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A central task of educational research is to examine common issues of teaching and

learning in all subjects taught at school. At the same time, the focus is on identifying

and investigating unique subject-specific aspects on the one hand and transdisciplinary,

generalizable effects on the other. This poses various methodological challenges for

educational researchers, including in particular the aggregation and evaluation of

already published study effects, hierarchical data structures, measurement errors, and

comprehensive data sets with a large number of potentially relevant variables. In order

to adequately deal with these challenges, this paper presents the core concepts of four

methodological approaches that are suitable for the analysis of transdisciplinary research

questions: meta-analysis, multilevel models, latent multilevel structural equation models,

and machine learning methods. Each of these approaches is briefly illustrated with an

example inspired by the interdisciplinary research project FALKE (subject-specific teacher

competencies in explaining). The data and analysis code used are available online at

https://osf.io/5sn9j. Finally, the described methods are compared, and some application

hints are given.

Keywords: transdisciplinarity, meta-analysis, multilevel model, linear mixed model, structural equation model,

machine learning, explaining, instructional quality

INTRODUCTION

Interdisciplinarity is a key feature of empirical educational research. However, while this defining
characteristic was for a long time primarily related to the participation and cooperation of
various academic disciplines (e.g., pedagogy, psychology, sociology, or educational studies; see
Deutscher Bildungsrat [German Education Council], 1974; Gräsel, 2015), in recent years, it
has gained a within-field content-related dimension with regard to the diverse school subjects
under investigation. The validity of findings from mathematical and scientific contexts, on
which instructional research has mainly focused so far, is being questioned with regard to
disparate teaching and learning conditions and subject-specific cultures in the human and social
sciences–and their generalizability, in principle, is doubted (e.g., Praetorius et al., 2018; Schlesinger
et al., 2018; Wisniewski et al., 2020). So, the school subject becomes an information-bearing
grouping variable at a higher level, which must be adequately considered in the data analysis. The
term transdisciplinary educational research is accordingly understood here as research in different
school subjects in order to analyze subject-specific peculiarities and interdisciplinary differences
on the one hand, and transdisciplinary similarities and generalizable effects on the other. Four
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differentmethodological approaches are suitable for this purpose,
namely meta-analysis, multilevel models, (latent) multilevel
structural equation models, and machine learning, which will
be briefly presented individually below. In each case, the
underlying theoretical model will be explained and possible
applications in transdisciplinary research will be concisely
illustrated using a reduced data set from the multidisciplinary
research project FALKE (Fachspezifische Lehrerkompetenzen
im Erklären; English: Subject-specific teacher competencies in
explaining) as an example.

FALKE involved educational scientists of eleven different
school subjects (Art, Biology, Chemistry, English, German,
History, Mathematics, Music, Physics, Primary School
Education, and Protestant Religious Education) and scientists
of German linguistics as well as of speech science and training
(see also Schilcher et al., 2020b). Using a joint study design,
they investigated the quality of teaching explanations in
the participating school subjects. For this purpose, five
transdisciplinary criteria (structuredness, addressee orientation,
linguistic comprehensibility, speech and body expression,
personality effect) and one domain-specific criterion per
subject (e.g., the importance of causality structures in History)
were conceptualized and operationalized with corresponding
items in an online questionnaire. In addition, six explanatory
videos (seven in the case of the school subject Music), with
varying didactical approaches (e.g., inductive vs. deductive)
were created for each subject and shown to school students
as typical addressees of explanations and (student) teachers as
(prospective) experts in explaining. These two groups (N = 3.116
participants) first rated the videos globally and then according
to the six criteria mentioned, each of which was represented by
an individual scale. One of the main transdisciplinary research
questions was, e.g., which of the criteria are relevant for the
global rating of teaching explanations as being of high quality
and whether the relationships are similar across all school
subjects or whether there are differences between subjects.

Since a complete presentation of the FALKE project is beyond
the scope of this paper (for details see Schilcher et al., 2020a),
the investigation of this research question will be limited in the
following to the correlation between structuredness and global
rating for didactic and illustrative purposes. However, it will
be examined under four different methodological approaches
(meta-analysis, multilevel models, multilevel structural equation
models, and machine learning). The data and script of these
exemplary analyses, which were carried out using the statistical
software R (R Core Team, 2019), are available online at https://
osf.io/5sn9j.

