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1
Introduction

1.1 QCD

Quantum Chromodynamics (QCD) is a non-abelian gauge theory which describes the
strong interaction of quarks and gluons. A quark is a fermion, i.e., a spin-1/2 particle,
with fractional electrical charge, color charge and flavor. In total there are six quark
flavors q called up (u), down (d), charmed (c), strange (s), top(t) and bottom (b).
Quarks participate in strong interactions because of their color charge. In total there
are Nc = 3 different colors. However, quarks do not interact with each other directly.
The interaction between quarks is mediated by gluons which are massless gauge
bosons with spin 1. Neither quarks nor gluons are observed as free particles. This
is a central but unproven hypothesis of Quantum Chromodynamics. Instead, quarks
and gluons form color-neutral particles called hadrons. The two most prominent
subclasses of hadrons are mesons (q1 q2), which consist of a quark q1 and an anti-
quark q2, and baryons (q1 q2 q3), which are formed by three quarks. For the structure
of ordinary matter, the first generation of quarks, i.e., the first two u and d, play an
important role because they form the most stable particles. The proton for instance is
composed of two u quarks and one d quark which yields a total electrical charge of
1 = 2/3 + 2/3− 1/3. Currently, the free proton is considered to be a stable particle.
A neutron is slightly heavier than a proton and decays to a proton through the weak
interaction

n→ p+ e− + νe

3



with a mean life time of about 15 minutes. In contrast to hadrons, all mesons are
unstable. The lightest mesons are the pions which come in three electricals variants.
There are two charged pions, namely the π+ (u, d) and the π− (d, u) as well as the
electrically neutral pion π0, which is a linear combination of (u, u) and (d, d) states.
The mean life time of the charged pions is about 26 nanoseconds. The complex
phenomena of the strong interaction are consequences of an elegant mathematical
structure, known as the QCD Lagrangian

LQCD =
∑

f

Ψf (i /D −mf ) Ψf −
1
4F

A
µνFA µν . (1.1)

While this formula looks rather simple, it is in fact notoriously hard to solve due its
non-abelian structure. Over time physicist developed different approaches to tackle
QCD. One possibility is the utilization of perturbation theory where one uses power
series expansions in a small parameter. This approach has been successfully applied
to quantum electrodynamics (QED) where the small expansion parameter is the fine
structure constant αem ≈ 1/137. This approach, however, can only be applied par-
tially to QCD since the expansion parameter αs(Q2) can not be assumed to be small
for all values of the energy scale Q2. A relatively new approach to study QCD in
its non-perturbative region is given by the so-called AdS/QCD duality, which is a
manifestation of the AdS/CFT correspondence. It applies the holographic principle
and maps a strongly coupled field theory (which is similar to QCD) to a string theory
in its weak-coupling limit which allows for the treatment of problems which would be
otherwise inaccessible. All these different attempts to tackle QCD originate for the
fact that QCD has unsolved puzzles such as quark confinement which is one of the
seven Millennium Prize Problems stated by the Clay Mathematics Institute. How-
ever, one has to point out that many aspects of QCD are well understood. One of
the most prominent examples is asymptotic freedom which was discovered by Gross,
Politzer and Wilczek. Asymptotic freedom means that the effective quark-gluon cou-
pling becomes weaker as the energy scale of the process increases. In fact, the QCD
scale dependence of the coupling constant can be derived from renormalization group
equations. An explicit one-loop calculation yields

αs(µ) = 4π
β0 ln( µ

ΛQCD
) . (1.2)

The dimension-full parameter ΛQCD ≈ 200 Mev defines what weak and strong means
and is a consequence of a renormalization procedure which introduces a scale µ. The
remaining parameter β0 can be computed e.g. by a one-loop calculation of the gluon
self-energy yielding

β0 = 1
3

(11 ·Nc − 2 ·Nf ) , (1.3)
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where Nc and Nf denote the number of colors and quark flavors, respectively. For
QCD with Nc = 3 and Nf = 6 β0 is negative implying that Eq. (1.2) grows for
µ → ΛQCD.

Let us now change the perspective and focus on the theoretical framework. QCD is
formulated in a mathematical language which is commonly known as quantum field
theory (QFT). It is a combination of classical field theory, quantum mechanics and
special relativity. Particles are described in terms of dynamical fields governed by
the Lagrangian density which can be conveniently written as

LQCD = Lquark + Lgauge + Lghost + Lgaugefixing . (1.4)

The two terms, Lghost and Lgaugefixing, are necessary for the quantization of the classical
theory, i.e, they maintain the consistency of the path integral which is usually used
for the quantization of non-Abelian gauge field theories. However, we do not discuss
this rather technical topic here because none of the terms are needed to formulate
QCD on the lattice. Instate we discuss the fermionic part of the QCD Lagrangian

Lquark =
∑

f

Ψf (i /D[A]−mf ) Ψf . (1.5)

Quarks with flavor f ∈ {u, d, c, s, t, b} and mass mf are represented by spinors ψf
which are vectors in color (Nc = 3) and spin (Ns = 4) space. They transform under the
fundamental representation of the SU(3) color group. The fermionic part is minimally
coupled to the gauge fields A, i.e. it depends on the gauge fields only trough the
covariant derivative

/D[A] = γµ∂µ − igsγµAA
µ tA , (1.6)

with the γ-matrices defined by {γµ, γν} = 2gµν . Gluonic fields AA
µ are contracted

with 3× 3 matrices tC , which are the generators of the SU(3) algebra

[tA, tB ] = i f ABC λC , (1.7)

Tr
(
tAtB

)
= 1

2δ
AB . (1.8)

The strong coupling gs is an input parameter of the theory and appears also in

Lgauge = −1
4F

A
µνFA µν

which describes the gluon dynamics in terms of the field strength tensor

FA
µν = ∂µ AA

ν − ∂ν AA
µ + gsf ABCAB

µAC
ν , (1.9)

with the SU(3) structure constants f ABC . The gluon (vector) fieldsAA
µ are parametrized
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by A ∈ {1 . . . N2
c −1}. The eight gluons transform under the adjoint representation of

SU(3). The quadratic term in A is the origin for the non-trivial gluon self interaction,
a characteristic feature of non-abelian field theories. In the following we discuss
some aspects about the construction of the QCD Lagrangian which is mainly driven
by symmetry considerations. One of these symmetries is local gauge symmetry, a
fundamental concept in quantum field theory. Local gauge symmetry in QCD means,
that physics is invariant under local SU(3) transformations

Ω(x) = ei Θ(x)A·tA with det(Ω(x)) = 1 .

Quarks with flavor f transform according to the following equations

Ψf (x)αa → Ψ′f (x)αa = Ω(x)ab Ψf (x)αb , (1.10)
Ψf (x)αa → Ψ′f (x)αa = Ψf (x)αb Ω−1(x)ba . (1.11)

To illustrate local gauge invariance let us revisit the formal definition of mesons M
and baryons B

M(x)αβf1f2 ≡ Ψf1(x)αc Ψf2(x)βc ,
B(x)αβγf1f2f3 ≡ εijk Ψf1(x)αi Ψf2(x)

β
j Ψf3(x)

γ
k .

A local gauge transformation yields

Mf1f2(x)αβ → M ′f1f2(x)
αβ = Ψf1(x)αa Ω−1(x)ac Ω(x)cdΨf2(x)

β
d = Ψf1(x)αa δadΨf2(x)

β
d

= Mf1f2(x)αβ ,
B(x)αβγf1f2f3 → B′(x)αβγf1f2f3εijk Ω(x)il Ω(x)jm Ω(x)kq Ψf1(x)αl Ψf2(x)βm Ψf3(x)γq

= det(Ω) εlmq Ψf1(x)αl Ψf2(x)βm Ψf3(x)γq
= B(x)αβγf1f2f3 ,

which shows that mesons and baryons are invariant under local gauge transformations.
However, local gauge invariance in QCD requires that not only physical observables
are invariant but the complete QCD Lagrangian. The mass term in Eq. (1.5) is trivially
gauge invariant, however, this does not apply to the covariant derivative. One requires,
that it transforms like a quark field

D[A]µ Ψf → (D[A]µ Ψf )′ ≡ Ω(x) Dµ Ψf

which yields the following transformation of the gluon fields

tAAA
µ → tAA′Aµ = Ω(x) tAAA

µ Ω−1(x) + 1
gs

(∂µΩ(x)) Ω−1(x) . (1.12)
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In other words, the requirement of local gauge invariance in the fermionic sector
defines the transformation property of the gauge fields. Subsequently, one must verify
that the gauge sector is also invariant. To that end one considers the transformation
property of the field strength tensor which can be derived from Eq. (1.12)

tA FA
µν → tA F ′Aµν = Ω(x) tA FA

µν Ω−1(x) . (1.13)

In this context it is convenient to re-express the gluonic part of Lagrangian

Lgauge = −1
4F

A
µνFA µν = −1

2 TrFA
µνFB µν Tr

(
tAtB

)
= −1

2Tr
(
FA
µν tA FB µν tB

)
. (1.14)

Applying a local gauge transformation yields

Lgauge → L′gauge = −1
2Tr

(
F ′Aµν tA F ′B µν tB

)

= −1
2Tr

(
Ω(x)FA

µν tAΩ−1(x) Ω(x)FB µν tB Ω−1(x)
)

= −1
2Tr

(
FA
µν tA FB µν tB

)
= Lgauge .

1.2 Lattice QCD

In order to access QCD in the non-perturbative region we follow an approach called
“lattice gauge theory” which was proposed by K. Wilson in 1974 [1]. In this work he
demonstrates how to quantize a gauge field theory on a discrete lattice in Euclidean
space-time in a gauge-invariant manner. Due to the discrete formulation of QCD it
is possible to rigorously define the path integral which is needed for the quantization
of the classical theory. Analogous to statistical mechanics one is able to define the
QCD partition function

Z =
∫ ∏

x

3∏

µ=0

dU(x)µ e−Seff [U ]

The gauge field variables U(x)µ which are elements of the SU(3) group play an
important role in this formulation. Physically speaking they represent the gluonic
degrees of freedom. Quark and anti-quark fields which are Grassmann-valued objects
have been analytically integrated out and are absorbed in the action Seff . The positive
real valued factor e−Seff [U ] is interpreted as a weight function. Configurations U , close
to the minimum of Seff [U ] are more important. To demonstrate the connection to
statistical mechanics we quote the partition function of a classical spin system

Z =
∑

s
e−βH [s] with β = 1

kBT
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The similarity between the two different disciplines are important because established
numerical methods developed for statistical mechanics can be adapted to lattice QCD.
In particular Mote Carlo techniques are used to create sets of gauge configurations
{U(x)µ}i=1...Nconf . These sets are commonly called gauge ensembles and are used to
calculate physical observables like masses or hadronic matrix elements. Depending
on the considered observable the number of necessary configurations Nconf varies.
Typically Nconf is chosen between several hundreds and several thousands. The gen-
eration process of gauge ensembles is an expensive task and needs to be performed
on a reasonably-sized super computer. After the generation they can be used for
various types of measurements. Nowadays, the generation of gauge configurations is
a task which can hardly be achieved by a single group, especially if the set of gauge
configurations is large. Instead it is a joint effort project which requires larger-scale
collaborations like in CLS (Coordinated Lattice Simulations). The aim of CLS is the
generation of a set of gauge ensembles which allow to reach the required precision
and control of systematic errors in particular with respect to the continuum limit. How-
ever, one has to keep in mind that the generation is not only expensive but comes
with significant subtleties. For instance one has to keep track of autocorrelations in
Monte-Carlo time, which are expected to grow while approaching the continuum limit.
As the physical lattice spacing approaches the region smaller than 0.05 fm lattice
QCD simulations tend to get trapped in the topological charge sectors of field space
and may consequently yield biased results in practice. To circumvent this behavior,
termed topological freezing, one has to improve methods and algorithms [2, 3]. One
possibility to circumvent this effect are open boundary conditions in time and peri-
odic boundary conditions in the space directions. This setup leads to a topological
charge flow and thus decrease the autocorrelation times. However, further obstacles
arise from the fact that the discretization of the fermionic and gluonic parts of the
Lagrangian are not unique and can suffer from discretization effects, respectively. For
instance the Wilson quark action has O(a) discretization errors. Using this type of ac-
tion makes it harder to perform the continuum limit (a→ 0) because the extrapolation
has to be performed linearly in the lattice spacing. This can be resolved by an O(a)
improved action which gives a more reliable O(a2) extrapolation. Typically improve-
ments of this kind do not come for free. They introduce new parameters which have
to be determined or tuned carefully. Besides the mentioned obstacles lattice QCD
ultimately empowers us to calculate observables from first principles using statistical
methods. For example, the expectation value of an observable O can be evaluated as
the statistical average over the set of gauge configurations {U(x)µ}i=1...Nconf according
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to

〈O〉 = 1
Nconf

Nconf∑

i=1

O[Ui] +O(1/
√
Nconf ) . (1.15)

The estimate for the observable O has an intrinsic statistical uncertainty. Corrections
can be expected to be proportional to the inverse square root of the number of con-
figurations in the ensemble. Due to the fact that the correction term vanishes only
in the limit Nconf → ∞ one has to find reliable estimates for the statistical errors.
There are different methods to calculate these errors which each have advantages
and disadvantages of their own. Most often, re-sampling techniques such as Jack-
knife or Bootstrap are used. At this stage one has also to track autocorrelations of
the measured observable. In practice, two methods are widely used to estimate auto-
correlations. The first method is the direct calculation of the autocorrelation function
and the second is to perform a binning analysis. The central task in a binning anal-
ysis is to determine a proper binsize. This has to be carried out separately for each
observable. While it is not an unmanageable task, it is not perfectly rigid and opens
up room for time-consuming discussions.

In contrast to other approaches lattice QCD does not require model assumptions.
The only (bare) input parameters are the quark masses and the strength of the cou-
pling. However, predictions from lattice QCD calculations suffer from systematic
effects which have to be treated in a separate step. For instance, the results will
depend on the lattice size as well as on the lattice spacing. Therefore, one has to
carry out the measurement of interest on different sets of gauge ensembles in a way
such that one is able to systematically extrapolate to physical results. These ex-
trapolations may introduce an implicit model dependence to LQCD simulations. For
instance, one can use chiral perturbation theory (χ-PT) for the extrapolation to phys-
ical pion masses. While this approach is not wrong in principle, one is confronted
with the question whether χ-PT is allowed to be applied for the current set of gauge
ensembles. The parameter which is addressed by this question is the pion mass as-
sociated to the gauge ensemble. A further notorious systematic effect which needs
to be treated are excited-state contaminations. These appear, e.g., in the calculation
of matrix elements. The most straight-forward way to reduce them is to increase the
source-sink distance of the involved three-point function. This will clearly improve the
situation because excited-state contributions are exponentially stronger suppressed
as the ground-state matrix element one is typically interested in. The drawback of
this straight-forward method manifests itself in a decreasing signal-to-noise ratio of
the ground-state matrix element. In principle this can be compensated by increasing
the number of gauge configurations. In order to reduce the statistical error of the
considered matrix elements by a factor 1/2 one needs four times the number of gauge
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configurations. This clearly shows that this straight-forward approach is limited by
the production cost in practice. However, this is not the only method to reduce excited-
state contributions. One can suppress them with smearing techniques which aim to
improve the ground-state dominance. To achieve this one has to choose a smearing
regime which introduces additional parameters to tune. On top of this approach one
can create ensembles with multiple source-sink separations in order to parametrize
the excited-state contributions by using a suitable fit Ansatz. While this can consid-
erably improve the situation in some scenarios, there are situations where this can
not be accomplished at all. For instance if the signal of the correlation functions is
not good enough to restrict the additional parameters of the parametrization. This is
often the case when one considers operators with an increasing number of derivatives
and high momenta. Generating multiple source-sink separations may still pay off in
this situation since one can study the systematic effects of source-sink separations on
the final result. Another kind of systematic effect are contributions which arise from
so-called disconnected diagrams. In the past, disconnected contributions have been
neglected because they were too expensive to calculate. With recent improvements
in computer power and algorithms, the calculation of disconnected contributions has
become feasible. However, the resulting contributions tend to be noisy which in turn
yields larger statistical uncertainties of the final result. A standard approach to calcu-
late disconnected loops is stochastic estimation, which introduces an additional error
on top of the gauge noise already present. Because of the difficulties associated with
disconnected diagrams, many lattice QCD calculations still address only isovector ob-
servables, which do not have disconnected contributions. With all these subtleties in
mind, lattice QCD finally allows us to study the nucleon structure from first principles,
which is considered a milestone of hadronic physics. For instance we are able to com-
pute the axial, scalar, tensor and pseudoscalar isovector couplings of the nucleon [4].
Furthermore, lattice QCD allows us to access moments of parton distribution functions
and form factors as well as generalized form factors (GFFs) [5]. These observables
provide important information on the distribution of momentum, spin and charge within
a nucleon. The calculation of GFFs on the lattice is an important contribution to the
understanding of hadron structure. One prominent example is the calculation of the
total angular momentum of a quark in a nucleon which can not be measured directly
in an experiment except for its spin contribution. By means of lattice calculations we
make a contribution to the question how all angular momenta in a proton add up to
one half. In the following sections we introduce basic concepts relevant for a grasp
of lattice QCD.
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1.3 Wick rotation

The attempt to study QCD numerically is closely connected to the path integral
quantization of the classical continuum theory. In terms of lattice QCD the most
important feature is the ability to quantize the classical theory non-perturbatively.
Beside this, the path integral provides a set of rules for the computation of observables.
As an illustration, one can compute the expectation value of an operator Ôn using the
path integral formalism

〈On〉 = 1
Z

∫
D
[
Aµ ,Ψ ,Ψ

]
· On · eiSM [Aµ ,Ψ ,Ψ ] , (1.16a)

Z =
∫
D
[
Aµ ,Ψ ,Ψ

]
· eiSM [Aµ ,Ψ ,Ψ ] . (1.16b)

Adapting this continuum formulation to a numerical accessible counterpart consists of
two major parts. First, one must formulate a proper discretization of the theory to make
the number of integration variables finite. This step is addressed in section 1.4. The
second part addresses the factor i in eiSM [Aµ ,Ψ ,Ψ ] which leads to strong oscillations.
Problems of that type do not exclusively appear in lattice QCD but are known to
happen also in other fields. For example, it is pointed out in [6] that the indefinite
metric of Minkowski space causes many problems in QFT which can be avoided by
analytic continuation of time. This trick is used in lattice QCD and known as Wick
rotation. One rotates to imaginary time x0 → −ix4 to convert the oscillating phase
to a real-valued negative exponential

eiSM [Aµ ,Ψ ,Ψ ] Wick rotation−−−−−−→ eiiSE [Aµ ,Ψ ,Ψ ] = e−SE [Aµ ,Ψ ,Ψ ] . . (1.17)

The substitution must be applied consistently to all objects in the action integral.
This includes the integration measure, derivative operator, gluon fields as well as the
definition of the γ-matrices

{γµ, γν} = 2gµν → {γEµ , γEν } = 2δµν . (1.18)

A consistent application of the described steps yields the following transformation for
the ferminoic part of the action

SMF
[
Aµ ,Ψ ,Ψ

]
=
∫

d4x
(
∑

f

Ψf (iγµDµ −mf ) Ψf

)
Wick rotation−−−−−−→

Wick rotation−−−−−−→ i
∫

d4xE
(
∑

f

Ψf
(
γEµ DE

µ +mf
)

Ψf

)
≡ iSEF

[
Aµ ,Ψ ,Ψ

]
. (1.19)
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For the gluonic part one finds

SMG [Aµ ] =
∫

d4x
(
−1

4F
A
µνFA µν

)
Wick rotation−−−−−−→

Wick rotation−−−−−−→ i
∫

d4xE
(

1
4(FE )Aµν(FE )Aµν

)
≡ iSEG [Aµ ] . (1.20)

The Wick rotation originates from a deep connection between Euclidean and Minkowski
QFT. The theoretical foundations are given in terms of the Wightman axioms and the
Osterwalder-Schrader theorem [7, 6, 8]. The index E is from here on omitted for nota-
tional convenience since only the Euclidean formulation of the theory is considered.

1.4 Discrete space-time

The first step towards a well-defined path integral is the discretization of space-time
[1]. This is done by replacing the space-time continuum with a discrete mesh of lattice
points which are part of a finite hypercubic lattice. Lattice points are usually referred
to as sites. The distance between two neighbouring sites is called the lattice spacing,
denoted by the letter a. A formal definition of the lattice Λ is [9]

Λ = {n = (n1, n2, n3, n4) nµ = (0, . . . Nµ − 1)} (1.21)

and depicted in Fig. 1.1. We restrict ourselves to a spatial box size of NS = N1 =
N2 = N3 and a temporal extent of NT = N4. For typical applications one sets
NT > NS . Physical sites are given in terms of x = a · n and the momentum space
lattice is defined according to

Λ̃ =
{
p = (p1, p2, p3, p4)

∣∣∣ pµ = 2π
aNµ

(kµ + θµ) , kµ = −Nµ

2 + 1, . . . , Nµ

2

}
. (1.22)

Figure 1.1: Three dimensional lattice Λ. Sites are shown as circles and the distance
between to sites is a.
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The discretization of space-time yields two types of regulators. The lattice spacing
a plays the role of the ultraviolet regulator while the finite size of the lattice yields
a maximal momentum

pmax
µ = 2π

aNµ
·
(
Nµ

2 + θµ
)

(1.23)

making the theory infrared safe. To obtain physical results one must remove both
regulators in a systematic fashion. The two necessary steps are performed by taking
the continuum limit a→ 0 as well as the infinite volume limit Nµ →∞.

The parameter θµ in Eq. (1.22) is used to impose boundary conditions. Anti-periodic
boundary conditions are obtained by θµ = 1/2 and periodic boundary conditions with
θµ = 0. In typical lattice QCD calculations, one uses periodic boundary conditions in
space-like directions to maintain translational invariance. In temporal direction one
imposes periodic boundary conditions for the gauge fields and anti-periodic boundary
conditions for the fermions. However, one is not restricted to θµ = 1/2 or θµ = 0.
Arbitrary values can be used instead, refereed to as twisted boundary conditions.
Imposing them to quark fields has the advantage to adjust the otherwise static lattice
momenta

pµ = 2π
aNµ

(kµ + θµ) .

1.5 Free fermion discretization

After the discretization of the Euclidean space-time one must define a discrete action.
In this section we consider the Euclidean continuum action in Eq. (1.19) for fermions
in the free case

SF
[
A = 0 ,Ψ ,Ψ

]
=
∫

d4x
[
Ψ(x) (γµ∂µ +m) Ψ(x)

]
. (1.24)

For simplicity we consider only a single quark flavor but the generalization to more
flavors is straight forward. Several steps are necessary to obtain a lattice version.
First, one uses spinors which are defined only on the lattice sites Ψ(x)→ Ψ(x = an)
with n ∈ Λ. This step is crucial because it makes the number of fermionic degrees
finite (c.f. Fig. 1.1). Subsequently one converts the derivative operator ∂µ . Note that
this conversion is not unique. As a preliminary step we consider a Taylor expansion
of an one-dimensional function f (z) evaluated at z − a and z + a [9]

f (z − a) = f (z)− a
1 f
′(z) + a2

2 f
′′(z)− a3

6 f
′′′(z) + . . . , (1.25)

f (z + a) = f (z) + a
1 f
′(z) + a2

2 f
′′(z) + a3

6 f
′′′(z) + . . . . (1.26)
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Subtraction of Eq. (1.25) from Eq. (1.26) yields the so-called symmetric derivative

f ′(z) = f (z + a)− f (z − a)
2a +O(a2) , (1.27)

which is a generalization of the ordinary derivative. Symmetric derivatives are usu-
ally used because they have discretization errors which are quadratic in a. The
generalization to multiple directions µ is straight forward

∂µΨ(x) = Ψ(x + aµ̂)−Ψ(x − aµ̂)
2a +O(a2) . (1.28)

µ̂ represents the unit vector in the µ direction. Finally, one replaces the integral in
Eq. (1.24) by a sum over all lattice sites yield the free fermion lattice action

SΛ
F
[
A = 0 ,Ψ ,Ψ

]
= a4

∑

x∈Λ

Ψ(x)
( 4∑

µ=1

γµ
Ψ(x + aµ̂)−Ψ(x − aµ̂)

2a +mΨ(x)
)
,

(1.29)

The continuum formulation can be restored in the limit a → 0 where the physical
volume of the lattice must be kept fixed. Note that this action is not gauge invariant.

1.6 Gauge links

Gauge links are the most fundamental objects in lattice QCD. They have several
remarkable properties and play a special role as integration variables in the lattice
QCD path integral. In contrast to the so far introduced lattice spinors they are
oriented and commonly denote as Uµ(x). The orientation is manifested by the index
µ. A link Uµ(x) defined for the lattice site x = an connects x with any adjacent
site (x + aµ̂). Gauge links in backward direction are written as U−µ(x). Forward
and backward links are not independent but connected via U−µ(x) ≡ U†µ (x − aµ̂) . A
graphical representation in three dimensions is presented in Fig. 1.2.

x̂

ẑ

(a) Forward links.

x̂

ẑ

(b) Backward links.

Figure 1.2: Gauge links Uµ(x) are oriented objects, represented by arrows along the
µ direction. The starting site x = an is depicted as blue square.
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The construction of the gauge links is connected to a continuum object known as
gauge transporter

G(x, y) ≡ P exp
(

i
∫

C(x,y)

A · ds
)
. (1.30)

The gauge transporter is the path ordered integral over the algebra valued gauge
fields Aµ along a curve C connecting the points x and y. P denotes path-ordering
of the colour matrices along the line C(x, y). The gauge links can be interpreted as
infinitesimal versions of the continuum gauge transporter

Uµ(x) ≡ exp (iAµ(x)a) . (1.31)

This becomes obvious in the limit a→ 0 where the integral in Eq. (1.30) is approxi-
mated by the gluon field times the lattice spacing a. Since only a single gluon field
is involved the path ordering becomes trivial and one can drop the operator P. The
transformation properties of the the links under a local gauge rotation are

Uµ(x)→ U ′µ(x) = Ω(x)Uµ(x) Ω† (x + aµ̂) , (1.32a)
U−µ(x)→ U ′−µ(x) = Ω(x)U−µ(x) Ω† (x − aµ̂) . (1.32b)

Gauge links are the building blocks for the construction of gauge invariant objects. A
piecewise continuous string of gauge links form the lattice gauge transporter, i.e., the
lattice counterpart of Eq. (1.30). An example of such a setup is shown in Fig. 1.3.

x̂

ẑ

Figure 1.3: Lattice version of the gauge transporter constructed in terms of gauge
links. The gauge transporter connects the sites x and y ≡ x +a(3x̂ + 2ŷ+ 2ẑ) which
are depicted as blue squares respectively. The site x is shown on the bottom left
corner.
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The corresponding algebraic expression of the lattice gauge transporter, shown in
Fig. 1.3, is given below

P(U) = Ux (x) Uz(x + ax̂) Uy(x + ax̂ + aẑ) · · ·Ux (x + 2ax̂ + 2aŷ+ 2aẑ) . (1.33)

The ellipsis are used to indicate the remaining links which are not explicitly shown
for notational convenience. Applying a gauge transformation to Eq. (1.33) yields

P(U ′) = Ω(x)Ux (x)1Uz(x + ax̂)1Uy(x + ax̂ + aẑ)1 · · ·
· · · 1Ux (x + 2ax̂ + 2aŷ+ 2aẑ)Ω(y)
= Ω(x)PUΩ(y)† , (1.34)

A whole class of gauge invariant objects can be constructed by forming a closed loop

Pclosed(U ′) = Tr
[
Ω(x)Pclosed(U)Ω(x)†

]
= Pclosed(U) . (1.35)

1.7 Naive fermion action

The definition of local gauge invariance within the lattice framework is similar to the
continuum formulation. Lattice spinors transform according to

Ψ(x)→ Ψ′(x) = Ω(x) Ψ(x) , (1.36a)
Ψ(x)→ Ψ′(x) = Ψ(x) Ω† (x) , (1.36b)

with Ω(x) ∈ SU(3) . Applying these transformations to the mass term in Eq. (1.29)
yields an extra term

Ψ(x) Ω† (x) Ω(x + aµ̂) Ψ(x + aµ̂)−Ψ(x) Ω† (x) Ω(x − aµ̂) Ψ(x − aµ̂)
2a ,

which breaks gauge invariance. This can be fixed by a proper usage of the gauge
links introduced in the last section. A gauge invariant fermion action, according to
the transformations defined in Eqs. (1.36a, 1.36b, 1.32), is given by

SΛ
F
[
U,Ψ,Ψ

]
= a4

∑

x∈Λ

Ψ(x)
( 4∑

µ=1

γµ
Uµ(x)Ψ(x + aµ̂)− U−µ(x)Ψ(x − aµ̂)

2a +mΨ(x)
)

(1.37)

This action approaches the continuum formulation in the limit of a→ 0 which can be
shown by a Taylor expansion of Eq. (1.31) [9]

Uµ(x) = 1 + iAµ(x)a+O(a), U−µ(x) = 1 + iAµ(x − aµ̂)a+O(a) ,
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where we used Aµ = A†µ . Substituting this expression into Eq. (1.37) yields

SΛ
F
[
A,Ψ,Ψ

]
= SΛ

F
[
A = 0,Ψ,Ψ

]
+ SΛ

F
[
A,Ψ,Ψ

]
+O(a) . (1.38)

The first term on the right hand side is the free fermionic continuum action

SF
[
A = 0 ,Ψ ,Ψ

]
=
∫

d4x
[
Ψ(x) (γµ∂µ +m) Ψ(x)

]
. (1.39)

The second term describes the interaction with the gauge field

SΛ
F
[
A,Ψ,Ψ

]
= i

2a
4
∑

x∈Λ

4∑

µ=1

Ψ(x)γµ
(
Aµ(x)Ψ(x + aµ̂) +Aµ(x − aµ̂)Ψ(x − aµ̂)

)

= ia4
∑

x∈Λ

4∑

µ=1

Ψ(x)γµAµ(x)Ψ(x)

=
∫

d4xΨ(x)iγµAµ(x)Ψ(x) , (1.40)

where we used the following approximations in the second step

Ψ(x ± aµ̂) = Ψ(x) +O(a) , Aµ(x − aµ̂) = Aµ(x) +O(a) . (1.41)

Substituting Eq. (1.40) and Eq. (1.39) into the right hand side of Eq. (1.38) yields

SF
[
A ,Ψ ,Ψ

]
=
∫

d4xΨ(x)
[
γµ∂µ +m+ iγµAµ(x)

]
Ψ(x)

=
∫

d4xΨ(x)
[
γµDµ +m

]
Ψ(x) . (1.42)

which proves that the continuum action is restored in the in the limit a → 0. Note
that Eq. (1.37) can be written as

SNF
[
U,Ψ,Ψ

]
= a4

∑

m,n∈Λ

∑

αβ

∑

ab

Ψ(n)αa DN (n|m)αβab Ψ(m)βb , (1.43)

with the naive Dirac operator

DN (n|m)αβab =
4∑

µ=1

(γµ)αβ
Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m

2a +mδαβδabδnm , (1.44)

which is a compact and common notation in lattice QCD. In this step we substitute
Λ→ N to indicate the type of the lattice action.
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1.8 Fermion doubling

The naive fermion action introduced previously has a serious drawback because it
yields non-physical degrees of freedom, called doublers. To examine this phenomena
we follow [9] and compute the Fourier transform of Eq. (1.44) for the free case U = 1,
to obtain the lattice Dirac operator in momentum space

D̃(p) = m+ i
a

4∑

µ=1

γµ sin(pµa) . (1.45)

The operator in Eq. (1.45) has the following inverse [9]

D̃−1(p) =
m− ia−1∑

µ
γµ sin(pµa)

m2 + a−2∑
µ

sin(pµa)2 , (1.46)

providing the basis for the following discussion. We consider the massless, free
continuum quark propagator. It is obtained from Eq. (1.46), in the limit a → 0 while
physical momentum is kept fixed

D̃−1
m=0(p) =

−ia−1∑
µ
γµ sin(pµa)

+a−2∑
µ

sin(pµa)2
a→0−−→ −i

∑

µ

γµpµ
p2 (1.47)

As expected, we obtain the free continuum propagator in momentum space, which has
exactly on pole for p = (0, 0, 0, 0). This is in contrast to the free lattice propagator
in momentum space, which has in addition 15 (unphysical) poles (c.f. Eq. (1.46)). For
instance, at ppole = (π/a, π/a, π/a, π/a).

