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Zusammenfassung  

Genomweite Assoziationsstudien (GWAS) haben dazu beigetragen eine Vielzahl 

genetischer Varianten zu identifizieren, die mit dem Risiko komplexer Krankheiten 

assoziiert sind. Die überhaupt erste erfolgreiche GWAS wurde von Klein et al. im Jahre 

2005 durchgeführt und detektierte eine Assoziation genetischer Varianten im 

Komplement Faktor H (CFH) Gen mit der altersabhängigen Makuladegeneration 

(AMD). AMD ist eine komplexe Netzhauterkrankung und weltweit eine der häufigsten 

Ursachen für Sehbeeinträchtigungen und Erblindungen. Es wird angenommen, dass 

sowohl Umweltfaktoren, insbesondere Altern und Rauchen, als auch die genetische 

Prädisposition das Krankheitsrisiko wesentlich bestimmen. Der Einfluss genetischer 

Faktoren wurde auf 40 - 71 % geschätzt. Bisher ist nur wenig über die Ätiologie der 

AMD bekannt, obwohl die aktuellste GWAS von Fritsche et al. (2016) bereits 52 

unabhängige Signale in 34 mit AMD-assoziierten Loci aufdecken konnte. 

Die meisten der AMD-assoziierten Varianten befinden sich in nicht-kodierenden 

intergenischen oder intronischen Bereichen des Genoms, wobei eine funktionelle 

Abklärung eine große Herausforderung darstellt. Solche Varianten könnten sich auf 

die Regulation der Genexpression auswirken. Aus diesem Grund bestand das Ziel 

dieser Arbeit darin, die Pathogenese der AMD im Kontext von Effekten auf die 

Regulation der Genexpression zu betrachten. 

In einem ersten Ansatz wurden „expression quantitative trait loci“ (eQTLs) in 

Lebergewebe untersucht. Dafür wurden Genotyp- und Genexpressionsdaten von vier 

unabhängigen Studien in einer zusammenführenden Analyse betrachtet. Alle 

miteinbezogenen Studien und Proben durchliefen ein eigens hierfür entwickelten 

Datenverarbeitungsprotokoll, das vor allem auf die Identifikation reproduzierbarer 

Effekte fokussiert war. Insgesamt wurden Daten von 588 Individuen untersucht und es 

konnten 7.612 Gene gefunden werden, die signifikant (Q-Wert < 0,05) von genetischen 

Varianten reguliert werden. Bemerkenswerterweise zeigten sich 15 dieser Gene von 

AMD-assoziierten Varianten beeinflusst und eine vergleichende Analyse ergab, dass 

diese Gene vor allem in Zusammenhang mit Prozessen des angeborenen 

Komplementsystems und des Metabolismus von Lipoproteinen stehen.  

In einem zweiten Projekt wurden die Daten der „Genotype-Tissue Expression“ (GTEx) 

Datenbank ausgewertet, um die initialen Untersuchungen auf eine Vielzahl an 
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Geweben zu erweitern. GTEx beinhaltet Daten zu 48 unterschiedlichen Geweben bzw. 

Zelltypen, die von bis zu 500 Spendern zur Verfügung stehen. Die eQTL Analyse 

ermöglichte es, eine neue Hypothese bezüglich genregulatorischer Effekte in einem 

der am stärksten mit AMD assoziierten Loci aufzustellen. So zeigte sich, dass 

genetische Varianten innerhalb des ARMS2-HTRA1 Locus Gene regulieren, die sich 

an unterschiedlichsten Positionen des Genoms befinden und deren Genprodukte 

größtenteils an Immunsystem-bezogenen Prozessen teilnehmen. Zusätzlich zu den 

bioinformatischen Untersuchungen wurden in vitro Experimente durchgeführt, um die 

erarbeitete Hypothese zu valideren. In einer ersten Untersuchung wurde dazu eine 

Deletion innerhalb des ARMS2-HTRA1 Locus herbeigeführt und betrachtet, ob dies 

die Genexpression der vorhergesagten Zielgene beeinflusst. Außerdem wurde in 

weiteren Experimenten die Genexpression innerhalb des ARMS2-HTRA1 Locus 

gezielt verstärkt. Beide Ansätze konnten jedoch in den initialen Experimenten die 

aufgestellte Hypothese in HEK293T Zellen nicht bestätigen. 

In einem weiteren Projekt wurde eine eQTL Analyse von 314 gesunden retinalen 

Gewebeproben durchgeführt, die von drei unabhängigen Instituten gesammelt 

wurden. Dabei konnten 9.733 Gene identifiziert werden, die signifikant von 

genetischen Varianten reguliert werden (Q-Wert < 0,05). Diese zusammenfassende 

Studie ermöglichte zum ersten Mal eine Analyse der Genexpressionsregulation in 

ausschließlich gesunden Netzhautproben. Interessanterweise zeigten jedoch nur 7 der 

34 AMD-assoziierten Loci eQTL in der Retina, obwohl man davon ausgehen muss, 

dass dieses Gewebe ein Ort der primären/sekundären Pathologie der AMD ist. 

Aus diesem Grund zielte das abschließende Projekt darauf ab, ein 

zusammenhängendes Bild der Genexpressionsregulation im Lichte der AMD Genetik 

zu erhalten. Dafür wurde eine transkriptomweite Assoziationsstudie (TWAS) 

durchgeführt, die die Genotypen von 16.144 AMD Patienten und von 17.832 gesunden 

Vergleichspersonen aus dem Datensatz des internationalen AMD Genomics 

Consortium (IAMDGC) miteinschloss. Für alle Proben wurde die individuelle 

Genexpression in 27 Geweben vorhergesagt und mit dem AMD-Status verglichen. 

Insgesamt konnten 106 Gene identifiziert werden, die sich in mindestens einem 

Gewebe mit der AMD assoziiert zeigten. Diese Analyse deckte genregulatorische 

Effekte in 25 der 34 AMD-assoziierten Loci auf. 
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Zusammengefasst zeigen die Ergebnisse dieser Arbeit, dass die Regulation der 

Genexpression ein häufiges Phänomen in AMD-assoziierten Loci darstellt. Die 

Resultate verdeutlichen eine Beteiligung systemischer Prozesse, wie zum Beispiel des 

Komplementsystems und der Blut-Lipoproteine, an der AMD Pathogenese. Außerdem 

konnte die Analyse AMD-assoziierter Gene zeigen, dass diese nicht ausschließlich in 

der Retina, sondern häufig ubiquitär reguliert werden. So ist es wahrscheinlich, dass 

die zugrundeliegenden Prozesse der AMD Pathogenese im gesamten Körper 

ablaufen, wobei es offensichtlich fast ausschließlich zur Expression eines Phänotyps 

bevorzugt in der Netzhaut kommt. 
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Summary 

Genome-wide association studies (GWAS) have led to the identification of a plethora 

of risk-associated genetic variants for a multitude of complex diseases. The very first 

GWAS was performed by Klein et al. in the year 2005 and identified variants in the 

complement factor H (CFH) gene to be associated with age-related macular 

degeneration (AMD). AMD is a complex eye disease and one of the most common 

causes of visual impairments and blindness worldwide. It is widely accepted that 

environmental factors, especially advanced age and smoking, as well as genetic 

factors contribute substantially to disease risk. Remarkably, the influence of genetics 

was estimated to be as high as 40-71 %. However, little is known about AMD aetiology, 

although the latest GWAS performed by Fritsche et al. (2016) revealed 52 independent 

signals distributed over 34 loci to be associated with AMD. 

Most of the AMD-associated variants are located in non-coding intergenic or intronic 

regions of the genome, where functional annotation presents a major challenge. 

However, these variants may play an important role in the regulation of gene 

expression. The aim of this thesis was therefore to examine the pathogenesis of AMD 

in the context of gene expression regulation. 

A first approach investigated expression quantitative trait loci (eQTL) in liver tissue. 

Thus, genotype and gene expression data from four independent studies were 

combined to enable a comprehensive analysis. All samples and studies underwent an 

especially developed data processing protocol, which applied stringent filter to 

exclusively allow the detection of highly valid associations. Altogether 588 samples 

were included and 7,612 genetically regulated genes (Q-Value < 0.05) have been 

identified. Remarkably, 15 of these are influenced by AMD-associated variants and a 

comparative analysis reinforced the notion that the initial complement system and 

lipoprotein metabolism play a role in AMD pathogenesis. 

In a second project, the Genotype-Tissue Expression (GTEx) database was explored 

to extend the initial investigations to a variety of tissues. GTEx contains data on 48 

different tissues or cell types available from up to 500 donors. The eQTL analysis 

enabled a new hypothesis regarding gene expression regulatory effects in one of the 

most significant AMD-associated loci. It was shown that genetic variants within the 

ARMS2-HTRA1 locus regulate immune system related genes throughout the whole 
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genome. In addition to the bioinformatics studies, in vitro experiments were conducted 

to validate the developed hypothesis. First, a large genomic deletion within the 

ARMS2-HTRA1 locus was introduced to assess potential consequences on the 

expression of bioinformatical predicted target genes. In a second approach, gene 

expression within the locus was enhanced by targeted application of transcription 

activation factors. Nevertheless, both strategies were not able to confirm the generated 

hypothesis in HEK293T cells in the initial experiments. 

The next project included the comprehensive analysis of eQTL in 314 healthy retinal 

tissue samples collected from three independent study sites. Altogether, 9,733 

genetically regulated genes (Q-value < 0.05) were identified, which allowed insights in 

gene expression regulation of exclusively healthy retinal tissues for the very first time. 

Interestingly, only 7 of 34 AMD-associated loci revealed eQTL effects in retina although 

one must assume that this tissue is a site of the primary/secondary pathology of AMD 

Therefore, the last project of this thesis aimed at obtaining a comprehensive view on 

gene expression regulation in the light of AMD genetics. A transcriptome wide 

association study (TWAS) was performed, which included the genotypes of 16,144 

late-stage AMD cases and 17,832 healthy controls from the International AMD 

Genomics Consortium (IAMDGC). For all these individuals, gene expression was 

imputed in 27 tissues and analysed in regard to the respective AMD status. This 

analysis discovered 106 genes, which expression was found to be associated with 

AMD genetics in at least one tissue. Regulatory effects on gene expression were 

identified in 25 of the 34 AMD-associated loci. 