META-ANALYTICAL APPROACHES IN
INTERDISCIPLINARY STUDIES

With the aim of recording previous research in a certain
area as comprehensively and systematically as possible and
reporting its state of the art and core results concisely (e.g.,
Seidel and Shavelson, 2007; Hattie, 2009), meta-analytical
procedures have long been part of the methodical inventory

in educational research. Primary effects are summarized and
weighted according to mathematically defined, objectifiable
criteria and publication bias, content, as well as methodological
quality and, in particular, sample size of primary studies
can be taken into account as influencing variables. Thus,
meta-analyses can reduce the distracting effects of sampling
errors, measurement errors, and other artifacts that create the
impression of extreme, sometimes even contradictory results of
primary studies, and at the same time provide a measure of
their consistency (Borenstein et al., 2009; Schmidt and Hunter,
2015). Which kind of effect size is applied in a meta-analysis is of
secondary importance, as long as they are independent of study
design aspects (such as sample size, covariates used, etc.), easy
to calculate from the typically reported statistical information,
and have good technical properties for further processing (e.g.,
known distribution; Borenstein et al., 2009). Accordingly, meta-
analyses commonly use standardized distance measures (e.g.,
Cohen’s d or Hedges’ g) or standardized correlation measures
(e.g., Pearson’s product-moment correlation r).

The estimated meta-effect 8̂ is nothing other than a weighted
average, whereby its meaning and the weighting of the individual
studies depend on two different theoretical assumptions about
their distribution: a fixed effect model or a random effects model.
In the fixed effect model, it is assumed that the same true
population effect 8 underlies each individual study (i = 1,. . . ,
k; k number of primary studies), which means that all analyzed
effects are the same, and that the observed effect Zi deviates only
by sampling error εi with Zi = 8 + εi. Since these sampling
errors depend largely on the sample size of the primary studies,
the weightwi of the respective effects is calculated as a function of
the sample sizeNi, so thatmore precisely estimated effects receive
larger weights, whilemore roughly estimated ones receive smaller
weights when determining the estimated population effect:

8̂ =
∑k

i=1 wi × Zi
∑k

i=1 wi

.

The only source of variance is thus the sampling error of the
studies εi with assumed εi ∼ N(0; σ²).

However, since research designs of primary studies, even
if they are identical, are sometimes carried out with varying
details and because target populations differ (e.g., in terms of
age, education, socioeconomic status, or subject-specific culture),
the assumption of the fixed effect model is rarely correct. The
true effect sizes Zi in all studies (i = 1,. . . , k; k number of
primary studies) may be similar but are not likely to be identical.
Accordingly, a random effects model assumes that the true effect
sizes are a random sample from the population of all possible
study effects and (normally) distributed around the true overall
effect 8. The true effects of the individual studies deviate from
this by a study-specific value ζi and by a sampling error εi with
Zi = 8+ ζi + εi. Thus, the variance comprises two components:
an inter-study variance τ 2 and an intra-study variance σ 2, both
of which are included in the weighting (w∗

i ) for the estimation of
the meta-effect–on the one hand, in accordance with the random
distribution assumption, and on the other hand, to take into
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account the precision (sample size) of each individual study i:

8̂ =
∑k

i=1 w
∗
i × Zi

∑k
i=1 w

∗
i

(for details Borenstein et al., 2009; Schmidt and Hunter, 2015).
This not only shows that the fixed effect model is a

special case of the random effects model when the inter-study
variance τ 2 is zero, and the use of a random effects model
is generally recommended. Rather, attention shifts from the
overall effect to the distribution of study effects when these vary
substantially, and the meta-analytical procedures are functional
continuations of analyses used in primary studies (e.g., analysis
of variance, multiple regression; Borenstein et al., 2009). Thus, in
analogy to one-way analysis of variance, the measure Q for the
weighted square sums, which follows a central χ² distribution
with df = k–1 degrees of freedom, and a corresponding null
hypothesis significance test are used to check whether the
heterogeneity of the individual study effects differs from zero.
The variance of the effect size parameters of the primary studies
is denoted as τ 2 with the corresponding standard deviation

τ = 2
√

τ 2. In addition, the parameter I2 expresses the proportion
of the total variance (= inter- and intra-study variance) that is
actually due to the heterogeneity of the study effects. Thus, I2

is a measure of the inconsistency within the study effects and
is comparable with the coefficient of determination of classical
variance-analytical procedures R2. According to Higgins et al.
(2003), tentative benchmarks or conventions for the proportion
of true inter-study variance in the total variance are 25% low,
50% medium, and 75% high. Even small values for I2, however,
may present good reasons for the inter-study variance to be

elucidated, for example by subgroup analyses ormeta-regressions
(see Borenstein et al., 2009; Schmidt and Hunter, 2015).

