σ˚L σ˚G σ˚Hl

Kl L G Hl

σ˚φlat

idK bσ

σ˚u

blatσ

σ˚ψ

bsabσ idH bσ

φlat u ψ

where the outer squares are a Galois-descent datum yielding a morphism v : K Ñ

H over k such that vl “ ψ ˝ u ˝ φlat. Setting N :“ rK
v
ÝÑ Hs and defining

φ :“

ˆ

1

m
φlat, φsab

˙

: Nl ÑM

gives the required objects. �

Lemma 4.23. Let k be an algebraically closed field of exponential characteristic
in P , ε : S Ñ Specpkq a reduced connected finite-type k-scheme and A an abelian
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scheme over S whose `-adic Tate module is constant. Then there is an abelian
variety B over Specpkq together with an admissible quasi-isogeny

φ : B ˆ S Ñ A.

Proof. Choose a k-rational point s : Specpkq Ñ S and set B :“ s˚A. By
Theorem 4.21 we obtain an admissible quasi-isogeny

B ˆ S Ñ A
of abelian schemes over S which over s restricts to the canonical identification.

�

Lemma 4.24. Let k be an algebraically closed field of exponential characteristic
in P , ε : S Ñ Specpkq of finite type with S connected reduced. Let M “ rL

u
ÝÑ Gs

be a Deligne 1-motive over S such that T`pMq is constant. Then there is a
Deligne 1-motive N over Specpkq together with an isogeny

ψ : M Ñ ε˚N

over S.

Proof. Let us first note that the toric and the lattice part of M are necessarily
split as the Tate module is constant. The case where M is an abelian scheme is
precisely Lemma 4.23. We want to apply the usual duality trick. Let us hence
assume for a moment that we are already given a semi-abelian scheme G1 over
Specpkq together with an isogeny

φ : GÑ ε˚G1.

Define a 1-motive N̂ :“ rL
φ˝u
ÝÝÑ ε˚G1s on S together with the morphism

ψ : M Ñ N̂ which is the identity on the lattice part and given by φ on the semi-
abelian parts. To see that ψ is an isogeny, take φ1 : ε˚G1 Ñ G with φ1 ˝φ “ rms

and observe that the morphism ψ1 : N̂ ÑM given by

rL Gs

rL G1s

rms

φ˝u

φ1

u

satisfies ψ1 ˝ ψ “ rms. Let us see that there is a 1-motive N over Specpkq with

N̂ – ε˚N . As L is a split lattice, we directly reduce to L “ Z, where the datum
of u is equivalent to giving a morphism α : S Ñ G over Specpkq. We have to
check that α factors over Specpkq, i.e. that it’s schematic image is a single closed
point. As in the proof of Lemma 4.12, our assumption on the Tate module
translates to the fact that α is `-divisible in GpSq. Denote the toric part of G
by T and consider the diagram

0 T pSq GpSq ApSq

0 T pkq Gpkq Apkq 0

where the rows are exact as k is algebraically closed. We know by Lemma 4.13
that the image of α under GpSq Ñ ApSq lies in the image of Apkq Ñ ApSq.
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As Gpkq Ñ Apkq is surjective, we find β P Gpkq Ă GpSq such that αβ´1 maps
to 0 in ApSq, hence lies in T pSq. Note that αβ´1 is still `-divisible by virtue
of k being algebraically closed. We need to see that αβ´1 lies in T pkq. As T
is a split torus, we readily reduce to showing that any `-divisible element in
GmpSq lies in Gmpkq. This follows quite directly: As S is reduced, connected
and of finite type over Specpkq, it is enough to see that every Zariski-point of S
gets mapped to a closed point of Gm. Considering the residue field, we obtain
a finitely generated field extension L{k and an `-divisible element t P L. As
k is algebraically closed, we get an inclusion kpt1{`

8

q Ñ L, but the left hand
side field is not finitely generated over k for t R k. Hence we get the existence
of N over k with an isomorphism ε˚N – N̂ , and we can conclude, at least
conditional on the existence of G1 and φ.
To obtain G1 and φ, consider the 1-motive rX

v
ÝÑ A_s dual to r0 Ñ Gs and

apply the above arguments to it. Taking the inverse of the dual of the resulting
isogeny yields φ as above, and we are done. �

Lemma 4.25. Let k be a field of exponential characteristic in P , ε : S Ñ

Specpkq a geometrically connected finite-type k-scheme which is reduced, F a
smooth `-adic sheaf over Specpkq and M a Deligne 1-motive over S coming
with an isomorphism

u : ε˚F Ñ T`pMq.

Then there is a 1-motive N over Specpkq together with an admissible quasi-
isogeny

φ : ε˚N ÑM

and an isomorphism v : F Ñ T`pNq such that

u “ T`pφq ˝ ε
˚v.

Proof. We note that for any purely inseparable field extension k1{k, the induced
functor

MDel
1 pk,Zr1{P sq Ñ MDel

1 pk1,Zr1{P sq

is an equivalence of categories by [PL17, Proposition 3.5]. The author states the
Proposition with rational coefficients, because he relies on [Bri17, Theorem 3.11],
which is formulated with rational coefficients. However, as the key ingredient
[Bri17, Lemma 3.11] only relies on inverting the exponential characteristic of k,
one easily sees that [Bri17, Theorem 3.11] and hence [PL17, Proposition 3.5]
hold with Zr1{P s coefficients as well.

In particular, we may first replace k by the field of definition of S to assume
S geometrically reduced and then base change to the perfection of k to assume
k perfect. By continuity and Lemma 4.24, we find a finite Galois extension l{k,

an 1-motive N̂ over l and an admissible quasi-isogeny φ : ε˚l N̂ ÑMl, where Ml

is the pullback of M along the base change Sl Ñ S of Specplq Ñ Specpkq. Using
φ and the obvious descent datum on Ml, we can apply Lemma 4.22 to descend
N̂ to a 1-motive N over k, so we now only need to care about the quasi-isogeny
φ. After multiplying with a sufficiently large unit of Zr1{P s, we can replace φ
with an admissible isogeny. It is then an easy check that φ : pε˚Nql Ñ Ml is
Galois-equivariant and hence descend to the sought-after isogeny. �
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Proof of Theorem 4.18. We begin with full faithfullness. Using the same reduc-
tion as already explained in the beginning of the proof of Lemma 4.25, we
may pass to a finite purely inseparable extension of k and hence assume S
to be geometrically reduced. There, full faithfullness directly follows from the
stronger Lemma 4.19. The characterization of the essential image follows from
Lemma 4.25. �

4.4. Extending 1-motives over iterated modifications. We now turn to-
wards formalizing the idea of extending a Deligne 1-motive from an open dense
subscheme to a modification of the base. In the whole section, ` is a prime
invertible on all schemes considered.

Definition 4.26. We call extendable datum pS, U, j, A,M,F , uMq the datum of
a reduced scheme S, an open dense immersion j : U Ñ S such that U is normal,
a Deligne 1-motive M with abelian part A admitting an `2-level structure and
such that the toric and the lattice part of M are split, a smooth `-adic sheaf
F P Shls

étpS,Z`q and an isomorphism uM : R`pMq Ñ j˚F .