Taken together, this work revealed that gene expression regulation is common in AMD-

associated loci. The identified genes reinforce the notion that systemic processes like 

the complement system or blood lipid levels seem to be relevant for AMD pathology. 

Furthermore, expression of genes associated with AMD is not restricted to retinal 

tissue, but instead is rather ubiquitous suggesting processes underlying AMD 

pathology to be of systemic nature, although the pathological phenotype occurs in the 

eye. 
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1 Introduction 

1.1 Age-related macular degeneration 

Age-related macular degeneration (AMD) is one of the most common causes of 

blindness in industrialised countries. The worldwide prevalence of AMD reaches 8.67 

% in the age group of 30 – 97 years. It is further estimated that the number of AMD 

cases increases from recently around 196 million to 288 million by the year 2040 [1]. 

The clinical phenotype of AMD manifests in the retina and can be broadly divided into 

three disease stages progressing from early AMD to intermediate AMD and finally to 

the late stage forms [2]. In healthy individuals, visual perception is accomplished in the 

retina by a complex interplay of hierarchically connected cell types, initiated by the 

photoreceptors, the primary recipients of photons. This process requires a high 

metabolic activity und needs a well-regulated support system, which comprises the 

mono-layered retinal pigment epithelium (RPE) and the blood supply, the choroid 

including the choriocapillaris (Figure 1 A).  

 

Figure 1: Schematic overview of the human retina and pathological changes caused by AMD. 
(A) Schematic overview of healthy retinal tissue, supported by the retinal pigment epithelium (RPE) and 
the chorid. (B) Changes in the retina and Drusen formation caused by early AMD. (C) Schematic 
changes in a late-stage AMD affected eye. Choroidal neovascularization is characterised by new blood 
vessels growing from the choroid into the RPE. The following hemorrhages initiate photoreceptor cell 
death and cause perturbation of the retinal layers. (Figure modified from Swaroop et al. (2009) [3])  

Early AMD is accompanied by the formation of extracellular protein-lipid aggregates, 

known as Drusen, between the RPE and Bruch`s membrane, a five-layered 

extracellular matrix structure (Figure 1 B). The lesions primarily occur around the 

macula, a region near the centre of the retina, which contains mainly cone 

photoreceptor cells and is responsible for central, high resolution colour vision. 

Nevertheless, early AMD is the most common and the least severe form of AMD and 
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is usually not recognised by the patients. Subsequently, Drusen grow in size and 

pigmentary abnormalities accumulate, resulting in the progress from the early form to 

the intermediate AMD, which still only leads to minor visual impairments such as the 

beginning loss of central vision. Finally, the late-stage AMD lesions present as two 

distinct forms, which can occur separately or combined, namely geographic atrophy 

(GA) and choroidal neovascularization (CNV). In eyes affected by GA, Drusen growth 

continues and severely hinders RPE function, which in-turn causes severe damage to 

the photoreceptors. GA is slowly progressing over years and progressively impairs 

vision. In contrast, CNV, is characterised by the formation of new fragile blood vessels 

growing from the choroid into the RPE (Figure 1 C). This leads to rapid loss of vision, 

caused by bleedings into the retinal and subretinal space. So far, only treatment 

options for CNV are available through ocular injection of inhibitors targeting the 

vascular endothelial growth factor (VEGF). However, this treatment exclusively 

addresses symptoms of the disease but cannot cure the phenotype [4,5].  

While the main manifestations of AMD affect the back of the eye, several studies 

investigated AMD patients in regard to extraocular phenotypes and potential 

biomarkers. Such studies showed lower complement Factor H (CFH) levels in the 

serum of AMD patients, which is supposed to result in an increased activation of the 

innate immune system [6,7]. Furthermore, elevated high-density lipoprotein (HDL) 

levels were found to be associated with late-stage AMD [8,9]. 

In general, little is known about AMD aetiology although three main factors seem to be 

generally accepted as AMD risk contributors: (1) Advanced age, (2) environmental 

factors, particularly smoking, and (3) genetic predisposition [10–12]. The interplay of 

environmental risk factors and genetic influences makes AMD to a so-called complex 

disease. 

1.2 The genetics of AMD 

Genetic predisposition to AMD was first investigated in the early twenty-first century. 

Remarkably, a twin study by Seddon et al. (2005) estimated the genetic contribution to 

AMD to be as high as 71 % [13]. As AMD shows a high prevalence in the general 

population, it is assumed to be influenced by many common genetic variants together 

contributing to disease risk [14].  
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A ground-breaking development in the research of complex diseases was the rise of 

large-scale genome-wide association studies (GWAS). GWAS investigate genetic 

variation in hundreds to thousands of individuals and aim to identify statistically 

significant changes in allele frequencies between a study population and a population 

of control individuals. The identified genetic variants are then assumed to be 

associated with the disease or phenotype of interest. GWAS are a hypothesis free 

approach and are well suited to identify unknown genomic loci. The first successful 

GWAS was performed by Klein et al. in 2005 and included 96 patients and 50 controls 

[15]. Remarkably, this study identified a strong association of the CFH locus on 

chromosome 1q31 with AMD and therefore raised the hypothesis of the complement 

system being involved in AMD pathogenesis. Over time, GWAS steadily increased in 

sample size and consequently identified variants with smaller effect sizes [16,17]. The 

most recent GWAS regarding late-stage AMD was conducted by the International AMD 

Genomics Consortium (IAMDGC) and included 16,144 patients and 17,832 controls 

[18]. This GWAS identified 52 independent genetic variants at 34 loci associated with 

AMD at genome wide significance (P-value < 5.0 x 10-08). Fritsche et al. (2016) 

validated the findings in the CFH locus (Figure 2 A) and further demonstrated 7 

additional independent hits (IHs) located on chromosome 1q31 - mostly representing 

rare variants with minor allele frequency (MAF) below 1 %. The 1q31 locus 

compromises, besides CFH, five CFH-related genes (CFHR1 – CFHR5). These share 

high sequence similarities with CFH and are thought to compete with CFH for binding 

the central complement component C3 [19]. 
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Figure 2: LocusZoom plot of the most significant AMD-associated loci. 
Fritsche et al. (2016) conducted a GWAS including 16,144 AMD patients and 17,832 healthy controls. 
The association signals within the two most signifcant AMD-associated loci were plotted using 
LocusZoom [20] and the GWAS summary statistics [18]. Each dot represents one genetic variant and 
is plotted according to its AMD-association displayed by its -log10(P-value). Linkage disequlibrum (LD) 
with the respective lead variant (purple) is symbolised by a color range from red (R2 = 1) to dark blue 
(R2 = 0). Genes located within the locus are depicted on the bottom. (A) LocusZoom plot of the CFH 
locus (chromosome 1q31). (B) LocusZoom plot of the ARMS2-HTRA1 locus (chromosome 10q26). 
(Figure created using LocusZoom [20] based on the GWAS summary statistics from Fritsche et al. 
(2016) [18]) 

The second most significant AMD-associated locus is positioned on chromosome 

10q26 and was also identified in 2005 [21]. Since its discovery, the so called ARMS2-

HTRA1 locus was frequently investigated because of its high effect size. An individual 

carrying one additional C allele of the lead variant rs3750846 has an increased risk of 

developing AMD by 2.93 times [18]. Remarkably, the C allele is very common in the 

European population (MAF 20.8 %) and its frequency was found to range around 43.6 

% in AMD patients. Despite its large effect size and the strong AMD-association (P-

value 6.0 x 10-645 in [18]), little is known about the biological mechanisms underlying 

the GWAS signal at the ARMS2-HTRA1 locus (Figure 2 B). Neither ARMS2 nor 

HTRA1, the two genes located around rs3750846, were unambiguously shown to 

contribute in AMD pathogenesis [22–24]. Recently, Grassmann et al. (2017) performed 

a haplotype analysis based on the IAMDGC data narrowing the association signal to a 

small region of around 5 kbp, called the “minimal haplotype” [25]. Nevertheless, the 

detailed mechanisms still remain elusive. 
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1.3 The GWAS era 

After the very first successfully conducted GWAS in 2005 [15] this approach was 

applied to many other complex diseases. These include inter alia neurological 

diseases, like Alzheimer's disease (AD) [26] or Schizophrenia [27], but also other 

complex eye diseases, e.g. primary open-angle glaucoma [28] or Myopia [29]. 

However, GWAS are not restricted to diseases and were applied to a large number of 

complex phenotypes, including eye colour, height, or blood lipid levels [30–32]. 

Because of the continuously increasing number of studies, the NHGRI-EBI GWAS 

Catalog has taken on the task of collecting and storing GWAS results. Remarkably, in 

September 2018, the repository contained data from 5,687 GWAS comprising 71,673 

variant-phenotype associations [33]. The tremendous increase of GWAS loci during 

the course of time is visualised in Figure 3.  

 

Figure 3: GWAS loci mapped to chromsome 1 during the time period from 2005 to 2019. 
The NHGRI-EBI GWAS Catalog collects GWAS results of various complex phenotypes. Shown are the 
identified GWAS loci on chromosome 1 from 2005 (left) to 2019 (right) at the following time-points: 2005 
(fourth quarter), 2010 (first quarter), 2015 (first quarter), 2017 (first quarter), and 2019 (first quarter). 
Each dot represents one complex phenotype and is colored in respect to predefined groups of potentially 
related phenotypes. (The plotted data were retrieved from the GWAS catalog online repository [33]) 
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Today, thousands of loci are known to be associated with a multitude of complex 

phenotypes. In addition, large databases like the UK biobank [34] aim to recruit 

hundreds of thousands of participants and are likely facilitating the identification of 

even more GWAS loci. As already mentioned, GWAS aim to identify associated 

genomic regions but are not suited to draw further conclusions about the underlying 

biology of the signal. The interpretation of GWAS results is limited by several factors. 