In the transdisciplinary educational context, meta-analytical
procedures can be applied as usual to combine the results
of several studies on one or more subjects (e.g., Seidel and
Shavelson, 2007; Praetorius et al., 2018). On the other hand,
however, their application is particularly suitable when, within
an interdisciplinary research approach, several subject-specific
studies with the same study design are to be compared and
generalized. This specific usage is finally illustrated by an example
from the FALKE project, in which among many other things
the relationship between structuredness and global rating of
explanations in eleven different school subjects was investigated.
The corresponding correlation results, including the precision
of the respective estimates, which are represented in the forest
plot with 95% confidence intervals, and the distribution of the
subject-specific effects are shown in Figure 1.

In order to investigate the size of the correlation between
structuredness and global rating across all school subjects, the
meta-effect was determined using both the fixed and the random
effects model, with both approaches leading to the same result
(r = 0.44). Figure 1 clearly shows the different weightings that
correspond to the sample sizes of the primary studies in the fixed
effect model. Also, based on the hypothetical assumption that
the true effect is identical in each subject, the estimation of the
meta-effect turns out to be rather precise (CI0.95 = [0.43; 0.46]).

However, it seems theoretically more sound to assume that
the effects observed in the individual studies are only a random
sample due to, among other factors, subject-specific practices,
different explanatory themes and addressees, and heterogeneous
sample compositions–clearly, a random effects model seems
more suitable. In this model, the studies are weighted almost

FIGURE 1 | Forestplot for the subject-specific relationships between structuredness and global rating and results of the fixed effect and random effects model.
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equally (see also Figure 1) and the confidence interval of the
meta-effect is larger (CI0.95 = [0.38; 0.50]), since the distribution
of the subject-specific effects is also taken into account. As
expected, this heterogeneity is significant (Q ∼= χ2

10 = 204.18,
p < 0.01), and the inter-study variance is τ 2 = 0.01 (standard
deviation: τ = 0.10). This variance can almost completely
(I2 = 95%) be attributed to a true heterogeneity between the
subject-related correlations and must be clarified in further
analyses (Schilcher et al., 2020a).

HIERARCHICAL DATA STRUCTURES AND
MANIFEST MULTILEVEL MODELS

While meta-analytical approaches for investigating
transdisciplinary issues are based on published results data, for
raw data structured according to studies (here: school subjects),
multilevel models are used to simultaneously determine the
(residual) variance of the study-related effect size parameters
and the overall effect size (Raudenbush and Bryk, 2002). The
hierarchical data structures to be considered here, in which
analysis objects at the individual level can be assigned to one
or more superordinate units, are well-known in educational
research from a large number of applications and are accordingly
widely discussed in the methodological literature (Ditton, 1998;
Raudenbush and Bryk, 2002; Marsh et al., 2012; Beretvas et al.,
2015; Nagengast and Rose, 2018). For example, students (level
1) are nested in classes (level 2), classes in schools (level 3),
schools in administrative units (level 4), administrative units
in countries (level 5), and so forth. The resulting potential
similarity or dependence of measured values within the same
category, the size of which can be determined by means of the
intraclass correlation coefficient (ICC), violates the independence

assumption of errors required by close to all classical models.
This violation endangers the validity of statistical conclusions,
since spurious correlations between variables, biased estimates
of model parameters, underestimation of standard errors and,
with regard to null hypothesis significance testing, inflated
Type-1-error probabilities are some of the possible consequences
(Ditton, 1998; Raudenbush and Bryk, 2002; Snijders and Bosker,
2012; Beretvas et al., 2015; Nagengast and Rose, 2018).

By specifying residual matrices at both the individual and the
grouping levels (themixing of the error terms is the reason for the
often-used term “mixed models” instead of multilevel models),
multilevel models explicitly consider hierarchical structures in
the data. Also, these models allow for the straightforward
inclusion of features and their relationships at different
aggregation levels, since these are (mathematically) independent
of each other (e.g., level 1: mathematics achievement, socio-
economic status; level 2: classroom climate, class size; level 3:
school track, school facilities; level 4: infrastructure, curriculum;
level 5: gross domestic product, development level; cf. Snijders
and Bosker, 2012; Beretvas et al., 2015; Nagengast and Rose,
2018). Compared to a conventional ordinary least squares
regression model, the equation of a simple hierarchical model
with two levels, for example, contains two additional random
components (also with mean zero), which model the deviations
u0j from the group-specific regression intercepts from the overall
intercept γ00 on the one hand, and the deviations u1j of the
group-specific regression slopes from the overall slope γ10 on the
other hand:

Yij = γ00 + uoj + (γ10 + u1j)Xij + rij

with Y ij representing the dependent variable, Xij the value of
the independent variable, and rij represents the error term of

FIGURE 2 | Line graph of the subject-specific relationships between structuredness and global rating. Scaling of structuredness and global rating 1 = very good, ...,

6 = insufficient.
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TABLE 1 | Random coefficient model with the dependent variable global rating for

eleven school subjects.

