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Abstract

Significant association signals from genome-wide association studies (GWAS) point to

genomic regions of interest. However, for most loci the causative genetic variant remains

undefined. Determining expression quantitative trait loci (eQTL) in a disease relevant tissue

is an excellent approach to zoom in on disease- or trait-associated association signals and

hitherto on relevant disease mechanisms. To this end, we explored regulation of gene

expression in healthy retina (n = 311) and generated the largest cis-eQTL data set available

to date. Genotype- and RNA-Seq data underwent rigorous quality control protocols before

FastQTL was applied to assess the influence of genetic markers on local (cis) gene expres-

sion. Our analysis identified 403,151 significant eQTL variants (eVariants) that regulate

3,007 genes (eGenes) (Q-Value < 0.05). A conditional analysis revealed 744 independent

secondary eQTL signals for 598 of the 3,007 eGenes. Interestingly, 99,165 (24.71%) of all

unique eVariants regulate the expression of more than one eGene. Filtering the dataset for

eVariants regulating three or more eGenes revealed 96 potential regulatory clusters. Of

these, 31 harbour 130 genes which are partially regulated by the same genetic signal. To

correlate eQTL and association signals, GWAS data from twelve complex eye diseases or

traits were included and resulted in identification of 80 eGenes with potential association.

Remarkably, expression of 10 genes is regulated by eVariants associated with multiple eye

diseases or traits. In conclusion, we generated a unique catalogue of gene expression regu-

lation in healthy retinal tissue and applied this resource to identify potentially pleiotropic

effects in highly prevalent human eye diseases. Our study provides an excellent basis to fur-

ther explore mechanisms of various retinal disease etiologies.
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Author summary

The retina is a multilayered and highly specified neural tissue crucial for high-resolution

visual perception and spatial orientation. Environmental and genetic insults to the retina

result in many blinding diseases, such as age-related macular degeneration or glaucoma.

Commonly, many of these diseases are age-related suggesting that minor changes are

accumulating over a life-time, with little or no contribution of strong individual effects.

Specifically, this is true for genetic factors known to underlie the etiology of complex dis-

eases including the prevalent eye diseases. In our study, we searched for effects on gene

expression due to genetic variation using 311 healthy post-mortem retinal tissue samples.

We show that 3,007 of the 16,766 genes investigated are regulated in the retina by genetic

variations. Of these, 80 genes are potentially associated to one or more of twelve complex

eye diseases or retinal traits tested. Interestingly, 10 genes appear to be involved in the

development of several eye traits suggesting that cellular mechanisms may act at a com-

mon point in the disease process. Consequently, our study provides the basis to further

explore retinal disease pathways and is likely to highlight target molecules for future thera-

peutic applications.

Introduction

Genome-wide association studies (GWAS) reveal a contribution of common genetic variation

to the etiologies of an ever increasing number of adult-onset diseases [1]. Despite such

advances, mapping association signals to defined genomic regions most often fails to reveal

the truly causative genetic variation and genes imperative to unravel underlying molecular dis-

ease mechanisms [2]. Bioinformatic follow up-studies are required to refine GWAS data to a

curated set of genetic variants eventually pointing to genes to be defined as candidates for fur-

ther analyses [3].

In this context, an attractive methodology is to link genetic variation to intermediate phe-

notypes, which may contribute to the disease etiology of interest. Such an approach takes

advantage of identifying expression quantitative trait loci (eQTL), which offer an explanation

for at least part of variation in mRNA expression in a tissue-specific manner [4]. Additionally,

a plethora of GWAS data from a wide range of non-pathogenic phenotypes is available [1,5]

allowing the correlation of eQTL variants (so-called eVariants) and their regulated genes (so-

called eGenes) to intermediate phenotypes and thus potential phenotype altering mechanisms

[6]. It should be noted that eQTL studies are usually performed in healthy tissue, although

gene expression may change with disease onset or progression. Thus, conclusions from such

studies about initial disease mechanisms need to be considered with caution. So far, only a sin-

gle study investigated eQTL in retinal tissue with the majority of samples (312/406) retrieved

from age-related macular degeneration (AMD) patients [7].

Here, we present a study combining eQTL data from three independent study sites to

robustly characterize gene expression regulation in healthy retinal tissue. A subsequent analy-

sis of eVariants that regulate several genes provides additional information on potentially

shared genetic signals and thus shared disease mechanisms in the etiology of prevalent com-

plex eye conditions [8,9]. Our data suggest the existence of such common mechanisms,

thereby providing the basis to further explore disease pathways as well as future therapeutic

applications.
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Results

Mega-analysis of local eQTL

This study combines data from three sources and allows to explore the regulatory architecture

of gene expression in healthy retinal tissue. After quality control (QC) (see Methods), 311 sam-

ples were included in the further analysis (Table 1).

RNA sequencing (RNA-Seq) reads were initially analyzed separately per individual dataset.