1.9 Wilson fermions

In [10] Wilson demonstrated a solution to the fermion doubling problem. He proposed
to add an additional term to the fermion action which vanishes in the continuum
limit but removes the doublers for non-vanishing values of a. How this works can be
understood best in momentum space [9]. To that end, one considers a modified version
of Eq. (1.45)

D̃(p) = m+ i
a

4∑

µ=1

γµ sin(pµa) + 1
a

4∑

µ=1

(1− γµ cos(pµa)) . (1.48)
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The additional term vanishes for pµ = (0, 0, 0, 0) and yield extra mass contributions
for the doublers, parametrized by

mdoubler = m+ l
a ,

where l denotes the number of pµ components with pµ = π
a . The term l

a becomes large
in the limit a → 0 and thus decouples the doublers from the theory. The operator
in position space is obtained via inverse Fourier transformation, applied after the
inversion of Eq. (1.48). To make this operator gauge invariant one needs to introduce
suitable1 gauge links. This yields the Wilson’s Dirac operator

D(n|m)αβab = (m+ 4
a )δαβδabδnm −

1
2a

±4∑

µ=±1

(1− γµ)αβUµ(n)abδn+µ̂,m (1.49)

where we define γ−µ = −γµ . This operator obeys the following relation,

D(n|m)† = γ5D(m|n)γ5 , (1.50)

known as γ5-hermiticity. It can be used to show that the eigenvalues of D are either
real or come in complex-conjugate pairs which implies that the determinate of D must
be real. This is an important requirement for Monte-Carlo simulations. However,
also this discretized action is not perfect. While it is doubler-free by construction it
explicitly breaks chiral symmetry on the lattice2. In case that chiral symmetry is of
crucial importance, one has to consider a generalization of chiral symmetry on the
lattice by means of the Ginsparg-Wilson relation [14].

1.10 Discretization of the gluonic part

In this section we construct the Wilson gauge action [1, 9]. Again, we require that the
discretized action is invariant under local gauge transformations and shall recover the
continuum action in the limit a→ 0. To this end we define an object called plaquette

Uµν(x) = Uµ(x)Uν(x + aµ̂)U†−µ(x + aν̂)U†−ν(x) (1.51)

and illustrate it in Fig. 1.4. This object is gauge invariant by construction since it is a
closed string of lattice gauge links. The plaquette can be connected to the continuum

1More information can be found in [9].
2This follows from the no-go theorem by Nielsen and Ninomiya [11, 12, 13]
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field strength tensor by3

Uµν(x) = exp
(

ia2Fµν(x) +O(a3)
)
, (1.52)

and it used to define the Wilson gauge action

SΛ
G [U ] ≡ β

3
∑

x ∈Λ

∑

µ<ν
Re Tr

[
1− Uµν(x)

]
. (1.53)

The summation over indices µ and ν is restricted to µ < ν which reflects that only one
orientation per plaquette contributes. The real-valued parameter β is a function of
the bare coupling and given by β = 6/g2. In the limit of a→ 0 this action reproduces
the continuum action. This can be seen by inserting the Taylor expansion of Equation
(1.52) into Eq. (1.53) which yields [9]

SΛ
G [U ] a→0−−→ 1

2g2a
4
∑

n∈Λ

∑

µν
Tr [Fµν(an)Fµν(an)] +O(a2) =

1
2g2

∫
d4x Tr [Fµν(x)Fµν(x)] +O(a2) =

1
4g2

∫
d4xFA

µν(x)FA
µν(x) +O(a2) =

1
4

∫
d4xFA

µν(x)FA
µν(x) +O(a2) . (1.54)

In the last step we absorbed the coupling into the definition of the gauge fields.

Space-time direction µ 6= ν

S
pa

ce
-t

im
e

di
re

ct
io

n
ν6=

µ

Figure 1.4: Graphical representation of a plaquette Uµν(x). The lattice site x = an
is shown in blue.

3More details can be found in [9].
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1.11 Clover Wilson Fermion

The clover fermion action is an O(a)-improved version of the Wilson quark action. By
adding

SΛ sw
F
[
U,Ψ,Ψ

]
= cswa5

∑

x∈Λ

∑

µ<ν
Ψ(x) 1

2σµνF̂µν(x)Ψ(x) (1.55)

to the Wilson action in Eq. (1.49) one can eliminate the O(a) errors brought by the
Wilson term while keeping the doublers away. The Sheikholeslami-Wohlert coeffi-
cient csw is a real valued function of the bare coupling g0 and needs to be determined
numerically. F̂µν is a lattice version of the field strength tensor. Its definition is not
unique, but a common choice is [9]

F̂µν(x) = −iQµν(x)− Qνµ(x)
8a2 (1.56)

where the Qµν(x) is the sum of plaquettes.

Qµν(x) = Uµν(x) + Uν−µ(x) + U−µ−ν(x) + U−ν−µ(x) . (1.57)

Qµν(x) is the so-called clover term. A graphical representation is given in Fig. 1.5.

Space-time direction µ

S
pa

ce
-t

im
e

di
re

ct
io

n
ν

Figure 1.5: The clover term Qµν(x). The blue site represents x .

1.12 Fermionic expectation values

So far, we introduced fermionic fields Ψf (x)αa to describe spin 1/2 quark fields. These
fields are complex valued Grassmann number, i.e., they anti-commute which is closely
related to the he Pauli exclusion principle. It states, that two identical fermions can
not occupy the same quantum state. This requirement is implemented by a Grassmann
algebra [15] over the complex numbers which is an associative algebra generated by
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a set of generators θi with i ∈ {1 . . . Ng} that satisfy the anti-commutation relations

θiθj = −θjθi . (1.58)

In essence, this gives rise to the following rules for fermionic fields [9]

Ψf1(x1)α1
a1

Ψf2(x2)α2
a2

= −Ψf2(x2)α2
a2

Ψf1(x1)α1
a1

(1.59a)
Ψf1(x1)α1

a1
Ψf2(x2)α2

a2
= −Ψf2(x2)α2

a2
Ψf1(x1)α1

a1
(1.59b)

Ψf1(x1)α1
a1

Ψf2(x2)α2
a2

= −Ψf2(x2)α2
a2

Ψf1(x1)α1
a1

(1.59c)

Beside these simple rules one can establish differential and integral calculus on
Grassmann numbers. This however, is not discussed here, it can be found in [9].
For our purpose, it is sufficient to use the results. We are interested in fermionic
expectation values, formulated within the path integral formalism

〈
Ψf1(x1)α1

a1
. . .Ψfk (x2)αkak . . .Ψg1(y1)β1

b1
. . .Ψgk (y2)βkbk

〉
=

∫
D
[
U,Ψ,Ψ

] (
Ψf1(x1)α1

a1
. . .Ψfk (x2)αkak . . .Ψg1(y1)β1

b1
. . .Ψgk (y2)βkbk

)
eΨ·D[U ]·Ψ−SG [U ]

Z .

In this expression we introduced the fermion matrix D, which is an abbreviation for
the discretized Dirac operator (cf. Eq. (1.49)). For further simplicity, we only consider
a single quark flavor. Note that the gluonic degrees of freedom are given in terms of
the gauge links U . With SG [U ] we denote the discretized version of the gluonic action
(cf. Eq. (1.53)). Applying the rules of Grassmann integration and Wick’s theorem [9]
we can integrate out the fermionic degrees of freedom which yields

〈
Ψf1(x1)α1

a1
. . .Ψfk (x2)αkak . . .Ψg1(y1)β1

b1
. . .Ψgk (y2)βkbk

〉
=

∫
D [U ]

〈
Ψf1(x1)α1

a1
. . .Ψfk (x2)αkak . . .Ψg1(y1)β1

b1
. . .Ψgk (y2)βkbk

〉

W
det (D[U ]) e−SG [U ]

Z .
(1.60)

This expression contains the Wick contraction 〈. . . 〉W . It maps Grassmann valued
field operators to a sum of products of quark propagators. A single quark propagator
G[U ] is by definition just the inverse of the Dirac operator D[U ]. This object plays a
fundamental role because it describes the probability amplitude for a quark. In the
most simplest case of two fields the Wick contraction yields

〈
Ψf1(x1)α1

a1
Ψg1(y1)β1

b1

〉

W
= δf1g1 Gf1 [U ](x1, y1)α1β1

a1b1
. (1.61)
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1.13 Monte Carlo integration

The topic of this section concerns the numerical evaluation of the path integral defined
in Eq. (1.60). Therefore, we consider the special case of two4 fermionic fields

〈
ΨF (x1)α1

a1
ΨF (y1)β1

b1

〉
= 1
Z

∫
D [U ]

〈
ΨF (x1)α1

a1
ΨF (y1)β1

b1

〉

W
det (D[U ]) e−SG [U ] =

1
Z

∫
D [U ] GF [U ](x1, y1)α1β1

a1b1
det (D[U ]) e−SG [U ] . (1.62)

Here, one can use, the discretized versions of the actions. However, the dimensionality
is far too large for a direct evaluation. The number of integration variables is 4×NS×
NT × 8. The factor 8 originates from the gauge links, which are 3× 3 matrices, with
8 independent real components. High dimensional integrals are usually estimated by
means of Monte Carlo techniques. The basic idea is as follows

〈
ΨF (x1)α1

a1
ΨF (y1)β1

b1

〉
= 1
Z

∫
D [U ] GF [U ](x1, y1)α1β1

a1b1
det (D[U ]) e−SG [U ]

≈ 1
Nconf

Nconf∑

n=1

det (D[Un]) e−SG [Un ] GF [Un](x1, y1)α1β1
a1b1

≈ 1
Nconf

∑

Un with
probability∝

det (D[Un ]) exp (−SG [Un ])

GF [Un](x1, y1)α1β1
a1b1

(1.63)

Using this ansatz, one can expect an error term which is proportional to O(N−
1
2

conf ).
This however, is only valid if the generated configurations (Un) are sampled from the
equilibrium distribution. The time spent to reach this point is called thermalization
time. Further important details have their origin in the fermion determinant. Usually,
it is required to be positive definite to allow for a statistical interpretation. While this
is the case for Wilson fermions, there are other situations giving rise to a complex
determinant. For instance, if a non-zero chemical potential is considered. Problems of
that type, are usually referred to as the sign problem, an unsolved problem and thus
a topic of active research. We remark, that nowadays the determinant is included
in the probability weight. This is referred to as dynamical simulation, in contrast
to the quenched approximation, where the determinant is set to one. The standard
algorithm for dynamical simulations it the Hybrid Monte Carlo (HMC) algorithm [16].
This algorithm, includes the determinant, but not directly because it is infeasible since
the cost is proportional to O((NSNTNcNs)3). However, one can reformulate the action
as shown in [17]. This circumvents the evaluation of the determinant by converting
fermion integrals to equivalent integrals over effective boson degrees of freedom. In

4A generalization to more than two fields is straight forward.
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case of lattice QCD, with two flavors of degenerate Wilson fermions, one obtains

det (D†D) ∝
∫
D
[
ϕ , ϕ†

]
e−|D−1ϕ|2 (1.64)

The auxiliary fields ϕ are called pseudo-fermions and have the same degrees of
freedom as their fermionic counterparts. The action of this theory

S [U ,ϕ] = SG [U ] + |D−1ϕ|2 (1.65)

An important detail in Eq. (1.65) is that it contains the inverse of the Dirac operator,
yielding a non-local problem. In the following, we assume, that the necessary gauge
configurations are provided and refer the interested reader to [9, 18, 19] for more
details about HMC.

1.14 Point-to-all propagator

After the generation of gauge configurations Un, one can start to measure physics on
them. In this section we discuss the calculation of quark propagators, the building
blocks for many lattice QCD calculations. The theoretical basis, introduced previously,
is the expectation value for fermionic operators as shown in Eq. (1.63). It requires the
inversion of large matrices, a common problem in lattice QCD. In particular, one is
confronted with

G[Un]F (x ′, x)α ′αa′b ≡ D[Un]−1
F (x ′, x)α ′αa′b . (1.66)

In general, this does not raise a problem as long as the condition number5 of D[Un]
is well-behaved and the dimension of the matrix is not too large. However, in lattice
QCD one faces (NS × NT × Ns × Nc)2 matrix elements. This expression contains
the spatial volume of the lattice (NS ), the temporal extent (NT ), the number of spin
indices (Ns = 4) as well as the number of color indices (Nc = 3). Even for medium-
sized lattices, a full inversion is not feasible. Fortunately, for most applications, it is
sufficient to invert only a single column of the Dirac operator, justified by translational
invariance. One considers source objects, in the simplest case, a point source,

η(x, x0)ββ0
bb0
≡ δxx0δββ0δbb0 , (1.67)

where the spatial component of x0 is randomly chosen. The actual value of the
temporal component must be defined, but it depends on the considered problem. The
point source can be used to define a relation between the point-to-all propagator and

5For lighter quark masses the condition number grows.
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the all-to-all propagator

D[Un]−1
F (x ′, x0)αβ0

ab0︸ ︷︷ ︸
point−to−all prop.

= D[Un]−1
F (x ′, x)αβab︸ ︷︷ ︸

all−to−all prop.

·η(x, x0)ββ0
bb0
. (1.68)

Applying the Dirac operator D[Un]F (y′, x ′)α ′αa′a from the left to Eq. (1.68) yields

D[Un]F (y′, x ′)α ′αa′a︸ ︷︷ ︸
A

·D[Un]−1
F (x ′, x0)αβ0

ab0︸ ︷︷ ︸
ϕ(x0)(β0 b0)

= η(y′, x0)α
′β0
a′b0︸ ︷︷ ︸

η(x0)(β0 b0)

. (1.69)

This equation is of the general form

A · ϕ(x0)(β0 b0) = η(x0)(β0 b0) . (1.70)

For a fixed space-time position x0, Eq. (1.70) must be solved for all twelve combinations
of β0 and b0 to obtain the solution vectors ϕ(x0)(β0 b0). Note that A is a sparse matrix,
i.e., most matrix elements are zero. Depending on the symmetries6 of A this procedure
is numerically feasible. Which solver one uses depends on the problem, for instance
on the quark mass. All currently-used solvers are (combinations of) Krylov-subspace
methods. An introduction can be found in [9, 18].

1.15 Smearing

A further standard method which is commonly used in lattice QCD calculations is
referred to as smearing. It is an attempt to improve the overlap with the physical
ground state. This in turn helps to suppress unwanted excited-state contributions.
The physical motivation for smearing is the following: Hadrons are not point like
objects but have a physical extent. However, this is not reflected by our point-like
interpolators. The application of quark smearing increases the overlap of the lattice
and continuum wave functions. It produces a spatial distribution around the quark,
located on a certain lattice site. In general, one distinguishes between gauge link
smearing and quark field smearing. However, in many smearing schemes, both types
of smearing are used simultaneously. A concrete example of quark smearing is the
gauge covariant Wuppertal smearing [20, 21]. For simplicity, we suppress the flavor
index of the quark fields as well as the time and spin indices (smearing is diagonal
in time/spin). The m-th smeared quark field Ψ(x)(m) located at spatial position x is

6Note that the Wilson Dirac operator is not hermitian, which is generally not advantageous. How-
ever, one can formulate an equivalent problem for Eq. (1.70) which exploits the γ5-hermicity symmetry
and gives rise to a hermitian operator.
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constructed by

Φ(x)(m) = 1
1 + 6δ



Ψ(x)(m−1) + δ
±3∑

j=±1

U(x)j Ψ(x + aj)(m−1)



 , j = (δ1,j , δ2,j , δ3,j ) .

(1.71)

The parameter δ is a positive constant and the arbitrary normalization factor 1
1+6δ

is introduced to avoid a numerical overflow for large iteration counts m [22]. The
smearing procedure contains the gauge link U(x)j , with spatial direction index j .
Usually, smeared gauge links are used in this context. For instance, APE smearing
[23], which is a commonly used link smearing procedure. The n-th APE smeared
gauge link U(x)(n)

j is obtained by

U(x)(n)
i = PSU3



α U(x)(n−1)
i +

3∑

|j |6=i

U(x)(n−1)
j U(x + aj)(n−1)

i U(x + ai)(n−1)†
j



 (1.72)

The projection operator PSU3 is used to ensure that the smeared gauge links are still
elements of the SU(3) gauge group. The smearing parameters, α and δ , must be
tuned as well as the number of iteration steps, m and n. The tuning depends on the
actual purpose, hence, it can not be discussed here in general.
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2
Generalized Form Factor from lattice

QCD

In this chapter, based on Ref. [5], results for generalized form factors (GFFs) are
presented. GFFs are related to generalized parton distributions (GPDs) which play
an important role in the understanding of hadron structure. For instance, GPDs
parametrize the transverse coordinate distribution of partons in a fast moving hadron
and contain information on how these distributions depend on the parton and hadron
spin direction. The theoretical understanding of GPDs and GFFs is well advanced
and has already a long history [24, 25, 26, 27, 28, 29, 30]. However, accessing GPDs
experimentally is still a hard task, for instance, it is not straight forward to include
spin effects in the experimental analysis as demonstrated in [31, 32, 33]. In total there
are eight nucleon GPDs, however, some of them are especially important because
they provide information on the elusive orbital angular momentum of partons in the
nucleon. The physical interpretation of it is not straightforward, because there exist
inequivalent definitions of orbital angular momentum [26, 34, 35, 36, 37]. Comple-
mentary to experimental efforts, lattice QCD offers an ab initio method to compute
quantities which can be used to supplement the understanding of the hadronic struc-
ture, for instance [4, 5, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. The focus in this
work is on nucleon GFFs which are Mellin moments of nucleon GPDs. By computing
GFFs and not GPDs one circumvents the problem that GPDs are expressed in terms
of bi-local operators which can not be computed directly on a Euclidean lattice.
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2.1 Ensemble overview

The computation of GFFs on the lattice is based on the large set of gauge con-
figurations produced by the QCDSF and the RQCD (Regensburg QCD) Collabora-
tions using the standard Wilson gauge action with two mass-degenerate nonperturba-
tively improved clover fermions. Three different lattice spacings 0.081 fm, 0.071 fm and
0.060 fm are available. The pion masses range from about 490 MeV down to 150 MeV.
In terms of Lmπ , values from about 3.4 up to 6.7 are covered. An ensemble overview
is presented in Fig. 2.1. A more detailed description can be found in Table A.1.
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Figure 2.1: Colors encode the lattice spacings and symbols the lattice extents. The
horizontal lines separate different volume ranges. Taken from [50].

2.2 Introduction to GPDs and GFFs

GPDs appear in hard exclusive processes such as Deeply Virtual Compton Scatter-
ing (DVCS). The corresponding amplitude can be expressed as a convolution of a
perturbatively calculable hard-scattering part and the generalized parton distribution
functions. The separation into two parts, valid for large photon virtualties, is known as
factorization theorem [51]. GPDs parametrize the off-forward nucleon matrix element

MΓ
q(x) =

∫ ∞

−∞

dλ
4π e

iλx 〈N(p′, σ ′)|OΓ
q (λ)|N(p, σ )

〉
(2.1)
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of a bilocal operator with quark flavor q

OΓ
q (λ) = q̄ (−λn/2) Γ U+λn/2

−λn/2 q (+λn/2) . (2.2)

The Wilson line U in Eq. (2.2) connects −λn/2 and +λn/2 on the light cone (n2 = 0).
Depending on the Dirac structure, indicated by the symbol Γ in Eqs. (2.1) and (2.2),
one can parametrize the matrix elementM in terms of GPDs. For leading twist these
read (see, e.g., Refs. [52, 53]),

Mγµ
q = U(p′, σ ′)

[(
γµ

iσµν∆ν
2mN

)
·
(
Hq(x, ξ, t)
Eq(x, ξ, t)

) ]
U(p, σ ) , (2.3a)

Mγµγ5
q = U(p′, σ ′)

[(
γµγ5
∆µγ5
2mN

)
·
(
H̃q(x, ξ, t)
Ẽq(x, ξ, t)

) ]
U(p, σ ) , (2.3b)

Miσµν
q = U(p′, σ ′)









iσ µν
γ [µ∆ν ]

2mN
p[µ∆ν ]

m2
N

γ [µpν ]

mN




·





Hq
T (x, ξ, t)

Eq
T (x, ξ, t)

H̃q
T (x, ξ, t)

Ẽq
T (x, ξ, t)








U(p, σ ) , (2.3c)

with σ µν = i [γµ, γν ]/2 and the nucleon spinors U(p′, σ ′) and U(p, σ ). The GPDs,
e.g., Hq and Eq, and the corresponding tensor structures γµ and iσ µν∆ν/(2mN ) are
written as vectors, where we apply a standard scalar product. We further introduce
the kinematic variables ∆ ≡ p′ − p and p ≡ (p′ + p)/2 as well as the nucleon mass
mN . The antisymmetrization of indices is denoted by [. . .], e.g.,

B [µC ν ] ≡ AµνBµC ν ≡ BµC ν − C νBµ .

The eight introduced generalized parton distribution functions, Hq, Eq, H̃q, Ẽq Hq
T , Eq

T ,
H̃q
T and Ẽq

T are real functions of the three variables x , ξ and t. The total momentum
transfer squared t is given by t ≡ ∆2 ≤ 0 and it is related to the virtuality Q2 = −t.
The longitudinal momentum fraction x varies between −1 and 1 and the skewness
ξ ≡ −n ·∆/2 between 0 and 1. In physical terms (for |x| > ξ ) GPDs parametrize the
probability amplitude for a hadron to stay intact if a parton is removed at the light
cone point −λ/2 and replaced by a parton with different momentum at light cone time
λ/2. For a more detailed discussion we refer the reader to Refs. [29, 30, 52, 53, 54,
55].

The four GPDs Hq, Eq, H̃q and Ẽq are referred as quark-helicity conserving GPDs.
Hq and Eq are also known as unpolarized GPDs in contrast to the polarized GPDs
H̃q and Ẽq. The remaining four GPDs Hq

T , Eq
T , H̃q

T and Ẽq
T are quark-helicity flip

GPDs. They provide essential information on the transverse spin structure of the
nucleon. An analogous set of gluonic GPDs exists, however, we do not address it
here. As already mentioned in the introduction of this chapter, we can not compute
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GPDs directly on the Euclidean lattice because the light cone loses its meaning.
However, the operator product expansion (OPE) relates Mellin moments of GPDs to
local matrix elements that are amenable to lattice calculation. For Hq and Eq, for
instance, these x-moments read (see, e.g., Refs. [53, 52])

∫ +1

−1
dx xn−1 Hq(x, ξ, t) =

n−1∑

i=0, even

(−2ξ)iAqni(t) + (−2ξ)n Cq
n0(t)|n=even, (2.4a)

∫ +1

−1
dx xn−1 Eq(x, ξ, t) =

n−1∑

i=0, even

(−2ξ)iBq
ni(t)− (−2ξ)n Cq

n0(t)|n=even , (2.4b)

where the real functions Aq(t), Bq(t) and Cq(t) in the ξ-expansion on the rhs are the
GFFs. In principle one can determine Mellin moments of GPDs for any n on the
lattice, in practice one is restricted to the lowest few n. The reason for this restriction
is twofold. On the one hand, the signal to noise ratio becomes worse for an increasing
number of covariant derivatives. On the other hand as n increases, mixing with lower-
dimensional operators will take place, resulting in divergences that are powers of the
inverse lattice spacing a−1. In this study, we focus on the case n = 2, where such
mixing does not occur. The desired GFFs are extracted from lattice calculations of
two- and three-point correlation functions where the currents are the local twist-2
operators,

Oµν
V ,q(z) = Sµν q̄(z) γµi

←→
D νq(z) , (2.5a)

Oµν
A,q(z) = Sµν q̄(z) γµγ5i

←→
D νq(z) , (2.5b)

Oµνρ
T ,q(z) = AµνSνρ q̄(z)iσ µνi

←→
D ρq(z) . (2.5c)

Here, Sµν and Aµν denote symmetrization (also subtracting traces and dividing by n!
for n indices) and antisymmetrization operators, respectively, and

←→
Dµ ≡

1
2(
−→
Dµ −

←−
Dµ) (2.6)

is the symmetric covariant derivative. In the continuum we can decompose the matrix
elements

〈
N(p′, σ ′)|Oµν

V ,q|N(p, σ )
〉

=U(p′, σ ′)Dµν
V ,qU(p, σ ) , (2.7a)

〈
N(p′, σ ′)|Oµν

A,q|N(p, σ )
〉

=U(p′, σ ′)Dµν
A,qU(p, σ ) , (2.7b)

〈
N(p′, σ ′)|Oµνρ

T ,q |N(p, σ )
〉

=U(p′, σ ′)Dµνρ
T ,qU(p, σ ) , (2.7c)

with the nucleon four-momentum (pµ) = (EN (p ),p ). The desired GFFs are contained
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in the Dirac structures,

Dµν
V ,q = Sµν




γµpν

iσ µρ∆ρpν/(2mN )
∆µ∆ν/mN



 ·




Aq20
Bq

20
Cq

20



 , (2.8a)

Dµν
A,q = Sµν

(
γµγ5pν

γ5∆µpν/(2mN )

)
·
(
Ãq20
B̃q

20

)
, (2.8b)

Dµνρ
T ,q = AµνSνρ





iσ µνpρ
γ [µ∆ν ]pρ/(2mN )
p[µ∆ν ]pρ/m2

N
γ [µpν ]∆ρ/mN



 ·





AqT20
Bq
T20
ÃqT20
B̃T21



 . (2.8c)

2.3 Lattice two- and three-point functions

The GFFs shown in the rhs of Eqs. (2.8) are extracted from combinations of hadronic
two- and three-point correlation functions in Euclidean space-time. The two-point
function reads

C (t′,p ′)τ′τ =
〈
∑

x ′

〈
N (t′, x ′)τ ′ N (0, 0 )τ

〉

W
e−ip′·x ′

〉
(2.9)

where the big brackets 〈. . .〉 are used to denote the ensemble average and 〈. . .〉W
indicates the Wick contraction of the Grassmann valued nucleon annihilation and
creation interpolators N and N

N (t, x )τ ′ = εabc uτ
′

a (t, x )
[
ub(t, x )⊺ C γ5 dc(t, x )

]
, (2.10a)

N (t, x )τ = εabc
[
ūb(t, x ) Cγ5 d̄c(t, x )⊺

]
ūτa(t, x ) , (2.10b)

containing appropriate combinations of u and d (anti)quark fields and the charge
conjugation matrix C. The lattice three-point function is given by

C (τ, t ′,p ′,p )τ′τ =
〈
∑

x ′z

〈
N (t′, x ′)τ ′ O(τ, z )N (0, 0 )τ

〉

W
e−ip ′·x ′e+iz·(p ′−p )

〉
. (2.11)

The definition of the operator O in Eq. (2.11) depends on the desired GFF. For the
vector, axial and tensor GFFs at leading twist-2 the operators are given in Eq. (2.5).
On the lattice we construct our operators as linear combinations of

Oµν
V ,q(z) = q̄(z)γµ←→∇ νq(z) , (2.12a)
Oµν
A,q(z) = q̄(z)γµγ5

←→∇ νq(z) , (2.12b)
Oµνρ
T ,q(z) = q̄(z)iσ µν←→∇ ρq(z) . (2.12c)
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To realize different spin projections and positive parity we use the projector

Pρ = 1
2

(1 + γ4) (−iγργ5)1+δρ,4 (2.13)

and contract it with the open spin indices of Eq. (2.11). For ρ = 1, 2, 3 we obtain
the difference of the spin polarization with respect to the quantization axis ρ, while
ρ = 4 corresponds to the unpolarized case. The positive parity projection is only
correct for zero momentum; however, excited state contributions (including states of
different parity for nonvanishing momentum) are exponentially suppressed at large
Euclidean times τ . In this work, we consider isovector currents O; therefore, all quark
lines in the corresponding Wick contractions of the three-point function are connected.
Three-point functions are constructed by the sequential method [56] which involves
the calculation of sequential propagators with fixed momentum p′(= 0) and fixed sink
time t′. To improve the overlap of our interpolators in Eqs. (2.10) with the physical
ground state, we employ the combination of APE and Wuppertal (Gauss) smearing
techniques as demonstrated in Ref [50]. The number of smearing iterations is tunned
such that no significant lattice spacing dependencies are detected in the effective
mass curve

mN (tf + a/2) = a−1 ln C (tf , 0)
C (tf + a, 0) .