Due to the extensive linkage disequilibrium (LD) of neighbouring variants in GWAS loci 

it is usually impossible to classify the signal causing variant (Figure 2). Furthermore, 

GWAS variants are often located in non-coding or intergenic regions of the genome 

[35,36]. Regarding AMD, altogether 7,218 genome-wide significant variants were 

identified and statistically fine mapped to a set of 1,345 credible variants [18,37]. Solely 

1.9 % of these variants (25 of 1,345) are potentially protein coding and thus modifying 

the amino acid sequence [18]. Therefore, the associated gene within a GWAS locus 

frequently remains difficult to determine from the GWAS signal.  

Taken together, GWAS are a successful and popular approach to identify genomic 

regions associated with complex phenotypes. Today, innovative follow up studies are 

required to enable a deeper understanding of the functional meaning of such 

association signals. 

1.4 Gene expression regulation in GWAS loci 

One attractive approach to overcome the above described limitations of GWAS results 

is to correlate the genotypes of variants, which are associated with disease at genome-

wide significance, with mRNA expression in a given tissue using large-scale mRNA 

expression studies. This type of analysis results in data known as expression 

Quantitative Trait Loci (eQTL) [38]. eQTL may become evident as local (cis) or distant 

(trans) effects (Figure 4). Local eQTL implicate that the variant (the so-called eVariant) 

is located in direct neighbourhood to the affected gene (the so-called eGene) or within 

the gene body. Local genotype variation possibly affects gene expression by altering 

transcription factor binding, splicing, DNA methylation or other molecular mechanisms 

[39]. An altered gene expression usually leads to changes in spatial or temporal 

transcript levels [40] and thereby possibly influences further genes, located anywhere 

in the genome. These indirect effects of genomic variants are called distant eQTL and 

show typically smaller effect sizes than local eQTL (Figure 4). 
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Figure 4: eQTL and their 
modes of action.  
Local eQTL variants 
(eVariants) influence gene 
expression of nearby 
genes (eGenes). Distant 
eQTL effects can be 
caused if the potentially 
regulated gene product 
itself carries out regulatory 
functions. (Figure modified 
from Westra et al. (2014) 
[38]) 

 

 

 

 

 

eQTL studies have proven to be a valuable resource to follow up on GWAS results, 

since they allow the prioritisation of variants and genes in GWAS loci. Furthermore, 

eQTL databases are usually covering the whole genome and transcriptome. Their 

assessment is therefore not restricted to the evaluation of distinct GWAS results and 

can also be used to find potential commonalities of complex phenotypes or traits. Such 

pleiotropic effects could reveal pathways contributing to disease aetiology. 

Nevertheless, eQTL studies are usually based on healthy tissue and do not allow to 

draw simple implications for pathomechanisms after disease onset. 

During the last decade, a large number of studies have investigated eQTL in various 

tissues [41–44]. The data are usually collected using high throughput platforms, such 

as genotyping chips to assess the genotypes of the samples and expression 

microarrays or RNA sequencing (RNA-Seq) to measure the expression of gene 

transcripts in a given cell type or tissue. Nevertheless, it has become clear that the 

analysis of single tissue eQTL has limitations, specifically regarding sensitivity and 

specificity due to a limited statistical power [45]. Furthermore, gene expression may 

vary between tissues and cell types [46]. Single tissue eQTL studies can miss 

important signals and correlations. Consequently, combining data from several 

independent studies can considerably enhance a reproducible outcome of eQTL 

studies [47,48]. 
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Recently, the integration of more complex models instead of basic linear regression 

(as shown in Figure 4) facilitated a new, comprehensive method to investigate the 

regulatory influence of genetic variation on gene expression. Transcriptome wide 

association studies (TWAS) apply a three-step process to identify disease associated 

genes. First, machine learning algorithms, like ridge regression [49], lasso regression 

[50], or elastic net [51], are used to determine a set of genetic variants which 

consistently influence gene expression in a given tissue. Secondly, the corresponding 

set of genetic variants are extracted from classical GWAS datasets and are used to 

predict gene expression based on the generated models. This provides a relative 

expression value per gene for each individual. Finally, predicted gene expression is 

correlated with each individual’s disease status to identify disease-associated genes 

[52–54]. TWAS have several advantages over classical eQTL studies. Due to the fact 

that only thousands of genes are investigated instead of millions of genetic variants, 

less adjustment for multiple testing is required. Additionally, TWAS are an unbiased 

approach as the machine learning model chooses which variants to use for 

reproducible gene expression prediction. Nevertheless, TWAS do also not provide 

information about the biological mechanisms underlying the association signal. 

1.5 Genome editing to investigate gene expression regulation 

Bioinformatical approaches, like GWAS and eQTL studies, are applied to generate 

new hypotheses and to provide a higher-level context. Still, such algorithms cannot 

replace wet lab experiments, which are required to validate findings and to investigate 

biological models under varying conditions. Although the amount of GWAS studies 

rapidly increased in the past 15 years, experimental follow up studies were rarely 

performed [55]. This may in part be attributable to the problematics of interpreting 

GWAS results as described above. Furthermore, investigating specific genetic variants 

required extensive technical effort and often resulted in highly artificial model systems. 

The discovery of the bacterial CRISPR (clustered regularly interspaced short 

palindromic repeats)/Cas9 (CRISPR-associated protein 9) system changed biological 

and medical research dramatically [56–58]. Further developments even simplified the 

multipartite CRISPR/Cas9 complex to require only two components for targeted 

genome editing: The Cas9 endonuclease protein and a single guide RNA (sgRNA) 

(Figure 5 A) [58]. The 20 nucleotide (nt) long sgRNA sequence can be modified to 

induce targeted DNA double-strand breaks (DSBs) via the endonuclease activity of 
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Cas9. sgRNA design further requires the presence of a 3 nt protospacer-adjacent motif 

(PAM) at the 3 prime end of the target sequence.  

 

Figure 5: Cas9 mediated genome editing. 
(A) The Cas9 endonuclease complex requires a sgRNA to introduce targeted double-strand breaks 
(DSBs, red stars). (B) Deactivated Cas9 (dCas9) proteins retain their capability to bind DNA, but lost 
their endonuclease function. The tripartite VPR construct, consisting of the proteins VP64, p65, and Rta, 
was fused to a dCas9 to enable targeted enhancement of nearby gene expression. (Figure modified 
from Wang et al. (2016) [59]) 

Induced DSB are immediately repaired in Eukaryotes by either nonhomologous end 

joining (NHEJ) or homology-directed (HDR) DNA repair pathways. NHEJ usually leads 

to small random insertions or deletions at the DSB targeted site, whereas HDR 

potentially integrates donor DNA sequences by homologous recombination [60–62]. 

Regarding further experimental investigations of GWAS and eQTL results, both 

pathways might be valuable depending on the investigated locus and the specific 

question needed to be addressed. It was further shown that even larger deletions can 

be introduced with the help of two sgRNAs [63,64]. To facilitate additional usage of 

DNA-specific targeting, a nuclease-deactivated Cas9 (dCas9) has been engineered. 

Various effector proteins were fused to dCas9 and have been shown to result in 

targeted transcriptional activation (Figure 5 B) or repression [65,66], and to be capable 

of modifying epigenetics around the target site [67]. 

The CRISPR/Cas9 toolbox has been widely applied to address various questions and 

to generate novel experimental model systems [59]. Still, its implementation, 

specifically concerning the investigation of GWAS loci and eQTL findings, is under 

development. Schrode et al. in 2019 were the first to perform an allelic conversion 

regarding eVariants in vitro [68]. 

1.6 Aim of this study 

The IAMDGC identified 52 independent genetic signals in 34 loci to be involved in AMD 

disease risk [18]. It still remains unclear which variants are indeed causal and exactly 
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which genes in these loci are affected thus contributing to disease pathology. In 

general, a genetic predisposition likely exerts a life-time influence, which leads to the 

question how a genetic variant can contribute to the aetiology of this blinding disease. 

This thesis aims to investigate the influence of AMD-associated genetics in the light of 

gene expression regulation. eQTL databases of various tissues were generated and 

comprehensively analysed. This process especially included the creation and 

evaluation of the first eQTL study in healthy retinal tissue to-date. Besides the large-

scale bioinformatical studies, one project focused on the experimental assessment of 

eQTL effects by applying genome editing methods. Finally, a TWAS was performed 

based on different tissues and the genotypes of over 30,000 AMD patients and 

controls. 
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2 Bioinformatical protocols 

In this thesis, multiple datasets were collected or generated to calculate eQTL in 

various tissues. Table 1 lists all datasets and the respective source. The datasets were 

initially generated using different platforms and methodological protocols. Therefore, 

quality control (QC) and data processing was required to jointly analyse genotype and 

gene expression data. Some datasets were already processed by the respective study 

site before they were made available. The initial data format and the required 

processing steps for eQTL calculation are shown in Table 1. Altogether three 

databases were created in this thesis to investigate gene expression regulation in liver 

tissue, retinal tissue and the Genotype-Tissue Expression (GTEx) project. 
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Table 1: Overview of analysed eQTL datasets in this thesis 

QC = quality control, RNA-Seq = RNA Sequencing; * University Hospital, Cologne, Germany; ** National Eye Institute, Bethesda; USA 

 
 

  

 

 

Dataset 
name 

eQTL 
database Source 

Stored database and 
accession ID 

Genotype data Gene expression data 

Received 
format 

Processing before 
eQTL calculation Received format 

Processing before eQTL 
calculation 

Schadt [69] Liver Download Synapse (syn89614) 
Called 

genotypes 
(microarray) 

Imputation, QC 
Gene expression 

matrix without 
probe sequences 

QC, Normalisation 

Schroeder 
[41] 

Liver Download 
GEO (GSE39036, 

GSE32504) 

Called 
genotypes 

(microarray) 
Imputation, QC 

Gene expression 
matrix and probe 

sequences 

Probe remapping, QC, 
Normalisation 

Innocenti 
[47] 

Liver Download 
GEO (GSE26105, 

GSE25935) 

Called 
genotypes 

(microarray) 
Imputation, QC 

Gene expression 
matrix and probe 

sequences 

Probe remapping, QC, 
Normalisation 

GTEx 
version 6 

[44] 
Liver/GTEx Download 

dbGAP 
(phs000424.v6.p1) 

Called 
genotypes 

(microarray) 
Imputation, QC 

Gene expression 
matrix of RNA-Seq 

QC, Normalisation 

GTEx 
version 7 

[44] 
GTEx Download 

dbGAP 
(phs000424.v7.p2) 

Called 
genotypes 

(WGS) 
QC 

Gene expression 
matrix of RNA-Seq 

QC, Normalisation 

Regensburg Retina 
Data generated 

in this thesis 
- 

Raw signal 
intensities 

(microarray)  

Genotype calling, 
Imputation, QC 

RNA-Seq raw files 
Processing of RNA-Seq 

reads, QC, Normalisation 

Cologne Retina 
Provided by 

Thomas 
Langmann* 

- 
Called 

genotypes 
(microarray) 

Imputation, QC RNA-Seq raw files 
Processing of RNA-Seq 

reads, QC, Normalisation 

NEI [70] Retina 
Provided by 

Anand 
Swaroop**  

- 
Imputed 

genotypes 
QC RNA-Seq raw files 

Processing of RNA-Seq 
reads, QC, Normalisation 
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2.1 Genotype data processing 

2.1.1 Genotype calling 

The genotypes of most investigated datasets were detected using microarray platforms 

and have been made available as hard called genotypes in the VCF format [71] (Table 

1). 