We recall that admitting `2-level structure here is equivalent to there being
an isomorphism T`pAq{`

2 – Z{`2, i.e. the `2-part of the Tate module of A is
constant. This is a technical assumption chosen because the moduli stack of
polarized abelian varieties with N -level structure is a scheme if N ě 4.

Definition 4.27. Let pS, U, j, A,M,F , uMq be an extendable datum. An ex-
tending modification for it consists of the following data:

(1) A proper morphism p : Ŝ Ñ S that is an isomorphism over U such that

Ŝ is normal and U – p´1pUq is dense in Ŝ.

(2) An Deligne 1-motive M̂ over Ŝ.

(3) An isomorphism of Deligne 1-motives M̂|U –M .
(4) An isomorphism of `-adic sheaves uM̂ : R`pMq Ñ F extending uM .

Note that by normality of Ŝ and Proposition 4.1, the Deligne 1-motive M̂ and
the isomorphism uM̂ are uniquely determined by 1) and 3) once they exist.

The following result is an extension of a result of Grothendieck [Gro66b,
Proof of Thèoréme 4.1] on abelian schemes:

Proposition 4.28. Extending modifications exist for all extendable data.

Proof. By passing to the normalization, we may assume S normal, connected.
Then A admits a polarization of some degree d2 by [Ray70], hence corresponds
uniquely to a morphism f : U ÑM where M is a corresponding fine moduli
scheme parameterizing abelian varieties with a polarization of degree d2 and
an `2-level structure [Hid04, Theorem 6.20]. Let S̃ be the schematic closure of

U
Γf
ÝÑ U ˆZ MÑ S ˆZ M.

It comes with a canonical projection p̃ : S̃ Ñ S which is an isomorphism over
U . As U is normal, this is still true if we precompose with the normalization
S̃n Ñ S̃. Denote by Ŝ the closure of U P S̃n, a clopen subscheme, and by
p̂ : Ŝ Ñ S the induced map. We claim that Ŝ is proper. Indeed, by the valuative
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criterion for noetherian schemes [GW10, Theorem 15.9], we have to produce a
unique lift in each diagram

τ Ŝ

T S

p̂

where T is the spectrum of a discrete valuation ring with generic point τ P T . For
this, we observe that the abelian scheme on Ŝ corresponding to Ŝ Ñ S̃ ÑM
has as `-adic Tate module precisely p̂˚F because Ŝ is normal and the statement
is true on the open dense subscheme U Ă Ŝ, see Proposition 4.1. Hence by the
classical Néron-Ogg-Shafarevich criterion, we see that the map τ ÑM extends
uniquely over T , which yields a lift T Ñ S̃. As Ŝ Ñ S̃ is proper, this allows us
to conclude that p̂ is proper. Hence p̂ : Ŝ Ñ S is proper and an isomorphism
over U , and it is clear by construction that the abelian scheme Â corresponding
to Ŝ Ñ S̃ ÑM restricts to A over U . As Ŝ is normal and A extends to Â we
can then apply Theorem 4.10 to obtain the Deligne 1-motive M̂ over Ŝ with
abelian part Â and `-adic Tate module p˚F . �

Definition 4.29. For an extendable datum pS, U, j, A,M,F , uMq we add an

extending modification and call the result pS, U, j, A,M,F , uM , p, Ŝ, M̂ , uM̂q an
extended datum.

The remainder of the section sets up the formalism needed in the case
dimpSq ą 2, where we need to stratify the base scheme.

Definition 4.30. Let D0 :“ pS, U, j, A,M,F , uM , p, Ŝ, M̂ , uM̂q and D1 :“

pZ, V, k, B,N, i˚F , uN , π, Ẑ, N̂ , uN̂q be two extended data and Let i : Z Ñ S be
a closed immersion. We say that D0 and D1 are linked along i, if the following
holds: Setting q “ i ˝ π and considering the diagram

pẐ ˆ Ŝqred Ẑ

Ŝ S,

p̂

q̂ q

p

there is an admissible quasi-isogeny

φ : p̂˚N̂ Ñ q̂˚M̂

on pẐ ˆS Ŝqred such that the diagram

(4.1)

R`pp̂
˚N̂q R`pq̂

˚M̂q

p̂˚q˚F q̂˚p˚F

R`pφq

p̂˚puN̂ q q̂˚uM

commutes.

Lemma 4.31. Let pS, U, j, A,M,F , uM , p, Ŝ, M̂ , uM̂q be an extended datum
such that S is normal and connected. Let i : Z Ñ S be the inclusion of a closed
subscheme. Then there is an extended datum

pZ, V, k, B,N, i˚F , uN , π, Ẑ, N̂ , uN̂q
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that is linked to the original datum along i.

Proof. Let η “ tη1, . . . , ηru be the scheme of generic points of Z. For each

generic point ηk, we set Ŝk :“ pŜ ˆS ηkqred, consider the diagram

Ŝk Ŝ

ηk S

ik

pk p

and note that the pair pk : Ŝk Ñ ηk and i˚kM satisfy the conditions of Theo-

rem 4.18: The scheme Ŝk is reduced and geometrically connected by Zariski’s
Main Theorem, and R`pi

˚
kMq is isomorphic to p˚kF|ηk . Hence we find a Deligne

1-motive Nk over ηk together with an admissible quasi-isogeny φk : p˚kNk Ñ i˚kM

and an isomorphism uN,k : T`pNkq Ñ F|ηk , compatible with φk on Ŝk.
Varying k, we obtain Mη, uη and so on. Using the continuity result Proposi-

tion 4.3, we can extend Nη to a small open U of Z which is dense as Z is reduced
and which we choose to be normal. Then the Tate module of N is just the
restriction of F , so the abelian part B of N admits an `2-level structure and we
may choose an extending modification π : Ẑ Ñ Z with extension N̂ P AbSchpẐq
and corresponding isomorphism uN̂

It remains to construct the admissible quasi-isogeny φ by extending φη to the

whole of pẐ ˆS Ŝqred. By Lemma 4.9 we can extend φη to φC over the reduced
closure C of

pẐ ˆS Ŝqred ˆẐ η

inside pẐˆS Ŝqred. Now let α P pẐˆS Ŝqred be a maximal point not lying over η,

let z P Ẑ be its image, and denote by Ẑz the strict henselization of Ẑ at z (this
has nothing to do with completions, we apologize for the confusing notation).
Set

Γ :“ pẐ ˆ Ŝqred ˆẐ Ẑz

and denote by Γpzq and Γpηq the fibers of Γ over z and η. Write αz for αˆẐ Ẑz.
Note that Γ is reduced and Γpzq Ñ Γ is an isomorphism locally at αz by our
maximality assumption, so the inclusion Γpzqred Ñ Γpzq is also an isomorphism
locally around αz. Let us use this to extend φη over αz.