This is demonstrated in Fig. 2.2 where we plot the effective nucleon mass calculated
on ensembles III and X and ensembles I, IV and V. These two groups of ensembles
correspond to similar pion masses but differ in terms of the lattice spacing. For a
more detailed discussion about smearing, we refer the interested reader to Refs. [50,
57, 58].
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Figure 2.2: Effective nucleon masses for five of our ensembles, computed from smeared-
smeared two-point functions. Figure taken from Ref [50].
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2.4 Two-point correlation functions

The two-point correlation function, defined in Eq. (2.9), can be written as

C (t,p ) =
∞∑

i=0

Ai(p ) e−Ei(p ) t . (2.14)

This equation is extremely useful because it allows to determine non-perturbative
quantities, like A0(p ) and E0(p ) from lattice data. In the limit of t → ∞ only the
ground state survives because excited states, with larger energies E0(p ) < E1(p ) <
. . ., decay more quickly

C (t →∞,p )→ A0(p ) e−E0(p ) t ≡ A(p ) e−EN (p ) t . (2.15)

In practice, however, t is finite and excited states contributions are clearly visible in
our correlation functions, e.g., compare Fig. 2.2. For the computation of GFFs it is
necessary that the lattice data obeys the continuum dispersion relation

Ec
N (p ) =

√
m2
N + p 2 , (2.16)

because our matrix element decomposition is only valid for the continuum case. To
test whether this requirement is fulfilled, we extract the nucleon energy according to
a two exponential fit

C (t,p ) = A(p ) e−EN (p ) t + X (p ) e−Y (p ) t (2.17)

The second term in this ansatz, with the two fit parameters X (p ) and Y (p ) is used to
parametrize all remaining excited state contributions. We extract the nucleon energy
EN (p ) from the fit and compare it to the corresponding continuum energy Ec

N (p ) where
we average over all momentum combinations, leading to the same p 2. The results are
summarized in Fig. 2.3. For the extraction of GFFs we only use momenta whose fitted
values for EN (p ) are consistent with Ec

N (p ). In addition, we extract the fit parameter
A(p ) from Eq. (2.17) which is related to the overlap factor Z (p ) according to

A(p ) = Z (p ) EN (p ) +mN

EN (p ) . (2.18)

These factors are needed for the extraction of GFF matrix elements because they do
also appear in the three-point correlation function. Therefore, we compute bootstrap
ensembles (bootstrap size is 500) for our fit parameters. The fit-range dependence is
studied by varying the start time slices ts/a ∈ {2, 3} as well as the final time slice
tf /a. We find that the impact of ts/a on the values for the GFFs is rather mild. Hence,
we fix ts/a = 2 in the following. Fig. 2.4 demonstrate our determination of tf /a.
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Figure 2.3: Overview of the nucleon energies for our ensembles. We compare the
energies EN (p ) and the errors extracted from a two-exponential fit shown as black
error bars with the energies Ec

N expected from the continuum dispersion relation,
which are depicted as colored boxes. Taken from Ref [5].
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tf /a for ensemble IV with EN (p ) = 1.33 GeV; the bottom panel shows the uncorrelated
normalized statistical error of the fit parameters EN and Z . For the case shown we
select the tf /a = 14 result. Taken from Ref [5].
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We also try single exponential fits and find that they give similar results if one
adjusts the fit ranges appropriately. However, the resulting errors on A(p ) are larger.
Hence, we use the two-exponential fit ansatz for our final analysis.

2.5 Renormalization

The computation of GFFs on the lattice involves the renormalization of operators

OMS(µ) = Z (β, µ)MS O(β)

where the renormalization factor Z (β, µ)MS depends on the β value, used in the gauge
action and the renormalization scale µ. The used renormalization factors are products
of perturbative and nonperturbative parts

ZMS
O = ZMS

O,RI′ ZRI′
O,bare .

The nonperturbative factor ZRI′
O,bare translates the bare lattice data to the regulariza-

tion scheme independent momentum subtraction (RI′-MOM) scheme [59, 60], while
the perturbative factor ZMS

O,RI′ matches from the RI′-MOM to the MS scheme in the
continuum. This is calculated in continuum perturbation theory and is known for our
operators to three-loop accuracy [61]. The nonperturbative renormalization factors
ZRI′
O,bare are extracted from the quark propagator in momentum space (color indices are

suppressed)

Sαβ(a, p) = a8

V
∑

xy
e−ip·(x−y) 〈qα (x)q̄β(y)〉

and the three-point functions

Gj ,µ
αβ (a, p) = a12

V
∑

xyz
e−ip·(x−y) 〈qα (x)J j

µ (z) q̄β(y)
〉
,

with the current

J j
µ (z) = q̄(z) Γj←→∇µq(z) = q̄(z)Oj

µ(z)q(z) ,

which are calculated on a subset of gauge configurations in Landau gauge. Γj denotes
one of the sixteen possible products of Euclidean gamma matrices, γn1

1 · · · γ
n4
4 (nµ ∈

{0, 1}). The covariant lattice derivative acts on the respective left or right quark
propagators resulting from the integration over the quark fields. The vertex function
ΓO is constructed for each operator O(0) by combining the appropriate Gj ,µs and
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amputating the fermion legs,

ΓO(a, p) ≡ S−1(a, p)GO(a, p)S−1(a, p) .

The renormalized vertex reads

ΓRO(p, µ2) =
ZRI′
O,bare(a, µ2)
Zq(a, µ2) ΓO(a, p) ,

where the RI′-MOM renormalization condition

1
12 Tr

(
ΓRO
[
Γ(0)
O

]−1
)

!
= 1

∣∣∣∣
p2=µ2

is imposed in the chiral limit. The quark wave function renormalization factor is given
by

Zq(a, µ2) =
−iTr

(
γλp̄λ S−1(a, p)

)

12p̄2

∣∣∣∣∣
p2=µ2

(2.19)

after extrapolation to the massless limit. In Eq. (2.19) we employ the lattice tree-level
expression for the massless quark propagator; i.e., we set ap̄λ ≡ sin(apλ). Simi-
larly, we use the lattice tree-level expression for the Born term Γ(0)

O to reduce lattice
discretization effects. For the example of the operator Oµν

V ,q this reads

Γ(0)
O (p) = i (γµp̄ν + γνp̄µ) .

2.6 Operator multiplets

The calculation of GFFs on the lattice is based on hypercubic space-time implying
that the used operators shall be classified according to the symmetries of the lattice
rather than the full rotational symmetries of continuous Euclidean spacetime O(4).
To that end, operators are classified by irreducible representations of the hypercubic
group H(4) ⊂ O(4). In the case of the vector operator we work with multiplets that
transform according to two distinct irreducible representations of the hypercubic group
H(4) labeled as v2,a and v2,b. These are combinations of the operators in Eq. (2.12a)
given by

Ov2,a
µν = SµνOV

µν with 1 ≤ µ < ν ≤ 4

Ov2,b
1 = 1

2(OV
11 +OV

22 −OV
33 −OV

44) ,

Ov2,b
2 = 1√

2
(OV

33 −OV
44) ,

Ov2,b
3 = 1√

2
(OV

11 −OV
22) ,
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For the axial operator we use the multiplets r2,a and r2,b constructed from combinations
of operators in Eq. (2.12b)

Or2,a
µν = SµνOA

µν with 1 ≤ µ < ν ≤ 4

Or2,b
1 = 1

2(OA
11 +OA

22 −OA
33 −OA

44) ,

Or2,b
2 = 1√

2
(OA

33 −OA
44) ,

Or2,b
3 = 1√

2
(OA

11 −OA
22) ,

In case of the tensor operator we use 16 linear combinations of operators defined
in Eq. (2.12c) classified by two multiplet h1,a and h1,b. The first eight from the h1,a

multiplet

Oh1,a
1 =

√
2
3(O⊺

132 + 1
2O

⊺
123 + 1

2O
⊺
231), Oh1,a

2 =
√

2
3(O⊺

142 + 1
2O

⊺
124 + 1

2O
⊺
241),

Oh1,a
3 =

√
2
3(O⊺

143 + 1
2O

⊺
134 + 1

2O
⊺
341), Oh1,a

4 =
√

2
3(O⊺

243 + 1
2O

⊺
234 + 1

2O
⊺
342),

Oh1,a
5 =

√
2O⊺

2{13}, Oh1,a
6 =

√
2O⊺

2{14},

Oh1,a
7 =

√
2O⊺

3{14}, Oh1,a
8 =

√
2O⊺

3{24} .

and the remaining eight make up the h1,b multiplet.

Oh1,b
9 =

√
1
2(O⊺

122 −O
⊺
133), Oh1,b

10 =
√

1
2(O⊺

211 −O
⊺
233),

Oh1,b
11 =

√
1
2(O⊺

311 −O
⊺
322), Oh1,b

12 =
√

1
2(O⊺

411 −O
⊺
422),

Oh1,b
13 =

√
1
6(O⊺

122 +O⊺
133 − 2O⊺

144), Oh1,b
14 =

√
1
6(O⊺

211 +O⊺
233 − 2O⊺

244),

Oh1,b
15 =

√
1
6(O⊺

311 +O⊺
322 − 2O⊺

344), Oh1,b
16 =

√
1
6(O⊺

411 +O⊺
422 − 2O⊺

433).

The renormalized operator multiplets for the vector, axial and tensor case are

Ov2,a|b
MS (µ) = Z (β, µ)v2,a|bMS O

v2,a|b(β) ,
Or2,a|b

MS (µ) = Z (β, µ)r2,a|bMS O
r2,a|b(β) ,

Oh2,a|b

MS (µ) = Z (β, µ)h2,a|b

MS O
h2,a|b(β) ,

where we use µ = 2 GeV as the renormalization scale. The used renormalization
factors a summarized in Table 2.1. Note that the renormalization factors depend on
the multiplet, i.e., they slightly differ for v2,a and v2,b. A detailed description of the
renormalization procedure, that consists of first nonperturbatively matching from the
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lattice to the RI′-MOM scheme [59, 60] and then translating perturbatively to the MS
scheme, may be found in Ref. [62].

β = 5.20 β = 5.29 β = 5.40
Z v2,aMS 1.090 (19) 1.113 (15) 1.140 (16)
Z v2,bMS 1.096 (17) 1.117 (21) 1.143 (13)
Z r2,aMS 1.083 (16) 1.106 (13) 1.134 (14)
Z r2,bMS 1.118 (16) 1.138 (22) 1.163 (13)

Z h1,a
MS 1.115 (19) 1.141 (19) 1.171 (16)
Z h1,b

MS 1.129 (20) 1.154 (20) 1.184 (16)

Table 2.1: The renormalization factors used to translate our bare lattice data to the
continuum MS scheme at µ = 2 GeV, obtained by reanalyzing the data of Ref. [62]

2.7 Extracting GFFs from lattice data

In the following, we demonstrate the extraction procedure for the vector GFFs. The
axial and tensor GFFs are treated analogously. We start by expanding the three-point
function Eq. (2.11) in terms of energy eigenstates

C τ ′τ (τ, t ′,p ′,p ) = Aτ ′τ · e−EN (p ′) (t′−τ) e−EN (p ) τ + excited states , (2.20)

where the ground state amplitude reads

Aτ ′τ =
∑

σ ′σ

〈
0|N τ ′|N(p′, σ ′)

〉 〈
N(p′, σ ′)|Ov2,a|b

MS |N(p, σ )
〉 〈
N(p, σ )|N

τ
|0
〉

4EN (p ′)EN (p ) . (2.21)

The exponentials contain the energy of the nucleon as a function of the considered
spatial momentum, the Euclidean operator insertion time τ , and the sink time t′. Up
to lattice artifacts, the matrix elements of an operator Oµν

V ,q(z) can be decomposed
according to the Euclidean versions of Eqs. (2.7a) and (2.8a). In doing so, it is
necessary to distinguish between the two multiplets v2,a and v2,b (cf. section 2.6). The
decomposition of the matrix element defined in Eq. (2.21) can be written as

〈
N(p′, σ ′)|Ov2,a|b

MS |N(p, σ )
〉

= U(p′, σ ′) Dv2,a|b
MS U(p, σ ) . (2.22)

Our final expression for the parametrization of the lattice three-point function is

cρV (τ, t ′,p ′,p ) ≡
∑

α,β

PρβαCαβ(τ, t ′,p ′,p ) =

=
√
Z (p ′)Z (p ) FV e−EN (p ′) (t′−τ) e−EN (p ) τ + excited states , (2.23)
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where we included the projection operator Pρ (cf. Eq. (2.13)). The Z factors in
Eq. (2.23) depend on the overlap of our nucleon interpolation operators with the
nucleon ground state. They vary with momentum and smearing and are extracted
from the two-point correlation function as previously discussed in section 2.4. In
Eq. (2.23) we use

FV =
tr
{
Pρ [−i /p′ +mN ] Dv2,a|b

MS [−i /p+mN ]
}

4EN (p ′)EN (p ) with /p ≡ iEN (p )γ4 + p · γ . (2.24)

The desired GFFs are contained in FV and the prefactors can be computed by in-
serting the respective Euclidean γ-matrices. Here, we restrict ourselves to the final
momentum p ′ = 0. Taking all available combinations of operator multiplets, projec-
tions Pρ and momenta p for a fixed virtuality

Q2 = −t =
(
p ′ − p

)2 −
(√

m2
N + p ′2 −

√
m2
N + p 2

)2

, (2.25)

we obtain a linear system of equations

FV = MV · gV . (2.26)

The coefficient matrix MV consists of the prefactors calculated from Eq. (2.24) and FV

is extracted from a fit of Eqs. (2.20) and (2.23) to two and three-point functions. The
desired unknown GFFs are contained in the vector

gV = (A20(t), B20(t), C20(t))⊺ . (2.27)

The number of columns of MV is equal to the number of unknown GFFs (in this case
3), but the number of rows depends on the available combinations. In almost all the
cases this yields an overdetermined system of equations, meaning that the number of
elements in FV , denoted with dim FV , is larger than the number of GFFs. Note that
the individual rows of MV are either real or imaginary.1 For a given ensemble this
system of equations has to be solved separately for each virtuality to yield the GFFs
as functions of t. In general, we write Eq. (2.26) as

F q
Γ = MΓ · gq

Γ , (2.28)

where Γ can take the values V , A, T and gq
Γ is the vector of the respective GFFs

(cf. Eqs. 2.8). Due to equivalent combinations of momenta and polarizations most
rows in the matrix MΓ are equal or differ by a sign only. We average the corre-
sponding three-point correlation functions, which improves the signal-to-noise ratio

1If a row vanishes, then it does not restrict the GFF and we remove it from the system of equations.
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considerably and reduces the number of equations.
Let us now discuss the fitting procedure of lattice three-point functions, the parametriza-

tion of which is given in (2.23). As previously discussed we use the sequential source
method where we set the outgoing nucleon momentum p ′ = 0 for all our ensembles.
This implies that EN (p ′) = mN in Eq. (2.23). The initial energy EN (p ) in Eq. (2.23) is
determined from the continuum dispersion relation (2.16). The momentum restriction,
discussed in section 2.4 translates to a range 0 ≤ Q2 < 0.6 GeV2 for the three-point
functions. With Z (p ′) and Z (p ) having been determined from the two-point correlation
functions, the only free parameter left is Fq

Γ . To achieve ground state dominance, one
has to make sure that aNT � t′ � τ � 0 (cf. Eq. (2.20)). We consider τ ∈ [τs, τe]
where τs is substantially larger than zero and τe substantially smaller than t′. The
sink times vary with the ensemble (see the last column of Table A.1). In section 2.9,
we examine excited state contaminations.

2.8 Solving the overdetermined system of equations

As explained above, for every current Γ = V , A or T , quark flavor q and virtuality −t,
we need to solve the linear system Eq. (2.28), i.e., F = M · g, to extract the relevant
form factors g from the vector of inequivalent matrix elements F that correspond to
nonvanishing rows of M . Here we drop all indices like the quark flavor q and Γ for
convenience. In what follows m denotes the number of independent form factors while
n ≥ m is the length of F . Consequently, M is a n × m matrix of maximal rank, i.e.,
Rank(M) = m. The determination of the form factors is carried out in two ways. The
first method consists of two steps: First, we extract the ground state nucleon matrix
elements Fj from the lattice three-point function data cτj , restricted to the range of
insertion times τ ∈ [τs, τe], through the numerical minimization of the χ2-function

χ2(F
)

=
n∑

j=1

τe∑

τ,τ ′=τs

δcτj
[
cov−1

j
]
ττ ′ δc

τ ′
j , (2.29)

where δcτj is the difference

δcτj = cτj −Fj
√
Z (p ′)Z (p ) e−mN (t′−τ) e−EN (p )τ (2.30)

between the lattice data and the three-point function parametrization Eq. (2.23). The
inverse covariance matrix cov−1

j depends on the insertion times τ and τ ′. One can
easily generalize the fit to the situation of multiple source-sink distances t′ if this is
required or include excited state contributions. The index j ∈ {1, . . . , n} runs over
all possible polarizations ρ and initial momenta p (keeping the virtuality Q2 fixed),
which give nonvanishing contributions. Once the fit parameters Fj are determined,
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one can minimize
ε2 = (Mg− F )2 (2.31)

to determine the form factors g. The total number of parameters for this method is
m+n and, in particular for large virtualities, this number can be quite large (up to 50).
This is not the only problem but it can happen that the resulting ε value is quite large
and it is not clear how one should deal with such a situation. Ideally, ε should be zero
but this is only possible if F is in the image of M (cf. Eq. (2.31)). Motivated by this
observation, we carry out our fits employing a single step method, which combines
the two subsequent steps into a single minimization problem, restricting the number
of fit parameters to the relevant degrees of freedom. We start from the singular value
decomposition,

M = U · Σ · V ⊺ (2.32)

with orthogonal matrices U ∈ Rn×n, V ∈ Rm×m and the matrix Σ ∈ Rn×m, which
has nonvanishing entries only on the diagonal. The pseudoinverse Σ+ is a m × n
matrix that can easily be obtained, computing the inverses of the diagonal elements
of Σ. Each vector F within the image of M can be uniquely expressed as a linear
combination

F (α ) =
m∑

i=1

αi u i (2.33)

of the first m column vectors of U . Note that m = Rank(M). Substituting F 7→ F (α )
in Eq. (2.30) [and thereby Eq. (2.29)], we obtain a modified χ2-function that depends
on the parameters αi, where i ∈ {1, . . . , m}. Finally, we convert the extracted vector
α to the desired GFF vector,

g = [VΣ+U⊺]
m∑

i=1

αi u i = [VΣ+] α , (2.34)

where in the last step Σ+ is truncated to a m × m square matrix. In Fig. 2.5 we
show as example for the nearly physical quark mass ensemble VIII that this method
works very well. In this case, eight different lattice channels, listed in Table 2.2, are
well described in terms of three fit parameters. A comparison of the two fit methods
shows that the results are consistent within errors for all GFFs and for all ensembles.
The single step method, however, results in somewhat smaller statistical errors and
a smoother Q2 dependence, especially for the induced GFFs. In Fig. 2.6, we directly
compare the two methods. For the final results, we only use the correlated single
step method because the resulting fits provide a very satisfactory description of the
data.
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Figure 2.5: Fit results using the single step minimization method. We show ensemble
VIII at the virtuality Q2 = 0.277 GeV2 in the vector channel. This corresponds to a
spatial momentum transfer of 2 · 2π/L, where we have averaged over all equivalent
lattice directions. Three fit parameters α = (α1, α2, α3)⊺ fully describe eight three-
point functions. Colored points lie in the fit range [τs, τe] [cf. Eq. (2.29)]. On the left
we show data for the u quark and on the right for the d quark (omitting disconnected
contributions). The numbers in the legend refer to the channels listed in Table 2.2.
Taken from Ref [5].
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Figure 2.6: Comparison of single step and two step fit methods for the axial GFFs
for ensemble VI. The right panels show Ã20 and B̃20 separately for the u and d quark
(without disconnected contributions), the left panels for the isovector case. Taken from
[5].
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Channel Pρ O k̂ Channel #contrib.
0 P4 Ov2,a

1 4 ±2ê1 imaginary 2
Ov2,a

2 4 ±2ê2 2
Ov2,a

3 4 ±2ê3 2
1 Ov2,b

1 ±2ê1 real 2
±2ê2 2

2 Ov2,b
2 ±2ê1 real 2

±2ê2 2
3 Ov2,b

3 ±2ê1 real 2
±2ê2 2

4 P1 Ov2,a
2 3 ±2ê2, ±2ê3 imaginary 4

P2 Ov2,a
1 3 ±2ê1, ±2ê3 4

P3 Ov2,a
1 2 ±2ê1, ±2ê2 4

5 P1 Ov2,a
3 4 ±2ê2 real 2
Ov2,a

2 4 ±2ê3 2
P2 Ov2,a

3 4 ±2ê1 2
Ov2,a

1 4 ±2ê3 2
P3 Ov2,a

2 4 ±2ê1 2
Ov2,a

1 4 ±2ê2 2
6 P4 Ov2,b

1 ±2ê3 real 2
7 P4 Ov2,b

2 ±2ê3 real 2

Table 2.2: Individual operator contributions to the fits shown in Fig. 2.5. The numbers
in the legend of Fig. 2.5 correspond to the channels below. We parametrize the spatial
lattice momentum q = k̂2π/L in terms of ê1,ê2, and ê3 which are unit vectors in the
three spatial directions.

2.9 Excited states

For some of our ensembles, we have three-point function data for different source-sink
separations. This allows us to analyze the influence of excited states on the GFFs.
Our analysis is based on ensemble IV with five source-sink separations in the range
t′/a ∈ [7, 17] and on ensemble VIII with three source-sink separations in the range
t′/a ∈ [9, 15]. In physical units t′ = 15a corresponds to about 1 fm. Ensemble VIII
has data for eight values of Q2 and this ensemble corresponds to an almost physical
pion mass. We show results only for this ensemble, but our findings are consistent
for both ensembles. For the tensor GFFs Ãu−dT20 , Bu−d

T20 and B̃u−d
T21 we find that within

statistical errors the Q2 dependence is not affected by a variation of t′. Only for Au−dT20

we find a mild dependence for the first virtualities as shown in Fig. 2.7.
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Figure 2.7: The tensor GFFs vs Q2 for different sink times t′ for ensemble VIII.

In Fig. 2.8, we show similar plots for the vector and axial GFFs. For the axial
GFFs Ãu−d20 and B̃u−d

20 we can not detect a significant exited states contamination.
Only in the vector case, Au−d20 and Bu−d

20 , excited state contaminations are clearly
visible. We have tried to parametrize these excited-state contributions to the three-
point function with various multiexponential fit ansätze. This, however, introduces
additional fit parameters, in particular the mass and the energy of the first excited
state. The first excitation in the three-point function can be a multihadron state and
hence its energy will in general not be well approximated by the single particle
continuum dispersion relation. In order to parametrize excited state contributions,
several source-sink separations are required. However, within present statistical
errors little dependence is visible for t′ ≳ 0.9 fm, even in the A20 channel where we
achieve the highest accuracy; Hence, we have restricted, our GFF fits to ranges of
τ where the data are well described by a single exponential (cf. Fig. 2.5). In all the
cases, t′ is larger than 1 fm.
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Figure 2.8: Vector and axial GFFs vs Q2 for different sink times t′ for ensemble VIII.

2.10 Results for nucleon GFFs

In this section, we present our results for the nucleon GFFs on a subset of the
ensembles listed in Table A.1. We restrict ourselves to ensembles with mπ < 300 MeV
and mπL > 3.4 and analyze the quark mass, volume and lattice spacing dependence
in the following subsections. In Fig. 2.9, we plot the legend which is common for all
plots in this section. All results refer to the MS scheme at µ = 2 GeV. We discuss
our results in the following subsections.

mπ = 280 [MeV], E = I

mπ = 295 [MeV], E = IV

mπ = 289 [MeV], E = V

mπ = 290 [MeV], E = V I

mπ = 150 [MeV], E = V III

mπ = 260 [MeV], E = XI

Figure 2.9: Used symbols for the plots shown in this section.
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2.10.1 Vector and axial GFFs

Results for vector GFFs, Au−d20 , Bu−d
20 and Cu−d

20 , are shown in Figs. (2.10, 2.11, 2.12),
respectively, as a function of Q2 = −t. Discretization effects are negligible within
errors (comparing ensembles I and XI, which give about the same pion mass and a
similar value for Lmπ). Also the volume dependence (cf. V and VI) is small, although
there is a slight trend towards larger values for Bu−d

20 if Lmπ increases from about
4.2 to 6.7. For Au−d20 and Cu−d

20 , we do not see any volume dependence within present
errors.

Similar statements hold for the quark mass dependence: For Au−d20 and Cu−d
20 , it is

negligible within errors, but for Bu−d
20 we see a trend towards lower values if the pion

mass decreases down to 150 MeV (cf. VIII and VI). However, the latter could also be
a volume artifact, since there is also a clear correlation between Lmπ and Bu−d

20 (cf.
ensembles VIII, V and VI where Lmπ ' 3.5, 4.2 and 6.7, respectively).

Au−d20 and Bu−d
20 have a roughly linear Q2 dependence for small Q2, and Cu−d

20 is
zero within errors. This agrees with the leading t-dependence expected from covariant
baryon chiral perturbation theory. We like to point out, that also the individual (quark
line connected) u and d quark contributions to Cu−d

20 are zero within error. So the
smallness of this generalized form factor is not due to an approximate cancellation.
For large Q2 we expect that Au−d20 exhibits a dipole-like Q2-dependence, which we
saw in our former study (cf. Fig. 2 of Ref. [42]). Furthermore, note that in the forward
limit (t = 0), Au−d20 equals the average quark momentum fraction.

Results for the axial GFFs are shown in Figs. (2.13, 2.14). A change of volume,
quark mass or lattice spacing has almost no effect on the data. Within errors, these
effects cannot be resolved. Both form factors grow approximately linearly for Q2 → 0.
For B̃u−d

20 the statistical errors become larger for Q2 → 0 whereas the errors for Ãu−d20

are nearly independent of Q2.
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Figure 2.10: Results for Au−d20 as a function of Q2. Legend shown in Fig. 2.9.
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Figure 2.11: Results for Bu−d
20 as a function of Q2. Legend shown in Fig. 2.9.
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Figure 2.12: Results for Cu−d
20 as a function of Q2. Legend shown in Fig. 2.9.
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Figure 2.13: Results for Ãu−d20 as a function of Q2. Legend shown in Fig. 2.9.
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Figure 2.14: Results for B̃u−d
20 as a function of Q2. Legend shown in Fig. 2.9.
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2.10.2 Tensor GFFs

In the following, we show results for the tensor GFFs Au−dT20 , Bu−d
T20 , Ãu−dT20 and B̃u−d

T21

in Figs. (2.15, 2.16, 2.17, 2.18), respectively. The dominant form factors are Au−dT20

and Bu−d
T20 . For the available virtualities Au−dT20 rises linearly for Q2 → 0, while Bu−d

T20

remains more or less constant, well above zero. Overall, the statistical errors for
Au−dT20 are smaller than for Bu−d

T20 . Volume, quark mass or lattice spacing effects cannot
be resolved within errors. The other two GFFs, Ãu−dT20 and B̃u−d

T21 , are smaller in
comparison and, besides a few outliers, are best described by a constant. However,
a final conclusion cannot be drawn as the statistical errors for both GFFs are rather
large. Another interesting quantity is the linear combination

Bq
T20 = Bq

T20 + 2ÃqT20 , (2.35)

which corresponds to the combination of GPDs ET + 2H̃T that is related to the
Boer-Mulders function h⊥1 [63]. Furthermore, it is important for the transverse spin
distribution in the nucleon which will be discussed in Section. 2.14. The results for
Bu−d
T20 are shown in Fig. 2.19. We find that the statistical error of Bq

T20 is significantly
smaller compared to the individual errors of Bq

T20 and ÃqT20.
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Figure 2.15: Results for Ãu−dT20 as a function of Q2. Legend shown in Fig. 2.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Q2 [GeV2]

−0.50

−0.25

0.00

0.25

0.50

B
u
−d
T

20

Figure 2.16: Results for B̃u−d
T20 as a function of Q2. Legend shown in Fig. 2.9.

48



0.0 0.1 0.2 0.3 0.4 0.5 0.6
Q2 [GeV2]

−0.2

−0.1

0.0

0.1

0.2

0.3

Ã
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Figure 2.17: Results for Ãu−dT20 as a function of Q2. Legend shown in Fig. 2.9.
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Figure 2.18: Results for B̃u−d
T21 as a function of Q2. Legend shown in Fig. 2.9.
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Figure 2.19: Results for Bu−d
T20 as a function of Q2. Legend shown in Fig. 2.9.

2.11 Effects on GFFs caused by renormalization con-
stant errors

Our estimates for the renormalization factors carry an uncertainty which has to be
propagated into the GFFs. We do this in a naive but conservative way by carrying
out the whole analysis both using the central values of the renormalization factors
and adding the error of these factors to their central values. The difference between
these two sets of results is then due to the uncertainty of the renormalization. This
procedure is applied to all ensembles and to all the available virtualities Q2. We
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find that the relative error is almost independent of Q2 and the considered ensemble.
Hence, for each GFF we decided to take the largest value of this uncertainty as an
estimator of the error. These relative uncertainties are shown in Table 2.3.

Au−d20 Bu−d
20 Ãu−d20 B̃u−d

20 Au−dT20 Bu−d
T20 Ãu−dT20 B̃u−d

T21 Bu−d
T20

0.019 0.019 0.015 0.034 0.020 0.020 0.020 0.027 0.020

Table 2.3: Relative error of the GFFs for the flavor combination u − d, induced by
the uncertainty of the renormalization constants. This error turns out to be almost
independent of the virtuality.

2.12 Forward limit results

In this section, we present forward limit results for GFFs which do not require an
extrapolation to Q2 → 0. The presented results are obtained from our nearly physical
point ensemble VIII. More specifically, we quote results for

Au−d20 (0) = 〈x〉u−d , Ãu−d20 (0) = 〈x〉∆u−∆d , Au−dT20 (0) = 〈x〉δu−δd . (2.36)

〈x〉u−d is the well-known iso-vector quark momentum fraction and the two remaining
objects are the helicity and transversity moments restrictively. Our results for the
physical point ensemble are summarized in Table 2.4.

Ensemble VIII Value
Au−d20 (0, mπ) 0.213 (11) (04)
Ãu−d20 (0, mπ) 0.240 (07) (03)
Au−dT20 (0, mπ) 0.266 (08) (04)

Table 2.4: Results for Au−d20 , Ãu−d20 and Au−dT20 at the nearly physical pion mass mπ =
150 MeV (ensemble VIII). The first error is statistical, the second error is due to the
uncertainty of the renormalization constants.

2.13 Extraction of Ju−d

The GFFs Aq20(0) and Bq
20(t) are of particular interest since for t = 0 they are related

to the total angular momentum (the Ji sum rule [26]).

Ju−d = 1
2
[
Au−d20 (0) + Bu−d

20 (0)
]
. (2.37)

In order to estimate Ju−d at the physical pion mass, we analyze our data for Au−d20 (t)
and Bu−d

20 (t), employing the BChPT formulas of Ref. [64] truncated at order m3
π . In
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Fig. 2.20, we present the resulting fits for t = 0, where only in the case of Au−d20 we
can directly compare to data points.
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Figure 2.20: From top to bottom Au−d20 (0), Bu−d
20 (0) and Ju−d as a function of the pion

mass squared. The vertical solid line marks the physical pion mass; the vertical dashed
line indicates our smallest pion mass. The A-band is from a fit of all our ensembles
and the B-band from a fit where ensembles with mπ > 300 MeV are removed. For
Au−d20 (0), we have lattice data which are shown in the top panel for comparison. Taken
from Ref [5].