The genotypes of the retinal tissue samples from Regensburg were measured as part 

of this thesis using an Illumina Custom HumanCoreExome BeadChip. Therefore, 

genotype calling was necessary before further genotype processing. Hard called 

genotypes were generated using the Axiome analysis suite version 3.1 based on the 

“best practice workflow” supplied by the manufacturer. 

2.1.2 Quality control before imputation 

Before genotype imputation, every dataset underwent several quality control steps 

regarding the included samples and the genotyped variants. Two datasets, namely 

Schroeder [41] and Innocenti [47], reported only the zygosity status for each variant 

encoded as AA, AB and BB. Biomart [72] was applied to obtain the according reference 

and alternative alleles. Additionally, the UCSC liftover tool [73] was applied to update 

genome coordinates to hg19/GRCh37 if required. 

For each dataset, a principal component analysis (PCA) was carried out including 

30,000 genetic variants of each sample and the corresponding genotype information 

of the 1000 Genomes Project reference panel (Phase 3, release 20130502) [74]. This 

analysis was conducted in R (version 3.3.1) [75] using the snpgdsPCA function of the 

SNPRelate package [76]. The first two principal components were plotted to determine 

the ethnicity of each sample. In this thesis, only samples clustering next to the 

European (EUR) reference individuals were included because haplotype structures 

can importantly vary between populations. Furthermore, samples were excluded in 

case of high missing rates (> 5% of genetic variants) and if reported and inferred 

gender from genotype calling did not match. 

To investigate the quality of genetic variants, allele frequencies were calculated and 

compared to the corresponding allele frequency of the 1000 Genomes Project EUR 

samples. Alleles were flipped, in case they were given on the opposite strand. Genetic 
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variants, whose reference allele frequency deviated more than 10% from the reference 

were excluded from the analysis. Next, VCFtools (version 0.1.15) [71] was applied to 

investigate if variants deviated significantly from Hardy-Weinberg equilibrium (HWE, 

P-value < 1 × 10−6) [77]. Only biallelic autosomal variants were kept for further analysis. 

2.1.3 Genotype imputation 

Before genotype imputation, SHAPEIT2 (version 2.r904) was applied to achieve 

phasing of genotypes with the help of the 1000 Genomes Phase 3 reference panel 

[78]. SHAPEIT2 required a two-step protocol: Initially, the -check option was used to 

identify genetic variants, which did not fulfil the manufacturer’s criteria. These variants 

were thereafter excluded from the phasing process. After genotype phasing, IMPUTE2 

(version 2.3.2) was utilised with standard options to impute genotypes based on the 

previously mentioned reference panel [79]. 

2.1.4 Quality control after imputation 

The genotype imputation produced various output files. These files were converted into 

VCF format with the help of qctools (version 1.2, 

https://www.well.ox.ac.uk/~gav/qctool_v1/#overview accessed February 12th 2017). 

Furthermore, genotypes were converted into the “estimated allele dosage” format. The 

VCF files were filtered for low imputation quality (IMPUTE2 info score) and MAF. The 

Imputation quality threshold for the liver eQTL database was set to 0.4 and the MAF 

was at least 5 %. For all other databases imputation quality threshold was 0.3 with a 

MAF threshold of 1 %. Furthermore, the genomic coordinates of the retina eQTL 

database were lifted to hg38/GRCh38 by applying the UCSC liftover tool. 

2.2 Gene expression data processing 

2.2.1 Microarray data 

The generated eQTL databases in this thesis included three datasets, which measured 

gene expression via microarray (Table 27). Processing of raw data was performed in 

the respective publication [41,47,69].  

The two datasets Schroeder and Innocenti additionally provided the microarray probe 

sequences. Genome annotation changed with time and therefore array probes were 
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remapped to an in silico mRNA reference database from ensembl [80] using the 

ReAnnotator pipeline [81]. After remapping, only exome-matching probes showing less 

than five mismatches were kept. Furthermore, probes which overlapped with a 

common dbSNP variant (version 142) were removed [82]. Only specific probes 

measuring one gene were retained. Probes which unambiguously detected gene 

expression of the same gene, were merged by calculating the mean of all 

corresponding probes. This value was then weighted by the variance of the respective 

single probe over all samples. 

In contrast, Schadt et al. [69] employed the Agilent Custom 44k array and probe 

sequences were not available, which made remapping impossible. The provided gene 

identifier were checked to unanimously match to a gene in the ensemble- or RefSeq- 

[83] database and were excluded from the analysis if this was not the case. 

Furthermore, a Shapiro–Wilk test [84] revealed that values above 2 and below -2 were 

likely outliers and therefore have been set “missing” in the further analysis. 

2.2.2 RNA Sequencing (RNA-Seq) 

All datasets except the ones mentioned in section 2.2.1 used RNA-Seq to measure 

gene expression. For the three studies investigating eQTL in retinal tissue, the raw 

data were available (Table 32) and have been analysed with the same protocol to 

ensure comparability. The RNA-Seq pipeline was based on the protocol of Ratnapriya 

et al. (2019) [70]. During all steps of the analysis, FastQC (version 0.11.5, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ accessed January 24th 

2018) and MultiQC (version 1.7.dev0) [85] were applied to ensure the correctness of 

the conducted data processing steps.  

First, the raw RNA-Seq reads were trimmed for Illumina adapter sequences and low 

quality reads were removed with the following options: SLIDING WINDOW 4:5, 

LEADING 5, TRAILING 5, and MINLEN 25 using Trimmomatic (version 0.39) based 

on the supplied Illumina TruSeq3 sequences [86]. Afterwards, the Star aligner (version 

2.7.1a) [87] was applied to build a human reference genome annotation based on the 

ensembl version 97 (GRCh38.p13) [80]. Trimmed reads were aligned to this reference 

using per sample 2-pass mapping and ENCODE standard options. The resulting 

aligned files were thereafter analysed with the RSEM toolbox (version 1.3.1) [88]. To 

accomplish this, a RSEM reference file was created with the rsem-prepare-reference 
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option and the above mentioned ensembl version 97. RSEM then calculated the 

estimated gene expression per sample using the rsem-calculate-expression function 

with standard parameters and the “forward-prob = 0” option to account for stranded 

RNA-Seq libraries. Calculation of gene expression counts required RSEM to assume 

a fragment length distribution, which is done automatically if paired-end reads are 

supplied. The Regensburg dataset investigated retinal gene expression based on 

single-end reads and therefore the options fragment-length-mean 155.9 and fragment-

length-sd 56.2 were additionally supplied to the rsem-calculate-expression function. 

Both values have been obtained by calculating the mean fragment length distribution 

of 30 samples taken randomly from the Cologne and NEI datasets. After gene 

expression calculation, the rsem-generate-data-matrix function created one estimated 

read count matrix per dataset. The estimated expression counts obtained from RSEM 

required further normalisation to enable an appropriate comparison of gene expression 

between samples and datasets. For this reason, the tmmnorm function of the edgeR 

package (version 3.16.5) [89] was applied to conduct a trimmed mean of M-values 

normalisation [90]. The normalised expression matrix was then used by the cpm 

function of edgeR to calculate the gene expression in counts per million (CPM).  

2.2.3 Data normalisation and quality control 

The gene expression matrices of all datasets underwent a uniform data normalisation 

and quality control protocol in R to allow comparison and combination of data. The 

applied protocol was independent of the different RNA measurement methods or units. 

Only expressed genes were kept for data normalisation to remove potential 

measurement artefacts. A gene was considered to be expressed if the expression 

value was at least 1 in 10 % of all samples within the dataset. For the GTEx project 

this threshold was set 0.1 to enable a comparison of results with the original GTEx 

analysis pipeline. Next, a PCA was performed with the help of the prcomp function to 

identify and to remove potential outlier samples within the dataset. Replicated samples 

were merged by taking the mean of the gene expression values. 

The gene expression matrix was then log2-transformed with an offset of 0.001 (liver 

and GTEx eQTL datasets) or 1 (retina eQTL datasets). Thereafter, the single gene 

expression matrices were differently processed according to the three main databases 

created in this thesis, which purposed the calculation of Liver eQTL, the GTEx 

database, or the retina eQTL database. 
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For the calculation of eQTL in liver tissue, only genes were kept which have been 

expressed in at least two of the four datasets. The expression of genes which has not 

been directly measured in all datasets was imputed using the K-Nearest-Neighbour 

method implemented in the impute.knn function of the impute Bioconductor package 

[91]. If imputation was not possible, the gene was removed from further analysis. 

Thereafter, the gene expression matrices of each single dataset were merged into one 

matrix. The log2 transformed and merged matrix was quantile normalised [92] using 

the normalize.quantiles function of the R package preprocessCore 

(https://github.com/bmbolstad/preprocessCore accessed June 16th 2017). As last 

normalisation step, an empirical batch correction method called ComBat was 

performed, which corrected for the different origin of data [93]. The combat function is 

part of the sva package in R [94]. 