In order to do so, choose a closed point γ P Γpzq X C ˆẐ Ẑz - such a point
exists by properness of the map

Γ Ñ Ẑz

and the fact that ηˆẐ Ẑz is dense in Ẑz. Endow γ with the reduced subscheme
structure. For a geometrically connected T -scheme z write

MDel
1 pT {z,Zr1{P sq

for the full subcategory of MDel
1 pT,Zr1{P sq spanned by those 1-motives whose

`-adic Tate module is a pullback from a lisse `-adic sheaf over z, i.e. constant.
We can then repeatedly apply Theorem 4.18 to obtain a chain of equivalence

MDel
1 pγ{z,Zr1{P sq – MDel

1 pz,Zr1{P sq – MDel
1 pΓpzqred{z, Zr1{P sq
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compatible with the `-adic realizations. We can now use this equivalence to
extend pφCqγ over the whole of Γpzqred and then restrict the obtained quasi-
isogeny to αz. Etale descent for morphisms of 1-motives then gives us φα, and
we can apply Lemma 4.9 again to extend φ over the whole of pẐ ˆ Ŝq such that
the diagram (4.1) commutes. �

Lemma 4.32. Suppose we are given for k P t0, 1, 2u an extended datum

Dk
“ pSk, Uk, jk, Ak,Mk,Fk, uMk , pk, Ŝk, M̂k, uM̂kq

and closed immersions i10 : S1 Ñ S0, i20 : S2 Ñ S0, i21 : S2 Ñ S1 with i20 “ i10 ˝ i
2
1.

Assume F1 “ pi10q
˚F0 and F2 “ pi20q

˚F0 and that S0 is normal connected.
Assume further that D0 is linked with D2 along i20 and D0 is linked with D1

along i10. Then D1 is linked with D2 along i21.
Further: Given M Ă N Ă t0, 1, 2u we write

ŜM :“

˜

ą

mPM

Ŝm

¸

red

and

p̂NM :“ ŜM Ñ ŜN

for the obvious projection, such that we have isogenies

φlm : pp̂l,ml q
˚Âl Ñ pp̂l,mm q

˚Âm

witnessing the links. Then we have the following cocycle condition

(4.2) pp̂0,1,2
2,0 q

˚
pφ2,0

q “ pp̂0,1,2
1,2 q

˚
pφ1,2

q ˝ pp̂0,1,2
0,1 q

˚
pφ0,1

q

for morphisms of abelian schemes over Ŝ0,1,2.

Proof. As in the proof of the lemma before, we want to apply Lemma 4.9 to
realize the given isomorphism of Tate modules on the abelian scheme level. The
proof is marginally different because S1 is not assumed normal, so Ŝ1,2 might
have connected components whose fiber product with V is empty - this is the
reason why we need to assume the existence of the ambient normal scheme S0.
It allows us to work on Ŝ0,1,2 and consider there the admissible quasi-isogeny

ψ :“ pp̂0,1,2
2,0 q

˚
pφ2,0

q ˝ pp̂0,1,2
0,1 q

˚
pφ0,1

q
´1 : pp̂0,1,2

2,1 q
˚
pp̂1,2

2 q
˚Â2

Ñ pp̂0,1,2
2,1 q

˚
pp̂1,2

1 q
˚Â1

which induces the canonical identification on Tate modules. Now the projection
p̂0,1,2

1,2 is surjective and has geometrically connected fibers as reduction of a base
change of p0, so we can use Theorem 4.18 to obtain the sought-after isogeny on
each generic point of Ŝ1,2. This is enough by Lemma 4.9. The cocycle condition
from the second part of the lemma is clear. �

In particular, we obtain the following result which is the formulation we will
need in the following chapters:

Corollary 4.33. Let S be connected, noetherian, normal and suppose we are
given an extendable datum of the form pS, U, j, A,M,F , uMq. Then there is a
filtration S “ Sn Ą . . . Ą S0 by reduced closed subschemes with Uk :“ SkzSk`1,
and extended data

Dk
“ pSk, Uk, jk, Ak,Mk,Fk, uMk , pk, Ŝk, M̂k, uM̂kq
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such that
D0
“ pS, U, j, A,M,F , uM , p, Ŝ, M̂ , uM̂q

and such that for m ą k, the data Dm and Dk are linked along the evident
closed immersion ikm : Sk Ñ Sm. In particular, if we use notations analogous to
the ones of the above lemma, this means that for all H ‰M Ă N Ă t0, . . . , nu
we have projections

p̂NM : ŜM Ñ ŜN

and we have isogenies

φlm : pp̂l,ml q
˚Âl Ñ pp̂l,mm q

˚Âm

witnessing the links. Furthermore, for all sets M Ă t0, . . . , nu and l,m, k PM
we have the cocycle condition

(4.3) pp̂Ml,mq
˚
pφl,mq ˝ pp̂Mm,kq

˚
pφm,kq “ pp̂Ml,kq

˚
pφl,kq.

Proof. We construct the data by descending induction starting from Sn using
Lemma 4.31 at each step and setting Sk´1 “ pSkzUkqred. Then Lemma 4.32
shows that all data are linked along all inclusions we want, and the generalized
cocycle condition (4.3) follows from the cocycle conditions (4.1) in Lemma 4.32
by pulling back. �
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5. Auxiliary results on quasi-categories

In this section, we will distinguish between a 1-category C and its nerve
NpCq.

5.1. Certain limits of quasi-categories. For a natural number n P Ně1, we
write xny :“ t1, . . . , nu and

P˚xny :“ PxnyztHu “ tA Ă xny | A ‰ Hu
seen as a poset via Ě. We want to prove the following

Proposition 5.1. Let C be a quasi-category having finite limits, let K 1 :“
NpP˚ xnyopq and let p : K 1 Ñ C be a diagram in C. Writing PA :“ ppAq for
A P P˚ xny, consider the iterated pullback

P˚ :“

˜

ˆ

Pt1u
ą

Pt1,2u

Pt2u

˙

ą

Pt1,3u
Ś

Pt1,2,3u

Pt2,3u

P3

¸

ą

...

. . .
ą

...

Ptnu

in C. Then

(1) P˚ is the limit of the diagram p.
(2) Suppose C is the category of small quasi-categories. Given for all i P xny

an object oi of Pi and for all A “ ta1 ă . . . ă aru in P˚xny with r ě 2
a chain

ppta1u Ñ Aqpoa1q
„
ÝÑ . . .

„
ÝÑ pptaru Ñ Aqpoarq

of equivalences, we obtain an object o˚ of P˚ mapping to oi under the
projection P˚ Ñ Pi.

In case n “ 2, the first assertion is clear and the second one is a description
of objects in a pullback of quasi-categories due to Joyal: There is a model of
the pullback At1u

Ś

At1,2u
At2u in which an object is given by an object of At1u,

an object of At2u, and an equivalence between their images in At1,2u. The case
of n ą 2 requires some preparations.

5.2. Certain pushouts in quasi-categories. In order to prove Proposi-
tion 5.1, we need to rewrite the limit into a more convenient form. For ease of
citations, we will show the dual statements in this subsection and work with
colimits instead. In this subsection, C is a quasi-category having finite colimits
and n ě 2.