Expression threshold was set to counts per million (CPM) > 1 in at least 10% of samples per

dataset. A total of 2,412 genes were exclusively found to be expressed in only one or two of the

three datasets and subsequently excluded from further analysis. This should greatly enhance

the stringency of true tissue expression and as such the detection of valid effects. Information

about 17,405 genes shared between the datasets was then combined and normalized as detailed

in the Methods. Of the combined dataset 16,766 genes were located on autosomes. Genotypes

of the 311 retinal samples were imputed to the 1000 Genomes Project Phase 3 reference panel

providing information on 8,686,883 quality-controlled variants (Table 1).

The merged genotype- and gene expression data were explored for local eQTL with a maxi-

mum variant-gene distance of 1 Mbp up-and downstream of the respective gene locus. After

adjustment for multiple testing, we identified 580,170 significant eQTL (Q-Value < 0.05),

which regulate 3,007 unique eGenes (Table 1). Altogether, 99,165 eVariants appear to regulate

more than one eGene, resulting in 403,151 unique eVariants. The eQTL rs145885457—

TSPAN11 showed the most significant nominal P-value (5.60 x 10−123), whereas rs141866579

—AL590399.1 revealed the highest but still significant association (P-value 2.51 x 10−03) in our

analysis (S1 Fig).

Table 1. Study and sample summary.

Dataset Human Genetics

Regensburg

University Hospital

Cologne

NEI

Bethesda [7]

Sample size before QC/ after QC 161 / 143 78 / 74 105 / 94

Mean Age 59.0 (SD: 15.3) 69.2 (SD: 12.6) 74.2 (SD: 9.4)

Gender (M / F) 97 / 46 35 / 39 46 / 48

RNA-Seq library NEXTFLEX Rapid Directional RNA-Seq

Library Prep Kit

TruSeq Stranded mRNA Library

Prep Kit

TruSeq Stranded mRNA Library

Prep Kit

RNA-Seq Sequencing platform Illumina HiSeq platform

RNA-Seq Sequencing depth 20 m SE 50–80 m PE 10–20 m PE

Read length 83 bp 51 bp 125 / 126 bp

Expressed genes (CPM > 1 in 10% of

samples)

18,290 18,971 18,401

Expressed genes overlapping (autosomal) 17,405 (16,766)

Genotyping Platform Custom HumanCoreExome BeadChip Infinium OmniExpress-24 v1.2

BeadChip

UM_HUNT_Biobank v1.0 chip

Imputed variants after QC 8,686,883

eQTL (Q-Value < 0.05) 580,170

eVariants (Q-Value < 0.05, unique) 403,151

eVariants regulating several Genes

(Q-Value < 0.05)

99,165

eGenes (Q-Value <0.05, unique) 3,007

Independent signals 3,751

CPM = Counts per million; QC = Quality control; SD = Standard deviation; SE = Single-end; PE = Paired-end

https://doi.org/10.1371/journal.pgen.1008934.t001
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The most significant eVariant for each eGene was used to perform an adjusted conditional

analysis. With this approach, we detected additional 744 independent signals. The most signifi-

cant eVariants of the primary analysis and the results of the conditional analysis were then

compiled into a list of 3,751 independent signals (3,007 primary + 744 secondary) (S1 Data).

Of note, the highly regulated genes AGAP7P, CCK, KIF25, PTGR1, ADAMTS18, and

AC108516.1 were each controlled by five independent signals.

Characterization of gene expression regulation

A total of 3,007 (17.9%) of the 16,766 expressed autosomal genes were regulated by at least one

eQTL. Remarkably, the percentage of regulated genes varied between Ensembl biotypes (Fig

1) from 14.98% (2,086 of 13,927, protein coding) to 37.21% (230 of 618, pseudogene). Further-

more, 31.77% of all long non-coding RNAs (662 of 2,084, lncRNAs) were significant eGenes.

We then characterized the 3,751 independent signals with respect to their significance and

position regarding the regulated eGenes (Fig 2A). Signals were widely distributed around the

transcription start sites (TSSs) of the respective eGenes with more significant eVariants clus-

tering closer to the TSS (P-Value linear model 2.1 x 10−17). Interestingly, more than half

(2,286/3,751) of the independent signals were located downstream of the respective TSSs. Of

note, the most significant eVariants of the primary analysis were significantly located closer to

the TSSs (median: 32,743 bp, SD: 182,220) when compared with eVariants identified by the

conditional analysis (median: 105,418 bp, SD: 294,134; Mann-Whitney-U-Test P-value < 8.05

x 10−43) (Fig 2B).