Obs.: 15685 Fixed effects Random effects

ICC: 2.26% γ SE γ 95% CI γ Per SD 95% CI SD

Intercept 0.91 0.08 [0.75; 1.07] Subject 0.26 [0.14; 0.37]

Structuredness 0.52 0.03 [0.45; 0.59] Subject 0.11 [0.06; 0.15]

Marginal R2 0.19 Conditional R2 0.22

Obs., number of observations; ICC, intraclass correlation; γ, (unstandardized) regression

coefficient; SE, standard error; SD, standard deviation; CI, confidence interval (on 1,000

bootstrapping samples); R2, coefficient of determination.

the entity i, with i = 1,..., nj, in group j, with j = 1,..., k.
The application of this so-called ‘random coefficient model’, in
which regression constants as well as the predictors’ regression
weights vary freely over superordinate levels, is illustrated below
in simplified examples with only transdisciplinary (2 levels) or
with longitudinal and transdisciplinary data structure (3 levels).1

Multilevel Models (Considering
Context-Related Data Structures)
With reference to the example in section Meta-Analytical
Approaches in Interdisciplinary Studies, the correlation between
structuredness and global rating of explanations for the
eleven school subjects involved in the FALKE project will be
investigated, taking into account the overall (transdisciplinary)
correlation as well as the variance of the subject-specific
relationships shown in Figure 2. To this end, a simple random
coefficient regression with the dependent variable global rating
and the independent variable structuredness is used to model the
nested data structure arranged by school subject, in which the
regression intercepts and slopes are variably modeled at subject
level. The unstandardized results of this estimation, with both
variables were measured on the same six-category response scale,
are shown in Table 1.

As can be seen from Table 1, the global (transdisciplinary)
regression coefficient for structuredness is γ10 = 0.52 and is
significant. This means that, starting from the global intercept of
γ00 = 0.91 (intersection of the overall regression line with the
ordinate axis; cannot be interpreted in a meaningful way here),
the global rating, on average, increases by about half a unit for
each rating unit by which the structuredness increases. In terms
of content, this shows that there is a positive correlation between
the structuredness and the global rating of an explanation, that
is, on average, the better structured an explanation is perceived
the better it is rated overall. But this correlation is not the
same in all subjects. In the present case of only one predictor
variable, the intercepts (SD= 0.26) as well as slopes (SD= 0.11)
not only vary significantly between the school subjects, so that in
individual subjects there may be lower or higher starting levels
and smaller or larger correlations between global rating and
structuredness, which are visualized in Figure 2 (for numerical

1In order to make the examples clear and comprehensible, the modelling of
further levels that may be contained in the data (e.g., class, school) is avoided for
didactical reasons.

details see Table 2). Rather, there is a significant correlation of
r = −0.86 (CI0.95[−0.97; −0.50]) between intercepts and slopes:
the smaller the intercept, the greater the slope between global
rating and structuredness or, in other words, the better very well-
structured explanations are globally rated in an interdisciplinary
comparison, the worse are very poorly structured explanations.
On the one hand, this can be seen numerically from Table 2,
which is additionally presented here for illustration purposes and
contains the subject-specific model coefficients. On the other
hand, the effect is shown graphically in Figure 2.

The variance explained by the present hierarchical model
is acceptable for both the fixed effects (marginal R2 = 0.19)
as well as the fixed and random effects together (conditional
R2 = 0.22). In conclusion, it should be noted that with
previous z-standardization of the variables global rating
and structuredness per school subject, the reported random
coefficient model (apart from small deviations and discrepancies
due to different estimation procedures and rounding) leads to
the same results as the random effects model of the meta-analysis
(section Meta-Analytical Approaches in Interdisciplinary
Studies), thus highlighting the obvious parallels between these
two approaches.