Lemma 5.2. Let K “ NpP˚xnyq and let p : K Ñ C be a diagram. Let K 1 :“
NpP˚xn´1yq and let q, q̃ : K 1 Ñ K be induced by the obvious inclusion i : P˚xn´
1y ãÑ P˚xny and by

ĩ : P˚xn´ 1y ãÑ P˚xny, A ÞÑ AY tnu

respectively. Then there is a natural pushout square

colimpp ˝ q̃q colimpp ˝ qq

pptnuq colimppq

in C.
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Proof. We first construct a pushout square of simplicial sets

K 1 K 1 ˆ∆1

K 1Ź K

i0

j δ

η

that is obtained by taking nerves of the following diagram of posets and order-
preserving maps

P˚xn´ 1y P˚xn´ 1y ˆ t0, 1u

P˚xn´ 1y Y tHu P˚xny

î0

ĵ δ̂

η̂

where the maps are given as follows:

‚ ĵ is the obvious inclusion.
‚ î0 is given by

î0 : P˚xn´ 1y Ñ P˚xn´ 1y ˆ t0, 1u, A ÞÑ pA, 0q.

‚ δ̂ is

δ̂ : P˚xn´ 1y ˆ t0, 1u Ñ P˚xny, pA, εq ÞÑ

#

A if ε “ 1,

AY tnu if ε “ 0.

‚ Finally,

η̂ : P˚xn´ 1y Y tHu Ñ P˚xny, A ÞÑ AY tnu.

We observe that the maps δ̂ and η̂ are injective and jointly surjective, with δ̂
missing the set tnu and η̂ missing sets not containing n. Moreover, any chain

A0 Ě . . . Ě Ar

in P˚ xny has either n P Ai for all i or else cannot contain the set tnu, so the
maps δ and η are jointly surjective on r-simplices. Finally, any chain lying
completely in the image of δ̂ and η̂ has Ar ) tnu and hence is of the form

A10 Y tnu Ě . . . Ě A1r Y tnu

for a chain A10 Ě . . . A1r in P˚ xn´ 1y. Thus the diagram of simplicial sets is a
pushout. As i0 is a monomorphism, we can apply [Lur09, Proposition 4.4.2.2]
to get a pushout

colimpp ˝ q̃q colimpp ˝ δq

colimpp ˝ ηq colimppq

in C, so we only need to identify the upper right and lower left colimits. By
[Lur09, Proposition 4.1.1.3] and [Lur09, Corollary 4.1.1.11.] this follows from
the fact that the inclusion of a right cone point is right anodyne. �
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Lemma 5.3. Let K “ NpP˚xnyq and let p : K Ñ C be a diagram. Then there
is a natural pushout square

š

APP˚xny

š

aPA

ppAq
š

aPxny

pptauq

š

APP˚xny
ppAq colimppq

in C where the maps are induced by taking coproducts over A and a P A of the
maps ppAq Ñ pptauq resp. ppAq “ ppAq.

Proof. Define for A P P˚ xny the set

QA :“ tB P P˚ xny | A Ă Bu

which we see as a partially ordered subset of P˚ xny. Define partially ordered
sets with trivial orderings J1, J2, J3 as follows:

‚ J1 :“ tpQA, aq P PpP˚ xnyq ˆ xny | A P P˚ xny ,#A ě 2, a P Au
‚ J2 :“ tQA P PpP˚ xnyq | A P P˚ xny ,#A ě 2u
‚ J3 :“ tQtku P PpP˚ xnyq | k P xnyu

and set J :“ J1 \ J2 \ J3 as a set. Equip J with a poset structure by declaring
that for all A P P˚ xny ,#A ě 2 and a P A we have pQA, aq ď QA as well as
pQA, aq ď Qtau and no other nontrivial relations. We obtain an order-preserving
map

F̂ : J Ñ PpP˚ xnyq, pQA, aq ÞÑ QA, QB ÞÑ QB

where we equip the right hand side with the poset structure coming from Ă.
In particular, we get an order preserving map F :“ N ˝ F̂ from J into the
collection of simplicial subsets of K, and we want to verify the condition of
[Lur09, Remark 4.2.3.9] to be then able to apply [Lur09, Corollary 4.2.3.10]
to our situation. For this, let σ :“ pB0 Ě . . . Ě Brq be an r-simplex of K and
consider

Jσ :“ tI P J | tB0, . . . , Bru Ď F pIqu

with the induced poset structure, cf. [Lur09, Notation 4.2.3.7]. We need to show
that NpJσq is contractible. First of all, as there are no nontrivial compositions
of arrows in J , we see that NpJσq is a disjoint union of trees. To check that it
is connected, we note

Jσ “ tpQA, aq | a P A Ă Br,#A ě 2u\tQA | A Ă Br,#A ě 2u\tQtku | k P Bru

and we get for all a P A Ă Br with # ě 2 a chain

QBr ě pQBr , aq ď Qtau ě pQA, aq ď QA

which shows that any 0-simplex of NpJσq can be connected to QBr , so NpJσq
is connected. Now applying [Lur09, Proposition 4.2.3.4] and [Lur09, Corollary
4.3.2.10], we obtain a map

q : NpJq Ñ C
with the property colimppq – colimpqq and which is given on a 0-simplex S by
colimpp|F pSqq. But all F pSq have final objects, so by the same argument as in
the end of the proof of lemma 5.2, we can identify the diagram q with the one
claimed. �
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5.3. Proof of Proposition 5.1. The first part of the proposition follows
inductively by applying the dual of Lemma 5.2. For the second part, we note
the following

Lemma 5.4. Let C be a quasi-category and k P Ně2. Let Cp∆kq be the full
subcategory of C∆k

spanned by maps ∆k Ñ C that factor over the largest sub-
Kan complex of C. Then the diagonal δk : C Ñ Cˆk factors as

C δpkq
ÝÝÑ Cp∆k´1q pp0,...,pkq

ÝÝÝÝÝÑ Cˆk

where the first map is an equivalence and the second one a fibration, both in the
Joyal model structure.

Proof. The proof of [Joy08, Proposition 5.16] works in this setup. �

With this tool in hand, we can go to the

Proof of Proposition 5.1, second part. By the first part of the proposition as
well as the dual of Lemma 5.3, we already have a convenient description of the
limit at our disposal. Lemma 5.4 gives as the defining property of P˚ that the
square

P˚
Ś

APP˚xny
ppAqp∆

#A´1q

P1 ˆ . . .ˆ Pn
Ś

APP˚xny
ppAqˆ#A

is a homotopy pullback square in the Joyal model structure. However, as all
objects are fibrant and the right vertical map is a fibration, the simplicial set
pullback models the homotopy pullback (see e.g. [Lur09, Remark A.2.4.5]), and
we may take the above square to be an actual pullback square of simplicial sets.
The statement then follows by considering 0-simplices. �

5.4. Further auxiliary results.

Lemma 5.5. Let

A C

B D

h

k f

g

be a cartesian diagram of stable quasi-categories and exact functors, and let
l “ f ˝ h. For any objects a, a1 of A, the diagram