The GTEx database was primarily generated based on GTEx v6 (dbGaP: 

phs000424.v6.p1). During the course of this thesis, the GTEx consortium released v7 

(dbGaP: phs000424.v7.p2), which included more samples and tissues. For this reason 

the gene expression data of the GTEx database was processed twice with slightly 

different protocols. In version 6 all samples measuring different tissue subtypes, for 

example “Adipose Subcutaneous” and “Adipose Visceral Omentum”, were merged into 

higher order tissues (e.g. “Adipose”). This resulted in 28 tissues. Thereafter, the gene 

expression quality control and normalisation was conducted for each tissue separately. 

The log2 transformed expression values were quantile normalised and additionally 

rescaled to a mean of 4 (SD: 1) using the rescale function, which is embedded in the 

psych package (https://cran.r-project.org/web/packages/psych/index.html accessed 

June 16th 2017). Rescaling of gene expression ensured a better comparability of effect 

sizes between GTEx tissues. Furthermore, a mega-analysis was conducted based on 

the normalised gene expression matrices of the 28 tissues. For this reason, ComBat 

was applied to adjust for tissue-specific effects by setting the tissue as covariate. The 

updated GTEx database (version 7) applied the same data normalisation protocol like 

version 6 but without merging tissue subtypes. This resulted in 48 different tissues 

being included in the eQTL analysis.  

Three datasets contributed to the retinal eQTL database. Gene expression data were 

merged into one matrix including exclusively genes, which were expressed in all three 
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datasets. Afterwards, quantile normalisation and ComBat were employed to normalise 

the data. 

2.3 eQTL analysis 

2.3.1 eQTL calculation 

In this study, eQTL were calculated based on linear regression models implemented 

in the Matrix eQTL package in R [95]. Matrix eQTL required three input files with 

columns representing samples and rows including the respective data. The files 

contained (1) genotypes in estimated allele dosage format, (2) normalised gene 

expression, and (3) covariates. The covariate file comprised information about age, 

gender, and the first five principal components from the genotype PCA. Furthermore 

the “cisDist” parameter was set to 1 Mbp if local eQTL were investigated. The output 

of Matrix eQTL gave information about several parameters. Besides data about the 

eVariant and the eGene, it presented the effect size (slope of the linear regression 

model, beta), the standard error of the effect size (beta-SE) and the P-value of the 

model. To account for multiple testing, the false discovery rate (FDR, Q-value) was 

calculated using the p.adjust function in R. The results were thereafter filtered for 

significance according to the given Q-value threshold.  

2.3.2 Meta-analysis of eQTL 

The meta-analysis approach compromises the eQTL analysis summary statistics of 

different datasets or tissues and was performed in each database seperately. In this 

thesis, a random effects model implemented in the function MiMa (version 1.4.) [96] 

was applied to conduct a meta-analysis of Matrix eQTL results. It required the beta and 

the beta-SE of each dataset to estimate the joint beta and standard error as well as 

the joint P-value. The retrieved P-values were thereafter corrected for multiple testing 

by applying the FDR. 

2.3.3 Mega-analysis of eQTL and conditional eQTL analysis 

In this study, a mega-analysis was conducted with each of the three generated 

databases. The mega-analysis calculates eQTL from the merged genotype and 
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expression data directly and does not need summary statistics. Matrix eQTL was 

applied after merging the data as described in section 2.3.1. 

Furthermore, the enhanced statistical power of the mega-analysis method was utilised 

to investigate independent eQTL signals for each significant eGene. Matrix eQTL was 

adjusted for the most significant corresponding eVariant per eGene by adding its 

genotype information to the covariate file. Thereafter, eQTL were re-calculated and 

remaining significant eVariants were considered to represent an independent signal. 

The most significant independent eVariant was then also added to the covariate file. 

This approach was repeated until no additional independent signals were found. The 

conditional analysis could not be appropriately adjusted for multiple testing. For this 

reason the P-value threshold for significance of further independent signals was 

estimated based on the applied Q-value threshold of the respective mega-analysis. 

2.4 Transcriptome-wide association study 

The TWAS conducted in this thesis was performed to identify AMD-associated genes 

based on the gene expression regulation of AMD-associated genetic variants. 

Therefore, the PrediXcan algorithm [53] was applied to predict gene expression using 

genotypes of AMD-cases and healthy controls. The required prediction models have 

been trained on the data of European individuals within the GTEx v7 release. Model 

building was performed by Gamazon et al. [53] and the respective files were 

downloaded from PredictDB (http://predictdb.org/, accessed September 3rd 2018). 

Gene expression prediction was accomplished based on the genotypes of 33,976 

unrelated individuals with European ancestry from the IAMDGC cohort [18]. These 

included 16,144 late-stage AMD cases, presenting GA and/or CNV, and 17,832 AMD-

free controls. Genotypes were transformed into allele dosage format and missing 

genotypes of single individuals were replaced by the most frequent corresponding 

genotype. This resulted in 11,722,957 autosomal genetic variants for analysis. Gene 

expression was predicted for 27 tissues and thereafter the lm function was applied in 

R to calculate the linear regression model of gene expression and AMD status, 

encoded as 0 (healthy) and 1 (AMD). The analysis model was further adjusted for 

gender, age and the first two principal components of the genotype PCA performed by 

Fritsche et al. [18]. Multiple testing correction was conducted by calculating the Q-

value. Genes with a Q-value smaller than 0.001 were considered to be significantly 

AMD-associated. Before result evaluation, genes located in the major 



Bioinformatical protocols 

25 

histocompatibility complex (MHC) locus (chr6: 28,477,797 - 33,448,354, hg19) were 

excluded from the analysis. 

2.5 Follow-up investigations of eVariants and eGenes 

2.5.1 Gene set enrichment analysis with g:Profiler 

Gene set enrichment analysis was performed with the help of the web based tool 

g:Profiler (version r1730_e88_eg35) [97]. The program was used to assign Gene 

Ontology (GO) biological pathways [98] to all query genes and to perform an 

enrichment analysis using the “Best per parent” hierarchical filtering. The g:profiler 

g:SCS method was applied to account for multiple testing and was set to an adjusted 

P-value threshold of 0.05. 

2.5.2 Hierarchical clustering 

Clustering of genes based on their expression was performed using the hclust function 

in R. The hierarchical trees were then processed and visualised with the help of the 

dendextend package [99] in R.  
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3 Material & Methods: Wet lab experiments 

3.1 Material 

3.1.1 Escherichia coli (E. coli) strains 

Table 2: E. coli strains used 

Strain Source 

E. coli strain DH5α Life Technologies, Carlsbad, CA, USA 

E. coli strain Stbl3 Life Technologies, Carlsbad, CA, USA 

3.1.2 Eukaryotic cell lines 

Table 3. Cell lines used and their origin 

Cell Line Organism Tissue of origin Source 

HEK293T Homo sapiens Embryonic kidney 
ATCC, LGC Standards GmbH, 

Wesel, Germany 

3.1.3 Oligonucleotides for PCR and sequencing reactions 

Table 4: Names, sequences and purposes of oligonucleotides used in this thesis 

Name 5'-3' Sequence 
On-target-

score* Purpose 

UP_ARMS2_F_EcoRI 
GAA TTC AAT CAG AGG 
CAA TGG TCT GC 

- 

Cloning of target region for 
UP sgRNA testing, 

Genotyping after ARMS2 
locus deletion 

UP_ARMS2_R_BamHI 
GGA TCC CCT GAT GAA 
TCA TGG TCG AG 

DOWN_ARMS2_F_EcoRI 
GAA TTC TTG ATC ACA 
TGC CAT GCT TTT 

- 
Cloning of target region for 

DOWN sgRNA testing 
DOWN_ARMS2_R_BamHI 

GGA TCC ACG ATA TTT 
TAG GTT GAG GAG CA 

UP_ARMS2_sgRNA_1_F 
CAC CGG ACA CAA GTG 
CTA CAA GGC G 

86 Cloning of UP sgRNA 1 
UP_ARMS2_sgRNA_1_R 

AAA CCG CCT TGT AGC 
ACT TGT GTC C 

UP_ARMS2_sgRNA_2_F 
CAC CGG CCC AGG CCT 
AAT CCA GCG C 

83 Cloning of UP sgRNA 2 
UP_ARMS2_sgRNA_2_R 

AAA CGC GCT GGA TTA 
GGC CTG GGC C 

UP_ARMS2_sgRNA_3_F 
CAC CGA ATT AAC TGA 
GTG CCA GCG C 

83 Cloning of UP sgRNA 3 
UP_ARMS2_sgRNA_3_R 

AAA CGC GCT GGC ACT 
CAG TTA ATT C 

UP_ARMS2_sgRNA_4_F 
CAC CGG CCA GCG CTG 
GAT TAG GCC T 

81 Cloning of UP sgRNA 4 
UP_ARMS2_sgRNA_4_R 

AAA CAG GCC TAA TCC 
AGC GCT GGC C 

UP_ARMS2_sgRNA_5_F 
CAC CGG AGG TGA CAG 
AGC TCT CCG A 

77 Cloning of UP sgRNA 5 
UP_ARMS2_sgRNA_5_R 

AAA CTC GGA GAG CTC 
TGT CAC CTC C 

DOWN_ARMS2_sgRNA_1_F 
CAC CGG ATA CTT AAA 
AGC CAA CCC C 

71 Cloning of DOWN sgRNA 1 
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DOWN_ARMS2_sgRNA_1_R 
AAA CGG GGT TGG CTT 
TTA AGT ATC C 