The fits in Fig. 2.20 are parametrized by

Au−d20 (t, mπ) =



1−
(1 + 3g2

A)m2
π log(m

2
π
µ2 )

16 f 2
π π2



 L+m2
πMA

2 +m3
πMA

3 + t(T A
0 +m2

π T A
1 ) ,

(2.38)
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Bu−d
20 (t, mπ) =

g2
Am2

π log(m
2
π
µ2 )

16 f 2
π π2 L+ t(T B

0 +m2
π T B

1 ) +



1−
(1 + 2g2

A)m2
π log(m

2
π
µ2 )

16 f 2
π π2



 LB

+m2
πMB

2 . (2.39)

It is not known in which range of −t and mπ BChPT is applicable. Therefore, we
perform fits to all ensembles (set A) as well as fits using only ensembles with mπ ≤
300 MeV (set B). The fit parameters T A

1 and T B
1 are manually added since our data

extend up to virtualities −t ≈ (770 MeV)2 � m2
π , however, these terms would naturally

appear at the next order of BChPT. We determine the parameters (L,MA
2 ,MA

3 , T A
0 , T A

1 )
and (L, LB,MB

2 , T B
0 , T B

1 ) by carrying out combined fits to our data sets for Au−d20 (t, mπ)
and Bu−d

20 (t, mπ). The remaining parameters in Eqs. (2.38) and (2.39) are constrained
to gA = 1.256, fπ = 92.4 MeV and µ = 1.0 GeV. For set A, the fit parameters have
smaller statistical errors. For set B ,we see that Au−d20 increases with mπ → mphy

π .
For both sets, we obtain values for χ2

dof of about 0.75, hence we cannot use the χ2
dof

value to discriminate between the fit ranges. Instead, one may interpret the difference
between fits A and B as a systematic uncertainty of the parameters. In Fig. 2.21
we show our fit for set A as a function of Q2 at two fixed values of the pion masses
(mπ = 422 MeV and 150 MeV, ensembles III and VIII). Obviously, our ansatz for the
Q2 and m2

π dependence describes the lattice data well. The final results are collected
in Table 2.5, where the statistical errors are complemented by the uncertainties of
the renormalization constants, which were estimated using the strategy described in
section 2.11. Within the errors, our values agree with the isovector results of Ref. [65].
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Figure 2.21: Chiral fit A versus Q2 for two distinct pion masses: mπ = 422 MeV
(green) and 150 MeV (grey). The corresponding data points (ensemble III and VIII)
are shown as well. Taken from Ref [5].
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Ensemble selection A B
Au−d20 (0, mphy

π ) 0.195 (06) (03) 0.210 (08) (04)
Bu−d

20 (0, mphy
π ) 0.271 (13) (03) 0.287 (28) (04)

Ju−d(mphy
π ) 0.233 (07) (03) 0.248 (14) (04)

Table 2.5: Results for Au−d20 (0, mπ), Bu−d
20 (0, mπ) and Ju−d(mπ), extrapolated to the

physical pion mass mphy
π using the ensemble sets A and B. The first error is statistical,

the second error is due to the uncertainty of the renormalization constants.

2.14 Nucleon tomography

We use our lattice results for the vector GFFs A20(t), B20(t) and the linear combination
BT20(t) [cf. Eq. (2.35)] in order to investigate the transverse spin density of the nucleon.
To this end, we transform these GFFs to the impact parameter space G(t) → G(b2

⊥)
with

G
(
b2
⊥
)

=
∫ d2∆⊥

(2π)2 e
−ib⊥·∆⊥ G

(
t = −∆2

⊥
)
, (2.40)

where we use the p-pole ansatz [66, 67]

G(t) = G0(
1− t/m2

p
)p (2.41)

for the interpolation of our lattice results. The impact parameter b⊥ is defined in
the transverse x-y plane. It measures the transverse distance from the “center of
momentum”

R⊥ =
∑

i
ri⊥xi ,

∑

i
xi = 1 , (2.42)

where xi is the momentum fraction of the ith parton [66, 68]. We define

b⊥ ≡ (bx , by) , b⊥ ≡
√

b2
⊥ . (2.43)

To compute the transverse spin density, we also have to evaluate the derivative of
G(b2

⊥) with respect to b2
⊥,

G′(b2
⊥) ≡ ∂

∂ b2
⊥
G(b2

⊥). (2.44)
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The Fourier transform (2.40) of the p-pole ansatz (2.41) can be expressed in terms of
the modified Bessel functions Kν [66],

G(b2
⊥) =

G0 m2
p (b⊥mp)p−1 Kp−1(b⊥mp)

2p π Γ(p) . (2.45)

The transverse spin density ρq(x,b⊥, s⊥,S⊥) describes the probability to find a quark
with longitudinal momentum fraction x , flavor q and transverse spin s⊥ at a distance
b⊥ from the center of momentum of the nucleon with transverse spin S⊥. The explicit
definition in terms of GPDs is given in Eq. (8) of Ref. [66]. Here, we consider the two
transverse spin combinations,

s⊥ = (1 , 0) and S⊥ = (0 , 0) , (2.46a)
s⊥ = (0 , 0) and S⊥ = (1 , 0) , (2.46b)

where the first line describes a transversely polarized quark in an unpolarized nucleon
and the second an unpolarized quark in a transversely polarized nucleon. In terms of
GFFs the first moment of ρq(x,b⊥, s⊥,S⊥) for these spin combinations reads

〈ρ〉q(b⊥, s⊥,S⊥) =
∫ 1

−1
dx x ρq(x,b⊥, s⊥,S⊥)

= 1
2A

q
20(b2

⊥)− εij bj⊥
2mN

(
si⊥B

q ′
T20(b2

⊥) + S i⊥B
q ′
20 (b2

⊥)
)
. (2.47)

For arbitrary spins S⊥ and s⊥ Eq. (2.47) will contain additional terms and we refer
the reader to Refs. [66, 67]. We fit the GFFs for ensemble VI to the p-pole ansatz
Eq. (2.41). Due to the thus limited number of data points, we restricted ourselves to the
kinematic range −t ≤ 0.6 GeV2, we find it impossible to simultaneously determine
all three fit parameters, p, mp and G0. In particular the exponent p is strongly
correlated with the pole mass mp. This is demonstrated in Fig. 2.22. An increase of p
results in a larger value of mp, whereas χ2

dof does not significantly change. Therefore,
we cannot constrain p. This arbitrariness means it is difficult to obtain reliable,
parametrization independent results for the moment 〈ρ〉q(b⊥, s⊥,S⊥) as a function of
b⊥. This distribution has been studied in the past (see, e.g., [67]), but we find that
its shape strongly depends on the value of p. In Fig. 2.23, we show 〈ρ〉q(b⊥, s⊥,S⊥)
for s⊥ = (1, 0) and S⊥ = (0, 0) for four distinct values of p ranging from 1.45 up to
3.0. We see that with increasing p the density becomes less localized in the impact
parameter plane and the maximum of the density is shifted away from the center. This
also holds for other spin combinations.
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Figure 2.22: The pole mass mp and χ2
dof as a function of the fixed parameter p for

ensemble VI. The colored lines correspond to fits to Aq20, B
q
20 and Bq

T20 from top to
bottom and flavor q from left to right. Taken from Ref [5].
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Figure 2.23: The p-dependence of the transverse spin density for a transversely
polarized d-quark in an unpolarized nucleon. The yellow cross indicates the maximum
of the density. The black contour lines are drawn equidistantly with a difference of
0.05. Taken from Ref [5].
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However, we discovered that some integrated quantities have a much milder p-
dependence, namely the half b⊥-integrated moments shown below

〈ρ〉q+(s⊥,S⊥) = 1
Zρ

+∞∫

−∞

dbx
+∞∫

0

dby 〈ρ〉q(b⊥, s⊥,S⊥) , (2.48a)

〈ρ〉q−(s⊥,S⊥) = 1
Zρ

+∞∫

−∞

dbx
0∫

−∞

dby 〈ρ〉q(b⊥, s⊥,S⊥) , (2.48b)

with the normalization factor

Zρ =
+∞∫

−∞

dbx
+∞∫

−∞

dby 〈ρ〉q(b⊥, s⊥,S⊥) . (2.49)

The integrated moment 〈ρ〉q+(s⊥,S⊥) is the probability, weighted with the longitudinal
momentum fraction x , for finding a quark with flavor q in the upper part (by ≥ 0) of
the impact parameter space and 〈ρ〉q−(s⊥,S⊥) is the x-weighted probability for finding
a quark with flavor q in the lower part (by ≤ 0). These integrated moments are a
measure for the asymmetry of the transverse spin density. They depend much less
on the value of p than 〈ρ〉q(b⊥, s⊥,S⊥) does. This is demonstrated in Fig. 2.24,
where 〈ρ〉d+ and 〈ρ〉d− are shown as functions of p for the transverse spin combination
in Eq. (2.46a). Doubling p, both integrated moments change by only 5% and 15%,
respectively. We find this mild p-dependence for all considered transverse spin and
flavor combinations and consider these integrated moments as the better candidates
for reliable lattice estimates.
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Figure 2.24: Dependence of 〈ρ〉d+ (s⊥,S⊥) and 〈ρ〉d− (s⊥,S⊥) on the power p of the
pole ansatz. The combination of transverse spins is s⊥ = (1, 0) and S⊥ = (0, 0). The
errors are statistical only. The systematics due to the uncertainty of the power p
amount to about 0.02. Taken from Ref [5].
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Our results for 〈ρ〉q± for up and down quark for our two transverse spin combinations
(Eq. (2.46)) are shown in Fig. 2.25. The errors shown are statistical only. The figure
corresponds to the power p = 2, and one may add systematic errors of about 0.02
due to the p-dependence; see Fig. 2.24. The numerical values are listed in Table 2.6.
We see the probability of a transversely polarized u- or d-quark in an unpolarized
nucleon is higher (∼ 70%) in the by > 0 part of the impact parameter space than in the
by < 0 part (∼ 30%). For a transversely polarized nucleon, however, the probabilities
of an unpolarized u- or d-quark differ: The unpolarized d-quark is more likely in the
by < 0 part (67%), while a u-quark is more likely in the by > 0 part (60%) of the
impact parameter space.

〈ρ〉u− 〈ρ〉u+ 〈ρ〉d− 〈ρ〉d+

0.312

0.688

0.262

0.738

〈ρ〉u− 〈ρ〉u+ 〈ρ〉d− 〈ρ〉d+

0.403

0.597

0.666

0.334

Figure 2.25: Probability (weighted with x) for finding a u- or d-quark in the upper/
lower part (by ≶ 0) of the impact parameter space; left for a transversely polarized
quark in an unpolarized nucleon; right for an unpolarized quark in a transversely
polarized nucleon.

s⊥ = (1 , 0) s⊥ = (0 , 0)
S⊥ = (0 , 0) S⊥ = (1 , 0)

〈ρ〉u− 0.312 (26) 0.403 (12)
〈ρ〉u+ 0.688 (26) 0.597 (12)
〈ρ〉d− 0.262 (27) 0.666 (17)
〈ρ〉d+ 0.738 (27) 0.334 (17)

Table 2.6: The half b⊥-integrated moments for p = 2, also shown in Fig. 2.25. The
errors are statistical. The systematic error of the p-dependence is about 0.02.

57



58



3
Stochastic three-point functions

In this chapter, we present a new method to calculate lattice three-point functions. It
is based on a factorization of the entire correlation function into two parts which are
referred to as “spectator” and “insertion”. Our method provides a serious alternative
to the traditional sequential propagator method [56] which comes in two variants. The
first is referred, as “sequential source through the operator” and the second is referred
to as “fixed sink”. Both methods require to fix certain parameters of the three-point
correlation function. The “sequential source through the operator method” uses a fixed
current for the inversion, i.e., the insertion operator, its timeslice and its momentum are
fixed. Other parameters, like the sink timeslice and the interpolators can be chosen
freely. The “fixed sink” method requires to fix the interpolating fields, the projection
operator, the sink momentum, the sink timeslice and the flavor of the current used. This
method has no restrictions regarding to the insertion operator, the timeslice as well
as the current or source momentum. Both methods, however, yield rather restricted1

sets of three-point functions. Our new stochastic method does not have restrictions
of that kind. Once spectator and insertion are computed properly in a first step, one
can use them in a second step, after the lattice measurement, to construct a three-
point function with all spin indices open2. The three-point function with open indices
can be used to generate a family of three-point functions by contracting the open
indices with suitable polarization and γ-matrices. This two-step approach is new and
extends previous works on stochastic methods for the computation of hadronic matrix

1The methods are not restrictive in principle, however, they are to expensive too be used for the
creation of larger sets of three-point functions.

2Also flavor and momenta indices are open to a large extent.
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elements [69, 70, 71, 72, 73].

To reduce the additional statistical error, originating from the stochastic estimator
we implement forward-backward averaging by generating correlation functions of the
hadron and the time reversed hadron. This step is of great importance because it
comes with a marginal computational overhead and reduces the resulting statistical
uncertainty considerably. We highlight that our method is capable to produce three-
point functions with several source-sink separations at once. This provides a solid
basis for excited states analysis of hadronic matrix elements which is an important
subject and investigated by many groups [58, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85]. Our new approach is most beneficial if one considers to compute many
different momentum combinations and/or multiple hadrons. This is especially true if
one aims to construct meson and baryon three-point functions because the insertion
is designed such that it can be used for both types of hadrons. Moreover, we are
able to calculate three-point functions with one covariant symmetric derivative. In
this case, only the insertion is affected and the spectators remain fully unchanged.
Our method is very convenient for the computation of GFFs because we are able to
produce three-point functions with many combinations of polarizations and momenta.
The combinations can be used for averaging which helps to obtain GFFs with smaller
statistical uncertainties. Further, we are able to study SU(3) flavor symmetry breaking
which requires multiple baryonic interpolators [86]. Our implementation makes it also
possible to study physics which is governed by three-point correlation functions with
flavor changing currents.

3.1 Generic baryon interpolators

In order to create and destroy baryon states on the lattice we use objects which
are commonly called interpolators. We restrict ourself to color singlet interpolators
containing three local quark fields which have the generic from for annihilation and
creation interpolators

B (x ′4, x ′)τ′ABC ≡ εa′b′c′ (Γ1)τ
′α ′ (Γ2)β

′γ′ ΨA(x ′4, x ′)α ′a′ ΨB(x ′4, x ′)β
′

b′ ΨC (x ′4, x ′)γ
′

c′ (3.1)
B (x4, x)τCBA ≡ εabc (Γ2)γβ (Γ1)ατ ΨC (x4, x)γc ΨB(x4, x)βb ΨA(x4, x)αa (3.2)

and are parametrized by the flavor indices A, B, C and the matrices Γ1 and Γ2. The
spin indices (superscript Greek letters) of the matrices are contracted with the indices
of the quark fields (Ψ) where we use the Einstein sum convention. Color indices,
represented by subscript Latin letters, are contracted (Einstein sum convention) with
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the totally antisymmetric tensor. Furthermore, we define

Ψ(x4, x)αa ≡ Ψ∗(x4, x)µa (γ4)µα . (3.3)

The generic baryon creation interpolator is constructed according to (cf. Eq.(3.1, 3.2))

B (x4, x)τCBA ≡ B ∗ABC (x4, x)µ (γ4)µτ . (3.4)

This requires the evaluation of complex conjugation of three Grassmann valued quark
fields. Here we us, the convention (ΨAΨB)∗ = Ψ∗BΨ∗A, where no additional minus
sign occurs and exploit Eq. (3.3). An explicit calculation yields the following relations
(using γ4γ4 = 1)

Γ1 = γ4Γ†1 γ4 , Γ2 = γ4Γ†2 γ4 . (3.5)

In this work we use the γ-matrices defined in appendix A.1.

3.1.1 Example (Nucleon)

The generic baryon interplators can take the form of all interpolators which are
commonly used in lattice QCD. For instance, one can set A = u, B = u, C = d,
Γ1 = 1 and Γ2 = Cγ5 to obtain a spin 1/2 nucleon annihilation interplator

B (x ′4, x ′)τ ′uud = εa′b′c′ (1)τ ′α ′ (Cγ5)β
′γ′ Ψu(x ′4, x ′)α ′a′ Ψu(x ′4, x ′)β

′

b′ Ψd(x ′4, x ′)γ
′

c′ . (3.6)

The corresponding creation interpolator is defined by Eq. (3.2) and Eq. (3.5).

3.2 Generic current interpolator

In addition to the generic baryon annihilation and creation interpolators we define a
generic current interpolator

J (y4,y)DE ≡ ΨD(y4,y)µd (Γ3)µν ΨE (y4,y)νd . (3.7)

It is parametrized by two generic flavor indices D and E . We remark, that for D 6=
E one has a flavor changing current. Similar to the case of the generic baryon
interpolators we use the matrix Γ3 as a placeholder.

3.2.1 Example

The generic current interpolator can be used to construct a set of actual current
interpolators. For instance, the vector current with uu-flavor is obtained by D = E =
u and Γ3 = γ4.
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3.3 Time reversed interpolators

The time reversal operation T is a discrete symmetry on the lattice and plays a crucial
role in this work. The action of T on the quark fields is given by

ΨF (x4, x)αa
T−→ (γ4 γ5)αβ ΨF (−x4 , x)βa , (3.8a)

ΨF (x4 , x)αa
T−→ ΨF (−x4 , x)βa (γ5 γ4)βα . (3.8b)

Applying T to the generic current interpolator yields the time reversed current
(cf. Eq. (3.7))

J (y4 ,y) T−→ ΨD(−y4 ,y)µd ( γ5 γ4 Γ3 γ4 γ5 )µν ΨE (−y4 ,y)νd . (3.9)

This demonstrates, that the action of T can be absorbed in the definition of Γ3

(Γ3)µν
T−→ (γ5 γ4 Γ3 γ4 γ5)µν . (3.10)

3.4 Time reversed matrices

As for the current, discussed above, one can apply T to the generic baryon interpo-
lators in Eqs. (3.1, 3.2). The results of all calculations3 are summarized in Table
3.1.

Γ1 Γ2 Γ1 Γ2 Γ3
T Γ1γ4γ5 γ5γ4Γ2γ4γ5 γ5γ4Γ1 γ5γ4Γ2γ4γ5 γ5γ4Γ3γ4γ5

Table 3.1: Replacement rules for Γ-matrices.

3.5 Example: Generic Wick contractions

This section is meant as an introduction to techniques used for the computation
of stochastic three-point functions with open spin indices which is addressed later.
However, the used techniques can be understood more easily in the simpler case of
two-point functions. The generic interpolators play a fundamental role for both cases.
We start form a momentum space two-point correlation function

C (p′|x ′4, x4) ≡
〈
∑

x ′
Pττ′

〈
B (x ′4, x ′)τ

′

ABC B (x4, x)τCBA
〉

W
e−ip′·(x ′−x)

〉
, (3.11)

expressed in terms of the generic baryon interplators defined in Eqs. (3.1, 3.2). We
introduced a not further specified parity projection operator P. The big brackets

3We explicitly use γT5 = γ5 and γT4 = γ4.
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〈. . .〉 are used to denote the ensemble average and 〈. . .〉W denotes the Wick contrac-
tion. The generic baryon interpolators in Eq. (3.11) contain Γ-matrices which are not
affected by the Wick contraction. This motivates the following factorization

C (p′, |x ′4, x4) = Pττ′ Sτ ′α ′β ′γ′γβατ
〈
C(p′, |x ′4, x4)α

′αββ ′γ′γ
〉
, (3.12)

with the spin tensor S

Sτ ′α ′β ′γ′γβατ = (Γ1)τ
′α ′ (Γ2)β

′γ′ (Γ2)γ β (Γ1)α τ , (3.13)

and the momentum space two-point function with open spin indices

C(p′ | x ′4, x4)α
′αβ ′βγ′γ ≡

∑

x ′
e−ip′·(x ′−x)

× εa′b′c′ εabc
〈

ΨA(x ′)α
′

a′ ΨB(x ′)β
′

b′ ΨC (x ′)γ
′

c′ ΨC (x)γa ΨB(x)βb ΨA(x)αc
〉

W
, (3.14)

using x = (x4, x).

3.5.1 Observation I

The Wick contraction in the second line of Eq. (3.14) plays a fundamental role in
this work. Generally speaking, a Wick contraction is a combinatorial problem where
annihilation operators must be contracted with creation operators yielding a set of
quark propagators. The contraction procedure has to be repeated for all possible
combinations. It is important to understand the following: To be able to calculate
the contractions one has to know the flavors of the field operators. For now, let us
assume A = B = C = u which yields
∑

x ′

{
εa′b′c′ εabc

〈
Ψu(x ′)α

′

a′ Ψu(x ′)β
′

b′ Ψu(x ′)γ
′

c′ Ψu(x)γc Ψu(x)βb Ψu(x)αa
〉

W

}
e−ip′·(x ′−x) =

∑

x ′

{
εa′ b′ c′ εab c (+1)Gu(x ′|x)α

′ γ
a′ c (−1)Gu(x ′|x)β

′ β
b′ b (+1)Gu(x ′|x)γ

′ α
c′ a

+εa′ b′ c′ εab c (+1)Gu(x ′|x)α
′ γ
a′ c (+1)Gu(x ′|x)β

′ α
b′ a (+1)Gu(x ′|x)γ

′ β
c′ b

+εa′ b′ c′ εab c (−1)Gu(x ′|x)α
′ β
a′ b (−1)Gu(x ′|x)β

′ γ
b′ c (+1)Gu(x ′|x)γ

′ α
c′ a

+εa′ b′ c′ εab c (−1)Gu(x ′|x)α
′ β
a′ b (+1)Gu(x ′|x)β

′ α
b′ a (+1)Gu(x ′|x)γ

′ γ
c′ c

+εa′ b′ c′ εab c (+1)Gu(x ′|x)α
′ α
a′ a (−1)Gu(x ′|x)β

′ γ
b′ c (+1)Gu(x ′|x)γ

′ β
c′ b

+εa′ b′ c′ εab c (+1)Gu(x ′|x)α
′ α
a′ a (+1)Gu(x ′|x)β

′ β
b′ b (+1)Gu(x ′|x)γ

′ γ
c′ c

}
e−ip′·(x ′−x) .

(3.15)

This calculation shows, that a (non-trivial) Wick contraction of six field operators
gives a sum of products of propagators with contraction specific signs (±1). The Wick
contraction acts non-trivially on the spin and color indices of the field operators and
the propagators. The non-trivial color index structure is removable by exploiting the
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symmetry properties of the two epsilon tensors. We introduce two sign correction
factors (red) in front of the epsilon tensors
∑

x ′

{
εa′b′c′ εabc

〈
Ψu(x ′)α

′

a′ Ψu(x ′)β
′

b′ Ψu(x ′)γ
′

c′ Ψu(x)γc Ψu(x)βb Ψu(x)αa
〉

W

}
e−ip′·(x ′−x) =

∑

x ′

{
(+1)εa′ b′ c′(−1)εab c(+1)Gu(x ′|x)α

′ γ
a′ a(−1)Gu(x ′|x)β

′ β
b′ b (+1)Gu(x ′|x)γ

′ α
c′ c

+(+1)εa′ b′ c′(+1)εab c(+1)Gu(x ′|x)α
′ γ
a′ a(+1)Gu(x ′|x)β

′ α
b′ b (+1)Gu(x ′|x)γ

′ β
c′ c

+(+1)εa′ b′ c′(+1)εab c(−1)Gu(x ′|x)α
′ β
a′ a(−1)Gu(x ′|x)β

′ γ
b′ b(+1)Gu(x ′|x)γ

′ α
c′ c

+(+1)εa′ b′ c′(−1)εab c(−1)Gu(x ′|x)α
′ β
a′ a(+1)Gu(x ′|x)β

′ α
b′ b (+1)Gu(x ′|x)γ

′ γ
c′ c

+(+1)εa′ b′ c′(−1)εab c(+1)Gu(x ′|x)α
′ α
a′ a (−1)Gu(x ′|x)β

′ γ
b′ b(+1)Gu(x ′|x)γ

′ β
c′ c

+(+1)εa′ b′ c′(+1)εab c(+1)Gu(x ′|x)α
′ α
a′ a (+1)Gu(x ′|x)β

′ β
b′ b (+1)Gu(x ′|x)γ

′ γ
c′ c

}
e−ip′·(x ′−x) .

(3.16)

This example allows us to explain how we use abstract tensor notation to give a
closed expression for the Wick contraction in Eq. (3.14) without defining the flavor
indices. Note that a tensor Tabc can be formally symmetrized by

T{abc} = 1
3!
∑

π∈Σ3

Tπ(a)π(b)π(c) , (3.17)

where π denotes an element of the symmetric group Σ3 on three elements and {abc}
means symmetrization over the three indices. This kind of notation allows us to
express Eq. (3.14) as

C(p′ | x ′4, x4)α
′αβ ′βγ′γ ≡

∑

ω∈Ω

ε′(ω)ε(ω)
3∏

j=1

σj (ω)

×
(
∑

x ′
εa′b′c′ εabc Gω(A)(x ′|x)ω(α ′)ω(α)

a′ a Gω(B)(x ′|x)ω(β ′)ω(β)
b′ b Gω(C )(x ′|x)ω(γ′)ω(γ)

c′ c e−ip′·(x ′−x)

)
.

(3.18)

The right hand side of Eq. (3.18) contains a sum over all Wick contractions ω. How
many Wick contractions are actually present is uniquely determined by the values of
the three flavor indices A, B and C . Hence, we write ω ∈ Ω which is a short hand
notation for Ω ≡ Ω({A , B , C}). The signs in Eq. (3.16) are realized by ε′(ω), ε(ω)
and σj (ω). For notational convenience and later reference we define an overall sign
function

σ (ω) ≡ ε′(ω)ε(ω)
3∏

j=1

σj (ω) . (3.19)
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3.5.2 Observation II

The two-point function with open spin in Eq. (3.18) can be written as,

C(p′ | x ′4, x4)α
′αβ ′βγ′γ ≡

∑

ω∈Ω

σ (ω)T (p′ | x ′4, x4)ω(α ′)ω(α)ω(β ′)ω(β)ω(γ′)ω(γ)
ω(A)ω(B)ω(C ) , (3.20)

where we defined the two-point function tensor T

T (p′ | x ′4, x4)ω(α ′)ω(α)ω(β ′)ω(β)ω(γ′)ω(γ)
ω(A)ω(B)ω(C ) ≡ εa′b′c′ εabc

×
∑

x ′
Gω(A)(x ′|x)ω(α ′)ω(α)

a′ a Gω(B)(x ′|x)ω(β ′)ω(β)
b′ b Gω(C )(x ′|x)ω(γ′)ω(γ)

c′ c e−ip′·(x ′−x) . (3.21)

The remarkable point about this ansatz is the following. By measuring

T (p′ | x ′4, x4)α
′αβ ′βγ′γ
ABC ≡ εa′b′c′ εabc

×
∑

x ′
GA(x ′|x)α

′α
a′a GB(x ′|x)β

′β
b′b GC (x ′|x)γ

′γ
c′c e−ip′·(x ′−x) (3.22)

on a set of gauge configurations one can construct any baryon two-point correlator

C (p′, |x ′4, x4) = Pττ′ Sτ ′α ′β ′γ′γβατ
〈
C(p′, |x ′4, x4)α

′αββ ′γ′γ
〉
,

C (p′, |x ′4, x4) = Pττ′ Sτ ′α ′β ′γ′γβατ
∑

ω∈Ω

σ (ω)
〈
T (p′ | x ′4, x4)ω(α ′)ω(α)ω(β ′)ω(β)ω(γ′)ω(γ)

ω(A)ω(B)ω(C )

〉
. (3.23)

The two-point function tensor T , defined in Eq. (3.22) can be generated by a set of
point-to-all propagators with different flavors sourced at x . In this case one can set
the temporal source position to x4 = 0 which is justified by translational invariance.

3.5.3 Observation III

In contrast to traditional approaches one can compute the Wick contractions after the
lattice measurement of T (cf. Eq. (3.22)) by virtue of Eq. (3.23). This is accomplished
by the computation of the ω-functions which are bijective functions acting on the set
of spin and flavor indices

ω : Sspin ⊗ Sflavor → Sspin ⊗ Sflavor ,
Sspin = {α ′ , α , β ′ , β , γ ′ , γ} ,
Sflavor = {A , B , C} .

They do not act on color indices due to the sign correction function. This is impor-
tant for implementations because it reduces the number of open indices considerably.
Finally one must also calculate the overall sign correction function σ (ω).
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3.5.4 Practical remarks for generic Wick contractions

To compute the sign correction functions ε′(ω), ε(ω), σj (ω) and the ω-functions we
developed a Python package called wick [87]. The listing 3.5.1 gives an example for
how the wick package is used. The shown code implements Eq. (3.16). We use wick
as a library for the computation of stochastic three-point.

Listing 3.5.1: Implementation of Eq. (3.16) using the wick package.

1 from wick import core
2 from wick.flavors import U
3 from wick.tensor import Tensor, TotallyAntiSymmetric as TAS
4 from wick.field_operators import Annihilator as Ao, Creator as Co
5

6 # Epsion tensors
7 c1 = (r'a^\prime', r'b^\prime', r'c^\prime')
8 t1 = Tensor(r'\epsilon', ColorSym=TAS).add_color_index(*c1)
9 c2 = ( r'a', r'b', r'c')

10 t2 = Tensor(r'\epsilon', ColorSym=TAS).add_color_index(*c2)
11

12 # Annihilation fields
13 f1 = U(Ao(), spin=r"\alpha^\prime",color=r"a^\prime",position=r"x^\prime")
14 f2 = U(Ao(), spin=r"\beta^\prime", color=r"b^\prime",position=r"x^\prime")
15 f3 = U(Ao(), spin=r"\gamma^\prime",color=r"c^\prime",position=r"x^\prime")
16

17 # Creation fields
18 f4 = U(Co(), spin=r"\gamma", color=r"c", position=r"x")
19 f5 = U(Co(), spin=r"\beta", color=r"b", position=r"x")
20 f6 = U(Co(), spin=r"\alpha", color=r"a", position=r"x")
21

22 # Calculate wick contraction, show all signs
23 contractions = core.wick_contraction(
24 # Tensors
25 t1, t2, # Add as many you need
26 # Fields
27 f1, f2, f3, f4, f5, f6, # Add as many you need
28 # Options
29 remove_disconnected=True,
30 collect_signs=False,
31 symmetries=[
32 {
33 'tensor': t1,
34 'target_space': 'color',
35 'target_order': t1.get_color_indices()
36 },
37 {
38 'tensor': t2,
39 'target_space': 'color',
40 'target_order': t2.get_color_indices()
41 },
42 ]
43 )
44 # Replace jupyter with latex to obtain a plain latex equation
45 from wick.rendering.jupyter.contractions import View
46 View(contractions).create_view()
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From line 7 to 10 we create two epsilon tensors. The six field operators are
instantiated (line 12 to 20) and the Wick contraction is computed in line 23. The
function “core.wick_contraction” has several options which we do not discuss here.
However, we remark that the “symmetries” option is important for this example, it
removes the non-trivial color structure with the two totally antisymmetric epsilon
tensors “t1” and “t2” (cf. Eq. (3.15) and Eq. (3.16)). The contraction result can be
displayed in a Jupyter notebook. Alternatively one can render a raw Latex equation.

