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Double Parton Distributions in the Nucleon on the Lattice
Abstract

Modern scattering experiments involving hadrons are sensitive to parton correlations,
which can be parameterized by double parton distributions (DPDs). These are non-
perturbative objects, which are largely unknown in theory, detailed experimental access
is quite challenging. This thesis provides a first non-perturbative study from first prin-
ciples of light quark DPDs in the nucleon in the framework of lattice QCD. First of all, a
brief review of Quantum Chromodynamics (QCD) is given, followed by definitions and
relations regarding double parton distributions. After that, the evaluation of hadronic
matrix elements in the framework of lattice QCD is explained. DPDs are related to
two-current matrix elements, which can be calculated on the lattice by evaluating four-
point functions. We describe the corresponding Wick contractions for the case of the
proton and give details on the techniques being used for their simulation. These are
performed on 990 configurations of the CLS ensemble H102 with β = 3.4, which corre-
sponds to a lattice spacing of 0.0856 fm, and pseudoscalar masses mπ = 355 MeV and
mK = 441 MeV. The data is converted to the MS scheme at a renormalization scale of
µ = 2 GeV. Results of the bare Wick contractions, as well as physical combinations for
specific flavor, are presented for the two-current matrix elements 〈V 0V 0〉 and 〈A0A0〉,
where also lattice artifacts are explored. The data of two-current matrix elements is
used for the determination of twist-2 functions, which are related to the first DPD
Mellin moment for a specific quark polarization. Consistence of the results with the
DPD number sum rule is verified. The dependence on the quark flavor and polarization
is analyzed for the twist-2 functions, as well as for the extracted DPD Mellin moments.
A further aspect to be investigated is the validity of factorization hypotheses which are
often assumed in order to decompose DPDs in terms of single parton distribution func-
tions (PDFs). This is e.g. the case in the well known pocket formula of double parton
scattering. To this end, we derive factorized expressions for hadronic matrix elements
of two operators, where we obtain convolutions of proton form factors, which can be ob-
tained from lattice calculations. We implement two versions, the corresponding results
are compared to those obtained from two-current matrix elements.
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1 Introduction
Since it has become clear in the middle of the last century that hadrons are composed
of more elementary particles, the study of the hadronic structure has evolved to one
of the most diverse subjects in modern particle physics. Nowadays we know that the
constituents of a hadron are quarks and gluons, which are elementary particles treated
by the standard model. The theory describing the dynamics and interactions between
quarks and gluons is known as Quantum Chromodynamics (QCD). Hadrons can be
thought of being bound states of the QCD Hamiltonian. However, the exact internal
structure in terms of quarks and gluons remains unknown. While we have gained a quite
reasonable understanding of some aspects, like quark and gluon distributions, there are
still many open questions.
Among others, this concerns e.g. the orbital angular momentum of the hadron’s con-
stituents and subsequently their contribution to the total hadron spin (proton spin
puzzle) [1]. Related to this subject is the internal hadronic structure in the transverse
plane in collisions with other particles. Experimental insight on these subjects should
be provided by the future Electron Ion Collider (EIC) [2].
The subject being addressed by this work is the question how partons are correlated with
each other in a hadron and how scattering processes are affected by these correlations.
A reasonable understanding of this is necessary for the interpretation of experiments in
order to test the Standard Model (SM) or find physics beyond it, as we explain in the
following.

1.1 SM background at the LHC
Thanks to their relatively large mass to charge ratio, protons can be accelerated to
highest energies in circular accelerators in order to create high-energy collisions. In this
context they have been used e.g. in experiments at Tevatron and nowadays are collided
at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).
Therefore, hadrons play also an essential role in experiments where the validity of the
standard model is explored. A prominent example is the LHC, where proton-proton col-
lisions with energies up to 13 TeV are used within the four experiments ATLAS, CMS,
ALICE and LHCb. Their purpose is e.g. the investigation of standard model related
subjects like the experimental proof of the existence of the Higgs boson, which has been
achieved in 2012 [3, 4]. Further tasks are given by the search for physics beyond the
Standard Model (BSM) like dark matter physics.
BSM-particles, which are hoped to be detected in LHC experiments, have to be very
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2 1 Introduction

massive, otherwise they would have been found already. They decay into particles hav-
ing much lighter masses, which leads to a very large decay phase space. However, this
is also characteristic for the phase space accessible by double parton scattering (DPS)
events, an interaction of the two colliding hadrons where two partons of each hadron
take part. This is part of the SM background.
Among others, the production of W+W− and ZZ are channels in which the Higgs bo-
son has been detected in ATLAS and CMS. In both channels there may be background
contributions by DPS events, e.g. double Drell-Yan (DDY) processes. Within a sim-
plified and unrealistic model of the DDY process it was pointed out in the past that
DDY contributions might be sufficient to describe the experimental data ofW+W− and
ZZ production without taking into account contributions by the Higgs particle [5]. To
definitely exclude such scenarios, investigations on DPS and their contribution to the
SM background in LHC experiments are crucial.

1.2 Double parton scattering
The simplest parton model description of hadron-hadron interactions is given by as-
suming that there is one hard parton-parton interaction, i.e. one parton of each hadron
is involved. In the following, this type of interactions is referred to as single parton
scattering (SPS). The corresponding cross section directly depends on the probability
of finding a parton with a given longitudinal momentum, which is described by a parton
distribution function. An example is the Drell-Yan (DY) process, where a quark from
each of two colliding hadrons scatters, resulting in the production of a lepton-antilepton
pair (pp → ll̄ + X) [6]. The cross section depends on the probability of finding a
quark with a given fraction x of the hadron’s momentum. For a given parton a with
a certain polarization this is parameterized by the corresponding parton distribution
functions (PDFs) fa(x). Depending on the hadron, they are more or less known from
experiment and lattice simulations [7, 8].
With decreasing momentum fraction x the parton density in a hadron increases. As a
consequence interactions with two partons of each hadron become more probable. In
particular, this is relevant at energy scales reached at the LHC. These types of interac-
tion are known as double parton scattering (DPS), an example are the aforementioned
DDY processes. DPS was established in pp collisions [9] and in p̄p collisions [10–13] a
few decades ago, recent experimental observations of DPS can be found in [14–28].
However, detailed determinations of DPS contributions in experiment are challenging,
since there is typically a large SPS background. A relatively clean process in this con-
text has been found to be same-sign W -pair production, which is therefore a promising
channel when looking for experimental DPS data [29–31].
We anticipate here the DPS cross section in terms of double parton distributions (DPDs)
F (x1, x2,y) and the parton level cross sections σi, which can be written as:

dσDPS

dx1dx̄1dx2dx̄2
∝
∑∫

d2y σ1(x1x̄1s) σ2(x2x̄2s) F (xi,y) F (x̄i,y) , (1.1)
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where the sum represents contributions from all possible quark flavors, polarizations, etc.
The DPD parameterizes the probability of finding two correlated quarks at a transverse
distance y and longitudinal momentum fractions x1 and x2. More detailed expressions
are given in chapter 2. In order to give an estimate for the size of the DPS contribution,
this is often approximated by neglecting correlations in longitudinal dynamics, quark
flavors and polarizations, and assuming a factorization of DPDs of the following form:

F (x1, x2,y) = f(x1) f(x2) T (y) , (1.2)

where f(x) are PDFs and T (y) is a function parameterizing the dependence on the
transverse quark distance. As a result one obtains a relation often referred to as the
pocket formula [32]

dσDPS

dx1dx̄1dx2dx̄2
= 1
C

σ1,SPS(x1, x̄1) σ2,SPS(x2, x̄2)
σeff

,

σeff :=
[∫

d2y (T (y))2
]−1

,

(1.3)

where σi,SPS denote the SPS cross sections and C = 2 if the two scattering partons are
the same, otherwise C = 1. The effective cross section σeff only contains the transverse
correlation of the two partons and in the simplest case is assumed to be a universal con-
stant. Estimates of σeff are given by experimental DPS studies in [9–28], where values
between 1 mb and 28 mb have been found.
According to (1.1) DPS processes are sensitive to parton correlations parameterized by
the DPDs. Like other kinds of parton distributions, DPDs are non-perturbative objects.
They are largely unknown. In the past there have been studies on parton correlations
employing several quark models [33–39], recently also for the pion [40–43].
A non-perturbative method for calculating quantities related to DPDs from first prin-
ciples is provided by Monte Carlo simulations of QCD on a Euclidean lattice. The
required quark-quark correlations are obtained from evaluating local two-current ma-
trix elements, which are directly related to Mellin moments in xi of DPDs:

M (n,m)(y) =
∫

dx1 x
n−1
1

∫
dx2 x

m−1
2 F (x1, x2,y) . (1.4)

The corresponding calculations have been worked out already in the past for the pion
[44–46]

1.3 Outline
The purpose of this work is to study DPDs for the nucleon (in particular the proton)
within the lattice QCD (LQCD) framework. When calculating proton matrix elements
and subsequently determining the first DPD Mellin moment, we want to implement
several factorization assumptions in order to test the validity of simplifications being
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employed e.g. by the pocket formula (1.3). Parts of the results presented in this work
have already been published in [47].
This thesis is organized as follows: In chapter 2 we discuss subjects concerning the
structure of a hadron. First of all we consider the hadronic wave function in terms of
valence quarks and its symmetries and constraints w.r.t. space, flavor, spin and color.
Furthermore, we give a brief review of QCD, the fundamental theory of quark-gluon-
interactions and hadron physics. After that, we introduce the factorization concept as
generic description of hadrons during high-energy processes, where we introduce several
kinds of parton distribution functions and discuss their meaning in certain physical con-
texts. Therein we also define DPDs and describe their role in the description of double
hard interactions.
In chapter 3 we continue with introducing LQCD as a non-perturbative method to eval-
uate hadronic matrix elements, from which any kind of parton distribution functions
can be defined. We describe the path integral formalism and the corresponding evalua-
tion in discrete and finite Euclidean spacetime by employing Monte Carlo integration,
a procedure, which is known as LQCD.
The matrix elements related to DPDs involve two currents and are introduced in chap-
ter 4. After discussing their properties and decompositions in terms of Wick contrac-
tions, we explain in detail the methods and techniques being used for the calculation of
each Wick contraction in LQCD. We also list some details of the employed CLS gauge
ensembles and the general setup of lattice parameters. We conclude this chapter with
presenting the data for specific current insertions.
We continue in chapter 5 with explaining the relations between Mellin moments of
DPDs and two-current matrix elements. The extraction of the moments includes a
Fourier transformation. Because of the finite hadron momenta we have to choose some
model to be able to perform the integral. We motivate our choice of the model and
describe the corresponding fits on the lattice data. Finally, we present the results for
the moments and check whether DPD number sum rules are fulfilled.
Chapter 6 is dedicated to exploring the validity of naive factorization assumptions which
are used e.g. in the aforementioned pocket formula. We establish two approaches of fac-
torizing quantities involving two-current matrix elements. Both include a convolution
of nucleon form factors, which are calculated on the same lattice as the two-current
matrix elements.
This thesis is summarized in chapter 7, where we give some concluding remarks and
perspectives for future research.



2 Hadron structure and DPDs
As already mentioned, describing the internal structure of hadrons is highly non-trivial.
Within this chapter we shall give brief introductions to various common concepts that
have been established in order to describe hadron properties. A first description of the
hadronic wave function in terms of (valence) quarks is provided by the quark model,
which is suitable for describing certain symmetries. We shall introduce Quantum Chro-
modynamics (QCD) to be able to describe the dynamics and interactions of the hadron’s
constituents. The corresponding discussions can be found in standard literature [48–50].
In a scattering process hadrons can be treated as a bunch of quasi-free particles (par-
tons). This assumption was first use by Bjorken and Feynman in order to explain deep
inelastic scattering (DIS) and is known as parton model. In this context we shall briefly
explain the concepts going into the definition and interpretation of parton distributions.
A special treatment is given to double parton distributions (DPDs), which are used in
the description of double parton scattering.

2.1 Quarks and hadron symmetries
The standard model has six quark flavors and the corresponding antiquarks. They
are spin-1/2 particles, i.e. fermions, and color charged forming a SU(3)color symmetric
triplet, i.e. they couple to the strong force mediated by gluons. Together with the
leptons they are grouped into three families, where the first family contains the lightest
particles and the third the heaviest1.
The quarks of the first family, u (up, mu ≈ 2.2 MeV) and d (down, md ≈ 4.7 MeV), have
very small masses compared to the hadronic mass scale, which is about a few hundred
MeV. In analogy to spin-1/2 states one identifies the isospin doublet (u, d) with the
fundamental representation of the SU(2) group (often called SU(2)flavor to distinguish
from other symmetries of the same group). Taking into account the s (strange, ms ≈
95 MeV) quark, this symmetry can be extended to SU(3)flavor, which is less exact due
to the heavier mass of the strange quark.
It seems natural to obtain a rough description of hadronic states by considering valance
quarks coupled to multiplets w.r.t. spin, flavor and color. Since in nature one only
observes color neutral states, i.e. color singlets (see discussion in section 2.2), hadrons
have to be built from the combinations qq̄ (mesons) and qqq (baryons), where the latter
has to be totally antisymmetric in color.
Considering SU(2), which is the symmetry group of spin and flavor, and taking into

1In this statement we neglect the neutrinos, where each one has a mass smaller than 2 eV.
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6 2 Hadron structure and DPDs

account only u and d quarks, the mesons are decomposed in following multiplets:

2⊗ 2̄ = 3⊕ 1 , (2.1)

i.e. a triplet with (iso)spin 1 and a singlet with (iso)spin 0. Examples for the isospin-
triplet are the pions (spin 0) and rho-mesons (spin 1). The flavor symmetry leads to
very similar properties of the particles belonging to the same multiplet, e.g. their masses.
Discrepancies can be explained with different masses and electric charges of the quarks.
The breaking of the symmetry becomes more relevant if we consider SU(3)flavor, where
the mesons decompose into an octet and a singlet:

3⊗ 3̄ = 8⊕ 1 , (2.2)

where the mass spectrum of the octet strongly depends on strangeness, i.e. the number
of strange quarks in the leading Fock state of the corresponding particles. Notice that
the SU(2)flavor-triplet is contained in the octet. Since the flavor symmetry is not exact,
the corresponding singlet state turns out to mix with an octet state having the same
quantum numbers, which results in the spin-0 mesons η and η′.
For baryons the situation is more involved. The total wave function has the structure

|baryon〉 = |space〉 ⊗ |flavor〉 ⊗ |spin〉 ⊗ |color〉 , (2.3)

and has to be totally antisymmetric against permutation of quarks. In the ground state,
where there is no orbital angular momentum, |space〉 has to be symmetric (s-waves) and
|color〉 must be antisymmetric in order to obtain a color singlet. This implies that only
symmetric combinations of |flavor〉⊗|spin〉 are present in nature. The spins are coupled
to spin-1/2 (mixed symmetry) or spin-3/2 (symmetric) states. Again considering the
symmetry groups SU(2) (spin, flavor) and/or SU(3)flavor we obtain:

2⊗ 2⊗ 2 = 4S ⊕ 2M ⊕ 2M ,

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A ,
(2.4)

where the subscripts S (symmetric), M (mixed) and A (antisymmetric) label the sym-
metry of the corresponding states. Since the SU(3)-singlet is antisymmetric and there
is no antisymmetric spin wave function, it does not occur in nature.
Nucleons, i.e. the proton and the neutron, are spin-1/2 particles, hence their flavor part
can be written in terms of SU(2)-doublet (I = 1/2) or SU(3)-octet states, such that
the overall spin-flavor wave function is symmetric. Notice that within this thesis we do
not consider effects caused by electromagnetism and always assume that u and d quarks
have the same mass, i.e. we consider an exact flavor symmetry of the group SU(2)flavor.
Hence, the results obtained for the proton can be mapped onto the neutron case by
suitable symmetry operations. Omitting permutations of the quark spins, the proton
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wave function can be written as:

|p↑〉 = 1√
6
[
|u↑u↓d↑〉+ |u↓u↑d↑〉 − 2 |u↑u↑d↓〉

]
. (2.5)

The description given so far takes into account only the simplest Fock state in each
case and does neither give any information about spatial distributions or correlations
of quarks in a hadron nor about its internal dynamics. Before we continue with more
sophisticated descriptions of hadrons, it is necessary to discuss the dynamics and inter-
actions of the hadron’s constituents, i.e. quarks and gluons, which we do in the following
section.

2.2 Quantum chromodynamics
In the following, we want to give a review of the fundamental theory of hadron physics,
which is known as Quantum Chromodynamics (QCD). It provides a description of the
dynamics and interactions of color charged particles, in particular the hadron’s con-
stituents, i.e. quarks and gluons. Like for other gauge theories one considers invariance
of the physical system under a certain kind of local gauge transformations. As men-
tioned in the previous section, the gauge group of QCD is SU(3), which is a non-Abelian
group.
We start with considering free Dirac fermions with mass m, which are described by the
Dirac equation:

(i∂/−m)ψ(x) = 0 , (2.6)

with ∂/ = γµ∂µ. The Dirac matrices γµ are elements of the Clifford algebra {γµ, γµ} =
2gµν . The solutions ψ are plane waves

ψ(x) =
uλ(p) e−ixpvλ(p) e+ixp , (2.7)

where u and v are Dirac spinors, which transform in a four dimensional representation of
the Lorentz group. Therefore, the description is already relativistic. There are two types
of spinor solutions, which are denoted by uλ(p) (particles) and vλ(p) (antiparticles),
where λ labels the quark helicity. These solutions fulfill the completeness relations:∑

λ

uλūλ = p/+m ,∑
λ

vλv̄λ = p/−m ,
(2.8)

where .̄ denotes Dirac conjugation, which is defined by ψ̄ = ψ†γ0 for a given Dirac spinor
ψ, such that the product ψ̄ψ is a Lorentz scalar.
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The Dirac field is quantized by imposing anti-commutation relations, which are usually
supposed to be fulfilled at equal time:{

ψ̂(x), ψ̂†(y)
}∣∣∣
x0=y0

= δ(3)(~x − ~y ) ,{
ψ̂†(x), ψ̂†(y)

}∣∣∣
x0=y0

=
{
ψ̂(x), ψ̂(y)

}∣∣∣
x0=y0

= 0 .
(2.9)

The operator ψ̂ is understood to annihilate a particle and create an antiparticle, whereas
ˆ̄ψ creates a particle and annihilates an antiparticle. Throughout this work, we consider
quarks, the corresponding operators are denoted by q and q̄. Within the parton model,
which will be introduced in the following section, the fields are considered to be quan-
tized in an alternative way. The anti-commutation relations (2.9) are modified such
that they are fulfilled at equal light-cone time x+ = (x0 +x3)/

√
2 = y+ = (y0 + y3)/

√
2.

This is known as light-cone or light-front quantization [51].
The Lagrangian being connected to (2.6) via the Euler-Lagrange equation reads:

Lfree(x) = ψ̄(x) (i∂/−m)ψ(x) . (2.10)

As mentioned before, we require the theory to be invariant under local SU(3) trans-
formations. The spinor fields ψ are considered to transform in the three-dimensional
fundamental representation of SU(3), i.e. :

ψ(x)→ Ω(x) ψ(x) ,
ψ̄(x)→ ψ̄(x) Ω†(x) ,

(2.11)

where we define the local gauge transformation Ω(x) as:

Ω(x) = eiθ
j(x)tj , (2.12)

with eight position dependent parameters θj(x) and the generators tj of SU(3), which
obey: [

tj, tk
]

= if jkltl . (2.13)

Usually one chooses the Gell-Mann basis for tj. The constants f jkl are called structure
constants of SU(3), which are totally anti-symmetric under permutations of their in-
dices.
While the mass term in (2.10) is trivially invariant under Ω(x), we obtain an additional
term −tj∂/θj arising from the derivative on the local transformation. To restore gauge
invariance we have to extend the derivative in a gauge covariant manner:

Dµ(x) := ∂µ − ig0A
j
µ(x)tj , (2.14)
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where we have introduced a second kind of fields, the gauge fields Ajµ called gluons. They
transform in the adjoint representation of SU(3) and are by construction of dimension
length−1:

tjAjµ(x)→ Ω(x)
(
tjAjµ(x) + ig−1

0 ∂µ
)

Ω†(x). (2.15)

g0 is the (bare) coupling constant. A consequence of the replacement by the covariant
derivative (2.14) in (2.10) is the interaction of the fermions with the gauge fields, which
is tuned by the coupling constant g0.
To complete the theory, we also need to describe the free propagation of the gauge
fields themselves, i.e. we have to construct a Lorentz and gauge invariant expression of
dimension length4 only built out of these fields. A suitable quantity is:

LG(x) = −1
4F

j
µν(x)F jµν(x) , (2.16)

with the field strength tensor

F j
µν(x) := ∂µA

j
ν(x)− ∂νAjµ(x) + g0f

jklAkµ(x)Alν(x) . (2.17)

A fundamental difference to the electromagnetic field strength is that the last term,
which arises from the non-Abelian property of SU(3), includes self-interaction between
the gluons. Adding (2.16) to the gauge covariant form of (2.10) and taking into account
nf quark flavors labeled by the index f , we finally obtain the Lagrangian of QCD:

LQCD(x) =
∑
f

ψ̄f (x) (iD/−mf )ψf (x)− 1
4F

jµν(x)F j
µν(x) . (2.18)

Performing perturbative calculations to a given order of αs = g2
0/(4π), one will encounter

divergences resulting from loop integrals, which have to be regularized in a suitable
scheme. The essence is to isolate the divergent terms, which can be tuned by a regulator,
and re-define the constants of the theory, e.g. the quark masses mq or the coupling g0,
such that everything remains finite, once the regulator is removed. This is known as
renormalization. Notice that this introduces a renormalization scale µ the constants
subsequently depend on.
In the case of QCD (and similar for all non-Abelian gauge theories) one finds that the
renormalized coupling αs(µ) reads at 1-loop order:

g2
0

4π = αs
Renormalization−−−−−−−−−→ αs(µ) = 2π(

11− 2
3nf

)
log

(
Λ−1

QCDµ
) , (2.19)

with the mass scale ΛQCD, where the coupling diverges. This is often referred to as the
soft energy scale. Quantities involving this region of strong coupling cannot be calcu-
lated perturbatively. A non-perturbative method, LQCD, is described in chapter 3. In
the strong coupling limit one can derive a linear potential between color charged parti-
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cles, which is responsible for the phenomenon of confinement, i.e. color charged particles
are always bound in a color singlet. On the other hand, in the limit of infinitely large
energies or momentum transfers the coupling goes to zero. Therefore, color charged
particles are asymptotically free at large scales, such that hard scattering processes, e.g.
between quarks, are accessible by perturbation theory.

2.3 Parton correlation functions

Within the parton model, hadrons are treated as a cluster of quasi-free particles called
partons. A hadronic scattering process is then described by an interaction of one or more
partons with the scattering counter part. Within this scheme the process is separated
into a hard process at parton level and a soft part concerning the hadronic structure. The
hard process involves a high energy scale, which according to (2.19) allows a perturbative
treatment.
In the following, we focus on the soft part, which is described by so-called parton
correlation functions. These are non-perturbative objects and describe the appearance of
partons with certain properties in a specific hadron. Throughout this work, we consider
(anti)quarks. Gluons can be treated in an analogue way. For reviews on subjects
regarding parton correlation functions and various types of parton distributions, as well
as their interpretation, see [52, 53].

2.3.1 Definition

Within a typical scattering experiment hadrons are accelerated to very high energies
∼ Q, which are much larger than the hadronic mass scale Λ, i.e. Λ� Q. Therefore, the
hadron’s four-momentum may be considered as almost light-like. Assuming that the
hadron moves in 3-direction, we can express the momentum in light-cone coordinates
p = (p+, p−,p) (see also (A.13) for the notation), where

p+ ∼ Q , p− ∼ Λ2

Q
, p = 0 . (2.20)

p denotes the transverse vector components p = (p1, p2). In this scenario a hadron
turns into a flat bunch of partons due to Lorentz contraction. Time dilatation causes
the system to be nearly frozen, i.e. the partons can be seen as quasi-free particles
with momentum k = (k+, k−,k), with k+ ∼ p+ and k− ∼ p−. k+ can be expressed
by the longitudinal momentum fraction x, which indicates how much of the hadron’s
momentum is carried by the parton:

k+ = xp+ . (2.21)
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k−∆
2 k+ ∆

2

x+ξ x−ξ

−∆
2

∆
2

1+ξ 1−ξ

x+ξ −x+ξ

1+ξ 1−ξ

Figure 2.1: Diagrammatic illustration of a parton correlation function. The blue blob
represents the hadron from which the quarks emerge. For the quarks and the hadron
we indicate the corresponding momenta, where the longitudinal momenta are given in
terms of the fraction w.r.t. p+. The l.h.s. shows the situation if x+ ξ, as well as x− ξ, is
positive. The change of sign of one fraction turns the corresponding quark in the wave
function to an antiquark in its complex conjugate and vice versa. For x− ξ < 0 this is
shown on the r.h.s. .

If the spectator partons are considered to be on mass shell, momentum conservation
yields the constraint 0 < x < 1. The transverse parton momenta are considered to be
small, at most at the hadronic mass scale. In total we have the relations:

k− ∼ Λ2

Q
, |k| ∼ Λ . (2.22)

With this setup we define the parton correlation function

Φαβcd(x,k, ξ,∆) :=
∫ d2z dz−

(2π)3 eixp
+z−e−ikz

× 〈p+ ∆/2| q̄αc(−z/2)qβd(z/2) |p−∆/2〉|z+=0 .

(2.23)

The initial and the final hadron state are parameterized symmetrically in terms of the
momentum variables p and ∆. The two quark operators in (2.23), which are considered
to be light-cone quantized, are evaluated at z+ = 0, i.e. at equal light-cone time. This
is equivalent to integrating over −-components of the quark momenta, such that the
quarks created or annihilated by q and q̄ are not on mass shell. Furthermore, the
quark operators anti-commute, which can be seen as an implementation of the quasi-
free partons considered within the parton model.
By considering the Fourier expansion of the light-cone quantized quark field q, we see
that depending on the sign of the +-momentum it removes a quark from the hadron
wave function or creates an antiquark in its complex conjugate. An analogue behavior is
found for q̄. If all quark +-momenta are positive, this can be interpreted as the emission
of a quark with momentum k − ∆/2 and the absorption of a quark with momentum
k+∆/2. A changing sign in the +-momentum turns the quark in the wave function into
an antiquark in the complex conjugate wave function and vice versa. This is depicted
in Figure 2.1. The dependence on the longitudinal momentum change is parameterized
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in terms of the fraction ξ w.r.t. p+:

ξ = −∆+

2p+ . (2.24)

There are two kinds of processes which can be described by parton correlation functions.
The first one is called (semi-)inclusive, which means that only a part of the scattering
products is actually detected. The cross section involves matrix elements 〈X| q |p〉 de-
scribing the emission of a quark leaving a set of spectator partons which are not resolved
in the measurement. They have to be included in the squared amplitude by a sum over
all possible final states. Roughly sketched, the hadronic part of the squared amplitude
has then the form ∑

X 〈p| q̄ |X〉 〈X| q |p〉. This is what we get if we insert a complete set
of states in the matrix element appearing in (2.23) for ∆ = 0. On the other hand we
consider exclusive processes with only the scattered hadron in the final state. In this
case the amplitude involves hadronic matrix elements of the form 〈p|Tq̄q |p′〉, where T
denotes time ordering. The matrix element describes the emission of a quark and the
subsequent absorption leading to a total momentum change ∆ = p−p′. It can be shown
that the time ordering may be dropped if q̄ and q are evaluated at equal light-cone time
[54]. Again, the matrix element can be identified with (2.23).
The concept of quark correlation functions can be extended to n quarks, see [55]. With
the additional average quark momenta ki this introduces further degrees of freedom
given by the differences ri between the quark momenta. Within the chosen frame the
introduced parton momenta scale similarly to (2.22):

p+ ∼ k+
i ∼ r+

i ∼ Q ,

p− ∼ k−i ∼ r−i ∼
Λ2

Q

ki ∼ ri ∼ Λ .

(2.25)

Since we shall only consider such correlation functions to represent the squared ampli-
tude in the cross section, it is sufficient to consider ∆ = 0. The n-parton correlation
function for quarks can be defined as:

Φαiβicidi(xi,ki, ζi, ri) = (2p+)n−1

×
[∏
i

∫ d2zi dz−i
(2π)3 d2yi dy−i eixip

+z−i e−ikizi e−iζip
+y−i eiriyi

]
δ(y−n )δ(2)(yn)

× 〈p|
∏
i

q̄i,ciαi(yi − zi/2) qi,diβi(yi + zi/2) |p〉
∣∣∣∣∣z+
i =0
y+
i =0

.

(2.26)

The quark momentum difference ri is the Fourier conjugate variable to the average
quark position yi. Again we parameterize its longitudinal component as fraction w.r.t.
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k1+ r1
2 k1− r1

2kn+ rn
2 kn− rn

2

z1
2 − z1

2yn + zn
2 yn − zn

2

. . . . . .

p p

Figure 2.2: Depiction of a n-parton correlation function. The blue blob represents the
hadron emitting and absorbing n partons. For each parton we show the corresponding
momentum. Under the assumption that ri is the Fourier conjugate variable to yi and
yn = 0 we can assign rn = −∑n−1

i=1 ri.

total hadron momentum p+:

ζi = r+
i

p+ . (2.27)

We are free to choose yn = 0 because of translational invariance, i.e. yi, with i 6= n can
be seen as the average distance to the n-th parton. Subsequently, only n − 1 of the
momentum variables ri are independent. In the following we set rn = −∑n−1

i=1 ri. The
structure of the correlation function in terms of the involved momenta is depicted in
Figure 2.2.

2.3.2 Twist-2 operators

Contracting (2.23) or (2.26) with Γαβ, where Γ is a suitable Dirac matrix, selects a
certain quark polarization. A further contraction with a Kronecker delta δcd couples
the corresponding quark fields to a color singlet. For the general n-parton correlation
function (2.26) there are further possibilities for selecting different color representations
as we will see when we discuss DPDs. The contracted operator q̄Γq is classified by
a number called twist, which was originally defined through the suppression by mass
terms after applying the operator product expansion (OPE). In the present case we
are interested in leading twist, i.e. twist 2, the corresponding operators are those with
a maximal number of plus components. Matrix elements of these operators are most
relevant, since by Lorentz invariance they scale with p+, which is considered to be large.
Furthermore, twist-2 operators represent only dynamically independent ("good") light-
cone components of the quark fields, which allows a probabilistic interpretation within
the parton model. For a detailed discussion on that we refer to [56]. There are three
types of twist-2 operators, which correspond to the polarization of the quark. They
can be constructed from helicity projection operators, γ+(1 ± γ5)/2 or the projection
operator for transverse spin sj, which is (γ+ ± sjiσj+γ5)/2. For flavor q the twist-2
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operators labeled by a = q,∆q, δq are:

O⊥a (y, z) := q̄ (y − z/2) Γa q(y + z/2)|z+=0 , (2.28)

with

Γq = 1
2γ

+ unpolarized quark ,

Γ∆q = 1
2γ

+γ5 longitudinal polarization ,

Γjδq = i

2σ
j+γ5 transverse polarization .