Mixed Linear Models (Considering
Longitudinal Data Structures)
Longitudinal data structures are a fairly regular case in
educational research, for example when investigating the
effectiveness of teaching methods with a pre- and a post-
test, offer a specific application situation for multilevel models.
Each person is assigned at least two measurement values (e.g.,
the pre- and the post-test results). The data can therefore be
thought of as ‘nested within persons’. At the same time, the
persons are often divided into different groups (e.g., control
and experimental group) at random or systematically according
to different test conditions. According to Hilbert et al. (2019),
mixed linear models with dummy-coded predictor variables
are particularly suitable for analyzing studies with this type
of design, since they are superior to traditional methods
such as repeated measurement ANOVAs or OLS regressions
with regard to less stringent model assumptions and higher
statistical power (see also Raudenbush and Bryk, 2002). The
approach proposed by Hilbert et al. is easily applicable to a
transdisciplinary context by extending the nesting of the model
to take different school subjects into account. For an exemplary
case, data from the FALKE project will again be used to illustrate
the model.

In (almost) all school subjects, two explanatory videos present
the same teaching content using two didactically different
approaches (A vs. B). These video pairs were shown to students
on the one hand, and to teachers on the other, and both groups
were asked to give their global rating (Schilcher et al., 2020b). An
illustration of the results is provided in Figure 3, which shows
differences in the rating depending on the group, didactical
method, and subject.

In order to analyze the differences shown in Figure 3 with
a linear mixed model, the variable for the didactical method of
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TABLE 2 | Subject-specific coefficients for the random coefficient model in Table 1.

Art Bi Ch En Ge Hi Ma Mu Ph PSE Re

Intercept 0.96 1.22 0.67 0.72 0.98 0.65 0.90 1.45 0.73 0.97 0.77

Structure 0.43 0.36 0.55 0.64 0.55 0.61 0.59 0.36 0.60 0.42 0.58

Art, art; Bi, biology; Ch, chemistry; En, English; Ge, German; Hi, history; Ma, mathematics; Mu, music; Ph, physics; PSE, Primary School Education; Re, Protestant Religious Education.

FIGURE 3 | Line graph of the subject-specific relationships between method and global rating, separated by students, and teachers.

a video pair (A: 0 vs. B: 1) as well as the variable for group
membership (students: 0 vs. teachers: 1) are dummy-coded. The
model includes both main effects as well as the interaction effect
of the variables. Importantly, the interaction effect represents
the additional rating difference between didactical method A
and B for teachers compared to the students. Since the data
are nested within persons, a person-specific residual term
is included on the second level. In addition, school subject
grouping is modeled as a third level, by which the regression
intercept and slope parameters of all predictors may vary
to obtain estimates for both the generalized effects and the
transdisciplinary distribution of effects. The (non-standardized)
coefficients of the corresponding linear mixed model are shown
in Table 3.

Across all school subjects, students rate didactical method
A on average with γ00 = 2.12, although this value varies
significantly between disciplines (SD = 0.23; Table 3). The
corresponding rating of the teachers is on average significantly
lower by γ10 = −0.18 than compared to the students’ and shows
a significant variation from discipline to discipline (SD = 0.18).
While there is no significant overall tendency among students
across school subjects in favor of the didactical variant B
(γ01 = 0.10, but the 95% CI includes the value 0), the significant
transdisciplinary interaction effect between group and method
(γ11 = 0.30) is: Compared to method A, the teachers assigned

TABLE 3 | Linear mixed model with the dependent variable global rating for

eleven school subjects.

Obs.: 5957 Fixed effects Random effects

ICC: 27.62% γ SE γ 95% CI γ Per SD 95% CI SD

Intercept 2.12 0.07 [1.98; 2.27] Id 0.50 [0.47; 0.53]

Subject 0.23 [0.11; 0.35]

Group −0.18 0.06 [−0.31; −0.06] Subject 0.18 [0.07; 0.28]

Method 0.10 0.08 [−0.06; 0.26] Subject 0.24 [0.11; 0.35]

Group × Method 0.30 0.07 [0.16; 0.44] Subject 0.20 [0.07; 0.32]

Marginal R2 0.02 Conditional R2 0.36

Obs., number of observations; ICC, intraclass correlation; γ, (unstandardized) regression

coefficient; SE, standard error; SD, standard deviation; CI, confidence interval (on 1,000

bootstrapping samples); R2, coefficient of determination.

didactical method B a significantly higher average rating than
the students (for an exhaustive description of the different model
parameters and their interpretation, see Hilbert et al., 2019).
In the present model, the variance that is explained by the
fixed effects is small (marginal R2 = 0.02), that explained by
fixed and random effects is appropriate (conditional R2 = 0.36).
Thus, an interdisciplinary generalization of the results only
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appears to make sense regarding the transdisciplinary variance
of the effects.