To estimate variation in gene expression regulation in-between tissues, we compared our

retinal eQTL results with the Genotype-Tissue Expression (GTEx) project version 8 summary

statistics. These include gene expression and eQTL data regarding 49 tissues and cell types

[10]. In comparison with the 16,766 autosomal genes included in our analysis, GTEx detected

more expressed genes throughout all tissues (mean: 23,857.49, SD: 1,988.58). Further, the per-

centage of eGenes in GTEx varied widely from 5.11% (see “Kidney cortex”, n = 73) to 69.37%

(see “Cells cultured fibroblasts”, n = 483) (S2 Data). The four GTEx tissues Pancreas (n = 305),

Colon sigmoid (n = 318), Testis (n = 322), and Stomach (n = 324) have a comparable sample-

size to our retinal database and showed a mean percentage of eGenes among all expressed

Fig 1. Distribution of Ensembl biotypes across all analyzed genes. 16,766 expressed autosomal genes in retinal tissue were

characterized with regard to their Ensembl biotype [16]. The Q-Value threshold 0.05 was chosen to define significance for the eQTL

analysis. For this graph, all biotypes including the term “Pseudogene” were compiled into one section. lncRNA = long non-coding

RNA; TEC = to be experimentally confirmed.

https://doi.org/10.1371/journal.pgen.1008934.g001
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genes of 44.23% (SD: 7.29). Interestingly, eGenes identified in retina were often eGenes in

other tissues (mean 1,777.53, SD: 425.23).

Regulatory cluster analysis in retinal tissue

In retinal tissue, 99,165 (24.6%) of the 403,151 unique eVariants regulate the expression of

more than one eGene. This raises the question whether these variants are distributed arbi-

trarily over all autosomal chromosomes or rather cluster in distinct genomic regions. Further-

more, we tested whether the potential clusters originate from overlapping linkage

disequilibrium (LD) structures in-between genetic signals or whether the same genetic signal

regulates several genes, for example affecting a transcription factor binding site. To answer

these questions, we applied a two-step protocol.

First, we filtered the eQTL dataset for eVariants regulating three or more eGenes. These

variants were subsequently merged into potential regulatory clusters, by combining vari-

ants located on the same chromosome within a randomly chosen distance of less than 1

Mbp. Together, we identified 96 genomic regions, most of which (87/96) cluster in negative

G-bands or in lightly stained bands (“gpos25” and “gpos50”) (S3 Data). The cluster sizes

varied widely from 1 bp (1:46214495–46214495, 2:61162474–61162474, 3:150943708–

150943708, 11:727310–727310, 12:120463130–120463130, 16:19584627–19584627 and

20:63253304–63253304), each containing a single eVariant regulating several genes, to

6,439,289 bp for cluster 6:26678284–33117573 including 51 regulated genes. The latter

cluster comprised the most eVariants (n = 11,757).

Fig 2. Genomic localization of eVariants. (A) The distance of the most significant eVariant to the transcription start site (TSS) of the

respective eGene is plotted against the significance of the association (−log10 P-Value). Shown are the results of the primary analysis (primary

signal, dark grey) and the most significant eVariants from the conditional analysis (secondary signal, light grey) for each eGene. Negative/

positive distances denote that the variant is located upstream/downstream of the TSS with regard to the direction of transcription. (B) Boxplot

of the absolute distance of primary and secondary signals to the TSS. Significance was assessed by the Mann-Whitney-U-Test (P-value< 8.05

x 10−43).

https://doi.org/10.1371/journal.pgen.1008934.g002
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Second, we wanted to know whether these clusters represent functional units each regulated

by the same genetic signal or whether they are generated by overlapping LD structures. To this

end, we analyzed the co-localization of eQTL signals for each gene pair within a regulatory

cluster using coloc [11]. A posterior probability threshold of at least 0.8 was applied to identify

eGenes, which are regulated by the same genetic signal (S4 Data). Altogether, 2,938 possible

gene pairs within the 96 regulatory clusters were analyzed for co-localization. Of these, 266

gene pairs showed posterior probabilities� 0.8 and in 31 of the 96 clusters genetic signals reg-

ulated at least three genes (S3 Data). For example, the regulatory cluster 7:99418220–

100808585 encompasses twelve eGenes but contains several genetic signals (S2 Fig). One of

these regulates the three genes PILRA, PILRB, and ZCWPW1, which is demonstrated by co-

localization probabilities� 0.8 within all possible gene pairs. Other genes located within

7:99418220–100808585, for example STAG3, show co-localization posterior probabilities

of< 0.03 with regard to PILRA, PILRB, and ZCWPW1 and are therefore thought to be regu-

lated by a different genetic signal (Fig 3). Interestingly, the largest cluster, namely 6:26678284–

33117573, includes 51 different genes but only one genetic signal regulates more than 2 genes,

pointing to a complex LD structure within this locus.

eVariants associated with complex eye diseases and traits

In a final step, we explored the combined retina eQTL dataset by analyzing whether eVariants

in retinal tissue are associated to any complex eye disease or trait. We integrated results from

16 published GWAS investigating 12 distinct ocular traits and disease entities (S5 Data). This

collection comprises eye related GWAS at the time of our data search and was meant to cover

as many potential effects as possible. The number of GWAS variants with genome-wide signif-

icance varied per phenotype from 3 (see “diabetic retinopathy”) to 251 (see “intraocular pres-

sure”). Together, 665 of 716 variants were included in the data analysis (S6 Data). Of these, 25

variants were associated with more than one trait investigated. Sixty-five of the 665 unique