3.5.5 Practical remarks for generic spin contractions

This section as a continuation of the last subsection (A = B = C = u). In particular
we demonstrate how we accomplish the contraction with the matrices

C (p′, |x ′4, x4) = (P)ττ′(Γ1)τ
′α ′(Γ2)β

′γ′(Γ2)γβ(Γ1)ατ
〈
C(p′, |x ′4, x4)α

′αββ ′γ′γ
〉

(3.25)

where we used Eq. (3.23) and the definition of the spin tensor Eq. (3.13). Note that
Eq. (3.16) can be expressed in terms of the two-point correlation tensor

C(p′, |x ′4, x4)α
′αββ ′γ′γ = T (x ′|x)α ′γβ ′βγ′αuuu + T (x ′|x)α ′γβ ′αγ′βuuu + T (x ′|x)α ′ββ ′γγ′αuuu

+ T (x ′|x)α ′ββ ′αγ′γuuu + T (x ′|x)α ′αβ ′γγ′βuuu + T (x ′|x)α ′αβ ′βγ′γuuu . (3.26)

For reasons that will become clear soon we rename our spin indices with ASCII letters

C(p′, |x ′4, x4)efdghc = T (x ′|x)ecgdhfuuu + T (x ′|x)ecgfhduuu + T (x ′|x)edgchfuuu

+ T (x ′|x)edgfhcuuu + T (x ′|x)efgchduuu + T (x ′|x)efgdhcuuu . (3.27)

and do the same for Eq. (3.26) where we further define the matrices, momenta and
Euclidean times to our disposal

C (0|15, 0) =
(1 + γ4

2
)ab(1

)be(γ2γ4γ5
)gh (γ4 (γ2γ4γ5)†γ4

)cd (γ4(1)†γ4
)fa

×
〈
C(p′, |x ′4, x4)efdghc

〉
. (3.28)

Eq. (3.28) is implemented in Listing 3.5.2 (without loop over the number of measure-
ments). We exploit the “numpy.einsum” function [88] to perform the contractions.

3.5.6 Summary

In this sub-section we demonstrated the main ideas of our two-step approach. To keep
things simple we considered baryon two-point functions. However, the introduced
concepts are applicable to hadronic three-point function as well. The following section
is dedicated to finding the three-point function tensor T .

67



Listing 3.5.2: Implementation of Eq. (3.28) for A = B = C = u.

1 from numpy import einsum; from numpy.random import rand
2 from rioi.reader.stoch3pt.contractions.gamma_mat import Factory
3

4 def load_two_point_tensor_uuu(p_prime, x_4_prime , x_4):
5 return rand(4,4,4,4,4,4) + 1.0j*rand(4,4,4,4,4,4)
6 # Setup matrices
7 m1 = Factory.create_from_string("(gi + gt)/2")
8 m2 = Factory.create_from_string("gi") # gi -> identiy
9 m3 = Factory.create_from_string("gy*gt*g5")

10 m4 = Factory.create_from_string("gt*H(gy*gt*g5)*gt")
11 m5 = Factory.create_from_string("gt*H(gi)*gt") # H -> hermitian conjugation
12 # Setup contractions
13 t = load_two_point_tensor((0,0,0), 15, 0)
14 signs, idx = (1,1,1,1,1,1) , "ab,be,gh,cd,fa"
15 omegas = (
16 f"{idx},ecgdhf", f"{idx},ecgfhd", f"{idx},edgchf",
17 f"{idx},edgfhc", f"{idx},efgchd", f"{idx},efgdhc",
18 )
19 # Perform contractions
20 result = 0.0 + 0.0j
21 for sigma, omega in zip(signs, omegas):
22 result += sigma * numpy.einsum(omega, m1, m2, m3, m4, m5, t)

3.6 Stochastic timeslice-to-all propagator

Let us now introduce another version of a lattice propagator, namely the stochastic
timeslice-to-all propagator. This kind of propagator plays a crucial role for the com-
putation of stochastically estimated three-point correlation functions. The key idea is
to consider a set of randomly chosen complex Z2 noise vectors [89, 90]

ηi(x4, x)αa ≡
{

Z2 × iZ2 if x4 = x ′4
0 otherwise (3.29)

with i ∈ {1, . . . , Nsto}. Almost all elements of ηi are zero, only for time slice x ′4 we
have non-zero values. We say the noise vector ηi is seeded on time slice x ′4. For
Nsto →∞ the average of all noise vectors yields the null-vector since all four complex
numbers are equally distributed

1
Nsto

Nsto∑

i=1

ηi(x4, x)αa = 0αa +O
(
N−

1
2

sto

)
. (3.30)

One can use the set of noise vectors to define an estimator for the unit-matrix

1
Nsto

Nsto∑

i=1

ηi(x4, x)αa η∗i (z4, z)γc = δx ′4x4
δx ′4z4

δxzδαγδac +O
(
N−

1
2

sto

)
. (3.31)
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In the following we demonstrate how we use the set of noise vectors to obtain a
stochastic timeslice-to-all propagator. Therefore let us consider the linear problem

∑

y4,y
DF (x4, x|y4,y)αβab sF,i(y4,y)βb = ηi(x4, x)αa . (3.32)

On the left hand side of this equation we have the known sparse Dirac operator
DF with flavor F and on the right hand side we consider a noise vector ηi which
was generated according to Eq. (3.29). In a first step we generate a set of solution
vectors {sF,i} by solving Eq. (3.32). This gives a set, namely {sF,i , ηi} which can be
used to create a stochastic timeslice-to-all propagator. This is done as follows. One
multiplies Eq. (3.32) from the right with N−1

sto η∗i (z4, z)γc and performs a sum over the
stochastic index i

∑

y4 y
DF (x4, x|y4,y)αβab

(
N−1

sto

Nsto∑

i=1

sF,i(y4,y)βb · η∗i (z4, z)γc

)
= N−1

sto

Nsto∑

i=1

ηi(x4, x)αa · η∗i (z4, z)γc ·

∑

y4 y
DF (x ′4, x|y4,y)αβab

(
N−1

sto

Nsto∑

i=1

sF,i(y4,y)βb · η∗i (x ′4, x ′)γc

)
≈ δxx ′δαγδac . (3.33)

The right hand side of this equations approaches the unit matrix for Nsto →∞. This
means that the left hand side contains the inverse of the Dirac operator DF for a fixed
time slice x ′4

GF (y4,y|x ′4, x ′)
βγ
bc = N−1

sto

Nsto∑

i=1

sF,i(y4,y)βb · η∗i (x ′4, x ′)γc +O
(
N−

1
2

sto

)
. (3.34)

3.7 Factorized baryon three-point function

We define the baryon momentum space three-point correlation function in terms of
the generic interpolators (cf. Eqs. (3.1 ,3.2 ,3.7))

C (p′,q | x ′4, y4, x4) =

×
〈
Pττ′

∑

x ′y

〈
B (x ′4, x ′)τ

′

ABC J (y4,y)DE B (x4, x)τCBA
〉

W
e−ip′·(x ′−x) e+iq·(y−x)

〉
. (3.35)

We call p′ the sink momentum and q the insertion momentum. Momentum conservation
then automatically projects out the source momentum p = p′−q. The spin factorized
three-point function is given by

C (p′,q | x ′4, y4, x4) = Pττ′ Sτ ′α ′β ′γ′µνγβατ
〈
C(p′,q | x ′4, y4, x4)α

′ α β ′ β γ′ µ ν γ
〉

(3.36)
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with the spin tensor according to Eqs. (3.1 ,3.2 ,3.7)

Sτ ′α ′β ′γ′µνγβατ = (Γ1)τ
′α ′ (Γ2)β

′γ′ (Γ3)µν (Γ2)γ β (Γ1)α τ (3.37)

and the three-point function with open spin indices

C(p′,q | x ′4, y4, x4)α
′ α β ′ β γ′ µ ν γ ≡

∑

x ′y

e−ip′·(x ′−x) e+iq·(y−x) εa′b′c′ εabc

×
〈

ΨA(x ′)α
′

a′ ΨB(x ′)β
′

b′ ΨC (x ′)γ
′

c′ ΨD(y)µd ΨE (y)νd ΨC (x)γa ΨB(x)βb ΨA(x)αc
〉

W
. (3.38)

3.8 Connected baryon three-point Wick contractions

In this section we continue the factorization approach and study the generic structure
of the Wick contractions defined in Eq. (3.38). We do not assume a specific flavor
setup but ignore disconnected contributions which originate from the contraction of
the operators on position y in case of D = E . These contributions can be taken
into account in a separate analysis step. Without loss of generality, we consider
the annihilation operator ΨE (y)νd. It must be contracted with a Ψ operator defined
at the space-time position x yielding a propagator connecting the points y ← x . A
non-trivial contraction requires that Ψ has flavor E which gives rise to a propagator
with flavor E . Next, let us pick ΨD(y)µd which has to be contracted with a Ψ operator
located at x ′ yielding a propagator with flavor D connecting the points x ′ ← y. The
two remaining non-trivial contractions must produce propagators connecting x ′ ← x .
However, we can not deduce anything about the flavors of the two propagators. Again,
we can utilize abstract tensor notation to find a closed expression. Note that each
propagator (four in total) has a certain contraction specific sign. We introduce sign
functions σj (ω) with j ∈ {1, 2, 3, 4} and remove the non-trivial color dependency with
ε′(ω) and ε(ω). This yields

C(p′,q | x ′4, y4, x4)α
′αβ ′βγ′µνγ =

∑

ω∈Ω

ε′(ω) ε(ω)
4∏

j=1

σj (ω) εa′b′c′ εabc

×
∑

x ′y

{
Gω(A)

(
x ′4, x ′

∣∣ x4, x
)ω(α ′)ω(α)
a′a · Gω(B)

(
x ′4, x ′

∣∣ x4, x
)ω(β ′)ω(β)
b′b

· GD
(
x ′4, x ′

∣∣ y4,y
)ω(γ′) µ
c′d · GE

(
y4,y

∣∣ x4, x
)νω(γ)
dc

}
e−ip′(x ′−x) e+iq·(y−x) (3.39)

The expression, as it is shown in Eq. (3.39) can not be directly implemented because
the propagator with flavor D depends simultaneously on the spatial positions x ′ and
y′. Performing the required sum over x ′ and y′ is an unfeasible numerical task.
Furthermore, let us remark that the operator insertion timeslice y4 can take any
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position in the interval x ′4 > y4 > x4. However, one can circumvented this problem
with a stochastic time-slice-to-all propagator (cf. Eq. (3.34)). To make use of it, one
inverts the propagation direction using γ5-hermiticity

GD(x ′4, x ′|y4,y)ω(γ′)µ
c′d = 1

Nsto

Nsto∑

i=1

ηi(x ′4, x ′)
ρ′
c′ · (γ5)ρ

′ ω(γ′) · (γ5)µ ρ · s∗D,i(y4,y)ρd . (3.40)

Inserting Eq. (3.40) into Eq. (3.39) yields

C(p′,q|x ′4, y4, x4)α
′αβ ′βγ′µνγ =

∑

ω∈Ω

σ (ω)
Nsto

Nsto∑

i=1

εa′b′c′εabc

{

[
∑

x ′
Gω(A)

(
x ′4, x ′

∣∣ x4, x
)ω(α ′)ω(α)
a′a Gω(B)

(
x ′4, x ′

∣∣ x4, x
)ω(β ′)ω(β)
b′b ηi

(
x ′4, x ′

)ρ′
c′
(
γ5
)ρ′ω(γ′)e−ip′(x ′−x)

]

[
∑

y

(
γ5
)µ ρs∗D,i

(
y4,y

)ρ
dGE

(
y4,y

∣∣ x4, x
)νω(γ)
dc e+iq·(y−x)

]}
, (3.41)

with the overall sign function σ (ω).

3.9 Spectator and insertion

Previously we derived a closed expression for all connected baryon three-point func-
tions. The right hand side of this equation can be split into two parts, depending on
(x ′4, x ′), (y4,y) respectively. We call the part dependent on (x ′4, x ′) the “spectator”

SAB(p′, x ′4, x4)α
′αβ ′βγ′
ic ≡

∑

x ′
εa′b′c′ εabc GA

(
x ′4, x ′

∣∣ x4, x
)α ′α
a′a GB

(
x ′4, x ′

∣∣ x4, x
)β ′β
b′b ηi

(
x ′4, x ′

)ρ′
c′
(
γ5
)ρ′ γ′e−ip′ (x ′−x) .

(3.42)

The second part, called “insertion”, depends only on (y4,y)

IDE (q, y4, x4)µνγic ≡
∑

y

(
γ5
)µ ρ s∗D,i

(
y4,y

)ρ
d GE

(
y4,y

∣∣ x4, x
)νγ
dc e+iq·(y−x) . (3.43)

Spectator and insertion can be measured on the lattice and used afterwards to con-
struct the stochastic correlation tensor (SCT)

T (p′,q, x ′4, y4, x4)α
′αβ ′βγ′µνγ
ABDE = 1

Nsto

Nsto∑

i=1

(
SAB(p′, x ′4, x4)α

′αβ ′βγ′
ic × IDE (q, y4, x4)µνγic

)
.

(3.44)

71



This object is the building block of all connected baryon three-point functions because
one can use it to construct any baryon three-point function with open spin indices

C(p′,q|x ′4, y4, x4)α
′αβ ′βγ′µνγ =

∑

ω∈Ω

σ (ω)T (p′,q, x ′4, y4, x4)ω(α ′)ω(α)ω(β ′)ω(β)ω(γ′)µνω(γ)
ω(A)ω(B)DE . (3.45)

Finally, one can compute a specific baryon three-point function

C (p′,q | x ′4, y4, x4) ≡ Pττ′ Sτ
′α ′β ′γ′µνγβατ C(p′,q|x ′4, y4, x4)α

′αβ ′βγ′µνγ (3.46)

by contracting Eq. (3.45) with a user defined projector P and spin tensor S.

3.10 Lattice setup for spectator and insertion

For the discussion in this section we provide a diagrammatic (c.f. Fig. 3.1) representa-
tion of the SCT which is composed of spectator and insertion. All three point-to-all
propagators are constructed according to Eq. (1.69). To that end, a single source, with
randomly chosen spatial components and temporal position x4, is used. The stochas-
tic timeslice-to-all propagator is constructed from noise and solution vectors. Noise
vectors are seeded on the sink timeslice x ′4 and the solution vectors are computed
according to Eq. (3.32).

x ′4 y4 x4

α ′

β′

γ ′

α

β

γµν ED

A

B

Figure 3.1: Diagrammatic representation of the SCT (c.f. Eq. (3.44)). The Euclidean
time flows from right to left. The creation and annihilation interplators are depicted as
ellipses, according to Eqs. (3.2 3.1), respectively. Lines with arrows represent point-
to-all propagators with generic flavors indices A,B, D and E . Squares are used, to
indicate indices, associated with point-to-all propagators. The index, corresponding to
the noise vector, is depicted as circle and the operator insertion timeslice y4 is shown
as star. A wiggly line is used to represent the stochastic timeslice-to-all propagator.
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We remark, that the Euclidean times, x ′4 and x4, are fixed. However, the operator
insertion timeslice y4, shown Fig. 3.1 can take any value in the interval x ′4 > y4 > x4.
This is visualized in Fig. 3.2

x ′4 y4 y4 y4 y4 y4 y4 x4

γ ′ γµν

γ ′ γµν

γ ′ γµν

γ ′ γµν

γ ′ γµν

γ ′ γµν

ED

ED

ED

ED

ED

ED

Figure 3.2: Insertion with multiple operator insertion timeslice y4.

In the following we examine the setup of the generic flavor indices. Therefore, we
restrict ourselves to the case of two mass-degenerated light quarks (l ∈ {u, d}) and
one (heavier) strange quark (s). This assumption leads to the following combinations:

case 1 : (A, B) = (l, l) , case 3 : (A, B) = (l, s) ,
case 2 : (A, B) = (s, s) , case 4 : (A, B) = (s, l) ,

for the point-to-all propagators of the spectator. Case 4 can be constructed from case
3. This can be used to reduce the amount of disk space needed for storing the results.
At present, this optimization has not been implemented. For the flavor indices of the
insertion we obtain the following combinations

case 1 : (D, E ) = (l, l) , case 3 : (D, E ) = (l, s) ,
case 2 : (D, E ) = (s, s) , case 4 : (D, E ) = (s, l) .

Cases 3 and 4 can be used for the construction of a flavor changing current. Which
flavor combinations one uses for the spectator and the insertion depends on the
context of the desired project and needs to be investigated beforehand. Further, it is
important to understand, that one has to distinguish between flavor u and d at Wick
contraction level (cf. Eq. (3.45)). Only in the data generation stage u and d are not
distinguishable. There are, in principle, no restrictions on the spectator momentum p′

and the insertion momentum q. However, it makes no sense to compute the spectator
and the insertion with arbitrary high momenta because we expect that the signal
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of the resulting three-point function will become noisy. Further, we know that the
continuum dispersion relation will loose its validity for too large momenta. Therefore,
we introduce a cut-off at

(
2π
aNS

)
Qmax < 2 GeV

where NS is the spatial lattice extent and a the lattice spacing. The restriction for
the insertion and spectator momentum is given by

(
aNS

2π

)2

q2 ≤ Q2
max ,

(
aNS

2π

)2

p′ 2 ≤ P ′ 2max , P ′ 2max ≤ floor




[√

Q2
max

2 + 1
]2


 ,

where Q2
max and P ′ 2max are dimensionless integer numbers. When combining the spec-

tator and the insertion part one should use combinations which satisfy the condition
(
aNS

2π

)2 (
q− p′

)2 ≤ P ′ 2max .

3.11 Projection operators

So far we have not specified which projection operator P can be used for the compu-
tation of the connected baryon three-point functions defined in Eq. (3.35). In fact, the
correct choice of P depends on the baryon interpolator. For simplicity, we consider
the case p′ = q = 0 where we can use

P = P± = 1± γ4

2 , (3.47)

to compute matrix elements for unpolarized octet baryons (Γ1 = 1 and Γ2 = Cγ5).
The projector defined in Eq. (3.47) obeys the usual properties

P±P± = P± , P±P∓ = 0 , P+ + P− = 1

and projects to positive or negative parity respectively. For polarized octet baryons
the situation is different. Typically one is interested in polarization asymmetries
with respect to the spin quantization axis k . In this case, one can use the combined
projector

P±kl = 1
2(±1 + γ4) iγkγ5 . (3.48)

This projector, for instance, can be used to obtain the three-point function correspond-
ing to the nucleon tensor charge. The situation for decuplet baryons (spin 3/2) is more
elaborate due to mixing with spin 1/2 contributions. In principle one can construct a
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decuplet baryon by setting

Γ1 = 1 , Γ2 = γk± = 1
4εklm(γj ∓ γm) .

The spin 3/2 contribution of the corresponding interpolator can be projected out with

P+
k↑ = 1

2P
+(1 + iγkγ5) , P−k↓ = 1

2P
−(1− iγkγ5) ,

where ± denotes the parity projection.

3.12 Chapter summary

Let us highlight the most important points of this chapter. We started our new ap-
proach by defining generic baryon creation and annihilation interpolators in Eqs. (3.1,
3.2). The interpolators are defined such that any color singlet local three-quark inter-
polator can be realized by choosing appropriate values for the three flavor indices A,
B, C and two matrices Γ1, Γ2. In addition, we defined a generic current interpolator
in Eq. (3.7). This interpolator is parametrized by two flavor indices D and E as well
as one matrix Γ3. We used the generic interpolators to define the momentum space
three-point correlation function in Eq. (3.35). Subsequently, we derived an expression,
defined in Eq. (3.41), which is valid for all connected baryon three-point functions.
Using a stochastic timeslice-to-all propagator we factorized this expression into two
parts, the spectator and the insertion. In the following we demonstrated, that we are
able to compute any connected baryon three-point function, after the measurement of
the spectator and the insertion. This is possible because our new approach allows us
to compute the Wick contraction in a second analysis stage. This, however, requires
the contraction of the SCT with user defined matrices specified by the ω-functions.
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4
Improved stochastic three-point functions

In the previous chapter we demonstrated the main ideas of our new approach to com-
pute three-point functions. This chapter sets the focus on improvements implemented
for production runs. We demonstrate our forward-backward averaging strategy to
reduce the statistical errors. Furthermore, we explain in more detail how we ob-
tain three-point functions with multiple source sink distances at once and explain
briefly how a stochastic measurement works, including the necessary XML file. This
is supplemented by a brief discussion of our smearing approach. Furthermore, we
demonstrate, how we incorporate a covariant derivative into the stochastic three-point
function measurement. Subsequently, we briefly introduce the meson spectator. It
can be used in combination with the insertion to compute meson three-point functions
as well. We conclude this chapter with performance measurements and plots which
compare stochastic three-point functions to three-point functions obtained from the
fixed sink sequential source method. Finally, we summarize all important equations.

4.1 SCT with forward and backward contributions

On top of the gauge noise, present in all lattice QCD calculations, we are facing
additional noise due to the stochastically estimated propagator. Our strategy to
reduce it is to use a variation of the SCT which incorporates the forward and backward
contributions of the point-to-all propagators. To achieve this, we mirror the SCT with
respect to the source position axis, as shown in Fig. 4.1.
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To indicate the forward and backward position we label the sink positions with a
superscript f /b

x ′ f =
(
x ′ f4 , x ′ f

)
, x ′b =

(
x ′b4 , x ′b

)
, with x ′ f4 > x ′b4 .

Let us remark, that no additional point-to-all propagators are needed for the back-
ward case. The propagators, used for the forward case, already contain backward
contributions x ′b4 ← x4. However, one must compute two sets of noise and solution
vectors, sourced at x ′ f and x ′b respectively. The sets of noise vectors are constructed
according to

ηfi (x4, x)αa ≡
{

Z2 × iZ2 , if x4 = x ′ f4
0 , otherwise . ηbi (x4, x)αa ≡

{
Z2 × iZ2 , if x4 = x ′b4

0 , otherwise .
(4.1)

This type of noise seeding is referred as “single seeding”. Compared to the forward
only case we need to compute additional backward solution vectors (sbi ). This leads
to a considerable extra effort. To get rid of the introduced overhead, we extended
our production code by a seeding method which is referred to as “double seeding”.
Instead of constructing two sets, according to Eq. (4.1), we construct only one set of
noise vectors

ηi(x4, x)αa ≡
{

Z2 × iZ2 , if x4 = x ′ f4 or x4 = x ′b4
0 , otherwise . (4.2)

These noise vectors are simultaneously seeded on the forward and backward sink
timeslice, hence the name “double seeding”. The conditions under which this type
of seeding is justified is discussed in the next section. Regardless of the actual
seeding type, we construct the stochastic timeslice-to-all propagator with forward
and backward direction according to

GD(x ′ f /b4 , x ′ f /b|yf /b4 ,yf /b)γ
′µ
c′d = 1

Nsto

Nsto∑

i=1

ηi(x ′ f /b4 , x ′ f /b)ρ
′

c′ · (γ5)ρ
′γ′ · (γ5)µρ · s∗D,i(yf /b4 ,yf /b)ρd .

(4.3)

The solution vectors are obtained according to Eq. (3.32) and the factorization of
the stochastic three-point function into the spectator and the insertion parts is not
affected1. We obtain for the spectator with forward and backward noise

SAB(p′, x ′ f /b4 , x4)α
′αβ ′βγ′
ic ≡ εa′b′c′ εabc

∑

x ′
e−ip′ (x ′−x)

×
(
GA
(
x ′ f /b4 , x ′

∣∣ x4, x
)α ′α
a′a · GB

(
x ′ f /b4 , x ′

∣∣ x4, x
)β ′β
b′b · ηi

(
x ′ f /b4 , x ′

)ρ′
c′ ·
(
γ5
)ρ′ γ′

)
, (4.4)

1The Γ matrices are different for the backward case. This is discussed later in more detail.
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and the insertion with forward and backward insertions yf /b4

IDE (q, yf /b4 , x4)µνγic ≡
∑

y

(
γ5
)µ ρ · s∗D,i

(
y4,y

)ρ
d · GE

(
y′ f /b4 ,y

∣∣ x4, x
)νγ
dc · e

+iq·(y−x) . (4.5)

The stochastic correlation tensor with forward and backward contributions, shown in
Fig. 4.1, is obtained as follows

T (p′,q, x ′ f /b4 , yf /b4 , x4)α
′αβ ′βγ′µνγ
ABDE =

1
Nsto

Nsto∑

i=1

(
SAB
(
p′, x ′ f /b4 , x4

)α ′αβ ′βγ′
ic × IDE

(
q, yf /b4 , x4

)µνγ
ic

)
. (4.6)

x ′ f4 yf4 x4 yb4 x ′b4

α ′

β′

γ ′

α

β

γ

α ′

β′

γ ′µν νµE ED D

A

B

A

B

Figure 4.1: SCT with forward (x ′ f4 ) and backward (x ′b4 ) sink timeslices. The part
shown on the right is new and extents the forward only SCT which is depicted in
Fig. 3.1. The presence of forward and backward sinks gives rise to a distinction
between forward (yf4) and backward (yb4) operator insertion timeslices.

4.1.1 Double seeding remarks

The double seeding approach is extremely beneficial in terms of the computational cost.
It reduces the number of solution vector inversions, which is a significant contribution
to the overall production cost, by a factor of 1/2. However, one has to keep in mind
that this approach is only valid as long as

x ′ f4 − x4 and x4 − x ′b4

are chosen large enough. The origin of the problem is sketched in Fig. 4.2. To figure
out whether the double seeding approach is justified one can perform a test measure-
ment. For instance, one can compare double seeded stochastic three-point functions
to three-point functions computed with the sequential source method. Alternatively
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one can directly compare three-point functions obtained from single and double seed-
ing. So far we have not seen any significant effects caused by the double seeded.
Our production code is capable to use both methods.

x ′ f4 x4 x ′b4

fwd contributions

bwd contributions

x ′ f4 x4 x ′b4

fwd contributions

bwd contributions

Figure 4.2: The left panel shows a bad setup. The source-sink separations is not
large enough. Forward and backward contributions do overlap at the source position
x4. The right panel shows a good setup. Source and sinks are chosen such that no
visible overlap occurs at x4 .

4.2 Forward-backward averaged three-point functions

Previously, we demonstrated the construction of the SCT with forward and backward
contributions. In this section we focus on the second step of our two-step approach,
namely, the construction of forward and backward three-point functions. Therefore,
we assume that the specatator and the insertion have been measured on the lattice.

The construction of forward and backward three-point functions is surprisingly
simple because only the spin matrices must be adjusted according to our discussion
in section 3.3. With that in mind we define a forward and a backward spin tensor

Sτ
′α ′β ′γ′µνγβατ
f = (Γ1)τ

′α ′ (Γ2)β
′γ′ (Γ3)µν (Γ2)γ β (Γ1)α τ ,

Sτ
′α ′β ′γ′µνγβατ
b = (Γ1γ4γ5)τ

′α ′ (γ5γ4Γ2γ4γ5)β
′γ′ (γ5γ4Γ3γ4γ5)µν (γ5γ4Γ2γ4γ5)γ β (γ5γ4Γ1)α τ .

Forward and backward three-point correlation functions are constructed according to

C (p′,q | x ′ f /b4 , yf /b4 , x4) = Pττ′ Sτ
′α ′β ′γ′µνγβατ
f /b

×
∑

ω∈Ω

σ (ω)
〈
T (p′,q, x ′ f /b4 , yf /b4 , x4)ω(α ′)ω(α)ω(β ′)ω(β)ω(γ′)µνω(γ)

ω(A)ω(B)DE

〉
.

(4.7)

We remark that the ω-functions are the same for forward and backward direction.
In practice one can use Eq. (4.7) to construct a forward and a backward Bootstrap
ensemble for a particular three-point function. The resulting Bootstrap ensembles can
be used for averaging.
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4.3 SCT with multiple baryon source positions

Until now, we restricted ourselves to a single source position x , symmetrically placed
between forward and backward sink (cf. Fig. 4.1). This yields, by construction, the
same number of operator insertions yf /b4 which is important for forward-backward
averaging. In the following, we describe, how we extent our framework to compute
the SCT with multiple source positions x{s}. For simplicity, let us consider a SCT
with two sources (s = 2) which are asymmetrically positioned as demonstrated in
Fig. 4.3. This setup leads to two distinct source-sink separations. Note that the
operator insertion time-slices yf4, in Fig. 4.3a, is the average partner of yb4 , plotted
in Fig. 4.3b and yb4 , in Fig. 4.3a, is the average partner of yf4 in Fig. 4.3b. Our
production code allows an arbitrary number of source positions, but, it is up to the
user to define a meaningful setup. To that end, we provide a condition which yields
a valid forward-backward averaging setup. We therefore label the temporal source
positions

x ′ f4 > x{1}4 > x{2}4 > . . . > x{s−1}
4 > x{s}4 > x ′b4 , (4.8)

where s is an even number. To construct pairs of source positions, suitable for forward-
backward averaging, the following conditions must hold

Source pair 1 : x ′ f4 − x
{1}
4

!
= x{s}4 − x ′b4 ,

Source pair 2 : x ′ f4 − x
{2}
4

!
= x{s−1}

4 − x ′b4 ,
...

Source pair s/2 : x ′ f4 − x
{s/2}
4

!
= x{s/2+1}

4 − x ′b4 .

Spectator and insertion with multiple source positions are given by

SAB(p′, x ′ f /b4 , x{s}4 )α
′αβ ′ωβγ′
ic ≡ εa′b′c′ εabc

∑

x ′
e−ip′ (x ′−x{s})

×
(
GA
(
x ′ f /b4 , x ′

∣∣ x{s}4 , x{s}
)α ′α
a′a · GB

(
x ′ f /b4 , x ′

∣∣ x{s}4 , x{s}
)β ′β
b′b · ηi

(
x ′ f /b4 , x ′

)ρ′
c′ ·
(
γ5
)ρ′ γ′

)
,

(4.9)
IDE (q, yf /b4 , x{s}4 )µνγic ≡

∑

y
e+iq·(y−x{s})

×
(
(
γ5
)µ ρ · s∗D,i

(
y4,y

)ρ
d · GE

(
y′ f /b4 ,y

∣∣ x{s}4 , x{s}
)νγ
dc

)
. (4.10)

In order to compute spectator and insertion, as defined in Eq. (4.9) and Eq. (4.10) extra
sets of point-to-all propagators are needed. This increases the overall computational
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cost, however, we can still use the noise and solution vectors without modification. As
we will see later, the construction of solution vectors is the dominant part in terms of
generation costs.

x ′ f4 yf4 xs=14 yb4 x ′b4

α ′

β′

γ ′

α

β

γ

α ′

β′

γ ′µν νµE ED D

A

B

A

B

(a) SCT with temporal source at x{1}4

x ′ f4 yf4 xs=24 yb4 x ′b4

α ′

β′

γ ′

α

β

γ

α ′

β′

γ ′µν νµE ED D

A

B

A

B

(b) SCT with temporal source at x{2}4

Figure 4.3: SCT with two asymmetric temporal source positions x{1}4 and x{2}4 .