(2.29)

The ⊥-notation is introduced to distinguish between the operators (2.28) and those that
are defined for vanishing transverse quark distance. These kind of operators we shall
introduce later in this work. The operators (2.28) can be related to their analogue for
antiquarks by considering charge conjugation C, where we find:

O⊥ā (y, z) := O⊥,Ca (y, z) = q̄ (y + z/2) Γā q(y − z/2)|z+=0 = ηaCO⊥a (y,−z) , (2.30)

such that

Γā = ηaCΓa , (2.31)

where the sign factors ηaC depend on the channel:

ηaC =
1 a = ∆q
−1 a = q, δq

. (2.32)

Notice that the operators (2.28) and (2.30) are not invariant under local gauge trans-
formations, since the quark fields are evaluated at different positions. In order to keep
everything gauge invariant, it is necessary to introduce Wilson lines between the quark
fields, i.e.

q(z)→ qW (z, v) := W (z, v) q(z) . (2.33)

The Wilson lines W (z, v) represent collinear gluons and their explicit shape is specific
to the considered process. For a detailed discussion see [57] and in the context of multi
parton interactions [55]. For semi-inclusive DIS (SIDIS) and DY one finds

W (z, v) = P exp
{
±ig

∫ ∞
0

dη v tjAj(z ∓ ηv)
}
, (2.34)

where v is a space-like vector and P denotes path ordering. The two possible signs in
(2.34) are specific to the process and correspond to future (SIDIS) and past (DY,DDY)
pointing Wilson lines.



2.3 Parton correlation functions 15

2.3.3 GPDs and form factors

In the following, we consider correlation functions involving a single light-cone quark
operator. In addition to the integral over k− we also integrate out the transverse quark
momentum with the results that there is no sensitivity to transverse dynamics in the
hadron. The resulting quantity is called generalized parton distribution (GPD). For
reviews on subjects concerning GPDs, see [58, 59], where in the latter the term off-
forward parton distribution (OFPD) is used. The GPD is defined as:

fa(x, ξ, t) := (Γa)αβ δcd
∫

d2k Φαβcd(x,k, ξ,∆)

=
∫ dz−

2π eixp
+z− 〈p+ ∆/2| Oa(0, z) |p−∆/2〉 ,

(2.35)

with

Oa(y, z) := q̄(y − z/2)Γaq(y + z/2)|z+=0,z=0 . (2.36)

Again Γa selects the quark polarization. Note that in the case z = 0 the Wilson lines are
just straight gauge links between the quark fields. In light cone gauge A+ = 0 the links
become trivial. As mentioned in the previous section, GPDs enter the calculations for
the cross sections of exclusive scattering processes like deeply virtual Compton scattering
(DVCS). For particles with zero spin or after taking the spin average, it can be shown
that by Lorentz invariance the GPDs only depend on the following variables [58]:

x = k+

p+ , ξ = −∆+

2p+ ,

t = ∆2 = −4ξ2m2 + ∆2

1− ξ2 .

(2.37)

As already discussed, emitted quarks with negative +-momentum are interpreted as
absorbed antiquarks. Therefore, it depends on the sign of x− ξ (x+ ξ) whether a quark
is emitted (absorbed) or an antiquark absorbed (emitted). Notice that the momen-
tum fraction is restricted by |x| < 1. Otherwise momentum conservation would imply
spectator partons with negative +-momentum. However, this is not possible, since the
spectator partons are considered to be on mass shell.
For spin-1/2 particles like the nucleon we have an additional quantum number charac-
terizing the initial and final state, which is the helicity λ, i.e. the longitudinal hadron
polarization. The corresponding GPD matrix elements fλλ′ depend on ∆, i.e. not only
on t. They can be parameterized in terms of two independent functions, as we will
discuss later.
If we consider a GPD for ∆ = 0, we obtain a simple parton distribution function (PDF)

fa(x) = fa(x, ξ = 0, t = 0) , (2.38)
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which yields the probability to find a parton with longitudinal momentum xp+ and
polarization a. As mentioned in the previous section, the cross sections of inclusive
processes like DIS can be written in terms of PDFs.
GPDs are related to form factors Fa(t), which can be identified with a Fourier transform
of the charge density in the transverse plane in the infinite momentum frame [60]. More
precisely, it is the first Mellin moment in x of a GPD. The n-th Mellin moment is
defined by

F (n)
a (ξ, t) :=

∫ 1

−1
dx xn−1fa(x, ξ, t) . (2.39)

In the case of n = 1, which is equivalent to integrating the GPD over x, we find that
the Mellin moment is independent of ξ, which is a consequence of Lorentz invariance:

F (1)
a (ξ, t) = Fa(t) :=

∫ 1

−1
dx fa(x, ξ, t) . (2.40)

Higher Mellin moments F (n)(ξ, t) in general decompose into an even polynomial in ξ
of at most n-th degree. The corresponding coefficients, which depend on t, are called
generalized form factors (GFFs). Integrating over x yields a delta function in z−, which
fixes z− to zero. Therefore, the form factor can be defined by the hadronic matrix
element of a local quark current.

p+ Fa(t) = 〈p+ ∆/2| q̄(0) Γa q(0) |p−∆/2〉 . (2.41)

Replacing +-components by a Lorentz index, this equation can be brought into a Lorentz
covariant form.
Let us now consider hadrons having non-zero total spin, which is the case for all baryons.
In the following, we want to consider spin-1/2 hadrons, like the nucleon. The corre-
sponding hadron states are classified by an additional quantum number referring to the
longitudinal hadron spin (helicity) λ = ±1/2. Since spin-1/2 particles are represented
by Dirac spinors, matrix elements of an operator O can be expressed in terms of Dirac
spinors and a specific decomposition J [O] of the operator:

〈p+ ∆/2, λ| O |p−∆/2, λ′〉 = ūλ(p+ ∆/2) J [O] uλ′(p−∆/2) . (2.42)

Explicit expressions for the decomposition J [O] follow from Lorentz symmetry. This is
discussed e.g. in [59]. In the following, we concentrate on the cases of vector currents
q̄γµq and axial vector currents q̄γµγ5q. For these currents a decomposition is given by:

J [q̄γµq] = F1(t)γµ + F2(t)iσ
µν∆ν

2m ,

J [q̄γµγ5q] = gA(t)γµγ5 + gP (t)γ5∆µ

2m .

(2.43)
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For each channel there are two independent form factors, in the vector case F1, F2
and in the axial vector case gA and gP (depending on the literature the latter is also
denoted by gP̃ ). At t = 0, ∑q eqF

q
1 and ∑q eqF

q
2 correspond to the hadron charge and

the anomalous magnetic moment, respectively
The extension of the GPD (2.35) to spin-1/2 hadrons works analogously to that of the
form factors. Here one finds the following parameterization [58]:

fλλ
′

a (x, ξ,∆) =
∫ dz−

2π eixp
+z− 〈p+ ∆/2, λ| Oa(0, z) |p−∆/2, λ′〉

= 1
2p+ ū

λ(p+ ∆/2) Ja(x,∆) uλ′(p−∆/2) ,
(2.44)

with

Jq(x,∆) = Hq(x, ξ, t)γ+ + Eq(x, ξ, t)iσ
+j∆j

2m ,

J∆q(x,∆) = H̃q(x, ξ, t)γ+γ5 + Ẽq(x, ξ, t)γ5∆+

2m .

(2.45)

In analogy to (2.40) the form factors F1, F2, gA and gP can be identified as Mellin
moments of the GPDs H, E, H̃ and Ẽ

F1(t) =
∫

dx H(x, ξ, t) , F2(t) =
∫

dx E(x, ξ, t) ,

gA(t) =
∫

dx H̃(x, ξ, t) , gP (t) =
∫

dx Ẽ(x, ξ, t) .
(2.46)

2.3.4 Evolution

The matrix elements appearing in (2.23) and (2.26) involve so-called rapidity diver-
gences. These are removed in the collinear case, i.e. by integrating over transverse
momenta, however, this causes divergences due to infinitely large transverse parton mo-
menta, i.e. ultraviolet divergences. Both kinds of divergences require an appropriate
regularization and renormalization procedure. As a consequence the distribution func-
tions we considered so far depend on the renormalization scale µ and (in the transverse
momentum dependent (TMD) case) on rapidity cut-off parameters. The dependence
on these parameters and the scale is referred to as evolution and is describe by the
Dokshitzer Gribow Lipatow Altarelli Parisi (DGLAP) equations in the collinear case or
by Collins-Soper evolution in the TMD case.
Considering e.g. the GPDs (2.35), where we have collinear evolution, the corresponding
dependence on the scale µ is described by the differential equation:

∂

∂ log µfa(x, ξ, t;µ) =
∑
a′

∫ 1

−1
dx′ Paa′(x, x′, ξ, αs(µ)) fa′(x′, ξ, t;µ) , (2.47)
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which is a generalization of the DGLAP equation for PDFs. The functions Paa′ are
called evolution kernels.

2.4 Double parton distributions
Now we want to give definitions and relations regarding the DPDs, which are the ob-
jects we want to investigate in this work. We shall focus on DPDs of quarks only.
Furthermore, we only assume the unpolarized case, i.e. hadrons with spin zero or the
spin average.

2.4.1 Definition for quarks
DPDs are given by the k−-integrated 2-parton correlation function. In the following,
we concentrate on quark distributions and the corresponding spin structure, again only
considering color singlet operators. The corresponding DPD 1F is obtained from (2.26),
considering n = 2:

1F⊥ab(xi,ki, ζ,y) = (Γa)α1β1
(Γb)α2β2

δc1d1δc2d2

∫ d2r

(2π)2 e
−iyrΦαiβicidi(xi,ki, ζ, r)

= 2p+
∫

dy−e−iζp+y−

 ∏
i=1,2

d2zidz−i
(2π)3 eixip

+z−i e−iziki


× 〈p| O⊥a (y, z1)O⊥b (0, z2) |p〉

∣∣∣
y+=0

,

(2.48)

where ζ is defined as:

ζ = r+

p+ . (2.49)

In contrast to one-parton distributions the quark bilinears can be coupled to a color-
octet, the corresponding DPD is denoted by 8F . It is obtained by replacing the Kro-
necker deltas δcidi by a sum over Gell-Man matrices tac1d1t

a
c2d2 . From now on we restrict

ourselves to the color-singlet DPDs 1F and drop the index 1 for simplicity.
Interchanging the spinor and color indices such that (Γa)α1β1

(Γb)α2β2
δc1d1 δc2d2 →

(Γa)α1β2
(Γb)α2β1

δc1d2 δc2d1 yields distribution functions corresponding to fermion num-
ber interference. This is not discussed in detail within this work.
If ζ 6= 0, the DPD is called non-forward or skewed, meaning that the emitted quarks
have different longitudinal momenta than the absorbed ones. Within the DPS phe-
nomenology this case is not relevant, as is discussed later in this section.
Fab is related to the probability of finding two quarks of polarization a and b simulta-
neously. Since the transverse quark momenta ki and the transverse distance y cannot
be measured at the same time due to the uncertainty principle, the DPDs we defined
above do not have a direct probabilistic interpretation. However, integrating over the
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Figure 2.3: Structure of a DPD, where we show the parton momenta, as well as the
corresponding Fourier conjugated (average) variables in position space (red). In an
inclusive DPS process DPDs represent the hadronic part of the squared amplitude,
which is represented by the blue blob. Therefore, we also show the final state cut
(dashed line).
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Figure 2.4: Different kinematic situations regarding the DPD Fab(x1, x2, ζ,y), which
correspond to different interpretations whether there are quarks or antiquarks in the
wave function or its complex conjugate. Left: x1 ± ζ/2 ≥ 0, x2 ± ζ/2 ≤ 0, i.e. a quark
and an antiquark are emitted and reabsorbed. Right: x2 ± ζ/2 ≥ 0, x1 + ζ/2 ≥ 0,
x1− ζ/2 ≤ 0, i.e. two quarks and one antiquark are emitted and one quark is absorbed.

transverse momenta yields a probability function. The resulting functions are called
collinear DPDs:

Fab(x1, x2, ζ,y) :=
∫

d2k1 d2k2 F
⊥
ab(xi,ki, ζ,y)

= 2p+
∫

dy−e−iζp+y−

 ∏
i=1,2

dz−i
2π eixip

+z−i

 〈p| Oa(y, z1)Ob(0, z2) |p〉|y+=0 .
(2.50)

These can be seen as an extension of the one-parton PDFs (2.38) to two partons.
There is also a representation in momentum space, given by a simple Fourier transform
w.r.t. to the transverse parton distance:

Fab(x1, x2, ζ, r) :=
∫

d2y eiryFab(x1, x2, ζ,y) . (2.51)

If the considered hadron carries non-zero spin the formalism has to be adapted accord-
ingly. At the moment we always consider DPDs for unpolarized hadrons, meaning that
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Figure 2.5: Support region for the skewed DPD Fud(x1, x2, ζ,y) for −1 ≤ ζ ≤ 0 (left)
and 0 ≤ ζ ≤ 1 (right) in the (x1, x2)-plane. For each sub-region we specify whether the
quarks are assigned to the hadron wave function or its complex conjugate. The notation
u|dd̄u indicates an u-quark in |p〉 and dd̄u in 〈p|. The corners restricting the support
region are located at (|ζ/2|, 1− |ζ/2|), whereas those of the inner box are (|ζ/2|, |ζ/2|).
The dashed line is defined by |x1|+ |x2| = 1.

we take the spin average. For spin-1/2 particles, like the nucleon, this is:

Fab(x1, x2, ζ,y) := p+∑
λ

∫
dy−e−iζp+y−

 ∏
i=1,2

dz−i
2π eixip

+z−i


× 〈p, λ| Oa(y, z1)Ob(0, z2) |p, λ〉|y+=0 .

(2.52)

2.4.2 Properties of collinear color-singlet DPDs
In the following, we consider the collinear, skewed quark DPDs defined in (2.50) for
spin-0 hadrons or in (2.52) for spin averaged hadrons. In the forward case ζ = 0 they
describe the probability of finding two quarks with momentum fractions x1 and x2 at
a relative transverse distance y. The variable ζ describes the difference between the
momentum fractions in the amplitude and those in its complex conjugate. The quarks
being emitted or absorbed have momentum fractions x1± ζ/2 and x2∓ ζ/2. Figure 2.4
shows different kinematic situations in this context. If a momentum fraction becomes
negative, the corresponding emitted quark is again interpreted as an absorbed antiquark
and vice versa. This is similar to GPDs, where we considered x± ξ instead. Again the
quarks cannot carry more than the total hadron momentum. Therefore, the absolute
value of the total momentum fraction of a quark xi ± ζ/2 is restricted to be smaller
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than one. Furthermore, the sum of all momentum fractions has to be at most one.
Otherwise one quark or both together would carry more momentum than the hadron
itself. Therefore, the DPDs have to be zero outside the region defined by

|xi ± ζ/2| ≤ 1 ,
|x1|+ |x2| ≤ 1 .

(2.53)

The support region is sketched in Figure 2.5 for Fud, where we also indicate whether
there are quarks or antiquarks in the wave function or its complex conjugate. DPDs of
antiquarks are related to those of the corresponding quark. By considering (2.30), one
can give the following relations w.r.t. the arguments xi:

Fab(x1, x2, ζ,y) = ηaCFāb(−x1, x2, ζ,y) ,
Fab(x1, x2, ζ,y) = ηbCFab̄(x1,−x2, ζ,y) .

(2.54)

Furthermore, from PT invariance we find:

Fab(x1, x2, ζ,y) = ηaPTη
b
PTFab(x1, x2,−ζ,−y) . (2.55)

with

ηaPT =
1 a = q

−1 a = ∆q, δq
(2.56)

For each quark polarization combination we are able to give decompositions of DPDs
in terms of functions being rotationally invariant w.r.t. the transverse quark distance y.
This is achieved by considering parity and transformation properties. In total we find:

Fqq′(xi, ζ,y) = fqq′(xi, ζ, y2) , F∆q∆q(xi, ζ,y) = f∆q∆q′(xi, ζ, y2) ,
Fq∆q′(xi, ζ,y) = 0 , F∆qq′(xi, ζ,y) = 0 ,
F j
qδq′(xi, ζ,y) = εjlylmfqδq′(xi, ζ, y2) , F∆qδq′(xi, ζ,y) = 0 ,
F j
δqq′(xi, ζ,y) = εjlylmfδqq′(xi, ζ, y2) , Fδq∆q′(xi, ζ,y) = 0 ,

F jk
δqδq′(xi, ζ,y) = δjkfδqδq′(xi, ζ, y2) +

(
2yjyk − δjky2

)
m2f tδqδq′(xi, ζ, y2) .

(2.57)

The first line readily follows from the property that the DPDs Fqq′ and F∆q∆q′ have
even parity. This is different for F∆qq′ and Fq∆q′ , which have odd parity. An integra-
tion over transverse momenta yields zero in that case. F∆qδq′ and Fδq∆q′ are T -odd,
invariance under time reflection then implies that they have to vanish. The remaining
relations in (2.57) concern DPDs that involve transverse polarizations and are obtained
by decomposing the DPDs in terms of transverse vectors. Inserting (2.57) into (2.55),
we find:

fab(xi, ζ, y2) = fab(xi,−ζ, y2) , (2.58)
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i.e. fab(xi, ζ, y2) are even functions in ζ.
In analogy to the discussion in section 2.3.4 one has to regularize ultraviolet divergences
involved by the collinear DPDs. This introduces an evolution w.r.t. each momentum
fraction involving in general two scales µ and µ′. For 1F this is [61]:

∂

∂ log µ2Fab(xi,y;µ, µ′) =
∑
a′

∫ 1−x2

x1

dx′1
x′1

Paa′

(
x1

x′1
;µ
)
Fa′b(x′1, x2,y;µ, µ′) (2.59)

At small quark distances a (forward) DPD is dominated by a perturbative effect known
as 1→ 2 splitting of a parton a into two partons a′, b′. The corresponding contribution
can be written as:

Fa′b′(x1, x2,y)|splitting = αs
2π2y2Pa→a′b′

(
x1

x1 + x2

)
fa(x1 + x2)
x1 + x2

, (2.60)

where fa is an ordinary PDF as defined in (2.38) and Pa→a′b′ parameterizes the splitting.
The divergence caused by the factor 1/y2 in (2.60) is referred to as splitting singularity,
which can be regularized by a cut-off. A commonly used choice is y > b0/µ, where µ is
the renormalization scale and

b0 = 2e−γ , (2.61)

where γ ≈ 0.577 is the Euler-Mascheroni constant. In the forward case ζ = 0, the DPD
F (x1, x2, ζ,y) fulfills the number sum rule, which is a consequence of fermion number
conservation. It has been formulated in [62] and finally proven in [63] and relates the
Mellin moment in one fraction, e.g. x2, with a PDF f(x1) depending on the remaining
fraction: ∫ 1

−1
dx2

∫
b0/µ

d2y Fqq′(x1, x2,y;µ) =

= (Nq′ + δqq̄′ − δqq′) fq(x1) +O(αs(µ)) +O((b0Λ/µ)2) ,
(2.62)

where Nq′ corresponds to the number of valence quarks of flavor q′ appearing in the con-
sidered hadron. The O(αs)-term arises from the previously described splitting contribu-
tion and the correction of order O((b0Λ/µ)2) is caused by the cutoff in the y2-integral.
A similar relation is known for the single PDF fq(x), where the integral over x again
yields the number of valence quarks of flavor q.

2.4.3 Double parton scattering and DPDs
A scattering process involving two partons of each hadron is sensitive to correlations
of these partons. The corresponding information is provided by DPDs, which directly
appear in the cross section. We will discuss at the end of this section that there are
further contributions in the cross sections beyond those related to DPDs. Again we only
consider the part concerning quarks. In the following, we consider two hadrons moving
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Figure 2.6: Leading order graph for a DPS process. Each of the two hadrons emits two
partons, each of them interact with one parton of the other hadron. These interactions
are represented by the hard scattering matrix elements Hi (orange blobs), which depend
on the squared c.m. energy q2

i . The emission of the parton is described by DPDs F of
each hadron depicted by the blue blobs. The dashed line is the final state cut, which
separates the scattering amplitude and its complex conjugate.

in opposite 3-direction at high energy Q. For the corresponding momenta p and p̄ in
the c.m. frame we can give the relations:

p+ ∼ p̄− ∼ Q ,

p− ∼ p̄+ ∼ Λ2

Q
,

p = p̄ = 0 .

(2.63)

For the parton momenta of the hadron moving in −-direction we obtain a similar scaling
behavior as in (2.25) with +-components replaced by −-components. The double parton
scattering process is shown in Figure 2.6. We have two quarks emerging from each
hadron and scattering with one quark of the other hadron. This hard scattering sub-
process is described by the hard scattering matrix elementHi, which includes all possible
final states for momentum transfer qi. Because of momentum conservation it is clear
that qi = ki + k̄i, which implies

q+
i ≈ k+

i q−i ≈ k̄−i . (2.64)

Furthermore, momentum conservation forces light-cone components of r to be small:

r+ ∼ r− ∼ Λ2

Q
. (2.65)
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For the cross section it is therefore sufficient to consider ζ = r+/p+ ≈ 0. With
q2
i ≈ q+

i q
−
i ≈ xix̄ip

+p̄− ≈ xix̄i(p + p̄)2 = xix̄is we can give an expression for the
double parton scattering cross section in the quark sector. Resolving the longitudinal
and transverse final momenta of the hard scattering products, the cross section reads
[55]:

dσDPS∏
i=1,2 dxidx̄id2qi

= 1
C

∑
abāb̄

 ∏
i=1,2

∫
d2ki d2k̄i δ

(2)
(
qi − ki − k̄i

) ∫ d2y

×
[
σ1,aā (x1x̄1s) σ2,bb̄ (x2x̄2s) Fab (xi,ki, ζ,y) Fāb̄

(
x̄i, k̄i, ζ,y

)
+ σ1,aā (x1x̄1s) σ2,b̄b (x2x̄2s) Fab̄ (xi,ki, ζ,y) Fāb

(
x̄i, k̄i, ζ,y

)]∣∣∣
ζ=0

+ octet + interference terms ,

(2.66)

where C = 2 if the two scattering partons are the same and C = 1 otherwise. The hard
scattering cross sections σi,aā(xix̄is) corresponds to the spin projected hard scattering
matrix Hi(q2

i ):

σi,aā(xix̄is) = 1
2q2
i

k+
i

(
Γ−a
)
αβ
Hi,βαᾱβ̄(q2

i )
(
Γ+
ā

)
β̄ᾱ
k̄−i . (2.67)

The contraction with the spin indices has been replaced by a sum over polarizations
via a Fierz transformation, where we neglect higher twist contributions. The indices
a, b are supposed to run over q, ∆q, δq, while ā, b̄ label the corresponding antiquark
channels. The Dirac structures Γ±a are defined as

Γ±q = 1
2γ
± Γ±∆q = 1

2γ5γ
± Γ±,jδq = 1

2γ5γ
±γj Γ±ā = −ηaCΓ±a . (2.68)

If we do not desire to be sensitive to transverse effects, we can integrate over qi elimi-
nating the transverse parton momenta. This yields a similar formula as before, which
involves collinear DPDs:

dσDPS

dx1dx2dx̄1dx̄2
= 1
C

∑
abāb̄

∫
d2y

×
[
σ1,aā (x1x̄1s) σ2,bb̄ (x2x̄2s) Fab (xi, ζ,y) Fāb̄ (x̄i, ζ,y)

+ σ1,aā (x1x̄1s) σ2,b̄b (x2x̄2s) Fab̄ (xi, ζ,y) Fāb (x̄i, ζ,y)
]∣∣∣
ζ=0

+ octet + interference terms .

(2.69)

Notice that these results are obtained from a leading order analysis. The expressions
for the cross sections (2.69) and (2.66) are factorized in terms of hard scattering matrix
elements and a soft part represented by the DPDs. In higher order analyses one has to
take into account effects of collinear and soft gluons. We already mentioned collinear
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gluons, which are represented by the Wilson line of the light cone operators. Soft gluons
are taken into account by including a so-called soft factor in the definition of the DPD.
Furthermore, one has to compensate double-counting of sub-processes being already
included by the SPS description. This is related to perturbative splitting, which we
mentioned in the previous section.
In order to show that factorization holds at all orders, it is crucial to prove that gluons
in the so-called Glauber region cancel, which has been shown for DDY processes by [64].
There are processes, where there is no such cancellation, e.g. for hadronic final states
and measured transverse momenta qi [65]. For a review on DPS factorization subjects
and the current status of factorization proofs, see [61].
Beyond the previous discussion there are certain interference contributions w.r.t. the
fermion number and quark flavor, which are possibly contributing to the DPS process.
In the cross sections (2.66) and (2.69) the corresponding contributions appear among
the part described by DPDs. Fermion number interference is described by interference
distributions, which we already mentioned when defining DPDs. For flavor interference
one has to treat matrix elements of operators that do not conserve flavor.
Notice that there are also contributions involving the color-octet DPDs 8F , which we
have not considered so far. These contributions, as well as the previously mentioned
interference effects, are assumed to be Sudakov-suppressed [66].
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3 Matrix elements and lattice QCD
In the previous chapter we defined several kinds of parton distribution functions for the
case of quarks. All of them share as kernel a hadronic matrix element of quark operators.
As already mentioned in the previous chapter, the QCD coupling constant becomes
very large at the hadronic scale. Therefore, the perturbative ansatz is not applicable in
order to perform a calculation of hadronic matrix elements from first principles. We will
introduce a non-perturbative tool based on the path integral formalism on discrete and
finite spacetime. The path integral is solved by Monte Carlo simulations. This methods
is referred to as lattice field theory or, in our case, lattice QCD (LQCD) and was
originally developed by Wilson [67]. A complication is that these lattice calculations are
only feasible in Euclidean spacetime, which makes a direct access to dynamical processes
impossible. However, the Euclidean correlation functions can be directly related to
matrix elements we are interested in. This will be discussed at the end of this chapter.
For the subjects being discussed in this chapter we refer to [68, 69], for details concerning
field theoretical aspects, see e.g. [48].

3.1 The path integral formalism
A standard method of evaluating physical quantities within quantum mechanics is pro-
vided by functional quantization. The formalism basically corresponds to the principle
that any transition is realized by a superposition of each possible path of intermediate
states. The contribution of each state depends on the action of the theory. In the classic
limit the contributions from all but the classical path vanish. Furthermore, the theory
is represented by the Lagrangian. As a consequence the symmetry of the Lagrangian is
reflected by the path integral. In the following, we will give a brief introduction of the
formalism, a detailed derivation and discussion can be found in standard literature, e.g.
[48].

3.1.1 The concept
The path integral formalism is based on the concept of considering infinitesimal slices
w.r.t. the dynamic variable (time) and the insertion of complete sets of intermediate
states between all of these slices. Let us consider a system with generalized coordinates
φi(t) and conjugate momenta πi(t). For the transition from an initial state |φa〉 to a final
state |φb〉 one can show that for any Hamiltonian of the form H(φi, πi) = cπ2

i + f(φi),

27
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where c is some constant, the transition matrix element reads up to a normalization
constant:

〈φb| e−iHT |φa〉 =
∏
i,t

∫
dφi,t


φi,T=φb
φi,0=φa

exp
{
i
∫ T

0
dt L

}
, (3.1)

with the Lagrangian

L =
∑
i

πiφ̇i −H(φi, πi) . (3.2)

From now on we will use the conventional notation D [φi,t] = ∏
i,t dφi,t. For our purpose

we have to adapt the formalism to fields φi(x) being defined on each coordinate x in
Minkowski spacetime. In this case we can rewrite (3.1):

〈φ′i(~x)| e−iHT |φ′′i (~x)〉 =
∫
φi(~x,T/2)=φ′′b (~x)
φi(~x,−T/2)=φ′a(~x)

D [φi(~x, t)] exp
{
i
∫ T/2

−T/2
dt
∫

d3~x L
}
. (3.3)

Notice that we shifted the time variable such that the integration boundaries are ±T/2
instead of 0 and T . The expression (3.3) can be generalized to vacuum expectation
values of a time ordered product of field operators φ̂i(x) in the Heisenberg picture, i.e.
the operator itself is time dependent. x = (t, ~x) is a four-vector. Assuming that the
fields overlap with the vacuum, it can be shown that, in the limit T → ∞(1 − iε), a
vacuum expectation value can be related to the following path integral:〈

Tφ̂1(x1) · · · φ̂n(xn)
〉

= Z−1
∫

D [φi]φ1(x1) · · ·φn(xn) eiS[φi] , (3.4)

with the partition function

Z =
∫

D [φi] eiS[φi] , (3.5)

and the action

S[φi(x)] =
∫

d4x L . (3.6)

The small imaginary part in the limit of the time extension T suppresses excited states
by a factor e−ET , where E is the energy difference between the vacuum state and the
excited state. Hence, in this limit only the ground (vacuum) state is represented, which
is exactly what we are interested in. The corresponding limit in Euclidean spacetime
will be discussed more detailed in section 3.3.
The l.h.s. of (3.4) is the general form of quantities we want to investigate within this
work by calculating the r.h.s. . This is feasible through Monte Carlo simulations if we
consider a finite number of degrees of freedom, i.e. a discrete and finite spacetime. The
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necessary discretization process will be explained in section 3.2.

3.1.2 The Wick rotation
We will see in section 3.2.6 that the oscillatory factor eiS[φi] appearing in (3.4) makes
Monte Carlo simulations unfeasible. In the following, we want to introduce the concept
of Euclidean time, which is connected to Minkowski time by the so-called Wick rotation
of the integration path in the action. This rotation is formally defined by∫ ∞

−∞
dt→

∫ i∞

−i∞
dt =

∫ ∞
−∞

dtE , (3.7)

leading to the definition of the Euclidean time tE, which is a component of a Euclidean
four-vector xE

x4
E = tE = −it = −ix0 . (3.8)

Considering the invariant distance x2 = −t4E − ~x2
E = −xµExνEgE,µν , we can identify the

Euclidean metric gE,µν = δµν . To distinguish between Euclidean and Minkowski time
components the corresponding index of any four vector will be labeled by 4 instead of 0.
The Euclidean four vector reads xE = (~x, tE). As a consequence of the Wick rotation
the argument iS[φi] in the exponential appearing in (3.4) and (3.5) becomes −SE[φi],
where SE is the action in Euclidean spacetime. Since the exponent is a purely real
function, the exponential itself is real and positive. Therefore, it can be treated as a
weight factor, which is essential for Monte Carlo integration. After applying the Wick
rotation to the expressions given in (3.4), (3.5) and (3.6), we obtain their Euclidean
versions: 〈

φ̂1(xE,1) · · · φ̂n(xE,n)
〉

= Z−1
∫

D [φi]φ1(xE,1) · · ·φn(xE,n) e−SE [φi] ,

Z =
∫

D [φi] e−SE [φi] ,

SE[φi] =
∫

d4xE LE .