GWAS variants appear to be regulating gene expression in retinal tissue (S7 Data). Remark-

ably, the disease or trait associated variants were significantly more often eVariants (9.77%, 65

of 665) in comparison to a set of all analyzed variants in this study (4.64%, 403,151 out of

8,686,883) (Fisher’s exact test, P-Value: 4.78 x 10−09). It is noteworthy that GWAS variants

(mean info score 0.972, SD: 0.054) were significantly better imputable than non GWAS vari-

ants (mean info score 0.957, SD: 0.057) (Mann-Whitney U-Test P-Value 3.7 x 10−12). Further-

more, eVariants (mean info score 0.974, SD: 0.054) were also better imputable in comparison

to non-eVariants (mean info score 0.956, SD: 0.074) (Mann-Whitney U-Test P-Value< 2.2 x

10−16).

Moreover, we assigned RegulomeDB [12] ranks to all GWAS variants to test for overlaps

with potential regulatory DNA elements like DNase hypersensitivity or transcription factor

binding sites. The seven-level functional score is based on a synthesis of data derived from var-

ious sources: category 1 variants are very likely to affect binding and are linked to gene expres-

sion of a target gene, while category 7 variants lack evidence for any functional relevance.

Notably, the percentage of GWAS variants assigned to the RegulomeDB ranks one to five is

higher in each category in comparison to all variants included in our study (S8 Data). Never-

theless, 7 out of the 65 (10.6%) eVariants regulating gene expression in retina are associated

with at least one ocular phenotype and were assigned the RegulomeDB rank 1 pointing to

potential effects on gene regulation in other tissues as well.

Overall, we identified 80 unique eGenes whose regulation is potentially disease- or trait-

associated (S7 Data). Almost half of these (32 of 80 genes) are non-protein coding. Of note, 10

genes are regulated by eVariants associated with more than one disease or trait (Fig 4). For
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Fig 3. Locuszoom plots of the genetic signals regulating genes at the cluster 7:99418220–100808585. Shown are the nominal P-Values of all local variant—gene

associations regarding the genes PILRA, PILRB, ZCWPW1, and STAG3 in the cluster 7:99418220–100808585. Variants are colored according to their linkage
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example, lower expression of non-annotated protein coding gene AC009779.3 is potentially

associated with increased risk for AMD, refractive error (RE), and increased macular thickness

(MT) while elevated gene expression of AC009779.3 is associated with an increased risk of

myopia (MYP).

Discussion

In this study, we combined genotypes and RNA sequencing data from 311 healthy retinal tis-

sue to explore the regulatory architecture of gene expression in this highly differentiated and

specialized tissue. The eQTL analysis pointed to 3,007 out of 16,766 autosomal retinal genes to

be genetically regulated. Strikingly, gene expression regulation was most prominent in the cat-

egories of pseudogenes and lncRNAs. Mapping the location of the most significant indepen-

dent signals relative to the organizational structure of the genes demonstrated a high density of

the signals immediately adjacent to the respective transcription start sites although some were

disequilibrium (LD) with the respective most significant eVariant. LD data were retrieved selecting the EUR population and plots were generated using https://my.

locuszoom.org/.

https://doi.org/10.1371/journal.pgen.1008934.g003

Fig 4. eGenes regulated by multiple complex eye disease- or trait-associated variants. Ten eGenes (orange) were regulated by genome-wide

significant GWAS variants of at least two different complex eye diseases or traits (light blue). Connective lines are colored according to the eQTL effect

direction of the risk-/trait- increasing allele. Red lines reflect higher gene expression whereas blue lines represent downregulation of expression.

AMD = age-related macular degeneration; IOP = intraocular pressure; MT = macular thickness; MYP = myopia; ODDA = optic disc—disc area;

PACG = primary angle closure glaucoma; POAG = primary open-angled glaucoma; RE = refractive error.

https://doi.org/10.1371/journal.pgen.1008934.g004
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as far away as 10 kb and more. The latter finding should caution the interpretation of GWAS

signals and should draw attention to the possibility that lead genetic variants may not necessar-

ily exert effects on the gene physically closest but may instead act in a long range mode. Fur-

ther, we identified regions in the genome harboring regulatory clusters of eGenes co-regulated

by the same genetic signal. Finally, we have queried the retina eQTL database with GWAS

results of a number of prevalent complex eye diseases and traits and have identified potential

pleiotropic eGenes shared between the various disease etiologies. This latter aspect may prove

critical for gaining a deeper insight into molecular mechanisms of a specific disease by consid-

ering pathways which involve functional properties of genes that contribute to various other

diseases or ocular traits.