4.4 Setup of a stochastic measurement

For the generation of the spectator and the insertion we use a combination of Lib-
HadronAnalysis (LHA) [91] and QDP++/Chroma [92] where Chroma is the main
application and LHA is used as a library. The different software components are
used as follows. QDP++/Chroma is used to generate the input data for LHA. For
instance, it generates the propagators, noise and solution vectors which are needed
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to compute the spectator and the insertion (cf. Eq. (4.9) and Eq. (4.10)). At a certain
point, they are passed to LHA which performs the actual computation, i.e. it performs
the contractions as defined in Eq. (4.9) and Eq. (4.10). Finally, LHA passes the results,
i.e. spectator and insertion, back to Chroma which stores them on disc.

To run the stochastic code one must construct a Chroma input XML file. To that
end, we developed chromaxml [93] which is a fully script-able Python framework to
generate Chroma XML input files. The backend for it is the Python module jinja2
which is a fast, expressive, extensible templating engine. Chromaxml comes with sev-
eral advantages like missing parameter checks and an object id management system
which creates Chroma object ids automatically. What this means will be discussed
below. Due to lack of space, we do not provide code which demonstrates the construc-
tion of a stochastic three-point function measurement. However, we show a simpler
example in Listing 4.4.1, which is sufficient to understand the logic.

Listing 4.4.1: Example code demonstrating the usage of chromaxml to create a
inline measurement.

1 import chromaxml.generator.inline_measurements as cgen
2

3 root = cgen.InlineMeasurement(
4 cfg_type="WEAK_FIELD", cfg_file="DUMMY",
5 hdf5_file= "myfile.h5", nrow=[24, 24, 24, 48]
6 )
7 source_id = root.add_measurement(
8 cgen.Source(
9 source="POINT_SOURCE", quark_smearing="NO_SMEAR",

10 gauge_id=gauge_id, t_srce=[0, 0, 0, 24]
11 )
12 )
13 prop_id0 = root.add_measurement(
14 cgen.Propagator(
15 fermion_action="UNPRECONDITIONED_CLOVER", inverter="IDFLS_INVERTER",
16 gauge_id=gauge_id, source_id=source_id,
17 Kappa=0.13620, clovCoeff=1.92,
18 FermState="SIMPLE_FERMBC", BlockSize="6 6 6 4",
19 NDflModes=32, KappaDfl=0.13620
20 )
21 )
22 prop_id1 = root.add_measurement(
23 cgen.Propagator(
24 fermion_action="WILSON", inverter="CG_INVERTER",
25 gauge_id=gauge_id, source_id=source_id,
26 Kappa=0.13620, FermState="SIMPLE_FERMBC",
27 )
28 )
29 print(root.render())# Create XML file for your measurment.

From line 3 to 6 we setup the root inline measurement. Subsequently, a point
source is added to the root measurement. The “add_measurement” function in line 7
returns an object id which can be used for referencing. We use it for the creation of
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propagators (line 13 to 28). Using introspection techniques, we are able inform the
user if a necessary parameter is missing. This is implemented via an exception. For
instance, if “Kappa” in line 17 was not defined by the user. Changing the fermion
action and the inverter of a propagator is an easy task, as demonstrated from line 13
to 28.

Currently we are able to generate input files for 27 inline measurement. To imple-
ment a new inline measurement one has to provide a corresponding template. We refer
the interested reader to the example folder in [93]. The template for the propagator
inline measurement is shown in Listing 4.4.2.

Listing 4.4.2: Template for the propagator inline measurement.

<elem>
<Name>PROPAGATOR</Name>
<Frequency>1</Frequency>
<Param>

<version>10</version>
<quarkSpinType>{{ quarkSpinType }}</quarkSpinType>
<obsvP>false</obsvP>
<numRetries>1</numRetries>
{{ PartialFermionAction }}
{{ PartialInvertParam }}

</Param>
<NamedObject>

<gauge_id>{{ gauge_id }}</gauge_id>
<source_id>{{ source_id }}</source_id>
<prop_id>@@AUTO_ID@@</prop_id>

</NamedObject>
</elem>

We distinguish between to types of templates. The first type is a Chroma inline
measurement and the second type is a “partial”. A partial can be part of an inline mea-
surement, in other words, it is a sub template. For instance the “PartialInvertParam”
in Listing 4.4.2. It is a template by its own and shown in Listing 4.4.3.

Listing 4.4.3: InvertParm is a partial, hence no inline measurement by its own.
It is a sub template and appears in other templates.

<InvertParam>
<invType>CG_INVERTER</invType>
<RsdCG>{{ Residual }}</RsdCG>
<MaxCG>1000</MaxCG>

</InvertParam>

Note that “Residual” in Listing 4.4.3 has a sensible default value. However, in
certain cases this value must be changed. It can be overridden in the corresponding
inline measurement, in our case in Listing 4.4.2. To allow the user to judge the outcome
we supplement each generated XML file with a comment section. The comment section
of Listing 4.4.2 is shown in Listing 4.4.4. It provides an compact overview of the
measurement and can be used to identify default values.
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Listing 4.4.4: Compact summary of the user defined chroma measurement ap-
pended at the end of each generated XML file.

<!-- Auto generated IDS of your measurement:

MAKE_SOURCE[
SourceSourceType@POINT_SOURCE SmearingParamwvf_kind@NONE using
{

'gauge_id': 'default_gauge_field',
't_srce' : [0, 0, 0, 24]

}
]
Hash: acd1df5f546d5cff7425bfa407b3792e594d0ac7

PROPAGATOR[
FermionActionFermAct@UNPRECONDITIONED_CLOVER
InvertParaminvType@IDFLS_INVERTER using

{
'BlockSize': '6 6 6 4',
'FermState': 'SIMPLE_FERMBC',
'Kappa' : 0.1362,
'KappaDfl' : 0.1362,
'NDflModes': 32,
'Residual' : 1e-12,
'clovCoeff': 1.92,
'gauge_id' : 'default_gauge_field',
'source_id': 'acd1df5f546d5cff7425bfa407b3792e594d0ac7'

}
]
Hash: 8e1a9f7b93a125b684a29947e64620c180a9dff0

PROPAGATOR[
FermionActionFermAct@WILSON InvertParaminvType@CG_INVERTER using
{

'FermState' : 'SIMPLE_FERMBC',
'Kappa' : 0.1362,
'Residual' : 1e-12,
'gauge_id' : 'default_gauge_field',
'source_id' : 'acd1df5f546d5cff7425bfa407b3792e594d0ac7'
}

]
Hash: 91438e6817bb1143337afb1a6670a32230e73c04

-->

4.5 Smeared stochastic three-point functions

In this section we explain how we compute smeared stochastic three-point correlation
functions. The actual smearing method, used for link and quark smearing is not
important here. We start our discussion with the point-to-all propagators which are
part of the stochastic correlation tensor shown in Fig. 4.4.
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Point-to-all propagators with generic flavor index A and B can be arbitrarily
smeared at source and sink. However, it is important2 that the point-to-all propa-
gator with flavor index E is local at the sink because a smeared propagator would
yield a non-local operator. The smearing of the stochastic time-slice-to-all propaga-
tor works differently. Acutally there are several possibilities to smear the stochastic
propagator, however, so far we have used only the following. In a first step we compute
the noise vectors and use them to construct the spectator

SAB(p′, x ′ f /b4 , x{s}4 )α
′αβ ′ωβγ′
ic ≡ εa′b′c′ εabc

∑

x ′
e−ip′ (x ′−x{s})

×
(
GA
(
x ′ f /b4 , x ′

∣∣ x{s}4 , x{s}
)α ′α
a′a · GB

(
x ′ f /b4 , x ′

∣∣ x{s}4 , x{s}
)β ′β
b′b · ηi

(
x ′ f /b4 , x ′

)ρ′
c′︸ ︷︷ ︸

unsmeared

·
(
γ5
)ρ′ γ′

)
.

(4.11)

In a second step we smear the set of noise vectors and perform the inversion as
defined in Eq. (3.32). The resulting set of solution vectors is than used to construct
the insertion

IDE (q, yf /b4 , x{s}4 )µνγic ≡
∑

y
e+iq·(y−x{s})

×
(
(
γ5
)µ ρ · s∗D,i

(
y4,y

)ρ
d︸ ︷︷ ︸

inverted on smeared noise vectors

·GE
(
y′ f /b4 ,y

∣∣ x{s}4 , x{s}
)νγ
dc

)
. (4.12)

x ′ f4 yf4 xs4 yb4 x ′b4

α ′
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γ ′µν νµE ED D
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A
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Figure 4.4: Visualization of a smeared stochastic correlation tensor. Smearing it-
erations, applied to the source and sink of point-to-all propagators are shown as
hexagons.

2Our production code is not capable to check this condition at runtime.
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4.6 Stochastic three-point functions with derivative

The possibility to compute stochastic three-point functions with one covariant deriva-
tive is an important improvement. It can be used to obtain matrix elements, needed for
the extraction of GFFs on the lattice. In this section, we briefly explain some details
how the covariant derivative is incorporated into the stochastic method. We start with
the definition of the generic current interpolator

J µ1(y4,y)DE ≡ (Γ3)µνΨD(y4,y)µd
←→
D µ1

dcΨE (y4,y)νc , (4.13)

containing the covariant symmetric derivative

←→
D µ1

dc = 1
2

(−→
D µ1

dc −
←−
D µ1

dc

)
, (4.14)

which will be replaced by a symmetric discretized version on the lattice. The presence
of
←→
D µ1 in Eq. (4.13) does not affect the Wick contraction nor the factorization of the

three-point function into the spectator and the insertion part. However, one has to
introduce3 an extra minus sign for the backward three-point function with temporal
derivative (µ1 = 4). The spectator part is not affected, but the insertion part must be
modified

Iµ1
DE (q, y4, x4)µνγic = 1

2
∑

y

{([
γ5 sD, i(y4,y)

]†)µ
d
·
(−→
D µ1GE (y4,y

∣∣ x4, x)
)νγ
dc

−
([−→
D µ1 γ5 sD, i(y4,y)

]†)µ
d
·
(
GE (y4,y

∣∣ x4, x)
)νγ
dc

}
e+iq·(y−x) . (4.15)

The computation of the insertion with derivative is more expensive compared to the
version without derivative due to

−→
D µ1 γ5 sD, i(y4,y) and

−→
D µ1GE (y4,y

∣∣ x4, x) . (4.16)

4.7 Implementation details of spectator and insertion

The spectator, as well as the insertion is generated by a fork of LibHadronAnalysis
[91]. LHA is used as a library and is integrated in the QDP++/Chroma [92] framework.
A full introduction into LHA would exceed the scope of this work, however, we discuss

3This is automatized in our software stack.
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some points. LHA is optimized for the computation of the spectator

SAB(p′, x ′ f /b4 , x{s}4 )α
′αβ ′ωβγ′
ic ≡ εa′b′c′ εabc

∑

x ′
e−ip′ (x ′−x{s})

×
(
GA
(
x ′ f /b4 , x ′

∣∣ x{s}4 , x{s}
)α ′α
a′a · GB

(
x ′ f /b4 , x ′

∣∣ x{s}4 , x{s}
)β ′β
b′b · ηi

(
x ′ f /b4 , x ′

)ρ′
c′ ·
(
γ5
)ρ′ γ′

)

LHA uses the source positions (x{s}) as well as the forward and backward parts
(x ′ f /b4 ) of all used components (propagator, noise, etc.) as parallelization index. The
maximal number of MPI ranks which compute the spectator in parallel is thus 2 ×
Nsrc. For example, the spectators shown in Fig. 4.3 with source positions x{1}4 and
x{1}4 are computed simultaneously. This is achieved by an input data (e.g. phases,
propagators and noise vectors) redistributes among the availably MPI ranks. During
this redistribution LHA converts the data to a SIMD friendly layout and changes
the loop order compared to QDP++/Chroma where only relevant parts from the
Chroma owned memory are copied. Let us now come to the insertion without covariant
derivative

IDE
(
q, yf /b4 , x{s}4

)µνγ
ic =

∑

y
γµρ5 · s∗D, i

(
yf /b4 ,y

)ρ
d · GE

(
yf /b4 ,y

∣∣ x{s}4 , x{s}
)ν γ
dc · e

+iq·(y−x{s}) .

LHA performs the computation of the insertion in parallel. It uses, for a given source
position (x{s′}), the operator insertion (yf /b) as parallelization index. For instance, the
insertion parts (yf /b) shown in Fig. 4.3a are computed simultaneously. The redistribu-
tion of the input data (propagators, solution vectors, etc.), from Chroma to LHA is done
such that each MPI rank has approximately the same number of tasks to work with.
Insertions with covariant derivatives are treated the same way. However, an extra
loop, in the corresponding Chroma inline measurement is needed for the derivative
directions µ1. Due to the symmetrization in Eq. (4.15), one can expect that LHA needs
twice the time compared to the case where no derivative occurs. This factor, however,
is not significant. The production of the necessary input data, for instance Eq. (4.16),
are the dominant time consuming parts. More details about the performance of are
presented in section 4.9.
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4.8 Stochastic three-point functions for mesons

In this section we briefly highlight that the insertion part is constructed such that one
can (re-)use it for the computation of meson-three-point correlation functions. We
implement the meson spectator as follows

SA
(
p′, x ′ f /b4 , x{s}4

)α α ′ γ′
ic =

∑

x ′
e−ip′·(x ′−x{s})

×
(
γ5 · G†A

(
x ′ f /b4 , x ′

∣∣ x{s} , x{s}
)
· γ5

)α α ′

ca′
· ηi
(
x ′ f /b4 , x ′

)ρ′
a′ ·
(
γ5
)ρ′γ′ . (4.17)

Compared to the baryon spectator it has one propagator less (we have 6 fields hence
3 propagators in total). We further exploit γ5-hermiticity in Eq. (4.17) to changed the
propagation direction of the point-to-all propagator. This is necessary since meson
three-point functions have closed loops. The SCT for the meson is given by and
visualized in Fig. 4.5.

T µ1(p′,q, x ′ f /b4 , yf /b4 , x{s}4 )α
′αγ′µνγ
ADE =

1
Nsto

Nsto∑

i=1

(
SA
(
p′, x ′ f /b4 , x{s}4

)α ′αγ′
ic × Iµ1

DE
(
q, yf /b4 , x{s}4

)µνγ
ic

)
(4.18)

x ′ f4 yf4 xs4 yb4 x ′b4
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Figure 4.5: Stochastic correlation tensor for mesons.

4.9 Performance

We briefly discuss the performance of the stochastic code which is based on [94]. The
measurements were carried out on a single gauge configuration of the CLS ensemble
H101 (323×96, a ≈ 0.086 fm) which is a Nf = 2+1 ensemble with non-perturbatively
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O(a) improved Wilson fermions and tree-level improved Symanzik gauge action using
open boundary conditions in time. The pion and kaon mass is about 420 MeV. The
benchmarks were performed on the QPACE3 supercomputer of the SFB/TR 55 at
the Jülich Supercomputing Centre. The machine is based on Intel Xeon Phi (KNL)
processors connected via Intel Omni-Path. The measurement includes the computation
of the baryon spectator, meson spectator and the insertion without derivative where
we use 50 single-seeded noise vectors in forward as well as 50 single-seeded noise
vectors in the backward direction. We use a single source position (s = 1) located at
x{1}4 = 30a with a source sink distance of x ′ f4 − x

{1}
4 = x{1}4 − x ′b4 = 10a.

In this test we study two extreme cases given in terms of the computed momenta.
In the first scenario, we consider

K00 : k2
p′ = 0 and k2

q = 0

with p′ = 2πkp′/L and q = 2πkq/L which leads to a single momentum combination.
In the second scenario we investigate the case

K88 : k2
p′ ∈ {0 . . . 8} and k2

q ∈ {0 . . . 8}

which yields 93 · 93 possible different momentum combinations. The results are sum-
marized in Fig. 4.6 showing the distribution of spent computer time for the individual
steps to obtain the spectators and the insertion.

Contraction Part

(0.275%)

Gauge Field

(4.279%)

Source calc.

(1.890%)

Propagator calc.

(15.185%)

Solutions calc.

(71.54%)

Noises calc.

(0.562%)

Overhead

(6.267%)

Contraction

(a) Setup K00

Contraction Part

(7.172%)

Gauge Field

(3.723%)

Source calc.

(1.761%)

Propagator calc.

(13.84%)

Solutions calc.

(65.12%)

Noises calc.

(0.520%)

Overhead

(7.843%)

Contraction

(b) Setup K88

Figure 4.6: Distribution of used computer time for the individual steps to obtain the
spectators and the insertion. The contraction part refers to the time which is consumed
by LHA in order to calculate the spectators and the insertion. Figure taken from [94].

The dominant time-consuming part, for both momentum scenarios, is given by the
creation of the solutions vectors. For setup K00 the actual computation of the spec-
tators and the insertion (denoted as “Contraction Part”) is neglectable. The overall
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computation time for setup K00 (530 seconds) and Setup K88 (575 seconds) is roughly
the same. Hence it is possible to produce data for a large number of momenta4 without
increasing the computation time significantly.

This measurement uses a single source position, however, we are able to give
the following statement for multiple source-sink separations. An additional source
position gives rise to three additional point-to-all propagators and would double the
“Propagator calc.” time in Fig. 4.6. The time spent in the “Contraction” is expected
to be unchanged for baryon and meson spectators due to the parallelization of LHA.
For the insertion without derivative we expect a linear increase of the contraction
time with the number of source positions. Further, one can expect that the time to
compute the insertion with symmetric (factor 2) covariant derivative is roughly eight
times longer than without derivative. However, one has to keep in mind that the terms
shown in Eq. (4.16) bust be computed beforehand.

Our performance measurement indicates that the overall performance of LHA is
best in the case of many momentum combinations and several source-sink distances.
Readers who are interested in a direct comparison between the sequential method for
meson three-point functions and the stochastic counterpart are refereed to [94] where
it is shown that the stochastic code is faster by at least a factor of 1.5 in the high
momentum setup Setup K88.

4.10 Disk space requirements of spectator and insertion

In this section we derive expressions which parametrize the necessary disk space to
store the spectator and the inerstion parts. We summarized all necessary parameters
in Table 4.1. The size of the spectator and the insertion, for a single smearing setup
is

Size
[
SAB
(
p′, x ′ f /b4 , x{s}4

)α ′αβ ′βγ′
ic

]
=

Nspe
F ×Np′ ×Nsnk ×Nsrc ×Nsto ×Nc ×N5

s × 16
109 GB , (4.19)

Size
[
Iµ1
DE
(
q, yf /b4 , x{s}4

)µνγ
ic

]
=

Nµ1 ×N ins
F ×Nq × (x ′f4 /a− x ′b4 /a− 2) ·Nsrc ×Nsto ×Nc ×N3

s × 16
109 GB . (4.20)

Assuming the maximum values in Table (4.1), we find, that 4.5 GB and 68.6 GB per
gauge configurations are needed to store the spectator and the insertion respectively.
For the insertion we assumed Nµ1 = 5 and set (x ′f4 /a − x ′b4 /a − 2) = 30. This

4This increase the disk space consumption.
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shows, that depending on the actual setup, the required disk space is relatively large
compared to traditional methods.

Symbol (Typical) value Number of Section
Ns 4 spin indices -
Nc 3 color indices -
Nsto 50− 100 stochastic estimators 3.6
Np′ 1− 57 spectator momenta 3.10
Nq 1− 93 insertion momenta 3.10
Nspe
F 1− 4 spectator flavor combinations 3.10

N ins
F 1− 4 insertion flavor combinations 3.10

Nsrc 1− 4 source positions x{s}4 4.3
Nsnk 2 sink positions x ′ f /b4 4.3
Nyf /b4

Nsrc · (x ′f4 /a− x ′b4 /a− 2) yf /b4 insertions times 4.3
Nµ1 4 (+1) derivative directions 4.6

(+1 for no derivative)

Table 4.1: List of parameters and their (typical) values in order to parametrize the
disk space of the spectator and the insertion.

4.11 Remarks for stochastic three-point functions

In terms of production runs, it is most beneficial to compute the meson spectator,
the baryon spectator and the insertion in a single run. Our code, however, is able
to compute each stochastic component (baryon spectator, meson spectator, insertion)
separately. This feature can be used to calculate missing flavor combinations, i.e.,
combinations which were not computed in the initial measurement. In the following
we discuss when one should use the stochastic method compared to the sequential
method for the generation of three-point functions. This, however, can not be answered
generically for all possible applications. For a given project one has to estimate the
production cost for both methods in order to come to a decision. For applications
which require three-point functions with

• many momentum combinations

• or many flavor combinations

• or many source-sink separations

is highly likely, that the stochastic method performs better than the sequential method.

4.12 Final expressions

In the previous sections we have improved our method to be suitable for state of the
art computations of three-point functions. In this section we present the final formulas.
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For the insertion as well as for the spectator we do not label the propagators, noise and
solution vectors with additional indices describing the smearing types and iterations.
However, one has to keep in mind that these might be present. This is important if
one attempts to count the disk space/memory consumption.

4.12.1 Stochastic correlation tensor for baryons

The stochastic correlation tensor with all improvements for the baryon is presented
below

T µ1(p′,q, x ′ f /b4 , yf /b4 , x{s}4 )α
′αβ ′βγ′µνγ
ABDE =

1
Nsto

Nsto∑

i=1

(
SAB
(
p′, x ′ f /b4 , x{s}4

)α ′αβ ′βγ′
ic × Iµ1

DE
(
q, yf /b4 , x{s}4

)µνγ
ic

)
(4.21)

and visualized in Fig. 4.7. When there is no covariant derivative, one can drop the
index µ1.
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Figure 4.7: Stochastic correlation tensor for baryons.

4.12.2 Baryon three-point function with open indices

Baryon three-point functions with open spin indices are obtained according to

Cµ1
(

p′,q, x ′ f /b4 , yf /b4 , x{s}4

)α ′αβ ′βγ′µνγ
=

∑

ω∈Ω

σ (ω)
〈
T µ1
(

p′,q, x ′ f /b4 , yf /b4 , x{s}4

)ω(α ′)ω(α)ω(β ′)ω(β)ω(γ′)µνω(γ)

ω(A)ω(B)DE

〉
. (4.22)
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4.12.3 Baryon three-point function

Our final expression for stochastic baryonic three-point functions is

C µ1
(

p′,q, x ′ f /b4 , yf /b4 , x{s}4

)
= Pττ′ · Sτ

′α ′β ′γ′µνγβατ
f /b · Cµ1

(
p′,q, x ′ f /b4 , yf /b4 , x{s}4

)α ′αβ ′βγ′µνγ

(4.23)

For the reader’s convenience we provide the definitions

Sτ
′α ′β ′γ′µνγβατ
f = (Γ1)τ

′α ′(Γ2)β
′γ′(Γ3)µν(Γ2)γ β(Γ1)α τ ,

Sτ
′α ′β ′γ′µνγβατ
b = (Γ1γ4γ5)τ

′α ′(γ5γ4Γ2γ4γ5)β
′γ′(γ5γ4Γ3γ4γ5)µν(γ5γ4Γ2γ4γ5)γβ(γ5γ4Γ1)ατ ,

where we use Γ1 = γ4Γ†1 γ4 and Γ2 = γ4Γ†2 γ4 according to Eqs. (3.5).

4.13 Qualitative comparison

In this section we show a qualitative comparison of stochastic and sequential three-
point functions. The comparison is only qualitative because the shown three-point
functions are taken from real productions runs where the sources of the sequential
three-point functions do not coincided with the forward sources used of the stochastic
method. We restrict ourselves to a single source-sink distance and the nucleon with
uu current measured on 1543 configurations of the N203 CLS ensemble. We consider
the forward limit, e.g., the two momenta p and q are set to zero. Stochastic three-point
functions are constructed from Nsto = 100 stochastic estimates and using the double
seeding method. The obtained three-point functions, shown in Fig. 4.8 are shifted to
the origin and the operator insertion timeslice, plotted on the x-axes, is called τ .
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Figure 4.8: Comparison of stochastic and sequential three-point functions. The left
panels show the individual forward-backward contributions of the stochastic method
and the right panel compares the sequential three-point functions to the forward-
backward averaged stochastic three-point functions. From top to bottom we present
different currents parametrized by Γ3. The first three plot show three-point functions
which correspond to the vector, axial and tensor current. The bottommost panel shows
a three-point function with covariant derivative in temporal direction (µ1 = t). The
polarizations of all three-point functions are suitable chosen.
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5
Software and hardware stack for

stochastic three-point functions

This chapter provides a small overview of the software and hardware stack which is
used to effectively construct stochastic three-point functions. A serious effort was made
to make the construction steps1 as fast and easy as possible which has a decisive
impact on the time to publication. This is mandatory because our stochastic approach
produces relatively large amounts of data (spectator and insertion) and the correct post
processing is non-trivial, in contrast to traditional methods. The produced software
stack is written such that daily tasks as fitting three-point functions is achievable
with O(50) lines of Python code. This is indeed a key requirement to profit form
stochastic three-point functions because it allows people to produce results within a
relatively short time.

5.1 Constructing stochastic three-point functions

This section demonstrates the main steps and concepts to construct a baryon three-
point function after the measurement of the spectator and the insertion. We restrict
ourself to a proton three-point function and assume that the flavor setup of spectator
and the insertion was made properly (cf. section 3.10). Further, we demonstrate
only the construction for the forward case. Most of the steps discussed below are
automatized such that no manual interaction is necessary. However, we discuss them
in great detail to provide the reader the basis to understand our new approach.

1The steps after the measurement of spectator and insertions.
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Step I: Define the flavors

Define the flavor indices of the generic interpolators defined in Eqs. (3.1, 3.2, 3.7)

A = u, B = u, C = d, D = u, E = u, (5.1)

to obtain a proton three-point function with ūu-flavor.

Step II: Calculate the Wick contraction

Compute the Wick contraction for the flavor set-up according to Eq. (5.1). For this
task we provide a python package called openGFF [95] which is a wrapper around
the wick package [87]. The necessary steps are shown in Listing 5.1.1. We instantiate
the generic baryon interpolators and compute the Wick contraction (line 8-13). For
consistency reasons we only allow flavors as input and hide spin, color and space-time
positions. The ω-functions are computed in line 13 and the result are presented as
comments from line 14 to 16. Subsequently, we calculate the sign correction functions
σ (ω) (line 16) and store the flavor indices of the SCT (line 18).

Listing 5.1.1: Calculation of ω, σ (ω) and the flavor indices of the SCT.

1 from opengff.interpolators.baryon import BaryonAnnihilator, BaryonCreator
2 from opengff.interpolators.baryon import BaryonCurrent
3 from opengff.interpolators.baryon import BaryonSpinProjection
4 from opengff.stoch3pt.contraction import BaryonContraction
5 from wick.flavors import U, D
6 # Perfom the wick contraction
7 wick_contraction = BaryonContraction(
8 BaryonAnnihilator(U,U,D),
9 BaryonCurrent(U,U),

10 BaryonCreator(D,U,U),
11 BaryonSpinProjection()
12 )
13 omegas = wick_contraction.einsum_strings()
14 # [ 'ab,cd,be,fa,gh,ij,gdhceijf', 'ab,cd,be,fa,gh,ij,gfhceijd',
15 # 'ab,cd,be,fa,gh,ij,edhcgijf', 'ab,cd,be,fa,gh,ij,efhcgijd']
16 signs = wick_contraction.signs() # Calculate $\sigma(\omega)$
17 # [-1, -1, -1, -1]
18 flavors = wick_contraction.propagator_flavors() # SCT flavor structure
19 # ['u', 'd', 'u', 'u']

Step III: Define the content of S and P

Projection to positive parity is done by P = P+. To obtain a proton three-point
function, corresponding to the vector charge, we define the following Dirac matrices
Γ1 = 1, Γ2 = Cγ5, Γ3 = γ4, yielding the spin tensor

Sτ ′α ′β ′γ′µνγβατ → (1)τ ′α ′ (Cγ5)β
′γ′ (γ4)µν (γ4(Cγ5)†γ4)γ β (γ4(1)†γ4)α τ .
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Step IV: Create the SCT with spectator and insertion

Define the momenta, for instance p′ = q = 0. Note that the flavor indices of the SCT
are already known due to the previous step. Further, define the Euclidean times x ′f4 ,
yf4 and x f4 . To that end, assume that the baryon sink is at x ′f4 = 50a and the baryon
source position is x4 = 35a. The operator insertion yf4 can take values according to
x ′f4 > yf4 > x f4 . For simplicity, we consider only yf4 = 40a. Construct the SCT as
shown below

T (0, 0, 50a, 40a, 35a)α
′αβ ′βγ′µνγ
uduu =

1
Nsto

Nsto∑

i=1

(
Sud(0, 50a, 35a)α

′αβ ′βγ′
ic × Iuu(q, 40a, 35a)µνγic

)
. (5.2)

Step V: Contract the SCT

Construct the three-point function by loading the SCT, as defined in Eq. (5.2) and
perform the contraction with the spin tensor and the projection operator. The necessary
code is shown in Listing 5.1.2 which is meant as a continuation of Listing 5.1.1.

Listing 5.1.2: Construction code to obtain a proton three-point function.

1 # Continuation of previous Listing
2 from numpy import einsum
3 from numpy.random import rand
4 from rioi.reader.stoch3pt.contractions.gamma_mat import Factory
5

6 def load_sct(p_prime, q, x_prime, y, x, A, B, D, E):
7 x = rand(4,4,4,4,4,4,4,4)
8 return x + 1.0j * x
9

10 # Create matrices
11 m1 = Factory.create_from_string("(gi + gt)/2")
12 m2 = Factory.create_from_string("gi")
13 m3 = Factory.create_from_string("gy*gt*g5")
14 m4 = Factory.create_from_string("gt")
15 m5 = Factory.create_from_string("gt*H(gy*gt*g5)*gt")
16 m6 = Factory.create_from_string("gt*H(gi)*gt")
17

18 # Load data from disc (flavors defined in prev. Listing)
19 t = load_sct((0,0,0), (0,0,0), 50, 40 ,35, *flavors)
20

21 # Perform contractions
22 result = 0.0 + 0.0j
23 for sigma, omega in zip(signs, omegas):
24 result += sigma * einsum(omega, m1, m2, m1, m4, m5, m6, t)
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Note that the variables “signs”, “omegas” and “flavors” are defined in Listing 5.1.1.
We do not comment the individual lines of code, however, we like to highlight the
great flexibility of our new approach. Listing 5.1.2 is an implementation of

C (0, 0 | 50a, 40a, 35a) =

×
(1 + γ4

2
)ττ′ (1

)τ ′α ′ (Cγ5
)β ′γ′ (γ4

)µν (γ4(Cγ5)†γ4
)γ β (γ4(1)†γ4

)α τ

×
[
− T (0, 0, 50a, 40a, 35a)β

′ β γ′ γ α ′ µ ν α
ud uu − T (0, 0, 50a, 40a, 35a)β

′ α γ′ γ α ′ µ ν β
ud uu

− T (0, 0, 50a, 40a, 35a)α
′ β γ′ γ β ′ µ ν α
ud uu − T (0, 0, 50a, 40a, 35a)α

′ α γ′ γ β ′ µ ν β
ud uu

]
.