DOWN_ARMS2_sgRNA_2_F 
CAC CGC ATG CAA CTG 
ATT TAG GGG A 

66 Cloning of DOWN sgRNA 2 
DOWN_ARMS2_sgRNA_2_R 

AAA CTC CCC TAA ATC 
AGT TGC ATG C 

DOWN_ARMS2_sgRNA_3_F 
CAC CGA TGC AAC TGA 
TTT AGG GGA A 

60 Cloning of DOWN sgRNA 3 
DOWN_ARMS2_sgRNA_3_R 

AAA CTT CCC CTA AAT 
CAG TTG CAT C 

DOWN_ARMS2_sgRNA_4_F 
CAC CGT GCA GTT AAT 
GTA ACT CAA T 

71 Cloning of DOWN sgRNA 4 
DOWN_ARMS2_sgRNA_4_R 

AAA CAT TGA GTT ACA 
TTA ACT GCA C 

DOWN_ARMS2_sgRNA_5_F 
CAC CGC ACC TTT GTC 
CTA TTT TGG A 

59 Cloning of DOWN sgRNA 5 
DOWN_ARMS2_sgRNA_5_R 

AAA CTC CAA AAT AGG 
ACA AAG GTG C 

UP_ARMS2_F2 
TTC AGG CCT CCT TCC 
TCA AG 

- 
Genotyping of single 
clones after minimal 
haplotype deletion DOWN_ARMS2_R2 

GGA CAA AGG TGA GGA 
AGT TCA 

YFP-F-AGEI 
ACC GGT ACC ATG GTG 
AGC AAG GGC GAG GA 

- Cloning for px330-GFPo 
YFP-R-ECORI 

GAA TTC TTA CTT GTA 
CAG CTC GTC CA 

MID2_ARMS2_F_EcoRI 
GAA TTC GAC CTC TGT 
TGC CTC CTC TG 

- 
Cloning of target region for 

MID sgRNA testing 
MID2_ARMS2_R_BamHI 

GGA TCC TGA CTC CTC 
TAA CAA CCC GG 

MID_ARMS2_sgRNA_1_F 
CAC CGC CAA CTG GGT 
GGC TTA AAC G 

91 Cloning of MID sgRNA 1 
MID_ARMS2_sgRNA_1_R 

AAA CCG TTT AAG CCA 
CCC AGT TGG C 

MID_ARMS2_sgRNA_2_F 
CAC CGT TCT GTG TAC 
TGA CAC TAT C 

74 Cloning of MID sgRNA 2 
MID_ARMS2_sgRNA_2_R 

AAA CGA TAG TGT CAG 
TAC ACA GAA C 

MID_ARMS2_sgRNA_3_F 
CAC CGC TGA GAC CAC 
CCA ACA ATT C 

81 Cloning of MID sgRNA 3 
MID_ARMS2_sgRNA_3_R 

AAA CGA ATT GTT GGG 
TGG TCT CAG C 

MID_ARMS2_sgRNA_4_F 
CAC CGC GTC ACA CAA 
AAA TGC CCC C 

77 Cloning of MID sgRNA 4 
MID_ARMS2_sgRNA_4_R 

AAA CGG GGG CAT TTT 
TGT GTG ACG C 

MID_ARMS2_sgRNA_5_F 
CAC CGC CTT CCT CTG 
GTT GAA TAG C 

73 Cloning of MID sgRNA 5 
MID_ARMS2_sgRNA_5_R 

AAA CGC TAT TCA ACC 
AGA GGA AGG C 

MID_ARMS2_sgRNA_6_F 
CAC CGG GCC CCT CAA 
GCC GGT GAA T 

90 Cloning of MID sgRNA 6 
MID_ARMS2_sgRNA_6_R 

AAA CAT TCA CCG GCT 
TGA GGG GCC C 

MID_ARMS2_sgRNA_7_F 
CAC CGC TCT GGC AGA 
GCA GGA CTG A 

52 Cloning of MID sgRNA 7 
MID_ARMS2_sgRNA_7_R 

AAA CTC AGT CCT GCT 
CTG CCA GAG C 

MID_ARMS2_sgRNA_8_F 
CAC CGG ATG GCA GCT 
GGC TTG GCA A 

62 Cloning of MID sgRNA 8 
MID_ARMS2_sgRNA_8_R 

AAA CTT GCC AAG CCA 
GCT GCC ATC C 

MID_ARMS2_sgRNA_9_F 
CAC CGC ACT CTG CGA 
GAG TCT GTG C 

69 Cloning of MID sgRNA 9 
MID_ARMS2_sgRNA_9_R 

AAA CGC ACA GAC TCT 
CGC AGA GTG C 
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MID_ARMS2_sgRNA_10_F 
CAC CGG AAT TGC CTA 
GGC CTC CCT G 

57 Cloning of MID sgRNA 10 
MID_ARMS2_sgRNA_10_R 

AAA CCA GGG AGG CCT 
AGG CAA TTC C 

MID_ARMS2_sgRNA_11_F 
CAC CGA GAT GGC CTT 
CTA TAA GCT T 

78 Cloning of MID sgRNA 11 
MID_ARMS2_sgRNA_11_R 

AAA CAA GCT TAT AGA 
AGG CCA TCT C 

M13F 
CGC CAG GGT TTT CCC 
AGT CAC GAC 

- Vector primer for pGem®-T 
M13R 

AGC GGA TAA CAA TTT 
CAC ACA GGA 

MIAT_sgRNA_1_F 
CAC CGG CGC CCA TGA 
AAT TTT AAT G 

71 Cloning of MIAT sgRNA 1 
MIAT_sgRNA_1_R 

AAA CCA TTA AAA TTT 
CAT GGG CGC C 

MIAT_sgRNA_2_F 
CAC CGA TGC GGG AGG 
CTG AGC GCA C 

74 Cloning of MIAT sgRNA 2 
MIAT_sgRNA_2_R 

AAA CGT GCG CTC AGC 
CTC CCG CAT C 

MIAT_sgRNA_3_F 
CAC CGC ATT AGG CCG 
CAG AGA GCT C 

68 Cloning of MIAT sgRNA 3 
MIAT_sgRNA_3_R 

AAA CGA GCT CTC TGC 
GGC CTA ATG C 

MIAT_sgRNA_4_F 
CAC CGG CTT CTG CGC 
CCC TGG TCC G 

74 Cloning of MIAT sgRNA 4 
MIAT_sgRNA_4_R 

AAA CCG GAC CAG GGG 
CGC AGA AGC C 

* Provided by the Optimized CRISPR Design-Tool (http://crispr.mit.edu, accessed February 1st 2018) 

3.1.4 Oligonucleotides and corresponding probes used for qRT-PCR 

Table 5: Names, sequences and corresponding probe numbers for oligonucleotides used for 
qRT-PCR 

Name 5'-3' Sequence Gene 
Roche Universal 
Probe Library # 

hSDHA-RT-F2 AGC ATC GAA GAG TCA TGC AG 
SDHA 60 

hSDHA-RT-R2 GCT TCC ATC AGC AAA TCT CAA 

huLILRA3_RT_F TGT GTG GTC TCT ACC CAG TGA 
LILRA3 7 

huLILRA3_RT_R CAG AGC CAC ACT GGA AGG TC 

huCD300E_RT_F GGG AGG TGT TGA CCC AAA AT 
CD300E 66 

huCD300E_RT_R AGG ACC ACG AGC AGG AAG T 

huMUC7_RT_F TCA ACT GAC AAG TAG TTT GAC CAG A 
MUC7 69 

huMUC7_RT_R CCA ATC CTT TGA GGA TGG TAA C 

huDEFA5_RT_F TGA GGC TAC AAC CCA GAA GC 
DEFA5 60 

huDEFA5_RT_R GCT CTT GCC TGA GAA CCT GA 

huTNFAIP1_RT_F AGA ACC GGC AAG AAA TCA AG 
TNFAIP1 41 

huTNFAIP1_RT_R CTG GTA GGA GTC CTT CTT GTC C 

huFCN1_RT_F GTT CTG GCT GGG GAA TGA C 
FCN1 38 

huFCN1_RT_R AAC TGG TGG TTG CCC TCA 

huPILRB_RT_F GGT GGA GGA GAA GGA AAG GT 
PILRB 7 

huPILRB_RT_R GGG TCT CAC ATC ACG TCC TC 

huC17orf62_RT_F GCC CTC TCG GGA TGT ACC 
C17orf62 39 

huC17orf62_RT_R TTC CAG CCC AGG CTA TCA 

huDAZAP1_RT_F TCG AGG ACG AAC AAT CAG TG DAZAP1 64 



Material & Methods: Wet lab experiments 

29 

huDAZAP1_RT_R GCT CAG CTC GTT TAA CTT CCA 

huIL6_RT_F GAT GAG TAC AAA AGT CCT GAT CCA 
IL6 40 

huIL6_RT_R CTG CAG CCA CTG GTT CTG T 

huNFKB1_RT_F CCT GGA ACC ACG CCT CTA 
NFKB1 49 

huNFKB1_RT_R TCA TATG GTT TCC CAT TTA ATA TGT C 

huFLOT2_RT_F GAC CCT GGA GGG ACA TCT G 
FLOT2 58 

huFLOT2_RT_R ACT GGT CCC GGT CCT GAT A 

huCYP1A1_RT_F ACC TTC CCT GAT CCT TGT GA 
CYP1A1 33 

huCYP1A1_RT_R GAT CTT GGA GGT GGC TGC T 

hHTRA1-RT-F2 AGC AGA CAT CGC ACT CAT CA 
HTRA1 37 

hHTRA1-RT-R2 GAT GGC GAC CAC GAA CTC 

hMIAT_RT_F AGA ACA CGC TTT ATT ACA GTC TCG 
MIAT 80 

hMIAT_RT_R CCC GAG GTC CAA AGA GAA GT 

hLOC387715-rt-F2 AGC TCT GCT TAC CAG CCT TCT 
ARMS2 82 

hLOC387715-RT-R TTG CTG CAG TGT GGA TGA TAG 

3.1.5 Plasmids and expression constructs 

Table 6: List of expression constructs, short names, applications, and sources 

Vector name Short name Application Source 

pGEM®-T - Cloning 
Promega Corporation, Madison, WI, 

USA 

pCAG-EGxxFP - sgRNA test 
Addgene, LGC Standards, 

Teddington, UK 

pU6-(BbsI)_CBh-
Cas9-T2A-mCherry 

px330-
mCherry 

sgRNA test 
Addgene, LGC Standards, 

Teddington, UK 

pSpCas9(BB)-2A-
GFP (PX458) 

px330-eGFP 
sgRNA vector for 
ARMS2-HTRA1 

haplotype deletion 

Addgene, LGC Standards, 
Teddington, UK 

px330_GFPo px330-GFPo 

sgRNA vector for 
ARMS2-HTRA1 

haplotype expression 
enhancement 

Institute of Human Genetics, 
University of Regensburg, Germany 

SP-dCas9-VPR dCas9-VPR 
Gene expression 

enhancer 
Addgene, LGC Standards, 

Teddington, UK 

3.1.6 Enzymes 

Table 7: Enzymes used 

Enzyme Source 

AgeI New England Biolabs, Ipswich, MA, USA  

BamHI-HF  New England Biolabs, Ipswich, MA, USA  

BpiI New England Biolabs, Ipswich, MA, USA 

EcoRI-HF  New England Biolabs, Ipswich, MA, USA  
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FastDigest Bpil  Thermo Fisher Scientific, Waltham, MA, USA  