LATENT MULTILEVEL STRUCTURAL
EQUATION MODELS

The multilevel models described above are based on manifest
scale values for each construct such as sum or mean values
or the proportion of correctly solved tasks. However, any
multiple indicators of the constructs, their factor structure
and particularly measurement errors are not considered in
manifest models (Marsh et al., 2012; Beretvas et al., 2015). This
implies the assumption that all relevant variables are directly
observable (and measured without errors), which hardly seems
possible–in particular regarding typical target variables in the
social sciences and educational research, such as (cognitive)
abilities, knowledge, competence, skills, attitudes, or motivation.
In contrast, structural equation models take up the basic idea
of latent modeling, that is to capture a feature which is not
directly observable only by means of various indicators, in
whose manifestations this feature is reflected. Latent models split
the variance of the manifest indicators into the measurement
error component and the component of the latent variable on
which the scale values are based. At the same time, the use of
latent structural equation models allows the analysis of complex
variable systems with several exogenous and endogenous

elements (Kline, 2011; Beretvas et al., 2015; Nagengast and Rose,
2018).

By extending the multilevel approach, these advantages can
also be used in latent multilevel structural equation models in
which features can be measured and analyzed simultaneously
at different levels of analysis (e.g., students, classes, school,
subject; Raudenbush and Bryk, 2002). Possible applications of
such models, for example in the context of instructional quality
research, are shown by Baumert et al. (2010), Kunter et al. (2013)
as well as Wisniewski et al. (2020) and their particular merit
is underlined by Marsh et al. (2012). Because of the specific
methodological requirements of educational research, in which
manifest variables mostly reflect influences from several levels,
these authors suggest the use of double latent models, which will
be illustrated below using a simplified example.

Analogous to sections Meta-Analytical Approaches in
Interdisciplinary Studies and Multilevel Models (Considering
Context-Related Data Structures), the transdisciplinary
relationship between structuredness and global rating of
explanations is examined, taking into account individual
differences (level 1) and heterogeneous subject cultures (level
2). For this purpose, a (latent) multilevel structural equation
model, in which the structuredness is simultaneously indicated
at levels 1 and 2 by the four items belonging to this latent
construct, is estimated (Figure 4). The manifest value of the
global rating indicator is decomposed into latent variance
components at levels 1 and 2 as endogenous variables in each

FIGURE 4 | (Doubly) Latent structure equation model for the correlation between structuredness and global rating at individual and school subject level. Latent

constructs are represented as circles and indicators of these variables as squares. The boxes representing the observed variables are associated with both individual

and subject-specific constructs (see Marsh et al., 2012); residual variances are not reported. The subscripts ij indicate that these variables take on different values for

each student i in each classroom j. Number of observations: 15,639, number of clusters: 11; χ2(10) = 173.13**, CFI = 0.99, RMSEA = 0.03, SRMR (within) = 0.02,

SRMR (between) = 0.09; *p < 0.05, **p < 0.01.
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case. Figure 4 shows the corresponding measurement and
structure models including the standardized factor loadings,
variances, and regression coefficients (without residuals). The
proportion of variance that can be explained by the school
subject structure (ICC 1) is 2.27% [see section Multilevel Models
(Considering Context-Related Data Structures), Table 1], the
reliability of the subject-specific group means is 0.97 (ICC 2;
Bliese, 2000) and the local and global fit values of the model are
acceptable (Figure 4; Hu and Bentler, 1999). The standardized
correlation between structuredness and global rating is β1 = 0.49
(p < 0.01) at individual level and β2 = 0.66 (p < 0.01) at
subject level. Thus, due to the high factor reliability, the latent
transdisciplinary effect of R2 = 0.44 (= β2

2 ) corresponds to the
(measurement error-afflicted) estimates of the meta-analysis
(section Meta-Analytical Approaches in Interdisciplinary
Studies) and the multilevel model with standardized coefficients
[section Multilevel Models (Considering Context-Related
Data Structures)].