(3.9)

From now on we only consider a Euclidean spacetime structure and drop the subscript
E for better readability.

3.1.3 Grassmann variables and Wick’s theorem
We already mentioned that a canonical way to solve a path integral is given by Monte
Carlo integration. However, we want to discuss the special case, where parts of the
degrees of freedom are represented by so-called Grassmann with the property that they
anti-commute, i.e. :

ηiηj = −ηjηi , (3.10)
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for two Grassmann valued variables ηi and ηj. In our context this is the case, whenever
we treat fermionic fields. If the path integral is taken w.r.t. such variables, the corre-
sponding part can be evaluated exactly. A typical expression we have to deal with later
in this work has the following form:
∫

D[ηi]D[η̄i]ηk1 η̄k̄1 · · · ηkn η̄k̄n exp {η̄iAilηl} = ∂

∂jk1

∂

∂j̄k̄1

· · · ∂

∂jkn

∂

∂j̄k̄n
Z[j, j̄]

∣∣∣∣∣
j,j̄=0

. (3.11)

The r.h.s. shows the representation of the expectation value in terms of the generating
functional Z[j̄, j], which is defined as:

Z[j, j̄] =
∫

D[ηi]D[η̄i] exp
{
η̄iAilηl + j̄iηi + η̄iji

}
. (3.12)

ηi and η̄i are two sets of Grassmann valued degrees of freedom and A is an invertible
matrix. j̄i and ji are Grassmann valued source terms. By applying the derivatives on
the r.h.s. in (3.11), it can be shown that the expressions in (3.11) are equivalent to

(−1)n
∑
P∈Sn

sign(P )
(
A−1

)
k1k̄P (1)

· · ·
(
A−1

)
knk̄P (n)

det{A} . (3.13)

In a discrete field theory the analogue to the matrix A is given by a discretized differ-
ential operator D, e.g. the Dirac operator in the case of QCD. The differential operator
itself may depend on further fields φi which are not Grassmann valued. Defining the
propagator M [φi] = D−1[φi], the path integral expression related to the vacuum expec-
tation value of anti-commuting field operators ψ̂ takes the form:〈

ψ̂1(x1) ˆ̄ψ1(x′1) · · · ψ̂n(xn) ˆ̄ψn(x′n)
〉

= (−1)n
Z

∑
P∈Sn

sign(P )

×
∫

D[φi]M [φi](x1|x′P (1)) · · ·M [φi](xn|x′P (n)) det{D[φi]}e−Sφ[φi] .

(3.14)

The relation above is known as Wick’s theorem. Later in this work, we will refer to the
individual summands as Wick contractions.

3.2 QCD on the lattice

Our aim is to calculate expectation values by evaluating the corresponding path integral,
which we have introduced in section 3.1. We already mentioned that a feasible way is
to perform the calculation in discrete and finite Euclidean spacetime via Monte Carlo
simulations. This section concerns the appropriate formulation of QCD on the lattice
as discussed by Wilson [67]. Introductory literature is given by [68, 69].
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U †µ(x+ ν̂)

U †ν(x)

ψ(x) ψ(x+ µ̂)
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Uµν(x)
ν

µ

Figure 3.1: Degrees of freedom of QCD on the lattice shown for a two-dimensional sub-
slice in the (µ, ν)-plane. The blue circles at the grid points represent the (anti)quark
fields, while the orange lines are the gauge links. The product of all depicted gauge
links yields the plaquette Uµν , which is represented by the red circle.

3.2.1 Discretization of the QCD action

We construct the lattice QCD Lagrangian in the same manner as we have derived
the continuous version (2.18), i.e. we start with the relativistic non-interacting fermion
Lagrangian. In Euclidean space the free Lagrangian for one quark flavor can be written
as

Lfree(x) = ψ̄(x)(∂µγµ +m)ψ(x) , (3.15)

where γµ are the Euclidean gamma matrices (an explicit choice of the basis we use in
this work is given in (A.5) ).
Now let us define the lattice Λ, where we consider the fermion fields to be placed at the
corresponding grid points.

Λ :=
{
x = an = a(n1, n2, n3, n4)|nµ ∈ N, 0 ≤ n1, n2, n3 < L, 0 ≤ n4 < T

}
, (3.16)

i.e. we consider a regular lattice with spatial volume L3a3 and time extension Ta, where
a is the lattice spacing. The vector connecting two neighboring grid points in µ direction
is denoted by µ̂. To recover at least discrete translational invariance under x → x + µ̂
for all x, one often chooses periodic boundary conditions, i.e. ψ(x) = ψ(x + Lµ̂). The
Poincaré group, i.e. the original symmetry group, is reduced to the hypercubic group
H(4). Naively, the free fermion action S[ψ̄, ψ] is obtained by replacing integrals by sums
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over spacetime points and derivatives by differential quotients. Explicitly, this is:∫
d4x ψ̄(x) (∂µγµ +m)ψ(x)→ a4 ∑

x,y∈Λ
ψ̄(x)Dfree(x|y)ψ(y) ,

Dfree(x|y) =
∑
µ

γµ

2a (δx,y+µ̂ − δx,y−µ̂) +mδx,y .
(3.17)

Applying the gauge transformation (2.12), we again notice that the derivative term in
the Dirac operator Dfree needs to be corrected in order to restore gauge invariance. This
leads to the introduction of the gauge links Uµ(x) fulfilling the following behavior under
gauge transformations:

Uµ(x)→ Ω(x)Uµ(x)Ω†(x+ µ̂) . (3.18)

Some properties and relations on these gauge links will be discussed later in this work.
Using the newly defined gauge links Uµ, we are able to construct a gauge covariant
discretized Dirac operator:

Dnaive(x|y) = γµ

2a

(∑
µ

Uµ(x)δx,y+µ̂ − U †µ(x− µ̂)δx,y−µ̂
)

+mδx,y . (3.19)

The definition (3.19) introduces some non-physical artifacts, which is why we call it the
"naive" lattice Dirac operator. This issue we shall explain in the following.

3.2.2 Doublers and chiral symmetry
In continuum field theory the Green’s function of the Dirac operator describes the
propagation of a free Dirac fermion. Therefore, it is called propagator and has exactly as
many poles as the number of fermions it is considered to describe. For the massless case
this is exactly one fermion, for non-vanishing mass there a two poles, which represent
the particle and the antiparticle.
This is crucially different for the naive lattice Dirac operator we have constructed before.
To illustrate that, we compare the continuum propagator for massless non-interacting
Dirac fermions with the analogue obtained from an inversion on (3.19) with Uµ = 1.
Furthermore, we go to momentum space, where we obtain:

D−1
cont(p) = − ip/

p2 ↔ D−1
naive(p) = −

ia
∑
µ γ

µ sin(pµa)∑
µ sin(pµa)2 . (3.20)

The appearance of sine functions on the r.h.s. is a consequence of the discretization of
spacetime, where the accessible momenta are restricted to the range pµ ∈ (−π/a, π/a].
Adding 2π/a to a given momentum leaves physics invariant. Considering the r.h.s. of
(3.20), we find a second pole, located at the boundary of the accessible momentum
range at pµ = π/a. This additional pole is identified with an unphysical particle called



3.2 QCD on the lattice 33

doubler. In four dimensions there are 16 poles, i.e. 15 unphysical doublers one has to
decouple from the theory in some manner. This is exactly, what is achieved by adding
the Wilson term

(2a)−1∑
±µ

(Uµ(x)δx+µ̂,y − 2δx,y 1) (3.21)

to Dnaive, which has the effect that the doublers acquire an additional mass ∝ a−1, such
that they become infinitely heavy for a→ 0. In (3.21) we use negative Lorentz indices to
abbreviate U−µ = U †µ(x− µ̂), see also (A.20). Adding (3.21) to the naive Dirac operator
(3.19), we obtain the Wilson-Dirac operator

DWilson[Uµ](x|y) = 1
2aκ [1δxy − κHW[Uµ](x|y)] , (3.22)

with the so-called hopping term, which connects neighboring grid points:

HW[Uµ](x|y) :=
∑
±µ

(1− γµ)Uµ(x)δx+µ̂,y . (3.23)

The parameter κ is the so-called hopping parameter, which is defined by:

2am = 1
κ
− 1
κc

. (3.24)

κc is the critical value of κ, where the quark mass vanishes. In the free field case it is
κc = 1/8. Once we include interactions, we have to distinguish between the bare quark
mass and the renormalized (physical) quark mass. Therefore, κc is different from the
free case. Through the chiral relation m2

π ∝ m the value of κc is equal to the value of
κ, where the pion becomes massless.
Adding the Wilson term as in (3.22) comes with a big price: In the massless case the
continuous Dirac operator, as well as the naive lattice Dirac operator, was invariant
under chiral rotations ψ → eiαγ5ψ where α denotes the chiral angle. Any mass-like
term in the Lagrangian breaks this symmetry explicitly. When adding the Wilson term,
we introduced a mass-like expression, such that we loose chiral symmetry even in the
massless case. It was shown in the past [70] that it is not possible to remove doublers
and retain chiral symmetry at the same time. This fact is known as Nielsen-Ninomiya
theorem. Only in the continuum limit a→ 0 chiral symmetry is restored.

3.2.3 Discrete symmetries
Having defined the theory on a Euclidean lattice, we want to list some properties of the
fields under discrete symmetry operations.
The previously derived Wilson-Dirac operator is γ5-Hermitian

γ5D(x|y)[Uµ]†γ5 = D(x|y)[Uµ] . (3.25)
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We anticipate here that this will also hold, when we add the clover term later. An
important implication of this relation is that the determinant det{D} is real-valued.
The symmetry operation interchanging the role of quarks and antiquarks is known as
charge conjugation. The fermion fields and gauge links are transformed in the following
way under charge conjugation:

ψ(x) C−→ C−1ψ̄T (x) , ψ̄(x) C−→ −ψT (x)C , Uµ(x) C−→ U∗µ(x) . (3.26)

C is a Dirac matrix that has to fulfill the following relation

CγµC
−1 = −γTµ . (3.27)

The explicit form of C depends on the chosen Dirac basis.
Two further discrete symmetry operations are parity

Px = (La− x1, La− x2, La− x3, x4) , (3.28)

and time reflection

T x = (x1, x2, x3, La− x4) . (3.29)

Under parity operations the fermion fields and gauge links transform as:

ψ(x) P−→ γ4ψ(Px) , ψ̄(x) P−→ ψ̄(Px)γ4 , Uµ
P−→

Uµ(Px) µ = 4
U †µ(Px− µ̂) else

. (3.30)

The discussion of time reflection is more involved. The corresponding operation is
understood to be anti-unitary. By considering the path integral in Euclidean spacetime,
it can be shown that the fermion fields ψ, ψ̄ transform as

ψ(x) T−→ −T−1ψ̄T (T x) , ψ̄(x) T−→ ψT (T x)T , (3.31)

where the T is a Dirac matrix fulfilling

−T = T † = T T = T−1 = γ5Tγ5 . (3.32)

By considering invariance under time reflections, one finds for the gauge links:

Uµ(x)→
UT

µ (T x− µ̂) µ = 4
U∗(T x) else

. (3.33)

For the discussion on time reflection in Euclidean spacetime we refer to [71].
Considering the lattice quark propagator M(x|y)[Uµ] obtained from an inversion of the
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Wilson-Dirac operator, the symmetry relations stated above imply:

M(x|y)[Uµ] = γ5M
†(y|x)[Uµ]γ5 ,

M(x|y)[Uµ] C−→ C−1MT (y|x)[U∗µ]C ,

M(x|y)[Uµ] P−→ γ4M(Px|Py)[UPµ ]γ4 ,

M(x|y)[Uµ] T−→ T−1MT (T y|T x)[UTµ ]T .

(3.34)

Explicit expressions for the Dirac matrices C and T in our basis are given in (A.7).

3.2.4 The Wilson gauge action
With the definition of the gauge covariant derivative on the lattice, we introduced the
gauge links Uµ obeying the transformation behavior (3.18). In order to derive the free
gauge action, we want to discuss relations to the gauge fields Aµ being used for the
continuum formulation.
The transformation (3.18) is the same as for gauge transporters in the continuum, which
connect two points via a certain path. Therefore, it seems natural to interpret the gauge
link Uµ(x) as a gauge transporter from x to x+ µ̂ through a straight line, which is exact
up to O(a). Hence, we identify

Uµ(x) = eiaAµ(x) a→0−−→ 1 + iaAµ(x) . (3.35)

After rescaling the gauge fields A(x)→ g−1
0 A(x), inserting (3.35) in the gauge covariant

lattice Dirac operator, e.g. (3.19), and taking the limit a → 0 reproduces the same
expression as given by the continuum Lagrangian (2.18).
Each closed product of gauge links is gauge invariant by construction and, therefore, a
candidate in the formulation of the free gauge Lagrangian on the lattice. The simplest
expression is the so-called plaquette

Uµν(x) := Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂) , (3.36)

which is the smallest loop in the (µ, ν)-plane, meaning that it is built only from four
links. Notice that in this formula we used the notation (A.20). Again considering the
continuum limit, we find that the following expression yields the continuum Lagrangian:

SG[Uµ] := β

3
∑
x

∑
µ<ν

Re tr {1− Uµν(x)} , (3.37)

where β is proportional to the inverse squared bare coupling g2
0. In four dimensions its

exact relation to the coupling is

β = 6
g2

0
. (3.38)
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In Figure 3.1 the plaquette (3.36) is depicted by a red circle.

3.2.5 Symanzik improvement

ν

µ

UµνUν,−µ

U−µ,−ν U−ν,µ Uν

Uν

U−µ

U−ν

U−ν

Uµ

ν

µ

Figure 3.2: The clover term Qµν(x) (left) and the rectangle Ũµν(x) (right), shown in
the (µ, ν)-plane. The red circle shows the position x, where Q and Ũ are defined.

The formulation of QCD in discrete spacetime is an approximation which is good
up to a certain order of the lattice spacing a. In the case of Wilson fermions the
discretization errors are of order O(a). However, errors of order O(an) may be removed
by adding correction terms sharing the symmetries of the improved quantity and having
dimension energy4+n. The systematic identification of those correction terms is known
as Symanzik improvement program. In the following, we want to give the corresponding
expression for O(a) improvements. It was shown by Sheikholeslami and Wohlert [72]
that the only correction term for Wilson fermions is the so-called clover term, which is
illustrated in Figure 3.2:

C[Uµ](x|y) := − i

16a2σ
µνQµν(x)δxy , (3.39)

with the sum over all plaquettes in the (µ, ν)-plane that include the site x:

Qµν(x) := Uµ,ν(x) + Uν,−µ(x) + U−µ,−ν(x) + U−ν,µ(x) . (3.40)

The origin of the name is deduced from the shape of the contributing plaquettes around
x in the (µ, ν)-plane. Putting everything together, we can write the O(a)-improved
Wilson-Dirac operator as:

DSW[Uµ](x|y) = 1
2aκ [1δxy − κHW[Uµ](x|y)] + acSWC[Uµ](x|y) . (3.41)
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cSW is the Sheikholeslami-Wohlert coefficient, which can be determined non-perturbatively
as described in [73] for nf = 3.
For the pure gauge part of the action SG there also exist improvements. In the context
of this work we want to point out the Lüscher-Weisz action [74], which is tree level
improved to O(g2a2):

SLW[Uµ] = c0

2 SG[Uµ] + c1β

6
∑
x

∑
µ6=ν

Re tr
{
1− Ũµν(x)

}
, (3.42)

where Ũµν is an object built from gauge links in the shape of a rectangle, as depicted in
Figure 3.2:

Ũµν(x) := Uµ(x)Uν(x+ µ̂)Uν(x+ µ̂+ ν̂)U †µ(x+ 2ν̂)U †ν(x+ ν̂)U †ν(x) . (3.43)

Finally, we want to give a complete expression of the lattice action including O(a)-
improved Sheikholeslami-Wohlert fermions and the tree-level improved gauge action:

S[ψ, ψ̄, Uµ] = a4∑
f

ψ̄fDfSW[Uµ]ψf + SLW[Uµ] . (3.44)

This action we use for the simulation described in chapter 4.

3.2.6 Monte Carlo simulations and lattice QCD

The evaluation of an expectation value according to (3.9) requires the calculation of a
high-dimensional integral over all relevant degrees of freedom. A suitable method for
that is Monte Carlo Integration. In one dimension it is based on the principle that
any integral can be approximated by a sum over integrand values that correspond to
randomly chosen points xn being uniformly distributed within the integration range:∫ b

a
dx f(x) = lim

N→∞

b− a
N

∑
xn∈[a,b]

f(xn) . (3.45)

The result yields the integral value within an error which decreases like ∝ 1/
√
N when

the number of samples N is increased. The convergence can be improved by importance
sampling if the function f may be decomposed in the form f(x) = g(x)w(x), where
w(x) > 0 is a real function. This can be used as weight function, when choosing the
points where the function is evaluated. The integral is then obtained by:

1
Zw

∫ b

a
dx f(x) =

∫ b

a
dP (x) g(x) = lim

N→∞

1
N

∑
xn∈[a,b]

g(xn) , (3.46)
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with xn distributed according to dP (x):

dP (x) = Z−1
w w(x) dx , Zw =

∫ b

a
dx w(x) . (3.47)

The path integrals appearing in QCD calculations require the integration over gauge
fields only. The fermionic part is evaluated usingWick’s theorem (3.14). At this point we
again want to emphasize the importance of employing Euclidean spacetime. Considering
the path integral in Minkowski time (3.4), there is no term that can be taken as a suitable
weight factor, whereas in Euclidean spacetime such a function is given by the action
term e−S.
The evaluation of the fermionic path integral by applying Wick’s theorem yields further
terms involving the determinant of the Dirac operator. These can be treated as part of
the distribution weight. Here one has to take the product w.r.t. all considered flavors.
In total, Monte Carlo integration in the context of QCD expectation values is realized
by evaluating the observable on a gauge ensemble, i.e. a set of gauge configurations U i

µ

being distributed according to:

P [Uµ] = D[Uµ] e−SLW[Uµ]∏
f

det
{
DfSW[Uµ]

}
. (3.48)

The expectation value is then obtained by a sum over all samplesO(U i
µ) of the observable

O.

〈O〉U = 1
N

∑
i

O(U i
µ) . (3.49)

Notice that, although γ5-hermiticity seems to guarantee positivity, the fermion deter-
minant in (3.48) can become negative due to fluctuations, which would inhibit us from
using it as a suitable weight. This is in particular the case if the corresponding quark
mass is very small. However, if there are two quark flavors of degenerate mass spectrum,
as it is assumed for the u and d quark, Du = Dd and therefore det{Du} det{Dd} ≥ 0.
If the mass is high enough, as it is considered in the case of the strange quark, negative
eigenvalues are unlikely.
The gauge ensembles are generated by so-called Markov chains of gauge configurations,
where the configuration Un is obtained from Un−1 by random modifications and accepted
according to a transition probability T (Un|Un−1) which satisfies:

0 ≤ T (Un|Un−1) ≤ 1 ,
∑
U

T (U |Un−1) = 1 . (3.50)

The procedure must be strongly ergodic, meaning that every possible configuration has
to be accessible by the algorithm.
Once the Markov chain has reached equilibrium, the possibility of accessing a specific
state has to be equal to that of leaving this state. This property can be achieved by
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requiring T (Un|Un−1) to fulfill detailed balance:

T (Un|Un−1)P (Un−1) = T (Un−1|Un)P (Un) , (3.51)

where P (U) refers to probability of the configuration U , which in our case is given by
(3.48). This condition is employed e.g. by the Metropolis algorithm, which is frequently
used for the generation of gauge ensembles. Here the configuration Un−1 is updated
by a small modification of the gauge fields causing a change of the action ∆S. The
resulting configuration is accepted with a probability ∝ min(1, exp{∆S}). The sim-
ulation of fermionic fields is technically challenging because of the non-locality of the
fermion determinant. A suitable method to handle fermions is given by the hybrid
Monte Carlo (HMC) algorithm [75], where the updating procedure is realized by trajec-
tories given by an iterative evolution of the molecular dynamics equations. Furthermore,
the Grassmann integral is replaced by a Gaussian integral over pseudofermionic fields.
In practice the gauge ensembles are not generated using the distribution (3.48), but
rather one uses a modified version in order to increase performance and stability. For
the ensemble we use in our simulations this is described in detail in [76]. We give
a brief overview of the modifications and list the subsequent reweighting factors that
have to be included in the calculation of observables. As described before, the two
light quarks, which are approximated as having the same mass, are simulated together,
where the combined fermion determinant det{D} det{D} = det{γ5Dγ5} det{D} =
det{γ5Dγ5D} = det{Q2} is used. Here Q := γ5D denotes the Hermitian Dirac op-
erator. The Dirac operator may have eigenvalues close to zero, which leads to a reduced
stability of the algorithm. In order to separate these low modes of the Dirac operator,
an infra-red cutoff is introduced by a so-called twisted mass µ term [77]. This is applied
to the Schur complement of the asymmetrically even-odd preconditioned Dirac operator
[78]. Following the notation of [76], it is denoted by Q̂. The low modes are re-included
by multiplying each sample of the observable by the reweighting factor W0, which is
defined as:

W0 = det


(
Q̂2 + 2µ2

)
Q̂2(

Q̂2 + µ2
)2

 . (3.52)

For the simulation of the strange quark the rational HMC (RHMC) algorithm [79] is
employed, where in the calculation of the corresponding fermion determinant one uses
a rational function to approximate the involved matrix square root. The introduced
deviations have to be compensated by another reweighting factorW1, which is implicitly
defined by (3.5) in [79].
For each observable being calculated on an ensemble that is generated in the described
manner, we have to reweight each sample corresponding to a given gauge configuration



40 3 Matrix elements and lattice QCD

U i
µ:

〈O〉U = 1
N

∑
i

Oi = 1
N

∑
i

W i
0 W

i
1 O(U i

µ) . (3.53)

3.3 Euclidean correlation functions

Let us now take a closer look at correlation functions of two or more operators sepa-
rated in Euclidean time direction. As already mentioned, this cannot be related to a
dynamic variable, because we switched to imaginary time. However, such correlation
functions provide physical information we are interested in. This we want to describe
in the following.
We consider a theory described by its Hamiltonian H with an orthonormal set of eigen-
states |n〉 with energy eigenvalues En. These are supposed to be sorted such that
En < En+1 for each n. Without loss of generality, we are free to shift the energy spec-
trum, such that the vacuum energy is E0 = 0. Starting from (3.9) we can give an
expression for a Euclidean correlation function of two operators O1 and O2 constructed
from the field operators φ̂i. In a finite spacetime with time extension T this reads:

〈O2(t)O1(0)〉 = Z−1
∫

D [φi]O2(t)O1(0)e−S[φi]

=
tr
{
e−(T−t)H O2 e

−tH O1
}

tr {e−TH} .

(3.54)

In the last line we assume periodic boundary conditions in time of the fields φi, i.e.
φi(T, ~x) = φi(0, ~x). The integral over the fields at the boundary can then be identified
with the trace of the operator product. The same applies for the partition function in
the denominator. Expressing the trace in terms of energy eigenstates yields:

〈O2(t)O1(0)〉 = Z−1∑
n

〈n| e−(T−t)H O2 e
−tH O1 |n〉 , (3.55)

with the partition function

Z =
∑
n

〈n| e−TH |n〉 =
∑
n

e−TEn . (3.56)

We call the expression on the l.h.s. in (3.55) two-point function. Inserting a complete
set of eigenstates on the r.h.s. , we can pull out the exponentials by replacing the
Hamiltonian by the corresponding energy eigenvalue. Considering the limit of an infinite
time extension, we find a suppression of each term containing T in the exponential except
for the cases, where the energy is zero. The partition function becomes Z → 1 in this
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case. Hence, we can write:

〈O2(t)O1(0)〉 = Z−1 ∑
n,m

〈n| O2 |m〉 〈m| O1 |n〉 e−(T−t)En e−tEm

T→∞−−−→
∑
m

〈0| O2 |m〉 〈m| O1 |0〉 e−tEm .
(3.57)

In the last line we see that Euclidean correlation of the two operators decomposes in
terms of the eigenstates |m〉. The higher their energy is, the stronger the corresponding
contribution decays with increasing time separation. If t is sufficiently large, we are able
to relate the slope of the correlation function in t to the energy of the eigenstate with
the lowest eigenvalue, i.e. the ground state.
In the same manner we can treat correlation functions of three or more operators.
For our purpose we need to consider three operators or products of operators at three
distinct times. These we choose to be t, τ and 0. Performing similar steps as we did for
the derivation of (3.57) we find:

〈O3(t)O2(τ)O1(0)〉|T=∞ =
∑
m,l

〈0| O3 |l〉 〈l| O2 |m〉 〈m| O1 |0〉 e−(t−τ)El e−τEm . (3.58)

Again it holds that, if the time separations appearing in the exponentials are large,
the entire expression is dominated by the states with the lowest energy eigenvalue. In
this case the r.h.s. is directly related to the ground state matrix element. Therefore we
can use Euclidean correlation functions to extract hadronic matrix elements, given that
we find operators O1 and O3 which have non-vanishing overlap with the corresponding
hadron ground state. This will be discussed in the following section.

3.4 Hadronic matrix elements on the lattice
We conclude this chapter by describing the procedure of the calculation of matrix ele-
ments for certain hadrons by using the formalisms and techniques we presented before.
Furthermore, we introduce a certain kind of operators we want to consider within this
study and describe how they are renormalized in order enable a physical interpretation.

3.4.1 Basic evaluation procedure
The operators O1 and O3 appearing in (3.58) are supposed to annihilate or create states
having the same quantum numbers as the state we are interested in. For hadron physics
these are spin, parity and flavor quantum numbers like isospin and, if the hadron is free of
charge, the charge conjugation phase. These operators, also called hadron interpolators,
usually create the simplest Fock state, i.e. a quark-antiquark (mesons) or three-quark
state (baryons), respectively. E.g. for baryons they can be written as:

|qqq〉 = α0 |b〉+
∑
n

αn |b(n)〉 , (3.59)
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where |b〉 describes the baryon to be investigated, which has a certain overlap α0 with
the three-quark state |qqq〉. The remaining contributions appearing in (3.59) correspond
to excitations. There are methods to increase the overlap α0, while the other coefficients
αn, i.e. the excited state contributions, are reduced. These are referred to as smearing
techniques, where the originally local three-quark state receives a spatial wave function.
This increases the overlap with the baryonic state. The smearing method used in our
analysis shall be introduced in section 4.3.1.
In the following, we consider the interpolators J h(x), Jh(x) creating or annihilating the
hadron h. These interpolators are formulated in position space. For definite momentum
we have to project them by a discrete Fourier transform:

Jh(~p, t) = a3∑
~x

e−i~p~xJh(~x, t) , J h(~p, t) = a3∑
~x

ei~p~xJ h(~x, t) . (3.60)

The interpolators may carry further indices according to their transformation behavior
in the Lorentz group. For spinless particles they are scalar, whereas for spin-1/2 particles
they are Dirac spinors, etc.
In the following, we denote the ground state by |p, λ〉, where λ is used for labeling
a possible degeneracy in the energy spectrum, e.g. states with different spin quantum
number. Furthermore, we consider an operator or a product of operators O, which
corresponds to the operator O2 in (3.58). The type of operators being relevant in this
work is introduced in section 3.4.2. Taking the limit as described in the previous section,
we arrive at the expression:∑

λλ′
U(p, λ) 〈p, λ| O(τ) |p, λ′〉U(p, λ′)e−(t−τ)Eh(~p) e−τEh(~p) , (3.61)

with the interpolator overlap terms

U(p, λ) := 〈0| Jh(~p, t) |p, λ〉 ,
U(p, λ) := 〈p, λ| J h(~p, t) |0〉 .

(3.62)

To isolate the desired matrix element, we have to eliminate the exponentials and overlap
terms, which can be achieved by a division by a two-point function of hadron interpo-
lators. Since the overlap terms are in general not scalar, we have to project out the
desired quantity by a suitable operator P . This can be e.g. a certain polarization or
parity. The relation to the matrix element is given by:

∑
λλ′

[
U(p, λ′)PU(p, λ)

]
〈p, λ| O |p, λ′〉|latt∑

λ

[
U(p, λ)PU(p, λ)

]
=

〈
tr
{
PJh(~p, t) O(τ) J h(~p, 0)

}〉
〈
tr
{
PJh(~p, t) J h(~p, 0)

}〉
∣∣∣∣∣∣
0�τ�t

.

(3.63)
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The [.] notation indicates a scalar quantity and traces are taken w.r.t. spin indices. No-
tice that, if the initial and final state momenta are different, the ratio to be calculated
has to be extended accordingly. The subscript "latt" is for distinguishing the normal-
ization of states for a given momentum on the lattice or in the continuum, respectively.
Expressing the matrix elements in the continuum causes an extra factor 2V

√
~p2 +m2,

where V = L3a3 is the spatial lattice volume. The continuum value of the matrix
element is given by:

〈p, λ| O |p, λ′〉|cont = 2V
√
~p2 +m2 〈p, λ| O |p, λ′〉|latt . (3.64)

Finally, let us consider fermionic (anti-commuting) fields in the correlation function.
We already mentioned that the interpolators are constructed from quark fields and also
the operator O may contain fermions. Hence, we can apply Wick’s theorem (3.14). We
again write down the corresponding formula, considering the degrees of freedom of the
LQCD Lagrangian (3.44). These are the fermions ψfαa(x) of flavor f with spinor index
α and color index a. Notice that the LQCD Lagrangian is diagonal w.r.t. flavor indices,
which is why the propagatorM has to conserve the quark flavor. The remaining degrees
of freedom are represented by the gauge links Uµ(x), which we still have to integrate
over:〈

ψ̂f1
α1a1(x1) ˆ̄ψf

′
1
β1b1(x′1) · · · ψ̂fnαnan(xn) ˆ̄ψf

′
n
βnbn

(x′n)
〉

= (−1)n
Z

∑
P∈Sn

sign(P )
∫

D[Uµ]

×
(
M f1 [Uµ]

)a1bP (1)

α1βP (1)
(x1|x′P (1)) · · ·

(
M fn [Uµ]

)anbP (n)

αnβP (n)
(xn|x′P (n))

× δf1f ′P (1)
· · · δfnf ′P (n)

e−SLW[Uµ] ∏
f

det{DfSW[Uµ]} .