5.2 Actual implementation

Previously, we worked out the core steps for the construction of stochastic baryon
three-point functions which serves as basis for the following discussion. The discussed
steps are summarized in Fig. 5.1.

In this section, we introduce several software packages which are supposed to
simplify the work with stochastic three-point functions. We highlight, that our imple-
mentation enables the user to work with stochastic three-point functions on a usual
desktop computer. This however, requires a server-client infrastructure due to the
following consideration. The steps I-III, discussed in the last section, can be easily
performed on a desktop computer. However, step IV requires strong IO capacities
because the operation

T (0, 0, 50a, 40a, 35a)α
′αβ ′βγ′µνγ
uduu =

1
Nsto

Nsto∑

i=1

(
Sud(0, 50a, 35a)α

′αβ ′βγ′
ic × Iuu(q, 40a, 35a)µνγic

)
,

must be performed for each of theNconf measurements of the spectator and the insertion
(cf. section 4.10). The implemented server-client infrastructure works as follows. The
steps I-III are performed on a desktop computer but step IV and V are handled by
an IO-Server, equipped with a fast connection to the storage system which servers
the spectator and insertion files. The communication between the server and client
is implemented using two software packages rioc2 and rios3. The communication,
between server and client requires a request, sent from the client to the server. It can
be produced by the openGFF package. The Listing 5.2.1 is supposed to demonstrate a

2Regensburg IO client [96].
3Regensburg IO server [97].
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baryon three-point function request, which is hared coded for demonstration purposes
only. This example assumes, that rios is running on the IO-Server which uses a
TCP socket and listens to port 50124. The actual request, is sent to the server in
line 39 and triggers the computation of steps IV-V, discussed in section 5.1. The
corresponding result, i.e., the baryon three-point function is sent to the client (line
39). Let us remark, that the authentication between rios and rioc is currently done
by a simple magic number check. This is sufficient, because the IO-Server is only
reachable within the physics network of the university. In case one wants to have
communication over the Internet one can easily implement a challenge-response step
which proves the identity of the client.

Listing 5.2.1: Example request for a stochastic baryon three-point function.

1 import rioc.client
2 request = {
3 "reader": "Stoch3ptBaryonReader",
4 "version": "1",
5 "task": {
6 "read": {
7 "db": {"task", "store"},
8 "file_dict": {"1": "[1,3,3,4,5]",},
9 "momentum_list": "[((0, 0, 0),(0, 0, 0)),((0, 0, 1),(0, 1, 0)),]",

10 "atomic_request": {
11 # Measurement Specific Request
12 "ensemble": "H102",
13 "num_sto": "100",
14 "noise_smearing_spe": "None",
15 "noise_smearing_ins": "One",
16 "noise_seeding": "Single",
17 # Contraction Sepcific Request
18 "propagator_one_flavor_spectator": "U",
19 "propagator_two_flavor_spectator": "U",
20 "solution_flavor": "D",
21 "propagator_one_flavor_insertion": "D",
22 "del_mu": "0",
23 "del_mu_sign": "1",
24 "direction": "1",
25 "spin_content": "[ '-0.5j*(+gi+gt)*gx*g5', 'gt*H(gy*gt*g5)*gt',
26 'gi', 'gt*H(gi)*gt', 'gy*gt*g5', 'gx*g5']",
27 "contraction_signs": "[-1, -1]",
28 "einsum_strings": "['ab,cd,be,fa,gh,ij,edgfhijc',
29 'ab,cd,be,fa,gh,ij,efgdhijc']",
30 # Analysis Specific Request
31 "channel": "real",
32 "source_sink_distance": "10",
33 },
34 },
35 },
36 }
37 io_server_ip="127.0.0.1"
38 client = rioc.client.RiosClient(host=io_server_ip, port=50124)
39 data = client.get_data(request) # data.shape = (momenta, config, time)
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Storage system

High speed (network) connection

Figure 5.1: Used infrastructure to achieve high speed and usability for the construction
of stochastic three-point functions. The computation of the Wick contractions is done
on the IO server according to a request from a client created on a desktop computer.
Each client is connected to the IO-Server over a usual office network connection (or
over the Internet). The IO-Server must have a fast connection to the storage system
in order to load the spectator and insertion files as fast as possible. The DB-Server
is used to store three-point functions such that a second request does not trigger the
computation of the SCT again. This step gives high speed-ups for repeated requests.

5.3 Implementation details

The last section roughly sketches our server-client setup for the computation of
stochastic three-point functions. In this section, we discuss some improvements and
details of the implementation. We consider the IO-Server which receives a request
from a client. In this case, the following happens. The IO-Server computes a hash
of the request which servers as an unique key for the three-point function behind
this request. To save time for repetitive requests we implement check-pointing which
is done by a DB-Server. The IO-Server passes the hash to a DB-Server which re-
turns the three-point function in case that it was computed before. Subsequently,
the three-point function is passed from the DB-Server to the IO-Server to the client.
This improvement increases the usability of our server-client infrastructure because
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it reduces the response time. The origin of the speed-up is the acceleration of the
computation for Eqs. (4.21, 4.22, 4.23) which is performed on the IO-Server. For a
single stochastic three-point function, measured on the N401 CLS ensemble, O(7.7)
seconds are needed for its construction4. The IO-Server currently performs trivial
parallelization, i.e., parallelization over the different measurements. However, even
for 24 parallel jobs it takes 353 seconds to compute a three-point function for all
1100 configurations. Due to check-pointing, this computation must be performed only
once. In the following we explain the check-pointing in more detail. To that end, let
us consider the example request shown in Listing 5.2.1. We remark, that we do not
check-point the whole request. To be able to explain this let us clarify our notation in
line 8 of the Listing (5.2.1). The “file_dict” contains information about the considered
Monte Carlo stream (1) and the spectator and insertion files, which are mapped to
integer numbers. This replacement is used to get rid of file names, which may change
over the time and thus potentially change the value of the hash. The mapping, be-
tween numbers and files is done on the IO-Server and can be modified with care, if
necessary. The “momentum_list”, shown in line 9 of Listing (5.2.1) defines a list of (p′,
q) pairs, i.e., the momenta of the three-point function.

For each Monte Carlo stream, each measurement, each momentum pair and the
“atomic_request”, defined in Listing (5.2.1), we compute a hash and construct the
three-point functions accordingly. The size of the three-point function, and thus the
check-point size is

Size [C ] = Number of insertions× 8 Byte .

This further implies, that the amount of data which needs to be transferred over the
network (or the Internet) to the client computer is

Nconf ×N(p′,q) ×Number of insertions× 8 Byte ,

where N(p′,q) denote the number of momentum pairs. This yields 0.24 Megabyte per
momentum combination where we assumed Nconf = 2000 and a source-sink separa-
tion of 15a Finally, let us highlight that the described setup is capable to send other
types of lattice data to the client computer. By preparing a suitable request, one can
receive stochastic three-point functions meson (HDF5), two-point functions baryon
(HDF5), two-point functions meson (HDF5), and momentum averaged two-point func-
tions baryon (lime, Nf = 2). The different lattice data formats, are implemented in
the rioi (Regensburg IO interface) package [98]. It is used by rios and serves as an
abstraction layer for IO tasks.

4This number corresponds to our current setup in Regensburg. I would like to thank Simon
Weishäupl for producing the timing.
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6
Final summary and outlook

In this work we considered two main topics. First, we have calculated all quark
GFFs, corresponding to operators with one derivative, of the nucleon GPDs at leading
twist-2. Our lattice calculation includes the dominating connected contributions and
neglects contributions from disconnected diagrams. The available gauge ensembles
cover a wide range of quark masses and volumes. However, the three available lattice
spacings only vary from 0.081 fm down to 0.060 fm. Within errors, all GFFs show a
mild dependence on the quark mass, lattice spacing and volume.

We have compared two different fitting strategies for the GFFs and found that the
direct fit method appears to be more reliable. With this method the number of fit
parameters is reduced to the relevant degrees of freedom. We recommend to use this
method in future studies. We have also studied the total angular momentum and the
transverse spin density of quarks in the nucleon. Both quantities can be extracted
from fits to our GFF data. For the total angular momentum we obtain a similar
estimate in the isovector case as ETMC in Ref. [65]. From Ref. [65] we know that
these are small. Nevertheless, in the isoscalar case they should definitely be taken
into account. For the second moment of the transverse spin density we have found
that its distribution in impact parameter space strongly depends on the t-dependence
of the GFF data. The shape of the distribution depends on the value of p that is
used within a p-pole ansatz. High precision data at small and large values of −t
would be required to eliminate this ambiguity. For integrated moments this situation
improves. In Fig. 2.25 we provide lattice estimates for the x-weighted probabilities
of a transversely polarized (unpolarized) light quark in the upper or lower part of the
impact parameter space, within an unpolarized (transversely polarized) nucleon.

We remark that recently new methods have been proposed to obtain information
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on parton distribution functions (PDFs), distribution amplitudes (DAs), transverse
momentum dependent PDFs (TMDPDFs) and GPDs that is complementary to the
computation of Mellin moments with respect to Bjorken-x from expectation values
of local currents within external states, see, e.g., Refs. [99, 100, 101, 102, 103, 104].
In these approaches Euclidean correlation functions are computed and then matched
within collinear factorization to light cone distribution functions, employing continuum
perturbative QCD.

In the second part of this work we introduced a new approach to calculate hadronic
three-point functions. Key ingredient is a stochastic timeslice-to-all propagator to fac-
torize the three-point correlation function into the spectator and the insertion. This
offers the great advantage to compute connected three-point functions with arbitrary
γ-matrices, projection operators, flavors and momentum combinations after the gener-
ation of the insertion and the spectator. The efficiency of our implementation is sub-
stantially enhanced by the fact that the most computational demanding part, namely
the insertion is designed such that it can be used for the calculation of meson and
baryon three-point functions. To that end one has to generate the corresponding
spectators which is less demanding. We further improve our method by exploiting
time-reversal symmetry to calculate the backward propagating three-point functions
as well. This reduces the statistical errors of the desired three-point correlation func-
tion after forward-backward averaging. Due to an efficient data layout conversion from
Chroma to LHA we are able to compute multiple source-sink separations in parallel
with reasonable overhead compared to a single source-sink distance. Most strikingly,
the number of computed momentum combinations has only a marginal effect to the
overall runtime.

The great flexibility and efficiency of our new approach comes not for free. In fact,
there are two main drawbacks. The first is the relatively large disk space usage
for the spectator and the insertion. However, it should be noted, that the price of
disk space decreases with time. Secondly, the construction of three-point functions
becomes more complex because it is mandatory to compute the Wick contractions in
a second step. However, we hide this complexity with a modern and sophisticated
analysis framework. It would be interesting to calculate GFFs with our new method.
The necessary spectators and insertions are already computed on a large number
of CLS ensembles. With our new method one is not restricted to the nucleon. For
instance on could compute the transverse spin density for the Σ particle as done in
[105]. Further, it is worth to investigate whether our new method yields better results
for GFFs because the set of available momentum combinations is larger compared to
the sequential source method. In combination with multiple source-sink separations
one can hope to parametrize excited states for the calculation of GFFs. However,
a decisive impact can only be achieved if disconnected contributions are taken into
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account.
In terms of the construction of stochastic three-point functions one can improve the

situation by discarding the idea that all post analysis steps (after the generation of
spectator and insertion) are performed in-house. This approach has the serious dis-
advantage of wasting time by copying the data from one location to another. Actually
one should immediately start with the construction of stochastic three-point functions,
directly after the measurement of spectator and insertion. This reduces the time to
publication and possible mistakes can be identified in an early stage. Furthermore,
one can use the resources of the computing center. Our software stack for the con-
struction of stochastic three-point functions can be run everywhere. Assuming that
the security policy of the computing center allows a TCP connection one could start
the analysis server rios on a dedicated virtual server. By virtue of rioc one could
receive the requested stochastic three-point function on any desktop computer. This
setup is especially advantageous if collaborators are geographically separated. Due
the implemented checkpointing on the server, everybody would profit.
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A
Appendix

A.1 γ-matrix conventions

The Euclidean γ-matrices satisfy

{γµ, γν} = 2 δµν , γ†µ = γµ ,

For all numerical purposes, we use the chiral basis of the γ-matrices (Chroma basis)

γx = γ1 =





0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0



 γy = γ2 =





0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0





γz = γ3 =





0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0



 γt = γ4 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0





Further we define σµν ≡ i
2 [γµ, γν ] and γ5 ≡ γ1γ2γ3γ4 = Diag(+1,+1,−1,−1).

A.2 Used gauge ensembles for the computation of GFFs

In Table A.1 we summarize parameters of the Nf = 2 lattice ensembles used for
the calculation of nucleon GFFs. For more information about our setup we refer to
Ref. [50]

109



En
se

mb
le

β
a

[fm
]

κ
V

m
π

[G
eV

]
m
N

[G
eV

]
Lm

π
N

co
nf

t′ /
a

I
5.2

0
0.0

81
0.1

35
96

32
3
×

64
0.2

79
5(

18
)

1.0
91

(0
8)

3.6
9

19
86

(4
)

13

II
5.2

9
0.0

71
0.1

36
20

24
3
×

48
0.4

26
4(

20
)

1.2
89

(1
5)

3.7
1

19
99

(2
)

15
III

0.1
36

20
32

3
×

64
0.4

22
2(

13
)

1.2
47

(0
6)

4.9
0

19
98

(2
)

15
,17

IV
0.1

36
32

32
3
×

64
0.2

94
6(

14
)

1.0
71

(1
1)

3.4
2

20
23

(2
)

7(
1)

,9(
1)

,11
(1

),1
3,1

5,1
7

V
40

3
×

64
0.2

88
8(

11
)

1.0
79

(0
9)

4.1
9

20
25

(2
)

15
VI

64
3
×

64
0.2

89
5(

07
)

1.0
72

(0
5)

6.7
1

12
32

(2
)

15
VI

I
0.1

36
40

48
3
×

64
0.1

59
7(

15
)

0.9
68

(1
9)

2.7
8

34
42

(2
)

15
VI

II
64

3
×

64
0.1

49
7(

13
)

0.9
44

(1
7)

3.4
7

15
93

(3
)

9(
1)

,12
(2

),1
5

IX
5.4

0
0.0

60
0.1

36
40

32
3
×

64
0.4

90
(0

2)
1.3

02
(1

1)
4.8

1
11

23
(2

)
17

X
0.1

36
47

32
3
×

64
0.4

26
2(

20
)

1.2
62

(0
9)

4.1
8

19
99

(2
)

17
XI

0.1
36

60
48

3
×

64
0.2

59
5(

09
)

1.0
10

(0
9)

3.8
2

21
77

(2
)

17

Ta
bl

e
A.

1:
La

tin
nu

me
ra

ls
in

th
e

fir
st

co
lu

mn
se

rv
e

as
en

se
mb

le
id

en
tifi

er
s.

Af
te

rt
he

nu
mb

er
of

co
nfi

gu
ra

tio
ns
N

co
nf

we
lis

ti
n

pa
re

nt
he

se
s

th
e

nu
mb

er
of

in
de

pe
nd

en
t(

ra
nd

om
ly

ch
os

en
)s

ou
rc

e
po

sit
io

ns
th

at
we

av
er

ag
e

ov
er

wi
th

in
ea

ch
ga

ug
e

co
nfi

gu
ra

tio
n.

W
he

re
ve

rt
hi

s
is

in
di

ca
te

d
by

pa
re

nt
he

se
s

af
te

rt
he

sin
k-

so
ur

ce
se

pa
ra

tio
n
t′ /
a,

a
sm

al
le

rn
um

be
ro

fs
ou

rc
es

wa
s

us
ed

fo
rt

hi
s

va
lu

e.

110



Acknowledgements

I would like to express my sincere gratitude to Andreas Schäfer for giving me the
opportunity to work on his chair and for his support. Further, I want to thank Gun-
nar Bali, Sara Collins, Meinulf Göckeler, Andreas Schäfer and André Sternbeck for
their joint effort to our publication about Nucleon generalized form factors from two-
flavor lattice QCD. I would like to thank Gunnar Bali, Sara Collins, Benjamin Gläßle
and Johannes Najjar which helped me to get started as well as for the time they
spent in answering my questions. Additionally, I would like to thank all peoples
from the RQCD and QCDSF collaborations for generating the necessary gauge en-
sembles. Likewise, I want to thank all people who are involved in providing the
necessary infrastructure like Andreas Schäfer, the Gauss Centre for Supercomputing,
SuperMUC at the Leibniz Supercomputing Centre, iData-Cool, QPACE-n, Lurch and
Glurch. Further, I gratefully acknowledge all people who spent their time in writing
code as Simon Heybrock for his excellent work on LibHadronAnalysis which provides
the back-end for the computation of stochastic three-point functions. In particular, I
take great pleasure in acknowledging gratitude to Simon Mages, Florian Rappl, Piotr
Korcyl, Jakob Simeth, Daniel Richtmann, Marius Löffler Stefan Solbrig, Peter Georg,
Simon Weishäupl, Thomas Wurm and Philipp Wein. Finally, I thank my wife Tanja
for keeping my back free such that I was able to focus on my work.

111



112



References

[1] Kenneth G. Wilson. “Confinement of quarks”. In: Phys. Rev. D 10 (8 1974),
pp. 2445–2459. doi: 10.1103/PhysRevD.10.2445. url: https://link.aps.
org/doi/10.1103/PhysRevD.10.2445.

[2] Martin Luscher and Stefan Schaefer. “Lattice QCD without topology barriers”.
In: JHEP 07 (2011), p. 036. doi: 10.1007/JHEP07(2011)036. arXiv: 1105.
4749 [hep-lat].

[3] Simon Mages et al. “Lattice QCD on nonorientable manifolds”. In: Phys. Rev.
D95 (2017), p. 094512. doi: 10.1103/PhysRevD.95.094512. arXiv: 1512.
06804 [hep-lat].

[4] Gunnar Bali et al. “Nucleon generalized form factors from lattice QCD with
nearly physical quark masses”. In: PoS LATTICE2015 (2016), p. 118. doi:
10 . 22323 / 1 . 251 . 0118. arXiv: 1601 . 04818 [hep-lat]. url: http : / /
inspirehep.net/record/1415956/files/arXiv:1601.04818.pdf.

[5] Gunnar Bali et al. “Nucleon generalized form factors from two-flavor lattice
QCD”. In: Phys. Rev. D 100 (1 2019), p. 014507. doi: 10.1103/PhysRevD.
100.014507. url: https://link.aps.org/doi/10.1103/PhysRevD.100.
014507.

[6] Konrad Osterwalder and Robert Schrader. “Axioms for Euclidean Green’s func-
tions”. In: Communications in Mathematical Physics 31.2 (1973), pp. 83–112.
issn: 1432-0916. doi: 10.1007/BF01645738. url: https://doi.org/10.
1007/BF01645738.

[7] R.F. Streater and A.S. Wightman. PCT, spin and statistics, and all that. 1989.
isbn: 978-0-691-07062-9.

[8] Konrad Osterwalder and Robert Schrader. “Axioms for Euclidean Green’s Func-
tions. 2.” In: Commun. Math. Phys. 42 (1975), p. 281. doi: 10.1007/BF01608978.

[9] Christof Gattringer and Christian B. Lang. “Quantum chromodynamics on the
lattice”. In: Lect. Notes Phys. 788 (2010), pp. 1–343. doi: 10.1007/978-3-
642-01850-3.

[10] Kenneth G. Wilson. “Quarks and Strings on a Lattice”. In: New Phenomena in
Subnuclear Physics: Proceedings, International School of Subnuclear Physics,
Erice, Sicily, Jul 11-Aug 1 1975. Part A. [,0069(1975)]. 1975, p. 99.

[11] H.B. Nielsen and M. Ninomiya. “Absence of neutrinos on a lattice: (I). Proof by
homotopy theory”. In: Nuclear Physics B 185.1 (1981), pp. 20 –40. issn: 0550-
3213. doi: https://doi.org/10.1016/0550-3213(81)90361-8. url: http:
//www.sciencedirect.com/science/article/pii/0550321381903618.

113

https://doi.org/10.1103/PhysRevD.10.2445
https://link.aps.org/doi/10.1103/PhysRevD.10.2445
https://link.aps.org/doi/10.1103/PhysRevD.10.2445
https://doi.org/10.1007/JHEP07(2011)036
https://arxiv.org/abs/1105.4749
https://arxiv.org/abs/1105.4749
https://doi.org/10.1103/PhysRevD.95.094512
https://arxiv.org/abs/1512.06804
https://arxiv.org/abs/1512.06804
https://doi.org/10.22323/1.251.0118
https://arxiv.org/abs/1601.04818
http://inspirehep.net/record/1415956/files/arXiv:1601.04818.pdf
http://inspirehep.net/record/1415956/files/arXiv:1601.04818.pdf
https://doi.org/10.1103/PhysRevD.100.014507
https://doi.org/10.1103/PhysRevD.100.014507
https://link.aps.org/doi/10.1103/PhysRevD.100.014507
https://link.aps.org/doi/10.1103/PhysRevD.100.014507
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01608978
https://doi.org/10.1007/978-3-642-01850-3
https://doi.org/10.1007/978-3-642-01850-3
https://doi.org/https://doi.org/10.1016/0550-3213(81)90361-8
http://www.sciencedirect.com/science/article/pii/0550321381903618
http://www.sciencedirect.com/science/article/pii/0550321381903618


[12] H.B. Nielsen and M. Ninomiya. “Absence of neutrinos on a lattice: (II). Intu-
itive topological proof”. In: Nuclear Physics B 193.1 (1981), pp. 173 –194.
issn: 0550-3213. doi: https : / / doi . org / 10 . 1016 / 0550 - 3213(81 )
90524 - 1. url: http : / / www . sciencedirect . com / science / article /
pii/0550321381905241.

[13] H.B. Nielsen and M. Ninomiya. “A no-go theorem for regularizing chiral
fermions”. In: Physics Letters B 105.2 (1981), pp. 219 –223. issn: 0370-2693.
doi: https://doi.org/10.1016/0370- 2693(81)91026- 1. url: http:
//www.sciencedirect.com/science/article/pii/0370269381910261.

[14] Paul H. Ginsparg and Kenneth G. Wilson. “A Remnant of Chiral Symmetry on
the Lattice”. In: Phys. Rev. D25 (1982), p. 2649. doi: 10.1103/PhysRevD.25.
2649.

[15] Albert C. Lewis. “H. Grassmann’s 1844 Ausdehnungslehre and Schleiermacher’s
Dialektik”. In: Annals of Science 34.2 (1977), pp. 103–162. url: https://doi.
org/10.1080/00033797700200171.

[16] Simon Duane et al. “Hybrid Monte Carlo”. In: Physics Letters B 195.2 (1987),
pp. 216 –222. issn: 0370-2693. doi: https://doi.org/10.1016/0370-
2693(87 ) 91197 - X. url: http : / / www . sciencedirect . com / science /
article/pii/037026938791197X.

[17] D.H. Weingarten and D.N. Petcher. “Monte Carlo integration for lattice gauge
theories with fermions”. In: Physics Letters B 99.4 (1981), pp. 333 –338. issn:
0370-2693. doi: https://doi.org/10.1016/0370-2693(81)90112-X.

[18] Martin Lüscher. Computational Strategies in Lattice QCD. 2010. arXiv: 1002.
4232 [hep-lat].

[19] Martin Hasenbusch. “Exploiting the hopping parameter expansion in the hybrid
Monte Carlo simulation of lattice QCD with two degenerate flavors of Wilson
fermions”. In: Phys. Rev. D97.11 (2018), p. 114512. doi: 10.1103/PhysRevD.
97.114512. arXiv: 1805.03560 [hep-lat].

[20] S. Gusken. “A Study of smearing techniques for hadron correlation functions”.
In: Nucl. Phys. Proc. Suppl. 17 (1990), pp. 361–364. doi: 10.1016/0920-
5632(90)90273-W.

[21] S. Gusken et al. “Nonsinglet Axial Vector Couplings of the Baryon Octet in
Lattice QCD”. In: Phys. Lett. B227 (1989), pp. 266–269. doi: 10.1016/S0370-
2693(89)80034-6.

[22] Gunnar S. Bali et al. “Novel quark smearing for hadrons with high momenta in
lattice QCD”. In: Phys. Rev. D 93.9 (2016), p. 094515. doi: 10.1103/PhysRevD.
93.094515. arXiv: 1602.05525 [hep-lat].

[23] M. Falcioni et al. “AGAIN ON SU(3) GLUEBALL MASS”. In: Nucl. Phys. B251
(1985), pp. 624–632. doi: 10.1016/0550-3213(85)90280-9.

[24] F. M. Dittes et al. “The Altarelli-Parisi kernel as asymptotic limit of an extended
Brodsky-Lepage kernel”. In: Phys. Lett. B209 (1988), p. 325. doi: 10.1016/
0370-2693(88)90955-0.

114

https://doi.org/https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/https://doi.org/10.1016/0550-3213(81)90524-1
http://www.sciencedirect.com/science/article/pii/0550321381905241
http://www.sciencedirect.com/science/article/pii/0550321381905241
https://doi.org/https://doi.org/10.1016/0370-2693(81)91026-1
http://www.sciencedirect.com/science/article/pii/0370269381910261
http://www.sciencedirect.com/science/article/pii/0370269381910261
https://doi.org/10.1103/PhysRevD.25.2649
https://doi.org/10.1103/PhysRevD.25.2649
https://doi.org/10.1080/00033797700200171
https://doi.org/10.1080/00033797700200171
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
http://www.sciencedirect.com/science/article/pii/037026938791197X
http://www.sciencedirect.com/science/article/pii/037026938791197X
https://doi.org/https://doi.org/10.1016/0370-2693(81)90112-X
https://arxiv.org/abs/1002.4232
https://arxiv.org/abs/1002.4232
https://doi.org/10.1103/PhysRevD.97.114512
https://doi.org/10.1103/PhysRevD.97.114512
https://arxiv.org/abs/1805.03560
https://doi.org/10.1016/0920-5632(90)90273-W
https://doi.org/10.1016/0920-5632(90)90273-W
https://doi.org/10.1016/S0370-2693(89)80034-6
https://doi.org/10.1016/S0370-2693(89)80034-6
https://doi.org/10.1103/PhysRevD.93.094515
https://doi.org/10.1103/PhysRevD.93.094515
https://arxiv.org/abs/1602.05525
https://doi.org/10.1016/0550-3213(85)90280-9
https://doi.org/10.1016/0370-2693(88)90955-0
https://doi.org/10.1016/0370-2693(88)90955-0


[25] Dieter Müller et al. “Wave functions, evolution equations and evolution kernels
from light ray operators of QCD”. In: Fortsch. Phys. 42 (1994), p. 101. doi:
10.1002/prop.2190420202. arXiv: hep-ph/9812448 [hep-ph].

[26] Xiang-Dong Ji. “Gauge-Invariant decomposition of nucleon spin”. In: Phys. Rev.
Lett. 78 (1997), p. 610. doi: 10.1103/PhysRevLett.78.610. arXiv: hep-
ph/9603249 [hep-ph].

[27] A. V. Radyushkin. “Scaling limit of deeply virtual Compton scattering”. In: Phys.
Lett. B380 (1996), p. 417. doi: 10.1016/0370-2693(96)00528-X. arXiv: hep-
ph/9604317 [hep-ph].

[28] John C. Collins, Leonid Frankfurt, and Mark Strikman. “Factorization for hard
exclusive electroproduction of mesons in QCD”. In: Phys. Rev. D 56 (1997),
p. 2982. doi: 10.1103/PhysRevD.56.2982. arXiv: hep-ph/9611433 [hep-ph].

[29] M. Diehl. “Generalized parton distributions”. In: Phys. Rept. 388 (2003), p. 41.
doi: 10.1016/j.physrep.2003.08.002. arXiv: hep-ph/0307382 [hep-ph].

[30] A. V. Belitsky and A. V. Radyushkin. “Unraveling hadron structure with gener-
alized parton distributions”. In: Phys. Rept. 418 (2005), p. 1. doi: 10.1016/j.
physrep.2005.06.002. arXiv: hep-ph/0504030 [hep-ph].

[31] A. Airapetian et al. “Measurement of the beam spin azimuthal asymmetry asso-
ciated with deeply virtual Compton scattering”. In: Phys. Rev. Lett. 87 (2001),
p. 182001. doi: 10.1103/PhysRevLett.87.182001. arXiv: hep-ex/0106068
[hep-ex].

[32] A. Airapetian et al. “Beam-helicity asymmetry arising from deeply virtual Comp-
ton scattering measured with kinematically complete event reconstruction”. In:
JHEP 10 (2012), p. 042. doi: 10.1007/JHEP10(2012)042. arXiv: 1206.5683
[hep-ex].

[33] Kresimir Kumericki, Simonetta Liuti, and Herve Moutarde. “GPD phenomenol-
ogy and DVCS fitting”. In: Eur. Phys. J. A52.6 (2016), p. 157. doi: 10.1140/
epja/i2016-16157-3. arXiv: 1602.02763 [hep-ph].

[34] R. L. Jaffe and Aneesh Manohar. “The g1 problem: Fact and fantasy on the
spin of the proton”. In: Nucl. Phys. B 337 (1990), p. 509. doi: 10.1016/0550-
3213(90)90506-9.

[35] E. Leader and C. Lorcé. “The angular momentum controversy: Whats it all
about and does it matter?” In: Phys. Rept. 541.3 (2014), p. 163. doi: 10.1016/
j.physrep.2014.02.010. arXiv: 1309.4235 [hep-ph].

[36] Xiang-Dong Ji et al. “Spin decomposition of the electron in QED”. In: Phys.
Rev. D 93.5 (2016), p. 054013. doi: 10.1103/PhysRevD.93.054013. arXiv:
1511.08817 [hep-ph].

[37] M. Engelhardt. “Quark orbital dynamics in the proton from Lattice QCD –
from Ji to Jaffe-Manohar orbital angular momentum”. In: Phys. Rev. D 95.9
(2017), p. 094505. doi: 10.1103/PhysRevD.95.094505. arXiv: 1701.01536
[hep-lat].

[38] Ph. Hägler et al. “Nucleon Generalized Parton Distributions from Full Lattice
QCD”. In: Phys. Rev. D 77 (2008), p. 094502. doi: 10.1103/PhysRevD.77.
094502. arXiv: 0705.4295 [hep-lat].