MACHINE LEARNING METHODS

Although the methods presented so far are suitable and
proven for a large number of applications in the field of
educational science, they require stringent distributional and
model assumptions and can only handle a relatively restricted
number of variables and constructs. This makes it difficult
to adequately analyze large, weakly structured or short-lived
datasets, which are summarized under the collective term
“big data,” increasingly available due to digitalization and also
necessary to investigate the multifaceted complexity of many
educational phenomena. In order to meet these methodological
challenges, various data mining methods have been applied
for many years and are constantly being further developed,
which has been particularly favored by the rapid increase in
computing power over the last two decades (Romero and
Ventura, 2020; for an overview, see Fischer et al., 2020).
These include machine learning methods, which enable an
effective analysis of enormous amounts of data and complex
data structures almost without distributional assumptions.
So far, machine learning approaches have only rarely been
used in empirical educational research (e.g., Kotsiantis, 2012),
but they represent a promising alternative for the analysis
of national and international large scale studies, such as
PISA (Programme for International Student Assessment) or
TIMSS (e.g., Depren et al., 2017; Yoo, 2018; Trends in
International Mathematics and Science Study), for secondary
analyses (e.g., Pargent and Albert-von der Gönna, 2018) or,
as will be outlined in the following, for the investigation of
transdisciplinary analyses.

From a theoretically unlimited number of variables, those
relevant for predictions are automatically selected by machine
learning algorithms and overfitting is prevented by a strict
distinction between training and test data with resampling
methods using multiple loops. This method is called (nested)
resampling, because the entire sample of cases is recursively
split into a training set, typically comprising two thirds of

the data, and a test set, comprising the remaining third. The
model is then trained with the training data only until the
most predictive variables are selected (or equipped with large
weights) and their interaction is modeled. The accuracy of the
resulting model, however, is estimated through the performance
of the test data, which has not been used to train the model.
Overfitting the model to the training data therefore results
in worse fit on the test data (because even random aspects
of the training data enter the model, which have no bearing
in the test data; Efron and Hastie, 2016). This procedure
requires the data to be labeled before training, so that the
prediction accuracy can be determined by the percentage of
correctly predicted labels in the test data. These labels may be
categorical or numerical. For categorical data, the percentage of
the correct category is usually used as a measure of prediction
accuracy, while for numerical data, the mean squared error is
often employed. Machine learning with labeled data is termed
“supervised learning,” because the correctness of the result can be
supervised through comparison of the labels with the predictions
of the model.

This means that the models can be more easily generalized
than conventional analysis methods, even though they are
typically more exploratory and less theory-driven than classical
statistical models (Efron and Hastie, 2016). A widespread
criticism regarding machine learning techniques lies within the
data-driven inherently exploratory approach of these models,
which is partly simply the downside of their greatest strength,
namely the lack of model assumptions. However, several
techniques have been developed to look into the former blackbox
that machine learning used to represented. Feature engineering
has become a more and more prominent part of machine
learning. It refers to the preparation of predictor variables
(typically called “features” in the context of machine learning)
to pre-process variables in a usually meaningful way to make
them more valuable for the model. Goerigk et al. (2020), for
example, extracted factor scores from structural equation models
to use them as features in their models. The rapidly growing
field of interpretable machine learning uses various techniques
to infer the effect of single variables on the prediction accuracy,
usually graphically illustrated through variable importance plots,
partial dependence plots, or accumulated local dependence
(Molnar, 2019). As will be illustrated below in an exemplary
analysis of the FALKE data, using sum scores of scales and
variable importance plots can lead to interpretable, theory-based
results, even though this is not the core-strength of the machine
learning techniques.

To provide a simple example, a random forest (Breiman, 2001)
was used to analyze the FALKE data. One of the advantages of
this (and most other common) machine learning model(s) is
that it is not based on distributional and linearity assumptions.
Random forest models simply randomize and average a large
number of mathematical trees that split the sample according
to the most suitable splitting points in the most suitable
variable. In this example, the random forest model was used
to predict the school subject of a video through the ratings
on the six constructs operationalized in FALKE (including the
global rating). In addition, feature importance (see Molnar
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FIGURE 5 | Feature importance plot regarding the prediction of school subject membership by the six constructs and the global rating operationalized in FALKE.

et al., 2018) was estimated by sampling to determine which
construct is most valuable for the prediction of the school
subject. Despite the low number of predictors and high number
of categories, this model already assigns 58.1% of all test set
cases to the correct school subject. Notably, in contrast to
the performance estimates presented in the previous sections
(such as R²), this is the accuracy for the testing sample,
meaning cases the model has not been trained with. As shown
in the representation of the variable importance (Figure 5),
as expected, the subject-specific construct that operationalizes
aspects typical for explanations in this subject (e.g., substance-
particle level in Chemistry or acoustic vs. visual approaches
in Music; Schilcher et al., 2020a) clearly has the greatest
predictive power.