(3.65)

The propagator M f is obtained by solving the equation

DfSWM
f = 1 , (3.66)

where DSW is the O(a)-improved Wilson-Dirac operator (3.41). The Kronecker deltas
appearing in (3.65) guarantee the aforementioned flavor conservation of the propagators.
The integral (3.65) is evaluated by Monte Carlo integration w.r.t. the gauge fields Uµ
according to description in section 3.2.6.

3.4.2 Local operators

Within this study we consider matrix elements involving local quark bilinears that do
not contain derivative terms. These are operators of the form:

Oqq
′

j (y) := q̄(y) Γj q′(y) , (3.67)
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where Γi corresponds to a certain Dirac structure. We distinguish between three types
of operators:

V µ
qq′(y) = q̄(y) γµ q′(y) (vector) ,

Aµqq′(y) = q̄(y) γµγ5 q
′(y) (axial vector) ,

T µνqq′ (y) = q̄(y) σµν q′(y) (tensor) .
(3.68)

There are two further operators types that are known as scalar and pseudoscalar cur-
rents. These we shall not consider in this work. We are interested in matrix elements of
these operators defined in Minkowski spacetime, where they obey the following transfor-
mation behavior under charge conjugation and the combination of time reflection and
parity:

Oqq
′

j (y) C−→ ηjCO
q′q
j (y) ,

Oqq
′

j (y) PT−−→ ηjPTO
q′q
j (−y) ,

(3.69)

with

ηjC ∈

1 j = A

−1 j = V, T
, (3.70)

and

ηjPT ∈

1 j = V

−1 j = A, T
. (3.71)

Furthermore, we can write down the Hermitian conjugate

Oqq
′†

j (y) = Oq
′q
j (y) , (3.72)

i.e. the operator is Hermitian in the case, where it conserves the quark flavor.
Since the calculation is performed in imaginary time, one should also discuss how the
operators are translated when going to Euclidean spacetime. For y0 = 0 we can give the
following relation between the operators in Euclidean and Minkowski spacetime [80]:

Oqq
′

j,E(y) = inηjEO
qq′

j,M(y) , (3.73)

where the subscript E andM denote the versions in Euclidean or Minkowski spacetime,
respectively. The power n of the imaginary unit is equal to the number of Lorentz indices



3.4 Hadronic matrix elements on the lattice 45

being 0 (or 4 in Euclidean notation). ηiE takes the following values:

ηjE ∈


−i j = V

i j = A

−1 j = T

. (3.74)

3.4.3 Renormalization

Field theoretical calculations in the continuum involve ultraviolet divergences, which
have to be regularized appropriately. Physical interpretations require a subsequent
renormalization procedure, which depends on the regularization scheme. In continuum
calculations a frequently used scheme is dimensional regularization followed by renor-
malization within the MS scheme.
The discretization of spacetime introduces a regularization scheme where divergences
are controlled by the lattice spacing a, which acts as an ultraviolet cutoff. In order to
obtain the physical quantities from the objects being evaluated in such scheme, they
have to be renormalized appropriately. In particular, this concerns quark fields and the
operators (3.67). These operators are renormalized multiplicatively at a renormalization
scale µ:

ORµ = ZO(µ)O , (3.75)

The renormalization constants ZO(µ) are determined by imposing certain renormaliza-
tion conditions given by the renormalization scheme. In the following, we sketch the
scheme that we use for the renormalization of the lattice operators (3.67). The method
is based on the so-called regularization independent (RI) scheme, which has been pro-
posed in [81]. In the present case the RI′ scheme [82] is used, which differs from the
RI scheme in the determination of the quark field renormalization constant. In the
previously mentioned schemes one considers the renormalized amputated quark bilinear
vertex function in Landau gauge

ΛΓ(p) = S−1(p)GΓ(p)S−1(p) , (3.76)

with

GΓ(p) = 1
V

∑
xyz

e−ip(x−y) 〈M(x|z)ΓM(z|y)〉

S(p) = 1
V

∑
xy

e−ip(x−y) 〈M(x|y)〉
(3.77)
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The renormalization condition in the RI′ scheme is given by imposing ΛΓ(p) to be equal
to its tree-level counterpart, i.e. :

Z ′Γ
Z ′q

ΛΓ(p)
∣∣∣∣∣
p2=µ2

= Γ , (3.78)

where Z ′q denotes the quark field renormalization constant. It is directly obtained by
relating the free propagator M free(p) in momentum space with its interacting analogue
S(p):

Z ′q(µ) = 1
12 tr

{
S−1(p)M free(p)

}∣∣∣∣
p2=µ2

, (3.79)

where the trace is taken over spin and color, which is why we have to include the
normalization by a factor 12. The renormalization scale is given by µ2 = p2. Altogether,
the renormalization constant reads:

Z ′Γ(µ) =
12Z ′q

tr {ΛΓ(p)Γ−1}

∣∣∣∣∣
p2=µ2

. (3.80)

The RI′ scheme can be implemented in continuum perturbation theory, which allows a
conversion of the renormalization factors to the aforementioned MS scheme .



4 Two-current correlations in the
proton on the lattice

In contrast to single-current matrix elements, two-current matrix elements are sensitive
to charge correlations. Therefore, evaluating matrix elements of two operators provides
an important piece of information describing the internal hadron structure. In the past,
hadronic matrix elements involving two currents have been investigated on the lattice
in the context of various physical aspects like confinement [83, 84], the size of hadrons
[85–88], spatial quark distributions and comparisons with quark models [89, 90], or the
shape of hadrons [91–93]. Within recent studies two-current matrix elements in the
short distance limit have been used to directly access PDFs in position space [94].
Our motivation to study two-current correlations is their relation to double parton
distributions. In the following, we want to introduce matrix elements of two opera-
tor insertions for the proton and describe their evaluation on the lattice. We give an
overview of all contributing Wick contractions and the techniques that are used for
the calculation. We present some properties of the CLS ensemble that is used for this
first study, before some results on two-current correlations in the proton are shown. A
similar study of two-current correlations in the pion has been performed in [45].

4.1 Definition and properties
For the proton at momentum p we define the matrix element of two currents being
represented by local quark bilinears defined in (3.67), which are separated by the purely
spatial vector y, i.e. y0 = 0. In this first study we do not aim to investigate effects
arising from the proton polarization. Instead we always take the spin average:

Mqk
ij (p, y) := 1

2
∑
λ

〈p, λ| Oq1q2
i (0) Oq3q4

j (y) |p, λ〉
∣∣∣∣∣
y0=0

. (4.1)

The operators (3.67) are understood to commute if y is space-like, which is the case in
our framework, since y0 = 0. Therefore, it holds that

Mq1q2q3q4
ij (p, y) =Mq3q4q1q2

ji (p,−y) . (4.2)

Together with the hermiticity relation (3.72) it follows that[
Mq1q2q3q4

ij (p, y)
]∗

=Mq2q1q4q3
ij (p, y) . (4.3)

47
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This implies that the matrix element of two flavor conserving currents is real-valued.
Another useful relation follows from PT invariance, where the second line of (3.69)
implies

Mq1q2q3q4
ij (p, y) = ηijPTM

q2q1q4q3
ij (p,−y) , (4.4)

where

ηijPT = ηiPTη
j
PT , (4.5)

with the sign factors ηiPT defined in (3.71). The results obtained on the lattice for the
matrix elements (4.1) have to be translated to Minkowski time by multiplying with a
factor according to (3.73).

4.2 Evaluation on the lattice

In the following, we describe the evaluation of two-current matrix elements on the
lattice according to the discussion given in section 3.4. This involves the so-called four-
point functions, which decompose into a set of Wick contractions by applying Wick’s
theorem. We shall discuss their contributions to a physical matrix element of operators
with definite flavor.

4.2.1 Four-point correlation functions

The matrix element (4.1) can be obtained by calculating the ratio of correlation func-
tions (3.63). The interpolators J , J have to be constructed in such a way that they
correspond to the desired quantum numbers like spin and parity.
Using the general form of baryonic interpolators, see e.g. [68], we can define for the
proton with isospin I = 1/2

P(~x, t) := εabc ΓAua(x)
[
uTb (x) ΓB dc(x)

] ∣∣∣∣∣
x4=t

,

P(~x, t) := εabc
[
ūa(x) ΓB d̄Tb (x)

]
ūc(x)ΓA

∣∣∣∣∣
x4=t

.

(4.6)

P is called source, while P is referred to as the sink. Notice that each of the interpolators
carries an open spinor index, which is introduced by the quark field ua or ūc, respectively.
This is consistent with the fermionic character of baryons. In order to obtain spin
J = 1/2, ΓA and ΓB are taken to be:

ΓA = 1 , ΓB = Cγ5 , (4.7)
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with the charge conjugation matrix C. Furthermore, we define the operator P+

P+ = 1
2 (1 + γ4) , (4.8)

which projects a baryon at rest onto positive parity. The matrix elements 〈p, λ| P |0〉
and 〈0| P |p, λ〉 correspond to the overlap terms in (3.62). Up to some normalization
constant, which cancels in the ratio in (3.63), they are Dirac spinors ūλ and uλ, which
are defined by (2.7). With the projection operator P+ we can evaluate the l.h.s. of (3.63)
using that

ūλ
′(p)P+u

λ(p) = δλλ′
p0 +m

2 . (4.9)

For a matrix element of a product of two operators Oi we readily obtain the spin average
(4.1): ∑

λλ′ ū
λ′(p)P+u

λ(p) 〈p, λ| OiOj |p, λ′〉∑
λ ūλ(p)P+uλ(p)

=Mij . (4.10)

With the continuum normalization (3.64) we obtain the relation between the desired
matrix element (4.1) and the ratio of correlation functions to be calculated on the lattice:

Mij(p, y)|y0=0 = 2V
√
m2 + ~p2 C

ij,~p
4pt (~y , t, τ)
C~p2pt(t)

∣∣∣∣∣∣
0�τ�t

, (4.11)

where V = L3a3 is the spatial volume. The four-point function C4pt and the two point
C2pt are defined as:

Cij,~p
4pt (~y , t, τ) := a6 ∑

~z ′,~z

e−i~p(~z ′−~z )
〈
tr
{
P+P(~z ′, t) Oi(~0 , τ) Oj(~y , τ) P(~z , 0)

}〉
,

C~p2pt(t) := a6 ∑
~z ′,~z

e−i~p(~z ′−~z )
〈
tr
{
P+P(~z ′, t) P(~z , 0)

}〉
,

(4.12)

i.e. we use the convention that the source is placed at z = (~z , 0), the sink at z′ = (~z ′, t),
the insertion Γi at x = (~0 , τ) and Γj at y = (~y , τ).
The trace in (4.12) is taken over the open spinor indices of the proton interpolators. The
expressions in (4.12) are expectation values of quark operators, which can be calculated
using Wick’s theorem (3.14). The contributing Wick contractions are described in the
following.

4.2.2 Wick contractions and physical matrix elements
In order to calculate the correlation functions defined in (4.12), we apply Wick’s the-
orem (3.14), which yields a sum of Wick contractions. To this end, it is necessary to
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Cij
1,q1...q4 =

Γq1q2
i

Γq3q4
j

Cij
2,q =

Γqq
′

j

Γq
′q
i

Sij1,q =

Γqqi

Γj

Sij2 = Γi

Γj

Dij =
Γi

Γj

Figure 4.1: Depiction of the five types of Wick contractions contributing to baryonic
four-point function. In the case of C1, C2 and S1 the explicit contraction depends on
the quark flavor. As long as all quark flavors have the same mass, the C2 contractions
do not depend on the flavor of the propagator connecting the two currents. Hence, the
corresponding index is not written.

distinguish specific orderings of the quark fields. Therefore, we assign numbers to the
fields appearing in the baryon interpolators (4.6) and the insertion operators (3.67) in
the following way:

(1̄) creating diquark part
(2̄) creating diquark part (transposed)
(3̄) creating quark (open)
(1) annihilating diquark part (transposed)
(2) annihilating diquark part (4.13)
(3) annihilating quark (open)

(4)(4̄) fields of first insertion (i)
(5)(5̄) fields of second insertion (j)

This numbering will be used again in section 4.3.1. The connected part of a generic
baryon Wick contraction can be written in terms of the expressions (traces and trans-
positions are taken w.r.t. to spinor indices):

G123[X, Y, Z] := εabcεa
′b′c′ tr

{(
ΓB
)T
Xa′aΓBY T

b′b

}
tr
{
Zc′cPΓA

}
,
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G213[X, Y, Z] := −εabcεc′b′a′ tr
{

ΓBXb′aΓBY T
a′b

}
tr
{
Zc′cPΓA

}
,

G321[X, Y, Z] := −εabcεc′b′a′ tr
{
PΓAXc′aΓBY T

b′b

(
ΓB
)T
Za′c

}
, (4.14)

G132[X, Y, Z] := −εabcεc′b′a′ tr
{(

ΓB
)T
XT
a′aΓBZb′cPΓAYc′b

}
,

G231[X, Y, Z] := εabcεa
′b′c′ tr

{(
ΓBXb′aΓB

)T
Za′cPΓAYc′b

}
,

G312[X, Y, Z] := εabcεa
′b′c′ tr

{
PΓAXc′aΓBY T

a′bΓBZb′c
}
,

where ΓA, ΓB are Dirac structures originating from the baryon interpolators (4.6) and
P projects onto definite parity. For the nucleon, where ΓB = Cγ5, PΓA = P+, we can
relate:

G321[X, Y, Z] = G132[Y,X,Z] , G312[X, Y, Z] = G231[Y,X,Z] . (4.15)

X, Y and Z are either a propagator M(z′|z) connecting the source at z and the sink at
z′ or one of the following pieces:

Ki
1(z′|y|z) := M(z′|y)ΓiM(y|z) ,

Kji
2 (z′|y|z) := M(z′|0)ΓiM(0|y)ΓjM(y|z) ,

K
ij
2 (z′|y|z) := M(z′|y)ΓjM(y|0)ΓiM(0|z) = Kij

2 (z′| − y|z) .
(4.16)

The second identity in the last line follows from translational invariance. Since it is
clear that the end points are connected to the source and the sink placed at z and
z′, respectively, we shall not write the corresponding arguments of K1,2 and K2 in the
following for brevity. Furthermore, we define the loops:

Li1(y) := tr {ΓiM(y|y)} ,
Lij2 (y) := tr {ΓiM(0|y)ΓjM(y|0)} .

(4.17)

For a baryonic four-point function we find five types of Wick contractions. Following
the notation of [45], we call them C1, C2, S1, S2 and D. These are represented by the
graphs depicted in Figure 4.1. The explicit contribution of a certain contraction type
depends on the flavor of the inserted operators and the baryon, which in our case is
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considered to be a proton. For C1-type graphs we can define:

Cij
1,uudd(z, z′, y) :=

〈
G123[Ki

1(0), Kj
1(y),M ] +G321[Ki

1(0), Kj
1(y),M ]

+G321[M,Kj
1(y), Ki

1(0)] +G123[M,Kj
1(y), Ki

1(0)]
〉
,

Cij
1,uuuu(z, z′, y) :=

〈
G123[Ki

1(0),M,Kj
1(y)] +G321[Ki

1(0),M,Kj
1(y)]

+G321[Kj
1(y),M,Ki

1(0)] +G123[Kj
1(y),M,Ki

1(0)]
〉
,

Cij
1,uddu(z, z′, y) :=

〈
G213[Ki

1(0), Kj
1(y),M ] +G231[Ki

1(0), Kj
1(y),M ]

+G312[M,Kj
1(y), Ki

1(0)] +G132[M,Kj
1(y), Ki

1(0)]
〉

= Cij
1,duud(z, z′,−y) .

(4.18)

In section 4.3.1 we shall see that each of the quantities C1,uudd, C1,uuuu and C1,uddu can be
calculated at once, avoiding the evaluation of each single term on the r.h.s. of (4.18) and,
therefore, saving computer time. However, this makes the resulting expressions flavor
dependent. Notice that the contractions are still defined in position space. According
to (3.60), the projection onto definite proton momentum is given by:

Cij,~p
1,uudd(~y , t, τ) := a6∑

~z~z ′
e−i~p(~z ′−~z )Cij

1,uudd(z, z′, y)|y4=τ,z4=0,z′4=t , (4.19)

and analogously for the remaining contractions, which we define in the following. The
expressions for C2 and S1 read:

Cij
2,u(z, z′, y) :=

〈
G123[Kji

2 (y),M,M ] +G321[Kji
2 (y),M,M ]

+G321[M,M,Kji
2 (y)] +G123[M,M,Kji

2 (y)]
〉
,

Cij
2,d(z, z′, y) :=

〈
G123[M,Kji

2 (y),M ] +G321[M,Kji
2 (y),M ]

〉
,

Sij1,u(z, z′, y) := −
〈[
G123[Ki

1(0),M,M ] +G321[Ki
1(0),M,M ]

+G321[M,M,Ki
1(0)] +G123[M,M,Ki

1(0)]
]
Lj1(y)

〉
,

Sij1,d(z, z′, y) := −
〈[
G123[M,Ki

1(0),M ] +G321[M,Ki
1(0),M ]

]
Lj1(y)

〉
.

(4.20)

Finally, we introduce the two contractions where both insertions are disconnected from
the proton source and sink:

Sij2 (z, z′, y) := −
〈[
G123[M,M,M ] +G321[M,M,M ]

]
Lij2 (y)

〉
,

Dij(z, z′, y) :=
〈[
G123[M,M,M ] +G321[M,M,M ]

]
Li1(0)Lj1(y)

〉
.

(4.21)

For completeness we also write down the expression of the two-point function:

C2pt(z, z′) :=
〈
G123[M,M,M ] +G321[M,M,M ]

〉
. (4.22)
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Using (A.21) and (A.24) and considering PT invariance and invariance under shifts in
time direction we are able to deduce the relation

Gij,~p(y) = ηijPTG
ij,~p(−y) for G = C1,uudd, C1,uuuu, S1,u, S1,d, S2, D ,

Gij,~p(y) = ηijPTG
ji,~p(y) for G = C2,u, C2,d ,

(4.23)

where ηijPT is defined in (3.71). Furthermore, invariance under C and P transformation,
as well as the relations (A.21) and (A.23), imply for all contractions:[

Gij,~p(y)
]∗

= ηij4 η
ij
PTG

ij,~p(−y) , (4.24)

with

ηi4 =
1 i = V, T

−1 i = A
, ηij4 = ηi4η

j
4 . (4.25)

If ηij4 = 1, which is the case for the current combinations investigated within this
work, the relations (4.23) and (4.24) imply that C1,uudd, C1,uuuu, S1,u, S1,d, S2, D are
real-valued, whereas C2,u, C2,d might have non-vanishing imaginary parts. For these
contractions we find

2 Re
{
Cij,~p

2,q (y)
}

= Cij,~p
2,q (y) + Cji,~p

2,q (−y)

2i Im
{
Cij,~p

2,q (y)
}

= Cij,~p
2,q (y)− Cji,~p

2,q (−y) ,
(4.26)

Moreover, because of translational invariance it holds that

Gij,~p(y) = Gji,~p(−y) , for G = S2, D . (4.27)

A physical matrix element corresponding to a certain quark flavor is obtained by a linear
combination of a specific set of contractions. Taking into account only the light quarks
u and d, we find for proton matrix elements:

〈p| Ouui (~0) Oddj (~y ) |p〉 = Cij,~p
1,uudd(~y ) + Sij,~p1,u (~y ) + Sji,~p1,d (−~y ) +Dij,~p(~y ) ,

〈p| Ouui (~0) Ouuj (~y ) |p〉 = Cij,~p
1,uuuu(~y ) + Cij,~p

2,u (~y ) + Cji,~p
2,u (−~y )

+ Sij,~p1,u (~y ) + Sji,~p1,u (−~y ) + Sij,~p2 (~y ) +Dij,~p(~y ) ,
〈p| Oddi (~0) Oddj (~y ) |p〉 = Cij,~p

2,d (~y ) + Cji,~p
2,d (−~y ) + Sij,~p1,d (~y ) + Sji,~p1,d (−~y )

+ Sij,~p2 (~y ) +Dij,~p(~y ) ,
〈p| Oudi (~0) Oduj (~y ) |p〉 = Cij,~p

1,uddu(~y ) + Cij,~p
2,u (~y ) + Cji,~p

2,d (−~y ) + Sij,~p2 (~y ) .

(4.28)
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ZV ZA ZT
0.7128 0.7525 0.8335

Table 4.1: Renormalization constants for each operator type for β = 3.4. The factors
have been determined for a scale µ = 2 GeV, including the conversion to the MS scheme.

In the expression above the contributions are understood to be defined in the limit given
in (4.11) and accordingly normalized by the two-point function, i.e.

Cij,~p
1,uudd(~y ) = 2V

√
m2 + ~p2 C

ij,~p
1,uudd(~y , t, τ)
C~p2pt(t)

∣∣∣∣∣∣
0�τ�t

, (4.29)

and analogously for all other contractions. Notice that, according to (4.26), the combi-
nation Cij,~p

2,q (~y )+Cji,~p
2,q (−~y ) in (4.28) can be identified with the real part 2 Re

{
Cij,~p

2,q (y)
}
.

Isospin symmetry allows us to relate these matrix elements to those of the neutron:

〈p| Oddi Ouuj |p〉n = 〈p| Ouui Oddj |p〉p , 〈p| Oddi Oddj |p〉n = 〈p| Ouui Ouuj |p〉p ,
〈p| Ouui Ouuj |p〉n = 〈p| Oddi Oddj |p〉p , 〈p| Odui Oudj |p〉n = 〈p| Oudi Oduj |p〉p .

(4.30)

In our calculations these relations are exact, since we consider u and d quarks to be
mass degenerate and do not take into account electrodynamic effects.
In this work we, will concentrate on flavor conserving operators, i.e. we will consider
only the first three matrix elements in (4.28).

4.2.3 Renormalization
According to the discussion in section 3.4.3 the operators appearing in (4.1) have to
be renormalized multiplicatively, involving the renormalization factors ZV , ZA and ZT .
The corresponding values have been determined within the RI′ scheme and converted to
the MS scheme for the scale µ = 2 GeV [95]. Additionally, it is improved perturbatively
w.r.t. to lattice artifacts. The values of the factors Zi for β = 3.4 being used for our
analysis are listed in table 4.1. The renormalization of the two operator insertions
implies for the two-current matrix element:

Mren
ij = ZiZjMlatt

ij . (4.31)

4.3 Simulation details
We now describe the technical details concerning the simulation. In particular, we give
the explicit quantities being implemented on the lattice, including all used improve-



4.3 Simulation details 55

ments. Furthermore, we list all parameters and settings being used for the calculations
and give some computational information.

4.3.1 Details on the Wick contractions

C1

0 τ t

×
×

C2 ×
×

0

S1 ×
×

0

S2 D(pt× st)

×
×

D(st× st)

×
×

×
×

point source / propagator
stochastic source / propagator
propagator with HPE

×

sequential source / propagator

Figure 4.2: Technical sketch of all graphs showing the chosen calculation method for
each element. For the D graph we have two versions, first with one fixed point source
(center bottom), second with two stochastic loops, which enables volume averaging
(right bottom). For the C1 graph we indicate the time slices of the source, the sink and
the insertions.

In the following, we derive explicit expressions for the contractions (4.18), (4.20),
(4.21) and (4.22) being evaluated in the simulation. Each graph is calculated on a
smeared quark point source SΦ,~p

x = Φ~pSx located at position x, where (Sx)abαβ(y) =
δxyδαβδab. We shall discuss each ingredient separately. A technical sketch of all graphs
is shown in Figure 4.2.

Smearing: The smearing function Φ~p also includes a phase injecting a momentum b~p to
each of the quarks, where ~p corresponds to the proton’s momentum. This increases the
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overlap of the interpolating operators with the ground state as discussed in section 3.4.1:

(Φ~p
0 )x,y = 1

1 + 6ε

δx,y + ε
3∑
j=1

(
δx+ĵ,yU

sm
j (x)eib~pĵ + δy+ĵ,xU

sm,†
j (y)e−ib~pĵ

) , (4.32)

where the parameter ε is set to 0.25. For the nucleon it is found that choosing b = 0.45
yields maximal overlap with the ground state. The method is known as momentum
smearing [96], which is based on the Wuppertal smearing technique [97]. Notice that
the smearing function is applied multiple times, i.e. the sources and propagators are
smeared by applying Φ = Φn

0 . The gauge links U sm appearing in (4.32) are smoothed
versions of the original gauge links U . They are obtained by the APE-smearing method
[98], where the gauge links are extended by the average over their adjacent spatial
staples. This reduces unphysical short-distance fluctuations.
Inverting the Dirac operator (3.41) on the source SΦ,~p

x , we obtain the source-smeared
point-to-all quark propagator MΦ,~p

x (y):

DMΦ,~p
x = SΦ,~p

x . (4.33)

From this propagator all contractions contributing to C4pt and the two point function
are constructed.

Stochastic propagators and improvements: For most of the graphs we need knowl-
edge about all-to-all propagation of the quark fields. Obviously, it is not feasible to
invert the Dirac equation on the entire lattice. Therefore, we approximate the unit
matrix by a stochastic decomposition:

1
Nst

Nst∑
`

η
(`)
t ⊗ η

†(`)
t

Nst→∞−−−−→ 1t . (4.34)

The objects η(`)
t are stochastic noise vectors in space, spin and color and are seeded on

timeslice t only, where they can take the values:
(
η

(`)
t

)
αax

= 1√
2

(±1± i) δx4,t . (4.35)

The corresponding propagator ψ(`)
t obtained by

Dψ(`)
t = η

(`)
t (4.36)

contains information for the propagation from any spatial site at time t to any site
within the entire lattice.
Considering the l.h.s. in (4.34), the off-diagonal entries belonging to the seeded time
slice t represent only stochastic noise terms. Especially the entries near the diagonal
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Γ V µ Aµ T µν

Nhpe 3 4 1

Table 4.2: Number of omitted hopping terms in the L1 contraction.

affect the final quantity due to larger values of the stochastic propagator ψ. In the
following, we review a technique for eliminating near-diagonal terms, exploiting ultra-
locality of the employed action, for reference see [99]. We rewrite the Dirac operator
as D = (1−H)/(2aκ) and make use of the geometric series to express the propagator.
Comparing with (3.41) we identify H with:

H[Uµ] = κHW[Uµ](x|y)− 2a2κcSWC[Uµ](x|y) . (4.37)

If we know that the first N terms are exactly zero in the stochastic limit, we can rewrite:

D−1 = 2aκ
∞∑
n=0

Hn = 2aκ
N−1∑
n=0

Hn + 2aκ
∞∑
n=N

Hn

= 0 + 2aκ
∞∑
n=N

Hn = HN2aκ
∞∑
n=0

Hn = HND−1 .

(4.38)

Thus, replacing D−1 byHND−1 removes the firstN terms in the series. For a propagator
connecting two sites being separated by a vector y, we can set aN(y) = |y1| + |y2| +
|y3|, since the hopping terms connect only nearest neighbors. Taking into account the
periodicity of the lattice, the exact definition of N(y) is:

N(y) =
3∑
i=1

min
(
|yi|
a
, L− |yi|

a

)
. (4.39)

We define the correspondingly improved stochastic propagator as:

ξ(`),N
τ (y) = HNψ(l)

τ (y) . (4.40)

This improvement is applicable to the calculation of the C2 graph, which we will discuss
within this section.
Furthermore, we find cancellation of a certain number of low-order terms in the expan-
sion if we take the trace of the product of a quark propagator with a specific Dirac
matrix. This is the case for one-current loops, e.g. L1, see (4.17). The number of terms
that can be omitted depends on the type of the Dirac matrix, see table 4.2 [100].
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Interpolator kernels: For simplicity we introduce the following short notation con-
cerning the baryon interpolators:

(Ea)bcβγ := εabc
(
ΓB
)
βγ

,

Παβ :=
(
P±ΓA

)
αβ

, (4.41)

Παβ :=
(
ΓAP±

)
αβ

,

E~p(x) := e−i~x~p ,

where ΓA and ΓB are given by (4.7) for the proton case, P+ is defined by (4.8). The
baryon annihilation operator kernel, which yields the annihilation operator itself after
contracting with the quark fields, can be written as:

σOabcαβγ = Πσα (Ea)bcβγ . (4.42)

This object is used for the calculation of the sequential propagator. In an analogous
way we can formulate the baryon creation operator kernel:

σO
abc

αβγ = (Ec)abαβ Πγσ . (4.43)

The two point function C2pt: Let us first discuss the Wick contractions for the two
point function C2pt introduced in (4.22). We call the total contribution of all two point
contractions G2pt. This object is also needed to construct the four-point contractions
S2 and D, which is explained later in this section.
Combining all quark-antiquark pairs of the same flavor, we find in the case of the proton:

G~p2pt(z′) =
[
Πβα

(
Φ~pMΦ,~p

z

)ab
αβ

(z′) tr
{(

Φ~pMΦ,~p
z (z′)Eb

)T
EaΦ~pMΦ,~p

z (z′)
}

+ Πβα

(
Φ~pMΦ,~p

z

)ab
αγ

(z′)
[(

Φ~pMΦ,~p
z (z′)Eb

)T
EaΦ~pMΦ,~p

z (z′)
]cc
γβ

]
× E~p(z′ − z) .

(4.44)

The two point function is defined as the mean value over all gauge configurations,
which is denoted by 〈.〉. Furthermore, we have to project onto definite momentum
~p by summing over all spatial positions ~z , ~z ′. Note that the momentum phases are
included in the definition (4.44). Because of translational invariance it is only necessary
to perform the sum at the sink for a fixed source point ~z . The two point function can
be rewritten as:

C~p2pt(t) =
〈
G̃~p2pt(t)

〉
, G̃~p2pt(t) = a3V

∑
~z ′
G~p2pt(z′)

∣∣∣
(z′)4=z4+t

, (4.45)

where the factor V compensates the omitted sum over the source position z.
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σ

[
S(`)
t (z′)

]
b̄a′

β̄α′
= σ

[
X†(`)(x)γ5

]
b̄a
β̄α

= σ

[
Y

(`)
i (x)

]
b̄a
β̄α

=
=
(
D−1S†(`)t

)†
(x)γ5 = = X†(`)(x)γ5ΓiM(x) =

b̄β̄

z′ = (t,~z ′)

σ
×(`)

a′α′ c
a
b

x
aα

b̄β̄

σ
×(`)

c
a
b

aα

b̄β̄

σ

Γi(x)

×(`)

c
a
b

[
q

(`)
1,i (x)

]
a
α =

[
q

(`)
2,i (x)

]
a
α = Cij

1 (y) =
= ∑

x`[q
T,(`)
1,i (x)q(`)

2,j(x+y)] =

Γi(x)

×(`)aα

c
a
b

aα

Γi(x)
×
(`)

c
a
b

Γi(x)

Γj(x+y)
×
×

(`)
(`)

c
a
b

= c

= a

×
× = b

Figure 4.3: Detailed technical sketch of each part entering the C1 contraction. The
symbols have the same meaning as in Figure 4.2. For each piece we also show spinor,
color and stochastic indices and spacetime arguments. We also indicate to which of the
quark lines a, b or c the shown elements belong. The quark lines themselves are defined
in the lower panel. Upper panels: Left: The sequential source St at timeslice t, which is
a combination of the terms given in (4.48). The sequential source already incorporates
parts of each quark line, see (4.47). The light blue dot denotes the open spinor and color
indices used for the inversion of the Dirac operator. Center: Sequential propagator X†γ5
after the Hermitian conjugation. Right: The combination of the sequential propagator
and the forward propagator M , which is called Y . Center panels: Left: q1, which is
a combination of the contractions (4.52). These are constructed from the quantity Y .
The open baryon spinor index σ of the sink does not appear here anymore, since it is
contracted with the baryon spinor index of the source. Center: q2 representing a part
of the quark line b. Right: The complete C1 graph, which is constructed from q1,i and
q2,j (or in some cases q1,j and q2,i)
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Graph C1: For C1-type graphs we have the two operators placed at two different quark
lines connecting the baryon operators. For the proton we have contributions for

〈p| Ouui (x) Oddj (x+ y) |p〉 ,
〈p| Ouui (x) Ouuj (x+ y) |p〉 ,
〈p| Odui (x) Oudj (x+ y) |p〉 .