A comparison of our findings with those of the GTEx project [10] aimed to see if gene

expression regulation in retinal tissue generally differs from other tissues. Overall, GTEx algo-

rithms consider more genes to be expressed for each tissue leading to an increased relative per-

centage of eGenes among all expressed genes. This may be due to the comparison of a single

streamlined project with a mega-analysis approach as done in our study combining raw data

that originated from three different study sites. A study-by-study comparison showed that

2,412 genes were exclusively found to be expressed in only one or two of the three retinal data-

sets. This in line with a former study in which we performed an eQTL mega-analysis of four

datasets investigating liver tissue. Here, we observed that only 53.5 to 80.2% of eQTL were

shared in-between single datasets [13]. Although the same kind of tissue was investigated, a

number of secondary effects such as handling of probes and methodical differences in data

generation may greatly influence the outcome. An alignment of primary sequence data, as was

done in this study, is highly recommended to harmonize independent datasets [14,15].

In our combined dataset over 31% of all expressed lncRNAs and pseudogenes in the retina

are genetically regulated. This might be attributable to recent advances in genome research,

which led to an increased discovery of non-coding DNA regions [16]. Alternatively, these find-

ings in retina could be due to the co-localization with eQTL in clusters of retina-specific

enhancers [17,18]. Specifically, lncRNAs and pseudogenes are still poorly characterized but are

thought to have a multitude of regulatory functions through various mechanisms [19–22].

Our data suggest that a number of retinal eVariants regulate several genes and that this phe-

nomenon is clustering in distinct regions in the human genome. The largest of these clusters is

located on chromosome 6 (cluster ID: 6:26678284–33117573) and includes at least 51 eGenes.

This cluster overlaps with the major histocompatibility complex (MHC), which plays a key

role in immune response [23]. Interestingly, within this region the eVariant rs9271367 signifi-

cantly regulates seven genes in retinal tissue (TSBP1-AS1,HLA-DRB5,HLA-DRB6,HLA-
DRB1,HLA-DQB1,HLA-DQA2, andHLA-DOB). Co-localization analysis revealed that the

genetic signals associated with these genes do not overlap (coloc probability < 0.8). This obser-

vation emphasizes that LD structures may play a role when investigating shared mechanisms

in gene expression regulation. Our co-localization analysis further revealed that 31 of the

beforehand detected regulatory cluster regions harbour genetic signals which regulate at least

three genes. This is the case for genes PILRA, PILRB and ZCWPW1 located on chromosome 7

(cluster ID: 7:99418220–100808585). Topological chromatin interactions were previously

reported for this regulatory cluster [24]. Still, gene expression regulation can be tissue-specific

and, so far, no chromosome conformation capture data are available for human retinal tissue

[25,26]. It will be of interest to collect further data on topological chromatin interactions in

relation to our results pointing to several genomic loci harbouring co-regulated genes. When

it comes to targeted therapy, knowledge about shared regulatory mechanisms will help to

appreciate side effects when addressing a specific gene, but will also suggest potential interac-

tion partners with regard to the gene of interest.
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To obtain insight into phenotype-associated processes, we investigated retinal gene expres-

sion regulation in the context of shared genetics between complex eye diseases and traits. To

avoid a selection bias, we considered currently available GWAS studies investigating any type

of ocular phenotypes. To this end, we identified 65 of 665 GWAS variants to regulate gene

expression of at least one neighbouring gene. In three of the diseases and traits, namely AMD,

diabetic retinopathy (DR), and MT, phenotypic expressions appear to intuitively reflect retinal

lesions. We also included traits which may only indirectly affect the retina such as intraocular

pressure (IOP). Interestingly, the retina-associated diseases and traits showed no enrichment

of retinal eVariants (AMD: 4 of 41, DR: 0 of 3, and MT: 23 of 129) in comparison to the second

group of diseases and traits with no direct link to retinal lesions (see also S5 Data). This sug-

gests that apart from gene expression other mechanisms may explain GWAS association sig-

nals. Alternatively, functional expression of GWAS signals may occur outside the retina,

which is in line with the high proportion of variants assigned to RegulomeDB rank 1. The lat-

ter argument is further supported by a recent study which demonstrated that AMD genetics

influence gene expression throughout the whole body and that systemic processes might be

relevant for disease aetiology [27]. So far, there are no eQTL data for tissues such as the chorio-

capillaris/choroid or the retinal pigment epithelium (RPE), two tissues intimately involved in

retinal functionality. Tissue- or cell-specific effects may contribute to disease pathologies, but

will ultimately require the respective eQTL data on a cellular resolution, which can be investi-

gated by single cell RNA-Seq. Furthermore, one needs to consider that gene expression in a

diseased tissue may well be different from gene expression in healthy tissue. We therefore want

to point out that our current study can be hypothesis-generating with regard to disease aetiol-

ogy, but may not be suited to draw direct conclusions for processes occurring beyond first dis-

ease onset.