MapApa, a
1q MapCphpaq, hpa

1qq

MapBpkpaq, kpaq
1q MapDplpaq, lpa

1qq

is cartesian in the quasi-category of spaces.
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Proof. As in the proof of [NS17, Proposition II.1.5], one uses Lemma 5.3 to
obtain a cartesian square

MapApa, a
1q MapDplpaq, lpa

1qq

MapBpkpaq, kpaq
1q ˆMapCphpaq, hpa

1qq MapDplpaq, lpa
1qq ˆMapDplpaq, lpa

1qq

of spaces, which translates into the square of the Lemma. �

Lemma 5.6. Let

A C

B D

h˚

k˚ f˚

g˚

be a diagram of stable quasi-categories and exact functors admitting right adjoints
h˚, k˚, f˚, g˚ and let l˚ “ f˚ ˝ h˚ with right adjoint l˚ “ h˚ ˝ f˚. Suppose that

(1) The canonical maps k˚h˚ Ñ g˚f
˚ and h˚k˚ Ñ f˚g

˚ are equivalences.
(2) The canonical diagram

idA h˚h
˚

k˚k
˚ l˚l

˚

in Funex
pA,Aq is cartesian.

(3) The canonical diagram

k˚k˚ idB

k˚k˚g˚g
˚ g˚g

˚

in Funex
pB,Bq is cartesian.

(4) The diagram

h˚h˚ idC

h˚h˚f˚f
˚ f˚f

˚

in Funex
pC,Cq is cartesian.

Then the canonical functor AÑ B ˆD C is an equivalence.

Proof. That the functor is fully faithful follows readily from Lemma 5.5 and
(2). To show essential surjectivity, consider an element of B ˆD C given, as
in Proposition 5.1, by an object c of C, an object b of B, and an equivalence
g˚bÑ f˚c. Define an object a of A to be the pullback

a k˚b

h˚c h˚f˚f
˚c h˚f˚g

˚b k˚g˚g
˚b„ „
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in A. Hence we obtain

k˚a k˚k˚b b

k˚h˚c k˚k˚g˚g
˚b g˚g

˚b

were the left square is cartesian by (3) as k˚ is exact and the right square
is cartesian by assumption (4). The bottom composition is equivalent to the
identity by (1), which shows that the natural map k˚aÑ b is an equivalence.
By symmetry, we also see that h˚a Ñ c is an equivalence and we are done
because B ˆD C Ñ B ˆ C is conservative. �

5.5. h-descent for motives. The results of this section are certainly well
known, but the author could not find them in this form in the literature. Recall
that for noetherian schemes, a square

X̃ Z̃

X Z

k f

g

h

is called an abstract blowup square if it is cartesian, h is a closed immersion,
and k is proper and an isomorphism over XzZ.

Lemma 5.7. Let

X̃ Z̃

X Z

k f

g

h

be an abstract blowup-square. Then the square

DMpXq DMpZq

DMpX̃q DMpZ̃q

k˚

h˚

f˚

g˚

is a pullback square of symmetric monoidal stable 8-categories.

Proof. As the forgetful functor from symmetric monoidal stable 8-categories
to stable 8-categories detects limits [Lur17, Corollary 3.2.2.5], we may check
the assertion underlyingly. We check the prerequisites of Lemma 5.6. p1q follows
from proper base change, p2q is [CD19, Proposition 3.3.10], and p4q follows from
h˚h˚ – id as h is a closed immersion. To see p3q, we note that by localization,
the functor DMpX̃q Ñ DMpX̃zZ̃q ˆDMpZ̃q is conservative and hence reflects
pullbacks. As the square is an abstract pullback square, k is an isomorphism on
X̃zZ̃ and the square restricts to a pullback square over X̃zZ̃. On the other hand,
after applying g˚ and proper base change again, we see that the right vertical
morphism becomes g˚ Ñ g˚g˚g

˚ and the left vertical morphism is f˚f˚g
˚ Ñ

f˚f˚g
˚g˚g

˚ and both are equivalences because g is a closed immersion. �
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In order to use resolution of singularities by alterations, we need a stronger
version of this statement. If X is a scheme on which a finite group G acts,
we will also write X : G Ñ pSchq for the corresponding functor from the one-
object category G to schemes and DMpX,Gq for the symmetric monoidal stable
8-category presented by the model category described in [CD19, Proposition
3.1.6] and [CD19, Proposition 3.1.24]. We then have

Lemma 5.8. Let

X̃ Z̃

X Z

k f

g

h

be a cartesian diagram of schemes where h is a closed immersion, and U “ XzZ
is normal. Assume further that a finite group G acts on X̃ such that k is
equivariant with respect to the action of the trivial group on X, that U ˆX X̃{G
is a scheme and that the induced morphism U ˆX X̃{GÑ U is radicial. Then
the square

DMpXq DMpZq

DMpX̃,Gq DMpZ̃, Gq

k̄˚

h˚

f̄˚

ḡ˚

is a pullback square of symmetric monoidal stable 8-categories. Here we denote
by k̄˚, f̄˚ and ḡ˚ the functors induced by the morphisms of diagrams k̄ : pX̃,Gq Ñ
pX, ˚q, f̄ : pZ̃, Gq Ñ pZ, ˚q and ḡ : pX̃,Gq Ñ pZ̃, Gq.

Proof. We may forget the symmetric monoidal structure and then check the
hypotheses of Lemma 5.6 on the level of stable model categories. First we
note that all functors have explicitly described right adjoints as in [CD19,
Propositions 3.1.11, 3.1.15] - for instance, the right adjoints to k̄˚ and f̄˚ are
given by pk˚´q

G and pf˚´q
G, where the G-invariants are, of course, derived.

We first consider the diagram

DMpX̃q DMpZ̃q

DMpX̃,Gq DMpZ̃, Gq

g˚

ḡ˚

i˚ j˚

where i˚, j˚ come from forgetting the G-action. We then observe that the
exchange morphism i˚ḡ˚ Ñ g˚j

˚ is an isomorphism because its transpose
ḡ˚i# Ñ j#g

˚ (see also [CD19, Proposition 3.1.11]) is readily seen to be an
isomorphism from the direct description in [CD19, (3.1.2.3)]. We then see
h̄˚k̄˚ Ñ f̄˚ḡ

˚ by proper base change and the fact that h˚ commutes with taking
G-invariants, and we see k̄˚h˚ » ḡ˚f̄

˚ after applying the conservative functor
i˚, the above exchange isomorphism, and usual proper base change (see also
the proof of [Ayo07, Théorème 2.4.22]). Hence we see that condition p1q of
Lemma 5.6 is satisfied in this situation. Condition p2q in this setting is precisely
[CD19, Theorem 4.4.1]. For condition p3q, we first observe that the pullback
functors DMpX̃,Gq Ñ DMpZ̃, Gq and DMpX̃,Gq Ñ DMpŨ , Gq are jointly
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conservative, which follows by conservativity of i˚. Pulling back to DMpZ̃, Gq,
the diagram in p3q becomes cartesian because ḡ˚ḡ˚ Ñ id is an equivalence, as can
be seen after applying j˚ and the above noted exchange isomorphism, see also
[Ayo07, Corollaire 2.4.19]. In DMpŨ , Gq we have that DMpUq Ñ DMpŨ , Gq is
an equivalence: The unit of the adjunction is an equivalence by [CD19, Corollary
3.3.9]; for the counit we can check the statement after pulling back along Ũ Ñ U ,
where the G-action becomes split. We then observe that for split G-actions the
claim is obvious from the direct descriptions of the model categories in [CD19,
Propositions 3.1.6, 3.1.11]. This shows condition p3q of the lemma. Finally,
condition p4q follows again from h˚h˚ » id. �

Lemma 5.9. Let X be a scheme on which a finite group G acts. Then the
functor

i˚ : DMpX,Gq Ñ DMpXq

that is induced by forgetting the G-action reflects dualizability.