(4.46)

The basic technical procedure of the calculation is the following: We compute a simple
point-to-all forward propagator MΦ,~p

x (see (4.33)) at the momentum smeared source.
Furthermore, we put a stochastic wall source ηt on the sink at timeslice t, which we
use for the calculation of a stochastic propagator ψt, which connects one of the currents
to the sink. The stochastic source and the forward propagator are then combined to a
sequential source, which is used for the calculation of a sequential propagator, which is
connected to the second current. For general reference regarding the sequential source
technique see [101]. From this procedure we obtain all pieces we need to evaluate the
C1 contributions. Each piece is sketched in Figure 4.3. In Figure 4.3 to Figure 4.6 and
the equations (4.47) to (4.52) we shall label the quark lines as follows:

a forward propagator connecting the baryon operators
b quark line with the stochastic source, the stochastic propagator, and one insertion
c quark line with the sequential propagator and the other insertion.

We have the following pieces attached to the sink, where .̄ denotes the open source index
of the forward propagator and .′ the open index used for the inversion:

(Φ~pMΦ,~p
z )aāαᾱ(z′) ( a ) ,(

Φ~pγ5η
(`)
)a
α

(z′) ( b ) ,

(γ5)aa
′

αα′ ( c ) .

(4.47)

As given in the parentheses, the expressions correspond to the different quark lines con-
nected to the sink. Except for the first line, which is exactly the quark line a itself,
the expressions represent only a part of corresponding quark line. The γ5 in the second
and third line arises from the Hermitian conjugation of the sequential propagator or the
stochastic propagator, respectively. There are six possibilities to connect these parts to
the sink. These are labeled by the number (n) of the quark in the baryon annihilation
operator according to (4.13), where we use the ordering Sn(a)n(b)n(c). Considering e.g. in
the sequential source S213, quark (1) is part of the quark line with the stochastic prop-
agator (quark line b), quark (2) belongs to the quark line with the forward propagator
(quark line a) and quark (3) is part of the quark line with the sequential propagator
(quark line c). Explicitly, the six possibilities of sequential sources read:

σ

(
S
~p,(`)
123

)b̄a′
β̄α′

(z′) := E~p(z′) (Πγ5)σα′
[(

Φ~pMΦ,~p
z

)T
(z′) Ea′Φ~pγ5η

(`)(z′)
]b̄
β̄
,
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σ

(
S
~p,(`)
213

)c̄a′
γ̄α′

(z′) := E~p(z′) (Πγ5)σα′
[(

Φ~pη(`)
)T

(z′)γT5 Ea′Φ~pMΦ,~p
z (z′)

]c̄
γ̄
,

σ

(
S
~p,(`)
231

)c̄b′
γ̄β′

(z′) := E~p(z′)
(
ΠΦ~pγ5η

(`)(z′)
)a
σ

[
γT5 E

aΦ~pMΦ,~p
z (z′)

]b′c̄
β′γ̄

, (4.48)

σ

(
S
~p,(`)
132

)b̄c′
β̄γ′

(z′) := E~p(z′)
(
ΠΦ~pγ5η

(`)(z′)
)a
σ

[(
Φ~pMΦ,~p

z

)T
(z′) Eaγ5

]b̄c′
β̄γ′

,

σ

(
S
~p,(`)
312

)āc′
ᾱγ′

(z′) := E~p(z′)
(
ΠΦ~pMΦ,~p

z (z′)
)aā
σᾱ

[(
Φ~pη(`)

)T
(z′)γT5 Eaγ5

]c′
γ′
,

σ

(
S
~p,(`)
321

)āb′
ᾱβ′

(z′) := E~p(z′)
(
ΠΦ~pMΦ,~p

z (z′)
)aā
σᾱ

[
γT5 E

aΦ~pγ5η
(`)(z′)

]b′
β′
.

The sequential sources appearing in a sum of contractions can be combined if n(c) (the
last integer index) is the same in each expression. The sequential source to be inverted
is called S and can be either one of the sequential sources (4.48) or a combination of
these. Furthermore, we define St as

S~p,(`)t (z′) = S~p,(`)(z′)δz′4,t , (4.49)

i.e. the sequential source seeded at timeslice t only. To this source we apply again
momentum smearing Φ~p . Inverting on this source, we obtain the sequential propagator
X

Φ,~p,(`)
t (y). Notice that this is done by solving on the Hermitian conjugate of the source,

since we again have to take the Hermitian conjugate of the solution in the complete
correlation function:

DXΦ,~p,(`)
t = Φ~pS†,~p,(`)t (4.50)

For a graphical representation of St and X we refer to Figure 4.3. Moreover, we define
the expression Y , which incorporates the two quark lines a and c (see Figure 4.3):

Y
~p,(`)
t,j (y) := X

†,Φ,~p,(`)
t (y)γ5ΓjMΦ,~p

z (y) , (4.51)

where X is the sequential propagator, obtained from the inversion on St. The Hermitian
conjugation of X together with the γ5 completes the transformation of the propagator
on the c quark line to a forward propagator. The sequential propagator implicitly
contains the sum over the sink position ~z ′. Notice that the sequential source and
the corresponding propagator and, subsequently, Y carry the baryon spinor index σ
appearing in the baryon sink. To construct the C1 graph we contract the expression
Y with the source, leaving one spinor-color index open, which will be connected to the
stochastic part. Again there are in general six possibilities, which are denoted in the
same manner as the sequential sources before, but this time the integer indices refer to
the quark fields in the baryon source, i.e. (1̄), (2̄) and (3̄) instead of (1), (2) and (3):

(
S
~p,(`)
123,t,j

)b
β

(y) := E−~p(z)
∑
σ

[
σY

T,~p,(`)
t,j (z)Ec

]cb
γβ

Πγσ ,
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(
S
~p,(`)
213,t,j

)a
α

(y) := E−~p(z)
∑
σ

[
Ec

σY
~p,(`)
t,j (z)

]ac
αγ

Πγσ ,(
S
~p,(`)
231,t,j

)c
γ

(y) := E−~p(z)
∑
σ

tr
{
σY

~p,(`)
t,j (z)Ec

}
Πγσ , (4.52)(

S
~p,(`)
132,t,j

)c
γ

(y) := E−~p(z)
∑
σ

tr
{
Ec

σY
T,~p,(`)
t,j (z)

}
Πγσ ,(

S
~p,(`)
312,t,j

)a
α

(y) := E−~p(z)
∑
σ

[
Ec

σY
T,~p,(`)
t,j (z)

]ac
αγ

Πγσ ,(
S
~p,(`)
321,t,j

)b
β

(y) := E−~p(z)
∑
σ

[
σY

~p,(`)
t,j (z)Ec

]cb
γβ

Πγσ .

The spin index σ is contracted with the baryon spinor index of the baryon source, which
is indicated by the sum over σ in (4.52).
We will now write explicitly the expressions for the three aforementioned matrix ele-
ments in terms of the previously discussed quantities. We start with 〈p| Ouui (0)Oddj (y) |p〉.
The contributions are depicted in Figure 4.4. In the construction of the required se-

A

S
132 S132

ū(1̄)
d̄(2̄)
ū(3̄)

(5)dd̄(5̄)
(4)uū(4̄)

u(1)
d(2)
u(3)

a

c

b

a

c

b

sign(1, 5, 4, 3, 2) = +1

B

S
312 S312

ū(1̄)
d̄(2̄)
ū(3̄)

(5)dd̄(5̄)
(4)uū(4̄) u(1)

d(2)
u(3)

b

c

a

b

c

a

sign(4, 5, 3, 1, 2) = +1

C

S
132 S312

ū(1̄)
d̄(2̄)
ū(3̄)

(5)dd̄(5̄)
(4)uū(4̄)

u(1)
d(2)
u(3)

a

c

b

b

c

a

sign(3, 5, 4, 1, 2) = −1

D

S
312 S132

ū(1̄)
d̄(2̄)
ū(3̄)

(5)dd̄(5̄)
(4)uū(4̄) u(1)

d(2)
u(3)

b

c

a

a

c

b

sign(4, 5, 1, 3, 2) = −1

Figure 4.4: Contributions to 〈p| Ouui (0)Oddj (y) |p〉 with C1 topology. The forward prop-
agator Mz is depicted by a simple line, the stochastic propagator ψ by a zigzag line and
the sequential propagator X (without the incorporated forward propagator and the
stochastic source) is represented by a dashed line. The colors indicate the quark lines:
red corresponds to a, orange to b and blue to c. The combination of the quark lines
with the numbers (1), (2), (3) at the sink or (1̄), (2̄), (3̄) at the source determines the
sequential source type Sn(a)n(b)n(c) (see (4.48)) or the contraction Sn(a)n(b)n(c) (see (4.52)),
respectively, which is also shown for the specific cases.



4.3 Simulation details 63

quential source S we are able to combine A with C and B with D, which yields in both
cases up to a global sign:

S~p,(`)(z′) = S
~p,(`)
132 (z′)− S~p,(`)312 (z′) . (4.53)

Relative signs, which are also indicated in Figure 4.4, correspond to the permutation
sign of Wick’s theorem (3.65). Using the combination (4.53) in (4.49), (4.50) and (4.51)
yields the quantity Y for the given flavor combination. Contracting Y with the baryon
source according to (4.52) gives a quantity that completely represents the quark lines
a and c, see Figure 4.3. In the case of C1,uudd we need the contractions S132 (A,C) and
S312 (B,D), which can be read off in Figure 4.4. Since the stochastic line b is always
connected with the insertion operator d̄Γjd, we can also combine the two expressions
before doing the correlation:

q
~p,(`)
1,t,j (y) = S

~p,(`)
132,t,j(y)− S~p,(`)312,t,j(y) . (4.54)

The contribution from the stochastic quark line b reads:(
q
~p,(`)
2,t,i

)a
α

(y) :=
[
ψ
†,(`)
t (y)γ5ΓiMΦ,~p

z (y)
]a
α
, (4.55)

where the stochastic propagator ψ(`)
t is obtained from an inversion on η(`)(z′)δz′4,t, see

(4.36). The total C1-contribution is obtained by performing the spatial correlation of
q1 and q2:

C
ij,~p,(`)
1,uudd (~y , t, τ) = a3

Nst

∑
~x

Nst∑
`

〈[
q
T,~p,(`)
2,t,i (x)q~p,(`)1,t,j (x+ y)

]〉∣∣∣∣∣
x4=τ,y4=0

. (4.56)

The [.]-notation without indices indicates a closed spinor-color structure. In the expres-
sion above we exploit translational invariance to perform a volume average, i.e. instead
of evaluating the first insertion at ~0 and the second insertion at ~y , we consistently sum
over all spatial positions, which is represented by the sum over ~x .
For the combination OuuOuu we read off the sequential sources from Figure 4.5. For
this matrix element we only need S213, which we use for the sequential propagator X.
From X we again create Y according to (4.51), which is then inserted in the required
contractions (4.52). We are able to combine A with C and B with D before doing the
spatial correlation, since each insertion is connected to the same quark line within these
pairs. In total we have:

q
~p,(`)
1,AC,t,j(y) = S

~p,(`)
213,t,j(y)− S~p,(`)231,j(y) ,

q
~p,(`)
1,BD,t,i(y) = −S~p,(`)231,t,i(y) + S

~p,(`)
213,i(y) ,

q
~p,(`)
2,AC,t,i(x) = ψ

†,(`)
t (x)γ5ΓiMΦ,~p

z (x) , (4.57)
q
~p,(`)
2,BD,t,j(x) = ψ

†,(`)
t (x)γ5ΓjMΦ,~p

z (x) .
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Figure 4.5: Same as Figure 4.4 showing the contributions to 〈p| Ouui (0)Ouuj (y) |p〉 with
C1 topology.

With these expressions the total contribution reads:

C
ij,~p,(`)
1,uuuu (~y , t, τ) = a3

Nst

∑
~x

Nst∑
`

〈[
q
T,~p,(`)
2,AC,t,i(x) q~p,(`)1,AC,t,j(x+ y)

]
+
[
q
T,~p,(`)
1,BD,t,i(x) q~p,(`)2,BD,t,j(x+ y)

]〉∣∣∣
x4=τ,y4=0

.

(4.58)

Finally, we discuss the combination OduOud, which is not investigated in this thesis,
but planned for future work. This case works similar to that of OuuOdd: From the
contributions depicted in Figure 4.6 we combine A with B and C with D, which yields
for both combinations the same sequential source (notice that this is exactly the same
source as for the OuuOdd case):

S~p,(`)(y) = S
~p,(`)
132 (y)− S~p,(`)312 (y) . (4.59)

Subsequently, we proceed like for the flavor combinations we discussed before. The
stochastic line is always connected to Γj, so we can again combine the obtained terms
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ū(3̄)

(4)ud̄(4̄)
(5)dū(5̄)

u(1)
d(2)
u(3)

c

b

a

a

c

b

sign(4, 5, 1, 2, 3) = +1

C

S
123 S312
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Figure 4.6: Same as Figure 4.4 showing the contributions to 〈p| Odui (0)Oudj (y) |p〉 =
〈p| Oudj (0)Odui (−y) |p〉 with C1 topology

before doing the correlation:

q
~p,(`)
1,t,i (y) = S

~p,(`)
321,t,i(y)− S~p,(`)123,t,i(y) ,

q
~p,(`)
2,t,j (x) := ψ

†,(`)
t (x)γ5ΓjMΦ,~p

z (x) ,

Cij,duud
1 (~y , t, τ) = a3

Nst

∑
~x

Nst∑
`

〈[
q
T,~p,(`)
2,t,j (x)q~p,(`)1,t,i (x+ y)

]〉∣∣∣∣∣
x4=τ,y4=0

.

(4.60)

For each momentum and each flavor combination we discussed so far we require 12+49N
inversions, where N is the number of stochastic sources being used. These numbers in-
clude the inversion of the spinor-color explicit forward propagator MΦ,~p

z , which requires
12 inversions, and the sequential and stochastic propagator. For the sequential propa-
gator XΦ,~p,(`)

t we need to invert 12 × 4 = 48 times, i.e. for each spinor and color index
value at the source and for each value of the open fermion spinor index at the sink.
However, this is still requires much less inversions than spinor-color explicit all-to-all
propagators (48� 12L3). The stochastic propagator ψ(`)

t requires the inversion of only
one column.

Loops L1 and L2: Before we discuss the remaining graphs, we have to consider the
loops L1 and L2 defined in (4.17), which are needed for the S1, S2 and D contraction.
For the first loop type L1 we implement two solutions, where for the first one we employ
stochastic sources, and for the second one we use a point source at a fixed position.



66 4 Two-current correlations in the proton on the lattice

For L1 we use the same type of stochastic sources as for the C1 graph but at time slice
τ . The appearance of additional fluctuations introduced by the usage of stochastic noise
vectors may be reduced by implicitly removing hopping terms of the Dirac operator, as
we discussed earlier in this section. In total the loop can be written as:

Lj1,st(~y , τ) := 1
Nst

Nst∑
`

[
η†(`)τ (y)Γjξ(`),N

τ (y)
]∣∣∣∣∣
y4=τ

, (4.61)

where N depends on the Dirac structure Γ, see table 4.2. Another possibility is to cal-
culate the loop L1 directly on a point source, which avoids the introduction of stochastic
noise. A disadvantage is that for each loop position we are interested in the calculation
has to be repeated. This version we shall only apply in the case of the D graph:

Lj1,pt(~y , τ) := tr {ΓjMy(y)}|y4=τ . (4.62)

Sometimes we will use the volume average of the loop expressions. For this purpose we
introduce the notation 〈〈

Lj1(τ)
〉〉

:= 1
V

∑
~y

〈
Lj1(~y , τ)

〉
. (4.63)

The second kind of loops L2 contributes in the case of the S2 graph. Its basic structure
contains two spatially separated insertions being connected by two propagators. Using
stochastic noise vectors is not feasible in this case. Thus, we will evaluate the loop
employing point-to-all propagators only. Specifically, that is:

Lij2 (~y , τ) = tr
{
γ5M

†
x(x+ y)γ5ΓiMx(x+ y)Γj

}∣∣∣
x4=τ,y4=0

, (4.64)

where we may average over several positions ~x to improve the signal.

Graphs C2 and S1: The two contractions C2 and S1 defined in (4.20) are both con-
structed using the sequential source method, where we reuse the sources that have been
employed for usual proton three point functions. These are already provided by [102].
For our purposes we need the following sources1:

(
S~p3pt,u

)ab
αβ

(z′) = E~p(z′)
[
ΠΦ~pMΦ,~p

z (z′)Ea
(
EbΦ~pMz(z′)Φ,~p

)T ]cc
αβ

+ E~p(z′)Παβ tr
{

Φ~pMΦ,~p
z (z′)Ea

(
EbΦ~pMΦ,~p

z (z′)
)T}

+ E~p(z′)
[(
EbΦ~pMΦ,~p

z (z′)Ea
)T

Φ~pMΦ,~p
z (z′)Π

]cc
αβ

(4.65)

1In contrast to the sequential source (4.48) used for the C1 contraction, the three-point sources S~p3pt
are defined without γ5, instead, it is re-included in (4.66)
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+ E~p(z′)
(
Φ~pMΦ,~p

z (z′)Π
)cd
γγ

[(
EbΦ~pMΦ,~p

z (z′)Ea
)T ]dc

αβ
,

(
S~p3pt,d

)ab
αβ

(z′) = E~p(z′)
(
Φ~pMΦ,~p

z (z′)Π
)cd
γγ

[(
EbΦ~pMΦ,~p

z (z′)Ea
)T ]dc

αβ

− E~p(z′)
(
EbΦ~pMΦ,~p

z (z′)
)cd
βγ

(
ΠΦ~pMΦ,~p

z (z′)Ea
)cd
γα

.

The corresponding sequential propagator Xt is then obtained by:

DXΦ,~p
t,3pt = Φ~pγ5S

†,~p
t,3pt , (4.66)

where again

S~pt,3pt(z′) = S~p3pt(z′) δz′4,t . (4.67)

In the case of the C2 graph the corresponding sequential solution has to be contracted
with an additional propagator connecting the two inserted operators. This propagator
is obtained by an inversion on a stochastic source. As we already discussed, we are able
to reduce noise by means of the hopping parameter expansion (HPE), see (4.39). In
total we can write the C2 graph as:

Cij,~p
2 (~y , t, τ) = a3

Nst
E−~p(z)

Nst∑
`

∑
~x

〈[
X†,Φ,~pt,3pt (~x, τ)γ5Γiξ(`),n(~y )

τ (~x, τ)
]

×
[
η†(`)(~x + ~y , τ)ΓjMΦ,~p

z (~x + ~y , τ)
]〉∣∣∣

z4=0
.

(4.68)

In order to give an expression for the S1 graph, we define the three point contraction
as:

Gi,~p
3pt(~x, τ, t) = 1

Nst
E−~p(z)

Nst∑
`

[
X†,Φ,~pt,3pt (~x, τ)γ5ΓiMΦ,~p

z (~x, τ)
]∣∣∣∣∣
z4=0

. (4.69)

The contraction S1 itself is obtained by a spatial correlation of the function G3pt with
the loop L1 introduced above. Notice that for operator combinations having the same
quantum numbers as the vacuum, each of the two disconnected parts may have contri-
butions arising from overlap with the vacuum. These contributions we have to subtract.
In total we have:

Sij,~p1 (~y , t, τ) = −a3∑
~x

〈Gi,~p
3pt(~x, τ, t)Lj1(~x + ~y , τ)〉

+ a3∑
~x

〈Gi,~p
3pt(~x, τ, t)〉〈〈Lj1(τ)〉〉 .

(4.70)

Graphs S2 and D: The remaining two graphs are composed of a two point contraction
correlated with one L2 loop or two spatially separated L1 loops, respectively. Again, we
have to consider vacuum contributions, which have to be subtracted. Since the spatial
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id β a[fm] L3 × T κl/s mπ/K [MeV] mπLa conf.
H102 3.4 0.0856 323 × 96 0.136865 355 4.9 2037

0.136549339 441

Table 4.3: Details of the CLS ensemble used for our simulation. The simulations
include 990 configurations.

~p C1 C2 S1(st) S2(pt) D(st⊗st) D(st⊗pt) 3pt 2pt
Nnucl−src = ~0 1 2 - - - - 4 25

6= ~0 1 1 - - - - 1 21
Nstoch/ins all 2 96 120 240 4(60⊗ 60) 2(120⊗ 120) - -
vol. average all y y y n y n y n

Table 4.4: Overview of the statistics entering the simulations. Nnucl−src describes the
number of proton source positions being used for each graph. Nstoch/ins corresponds to
the size of the set of stochastic noise vectors. In the last line we list whether volume
averaging is possible.

position of the L2 loop is fixed by definition, we are not able to perform a volume average
like in the previous cases:

Sij,~p2 (~y , t, τ) = −〈G̃~p2pt(t)Lij2 (~y , τ)〉+ 〈G̃~p2pt(t)〉〈Lij2 (~y , τ)〉 . (4.71)

The D graph is evaluated in two different manners, first, using two stochastic loops
L1,st, which enables us to perform a volume average, and second, with one loop being
evaluated using a point source at fixed position. For brevity, we give here only the
expression for the first version, the second expression looks completely analogue, where
the second stochastic loop has to be replaced by a point source loop. As a consequence,
the sum incorporating the volume average has to be dropped:

Dij,~p(~y , t, τ) = a3∑
~x

{〈
G̃~p2pt(t)Li1,st(~x, τ)Lj1,st(~x + ~y , τ)

〉
−
〈
G̃~p2pt(t)

〉 〈
Li1,st(~x, τ)Lj1,st(τ)

〉
−
〈
G̃~p2pt(t)Li1,st(~x, τ)

〉 〈〈
Lj1,st(τ)

〉〉
(4.72)

−
〈
G̃~p2pt(t)Lj1,st(~x, τ)

〉 〈〈
Li1,st(τ)

〉〉}
+ 2

〈
G̃~p2pt(t)

〉 〈〈
Li1,st(τ)

〉〉 〈〈
Lj1,st(τ)

〉〉
.
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4.3.2 Lattice setup
We now discuss the details of the setup that is used for our simulations. The em-
ployed ensemble has been generated by the CLS collaboration [76] with nf = 2 + 1
non-perturbatively improved Sheikholeslami-Wohlert fermions and the tree level im-
proved Lüscher-Weisz action, see (3.44). The collaboration has generated a whole set
of ensembles following certain trajectories regarding the lattice parameters. Repeating
the present calculation on more ensembles corresponding to one trajectory would allow
to extrapolate to the physical point, which is not intended in our analysis. For this
pilot study we start with the ensemble H102, a 323 × 96 ensemble with open boundary
conditions in time and pseudoscalar masses mπ = 355 MeV and mK = 441 MeV. The
lattice spacing is a = 0.0856 fm corresponding to β = 3.4. More details can be found
in table 4.3.
For our purpose it is important to cover a wide range of proton momenta. The simu-
lations have been performed for momenta ~p = −2π~P /(La) with ~P = (0, 0, 0), (1, 1, 1),
(2, 2, 2), (−2,−2, 2), (−2, 2,−2), (2,−2,−2), corresponding to a largest squared mo-
mentum of ~p2 = 2.47 GeV2.
Since the ensemble has open boundary conditions, we place the proton source at tsrc =
T/2 = 48a at random spatial position. As source-sink time separation we choose
t = tsnk − tsrc = 12a for the case where the proton momentum is zero and t = 10a
for all other momenta. The C1 graph is evaluated for all possible intermediate inser-
tion times 0 < τ < t, whereas all other contractions are calculated for insertion time
τ = 6a (~p = ~0) or τ = 5a (~p 6= ~0), respectively. The disconnected parts 〈L2(τ)〉
and 〈L1(τ)L1(τ)〉 do not depend on the proton momentum and are averaged over both
insertion times to increase statistics. Since we use a different source-sink separation for
~p = ~0 and ~p 6= ~0 , the average time of the insertion is slightly off-center between source
and sink, which is fine as long as there are no significant excited state contributions.
To increase statistics, the calculations are performed for multiple proton source posi-
tions on each configuration. An overview of the corresponding numbers can be found
in table 4.4. Therein we also summarize the numbers of stochastic noise vectors being
used for each contraction. As described earlier, the propagators are momentum smeared
(see (4.32)) at the proton source and sink, where we apply 250 smearing iterations.
In this simulation we evaluate each graph for each momentum and flavor combination
contributing to proton-proton matrix elements, but we omit the C1 graph for flavor
changing operators. This is left for future work.

4.3.3 Computational details
Each of the expressions derived in section 4.3.1 is evaluated in the framework of the
Chroma software stack [102]. The existing library has been extended accordingly. For
the inversions of the Wilson-Dirac operator, which yield the required propagators, we
use the multi-grid algorithm [103–106], which has been adapted to the used architecture.
The simulations are performed on the KNL cluster QPACE 3 [107].
Each quantity is calculated for 990 gauge configurations. In order to reduce effects
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of autocorrelations between the gauge configurations, we employ the binning method,
where each sample is calculated from 10 configurations. From these we create 99 Jack-
knife samples, which are used to treat error propagation consistently within subsequent
analyses. For a brief summary of the method, see section A.5.

4.4 Results and data quality
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Figure 4.7: Dependence of Cuuuu
1 (red) and Cuudd

1 (green) on the insertion time τ for
operator insertions V 0V 0 (a) and A0A0 (b) and the operator separation y = (−3, 4, 3).
We also show the plateau fit, from which the final value of C1 for the given operator
distance is determined.

We conclude this chapter with first results concerning the bare two-current matrix
elements. We restrict ourselves to the current combinations V 4V 4 and A4A4 and the
proton momentum ~p = ~0 . We give an overview of all contributing contractions for each
matrix element.
As described earlier, the C1 graph is calculated for several insertion time slices. The final
result, which depends on the operator distance only, is obtained by a fit over a region
where excited states are assumed to be suppressed, i.e. the time difference between
the insertions and the source or the sink is sufficiently large. Figure 4.7 shows the
dependence on the insertion time τ for the possible flavor combinations in the vector-
vector and axial-axial case. The spatial insertion operator separation is ~y = (−3, 4, 3)a.
In the vector-vector case we can observe a flat platteau in the whole plot region. Excited
states can be assumed to be under control in that case. The signal turns out to be less
smooth in the axial-axial channel. Nevertheless, within the statistical error we cannot
definitely observe a curvature indicating excited states.
The plots also indicate mean value and error band of the constant fit over τ in the
corresponding region, which we have chosen to be τ ∈ [3a, 9a]. This fit result determines
the value of C1(~y ) for each separation ~y . As mentioned earlier, the contractions C2, S1,
S2 and D have been calculated for τ = t/2 only, which is τ = 12a for ~p = ~0 .
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Figure 4.8: Visualization of different kinds of anisotropy effects appearing in the 4pt
data, where we distinguish between different ranges of the angle θ between ~y and the
neighboring diagonal. Here we show the data for the V V channel for the C1 graph for
flavor uu (a), as well as the C2 graph for uu (b) and dd (c), and the S2 graph (d).

From now on we concentrate on the ~y -dependence of the contractions. In the case of zero
momentum, the considered matrix elements are rotational invariant in the continuum,
i.e. they only depend on y = |~y | (for remarks on the notation of the distance, see (A.15)).
On the lattice this symmetry is broken, leading to artifacts in the observed signal. Each
contraction may be affected by that in various manners.
A source of anisotropy is the finite extension of the lattice combined with periodic
boundary conditions. As a consequence, the resulting signal appears to be modified
by mirror charges w.r.t. to the lattice boundary planes. The overlap is stronger for
current separations parallel to the axes, since mirror charges lie closer together in this
case. In panel (a) of Figure 4.8 we show the data of Cuuuu

1 for the V V channel, where
we distinguish the points w.r.t. to the angle θ between the corresponding separation
vector ~y and the neighboring diagonal. We observe that for separations along a lattice
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Figure 4.9: Results for two-current matrix elements for the insertions V 4V 4 (a,c) and
A4A4 (b,d) in dependence of the operator distance y for ~p = ~0 . The data is compared
for the graphs C1, C2 and S2 (a,b), as well as C1 and S1 (c,d) for a specific flavor
combination. q can be both, an up or a down quark.

axis (cos θ = 1/
√

3) the values for the correlator are significantly different from those
obtained for separations close to a lattice diagonal (cos θ > 0.9).
Another anisotropy effect can be seen in those contractions where the two currents are
directly connected by a quark propagator. This is originating from the fact that the
Wilson propagator itself shows some anisotropic behavior, which has been studied in
detail in [108]. In the present study this concerns the contractions C2 and S2. These
effects are visualized in Figure 4.8 (b-d), where we again compare the data points for
lattice sites in the vicinity of a diagonal (red) with the other data points (blue and
green, where green points are those on the axes).
On the basis of this discussion we decide for subsequent analysis steps to take into
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Figure 4.10: Physical sums of contractions for a specific flavor combination according
to (4.28). This is shown for the insertions V 4V 4 (a) and A4A4 (b) in dependence of the
operator distance y. The data includes the graphs C1, C2 and S2.

account only data points at positions ~y that fulfill the condition

cos(θ(~y )) > 0.9 . (4.73)

This cut has been used e.g. in [109] in order to remove the lattice propagator anisotropies.
In the cases where we have a slowly decreasing signal at large distances, this cut will also
remove the effects caused by mirror charges, which we have discussed before. The final
results for the contractions C1, C2, S1 and S2 for different flavor combinations is plotted
in Figure 4.9 for the considered channels V 4V 4 and A4A4. The D graph is not shown,
since it has been found that the spatial correlation of two loops L1 does not yield a clear
signal at the current level of statistics. This is the case for both evaluation methods
we introduced in section 4.3.1. Although we expect this contraction to give at most a
small contribution, this part of our analysis is a source of non-negligible uncertainties.
For all other contractions we find clear signals, which are dominated by the connected
contractions C1 and C2 in the channel V 4V 4. The latter is mostly relevant at smaller
insertion distances. The two disconnected contributions S1 and S2 are compatible with
zero for large ~y . While this is also the case for S1 in the short distance region, we
observe a steep increase of the signal for the S2 contraction. The situation is different,
when considering the two axial vector currents, where one can observe a suppression of
the C2 signal and the flavor combination uu.
We finally show some results on physical matrix elements, i.e. the sum of contrac-
tions needed to obtain a matrix element of operators with definite quark flavor. These
have already been listed in (4.28). The combinations are built taking into account the
data for the graphs C1, C2 and S2, since these contractions yield large contributions,
whereas the signal of S1 is consistent with zero. The corresponding data are shown
in Figure 4.10, again for the two operator combinations V 4V 4 and A4A4. As we will
discover in the following chapter the S2 contribution breaks Lorentz symmetry at small
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distances. Therefore, results containing S2 data should be interpreted with great care
in regions where y is small. In Figure 4.10 we plot the physical matrix elements having
a S2 contribution, i.e. uu and dd, with the S2 data added (light colors), as well as the
result without the S2 contribution. For 〈V 0V 0〉 adding S2 visibly enhances the signal.
This is more drastic in the case of 〈A0A0〉, where without the S2 contribution the signal
is close to zero.
For ud we observe a clear signal for both matrix elements. In the case of 〈V 0V 0〉 we find
also a large contribution of uu, which is steeply increasing at small current distances.
The same holds for dd, where the signal is very small for larger y. In the case of 〈A0A0〉
uu and dd contributions are relatively large at small y if one takes into account the S2
data. Otherwise, the values are small compared to ud.
At this point we want to mention that 〈V 0V 0〉 has already been calculated for the pro-
ton in quenched simulations in the past [88–91]. The first simulations including nf = 2
dynamical fermions have been performed in [92, 93]. In the latter a maximal lattice
extension of 243 × 40 with lattice spacing a = 0.077 fm and parameters corresponding
to a pion mass mπ ≥ 384 MeV have been employed, using around 200 gauge configura-
tions. These studies take into account only one contraction, which corresponds to our
C1-graph for flavor ud. The results obtained therein show a slightly steeper decay of
the signal with increasing distance. This can be explained with the different pion mass.