The knowledge of retinal eGenes for ocular complex eye diseases and traits opens up the

possibility to search specifically for pleiotropic effects. In turn, this may help to gain informa-

tion on defined disease aetiologies. In our study, we show overlapping eGenes for eight traits,

with most trait pairs sharing one to two eGenes. Strikingly, IOP and MT share four eGenes of

which three (KANSL1-AS1, LRRC37A2, and LRRC37A) are located in a single regulatory clus-

ter. The LRRC37 gene family seems to be evolutionary conserved, although their function is

still unknown [28]. Another interesting finding is AC009779.3 which is also only poorly char-

acterized so far. The regulation of expression is potentially associated with four phenotypes,

inlcuding AMD, MT, MYP, and RE. AC009779.3 is a paralogue to BLOC1S1, which is known

to belong to the BLOC-1 complex, a complex required for the biogenesis of lysosome-related

organelles and the correct formation of melanosomes [29].

It is of note that many of the retinal eGenes, which are potentially associated with GWAS

results, are non-coding (32 out of 80) or have not yet been assigned a HGNC symbol [30] (e.g.

AC009779.3 and AC005747.1). This could point to potential new mechanisms in disease pro-

cesses but needs further experimental validation. Unfortunately, summary statistics are still

unavailable for many GWAS datasets which impedes with a more detailed investigation of co-

localized signals and thus an evaluation of possible pleiotropic effects. To this end, our analysis

of GWAS signals in the context of retinal eQTL provides a starting point for further

investigations.

Taken together, this study generated the largest retinal eQTL database to-date based exclu-

sively on healthy tissue samples and provides insights into expression regulation of this unique

tissue. It also offers a valuable resource for further work into functional aspects of associations

of genetic variability in complex diseases of the retina. Specifically, we show that the eQTL

data are useful to learn more about regulated genes associated with diseases and traits of the
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eye and thus offering gene candidates which may play a role in prevalent retinal disease

aetiologies.

Methods

Ethics statement

In accordance with the tenets of the Declaration of Helsinki, postmortem human donor eyes

were collected at the Ludwig-Maximilians-University Munich (termed the Regensburg data-

set), the University Hospital Cologne (Cologne dataset), and the Minnesota Lions Eye Bank

(Bethesda dataset) after informed consent from the donor or next of kin was obtained. Each

study was approved by the corresponding local Institutional Review Board and application

numbers were: MUC73416 (Regensburg dataset), 14–247 (Cologne dataset), and

FWA00000312 (Bethesda dataset). All investigated samples in this study were approved for

research use. In case of the Bethesda dataset, data were retrieved de-identified and no further

IRB approval for the conducted analysis was required.

Study subjects

The organ donors died of various reasons (S9 Data). Only clinically asymptomatic retinal sam-

ples with no sign of retinal pathology were included.

For the Regensburg dataset, globes were prepared for harvesting of corneoscleral buttons as

described before [31]. After slit-lamp evaluation of the cornea, whole eyes were thoroughly

cleansed in 0.9% NaCl solution, immersed in 5% polyvinylpyrrolidone-iodine, and rinsed with

sodium chloride solution. Corneoscleral discs were then harvested, and stored in 50-mL tissue

culture flasks within 4 hrs after enucleation. At the same time, the residual globe was prepared

and vitreous was removed. The retina was harvested using two sterile forceps and the retinal

tissue was dissected at the optic nerve head. Thereafter, the retinal tissue was transferred to a

1.5ml Eppendorf cup and stored at -80˚C.

For the Cologne dataset, eyes were obtained within 6 hours after death and retinal dissec-

tion was performed immediately afterwards. The retinal tissues were flash frozen in liquid

nitrogen and stored at -80˚C until further processing.

For the Bethesda dataset, donor eyes were enucleated within 4 h of death and stored in a

moist chamber at 4˚C until retinal dissection was performed. Tissue sections were flash frozen

in liquid nitrogen and stored at –80˚C until further processing.

Genotype data

The genotype data analysis was performed for each set of data individually before generating a

merged genotype table (Table 1). Genotypes of the Bethesda dataset were processed as

described earlier [7]. Data processing before imputation for the Regensburg and Cologne data-

sets were performed as follows: First, a Principal component analysis (PCA) was carried out in

R (version 3.3.1) [32] using snpgdsPCA [33] including 30,000 genetic variants of each sample

and the corresponding genotype information of the 1000 Genomes Project reference panel

(Phase 3, release 20130502) [34]. The first two principal components (PCs) were plotted to

determine the ethnicity (S3 Fig) Only samples clustering next to the European (EUR) refer-

ence individuals were included to take into account the known variation of haplotype struc-

tures between populations. Furthermore, related samples (kinship coefficient > 0.80; then,

only a single random sample of a related pair was kept for analysis) and samples with contra-

dictions in inferred and reported gender were excluded. QC on the variant level included (1)

consideration of autosomal variants only, (2) removal of monomorphic variants, (3) removal
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of SNPs with Hardy-Weinberg equilibrium (HWE) P-Value < 1 x 10−6, and (4) a call

rate< 95%. Thereafter, allele frequencies were compared with the respective frequencies as

calculated by the 1000 Genomes Project EUR samples. Genetic variants with frequencies devi-

ating by more than 13% were excluded from further analysis. Next, genotypes were phased

using SHAPEIT2 (version 2.r904) [35] and thereafter imputed to the 1000 Genomes Project