Proof. As the functor is conservative and strong monoidal, it is enough to show
that it is also closed. By a game of adjunction, this is equivalent to the following
projection formula: For any objects M and N of DMpXq resp. DMpX,Gq, the
canonical map

i#pM b i˚Nq Ñ pi#i
˚Mq bN

is an equivalence. We may check this after applying i˚ again. By the proof of
[CD19, Lemma 3.1.14], we get a canonical isomorphism

i˚i#K –
à

G

K

for all K in DMpXq, which finishes the proof. �
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6. Proof of Theorem A and consequences

6.1. The Néron-Ogg-Shafarevich criterion. Let j : U Ñ S be an open
immersion of schemes. Recall from [PL19] that the adjunction

j˚ : DMpSq� DMpUq :j˚

restricts to DMcoh and refines to an adjunction

j˚ : DM1
pSq� DM1

pUq :ω1j˚

which restricts to DM1,ě0
pSq and finally refines to the adjunction

j˚ : M1
pSq� M1

pUq :τ 1,ď0ω1j˚.

We now come to the core of this work, namely the following Néron-Ogg-
Shafaravich criterion for lisse 1-motives.

Theorem 6.1. Let S be a finite dimensional noetherian normal integral scheme
which admits resolutions of singularities by alterations, let ` be a prime invertible
on S, and let j : U Ñ S be an open immersion. Then the following is true:

‚ For N P M1,lspS,Qq, the canonical map

N Ñ τ 1,ď0ω1j˚j
˚N

is an isomorphism.
‚ Let M P M1,lspU,Qq be a lisse 1-motive such that R`pMq is unramified

over S. Then the pushed forward motive

τ 1,ď0ω1f˚M

lies in M1,lspS,Qq.
We will deduce this from Lemmas 6.6 and 6.7. The author thanks Pepin

Lehalleur for sharing the following weaker version of Lemma 6.6, which served
as inspiration.

Lemma 6.2. Let S be regular connected and let j : U Ñ S be an open immer-
sion. For all M P M1,lspSq, the unit of the adjunction M Ñ τ 1,ď0ω1j˚j

˚M is
an equivalence. In particular the restriction

j˚ : M1,ls
pSq Ñ M1,ls

pUq

is fully faithful. More is true: If further the complement of U in S has codimen-
sion at least 2, then even the map M Ñ ω1j˚j

˚M is an equivalence.

Proof. Let i : Z Ñ S be the inclusion of the reduced complement. Applying
ω1 to the colocalization sequence and recalling that ω1 commutes with i! “ i˚
([PL19, Proposition 3.3.(iii)c)]), we obtain the fiber sequence

i!ω
1i!M ÑM Ñ ω1j˚j

˚M.

Pepin Lehalleur shows in [PL17, Lemma 4.7] that in our setup, ω1i!M is con-
centrated in degrees ě 2 and vanishes if Z is of codimension ě 2 in S. Using
that i! is exact one derives the claim. �

Lemma 6.3. Let j : U Ñ S be an open dense immersion between normal
schemes and ` a prime invertible on S. Then the pullback functor

j˚ : M1,ls
pSq Ñ M1,ls

pUq

is faithful and conservative.
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Proof. We first note that it is conservative, because it fits into a commutative
diagram

M1,lspSq Shls
étpS,Q`q

M1,lspUq Shls
étpU,Q`q

R`

j˚ j˚

R`

where the three other functors are conservative. Faithfullness now follows be-
cause an exact functor between abelian categories which is conservative is also
faithful. �

Lemma 6.4. Let f : Y Ñ X be a proper morphism of schemes, equivariant
with respect to the action of a finite group G on Y and a trivial action on
X, such that G acts transitively on the geometric fibers of f . Then for N P

M1pXq,M P M1,lspXq we have

HomM1pXqpN,Mq – HomM1pY qpf
˚N, f˚MqG

functorially in N and M .

Proof. We first prove this statement in the case that f has a section γ : X Ñ Y ,
which we turn into a G-equivariant morphism Γ making the diagram

š

GX Y

X

Γ

Σ
f

commute where Σ denotes the fold map. We obtain a corresponding diagram

HomM1p
š

GXq
pΣ˚M,Σ˚NqG HomM1pY qpf

˚M, f˚NqG

HomM1pXqpM,Nq

Γ˚

Σ˚
f˚

showing that Γ˚ is a surjection. For injectivity, faithfulness of `-adic realizations
reduces us to showing the statement after applying R`. Here we have to show
that F – pR0f˚f

˚FqG for a lisse `-adic sheaf F on X. Proper base change
reduces this to the case of a strictly henselian local ring, and being lisse to its
residue field, where it is clear by our assumption on the fibers. This concludes
the case where f has a section. For the general case, we use h-descent for DM,
as f has a section after passing to the h-cover given by f itself. Consider thus
the Cech-Nerve Cpfq of f and the diagram

DMpXq lim∆ DMpCpfqq

DMpY q lim
∆

DMpCpfq ˆX Y q

„

„



56

where the horizontal arrows are isomorphisms. Hence we obtain the diagram

HomDMpXqpN,Mq lim
iP∆

HompN i,M iq

HomDMpY qpf
˚N, f˚Mq lim

iP∆
Hompf˚N i, f˚M iq

„

„

where the right vertical arrow is an isomorphism by what we did above, and
thus the left vertical arrow is also, which we wanted to show. �

We need a version of Zariski’s connectedness principle which works for Galois
alterations instead of only for modifications.

Lemma 6.5. Let p : S̃ Ñ S be a Galois-alteration w.r.t a finite group G and
normal target S. For any geometric point s P S and any lift s̃ P S̃, the map

G ¨ s̃Ñ π0pS̃sq

is a surjection. In other words, the fibers are geometrically connected G-sets.