5 Mellin moments of DPDs
The results we obtained from the lattice in the previous chapter provide access to
quantities related to DPDs. In particular, we are able to resolve their dependence on the
transverse quark distance. As we shall explain in the following, the two-current matrix
elements can be parameterized in terms of invariant functions, which correspond to
Mellin moments of DPDs for certain combinations of quark polarizations. Furthermore,
we are able to study the quark flavor dependence by considering the physical sums of
lattice contractions (4.28). The relative size of polarization effects for DPDs in the
nucleon for a specific quark flavor combination has been investigated in the context
quark models [33, 36].

5.1 Relation to two-current correlations
As we have seen in section 2.4, the definition of a collinear DPD involves a hadronic
matrix element of two light cone operators. Since our calculations on the lattice are
performed in Euclidean spacetime, these matrix elements cannot be computed directly,
because we are not able to access physical time. A common way around this issue is
to consider not the distribution function itself, but its moments w.r.t. the momentum
fractions it depends on. This is frequently used for calculations of PDFs or GPDs. The
same is carried out for DPDs Fab(x1, x2, ζ,y) in this work, where we take into account
the non-forward case ζ 6= 0. We generally define the (n,m)-th Mellin moment as:

M
(n,m)
ab (ζ,y) =

∫ 1

−1
dx1 x

n−1
1

∫ 1

−1
dx2 x

m−1
2 Fab(x1, x2, ζ,y) . (5.1)

Applying this integral to the expression (2.50) and performing n − 1 or m − 1 partial
integration steps in the x1 or x2 integral, respectively, the corresponding Fourier coef-
ficient will fix the light cone distance within the quark bilinears to zero. Hence, the
resulting matrix elements only contain local operators being separated by a vector y:

M
(n,m)
ab (ζ,y) = (p+)1−n−m∑

λ

∫
dy−e−iζp+y− 〈p, λ| On−1

a (y) Om−1
b (0) |p, λ〉

∣∣∣
y+=0

= 2(p+)1−n−m
∫

dy−e−iζp+y−M(n−1,m−1)
ba (p, y)

∣∣∣
y+=0

,

(5.2)

with the local operators being defined as:

Ona (y) := q̄(fa)(y) Γa
(
i
←→
D +

)n
q(fa)(y) . (5.3)
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Notice that for (n,m) = (1, 1) the matrix elements in (5.2) can be identified with those
defined in (4.1)1

M++
V V,qq′ = 4Mqq′ , M++

AA,qq′ = 4M∆q∆q′ ,

Mj++
TV,qq′ = 4Mj

δqq′ , M+j+
V T,qq′ = 4Mj

qδq′ ,

Mj+l+
TT,qq′ = 4Mjl

δqδq′ .

(5.4)

The factors 4 on the r.h.s. of each equation in (5.4) arises from the relative factor 2
between the operator definitions (2.29) and (3.68), respectively. Still the r.h.s. of (5.2)
cannot be computed directly on the lattice because of the non-vanishing light like dis-
tance y−. In order to avoid this problem, we exploit Lorentz symmetry of the appearing
matrix elements. Depending on the Dirac structure and the number of derivatives, each
matrix element carries a certain number of Lorentz indices. On the other hand, there
are at most two Lorentz vectors the quantities in (5.2) depend on, namely y and p.
Thus, we are able to decompose the local matrix elements in terms of these vectors and
invariant functions.
At the moment, we only consider operators that do not contain derivatives, i.e. we focus
on the first Mellin moment in each momentum fraction. At leading twist we have to
take into account three types of operators, namely V µ, Aµ and T µν . Furthermore, we
subtract trace contributions where these are not relevant, which will reduce the com-
plexity of our calculations. For the channels we are interested in, we write the following
decompositions, which have been formulated in [46]:

Mµν
V V,qq′ −

1
4g

µν tr {MV V,qq′} = uµνV V,AAq′q + uµνV V,Bm
2Bq′q + uµνV V,Cm

4Cq′q ,

Mµνρ
TV,qq′ +

2
3gλσg

ρ[µMν]λσ
TV,qq′ = uµνρTV,AmAq′δq + uµνρTV,Bm

3Bq′δq ,

1
2
[
Mµνρσ

TT,qq′ +M
ρσµν
TT,qq′

]
= uµνρσTT,AAδq′δq + uµνρσTT,Bm

2Bδq′δq + uµνρσTT,Cm
2Cδq′δq

+ uµνρσTT,Dm
4Dδq′δq + uµνρσTT,Em

2Eδq′δq ,

(5.5)

where we absorbed tensor expressions involving yµ, pµ and gµν into the Lorentz covariant
variables u, which are listed in section A.3. The decomposition for Mµν

AA,qq′ is exactly
the same as for Mµν

V V,qq′ , which introduces the invariant functions A∆q′∆q, B∆q′∆q and
C∆q′∆q. A decomposition ofMµνρ

TV,qq′ is achieved by interchanging the indices ρ and µν
on the l.h.s. . The functions A, B, etc are Lorentz scalars, i.e. they depend only on
the Lorentz scalars py and y2. If we consider only components contributing to leading

1In contrast to the definition in (4.1) we write flavor indices as subscript to avoid confusions with the
Lorentz index notation.
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twist, we find that the expression (5.5) gives:

M++
V V,qq′(p, y) = 2(p+)2Aq′q(py, y2) ,

M++
AA,qq′(p, y) = 2(p+)2A∆q′∆q(py, y2) ,

Mj++
TV,qq′(p, y) = 2(p+)2yjmAq′δq(py, y2) ,

M+j+
V T,qq′(p, y) = 2(p+)2yjmAδq′q(py, y2) ,

Mj+l+
TT,qq′(p, y) = 2(p+)2

[
δjlAδq′δq(py, y2)− (2yjyl + δjly2)m2Bδq′δq(py, y2)

]
,

(5.6)

i.e. there are six2 independent functions contributing to twist-2 matrix elements. These
functions are referred to as twist-2 functions in the following. Following the nomencla-
ture of [46] the functions A∆q∆q′ and Aδqδq′ are called "spin-spin-correlations", whereas
Aqδq′ , Aδqq′ and Bδqδq′ are named "spin-orbit-correlations".
Comparing with the decompositions of collinear DPDs (2.57) in terms of f(x1, x2, ζ, y

2),
we can identify exactly the same coefficients as in (5.6) if we apply a rotation of the
transverse polarization by 90◦. This is necessary, since the twist-2 operator that cor-
responds to transverse polarization, see (2.29), includes an extra γ5 compared to the
lattice operators (3.68). The γ5 is removed by the aforementioned rotation, which fol-
lows from the identity iσj+γ5 = εjkσk+.
Integrating over the momentum fractions and plugging in the relation (5.2), we find e.g.
for the case of V +V +:∫

dx1

∫
dx2 fqq′(x1, x2, ζ, y

2) =
∫

dx1

∫
dx2 Fqq′(x1, x2, ζ,y)

= (2p+)−1
∫

dy−e−iζp+y−M++
V V,q′q(p, y)

∣∣∣
y+=0

= p+
∫

dy−e−iζp+y−Aqq′(py, y2)

=
∫

d(py) e−iζpyAqq′(py, y2) .

(5.7)

The last step is possible, because in the frame we are working in we have y+ = 0 and
p = 0. Therefore, it holds that py = p+y− and y2 = −y2. The same line of arguments
applies for the remaining channels we are interested in. In total, we obtain a relation
connecting DPD Mellin Moments and the twist-2 functions Aab and Bδqδq′ :

Iab(ζ, y2) =
∫

d(py) e−iζpyAab(py, y2) ,

I tδqδq′(ζ, y2) =
∫

d(py) e−iζpyBδqδq′(py, y2) ,
(5.8)

2if the two quark flavors are equal, there are only five independent twist-2 functions, since Aqδq and
Aδqq are related by exchanging the quark operators.
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where in analogy to (5.1) Iab(ζ, y2) is the (1, 1)-moment of fab(x1, x2, ζ, y
2):

Iab(ζ, y2) =
∫

dx1

∫
dx2 fab(x1, x2, ζ, y

2) ,

I tδqδq′(ζ, y2) =
∫

dx1

∫
dx2 f

t
δqδq′(x1, x2, ζ, y

2) .
(5.9)

The twist-2 functions Aab and Bδqδq′ can be extracted from our lattice data we presented
in chapter 4 if the conditions

y2 < 0 , (py)2 ≤ ~p2~y 2 (5.10)

are fulfilled, which is a consequence of Euclidean spacetime. Furthermore, the region
in the (py, y2)-plane is bounded by the lattice extension and the highest momentum.
Thus, in order to evaluate the integral over py, it is necessary to employ some suitable
model fitting the data. We shall discuss this in detail in section 5.3.

5.2 Twist-2 functions
In the following, we show the lattice data for the twist-2 functions introduced in the
previous section and discuss some physical implications. Furthermore, we calculate the
moment of ζ2 of the corresponding Mellin moments. The obtained results motivate the
model used for fitting the twist-2 functions.
The twist-2 functions Aab andBδqδq′ are obtained by solving the overdetermined equation
system introduced by the decompositions (5.5), where the r.h.s. is represented by the
lattice data we have already shown in section 4.4. We solve this system of equations for
each possible combination of the Lorentz invariants y2 and py by χ2 minimization. The
exact method we used is summarized in section A.6.2.

5.2.1 Data quality and artifacts
Before we present results of physical relevance, we again discuss the data quality and
effects of discrete and finite spacetime. For the moment we consider each contraction
and each momentum separately. We use the notation y = |~y | and p = |~p |, see (A.15).
As for the two-current matrix elements, we recognize the saw-tooth pattern caused by
mirror charges, when approaching current distances close to the lattice boundary. As
an example we show the data of the C1 contraction for Aud for ~p = (0, 0, 0) (py = 0), as
well as ~p = −(1, 1, 1)2π/(La) at py = 1.6. This is plotted in Figure 5.1 panel (a) and
(b), respectively, where we separated the data according to the angle θ of the distance
vector ~y to the lattice diagonal of the corresponding octant. These artifacts are espe-
cially prominent in the data of the C1 contraction, also for ~p 6= ~0 . Similar patterns can
be seen in the C1 data of the twist-2 functions that are not shown in the plots. Fur-
thermore, we observe an anisotropy pattern for each region in y for the twist-2 function
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Figure 5.1: Data for Aqq′ as function of the operator distance ~y , where we distinguish
between different ranges of the angle θ between ~y and the neighboring diagonal.

Bδqδq′ , where the data for ~p = ~0 along the lattice axes appears to be significantly larger
than the data along the diagonals. This pattern vanishes at non-zero momentum, where
the data seems to be consistent with the data close to the diagonals for ~p = ~0 , which is
shown in Figure 5.2.
The second kind of discretization effects, which has been already found for the matrix
elements itself, is the anisotropy of the lattice propagator, which is extreme if the cur-
rent distance is small. These effects are present in the data of contractions where the
two operators are directly connected by a quark propagator, i.e. C2 and S2. Figure 5.1,
panels (c) and (d), shows the data for C2 and Auu at zero momentum for two different
regions in ~y . For the remaining twist-2 functions similar effects are observed.
In Figure 5.5 we present the results for each possible contribution separately, where we
consider the functions Aqq′ and Aδqq′ and ~p = ~0 . We multiply the data of the contrac-
tions C2 and S1 by a factor two, since in physical sums these graphs appear twice. Again
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Figure 5.2: Anisotropy effects being observed for Bδqδq′ . We compare the data for
different momenta and directions w.r.t. to the diagonals.
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Figure 5.3: Comparison of the twist-2 functions obtained from projections which
separately take into account data for p = 0 (red), p = 2

√
3π/(La) (green) and

p = 4
√

3π/(La) (blue)

we observe dominance of the connected diagrams. In both cases C1 is slowly decreasing
with increasing distance. C2 is observed to be large mainly for small y. S2 is close to
zero for large y, but steeply increases, once the distance is smaller than 6a. The data
of S1 (panels (c) and (d)) is consistent with zero in the most cases. For Aqq′ there is a
significant offset, which is small compared to the connected diagrams.
A useful consistency check is the comparison of the data for the twist-2 functions corre-
sponding to different momenta p. Figure 5.3 shows the situation for C1 for the functions
Aqq′ (a) and Aδqq′ (b). While for Aqq′ Lorentz invariance is present within the errors,
there are slight discrepancies in the case of Aδqq′ . A reason of this might be a larger
sensitivity to excited states in this channel combined with the usage of different source-
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Figure 5.4: Same as Figure 5.3 for the C2 contribution to Auu (a), Aδuu (b) and Add
(c), as well as the S2 signal for Aqq (d).

sink separations for ~p = ~0 and ~p 6= ~0 , respectively.
The situation is more complicated for other non-negligible contributions. For C2 the
signals for different momenta are consistent within the errors at almost each distance
y, except for the region y < 5a, which can be observed for both, Aqq′ and Aδqq′ , see
Figure 5.4 (a) and (b), respectively. Discrepancies become large if y < 4a. The signal
for Add (c) seems to be less affected. This is even worse for S2, where the signals clearly
differ in sign for y < 6a, i.e. the region where the order of magnitude becomes compa-
rable to that of the other graphs. For that reason we will not take into account S2 in
physical sums, but keep in mind that there remains an uncertainty for y < 6a.
In the following, we consider combinations corresponding to definite quark flavors in the
operators. We take into account only C1 and C2 contributions. Furthermore, we restrict
ourselves on distances y > 4a, i.e. to a region where we observe a reasonable consistence
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Figure 5.5: Contributions of each graph to the twist-2 functions Aqq′ (a,c) and Aδqq′
(b,d). The panels at the top show the comparison between the graphs C1, C2 and S2,
whereas in the panels at the bottom we compare C1 with S1.

with Lorentz invariance for the considered graphs. In order to reduce the contribution
of discretization artifacts and finite volume effects discussed before, we apply the cut in
the direction of the distance vector ~y according to (4.73).

5.2.2 Physical results for py = 0
In the following, we present results for the twist-2 functions for given flavor combina-
tions. As previously discussed, we take into account the contractions C1 and C2 and
consider current distance vectors for which 4a ≥ y ≥ La and cos θ ≥ 0.9. The twist-2
functions are obtained by solving the system of equations given by the corresponding
expression in (5.5), using the data for each available momentum. The flavor specific



5.2 Twist-2 functions 83

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.00

0.05

0.10

0.15

0.20

A[
fm

2 ]
Aqq′, p y = 0, flavor comparison

uu
ud
dd

4 6 8 10 12 14 16
y[a]

(a) flavor comparison, Aqq′ , py = 0

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.00

0.02

0.04

0.06

0.08

m
y

A[
fm

2 ]

m y A qq′, p y = 0, flavor comparison

uu
ud
dd
du

4 6 8 10 12 14 16
y[a]

(a) flavor comparison, Aδqq′ , py = 0

Figure 5.6: Comparison between the flavor combinations uu, ud and dd for the twist-2
functions Aqq′ (a) and Aδqq′ (b) for py = 0.

contractions are given by (4.28). For the moment we take py = 0 in order to analyze
the y2-dependence.
Figure 5.6 shows the twist-2 functions for all flavor combinations, considering Aqq′ and
Aδqq′ , which correspond to two unpolarized quarks in the first case and in the second
case to the first quark being unpolarized while the second has transverse polarization.
According to the corresponding prefactor in the decomposition (5.5), Aδqq′ is weighted
by the factor my, which allows a consistent comparison to other twist-2 functions. In
the two observed cases we find signals of the same order of magnitude for uu and ud in
the region, where the separation y is large. The dd data is suppressed in this region.
Going to smaller distances, the signal increases for uu and dd. As a consequence the dd
contribution becomes as large as the ud signal.
Let us now take a look at the polarization dependence. In Figure 5.7 we compare for
definite flavor the data for different channels being related to the quark polarization.
Polarization effects are visible in all cases. They are most prominent in the ud case,
also for larger separations. The spin-orbit correlations Aδdu and Aδud yield the largest
polarized contributions. In the case of two polarized quarks we observe a relatively
small but clearly non-vanishing signal. Polarization effects are suppressed for uu and
dd, except for the spin-orbit correlations Aδuu and Aδdd. In the case of dd they are at
least observable for small y.
At this point we want to compare the previously shown results to those for ud in the
π+, which have been obtained in [46]. In this case the situation is quite similar to the
nucleon case. A difference is the opposite sign in all shown channels, which is a conse-
quence of the fact that we have a d̄-quark instead of a d-quark in the π+. The results
for the π+ are also shown in Figure 5.7 (d).
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Figure 5.7: Twist-2 functions for different channels corresponding to a certain quark
polarization. The data is shown for flavor combinations ud (a), uu (b) and dd (c) in the
nucleon at py = 0. We also show the analogue results obtained for ud in the pion (d)
[46].

5.2.3 Modeling the y2-dependence

For further analyses it is advantageous to find a model which sufficiently describes the
dependence of the twist-2 functions on y2. Figure 5.8 shows again the y-dependence of
the data for Aud, Auu, Aδdu and Aδuu, respectively. This is plotted using a logarithmic
scale, which emphasizes the double exponential shapes of the data in most of the cases.
However, a pure double exponential description is not sufficient in some cases, which is
why we take the more general fit ansatz:

A(py = 0, y2) = (η1y)δA1e
−η1(y−y0) + (η2y)δA2e

−η2(y−y0) . (5.11)
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Figure 5.8: Twist-2 functions and the corresponding fit to the double exponential for
Aud (a), Auu (b), Aδdu and Aδuu (d). Each plot has a logarithmic scale at the vertical
axis.

The exponent δ enters the fit not as a free parameter, but is fixed to a certain value.
For Aud and Aδuδd (the latter is not shown in the plots) it turns out that δ = 1.2 is a
suitable choice, whereas in all other channels δ = 0, i.e. the pure double exponential,
is sufficient. Since most of the fits are not sensitive to the region y ≈ 0, where the
exponential is equal to one, which leads to large errors of Ai, we introduce a shift
y0 = 4a in the distance. The fits are performed in three stages: In the first one we fit
only the parameters A1 and η1, taking into account the data for large y, where a single
exponential term sufficiently describes the shape. Depending on the polarization and
flavor this holds for y > ymin > 5a. In the second stage we fit the region 3a ≤ y ≤ 16a
taking into account the parameters A2 and η2, while the parameters A1 and η1 are fixed
to the values obtained in the first stage. In the final stage every parameter is left free,
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channel fit range δ y0[a]
Aud [1a, 16a] 1.2 4
Add [3.5a, 16a] 0 4
A∆d∆d [3.5a, 15a] 0 4
Aδuδd [3a, 16a] 1.2 4
Aδdδd [3.5a, 15a] 0 4
Bδdδd [4a, 15a] 0 4
else [4a, 16a] 0 4

Table 5.1: Summary of the intervals in y for each twist-2 function, where the corre-
sponding final fit has been performed. Furthermore, we list the fixed parameters δ and
y0

where as starting value the results from the last stages are taken. Therein, we mainly
take into account the range 4a ≤ y ≤ 16a. In some cases we take smaller values of
the lower boundaries in order to obtain a stable fit result. In each of these cases we
checked that the corresponding data is not significantly affected by anisotropy effects
or issues regarding Lorentz invariance as discussed in section 5.2.2. The ranges used
for each fit, as well as the parameters δ and y0, are summarized in table 5.1. All fits
are performed taking into account only the diagonal part of the covariance matrix for
stability reasons. In Figure 5.8 we plot also the curves resulting from the final fit stage.
The corresponding values for the fit parameters are summarized in table 5.2.

5.2.4 py-dependence and moments in ζ2

So far we considered the twist-2 functions at py = 0. According to (5.8) the dependence
on py contains crucial information, since it is the Fourier conjugate variable to the non-
forward parameter ζ. Being restricted by the lattice volume and the highest proton
momentum, we are not able to explore the complete region in py. In our simulations
the highest 3-momentum is p = 2π

√
12/(La) and the largest distance y = La

√
3/4.

Therefore, an explicit boundary for py is given by

|py| ≤ 2π
√

12y
La

≤ 6π ≈ 18.85 . (5.12)

Hence, in order to evaluate the Fourier transform, it is necessary to find a model de-
scribing the py dependence appropriately. In (2.53) we already gave constraints for the
support region of skewed DPDs in the (x1, x2, ζ)-space, in particular −1 ≤ ζ ≤ 1. Fur-
thermore, it was pointed out in (2.58) that DPDs have to be even functions in ζ. Within
this background, we start building the model in momentum space by approximating the
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channel A1[fm−2] η1[fm−1] A2[fm−2] η2[fm−1] χ2/dof
Auu 0.026(17) 39(20) 0.1920(99) 2.89(15) 0.37
Aud 0.00037(35) 17.5(3.1) 0.0530(28) 3.52(12) 0.07
Add 0.010(12) 46(47) 0.0573(64) 3.66(36) 0.48
A∆u∆u −0.62(57) 13.7(3.8) 0.61(58) 12.3(2.3) 0.63
A∆u∆d −0.0190(39) 4.86(46) 0.0026(24) 1.30(73) 0.30
A∆d∆d −0.029(61) 14(15) 0.010(61) 4.6(8.2) 0.61
Aδuu 0.0208(46) 21.8(6.9) 0.0211(31) 3.45(25) 0.49
Aδdu −0.0059(27) 6.80(37) 0.0228(23) 3.40(15) 0.20
Aδud −0.0085(27) 6.85(23) 0.0258(26) 3.43(16) 0.25
Aδdd 0.0144(36) 17.7(7.7) 0.0036(26) 3.6(1.1) 0.64
Aδuδu −0.193(99) 9.5(1.3) 0.196(98) 7.5(1.3) 0.74
Aδuδd −0.000033(88) 21(13) −0.00835(65) 3.57(24) 0.16
Aδdδd −0.0027(82) 18(35) 0.0073(81) 3.0(2.3) 1.01
Bδuδu −0.72(99) 15.8(2.9) 0.72(99) 15.7(3.0) 1.01
Bδuδd −0.00074(71) 7.9(2.1) 0.00253(56) 4.13(23) 0.07
Bδdδd 0.73(41) 16.9(1.5) −0.73(41) 17.0(1.5) 0.72

Table 5.2: Parameters of the double exponential obtained from a fit on the twist-2
functions for each channel. We also list the corresponding χ2/dof in the right column.

DPD Mellin moments by an even polynomial in ζ for |ζ| ≤ 1:

I(ζ, y2) = π
N∑
n=0

an(y2) ζ2n Θ(1− ζ2) . (5.13)

Expressions for the twist-2 functions can be obtained by executing the inverse Fourier
transform, which yields:

A(py, y2) =
N∑
n=0

an(y2)hn(py) , (5.14)

where each of the hn corresponds to a term in the polynomial in momentum space.
They can be defined as:

hn(x) := 1
2

∫ 1

−1
dζeixζζ2n = sin(x)sn(x) + cos(x)cn(x) , (5.15)
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Figure 5.9: The py-dependence of the twist-2 functions, where we show the data within
a band around a specific distance (y±0.5a). In each plot we present the curves resulting
from a fit of these data points on the hn series, taking into account N = 2, 3 non-trivial
terms. In the panels (a) and (b) we plot this for Aud for the distance 10a and 12a,
respectively. Furthermore, we show the same for the distance 10a for Auu (c) and Aδdu
(d).

with

sn(x) =
n∑

m=0

(2n)!(−1)m
(2n− 2m)!x1+2m ,

cn(x) =
n−1∑
m=0

(2n)!(−1)m
(2n− 2m− 1)!x2+2m .

(5.16)



5.2 Twist-2 functions 89

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2
 

2  for Iud, N = 2

global fit: constant
global fit: constant+linear
local fit

4 6 8 10 12 14 16
y[a]

(a) 〈ζ2〉 for Iud, N = 2

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2
 

2  for Iud, N = 3

global fit: constant
local fit

4 6 8 10 12 14 16
y[a]

(b) 〈ζ2〉 for Iud, N = 3

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4
 

4  for Iud, N = 2

global fit: constant
global fit: constant+linear
local fit

4 6 8 10 12 14 16
y[a]

(c) 〈ζ4〉 for Iud, N = 2

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4
 

4  for Iud, N = 3

global fit: constant
local fit

4 6 8 10 12 14 16
y[a]

(d) 〈ζ4〉 for Iud, N = 3

Figure 5.10: Moments of ζ in Iud obtained from a fit on the corresponding twist-2
function data using N = 2 (left) or N = 3 (right) non-trivial terms in the hn series. (a)
and (b) show this for the second moment, whereas in (c) and (d) the fourth moment is
plotted. Each panel shows the local fits (red), where only data within the band y±0.5a
are taken into account, as well as global fits using the fit ansatz (5.25) for K = 0 (dark
blue) and K = 1 (light blue).

Further properties of the functions hn(x) are listed in section A.4. To determine the
coefficients an(y2) of this ansatz we consider the normalized twist-2 functions Â(py, y2):

Â(py, y2) := A(py, y2)
A(0, y2) =

N∑
n=0

ân(y2) hn(py) , (5.17)

with the normalized coefficient ân, which is defined by:

ân(y2) = an(y2)
A(0, y2) . (5.18)
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Figure 5.11: Same as Figure 5.10 for N = 2. This is shown for the second (left) and
fourth (right) moment of ζ in Iuu (a) or (c) and Iδdu (b) or (d), respectively

In py-space the coefficients ân have no direct meaning. However, we can define a linear
transform to express the series in terms of 2m-th derivative in py at py = 0. Here we
exploit the relation between the 2m-th derivative of hn and hn+m, see (A.33):

(−1)m ∂2mÂ(py, y2)
∂(py)2m

∣∣∣∣∣
py=0

=
N∑
n=0

ân(y2)hn+m(0) =
N∑
n=0

Tmnân(y2) , (5.19)

where the transformation matrix T reads:

Tmn := hn+m(0) = 1
1 + 2(n+m) . (5.20)
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Figure 5.12: Same as Figure 5.10 for N = 2 and I tδuδd. This is shown for the second
(left) and fourth (right) moment of ζ, respectively

The derivatives (5.19) are directly related to moments of ζ of the non-forward DPD
Mellin moments I(ζ, y2):

〈ζ2m〉(y2) :=
∫ 1
−1 dζ ζ2mI(ζ, y2)∫ 1
−1 dζ I(ζ, y2)

= (−1)m ∂2mÂ(py, y2)
∂(py)2m

∣∣∣∣∣
py=0

. (5.21)

The last equality in (5.21) is obtained by considering
∫ 1
−1 dζ eiζpyζ2mI(ζ, y2) at py = 0

instead of the integral in the denominator. Subsequently, ζ2m is replaced by the 2m-th
derivative in py via partial integration. Â can be expressed as:

Â(py, y2) =
N∑

n,m=0

(
T−1

)
nm
hn(py)〈ζ2m〉(y2) , (5.22)

i.e. the py dependence is parameterized by the moments in ζ, such that â can be written
as:

ân(y2) =
N∑
m=0

(
T−1

)
nm
〈ζ2m〉(y2) . (5.23)

Notice that the first non-trivial moment is the second one, since Â(py = 0, y2) ≡ 1 by
definition.
We use the expression (5.22) as ansatz to fit the py-dependence. This is carried out
for selected distances y0. For each distance we take into account all data points within
the region y0 − 0.5a ≤ y ≤ y0 + 0.5a, assuming that changes of the data within this
region are negligible. Moreover, the fits are performed taking N = 2, 3 non-trivial
terms in the hn series. Since the fit ansatz (5.22) is linear in the fit parameters 〈ζ2m〉,
it is possible to perform the fit by directly solving the corresponding overdetermined
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system of equations, see section A.6.2. Like for the double-exponential fits we previously
discussed, only diagonal entries of the covariance matrix are taken into account. The
resulting curves in the py-plane for selected y are plotted in Figure 5.9, where we show
as examples fits for Auu and Aud and Aδdu. For each value of N the corresponding
fit yields a reasonable description of the data. However, it is observed that for large
values of N the fit becomes sensitive to fluctuations at large py, see e.g. (a) and (d).
This increases the statistical error of the final result and might be a first indication of
overfitting.
Difficulties are encountered if the signal is very small or comparable with zero, such
that the data is dominated by fluctuations. In particular, this affects the data for uu
and dd if we consider channels where both quarks are polarized. Therefore, a reliable
determination of the Mellin moments or their moments in ζ2 is not feasible for A∆q∆q′ ,
Bδuδu and the polarized channels for flavor dd. In the physical discussion in section 5.4
these "bad" channels will not be considered for this reason.
From the fits we directly obtain the values of 〈ζ2n〉 for the corresponding DPD Mellin
moments. We show their y-dependence for some selected channels in Figure 5.10 and
Figure 5.11. It is observed that the moments of ζ are very small (〈ζ2n〉 < 0.25) and in
almost all cases are sufficiently described by a linear function in y. In most channels the
moments do not depend on y at all. An exception is found for uu at small y, where the
data tends to increase. We want to remind ourselves that in this region deviations from
Lorentz invariance have been found in the data of the corresponding twist-2 functions,
which might skew the py-dependence and therefore cause these effects. The results that
are not shown in the plots look similar. In the case of Aδuδu we observe very large error
bands.
The behavior of the moments in ζ is quite different than for the pion, where the moments
have been found to be significantly larger, clearly showing a linear dependence on y [46].