GoTaq® DNA Polymerase  Promega Corporation, Madison, WI, USA  

House Taq DNA Polymerase 
Institute of Human Genetics, University of Regensburg, 
Germany 

Quick CIP  New England Biolabs, Ipswich, MA, USA  

RecBCD Exonuclease New England Biolabs, Ipswich, MA, USA  

T4 DNA Ligase  New England Biolabs, Ipswich, MA, USA  

T4 PNK Kinase  New England Biolabs, Ipswich, MA, USA  

Trypsine GE Healthcare, Galfont St Giles, GB  

3.1.7 Kit systems 

Table 8: List of kit systems used 

Kit Source 

BigDye Terminator v1.1, v3.1 Cycle 
Sequencing Kit  

Thermo Fisher Scientific, Waltham, MA, USA  

Lipofectamine 3000 Thermo Fisher Scientific, Waltham, MA, USA 

NucleoSpin® Gel and PCR Clean-up  MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany  

NucleoSpin® Plasmid  MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany  

NucleoBond® XtraMidi  MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany  

Quick Ligation™ Kit New England Biolabs, Ipswich, MA, USA  

3.1.8 Chemicals and cell culture supplements 

Table 9: List of chemicals used 

Chemical/Reagent Source 

Agarose (Biozym LE)  Biozym Scientific GmbH, Hessisch Oldendorf, Germany  

Ampicillin sodium salt Carl Roth GmbH + Co. KG, Karlsruhe, Germany  

Bromphenolblau Natriumsalz  Sigma-Aldrich, St. Louis, MO, USA  

4',6-Diamidin-2-phenylindol (DAPI)  Thermo Fisher Scientific, Waltham, MA, USA  

Chloroquine Merck Chemicals GmbH, Schwalbach, Germany  

DMEM High Glucose Medium (4,5 g/l) Thermo Fisher Scientific, Waltham, MA, USA 

Dimethyl sulfoxide (DMSO) VWR International Germany GmbH, Darmstadt, Germany 

dNTPs (dATP, dGTP, dCTP, dTTP) Genaxxon Bioscience, Ulm, Germany  

Ethanol ≥ 99,8 p.a Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Ethidiumbromide AppliChem GmbH, Darmstadt, Germany  

Ethylendiamintetraacetat disodium 
dihydrate salt (EDTA) 

Merck Chemicals GmbH, Schwalbach, Germany  

Fetal Bovine Serum Gold (FCS) Thermo Fisher Scientific, Waltham, MA, USA 

Glycerol 87 % University of Regensburg, Chemical Supplies 

Gel Loading Dye Purple (6x)  New England Biolabs, Ipswich, MA, USA  

HiDi™ Formamide Thermo Fisher Scientific, Waltham, MA, USA  

Isopropanol  Merck Chemicals GmbH, Schwalbach, Germany  

OptiMEMTM Medium Thermo Fisher Scientific, Waltham, MA, USA 

Penicillin (10.000 Units)/Streptomycin 
(10 mg/ml), (Pen/Strep) 

GE Healthcare, Galfont St Giles, GB  
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Poly-L-Lysine Hydrobromide (0.1 
mg/ml) 

Sigma-Aldrich, St. Louis, MO, USA  

3.1.9 Buffers and solutions 

Table 10: Composition of buffers and solutions used 

Buffer/Solutions Composition and amounts 

5x TBE 

Tris 0,5 M  

Boric acid 0,5 M  

EDTA 10 mM  

H2O dest.  

2x HBS 

NaCl 280 mM  

KCl 10 mM  

Na2HPO4 1.5 mM  

HEPES 50 mM  

H2O dest.  

LB-Medium 

Tryptone 1% w/v 

Yeast extract 0,5% w/v  

NaCL 1% w/v 

H2O dest. 1 l  

LB-Plates 

Tryptone 1% w/v 

Yeast extract 0,5% w/v 

NaCL 1% w/v 

Bacto-Agar 15% w/v 

H2O dest. 1l  

SOC-Medium 

Tryptone 2 % w/v) 

Yeast extract 0,5 % w/v 

NaCl 10 mM 0,5 g/l 

KCl 2,5 mM 0,2 g/l 

Glucose 20mM 20ml 

H2O dest. 1 l 

HEK29T medium 

DMEM High Glucose Medium 89 % 

FCS 10 % 

Pen/Strep 1 % 

HEK29T freezing 
medium 

DMEM High Glucose Medium 70 % 

FCS 20 % 

DMSO 10 % 

3.2 Methods 

In this thesis, a sgRNA mediated CRISPR/Cas9 system was applied to induce DSBs 

or to enhance gene expression. Before these experiments, sgRNAs were tested for 

specificity using a two-vector system. One vector included the sgRNA target sequence 

(pCAG-EGxxFP), whereas the other vector carried the sgRNA- and the Cas9 coding 

sequence (px330-mCherry). Both vectors required different cloning strategies. 
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3.2.1 Cloning of pCAG-EGxxFP constructs 

3.2.1.1 Polymerase chain reaction (PCR) 

The defined sgRNA target sequence was amplified from human genomic DNA 

conducting a Polymerase chain reaction (PCR). The PCR reaction mix is given in 

Table 11 and the respective program in Table 12. PCR conditions were adjusted 

according to primer parameters (given in SnapGene, version 2.8.2) and the required 

elongation time (1 min/1,000 bp). 

Table 11: PCR reaction mix 

Component  Volume  

5x Green GoTaq® Reaction Buffer  5 μl  

Primer forward (10 μM)  1 μl  

Primer reverse (10 μM)  1 μl  

dNTPs (1.25 mM)  2 μl  

human genomic DNA (25 ng/μl)  2 μl  

GoTaq® DNA polymerase 0.1 μl  

H2O (Millipore)  13.9 μl  

 

Table 12: Thermocycler program for PCR amplification 

Step of the reaction Temperature Duration Cycles 

Initial denaturation  95 °C 3 min  

Denaturation  94 °C 30 s 

30 Annealing  x °C* 30 s 

Elongation  72 °C x min 

Final elongation  72 °C 5 min  

Break  4 °C -  

*x indicates variable temperature and time, adjusted for each sequence to be amplified 

3.2.1.2 Agarose gel electrophoresis 

PCR products were run on agarose gels to evaluate amplicon size and purity. Agarose 

gels were generated by heating 1 % (w/v) agarose in TBE buffer until the agarose 

solved completely. After cooling down the mixture to 37°C, 3 drops of 0.003 % 

ethidiumbromide solution were added. If necessary, Bromphenolblue loading buffer 

(5x solution) was added to the samples before loading them onto the gel. 5 μl 

GeneRuler™ DNA Ladder Mix served as a size standard and gels were run at 220 V 

for 20 min. 
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3.2.1.3 Purification of PCR products from agarose gels 

PCR products of the correct size were excised from agarose gels and purified using 

the NucleoSpin® Gel and PCR Clean-up kit according to the manufacturer’s 

instructions. DNA was eluted from columns in 20 μl of Millipore H2O and stored at -20 

°C until further use. 

3.2.1.4 Ligation into pGEM®-T 

The purified PCR amplicons were ligated into the pGEM®-T vector using the ligation 

mix given in Table 13. The ligation reaction was incubated at 4 °C overnight. 

Table 13: pGEM®-T vector ligation mix 

Component  Volume  

pGEM®-T vector  0.5 μl  

PCR fragment  4 μl  

T4 DNA Ligase Puffer (2x)  5 μl  

T4 DNA Ligase  0.5 μl  

3.2.1.5 Heat shock transformation of E. coli 

E. coli cells were transformed with plasmid DNA using a heat shock procedure. One 

100 μl aliquot of competent E. coli cells was thawed on ice for 5 min before half of the 

ligation mixture was added to the cells. The suspension was mixed by flicking the tube 

and then incubated on ice for 30 min. Cells were heat shocked at 42 °C for 40 s and 

placed back on ice for 5 min. 900 μl of SOC medium were added and cells were 

incubated at 37 °C for 1 to 2 h before plating 200 µl of the suspension on LB plates 

containing 100 μg/ml ampicillin. Plates were incubated upside down at 37 °C overnight. 

3.2.1.6 Plasmid DNA miniprep 

Single clones were picked from LB plates and transferred into 5 ml of LB medium 

containing 100 μg/ml ampicillin. After incubation at 37 °C overnight, DNA isolation was 

carried out using the NucleoSpin® Plasmid kit according to the manufacturer’s 

instructions. Plasmid DNA was eluted from columns in 40 μl of Millipore H2O. This 

procedure was repeated by re-pipetting the eluate into the column, followed by 

centrifugation for 1 min (8,000 g). DNA concentration was determined using a 

NanoDrop® ND1000 Spectrophotometer. 



Material & Methods: Wet lab experiments 

34 

3.2.1.7 Sanger sequencing 

Sanger sequencing was performed to verify the correctness of clones. For sequencing, 

the BigDye® Terminator v1.1, v3.1 Cycle Sequencing Kit was used. The required 

reaction mix and thermocycler program are given in Table 14 and Table 15. 