Proof. Considering the Stein factorization S̃ Ñ T
π
ÝÑ S of p and applying

Zariski’s Main Theorem, we can replace S̃ by T and talk about geometric
fibers of the finite G-morphism π : T Ñ S instead. By assumption, the field
extension κT {κpSq factors as κpSq Ñ λ Ñ κpT q with κpT q{λ Galois with
group G and λ{κpSq purely inseparable. Let s P S be a point of S and OS,s

the corresponding normal local ring. Then connected components of π´1psq
inject G-equivariantly into maximal ideals of the integral closure of OS,s in κpSq.
We first show that the integral closure Γ of OS,s in λ has only one maximal
ideal lying over s. By factoring the field extension λ{κpSq, we may assume
that its degree is p. The absolute Frobenius of K then induces morphisms
SpecpOS,sq Ñ SpecpΓq Ñ SpecpOS,sq where the composition is a universal
homeomorphism and the first map is surjective by finiteness, hence also a
homeomorphism. Hence we may replace S by its integral closure in λ and
assume the κpSq{κpT q separable. But then OS “ pπ˚OT q

G and the claim
follows. �

We can finally prove the first part of our main theorem.

Lemma 6.6. Let j : U Ñ S be an open immersion between normal schemes,
and take M P M1,lspSq. Then

ηM : M Ñ τ 1,ď0ω1j˚j
˚M

is an isomorphism.

Proof. Let us first note that for all N P M1pSq we have a commutative square

HompN,Mq Hompj˚N, j˚Mq

HompR`pNq, R`pMqq Hompj˚R`pNq, j
˚R`pMqq

where the indicated arrows are injective because the realizations are faithful
(again, as conservative exact functors between abelian categories) and because
the R`pMq is lisse. As a consequence, we see that ηM is a monomorphism in
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M1pSq, and we only have to see that it is also an epimorphism. In particular, we
are free to shrink U . Doing so, we may assume the existence of a commutative
diagram

V S̃ Z̃

U S Z

e

j̃

p

ĩ

q

j i

where both squares are cartesian, S̃ is regular, U “ SzZ, i is a closed immersion,
and the right square satisfies the conditions of Lemma 5.8 with finite group G.
In particular, V {G exists as a scheme and V {GÑ U is radicial. We obtain a
diagram

DMpSq DMpZq

DMpS̃;Gq DMpZ̃;Gq

DMpS̃q DMpZ̃q

p̄˚

i˚

p˚

q̄˚

q˚

κ˚

¯̃i˚

λ˚

ĩ˚

where the upper square is cartesian by Lemma 5.8 and all functors have right
adjoints. Note that for any N P M1pSq we have functorial isomorphisms

HomM1pSqpN, τ
1,ď0ω1p̄˚p̄

˚Mq “ HomDMpSqpN, p̄˚p̄
˚Mq

“ HomDMpS̃qpp
˚N, p˚MqG

“ HomM1pS̃qpp
˚N, τ 1,ď0ω1j̃˚j̃

˚p˚MqG

“ HomM1pS̃qpp
˚N, τ 1,ď0ω1j̃˚e

˚j˚MqG

“ HomM1pV qpe
˚j˚N, e˚j˚MqG

“ HomM1pUqpj
˚N, j˚Mq

“ HomM1pSqpN, τ
1,ď0ω1j˚j

˚Mq

which shows τ 1,ď0ω1p̄˚p̄
˚M – τ 1,ď0ω1j˚j

˚M . Hence the result follows from the
two preceding lemmas. �

Lemma 6.7. Let j : U Ñ S be an open immersion between normal schemes,
and let M P MDel

1 pUq be a Deligne 1-motive whose `-adic realization has good
reduction over S. Then after passing to a finite étale cover of S, we find a lisse
1-motive N P M1,lspSq with j˚N – ΦUpMq.
Proof. As the lattice and the toric part of M extend over S, we may choose a
finite étale cover e : S 1 Ñ S such that e˚UM satisfies the following: p‹q The toric
and lattice part are split and the abelian part A admits an `2-level structure.
Dropping e and S 1 from the notation, we assume that M already satisfies those
properties; denote the abelian part of M by A.

By the assumptions, pS, U, j, A,M,F , uMq is an extendable datum to which
we apply Corollary 4.33 to obtain linked extended data Di, maps p̂NM and
isogenies φlm as specified there. We arrange the Di and p̂NM to a functor

Ŝ‚ : P˚ xky Ñ pSchemesq{S
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and apply DMp´q to obtain a functor

DMpŜ‚q : pP˚ xkyqop Ñ Prst,b.

We note that the canonical morphism

DMpSq Ñ lim
pP˚xkyqop

DMpŜ‚q

is an equivalence of symmetric monoidal stable 8-categories. This follows by
induction from Lemma 5.7 and Lemma 5.2. For i P xky define

oi :“ ΦŜipM̂
i
q P DMpŜiq

and note that Corollary 4.33 gives in particular forA “ ta1 ă . . . ă aru P P˚ xky
a chain

ppAa1
q
˚o1

f1,2
ÝÝÑ ppAa2

q
˚o2

f2,3
ÝÝÑ . . .

fr´1,r
ÝÝÝÑ ppAarq

˚or

of equivalences in DMpŜAq, where we set

fk,l “ pp̂
A
tak,alu

q
˚
`

ΦŜk,lpφ
ak,alq

˘

.

Hence by Proposition 5.1, we obtain N P DMpSq satisfying pin0 ˝ p̂
nq˚N –

ΦŜnpM̂nq. By [Lur17, Proposition 4.6.1.11], N is strongly dualizable. Further,

denoting by j0 : U Ñ Ŝ the unique open immersion over S, we have

j˚N – pj0
q
˚
pp̂0
q
˚N – pj0

q
˚ΦŜ0M̂0

– ΦUpM̂0
|Uq “ ΦUpMq.

Finally, we need to check that N is actually in M1pSq. It is enough to verify this
after pulling back along inclusions i : sÑ S of points of S by [PL19, Proposition
1.25] and [PL17, Theorem 4.1 (ii)]. Let r P xky be the unique index such that

s P SrzSr`1 “ U r. Denoting by jr : U r Ñ Ŝr the unique open immersion over
S, we find that i factors as

i “ ir0 ˝ p̂
r
˝ jr ˝ i1

with i1 : S Ñ U r and hence we find that

i˚N – pi1q˚pjrq˚ΦŜrpM̂
r
q – ΦspM̂r

ˆŜr sq

is in M1psq as required. �

Proof of Theorem 6.1. By transitivity of the pushforward functors, we may
shrink U and assume by continuity that M “ ΦUpMq for a Deligne 1-motive
M. As being lisse can be checked on an étale cover and as τ 1,ď0, ω1 and j˚ all
are compatible with finite étale base change, we can pass to a finite étale cover
of S and apply Lemma 6.7 to produce N P M1,lspSq with j˚N –M . Then by
Lemma 6.6 we have

N – τ 1,ď0ω1j˚j
˚M – τ 1,ď0ω1j˚M

which is therefore lisse. �
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6.2. Regular schemes and purity. We still have to discuss the special case
of regular schemes and the resulting purity statement.