5.3 Extraction of Mellin moments
So far we have investigated separately the dependence on y2 and, for each distance, on
py. Building on these results we shall now construct a combined model to describe the
twist-2 functions.

5.3.1 The model

The dependence on y has been found to be consistent with a double exponential. Fur-
thermore, from symmetry arguments and constraints on the support region of the skewed
DPDs we established an ansatz in terms of the functions hn, which describes the py-
dependence of the twist-2 functions very well. From the results for the moments in ζ
obtained in the last section we can conclude that for the most cases these are nearly
constant with increasing distance y. Some channels require an extra linear term in y,
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which is also included in our global fit ansatz:

〈ζ2m〉(y2) =
K=1∑
k=0

cmk(y)k , (5.24)

where c00 ≡ 1 and c01 ≡ 0, since Â(py = 0, y2) ≡ 1 by definition. Here and in the
following we denote (y)k = √−yµyµk, see also (A.16). The complete ansatz reads:

A(py, y2) =
∑
i=1,2

Aie
−ηi(y−y0)

N∑
n,m=0

K∑
k=0

(
T−1

)
nm
cmk (y)k+δ ηδi hn(py) . (5.25)

In the following section, we discuss the corresponding fits and show results for the
parameters cmk being obtained from a global fit.

5.3.2 Results

N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
Auu 2 0 0.093(55) - 0.032(53) - - 0.96

1 0.102(98) −0.00(12) 0.11(12) −0.08(14) - 0.95
3 0 0.104(66) - 0.056(76) - 0.059(88) 0.96

Aud 2 0 0.097(51) - 0.058(49) - - 0.47
1 0.067(77) 0.036(84) 0.06(11) 0.006(97) - 0.46

3 0 0.092(58) - 0.046(63) - 0.038(69) 0.46
Add 2 0 −0.029(99) - −0.13(12) - - 0.93

1 −0.03(27) 0.02(34) −0.03(34) −0.10(42) - 0.93
3 0 0.05(10) - 0.03(13) - 0.10(17) 0.92

Table 5.3: Summary of the fit results for the parameters cmk. The results for each fit
are listed for Aqq′ considering all flavor combinations uu, ud and dd. We have taken
into account (N,K) = (2, 0), (2, 1), (3, 0).

For each channel and flavor combination we perform a global fit on the corresponding
twist-2 function data, using the ansatz (5.25). For the parameters describing the double
exponential we reuse the results obtained in section 5.2.3, see table 5.2. These are also
employed to obtain the normalized twist-2 functions Â.
The fit technique is the same as for the local fits we presented before. We take into
account each data point for which 4a < y < 16a. Notice that there is linearly increasing
number of data points for increasing y, which is why the region of large quark distances
might be overrepresented in the determination of the y-dependence.
We perform three different fits: Two fits assuming only a constant value of the ζ mo-
ments for all distances. Here we consider N = 2, 3 non-trivial terms in the hn series.
Furthermore, we make an additional fit allowing also a linear term in y, where we choose
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Figure 5.13: Same as Figure 5.9, but here we show slices of the global fit, where the
ansatz (5.14) with K = 0 has been used.

N = 2. N = 3 is not considered in this case, since this ansatz has been found to overfit
the data.
The results for the fit parameters cmk are shown in table 5.3 to table 5.7. Furthermore,
we show for some selected channels the resulting curves in the py-plane for specific y
in Figure 5.13. The values of the moments in ζ depending on y can be found in com-
parison to the corresponding results from the local fits in Figure 5.10 and Figure 5.11.
It is often the case that the linear curve only weakly differs from that of the constant
fit. In few cases, taking into account the linear term yields better congruence with the
data. An example is given in Figure 5.12, which shows the local and global fits for I tδuδd.
Here the global fit with K = 1 seems to yield a better overlap with the data points,
the corresponding value for χ2/dof is barely smaller compared to that for K = 0. The
corresponding fit to a constant still covers the data points within the error bars. In
the case of all other channels than I tδuδd the linear term turns out to be less important
or completely unnecessary. The results for K = 1 have to be treated carefully: The
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N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
A∆u∆u 2 0 −0.36(87) - −0.8(1.3) - - 0.24

1 −0.3(3.2) 0.4(6.8) 1.6(4.6) −3.6(9.2) - 0.24
3 0 0.21(90) - 0.9(1.7) - 2.4(3.3) 0.24

A∆u∆d 2 0 0.15(42) - 0.07(62) - - 0.17
1 0.26(96) −0.2(1.5) 0.2(1.2) −0.2(1.5) - 0.17

3 0 0.09(49) - −0.10(84) - −0.2(1.2) 0.17
A∆d∆d 2 0 0.4(1.3) - 0.2(1.5) - - 0.12

1 1.3(2.6) −1.4(5.1) 1.7(4.0) −2.0(6.4) - 0.12
3 0 0.6(1.2) - 0.7(2.0) - 0.8(3.0) 0.12

Table 5.4: Same as table 5.3, but for the twist-2 function A∆q∆q′ .

N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
Aδuu 2 0 0.126(82) - 0.080(84) - - 0.98

1 −0.14(24) 0.29(24) −0.25(31) 0.36(31) - 0.97
3 0 0.137(85) - 0.102(97) - 0.11(11) 0.98

Aδdu 2 0 0.044(49) - 0.002(48) - - 1.02
1 0.14(11) −0.09(11) 0.23(14) −0.21(13) - 0.95

3 0 0.017(54) - −0.056(60) - −0.086(67) 0.91
Aδud 2 0 0.106(49) - 0.048(49) - - 1.06

1 0.013(99) 0.099(96) −0.02(11) 0.077(99) - 1.03
3 0 0.123(54) - 0.085(60) - 0.095(66) 1.01

Aδdd 2 0 −0.36(26) - −0.51(28) - - 0.76
1 −0.70(61) 0.49(67) −0.52(83) 0.15(85) - 0.75

3 0 −0.31(31) - −0.42(42) - −0.38(53) 0.76

Table 5.5: Same as table 5.3, but for the twist-2 function Aδqq′ .

obtained values of the moments are close to zero, so that the linear term often causes
negative values in a wide range of y. This is e.g. the case for 〈ζ2〉 or 〈ζ4〉 in I tδuδd in the
region y < 0.8 fm or y < 1.1 fm, respectively, see Figure 5.12. However, negative values
for even moments of ζ are mathematically not allowed.
Finally, we are able to calculate the DPD Mellin moments from the parameters Ai, ηi
and cmk. Combining (5.11), (5.18), (5.23) and the ansatz for I(ζ, y2) (5.13) we find

Iqq′(ζ, y2) = π
∑
i=1,2

Aie
−ηi(y−y0)

N∑
n,m=0

K∑
k=0

ζ2n
(
T−1

)
nm
cmk (y)k+δ ηδi Θ(1− ζ2) . (5.26)

Since the results naturally have a strong model dependence, a useful check of the reli-
ability is the comparison of the results obtained from different models. The results for
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N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
Aδuδu 2 0 0.18(29) - 0.37(33) - - 0.58

1 −0.2(1.1) 0.6(1.7) 0.2(1.5) 0.4(2.2) - 0.58
3 0 0.45(38) - 1.01(68) - 1.5(1.0) 0.58

Aδuδd 2 0 0.057(87) - 0.024(95) - - 0.80
1 0.04(19) 0.01(21) −0.15(22) 0.15(22) - 0.78

3 0 0.085(93) - 0.08(11) - 0.12(13) 0.78
Aδdδd 2 0 0.38(49) - 0.35(56) - - 0.47

1 −0.1(1.5) 0.7(1.8) 0.1(1.9) 0.4(2.2) - 0.47
3 0 0.69(62) - 0.96(95) - 1.2(1.3) 0.46

Table 5.6: Same as table 5.3, but for the twist-2 function Aδqδq′ .

N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
Bδuδu 2 0 0.5(1.0) - 0.5(1.5) - - 0.25

1 5.2(4.4) −7.7(7.8) 11.4(8.1) −18(14) - 0.25
3 0 1.6(1.3) - 3.9(2.6) - 6.9(4.6) 0.25

Bδuδd 2 0 0.068(78) - −0.012(72) - - 0.71
1 −0.30(19) 0.37(20) −0.45(27) 0.42(26) - 0.66

3 0 0.080(92) - 0.01(10) - 0.01(12) 0.70
Bδdδd 2 0 −0.4(1.3) - −0.7(2.0) - - 0.20

1 6(12) −11(23) 13(20) −23(35) - 0.20
3 0 1.3(1.6) - 4.3(5.4) - 9(11) 0.20

Table 5.7: Same as table 5.3, but for the twist-2 function Bδqδq′ .

selected polarizations and flavor combinations are shown in Figure 5.14 for the three
different fits at ζ = 0. In the shown cases one can observe a reasonable agreement
between the resulting curves within the error bands. Small deviations can be seen e.g.
in the results for Iuu, see panel (c). In all cases, except for the "bad" channels, which we
figured out in section 5.2.4, we observe a similar agreement of the curves or deviations
which are at most of the relative size observed for Iuu. In particular, we find congruence
of the curves in channels where the moments of ζ seemed to require K 6= 0, as it was
the case for I tδuδd. The corresponding results are plotted in panel (b) of Figure 5.14.
For the physical discussion in the following section we mainly consider the results ob-
tained for N = 2 and K = 0. As previously discussed, a constant y-dependence of the
ζ-moments sufficiently describes the data and, moreover, the results for other choices of
N and K agree within the error bands.
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Figure 5.14: Comparison of results for DPD Mellin moments obtained from the fits
with (N,K) = (2, 0), (2, 1), (3, 0) for selected channels.

5.4 Discussion

The first aspect of physical relevance we want to look at is the dependence on the quark
flavor. The corresponding results for ζ = 0, i.e. the forward case, which is relevant for
the DPS cross section, is shown in Figure 5.15 for the moments Iqq′ and Iδqq′ . Again
we see dominance of uu and ud for large transverse current separations. At small y the
curves of uu and dd show a steeper increase than the ud curve.
An interesting observation is the fundamentally different behavior of the curves for dif-
ferent flavor combinations, e.g. Iuu and Iud. Naive factorization hypotheses, like the
pocket formula, require functions encoding the transverse structure of parton correla-
tions to be universal, i.e. flavor independent. This is in contradiction to our results.
We discuss next the dependence on the quark polarization for a given flavor combina-
tion. The corresponding results are plotted in Figure 5.16, where we also show again the
data of the twist-2 functions at py = 0. The results for the twist-2 functions, as well as
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Figure 5.15: Comparison between different flavor combinations for the DPD Mellin
moments Iqq′ (a) and Iδqq′ (b) for ζ = 0. In the latter dd is not shown due to the fit
quality. In order to emphasize the different behavior for each quark flavor, we use a
logarithmic scale at the vertical axis.

the corresponding Mellin moments, show clear polarization effects for ud. In particular,
Iδud and Iδdu are quite large. These results are very similar to those obtained for the
pion in [46], which are shown in Figure 5.17. For uu the result for moments involving
at least one polarized quark is observed to be relatively small compared to the curve
for unpolarized quarks.
As already mentioned, we do not show the Mellin moments for two longitudinally po-
larized quarks, since a reliable determination was not possible. However, the size of
the corresponding twist-2 functions is much smaller than those obtained for the other
polarizations. This might indicate that the Mellin moments themselves are also small.
In section 2.1 we gave a SU(2) × SU(3)-symmetric expression for the spin-flavor part
of the proton wave function (2.5). From this, relations for the ratios of DPDs and the
corresponding Mellin moments can be derived. In particular, one finds for spin-spin
correlations:

f∆u∆u

fuu
= 1

3 ,
f∆u∆d

fud
= −2

3 ,

fδuδu
fuu

= 1
3 ,

fδuδd
fud

= −2
3 .

(5.27)

In general the results we obtained for spin-spin correlations, and, as far as available,
for the corresponding Mellin moments, are relatively small compared to the unpolarized
channels. For quark flavor ud the factor −2/3 is neither realized in the twist-2 functions
nor in the Mellin moments. Merely the negative sign in the spin-spin correlations can be
observed. Moreover, A∆u∆d and Aδuδd are not equal as predicted by (5.27). Considering
flavor uu, we also observe a very small signal for the spin-spin correlations A∆u∆u and
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Figure 5.16: DPD Mellin moments for different quark polarizations. The data is shown
for flavor combinations ud (a) and uu (c) at ζ = 0 for N = 2 and K = 0. Panels (b)
and (d) show again the corresponding twist-2 functions.

Aδuδu, which is barely above zero. The factor 1/3 given by (5.27) is generally not
observed, however the size of Iδuδu/Iuu in the region y ≈ 6a might coincide with 1/3.
The results we obtained for ud in the nucleon are very similar to those which have been
found for the corresponding channels in the pion, which is plotted in Figure 5.17 [46].
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Figure 5.17: Same as Figure 5.16 for ud in the pion π+ obtained in [46]

5.5 The number sum rule for DPDs
We want to conclude the analysis regarding DPD Mellin moments by investigating the
consistency with the DPD number sum rule (2.62). We consider the DPD for one u-
quark and one d-quark in a proton, where NuNd = 2. In contrast to (2.62) the leading
splitting contribution is of order O(α2

s(µ)), since the two quark flavors are different.
After integrating over the two momentum fractions, the sum rule becomes:∫ 1

−1
dx1

∫ 1

−1
dx2

∫
b0/µ

d2y Fud(x1, x2,y;µ) = 2 +O(α2
s(µ)) +O((b0Λ/µ)2) . (5.28)

Notice that the l.h.s. of (5.28) is equivalent to an integral over y on the l.h.s. of (5.8).
Hence, we can formulate the sum rule in terms of the twist-2 functions we have already
calculated. Up to the corrections in α2

s and (b0Λ/µ)2 this is:∫
b0/µ

d2y
∫

d(py) Aud(py, y2) = 2 . (5.29)

In the following, we use again the short notation y = |y|. Using the ansatz (5.25) the
py-integral on the l.h.s. of (5.29) turns into:
∫

d(py) Aud(py, y2) = π
∑
i,n,k

Ai e
−ηi(y−y0)

(
T−1c

)
nk

(y)k+δηδi

∫ d(py)
π

hn(py)

= π
∑
i,k

Ai e
−ηi(y−y0)

(
T−1c

)
0k

(y)k+δηδi .
(5.30)

The integration over py translates the hn back into their Fourier transform at ζ = 0,
which is non-zero, only if n = 0. Therefore, in the last line of (5.30) only the first
term in the n-series remains. Using the expression above and polar coordinates, the
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y-integral in the l.h.s of (5.29) becomes:

2π2∑
i,k

Ai e
ηiy0

(
T−1c

)
0k
ηδi

∫ ∞
b0/µ

dy e−ηiy(y)k+1+δ

= 2π2∑
i,k

Ai e
ηiy0 (T−1c)0k
ηk+2
i

Γ(2 + k + δ, ηib0/µ) .
(5.31)

In the present study, where we work at a renormalization scale µ = 2 GeV, the cutoff
has the explicit value b0/µ = 0.11 fm. Putting everything together, the sum rule in
terms of the fit parameters reads:

2π2 ∑
i,k,m

(
T−1

)
0j

Ai e
ηiy0 cmk

ηk+2
i

Γ(2 + k + δ, ηib0/µ) != 2 . (5.32)

We perform the calculation of (5.32) for each fit we have presented in section 5.3. The
corresponding numbers are summarized in table 5.8. For each fit, we obtain numbers

N K χ2/dof integral
2 0 0.47 1.93(23)
3 0 0.46 2.07(51)
2 1 0.46 1.98(24)

Table 5.8: The values of (5.32) which are calculated using the fit parameters resulting
from fits for (N,K) = (2, 0), (3, 0), (2, 1). We also list the corresponding χ2/dof again.

close to the value predicted by the sum rule, where the absolute deviation of the mean
value is at most 0.07. The statistical error is 12% to 25%, i.e. larger than the systematic
error introduced by the choice of the model. In order to estimate the sensitivity to
extrapolations in y, we vary the integration boundaries: Increasing the lower boundary
to 2b0/µ decreases the results by 5% w.r.t. to the values given in table 5.8. Decreasing
the upper boundary to 16a = 1.37 fm yields values that are at most 16% smaller. Hence,
the uncertainty from the extrapolation in y can be thought of having roughly the same
relative size as the statistical error.
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6 Factorization of two-current
correlations

Two-current matrix elements and thus DPDs contain important information of correla-
tions between quarks in a hadron, which influences the signal in DPS events. Concerning
the cross section, quark correlations are often taken into account in a simplified manner
or completely neglected, since they are hard to determine theoretically or in experiment.
As an example we refer again to the pocket formula (1.3), which we already discussed
in chapter 1. These factorization assumptions are known to fail in quark model calcu-
lations, in particular for the case of polarized quarks [34, 36, 37].
In the following, we want to investigate the strength of quark-quark correlations ob-
tained from our lattice calculations. In order to do so, we compare our results for the
two-current correlations and the corresponding twist-2 functions to their factorized ana-
logue. The corresponding expressions are derived by inserting a complete set of states
and assuming that only the nucleon state contributes. We obtain a convolution of nu-
cleon form factors (FFs), which are also obtained by lattice calculations. Details on the
corresponding simulations can be found in [110].
Analogue investigations have been made in the past for the pion [45, 46], where visible
discrepancies have been found. Similar results have been obtained in recent quark model
studies [111].

6.1 Factorization approaches

Within this work, we want to investigate two quantities involving two currents, first,
the correlation function of local currents in an unpolarized proton, which has been
evaluated in chapter 4, and second, the unpolarized proton matrix element of two light
cone currents. As we have discussed in chapter 5, the latter is related to Mellin moments
of (skewed) DPDs and furthermore to the twist-2 functions we have calculated.

6.1.1 Factorization of skewed DPDs

For this kind of factorization we consider the matrix element appearing in (2.50) and
insert a complete set of states between the two currents. If the resulting expression is
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Figure 6.1: Support regions in the (x1, x2)-plane for different values of ζ of the DPD
F (x1, x2, ζ,y) (blue line) compared to that of the factorized expression on the r.h.s. of
(6.4) (red dashed line).
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Figure 6.2: Visualization of the factorization of the DPD Fqq′ in terms of the GPD
matrix elements fλλ′ . The r.h.s. represents the expression obtained after the insertion
of a complete set of states in the matrix element 〈p, λ| OqOq′ |p, λ〉, which will be used if
ζ ≥ 0. For ζ ≤ 0 we employ the analogue expression obtained from a factorized matrix
element where the operators have been commuted. This is shown on the l.h.s.

dominated by nucleon states, we can write:∑
λ

〈p, λ| Oa(z1, y) Ob(z2, 0) |p, λ〉 ≈

≈
∑
λ,λ′

∫ dp′+d2p′

2p′+(2π)3 e
−iy(p′−p) 〈p, λ| Oa(z1, 0) |p′, λ′〉 〈p′, λ′| Ob(z2, 0) |p, λ〉 .

(6.1)

Considering the DPD in momentum space (2.51), we have to integrate over y and y−.
A subsequent integration over p′ leads to the following assignment:

p′+ = (1− ζ)p+ , p′ = p− r . (6.2)
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In order to express everything on the r.h.s. in terms of GPDmatrix elements fλλ′(x̄, ξ, r),
we identify for p = 0:

x̄i = xi

1− ζ
2
, ξ = ζ

ζ − 2 ,

t(ζ, r2) := −ζ
2m2 + r2

1− ζ , −p′ = r .

(6.3)

Replacing the matrix element in (2.50) by our ansatz (6.1) and using the variables (6.3),
we find for the DPD in momentum space (2.51):

Fab(x1, x2, ζ, r
2) ≈ 1

2(1− ζ)

 ∏
i=1,2

∫ dz−i
2π eixip

+z−i


×
∑
λλ′
〈p, λ| Oa(z1, 0) |(1− ζ)p+,p− r, λ′〉 〈(1− ζ)p+,p− r, λ′| Ob(z2, 0) |p, λ〉

= 1
2(1− ζ)

∑
λλ′

fλλ
′

a (x̄1, ξ, r)fλ′λb (x̄2,−ξ,−r) .

(6.4)

Within this context we want to analyze the DPDs Fqq′ and F∆q∆q′ . Using the decom-
position (2.44) with (2.45), one finds for the sum in the last line of (6.4)

1
2
∑
λλ′

fλλ
′

q (x1, ξ, r)fλ′λq′ (x2,−ξ,−r) = (1− ξ2)Hq(x1, ξ, t)Hq′(x2,−ξ, t)

− ξ2Hq(x1, ξ, t)Eq′(x2,−ξ, t)− ξ2Eq(x1, ξ, t)Hq′(x2,−ξ, t)

+
(

ξ4

1− ξ2 + 1− ξ
1 + ξ

r2

4m2

)
Eq(x1, ξ, t)Eq′(x2,−ξ, t) ,

1
2
∑
λλ′

fλλ
′

∆q (x1, ξ, r)fλ′λ∆q′(x2,−ξ,−r) = (1− ξ2)H̃q(x1, ξ, t)H̃q′(x2,−ξ, t)

− ξ2H̃q(x1, ξ, t)Ẽq′(x2,−ξ, t)− ξ2Ẽq(x1, ξ, t)H̃q′(x2,−ξ, t)

+
(

ξ4

1− ξ2 + 1− ξ
1 + ξ

ξ2 r2

4m2

)
Ẽq(x1, ξ, t)Ẽq′(x2,−ξ, t) .

(6.5)

Before we continue we have to discuss the following issue: The support regions in the
(x1, x2)-plane are not identical on both sides of the equation. On the r.h.s. the support
region is given by −1 + ζ/2 ≤ xi ≤ 1 − ζ/2, which exceeds the constraints given by
(2.53) in almost every case, see Figure 6.1. The only exception is found for ζ = 1. The
mismatch is even larger for ζ < 0. Hence, we consider the factorization assumption to
be suitable only for ζ ≥ 0. However, we are able to derive an alternative factorized
expression by commuting the two operators on the l.h.s. of (6.1). Performing the same
steps again, we arrive at a similar formula as (6.4), where ζ has been replaced by −ζ
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on the r.h.s.

Fab(x1, x2, ζ, r
2) ≈ 1

2(1 + ζ)
∑
λλ′

fλλ
′

b (x̄′2, ξ′, r)fλ′λa (x̄′1,−ξ′,−r) ,

ξ′ = ζ

2 + ζ
, x̄′i = xi

1 + ζ
2
.

(6.6)

In the following, we will consider (6.4) if ζ ≥ 0 and (6.6) if ζ ≤ 0. Taking Mellin
moments on both sides we obtain for ζ ≥ 0:

Iab(ζ, r2) =
(1− ζ

2)2

2(1− ζ)

∫
dx1

∫
dx2

∑
λλ′

fλλ
′

a (x1, ξ, r)fλ′λb (x2,−ξ,−r) . (6.7)

After a Fourier transform we find through the relation (5.8)
∫

d(py)e−iζpyAab(py, y2) =
∫ d2r

(2π)2 e
−iryIab(ζ, r2) , (6.8)

with the twist-2 function Aab(py, y2) defined in (5.5), which we calculated on the lattice.
By inverting the Fourier transform on the l.h.s. we are able to express the twist-2
function Aab for py = 0 in terms of the factorized DPD Mellin moment (6.7). Again,
we define y = |y| and r = |r|:

Aab(py = 0, y2) =: Aab(y2) = 1
4π2

∫ 1

−1
dζ
∫

dr r J0(yr) Iab(ζ, r2) . (6.9)

Combining everything, the first test can be formulated as:

Aab(y2) ?= 1
4π2

∫ 1

0
dζ

(1− ζ
2)2

2(1− ζ)

∫
dr r J0(yr)

∑
λλ′

∫
dx1

∫
dx2

×
[
fλλ

′

a (x1, ξ, t, r)fλ′λb (x2,−ξ, t,−r) + fλλ
′

b (x2, ξ, t, r)fλ′λa (x1,−ξ, t,−r)
]
,

(6.10)

where the second term in the last line of (6.10) represents the contribution for ζ < 0. For
the cases Aqq′ and A∆q∆q′ we can now give an explicit formulation of the factorization
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test. Starting from (6.10) and inserting the spin sum (6.5), we find:

Aqq′(y2) ?= 1
2π2

∫ 1

0
dζ

(1− ζ
2)2

1− ζ

∫
dr r J0(yr)×

×
[
Z1(ζ)F q

1 (t)F q′

1 (t)− Z2(ζ)
(
F q

1 (t)F q′

2 (t) + F q′

1 (t)F q
2 (t)

)
+
(
Z3(ζ) + Z4(ζ) r2

4m2

)
F q

2 (t)F q′

2 (t)
]
,

A∆q∆q′(y2) ?= 1
2π2

∫ 1

0
dζ

(1− ζ
2)2

1− ζ

∫
dr r J0(yr)×

×
[
Z1(ζ)gqA(t)gq

′

A(t)− Z2(ζ)
(
gqA(t)gq

′

P (t) + gq
′

A(t)gqP (t)
)

+
(
Z3(ζ) + Z5(ζ) r2

4m2

)
gqP (t)gq

′

P (t)
]
,

(6.11)

with

Z1(ζ) := 1− Z2(ζ) , Z2(ζ) := ζ2

(2− ζ)2 , Z3(ζ) := (Z2(ζ))2

Z1(ζ) ,

Z4(ζ) := 1
1− ζ , Z5(ζ) :=Z2(ζ)Z4(ζ) ,

(6.12)

and the nucleon form factors F1, F2, gA and gP defined by (2.43), which are identified
with the first Mellin moments of H, E, H̃ and Ẽ by (2.46).
For the case ζ = 0 the expressions in (6.5) have already been derived in [55], see
equations (4.48) and (4.49) therein.

6.1.2 Factorization of local matrix elements

The second possibility is to insert the complete set of states in a local matrix element:

Mij
qq′(p, y) ≈ 1

2
∑
λλ′

∫ d3~r

(2π)32E~r
ei~y (~r−~p) 〈p, λ| Oqi (0) |r, λ′〉 〈r, λ′| Oq

′

j (0) |p, λ〉 , (6.13)

with E~r =
√
m2 + ~r 2. The one-current matrix elements appearing in the expression

above can be decomposed in terms of spinors. The decomposition depends on the
specific insertion type, see (2.43):

〈p, λ| Oqi (0) |r, λ′〉 = ūλ(p)J [Oi]uλ
′(r) . (6.14)



108 6 Factorization of two-current correlations

Exploiting the completeness of the spinor solutions (2.8), the factorized matrix element
reads (again we have to consider y0 = 0):

Mij
qq′(p, y) ≈ 1

4

∫ d3~r

(2π)3E~r
ei~y (~r−~p) tr

{
(p/−m)J [Oqi ](r/−m)J [Oq

′

j ]
}

=: 1
4

∫ d3~r

(2π)3E~r
ei~y (~r−~p)J ij

qq′(p, r) ,
(6.15)

Let us now consider the case, where ~p = ~0 and each appearing Lorentz index is set to
zero. In this case all expressions have to be rotational invariant, which implies:

Mij
qq′(p, y)→Mij

qq′(~y 2) , J ij
qq′(p, r)→ J

ij
qq′(~r 2) . (6.16)

This enables us to execute the angular parts of the ~r integral in (6.15). In the following
we denote y = |~y | and r = |~r |:

Mij
qq′(~y 2) ≈ 1

8π2

∫
drr sin(yr)

Ery
J ij
qq′(~r 2) . (6.17)

Again we give some explicit formulae for the vector and the axial vector case. The
corresponding spinor decompositions are given in (2.40), where t = (p− r)µ(p− r)µ.
Calculating the trace in (6.15), one finds for J µν

V V/AA(p, r):

J µν
V V,qq′(p, r) = 4F q

1 (t)F q′

1 (t)
[
gµν

(
m2 − pρrρ

)
+ 2p{µrν}

]
+ F

{q
1 (t)F q′}

2 (t)
[
2(p− r)µ(p− r)ν − 4gµν

(
m2 − pρrρ

)]
,

J µν
AA,qq′(p, r) = 4gqA(t)gq

′

A(t)
[
−gµν

(
m2 + pρrρ

)
+ 2p{µrν}

]
+ 4g{qA (t)gq

′}
P (t)(p− r)µ(p− r)ν

− gqP (t)gq
′

P (t)m
2 − pρrρ
m2 (p− r)µ(p− r)ν .

(6.18)

For the case of ~p = ~0 , µ = 0, ν = 0 we have (t0 = 2m2 − 2mEr):

J 00
V V,qq′(~r 2) = 4F q

1 (t0)F q′

1 (t0)
(
m2 +mEr

)
+ F

{q
1 (t0)F q′}

2 (t0) ~r 2 ,

J 00
AA,qq′(~r 2) = 4gqA(t0)gq

′

A(t0)
(
mEr −m2

)
+ 4g{qA (t0)gq

′}
P (t0) (m− Er)2

− gqP (t0)gq
′

P (t0)(m− Er)3

m
.

(6.19)

6.2 The nucleon form factor
To evaluate the convolutions to be compared with our results for two-current matrix
elements, we need to know the nucleon form factors F1, F2, gA and gP appearing in (6.11)
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and (6.19). These have been obtained in another simulation, taking into account excited
state contributions and considering effects of pion resonances in the axial vector channel,
which are modeled using χPT. The calculations shall be sketched in the following, more
details are given in [110]. The form factor data used in the following has been provided
by [112]. The dependence on the virtuality t = ∆2 will be discussed afterwards.