COMPARATIVE CONCLUSION AND
FURTHER RECOMMENDATIONS

In the preceding sections, four different methods were presented
for adequately dealing with methodological challenges such as
meta-analytical approaches, hierarchical data structures, large
measurement errors, or big and complex amounts of data, which
are often present in transdisciplinary empirical educational
research. The first three of these approaches–meta-analyses,
multilevel models and latent multilevel structural equation
models–are based, as cross-references between the respective
sections illustrate, on the same classical framework of the
Generalized Linear Model, which has several limitations. For
instance, the choice of model is not only limited by the level
of measurement and distributional assumptions. Rather, the
requirement of a particular (mostly linear) relationship between
variables itself is by no means self-evident, especially in teaching
and learning contexts, and complex relational structures can

easily be missed or even interpreted in erroneous ways with
linear models. Moreover, the number of variables that can be
considered simultaneously in is typically rather small due to
multicollinearity problems and this also restrict the mapping
of more complex relationships. Since the models are typically
fitted exclusively to the respective underlying sample and
rarely cross-validated or re-evaluated on the basis of additional
samples, the classically reported coefficient of determination
R2 usually substantially overestimates their predictivity and
their generalizability must therefore be critically questioned.
Machine learning methods, on the other hand, do not have these
limitations of the classical General Linear Model and can take
them into account in modeling (see section Machine Learning
Methods). Due to their versatile application potential, they thus
enrich the current inventory of methods in transdisciplinary
educational research (but also in empirical educational research
in general) and appear to be an integral part of the future
state of the art methods, especially for the analysis of “big
data” (Efron and Hastie, 2016; Stachl et al., 2020). Their
primarily explorative approach can be monitored and verified by
contemporary interpretable machine learning methods (Molnar,
2019). On the other hand, machine learning models have not
been developed for theory-testing purposes, but to maximize
model predictivity, often at the expense of interpretability. The
strength of the three approaches based on (generalized) linear
models is the focus on testable hypotheses and the direct
and interpretable quantification of deviations from proposed
model fit.

In conclusion, it should be noted that all of the presented
methods require rather large samples (Marsh et al., 2012),
although the recommendations for minimum sample sizes (per
analysis level) vary depending on the type of analysis as well
as the model type and complexity and are controversially
discussed in the methodological literature (e.g., Borenstein et al.,
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2009; Hox, 2010; Marsh et al., 2012). For the aggregation and
evaluation of already published study effects, the application
of a meta-analysis with a random effects model is appropriate.
Here, the number of underlying effects should be enough to
obtain a meaningful estimate of the between-studies variance.
Using the statistical software R (R Core Team, 2019), central
packages for meta-analyses are “meta” (Balduzzi et al., 2019)
and “metafor” (Viechtbauer, 2010), and further information
about meta-analysis that could not be presented in this brief
introduction is provided by Borenstein et al. (2009) and Schmidt
and Hunter (2015). Multilevel analyses with manifest variables
are suitable, however, if hierarchical data structures exist due to
context variables, but also due to measurements at several time
points. A ratio of 30 : 30 is often given as the minimum for
simple two-level models, but this is only a vague benchmark
that depends mainly on the concrete data situation. Also,
even though theoretically possible, rarely can more than three
levels be modeled meaningfully and estimated in hierarchical
models. Useful R packages for multilevel models are “multilevel”
(Bliese, 2016), “lme4” (Bates et al., 2015), “lmerTest” (Kuznetsova
et al., 2017) as well as “MuMIn” (Barton, 2020). Further
application notes are provided by Ditton (1998), Raudenbush
and Bryk (2002), Hox (2010), and Snijders and Bosker (2012).
If measurement errors or more complex relationships between
variables are to be modeled additionally, the use of latent
multilevel structural equation models is recommended. Besides
an appropriate ratio of persons and parameters to be estimated
(at least 10 : 1), from a multilevel perspective the effective sample
size is the number of higher level units (at least 50), not just
the number of individual level subjects. For the analysis of these
models using R, the packages “lavaan” (Rosseel, 2012) and “sem”
(Fox et al., 2017) are necessary and additional references to
latent (multilevel) structure equation modeling can be found in
Kline (2011) and Marsh et al. (2012). Finally, the benefits and
efficiency of machine learning methods become more apparent
the more extensive and confusing the data set to be analyzed is
(≫1,000 persons and/or variables). A basic R package for the
application of machine learning methods is “mlr” (Bischl et al.,

2016) and an in-depth introduction is provided by Efron and
Hastie (2016).
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