115

https://doi.org/10.1002/prop.2190420202
https://arxiv.org/abs/hep-ph/9812448
https://doi.org/10.1103/PhysRevLett.78.610
https://arxiv.org/abs/hep-ph/9603249
https://arxiv.org/abs/hep-ph/9603249
https://doi.org/10.1016/0370-2693(96)00528-X
https://arxiv.org/abs/hep-ph/9604317
https://arxiv.org/abs/hep-ph/9604317
https://doi.org/10.1103/PhysRevD.56.2982
https://arxiv.org/abs/hep-ph/9611433
https://doi.org/10.1016/j.physrep.2003.08.002
https://arxiv.org/abs/hep-ph/0307382
https://doi.org/10.1016/j.physrep.2005.06.002
https://doi.org/10.1016/j.physrep.2005.06.002
https://arxiv.org/abs/hep-ph/0504030
https://doi.org/10.1103/PhysRevLett.87.182001
https://arxiv.org/abs/hep-ex/0106068
https://arxiv.org/abs/hep-ex/0106068
https://doi.org/10.1007/JHEP10(2012)042
https://arxiv.org/abs/1206.5683
https://arxiv.org/abs/1206.5683
https://doi.org/10.1140/epja/i2016-16157-3
https://doi.org/10.1140/epja/i2016-16157-3
https://arxiv.org/abs/1602.02763
https://doi.org/10.1016/0550-3213(90)90506-9
https://doi.org/10.1016/0550-3213(90)90506-9
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
https://arxiv.org/abs/1309.4235
https://doi.org/10.1103/PhysRevD.93.054013
https://arxiv.org/abs/1511.08817
https://doi.org/10.1103/PhysRevD.95.094505
https://arxiv.org/abs/1701.01536
https://arxiv.org/abs/1701.01536
https://doi.org/10.1103/PhysRevD.77.094502
https://doi.org/10.1103/PhysRevD.77.094502
https://arxiv.org/abs/0705.4295


[39] J. D. Bratt et al. “Nucleon structure from mixed action calculations using 2 + 1
flavors of asqtad sea and domain wall valence fermions”. In: Phys. Rev. D 82
(2010), p. 094502. doi: 10.1103/PhysRevD.82.094502. arXiv: 1001.3620
[hep-lat].

[40] C. Alexandrou et al. “Moments of nucleon generalized parton distributions from
lattice QCD”. In: Phys. Rev. D 83 (2011), p. 114513. doi: 10.1103/PhysRevD.
83.114513. arXiv: 1104.1600 [hep-lat].

[41] S. N. Syritsyn et al. “Quark contributions to nucleon momentum and spin from
Domain Wall fermion calculations”. In: PoS LATTICE2011 (2011), p. 178. arXiv:
1111.0718 [hep-lat].

[42] A. Sternbeck et al. “First moments of the nucleon generalized parton distri-
butions from lattice QCD”. In: PoS LATTICE2011 (2011), p. 177. arXiv: 1203.
6579 [hep-lat].

[43] C. Alexandrou et al. “Nucleon form factors and moments of generalized parton
distributions using Nf = 2+1+1 twisted mass fermions”. In: Phys. Rev. D 88.1
(2013), p. 014509. doi: 10.1103/PhysRevD.88.014509. arXiv: 1303.5979
[hep-lat].

[44] G. S. Bali et al. “Nucleon generalized form factors and sigma term from lattice
QCD near the physical quark mass”. In: PoS LATTICE2013 (2014), p. 291.
arXiv: 1312.0828 [hep-lat].

[45] Constantia Alexandrou et al. “Nucleon transversity generalized form factors
with twisted mass fermions”. In: PoS LATTICE2013 (2014), p. 294. arXiv: 1311.
4670 [hep-lat].

[46] Xiang-Dong Ji et al. “One-Loop Matching for Generalized Parton Distribu-
tions”. In: Phys. Rev. D 92 (2015), p. 014039. doi: 10.1103/PhysRevD.92.
014039. arXiv: 1506.00248 [hep-ph].

[47] Jiunn-Wei Chen et al. “Nucleon Helicity and Transversity Parton Distributions
from Lattice QCD”. In: Nucl. Phys. B 911 (2016), p. 246. doi: 10.1016/j.
nuclphysb.2016.07.033. arXiv: 1603.06664 [hep-ph].

[48] Jiunn-Wei Chen, Xiang-Dong Ji, and Jian-Hui Zhang. “Improved quasi par-
ton distribution through Wilson line renormalization”. In: Nucl. Phys. B 915
(2017), p. 1. doi: 10.1016/j.nuclphysb.2016.12.004. arXiv: 1609.08102
[hep-ph].

[49] Jian-Hui Zhang et al. “Pion Distribution Amplitude from Lattice QCD”. In: Phys.
Rev. D 95.9 (2017), p. 094514. doi: 10.1103/PhysRevD.95.094514. arXiv:
1702.00008 [hep-lat].

[50] G. S. Bali et al. “Nucleon isovector couplings from Nf = 2 lattice QCD”. In:
Phys. Rev. D 91.5 (2015), p. 054501. doi: 10.1103/PhysRevD.91.054501.
arXiv: 1412.7336 [hep-lat].

[51] John C. Collins and Andreas Freund. “Proof of factorization for deeply virtual
Compton scattering in QCD”. In: Phys. Rev. D 59 (7 1999), p. 074009. doi:
10.1103/PhysRevD.59.074009. url: https://link.aps.org/doi/10.
1103/PhysRevD.59.074009.

116

https://doi.org/10.1103/PhysRevD.82.094502
https://arxiv.org/abs/1001.3620
https://arxiv.org/abs/1001.3620
https://doi.org/10.1103/PhysRevD.83.114513
https://doi.org/10.1103/PhysRevD.83.114513
https://arxiv.org/abs/1104.1600
https://arxiv.org/abs/1111.0718
https://arxiv.org/abs/1203.6579
https://arxiv.org/abs/1203.6579
https://doi.org/10.1103/PhysRevD.88.014509
https://arxiv.org/abs/1303.5979
https://arxiv.org/abs/1303.5979
https://arxiv.org/abs/1312.0828
https://arxiv.org/abs/1311.4670
https://arxiv.org/abs/1311.4670
https://doi.org/10.1103/PhysRevD.92.014039
https://doi.org/10.1103/PhysRevD.92.014039
https://arxiv.org/abs/1506.00248
https://doi.org/10.1016/j.nuclphysb.2016.07.033
https://doi.org/10.1016/j.nuclphysb.2016.07.033
https://arxiv.org/abs/1603.06664
https://doi.org/10.1016/j.nuclphysb.2016.12.004
https://arxiv.org/abs/1609.08102
https://arxiv.org/abs/1609.08102
https://doi.org/10.1103/PhysRevD.95.094514
https://arxiv.org/abs/1702.00008
https://doi.org/10.1103/PhysRevD.91.054501
https://arxiv.org/abs/1412.7336
https://doi.org/10.1103/PhysRevD.59.074009
https://link.aps.org/doi/10.1103/PhysRevD.59.074009
https://link.aps.org/doi/10.1103/PhysRevD.59.074009


[52] Xiang-Dong Ji. “Off forward parton distributions”. In: J. Phys. G24 (1998),
p. 1181. doi: 10.1088/0954- 3899/24/7/002. arXiv: hep- ph/9807358
[hep-ph].

[53] Ph. Hägler. “Hadron structure from lattice quantum chromodynamics”. In: Phys.
Rept. 490 (2010), p. 49. doi: 10.1016/j.physrep.2009.12.008. arXiv:
0912.5483 [hep-lat].

[54] M. Vanderhaeghen, Pierre A. M. Guichon, and M. Guidal. “Deeply virtual
electroproduction of photons and mesons on the nucleon: Leading order am-
plitudes and power corrections”. In: Phys. Rev. D 60 (1999), p. 094017. doi:
10.1103/PhysRevD.60.094017. arXiv: hep-ph/9905372 [hep-ph].

[55] K. Goeke, Maxim V. Polyakov, and M. Vanderhaeghen. “Hard exclusive reac-
tions and the structure of hadrons”. In: Prog. Part. Nucl. Phys. 47 (2001), p. 401.
doi: 10.1016/S0146-6410(01)00158-2. arXiv: hep-ph/0106012 [hep-ph].

[56] L. Maiani et al. “Scalar densities and baryon mass differences in lattice QCD
with Wilson fermions”. In: Nucl. Phys. B 293 (1987), p. 420. issn: 0550-3213.
doi: https://doi.org/10.1016/0550- 3213(87)90078- 2. url: http:
//www.sciencedirect.com/science/article/pii/0550321387900782.

[57] G. S. Bali et al. “〈x〉u−d from lattice QCD at nearly physical quark masses”.
In: Phys. Rev. D 86 (2012), p. 054504. doi: 10.1103/PhysRevD.86.054504.
arXiv: 1207.1110 [hep-lat].

[58] G. S. Bali et al. “The moment 〈x〉u−d of the nucleon from Nf = 2 lattice QCD
down to nearly physical quark masses”. In: Phys. Rev. D 90.7 (2014), p. 074510.
doi: 10.1103/PhysRevD.90.074510. arXiv: 1408.6850 [hep-lat].

[59] G. Martinelli et al. “A general method for nonperturbative renormalization of
lattice operators”. In: Nucl. Phys. B 445 (1995), p. 81. doi: 10.1016/0550-
3213(95)00126-D. arXiv: hep-lat/9411010 [hep-lat].

[60] K. G. Chetyrkin and A. Retey. “Renormalization and running of quark mass and
field in the regularization invariant and MS schemes at three loops and four
loops”. In: Nucl. Phys. B 583 (2000), p. 3. doi: 10.1016/S0550-3213(00)
00331-X. arXiv: hep-ph/9910332 [hep-ph].

[61] J. A. Gracey. “Three loop anomalous dimension of the second moment of the
transversity operator in the MS and RI’ schemes”. In: Nucl. Phys. B 667 (2003),
p. 242. doi: 10.1016/S0550-3213(03)00543-1. arXiv: hep-ph/0306163
[hep-ph].

[62] M. Göckeler et al. “Perturbative and Nonperturbative Renormalization in Lat-
tice QCD”. In: Phys. Rev. D 82 (2010). doi: 10.1103/PhysRevD.82.114511,
10.1103/PhysRevD.86.099903. arXiv: 1003.5756 [hep-lat].

[63] Daniel Boer and P. J. Mulders. “Time reversal odd distribution functions in
leptoproduction”. In: Phys. Rev. D 57 (1998), p. 5780. doi: 10.1103/PhysRevD.
57.5780. arXiv: hep-ph/9711485 [hep-ph].

[64] Philipp Wein, Peter C. Bruns, and Andreas Schäfer. “First moments of nucleon
generalized parton distributions in chiral perturbation theory at full one-loop
order”. In: Phys. Rev. D 89.11 (2014), p. 116002. doi: 10.1103/PhysRevD.89.
116002. arXiv: 1402.4979 [hep-ph].

117

https://doi.org/10.1088/0954-3899/24/7/002
https://arxiv.org/abs/hep-ph/9807358
https://arxiv.org/abs/hep-ph/9807358
https://doi.org/10.1016/j.physrep.2009.12.008
https://arxiv.org/abs/0912.5483
https://doi.org/10.1103/PhysRevD.60.094017
https://arxiv.org/abs/hep-ph/9905372
https://doi.org/10.1016/S0146-6410(01)00158-2
https://arxiv.org/abs/hep-ph/0106012
https://doi.org/https://doi.org/10.1016/0550-3213(87)90078-2
http://www.sciencedirect.com/science/article/pii/0550321387900782
http://www.sciencedirect.com/science/article/pii/0550321387900782
https://doi.org/10.1103/PhysRevD.86.054504
https://arxiv.org/abs/1207.1110
https://doi.org/10.1103/PhysRevD.90.074510
https://arxiv.org/abs/1408.6850
https://doi.org/10.1016/0550-3213(95)00126-D
https://doi.org/10.1016/0550-3213(95)00126-D
https://arxiv.org/abs/hep-lat/9411010
https://doi.org/10.1016/S0550-3213(00)00331-X
https://doi.org/10.1016/S0550-3213(00)00331-X
https://arxiv.org/abs/hep-ph/9910332
https://doi.org/10.1016/S0550-3213(03)00543-1
https://arxiv.org/abs/hep-ph/0306163
https://arxiv.org/abs/hep-ph/0306163
https://doi.org/10.1103/PhysRevD.82.114511, 10.1103/PhysRevD.86.099903
https://doi.org/10.1103/PhysRevD.82.114511, 10.1103/PhysRevD.86.099903
https://arxiv.org/abs/1003.5756
https://doi.org/10.1103/PhysRevD.57.5780
https://doi.org/10.1103/PhysRevD.57.5780
https://arxiv.org/abs/hep-ph/9711485
https://doi.org/10.1103/PhysRevD.89.116002
https://doi.org/10.1103/PhysRevD.89.116002
https://arxiv.org/abs/1402.4979


[65] C. Alexandrou et al. “Nucleon spin and momentum decomposition using Lattice
QCD simulations”. In: Phys. Rev. Lett. 119.14 (2017), p. 142002. doi: 10.1103/
PhysRevLett.119.142002. arXiv: 1706.02973 [hep-lat].

[66] M. Diehl and Ph. Hägler. “Spin densities in the transverse plane and gen-
eralized transversity distributions”. In: Eur. Phys. J. C44 (2005), p. 87. doi:
10.1140/epjc/s2005-02342-6. arXiv: hep-ph/0504175 [hep-ph].

[67] M. Göckeler et al. “Transverse spin structure of the nucleon from lattice QCD
simulations”. In: Phys. Rev. Lett. 98 (2007), p. 222001. doi: 10.1103/PhysRevLett.
98.222001. arXiv: hep-lat/0612032 [hep-lat].

[68] Davison E. Soper. “Parton model and the Bethe-Salpeter wave function”. In:
Phys. Rev. D 15 (4 1977), p. 1141. doi: 10.1103/PhysRevD.15.1141. url:
https://link.aps.org/doi/10.1103/PhysRevD.15.1141.

[69] Johannes Siegfried Samir Najjar. Nucleon structure from stochastic estimators.
2014. url: https://epub.uni-regensburg.de/30694/.

[70] Constantia Alexandrou et al. “A Stochastic Method for Computing Hadronic
Matrix Elements”. In: Eur. Phys. J. C74.1 (2014), p. 2692. doi: 10.1140/epjc/
s10052-013-2692-3. arXiv: 1302.2608 [hep-lat].

[71] Richard Evans, Gunnar Bali, and Sara Collins. “Improved Semileptonic Form
Factor Calculations in Lattice QCD”. In: Phys. Rev. D82 (2010), p. 094501. doi:
10.1103/PhysRevD.82.094501. arXiv: 1008.3293 [hep-lat].

[72] Gunnar S. Bali et al. “Nucleon structure from stochastic estimators”. In: PoS
LATTICE2013 (2014), p. 271. doi: 10.22323/1.187.0271. arXiv: 1311.1718
[hep-lat].

[73] Yi-Bo Yang et al. “Stochastic method with low mode substitution for nucleon
isovector matrix elements”. In: Phys. Rev. D93.3 (2016), p. 034503. doi: 10.
1103/PhysRevD.93.034503. arXiv: 1509.04616 [hep-lat].

[74] S. Capitani et al. “Nucleon axial charge in lattice QCD with controlled errors”.
In: Phys. Rev. D 86 (7 2012), p. 074502. doi: 10.1103/PhysRevD.86.074502.
url: https://link.aps.org/doi/10.1103/PhysRevD.86.074502.

[75] Simon Dinter et al. “Precision study of excited state effects in nucleon matrix
elements”. In: Physics Letters B 704.1 (2011), pp. 89 –93. issn: 0370-2693.
doi: https://doi.org/10.1016/j.physletb.2011.09.002. url: http:
//www.sciencedirect.com/science/article/pii/S0370269311010628.

[76] J.R. Green et al. “Nucleon structure from Lattice QCD using a nearly physical
pion mass”. In: Physics Letters B 734 (2014), pp. 290 –295. issn: 0370-2693.
doi: https://doi.org/10.1016/j.physletb.2014.05.075. url: http:
//www.sciencedirect.com/science/article/pii/S0370269314003852.

[77] Shigemi Ohta. “Nucleon axial charge in 2+1-flavor dynamical DWF lattice
QCD”. In: PoS LATTICE2013 (2014), p. 274. doi: 10.22323/1.187.0274.
arXiv: 1309.7942 [hep-lat].

[78] B. Jäger et al. “A high-statistics study of the nucleon EM form factors, axial
charge and quark momentum fraction”. In: PoS LATTICE2013 (2014), p. 272.
doi: 10.22323/1.187.0272. arXiv: 1311.5804 [hep-lat].

118

https://doi.org/10.1103/PhysRevLett.119.142002
https://doi.org/10.1103/PhysRevLett.119.142002
https://arxiv.org/abs/1706.02973
https://doi.org/10.1140/epjc/s2005-02342-6
https://arxiv.org/abs/hep-ph/0504175
https://doi.org/10.1103/PhysRevLett.98.222001
https://doi.org/10.1103/PhysRevLett.98.222001
https://arxiv.org/abs/hep-lat/0612032
https://doi.org/10.1103/PhysRevD.15.1141
https://link.aps.org/doi/10.1103/PhysRevD.15.1141
https://epub.uni-regensburg.de/30694/
https://doi.org/10.1140/epjc/s10052-013-2692-3
https://doi.org/10.1140/epjc/s10052-013-2692-3
https://arxiv.org/abs/1302.2608
https://doi.org/10.1103/PhysRevD.82.094501
https://arxiv.org/abs/1008.3293
https://doi.org/10.22323/1.187.0271
https://arxiv.org/abs/1311.1718
https://arxiv.org/abs/1311.1718
https://doi.org/10.1103/PhysRevD.93.034503
https://doi.org/10.1103/PhysRevD.93.034503
https://arxiv.org/abs/1509.04616
https://doi.org/10.1103/PhysRevD.86.074502
https://link.aps.org/doi/10.1103/PhysRevD.86.074502
https://doi.org/https://doi.org/10.1016/j.physletb.2011.09.002
http://www.sciencedirect.com/science/article/pii/S0370269311010628
http://www.sciencedirect.com/science/article/pii/S0370269311010628
https://doi.org/https://doi.org/10.1016/j.physletb.2014.05.075
http://www.sciencedirect.com/science/article/pii/S0370269314003852
http://www.sciencedirect.com/science/article/pii/S0370269314003852
https://doi.org/10.22323/1.187.0274
https://arxiv.org/abs/1309.7942
https://doi.org/10.22323/1.187.0272
https://arxiv.org/abs/1311.5804


[79] J. R. Green et al. “Nucleon Scalar and Tensor Charges from Lattice QCD with
Light Wilson Quarks”. In: Phys. Rev. D86 (2012), p. 114509. doi: 10.1103/
PhysRevD.86.114509. arXiv: 1206.4527 [hep-lat].

[80] Parikshit M. Junnarkar et al. “Nucleon axial form factors from two-flavour Lat-
tice QCD”. In: PoS LATTICE2014 (2015), p. 150. doi: 10.22323/1.214.0150.
arXiv: 1411.5828 [hep-lat].

[81] Huey-Wen Lin et al. “Nucleon structure with two flavors of dynamical domain-
wall fermions”. In: Phys. Rev. D78 (2008), p. 014505. doi: 10.1103/PhysRevD.
78.014505. arXiv: 0802.0863 [hep-lat].

[82] Takeshi Yamazaki et al. “Nucleon form factors with 2+1 flavor dynamical
domain-wall fermions”. In: Phys. Rev. D79 (2009), p. 114505. doi: 10.1103/
PhysRevD.79.114505. arXiv: 0904.2039 [hep-lat].

[83] Tanmoy Bhattacharya et al. “Nucleon Charges and Electromagnetic Form Fac-
tors from 2+1+1-Flavor Lattice QCD”. In: Phys. Rev. D89.9 (2014). doi: 10.
1103/PhysRevD.89.094502. arXiv: 1306.5435 [hep-lat].

[84] Constantia Alexandrou et al. “Nucleon observables and axial charges of other
baryons using twisted mass fermions”. In: PoS LATTICE2014 (2015), p. 151.
doi: 10.22323/1.214.0151. arXiv: 1411.3494 [hep-lat].

[85] Stefano Capitani et al. “Systematic errors in extracting nucleon properties from
lattice QCD”. In: PoS LATTICE2010 (2010), p. 147. doi: 10.22323/1.105.
0147. arXiv: 1011.1358 [hep-lat].

[86] Gunnar S. Bali et al. “Hyperon couplings from Nf = 2 + 1 lattice QCD”. In:
PoS LATTICE2019 (2019), p. 099. arXiv: 1907.13454 [hep-lat].

[87] Rudolf Rödl. wick - A python package to compute Wick contractions. https:
//rqcd.ur.de:8443/rudi_roedl/wick. 2018.

[88] Travis E. Oliphant. Guide to NumPy. Provo, UT, Mar. 2006. url: http://www.
tramy.us/.

[89] Shao-Jing Dong and Keh-Fei Liu. “Stochastic estimation with Z(2) noise”. In:
Phys. Lett. B328 (1994), pp. 130–136. doi: 10.1016/0370-2693(94)90440-5.
arXiv: hep-lat/9308015 [hep-lat].

[90] S. Bernardson, P. McCarty, and C. Thron. “Monte Carlo methods for estimating
linear combinations of inverse matrix entries in lattice QCD”. In: Comput. Phys.
Commun. 78 (1993), pp. 256–264. doi: 10.1016/0010-4655(94)90004-3.

[91] Simon Heybrock. LHA. https://rqcd.ur.de:8443/hes10653/lib-hadron-
analysis. 2019.

[92] Robert G. Edwards and Balint Joo. “The Chroma software system for lattice
QCD”. In: Nucl. Phys. Proc. Suppl. 140 (2005). [,832(2004)], p. 832. doi: 10.
1016/j.nuclphysbps.2004.11.254. arXiv: hep-lat/0409003 [hep-lat].

[93] Rudolf Rödl. chromaxml - Creates your chroma xml file with less pain and less
bugs. https://rqcd.ur.de:8443/kern/chromaxml. 2019.

[94] Gunnar S. Bali et al. “Baryonic and mesonic 3-point functions with open spin
indices”. In: EPJ Web Conf. 175 (2018), p. 06014. doi: 10.1051/epjconf/
201817506014. arXiv: 1711.02384 [hep-lat].

119

https://doi.org/10.1103/PhysRevD.86.114509
https://doi.org/10.1103/PhysRevD.86.114509
https://arxiv.org/abs/1206.4527
https://doi.org/10.22323/1.214.0150
https://arxiv.org/abs/1411.5828
https://doi.org/10.1103/PhysRevD.78.014505
https://doi.org/10.1103/PhysRevD.78.014505
https://arxiv.org/abs/0802.0863
https://doi.org/10.1103/PhysRevD.79.114505
https://doi.org/10.1103/PhysRevD.79.114505
https://arxiv.org/abs/0904.2039
https://doi.org/10.1103/PhysRevD.89.094502
https://doi.org/10.1103/PhysRevD.89.094502
https://arxiv.org/abs/1306.5435
https://doi.org/10.22323/1.214.0151
https://arxiv.org/abs/1411.3494
https://doi.org/10.22323/1.105.0147
https://doi.org/10.22323/1.105.0147
https://arxiv.org/abs/1011.1358
https://arxiv.org/abs/1907.13454
https://rqcd.ur.de:8443/rudi_roedl/wick
https://rqcd.ur.de:8443/rudi_roedl/wick
http://www.tramy.us/
http://www.tramy.us/
https://doi.org/10.1016/0370-2693(94)90440-5
https://arxiv.org/abs/hep-lat/9308015
https://doi.org/10.1016/0010-4655(94)90004-3
https://rqcd.ur.de:8443/hes10653/lib-hadron-analysis
https://rqcd.ur.de:8443/hes10653/lib-hadron-analysis
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://arxiv.org/abs/hep-lat/0409003
https://rqcd.ur.de:8443/kern/chromaxml
https://doi.org/10.1051/epjconf/201817506014
https://doi.org/10.1051/epjconf/201817506014
https://arxiv.org/abs/1711.02384


[95] Rudolf Rödl. openGFF - A python package to calculate stochastic thee-point
functions. https://rqcd.ur.de:8443/rudi_roedl/openGFF. 2018.

[96] Rudolf Rödl. rioc - Regensburg IO Client. https://rqcd.ur.de:8443/rudi_
roedl/rioc. 2019.

[97] Rudolf Rödl. rios - Regensburg IO Server. https://rqcd.ur.de:8443/
rudi_roedl/rios. 2019.

[98] Rudolf Rödl. rioc - Regensburg IO Interface. https://rqcd.ur.de:8443/
rudi_roedl/rioi. 2019.

[99] Xiang-Dong Ji. “Parton Physics on a Euclidean Lattice”. In: Phys. Rev. Lett.
110 (2013), p. 262002. doi: 10 . 1103 / PhysRevLett . 110 . 262002. arXiv:
1305.1539 [hep-ph].

[100] Huey-Wen Lin et al. “Flavor Structure of the Nucleon Sea from Lattice QCD”.
In: Phys. Rev. D 91 (2015), p. 054510. doi: 10.1103/PhysRevD.91.054510.
arXiv: 1402.1462 [hep-ph].

[101] Constantia Alexandrou et al. “Lattice calculation of parton distributions”. In:
Phys. Rev. D 92 (2015), p. 014502. doi: 10.1103/PhysRevD.92.014502.
arXiv: 1504.07455 [hep-lat].

[102] Constantia Alexandrou et al. “Updated lattice results for Parton Distributions”.
In: Phys. Rev. D 96.1 (2017), p. 014513. doi: 10.1103/PhysRevD.96.014513.
arXiv: 1610.03689 [hep-lat].

[103] Gunnar S. Bali et al. “Pion distribution amplitude from Euclidean correlation
functions: Exploring universality and higher-twist effects”. In: Phys. Rev. D 98.9
(2018), p. 094507. doi: 10.1103/PhysRevD.98.094507. arXiv: 1807.06671
[hep-lat].

[104] V. Braun and Dieter Müller. “Exclusive processes in position space and the
pion distribution amplitude”. In: Eur. Phys. J. C55 (2008), p. 349. doi: 10.1140/
epjc/s10052-008-0608-4. arXiv: 0709.1348 [hep-ph].

[105] James Zanotti et al. “Transverse spin densities of octet baryons using Lattice
QCD”. In: Feb. 2017, p. 163. doi: 10.22323/1.256.0163.

120

https://rqcd.ur.de:8443/rudi_roedl/openGFF
https://rqcd.ur.de:8443/rudi_roedl/rioc
https://rqcd.ur.de:8443/rudi_roedl/rioc
https://rqcd.ur.de:8443/rudi_roedl/rios
https://rqcd.ur.de:8443/rudi_roedl/rios
https://rqcd.ur.de:8443/rudi_roedl/rioi
https://rqcd.ur.de:8443/rudi_roedl/rioi
https://doi.org/10.1103/PhysRevLett.110.262002
https://arxiv.org/abs/1305.1539
https://doi.org/10.1103/PhysRevD.91.054510
https://arxiv.org/abs/1402.1462
https://doi.org/10.1103/PhysRevD.92.014502
https://arxiv.org/abs/1504.07455
https://doi.org/10.1103/PhysRevD.96.014513
https://arxiv.org/abs/1610.03689
https://doi.org/10.1103/PhysRevD.98.094507
https://arxiv.org/abs/1807.06671
https://arxiv.org/abs/1807.06671
https://doi.org/10.1140/epjc/s10052-008-0608-4
https://doi.org/10.1140/epjc/s10052-008-0608-4
https://arxiv.org/abs/0709.1348
https://doi.org/10.22323/1.256.0163

	1 Introduction
	1.1 QCD
	1.2 Lattice QCD
	1.3 Wick rotation
	1.4 Discrete space-time
	1.5 Free fermion discretization
	1.6 Gauge links
	1.7 Naive fermion action
	1.8 Fermion doubling
	1.9 Wilson fermions
	1.10 Discretization of the gluonic part
	1.11 Clover Wilson Fermion
	1.12 Fermionic expectation values
	1.13 Monte Carlo integration
	1.14 Point-to-all propagator
	1.15 Smearing

	2 Generalized Form Factor from lattice QCD
	2.1 Ensemble overview
	2.2 Introduction to GPDs and GFFs
	2.3 Lattice two- and three-point functions
	2.4 Two-point correlation functions
	2.5 Renormalization
	2.6 Operator multiplets
	2.7 Extracting GFFs from lattice data
	2.8 Solving the overdetermined system of equations
	2.9 Excited states
	2.10 Results for nucleon GFFs
	2.10.1 Vector and axial GFFs
	2.10.2 Tensor GFFs

	2.11 Effects on GFFs caused by renormalization constant errors
	2.12 Forward limit results
	2.13 Extraction of J(u-d)
	2.14 Nucleon tomography

	3 Stochastic three-point functions
	3.1 Generic baryon interpolators
	3.1.1 Example (Nucleon)

	3.2 Generic current interpolator
	3.2.1 Example

	3.3 Time reversed interpolators
	3.4 Time reversed matrices
	3.5 Example: Generic Wick contractions
	3.5.1 Observation I
	3.5.2 Observation II
	3.5.3 Observation III
	3.5.4 Practical remarks for generic Wick contractions
	3.5.5 Practical remarks for generic spin contractions
	3.5.6 Summary

	3.6 Stochastic timeslice-to-all propagator
	3.7 Factorized baryon three-point function
	3.8 Connected baryon three-point Wick contractions
	3.9 Spectator and insertion
	3.10 Lattice setup for spectator and insertion
	3.11 Projection operators
	3.12 Chapter summary

	4 Improved stochastic three-point functions
	4.1 SCT with forward and backward contributions
	4.1.1 Double seeding remarks

	4.2 Forward-backward averaged three-point functions
	4.3 SCT with multiple baryon source positions
	4.4 Setup of a stochastic measurement
	4.5 Smeared stochastic three-point functions
	4.6 Stochastic three-point functions with derivative
	4.7 Implementation details of spectator and insertion
	4.8 Stochastic three-point functions for mesons
	4.9 Performance
	4.10 Disk space requirements of spectator and insertion
	4.11 Remarks for stochastic three-point functions
	4.12 Final expressions
	4.12.1 Stochastic correlation tensor for baryons 
	4.12.2 Baryon three-point function with open indices
	4.12.3 Baryon three-point function

	4.13 Qualitative comparison

	5 Software and hardware stack for stochastic three-point functions
	5.1 Constructing stochastic three-point functions
	5.2 Actual implementation 
	5.3 Implementation details

	6 Final summary and outlook
	A Appendix
	A.1 -matrix conventions
	A.2 Used gauge ensembles for the computation of GFFs

	 Acknowledgements
	References