6.2.1 Lattice calculations

We consider (3.63) and replace the matrix element by the decompositions (2.43), which
yields a relation between the ratio of correlation functions and the form factors F1 and
F2 or gA and gP , respectively. The correlator in the numerator is given by a three point
function. In contrast to (4.12) we consider different momenta at the source and the
sink:

Ci,~p,~p ′

3pt (t, τ) := a6∑
~x,~z

e−i~p~xei~p
′~z
〈
tr
{
P+P(~x, t) Oi(~0 , τ) P(~z , 0)

}〉
, (6.20)

where the interpolators P(~x, t), P(~z , t) and the insertion operatorsOi(~y , τ) are the same
as in (4.12). Using the completeness relation (2.8) of the Dirac spinors and considering
only ground state contributions, we find:

2E
C~p
′,~p

3pt (t, τ)
C~p
′

2pt(t)
= e−(E−E′)τ

√
Z tr {P+(p/′ +m)J [Oi](p/+m)}

2
√
Z ′(E ′ +m)

, (6.21)

where Z and Z ′ are the normalization factors of the interpolator overlap terms, which do
not cancel as in (4.10), since initial and final states differ (~p 6= ~p ′). They are determined
from fits on the two-point function C~p2pt. E and E ′ denote the energies corresponding
to the momenta ~p and ~p ′, respectively. As mentioned before, the calculations regarding
the FFs also include excited state contributions, i.e. in contrast to (6.21) the following
relation has been used:

2E
C~p
′,~p

3pt (t, τ)
C~p
′

2pt(t)
= e−(E−E′)τ

√
Z

2
√
Z ′(E ′ +m) (1 + Ae−∆E′t)

[
tr {P+(p/′ +m)J [Oi](p/+m)}

×
(
1 +B10e

−∆E′(t−τ) +B01e
−∆Eτ +B11e

−∆E′(t−τ)e−∆Eτ
)

+ pion resonances
]
.

(6.22)

The coefficients A, B10, B01 and B11 describe the overlap with the first excited state.
Furthermore, resonances with the pion are considered. The latter are only taken into
account for the axial vector channel, since they are very strong in this case. Inserting
the corresponding decomposition J [V µ] or J [Aµ] relates the FFs to the ratio on the
l.h.s. . They can be extracted by solving the given system of equations.
There are two Wick contractions to be considered, a connected one and a disconnected
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one. Using the notation introduced in section 4.2, these are:

a3∑
~x

〈
Gi,~p,~p ′

3pt (~x, t, τ)
〉
,

a3∑
~x

〈
G~p,~p

′

2pt (t)Li1(~x, τ)
〉
−
〈
G~p,~p

′

2pt (t)
〉 〈〈

Li1(τ)
〉〉

.
(6.23)

The calculation was performed for the connected contraction only, i.e. effects arising
from the disconnected part are not contained in the FF data. Gi,~p,~p ′

3pt (t, τ) is evaluated
using the sequential source technique, which has been already described in section 4.2.
Notice that only conventional Wuppertal smearing was used, i.e. the source and the
sink are not boosted. The calculations are again for the H102 ensemble, including
four different source-sink separations, which is necessary to control the excited state
contributions. The final state momentum is fixed to ~p ′ = ~0 .
The ground state of the matrix element for a given momentum transfer ~∆ = −~p is
extracted from a simultaneous fit on the parameterization (6.22), including the data
for different source-sink separations. The calculations take into account momenta up to
~p2 = 5(2π/La)2 ≈ 1.029 GeV2.

6.2.2 Properties

form factor F (0) M2[GeV2] p(fixed) χ2/dof
F u

1 1.977(12) 1.063(19) 2 1.09
1.936(11) 1.747(29) 3 1.79

F u
2 1.764(38) 0.982(44) 2 1.63

1.711(34) 1.674(68) 3 0.52
F d

1 1.0421(70) 0.766(13) 2 7.15
1.0035(60) 1.300(19) 3 2.06
0.9860(57) 1.837(26) 4 0.94

F d
2 −1.744(23) 0.834(19) 2 2.51

−1.658(20) 1.456(29) 3 1.30

Table 6.1: Values of F (0) and M2 for the vector FFs obtained from a fit on the ansatz
(6.24). We also show the values of the corresponding χ2, where the complete covariance
matrix is taken into account.

From the relation (6.22) one obtains the values for the FFs for a specific momentum
transfer or virtuality t = −~∆2. To perform the convolutions (6.11) and (6.19) it is
necessary to employ some model describing the t-dependence of the form factors. A
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form factor F (0) M2[GeV2] p(fixed) χ2/dof
guA 0.8999(82) 1.971(64) 2 1.61

0.8920(78) 3.161(97) 3 0.82
guP 29.84(94) 0.327(11) 2 0.30

24.73(62) 0.688(17) 3 1.03
gdA −0.2930(41) 1.800(81) 2 1.05

−0.2896(39) 2.90(12) 3 0.93
gdP −9.62(77) 0.305(27) 2 0.13

−7.88(49) 0.638(44) 3 0.60

Table 6.2: Same as table 6.1 for the axial vector fFFs.
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Figure 6.3: Data points of the FFs plotted against ~∆2 = −∆2 and the corresponding
curves obtained by a fit on the ansatz (6.24), using p = 3. Panel (a) shows the results
for the vector channel, whereas (b) shows those of the axial vector FFs.

commonly used parameterization is given by a dipole or, more generally, a p-pole:

F (t) = F (0)(
1− t

M2

)p . (6.24)

This ansatz could be motivated by the asymptotic behavior, where one obtains for gA
and gP in the baryonic case p = 2 and p = 3, respectively [113]. Furthermore, from
counting rules we find p = 2 for F1 [114].
The parameters F (0) and M2 have to be obtained from a fit to the FF data with
0.205 GeV2 ≤ ~∆2 ≤ 1.029 GeV2. We perform two sets of fits for two different exponents
p in order to estimate the model dependence of the final convolution results. Explicitly,
we take p = 2 and p = 3. Within the fits we employ the full covariance matrix, see
Appendix section A.6. The corresponding results for the fit parameters and the values
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Figure 6.4: Ratio of the FF data and the corresponding fit, which is compared for
different values of p. Again we show the ∆2 dependence, where we employ small offsets
for the different data points for better distinguishability. The results are shown for F1
(a), F2 (b), gA (c) and gP (d), each panel shows the results for both quark flavors.

of χ2 are summarized in table 6.1 for F1,2 and table 6.2 for gA,P . The resulting values
for F u,d

1 are close to 2 or 1, respectively, which is consistent with charge conservation. In
Figure 6.3 we show the data points for each form factor, compared to the corresponding
curve resulting from fits with p = 3.
In Figure 6.4 we plot the ratio of the data points and the corresponding fits for different
values of p. Most of the ratios are consistent with 1, indicating that the corresponding
fit describes the data reasonably. One exception we want to point out here is the fit
for F d

1 for p = 2, which does not yield a satisfying description of the FF data. Hence,
for F d

1 we perform an alternative fit using p = 4, which yields a more consistent result.
The corresponding data/fit ratio is also shown in Figure 6.4 (a), the resulting values of
the fit parameters and the χ2/dof is given in table 6.2. In the following, we discard the
fit for F d

1 with p = 2 and instead use the corresponding results for p = 4.
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Figure 6.5: Comparison between the different terms within the square brackets in
(6.11), which contribute to the factorized expression of Aud (a) and A∆u∆u (b).

6.3 Convolution results
We use the results of the form factor fits described in the previous section to perform
the convolutions (6.11) and (6.19). This is repeated for each possible combination of
fit ansätze w.r.t. to the value of the pole p. Considering p = 3, 4 in the case of F d

1 and
p = 2, 3 in all other cases, we have 16 possibilities for the convolution in the case of
ud, whereas there are only 4 combinations for uu and dd. The integrals involved by the
convolutions are solved numerically. For the two-dimensional integration in (6.11) we
used the Vegas algorithm of the Cuba integration library [115]. The integral appearing
in (6.19) was performed employing the corresponding routine of the GSL [116].
The results for the factorization of light cone matrix elements according to (6.11) are
shown in Figure 6.5 for Aud and A∆u∆u, where we compare the different terms con-
tributing to the factorized expression. We observe that the most relevant contribution
is obtained by the integral over Z1(ζ)F1(t)F2(t) or Z1(ζ)gA(t)gA(t), respectively. The
remaining terms are suppressed, but are still important to decide whether the convolu-
tion result agrees with the four-point data. A similar hierarchy of the convolution terms
can be observed for the flavor combinations that are not shown.
In Figure 6.6 we compare the total factorized expression with the data of the corre-
sponding twist-2 function, which we have presented in chapter 5. This is shown for Aud,
where we take into account several combinations of FF parameterizations which have
been used as fit ansatz. Figure 6.7 shows the same for Auu and Add, in Figure 6.8 results
for A∆q∆q′ are presented.
In general, we find that varying the exponent in the fit ansatz (6.24) does not change the
result within the statistical error. This indicates a weak dependence of the convolution
on the exact functional form of the nucleon FF. The data for Aqq′ have roughly the
same size as the corresponding convolution. This holds for all flavor combinations, see
Figure 6.6 and Figure 6.7. However, one can observe deviations for each distance y by
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Figure 6.6: (a,b): Comparison between the results for Aud calculated from two-current
matrix elements (green data points) and those obtained from the convolution (6.11) of
FFs (continuous curves). The latter is shown for different form factor parameterizations
differing in the exponent p. (c,d): Ratio of the FF convolution and the two-current data
for Aud

considering the ratio of the FF convolution and the two-current data, which is plotted
in panel (c) and (d) in Figure 6.6 and Figure 6.7. Here we observe discrepancies of
at most 20 − 30% for Aud. For Auu and Add it is a bit larger. The result for Aud is
comparable to its analogue for the pion, which has been evaluated in the past [46].
In the case of two longitudinally polarized quarks A∆u∆d we observe a remarkably good
coincidence of the data obtained from two-current matrix elements and the curves re-
sulting from the corresponding convolution of axial form factors, which is shown in
Figure 6.8 (a) and (b). This is quite surprising, since it indicates absence of direct spin
correlations between the quarks, meaning that the only source of spin-spin correlations
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Figure 6.7: Comparison between the two-current data for the twist-2 functions Auu
(a) and Add (b) and the corresponding results obtained from the FF convolution (6.11)
for several parameterizations. Again we show the ratio of the FF convolution and the
corresponding twist-2 function Auu (c) and Add (d).

is the correlation between one quark spin and the proton. For A∆u∆u (panel (c)) the
agreement is not that perfect but still reasonable for y > 6a. In the case of A∆d∆d
(panel (d)) the values for both, the four-point result and the convolution, are close to
zero, where the errors of the four-point data are quite large.
Finally, we want to discuss the second kind of factorization we introduced in section 6.1.
This concerns the matrix elements of two local currents, where we consider zero compo-
nents of the vector or the axial vector current, see (6.19). We show the corresponding
results in Figure 6.9 for 〈V 0

u V
0
d 〉 and Figure 6.10 for 〈V 0

u V
0
u 〉 and 〈V 0

d V
0
d 〉. Again we plot

the convolution results for several possible combinations of FF parameterizations. The
variation of the result caused by changing this exponent turns out to be small compared
to the absolute value of the signal. The plotted four-point data corresponds to those
that have been shown in section 4.4, where only C1 and C2 contributions are taken into
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Figure 6.8: Comparison between the two-current results for a given twist-2 function
and the corresponding convolution (6.11) of FFs for several parameterizations. This is
shown for A∆u∆d (a,b), A∆u∆u (c) and A∆d∆d (d)

account.
Again the convolution is of roughly the same size as the corresponding two-current data
in the case of two vector currents V 0V 0, see Figure 6.9 (a,b). However, we are able
to observe significant discrepancies. The corresponding ratio, which is plotted in Fig-
ure 6.9 (c,d), is different from one for each current distance y. It is observed to be at
most 30 − 40% in the case of ud. The differences are extreme for uu and dd at small
distances, which can be seen in Figure 6.10 (c,d).
In the case of two axial vector currents A0A0 we can make two observations, see Fig-
ure 6.11: The first one is that for uu and dd the signals of both, the convolution and
the two-current data, are relatively small compared to the statistical error if y is large,
such that the two results are consistent with each other. However, they tend to differ-
ent directions if y becomes small. The second observation is that in the case of ud the
factorization hypothesis clearly fails. The convolution even predicts the opposite sign
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of the convolution and the matrix element.

as the corresponding two-current result.
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7 Conclusions

A brief summary of the results being obtained in this thesis, as well as remarks on
future perspectives regarding the research on DPDs on the lattice, shall be given in this
chapter.
A general review on subjects regarding the hadronic structure has been given in chap-
ter 2, where we also defined DPDs. The concept of LQCD was explained in chapter 3.
In chapter 4 we defined hadronic matrix elements of two spatially separated local cur-
rents for the case of the proton, which can also be related to matrix elements for the
neutron by isospin symmetry. These matrix elements have been found to be real-valued
in the case of flavor conserving currents. In order to evaluate them on the lattice, we
related the matrix elements to four-point functions. It has been found that there are
five types of Wick contractions, which we call C1, C2, S1, S2 and D. The exact contrac-
tion depends on the quark flavor of the operators. For each contraction we derived an
explicit expression to be calculated on the lattice. For a better overlap with the ground
state we employed the momentum smearing technique. Moreover, stochastic propaga-
tors combined with the hopping parameter expansion have been used. Each contraction
has been evaluated on 990 configurations on the H102 ensemble generated by the CLS
collaboration. Here we took into account several proton momenta up to ~p2 = 2.47 GeV2.
With the exception of the D contraction, which yielded large error bars, we obtained
clear signals for each contraction. The corresponding results have been presented in sec-
tion 4.4. We analyzed anisotropy effects caused by mirror charges and the anisotropic
behavior of the lattice propagator. It has been found that anisotropy effects are least
significant close to the lattice diagonals. The corresponding data was used subsequently
to evaluate the physical results. We observed dominance of the the connected contribu-
tions C1 and C2. In the case of the axial vector currents 〈A0A0〉 only C1 for ud yielded
a large signal. S1 was found to be comparable with zero in all considered cases. The
S2 contraction is observed to steeply increase at small distances between the currents,
whereas it is very small otherwise. For the matrix elements 〈V 0V 0〉 and 〈A0A0〉 we also
calculated physically relevant sums of contractions, taking into account the contribu-
tions of C1, C2 and S2. For 〈V 0V 0〉 we observed clear signals for all flavor combinations,
where the uu and dd correlations become very large at small current distances. The
data of 〈A0A0〉 was observed to be smaller and have been seen to be strongly dependent
on the S2 contribution for uu and dd.
Chapter 5 was concerned with the relation of the previously calculated two-current
matrix elements with Mellin moments Iab(ζ,y2) of DPDs. The corresponding twist-2
functions Aab(py, y2) have been extracted by solving the defining system of equations
in section 5.2. In order to obtain results for the Mellin moment themselves, the twist-2
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data has been fitted to a suitable parameterization of the py-dependence. We varied the
choices of parameters in order to get an estimate of the model dependence of the final
results. It has turned out that in the cases where the data is not too small compared
to the statistical error the results of the Mellin moments are quite robust w.r.t. to the
choice of parameters. We analyzed the dependence of the twist-2 functions, as well
as that of the extracted Mellin moments, on quark flavor and polarization. This was
discussed in section 5.4. It was observed that uu and ud contributions dominate for
large current distances, whereas uu and dd become very large if the distance is small.
In particular, the considered flavor combinations showed marked differences in their y2

dependence, which is in contradiction to postulations that are made in order to derive
the pocket formula (1.3). Polarization effects are prominent for ud, whereas they are
small for other quark flavors. The largest contribution was found for the spin-orbit cor-
relation Aqδq′ and the corresponding Mellin moment. Spin-spin correlations have been
observed to be much smaller than predicted by simple quark model assumptions. In
section section 5.5 we verified the consistence with the DPD number sum rule, which
was well fulfilled within the statistical error.
An important aspect regarding the strength of quark-quark correlations has been in-
vestigated in chapter 6. For the local two-current matrix elements 〈V 0V 0〉 and 〈A0A0〉,
as well as for the twist-2 functions Aqq and A∆q∆q′ , we derived a factorized expres-
sion involving only one-current matrix elements being related to nucleon form factors.
This has been achieved by inserting a complete set of states between the two currents.
Furthermore, we assumed that nucleon states dominate and neglected the remaining
contributions. The form factor data has been generated in another simulation [110],
its t-dependence was fitted to a p-pole function, where several integer values of p were
taken in order to control the model dependence. The agreement of the convolution
results with the two-current data was discussed in section 6.3. For the twist-2 functions
we obtained values which were quite close to the two-current data. This was observed
for Aqq and also A∆q∆q′ . The latter indicates that the two longitudinal quark spins are
only correlated via spin correlations of each quark and the proton. The results regarding
the factorization of a local matrix element were similar in the case of 〈V 0V 0〉, where the
convolution result has the same order of magnitude as the corresponding two-current
data. Deviations were seen to be large for small y for uu and dd. The situation is
different for the case of two axial vector currents 〈A0A0〉, where the convolution did not
reproduce the results of the two-current calculations.
Beyond this pilot study of quark correlations and DPDs in the nucleon, there remains
a variety of aspects that have not been considered within this thesis, but are certainly
interesting to be investigated in future research. Our calculations did not take into
account operators containing derivatives. Including them would offer the possibility
of analyzing higher Mellin moments, which would provide a first insight into the xi-
dependence of DPDs. Our study has been restricted to operators conserving the quark
flavor. Matrix elements of flavor changing operators appear in contributions corre-
sponding to flavor interference. There are further objects related to several kinds of
interferences, like fermion number interference distributions. Although not accessible in
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LHC experiments, it might be interesting to explore matrix elements of polarized nu-
cleons in order to investigate the corresponding DPDs. The present study only includes
the analysis for valence quark flavors of the proton, i.e. u or d. The CLS ensembles take
into account nf = 3 dynamic quark flavors, which basically allows a dynamical simu-
lation of matrix elements of strange quark operators, and subsequently of non-valence
quark DPDs. A general exploration of the quark mass dependence, as well as the inves-
tigation of possible excited state contributions by varying the source-sink separation, is
still outstanding. Corresponding analyses have been performed for the pion in [45, 46].
So far our analysis includes only one gauge ensemble. Repeating the simulations on
further ensembles is advisable for the following reasons. The calculation on ensembles
employing finer and larger lattices would allow a more detailed study of discretization
artifacts and finite volume effects. The final aim would be to take the physical limit,
i.e. to decrease the masses and the lattice spacing towards the physical point.
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A.1 Notations and conventions
Within this thesis, the following notations and conventions are used:

• We use natural units, i.e. Planck’s constant and the speed of light are set to one:

~ = c = 1 (A.1)

• Tensor component labeling: For Minkowski (Euclidean) spacetime the tensor com-
ponents are labeled with Greek indices (µ, ν, λ, ...), which run from 0 to d-1 (1 to d)
with the 0-th (d-th) component being interpreted as the time component. Spatial
or transverse components are labeled with Latin indices (i, j, k, ...).

• Further index conventions: Spinor indices are labeled by α, β, γ, . . . , color indices
by a, b, c, . . . , not to be confused with the quark polarization channels, which are
also labeled by a, b, . . . .

• Symmetrization and antisymmetrization of indices: By writing square brackets
we denote antisymmetrization of indices, by writing curly brackets we denote
symmetrization of indices. In both cases a normalization factor 1/(n!) is included:

a[µ1...µn] = 1
n!

∑
P∈Sn

sign(P ) aµP (1)...νP (n) , (A.2)

a{µ1...µn} = 1
n!

∑
P∈Sn

aµP (1)...νP (n) . (A.3)

• The Minkowski metric:

(gµν) = diag(1,−1,−1,−1) . (A.4)

• Euclidean Gamma matrices:

γ4
E =

(
0 12
12 0

)
, γjE = (−1)j

(
0 −iσj
iσj 0

)
, (A.5)
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where the σj are the Pauli matrices. This basis is chiral.
Furthermore we define the commutator of gamma matrices:

σµν = i

2 [γµ, γν ] . (A.6)

In the basis (A.5) we can give explicit definitions of the C (charge conjugation)
and T (time reflection) matrix:

C = γ2γ4 , T = γ1γ3γ4 . (A.7)

• Kronecker-Delta and Levi-Civita-Symbol:

δij =
1 i = j

0 i 6= j
, (A.8)

εi1···in =


1 i1 · · · in even permutation of 1 · · ·n
−1 i1 · · · in odd permutation of 1 · · ·n
0 else

. (A.9)

• Einstein sum convention:

aµb
µ =

d−1(d)∑
µ=0(1)

aµb
µ , (A.10)

for any quantity a or b having d components labeled by µ in this case. The up-
down notation may be dropped if there is no distinction between elements - dual
elements, covariant - contravariant, etc.

• Feynman slash notation:

a/ = aµγ
µ . (A.11)

• Notation for an arbitrary 4-vector xµ:

(xµ) = (x0, ~x) , (A.12)

where x0 = t is the time component and ~x represents the three space components.
Sometimes we use light-cone coordinates:

(xµ) =
(
x+, x−,x

)
, x± = x0 ± x3

√
2

, x =
(
x1, x2

)
, (A.13)
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with the scalar product:

xy = xµyµ = x+y− + x−y+ − xy . (A.14)

Depending on the context, we use the following short notation for absolute values
of 3-vectors ~x or transverse vectors x, respectively:

x = |~x| or x = |x| . (A.15)

In order to avoid confusions, we denote powers of x by

(x)n := |~x|n or (x)n := |x|n . (A.16)

If x0 = 0 or x+ = 0, this is equivalent to

(x)n :=
√
−xµxµ

n
=
√
−x2n . (A.17)

where x2 = −~x2 or x2 = −x2, respectively.
A Euclidean vector has the form

xE = (xµE) = (~x, x4) . (A.18)

• Lattice vectors: µ̂ denotes a vector that points from one lattice site to the next
neighboring site in the µ-direction.

• Lattice propagators M = D−1 for a given Dirac operator D: The propagator from
point x to y is denoted by M(y|x). For a point-to-all propagator from fixed x to
y we write Mx(y).
In any case, the propagator carries two spinor and two color indices (sometimes
not explicitly written).

• Unless stated otherwise, traces and transpositions are taken w.r.t. spinor and color
indices, i.e. for an expression X carrying two spinor indices α, β and two color
indices a, b we define

tr {X} = Xab
αβδαβδab ,

(
XT

)αβ
ab

= Xβα
ba . (A.19)

• Negative indices: In the context of LQCD we use negative Lorentz indices to
abbreviate:

U−µ(x) = U †µ(x− µ̂) , γ−µ = −γµ , (A.20)

for a gauge link Uµ(x) and a Dirac matrix γµ.
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A.2 Wick contraction symmetries

We use the relations (3.34) to determine the behavior under discrete symmetry op-
erations of the constituents (4.16) entering the expressions for lattice contractions of
four-point functions. In the following, we consider PT transformations and the com-
bination of complex conjugation and CP transformation. The relations are understood
to be valid after integrating over the gauge fields:

Ki
1(z′|y|z) PT−−→ ηiPT S

−1 Ki,T
1 (−z| − y| − z′) S ,[

Ki
1(z′|y|z)

]∗ CP−→ ηiPT η
i
4 A

−1 Ki
1(z′|y|z) A ,

Kji
2 (z′|y|z) PT−−→ ηijPT S

−1 Kij,T
2 (−z|y| − z′) S ,[

Kji
2 (z′|y|z)

]∗ CP−→ ηijPT η
ij
4 A−1 Kji

2 (z′|y|z) A .

(A.21)

where

S := γ4T A := γ4Cγ5 , (A.22)

and ηPT , η4 are defined in (3.71) and (4.25), respectively. Considering the generic
connected baryon contractions (4.14) we find for the nucleon:[

Gijk[X, Y, Z]
]∗ CP−→ Gijk[CP(X∗), CP(Y ∗), CP(Z∗)] , (A.23)

and, moreover

Gijk[X, Y, Z] PT−−→ Gijk[PT X,PT Y,PT Z] for (ijk) = (123), (213) ,

Gijk[X, Y, Z] PT−−→ Gijk[PT Z,PT Y,PT X] for (ijk) = (321), (231) ,

Gijk[X, Y, Z] PT−−→ Gijk[PT X,PT Z,PT Y ] for (ijk) = (132), (312) .

(A.24)

A.3 Tensor Parameterizations

This is an overview of the tensor structures being used to decompose the two-current
matrix elements, see (5.5). The structures are the same in the case of the vector-vector
and axial-axial channel:

uµνV V,A(p, y) := 2pµpν − m2

2 gµν ,

uµνV V,B(p, y) := 2p{µyν} − py

2 g
µν ,

uµνV V,C(p, y) := 2yµyν − y2

2 g
µν .

(A.25)
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For the tensor-vector channel we have two tensor combinations:

uµνρTV,A(p, y) := 4y[µpν]pρ + 4m2

3 gρ[µyν] − 4py
3 gρ[µpν] ,

uµνρTV,B(p, y) := 4y[µpν]yρ + 4py
3 gρ[µyν] − 4y2

3 gρ[µpν] .

(A.26)

In the case of the tensor-tensor channel we have to consider five terms, where the
corresponding tensor structures read1

uµνρσTT,A(p, y) := −8p[νgµ][ρpσ] ,

uµνρσTT,B(p, y) := −16y[µpν]y[ρpσ] + 8y2 p[νgµ][ρpσ] ,

uµνρσTT,C(p, y) := −4p[νgµ][ρyσ] − 4y[νgµ][ρpσ] ,

uµνρσTT,D(p, y) := −8y[νgµ][ρyσ] ,

uµνρσTT,E(p, y) := 2gµ[ρgσ]ν .

(A.27)

For brevity we use the symmetrization or anti-symmetrization notation of indices being
introduced in section A.1.

A.4 Fourier transform hn(x) of polynomial terms

Let F (ζ) be a function defined as follows:

F (ζ) =

∑N
n=0 anζ

2n |ζ| ≤ 1
0 |ζ| > 1

, (A.28)

N∑
n=0

an = 0 ⇔ F (ζ) continuous at |ζ| = 1. (A.29)

For the n-th term of the sum above, the Fourier transform may be obtained by partial
integration:

1
2

∫ 1

−1
dζeixζζ2n = (sin(x)sn(x) + cos(x)cn(x))

=: hn(x) ,
(A.30)

1Compared to the definition we give in this thesis, the definition in [46] includes a shift w.r.t. trace
terms (∝ gµ[ρgσ]ν), i.e. the invariant function E is not the same in the two cases.
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with

sn(x) := (2n)!
n∑

m=0

(−1)m
(2n− 2m)! x1+2m ,

cn(x) := (2n)!
n−1∑
m=0

(−1)m
(2n− 2m− 1)! x2+2m .

(A.31)

The limit x→ 0 for hn(x) yields:

lim
x→0

hn(x) = 1
1 + 2n . (A.32)

For the second derivative of hn(x) it holds that:

∂2

∂x2hn(x) = −hn+1(x) , (A.33)

which can be easily found by applying the derivatives before performing the Fourier
transformation. The same can be done for the first derivative, where one finds:

∂

∂x
hn(x) = 1

2(n+ 1) (xhn+1(x)− sin(x)) . (A.34)

Combining (A.34) with (A.33) and integrating yields the differential equation:

(2n+ 1)hn(x) + x
∂

∂x
hn(x) = cos(x) . (A.35)

Moreover we can give an explicit form of the Taylor expansion of hn(x) around x = 0
by using (A.32) in (A.33):

hn(x) =
N∑
m=0

(−1)mx2m

(2m)!(1 + 2n+ 2m) +O
(
x2N+1

)
, (A.36)

such that hn(x) can also be written as:

hn(x) =
∞∑
m=0

(−1)mx2m

(2m)!(1 + 2n+ 2m) . (A.37)

Notice that 1+2n
2 hn(x) can be identified with the hypergeometric function

1F2(1
2 + n; 1

2 ,
3
2 + n;−x2

2 ).
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A.5 Statistical analysis
For a consistent treatment of error propagation in observables created from strongly
correlated data we employ the Jackknife method. Let us assume that we have N mea-
surements Oj of an observable O. These measurements are resampled in the following
way:

ci = 1
(N − 1)

∑
j 6=i
Oj . (A.38)

The mean value is given by:

c = 1
N

∑
i

ci = 1
N

∑
i

Oi = 〈O〉 , (A.39)

with variance:

σ2 = N − 1
N

∑
i

(c− ci)2 . (A.40)

For a derived quantity f(O) with mean f(c) the variance is written as:

σ2 = N − 1
N

∑
i

(f(c)− f(ci))2 . (A.41)

Notice that in general f(c) 6= ∑
i f(ci), non-vanishing differences indicate a bias.

A.6 Fitting methods
In the following, we review the standard method of χ2 minimization being used to fit
the data obtained from our simulations by a certain function or system of functions.

A.6.1 χ2 minimization
Let Xi be a data point of an observable X with mean 〈Xi〉 and variance σ2

i at position i
and f the desired functional description of this observable depending on fit parameters
collected in the vector ~A . An optimal description of the data is obtained if

χ2(~A) =
∑
ij

(
fi(~A)−Xi

) (
C−1

)
ij

(
fj(~A)−Xj

)
(A.42)

is minimal. C is the covariance matrix

Cij = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉 . (A.43)



132 A Appendix

Neglecting off-diagonal elements, i.e. correlations between the data points, we obtain a
diagonal matrix where the entries are given by the variance Cij = δijσ

2
i of the corre-

sponding data point. Hence:

χ2(~A) =
∑
i

(
fi(~A)−Xi

)2

σ2
i

. (A.44)

For all non-linear problems in our analysis we used the MIGRAD method of Minuit[117]
for χ2 minimization.

A.6.2 Linear fits and equation systems

A special case of χ2 minimization described above is given if the dependence on the fit
parameters Aj is purely linear. This might be e.g. the solution of an overdetermined
linear system of equations, which is determined by a fit. We consider data points Xi,
which are supposed to be fitted to a function of the form

Xi =
∑
j

aijAj , (A.45)

where aij are known coefficients. The χ2 (A.44) can be written as:

χ2 =
∑
i

σ−2
i

∑
j

aijAj −Xi

2

, (A.46)

and the χ2 minimization problem translates to requiring the gradient w.r.t. to the fit
variables Aj to vanish:

∂χ2

∂Ak
= 2

∑
i

σ−2
i

∑
j

aijAj −Xi

 aik != 0 . (A.47)

This is equivalent to ∑
j

αkjAj = γk , (A.48)

with the matrix α:

αkj =
∑
i

σ−2
i aijaik , (A.49)
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and the source vector γ:

γk =
∑
i

σ−2
i Xiaik . (A.50)

Hence, an overdetermined linear equation system (A.45) can be fitted by inverting α on
γ

αA = γ , (A.51)

yielding the solution A, where the components are the fit parameters Aj. Two special
cases should be considered at this point: The case of fitting the data X(y) to a linear
function f(y) = ay + b, where α and γ take the form:

α =
∑
i

σ−2
i

(
y2
i yi
yi 1

)
, γ =

∑
i

σ−2
i X(yi)

(
yi
1

)
. (A.52)

The second and most trivial case is that of a fit to constant c. Here the equation (A.51)
reduces to

c =
∑
i σ
−2
i X(yi)∑
i σ
−2
i

. (A.53)
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