Phase 3 reference panel (October 2014) [36] by IMPUTE2 (version 2.3.2) [37]. For post impu-

tation QC, the output files were converted into a VCF format containing confidently imputed

variants (quality threshold > 0.3) in an estimated allele dosage format. Genomic positions

were updated to hg38 using UCSC liftover [38]. A linear regression comparing allele frequen-

cies across the single datasets showed high consistency (R2> 0.97).

The independently imputed genotypes of each dataset were merged into a single file which

was filtered for minor allele frequency (MAF > 1%). This resulted in 8,686,883 genetic vari-

ants. Additionally, another genotype PCA was performed to include the first five PCs into the

eQTL analysis.

Gene expression data

The RNA-Seq data of each dataset were generated using library preparation protocols as given

in Table 1. The evaluation of raw reads was performed for each dataset individually by apply-

ing a uniform protocol. Briefly, during all steps of the analysis FastQC (version 0.11.5) [39]

andMultiQC (version 1.7.dev0) [40] were used to ensure the correctness of the conducted data

processing steps. First, raw reads were trimmed for adapter sequences and low quality (SLID-

ING WINDOW 4:5; LEADING 5; TRAILING 5; MINLEN 25) using Trimmomatic (version

0.39) with the supplied Illumina TruSeq3 sequences [41]. Thereafter, the star aligner (version

2.7.1a) [42] was employed with ENCODE standard options to align the trimmed reads to an

Ensembl version 97 (GRCh38.p13, including GENCODE version 31) [43] based reference

genome. The RSEM toolbox (version 1.3.1) [44] calculated estimated gene expression counts

using standard options. The Regensburg dataset required two additional parameters about the

fragment length distribution as it was based on single-end reads (fragment-length-mean 155.9

and fragment-length-sd 56.2). These values were obtained by calculating the mean fragment

length distribution of 30 samples taken randomly from the Cologne and Bethesda datasets.

The estimated counts were then normalized to the trimmed mean of M-Values (TMM) using

the tmmnorm function of the edgeR package (version 3.16.5) [45] in R. Expression values were

converted to counts per million (CPM) and expressed genes were retained (CPM > 1 in 10%

of the samples). A PCA was performed with the help of the prcomp function in R to identify

and to remove potential outlier samples within the dataset.

After log2 transformation with an offset of 1, the expression files of the three datasets were

merged into a single matrix containing only genes, which were expressed in all datasets. After-

wards, quantile normalization and ComBat [46], an empirical batch correction method, were

employed to normalize the data in regard to the originating dataset (S4 Fig).

eQTL calculations

Local eQTL were calculated based on linear regression models using FastQTL (version

v2.184_gtex) [47] as implemented in the GTEx version 8 analysis pipeline [10]. The mapping

window to detect local eQTL was defined as 1 Mbp up- and down-stream of the gene start and

end sites as defined by Ensembl [43]. Age, gender, study site, post-mortem interval (PMI) and

the first five PCs of the genotype PCA were included in the models as covariates. First,

FastQTL was applied in the—permute 1000 10000mode to calculate beta distribution-extrapo-

lated empirical P-values for each potential eGene. These P-values were then used to calculate
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gene-level Q-Values using the false discovery rate (FDR) approach from Storey et al. (2003) as

implemented in the R package qvalue (version 2.6.0) [48]. The lambda parameter was set to

0.85. A Q-Value threshold of< 0.05 was applied to identify eGenes with at least one significant

eVariant. To detect all significant eVariants, a genome-wide empirical P-value threshold was

defined as described in [10]. This threshold was used to calculate a nominal P-value threshold

for each gene based on the beta distribution parameters from FastQTL. Thereafter, FastQTL
was run in normal mode to calculate nominal P-values of all local gene—variant associations.

Linear regression model nominal P-values below the beforehand defined gene specific thresh-

old were considered significant. Furthermore, we used FastQTL to identify independent sec-

ondary signals by adjustment for the most significant corresponding eVariant. Thereafter, the

eQTL were re-calculated and remaining significant eVariants were considered to represent a

further independent signal. The most significant independent eVariant was then added to the

covariate file. This approach was repeated until no additional independent signals were found.

The gene specific nominal P-value threshold was applied during the procedure.

Comparison of eQTL in GTEx v8 and retinal tissue

The GTEx summary statistics containing all genes analyzed (.egenes.txt.gz files) were down-

loaded from https://www.gtexportal.org/home/datasets (accessed April 24th 2020). These files

were processed per tissue and first filtered to contain exclusively genes located on autosomes.

For the remaining genes, an adapted Q-Value was calculated as described above and a

Q-Value 0.05 was used to determine significant eGenes.