Lemma 6.8. Let j : U Ñ S be a dense open immersion between regular schemes,
` be a prime invertible on S, and M an object of M1,lspUq whose `-adic re-
alization extends to a lisse `-adic sheaf on S. After shrinking U , there is a

factorization of j into a composition U
j1
ÝÑ V

j2
ÝÑ S of open immersions such

that SzV is of codimension at least 2 in S, such that MV :“ τ 1,ď0ω1j1˚M is of
the form ΦV pMq for a Deligne 1-motive M P MDel

1 pV q

Proof. By shrinking U , we may assume that M “ ΦUpNq comes from a Deligne
1-motive N P MDel

1 pU,Qq, to which we apply Corollary 4.16 to find j1, j2 and
M P MDel

1 pV q with j˚1M – N. Then

ΦV pMq Ñ τ 1,ď0ω1j1˚j
˚
1 ΦV pMq – τ 1,ď0ω1j1˚ΦUpNq – τ 1,ď0ω1j1˚M

is an isomorphism by Lemma 6.2. �

Corollary 6.9. Let S be regular, and let j : U Ñ S be an open immersion whose
complement has codimension at least 2. Let further M be a Deligne 1-motives
over U and M “ ΦUpMq the corresponding lisse 1-motive. Then ω1j˚M is lisse.

Proof. As dualizability can be checked locally for the étale topology and as
ω1j˚ commutes with étale pullback by [PL19, Proposition 3.3 v)c)] and smooth
base change, we may assume that there is a prime ` invertible on S and that
A admits an `2-level structure. By Zariski-Nagata purity, there is a lisse `-adic
sheaf F P Shls

étpS,Z`q together with an isomorphism uA : j˚F Ñ T`pAq. By
Lemma 6.7, there is an N P M1,lspSq with j˚N – M . By Proposition 6.2 we
have N – ω1j˚M , so the latter is lisse. �

Corollary 6.10. Let S be a regular scheme and j : U Ñ S be an open dense
immersion whose complement has every codimension at least 2. Then

j˚ : M1,ls
pS,Qq Ñ M1,ls

pU,Qq
is an equivalence of categories with inverse ω1j˚; no truncation is needed.

6.3. Realization reflects being lisse. Finally, we show that being lisse can
be checked on realizations for not necessarily regular base schemes:

Theorem 6.11. Let S be a scheme, ` a prime invertible on S, and M P

M1pSq be a 1-motive whose `-adic realization R`pMq is a lisse sheaf. Then
M P M1,lspSq.

Proof. We first show this in the case that S is normal. By continuity, we find a
dense open immersion j : U Ñ S such that j˚M P M1,lspUq. By Theorem 6.1,
τ 1,ď0ω1j˚M is lisse and the canonical map M Ñ τ 1,ď0ω1j˚M is an isomorphism.

For the general case, we use noetherian induction and the key fact that
dualizability of an object in a limit of symmetric monoidal stable 8-categories
can be checked on the individual categories appearing [Lur17, Proposition
4.6.1.11]. As closed coverings can be described by abstract blow-up squares, this
result together with Lemma 5.7 reduces us to S being irreducible. Choosing a
regular Galois-alteration of S [dJ97, Corollary 5.15] and applying Lemma 5.8
together with the case of regular schemes proven above then reduces us to
schemes of lower dimension. As the case of 0-dimensional schemes is obvious,
this shows the claim. �
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6.4. Comparing Deligne’s and Pepin Lehalleur’s categories. We now
come to the comparison between Deligne 1-motives and M1p´q. We first deal
with the case of Dedekind schemes and that of regular schemes over Q, and
consider the normal case over Q afterwards.

Lemma 6.12. Let S be regular and either one-dimensional or defined over Q.
Then the comparison functor

ΦS : MDel
1 pS,Qq Ñ M1,ls

pSq

is an equivalence of categories.

Proof. Assume S to be connected with generic point η. We have a square

MDel
1 pS,Qq M1,lspSq

MDel
1 pη,Qq M1,lspηq

ΦS

Φη

„

where Φη is an equivalence of categories by [PL19, Proposition 4.21] and the
vertical functors are fully faithful by Propositions 6.2 and 4.1. Furthermore, ΦS

is fully faithful by [PL19, Theorem 4.31]. To show essential surjectivity, take
an object M of M1,lspSq and note that by the above diagram, we only need
to produce a Deligne 1-motive M P MDel

1 pS,Qq restricting to Mη. If there is a
prime ` which is invertible on S, we are done because R`pMq is a lisse `-adic
sheaf by Lemma 2.5 and we may apply Corollary 4.14 or Corollary 4.15 to
extend Φ´1

η pMηq to M over S. Otherwise, apply Corollary 4.17 to reduce to this
situation. �

Corollary 6.13. Let S be a normal scheme and ` a prime invertible on S.
Then the comparison functor

ΦS : MDel
1 pS,Qq Ñ M1,ls

pSq

is fully faithful.

Proof. Let j : U Ñ S be an open dense immersion with U regular. Let M1,M2 P

MDel
1 pS,Qq and Mi :“ ΦSpMiq. We know that in the diagram

HomMDel
1 pS,QqpM1,M2q HomM1,lspSqpM1,M2q

HomMDel
1 pU,Qqpj

˚M1, j
˚M2q HomM1,lspUqpM1,M2q

ΦS

j˚ j˚

ΦU

the left vertical and the bottom horizontal arrows are bijections by Proposi-
tion 4.1 and Theorem 6.12. As the right vertical map is injective by Lemma 6.3,
we see that all morphisms are bijections which shows the claim. �

Corollary 6.14. Let S be a normal Q-scheme. Then the comparison functor

ΦS : MDel
1 pS,Qq Ñ M1,ls

pSq

is an equivalence of categories.

Proof. This follows from Corollaries 4.15 and 6.13. �
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6.5. Application to the cohomology of curves. As the final application,
we come back to Question 1.1 and give the promised answer in the case of
curves.

Corollary 6.15. Let S be a normal connected scheme with generic point η, `
a prime invertible on S, and let f : X Ñ η be a curve or a semi-abelian scheme.
Then unramifiedness of Rif˚Q` does not depend on `.

Proof. Assume X connected. For i “ 0, unramifiedness is equivalent to the field
of constants of X being a field extension of η which is unramified over S, hence
it does not depend on `. If X is a curve, its second cohomology is equal to
the second cohomology of the normalizations of the proper components. Hence
we can reduce the i “ 2 case to the i “ 0 case by Poincaré duality. Finally, if
X is a semi-abelian group scheme, the first cohomology of X is unramified if
and only if any higher cohomology group of X is. Hence we may restrict our
attention to i “ 1. If X is a semi-abelian group scheme, set M “ r0 Ñ Xs. If X
is a curve, let M be the Deligne 1-motive associated to the semi-normalization
of X. Then M has as `-adic realization the first cohomology as X by [Del74,
Construction 10.3.6]. Use continuity to find a dense open immersion j : U Ñ S
and an extension N of M to U . By Theorem 6.1, the realization R`pMq has
good reduction over S if and only if

τ 1,ď0ω1j˚N P M1,ls
pSq

and we see that this condition does not depend on `. �
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homogènes, Lecture Notes in Mathematics, Vol. 119, Springer-Verlag, Berlin-New
York, 1970.

[Rib04] Kenneth A. Ribet, Abelian varieties over Q and modular forms, Modular curves
and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 241–261.
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