Regulatory cluster analysis

Regulatory clusters were defined as genomic regions containing multiple genes regulated by

the same eQTL signal. This analysis required a two-step protocol. First, all significant eVar-

iants were filtered for variants regulating three or more eGenes. These variants were subse-

quently merged into potentially regulatory clusters by combining variants located on the same

chromosome within a chosen distance of less than 1 Mbp. In a second step, all genes within a

cluster were investigated for co-localization of their associated variants. This was performed

using the coloc.abf function of the coloc package [11] in R with standard options. The method

utilized the respective eQTL nominal P-values and effect sizes as well as the standard deviation

of the expression for the investigated genes. In addition, the MAF was supplied for all variants.

Next, the posterior probability that the same eQTL signal is regulating both genes (H4) was

extracted from the co-localization analysis. If the analyzed gene pair did not share any overlap-

ping variants within the 1 Mbp window, the H4 value was assigned to 0. Then a heatmap for

each potential cluster was generated including the posterior probabilities of all possible gene

pairs. This heatmap was reordered using the R function hclust with standard options to high-

light co-localization of multiple genes with each other. eGenes, whose associated variants

showed a co-localization probability of at least 0.8 were defined as having the same underlying

eQTL signal. Finally, eGenes were grouped based on their probability to be regulated by the

same genetic signal.

GWAS of complex eye diseases and traits

To identify relevant GWAS, we searched PubMed (https://www.ncbi.nlm.nih.gov/pubmed/)

and the NCBI GWAS catalog [1] (accessed May 2019) for common eye diseases and traits by

keywords such as “macular”, “refraction”, and “astigmatism”. The subjects included within

each study had to be predominantly of European descent. Smaller studies were excluded if a

more recent GWAS with extended sample-sizes was available. We only included genome-wide
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significant variants (P-Value < 5 x 10−08) in the analysis. Additionally, QC of variants encom-

passed a comparison of allele frequencies to the 1000 genomes reference panel and a linkage

analysis. Strongly linked variants (R2 > 0.5) were removed and only the most significant vari-

ant was kept.

Supporting information

S1 Fig. Exemplary eQTL plots. Shown are violin plots of the three most significant eQTL in

retinal tissue: (A) rs145885457—TSPAN11, (B) rs384490—AC108448.3, and (C) rs5751775—

AP000350.6. (D) The eQTL rs141866579—AL590399.1 showed the highest nominal P-Value

(2.51 x 10−03) for regulation of a significant eGene in the analysis. The sample size (n) for each

genotype is given below the respective alleles.

(TIF)

S2 Fig. Heatmap including co-localization posterior probabilities for all genes located in

the cluster 7:99418220–100808585. All variant—gene associations of the 12 eGenes located in

the cluster 7:99418220–100808585 were analyzed for co-localization using coloc [11]. Shown

are the posterior probabilities that the eQTL signal for one gene is overlapping with the respec-

tive signal regulating the other gene. Posterior probabilities above 0.8 were colored in red with

increasing intensity.

(TIF)

S3 Fig. Genotype Principal Component Analysis. 30,000 autosomal variants were randomly

selected and the genotypes of those variants were extracted from the three datasets (Regens-

burg, Cologne, and Bethesda). In addition, we extracted the genotypes from samples of Euro-

pean (EUR), African (AFR), South Asian (SAS), and East Asian (EAS) ancestry from the 1000

Genomes Project and performed a PCA. Plotted are the first three PCs of all 311 included reti-

nal tissue samples and the results of the populations EUR, AFR, and SAS for (A) PC1 and PC2,

(B) PC1 and PC3, and (C) PC2 and PC3.

(TIF)

S4 Fig. Normalization process for gene expression data. A PCA was conducted on the

merged gene expression data from the three datasets (Regensburg, Cologne, and Bethesda), at

three different consecutive normalization steps including (A) log2 transformed CPM values,

(B) quantile normalized data, and (C) after adjustment for the known batch effect originating

from the different study sites using ComBat [46].

(TIF)

S1 Data. Independent eQTL signals (Q-Value < 0.05).

(XLSX)

S2 Data. Comparison of autosomal gene expression and eGene count in retina and GTEx

tissues (Q-value < 0.05).

(XLSX)

S3 Data. Overview of regulatory clusters in retinal tissue.

(XLSX)

S4 Data. Posterior probability for co-localization of genetic signals underlying two eGenes.

(XLSX)

S5 Data. Complex eye diseases and traits investigated in this study.

(XLSX)
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S6 Data. Genome-wide significant GWAS variants of complex eye diseases and traits.

(XLSX)

S7 Data. eVariants associated with complex eye diseases and traits (Q-Value < 0.05).

(XLSX)

S8 Data. Distribution of RegulomeDB ranks in regard to the eQTL results in retinal tissue.

(XLSX)

S9 Data. Tissue donor and sample attributes.

(XLSX)
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