Table 14: Reaction mix for Sanger sequencing 

Component  Volume  

Plasmid DNA (20 ng/μl)  2 μl  

BigDye® Terminator Reaction Mix  0.3 μl  

5x BigDye® Terminator Sequencing Buffer  2 μl  

Primer (10 μM)  1 μl  

H2O (Millipore)  4.7 μl  

 

Table 15: Thermocycler program for Sanger sequencing 

Step of the reaction Temperature  Duration  Cycles  

Initial denaturation  94 °C 2 min  

Denaturation  94 °C 30 s 

27 Annealing  58 °C 30 s 

Elongation  60 °C 3 min 

Final elongation  60 °C 5 min  

Break  4 °C -  

 

For DNA precipitation, 5 µl EDTA (125 mM) were added followed by an incubation for 

10 min at room temperature. Next, 50 µl 100 % Ethanol were added and the sample 

was centrifuged for at least 15 min at maximum speed. The supernatant was discarded 

and the sample was washed with 100 µl 70 % Ethanol. After another centrifugation 

step for 7 min, the supernatant was discarded again. Pellets were suspended in 20 μl 

of HiDi™ formamide before analysing them with the help of an Abi3130x1 Genetic 

Analyser. The obtained sequences were evaluated using SnapGene (version 2.8.2). 

3.2.1.8 Restriction digestion 

The verified DNA sequences were transferred from the pGEM®-T vector into the 

pCAG-EGxxFP vector. Therefore, the pGEM®-T vector was digested overnight at 37 

°C using restriction enzymes (Table 16). The digested DNA was run on an agarose 

gel and fragments of correct size were excised and purified as described in 3.2.1.2 and 

3.2.1.3. The DNA fragment was eluted in 20 µl Millipore H2O and DNA concentration 

was determined using a NanoDrop® ND1000 Spectrophotometer. 
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Table 16: Reaction mix for restriction digestion of plasmid DNA 

Component  Volume  

Plasmid DNA  2-3 μg 

Enzyme 1  0.5 μl  

Enzyme 2  0.5 μl  

10x NEB Endonuclease Buffer*  2.5 μl  

H2O (Millipore)  ad. 25 μl  

* Dependent on the enzymes used 

3.2.1.9 Ligation into pCAG-EGxxFP vector 

The insert DNA and the purified digested pCAG-EGxxFP vector were ligated using the 

T4 DNA ligase. The required reaction mix is shown in Table 17. The ligation was 

incubated at 14 °C overnight and thereafter transformed into E. coli. 

Table 17: Reaction mix for ligation of inserts into the pCAG-EGxxFP vector 

Component  Volume  

Digested pCAG-EGxxFP vector 2 μl  

Insert DNA  7 μl  

T4 DNA Ligase Puffer (10x)  2 μl  

T4 DNA Ligase  1 μl  

H2O (Millipore)  ad. 20 μl  

3.2.1.10 Colony PCR 

A colony PCR was conducted to identify positively transformed E.coli clones. First, 

single clones were picked and transferred into 8 µl LB medium containing 100 μg/ml 

ampicillin and incubated at 37 °C for 2 to 4 h. 2 µl of this suspension were used as 

template for a PCR reaction, which was based on the House Taq DNA polymerase 

(Table 18). The applied thermocycler program is shown in Table 12. 

Table 18: Reaction mix for colony PCR 

Component  Volume  

Buffer 10x (15 mM MgCl2) 2.5 μl  

Primer forward (10 μM)  1 μl  

Primer reverse (10 μM)  1 μl  

dNTPs (1.25 mM)  2 μl  

E. coli culture 2 μl  

House Taq DNA polymerase 0.5 μl  

H2O (Millipore)  16 μl  
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3.2.1.11 Plasmid DNA "Midi" preparation 

Cloned constructs were isolated from 100 ml overnight E. coli cultures using the 

NucleoBond® XtraMidi kit according to the manufacturer's protocol. The DNA pellet 

was solved in 100 μl of Millipore H2O. DNA concentration was determined using a 

NanoDrop® ND1000 Spectrophotometer and adjusted to 1 μg/μl. Plasmid DNA was 

stored at -20 °C. 

3.2.1.12 Preparation of glycerol stocks for long term storage 

830 µl of a fresh overnight E. coli culture were mixed with 170 µl sterile 87 % glycerol 

and immediately frozen at -80 °C. Specifications about plasmid constructs were 

entered into the database for glycerol cultures at the Institute of Human Genetics, 

Regensburg. 

3.2.2 Cloning of sgRNAs 

3.2.2.1 Bioinformatical sgRNA design 

The UCSC genome browser [100] was used to obtain the DNA sequence of the 

minimal ARMS2-HTRA1 haplotype, defined by Grassmann et al. (2017) [25]. The 

genome browser marked known genomic repeat regions and showed common variant 

(MAF > 1 %) locations. Next, the Optimized CRISPR Design-Tool (http://crispr.mit.edu, 

accessed February 1st 2018) was applied to identify potential sgRNA candidates and 

to estimate their on-target score. The sgRNA candidates were filtered for the following 

criteria: (1) On-target score of at least 50, (2) sgRNA is located outside a genomic 

repeat region, (3) sgRNA does not overlap a common variant, and (4) no potential off-

targets in known genes. If several sgRNAs fulfilled these thresholds, the genomic 

position was used to manually select candidates. For later cloning processes, two 

oligonucleotides were designed for each sgRNA by adding a “CACCG” sequence to 

the 5 prime end of the forward sgRNA sequence (forward primer) and a “C” nucleotide 

to the 3 prime end of the reverse complement sgRNA sequence (reverse primer). All 

investigated sgRNAs and the respective on-target-scores are shown in Table 4. 

SnapGene (version 2.8.2) was used to visualise and to proof correct sgRNA design. 
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3.2.2.2 Cloning of sgRNAs into px330 vectors 

All studied sgRNAs were inserted into at least one of the px330 vectors, consisting of 

px330-mCherry, px330-eGFP, and px330-GFPo. This procedure required multiple 

steps and used BpiI restriction sites. 

First, the px330 vector was digested with BpiI for 30 min at 37 °C (Table 19). 

Thereafter, the reaction was purified using agarose gel electrophoresis and the 

NucleoSpin® Gel and PCR Clean-up kit as described in 3.2.1.2 and 3.2.1.3. 

Table 19: Reaction mix for restriction digestion of the px330 vector 

Component  Volume  

px330 vector 1 μg 

BpiI 1 μl  

Quick CIP 1 μl  

10x NEB fast digest buffer  2 μl  

H2O (Millipore)  ad. 20 μl  

 

The two corresponding oligonucleotides for each sgRNA were annealed. This was 

conducted using the reaction mix shown in Table 20. Annealing was performed in a 

Thermocycler, starting with an incubation at 37 °C for 30 min, followed by 95 °C for 5 

min and a step-wise ramp down to 25 °C at 5 °C/min. 

Table 20: Reaction mix for sgRNA oligonucleotide annealing 

Component  Volume  

dATP (10 mM) 1 μl  

Primer forward (100 μM)  1 μl  

Primer reverse (100 μM)  1 μl  

10 x T4 Polynucleotide Kinase Reaction Buffer 1 μl  

T4 PNK 0.5 μl  

H2O (Millipore)  5.5 μl  

 

Next, the digested px330 vector and the annealed sgRNA oligonucleotides were 

ligated (Table 21) for 10 min at room temperature. 
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Table 21: Reaction mix for ligation of digested px330 vector and annealed sgRNA 

Component  Volume  

BpiI digested px330 vector 50 ng 

Annealed oligonucleotide duplex (1:200 dilution)  1 μl  

2x Quickligation Buffer (Quick Ligation™ Kit) 5 μl  

Quick ligase (Quick Ligation™ Kit) 1 μl  

H2O (Millipore) ad. 11 µl 

 

The ligation reaction was treated with the RecBCD Exonuclease to prevent unwanted 

recombination products. The respective reaction mix (Table 22) was incubated for 30 

min at 37 °C. 

Table 22: Reaction mix for exonuclease treatment of ligtation reactions 

Component  Volume  

Ligation reaction mix (Table 21) 11 µl 

dATP (10 mM) 1.5 μl  

NEBuffer™ CutSmart® 1.5 μl 

RecBCD Exonuclease 1 μl  

 

After exonuclease treatment, the ligation reaction was transformed into cells of the 

competent E.coli strain Stbl3 as described in 3.2.1.5. Single clones were verified by 

applying Plasmid DNA miniprep and Sanger sequencing, followed by Plasmid DNA 

"Midi" preparation, if required. 

3.2.3 sgRNA efficiency test 

3.2.3.1 Cultivation of HEK293T cells 

Human embryonic kidney (HEK293T) cells were cultivated in 10 cm dishes filled with 

10 ml cultivation medium (Table 10). HEK293T cells were passaged twice a week after 

reaching about 90 % confluency. Old medium was removed and cells were washed off 

the dish with fresh medium. HEK293T cells were seeded into a fresh 10 cm dish at a 

dilution of 1:10. 

3.2.3.2 Transfection of HEK293T cells – calcium phosphate method 

For sgRNA efficiency tests, HEK293T cells were transfected using the calcium 

phosphate method [101]. Cells of a confluent 10 cm dish were diluted 1:14 with 

cultivation medium and seeded on Poly-L-Lysine coated 6-well plates one day before 
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transfection. Each well on the plate contained 3 ml cultivation medium and was 

transfected individually. On the day of transfection, the culture medium was changed 

to HEK293T medium containing 1 μM Chloroquine. After one hour of incubation, the 

medium was changed back to 2.5 ml HEK293T culture medium. The transfection mix 

was prepared according to Table 23 by first mixing DNA with H2O followed by addition 

of CaCl2. Thereafter, 250 µl 2x HBS were added to the tube by gently pipetting on the 

bottom. The resulting two-phases were mixed by gently bubbling air drops into the 

solution.  

Table 23: Transfection mix for calcium phosphate transfection (1 well of 6-well plate) 

Component  Volume  

pCAG-EGxxFP vector carrying the target sequence 1.5 µg 

px330-mCherry vector carrying a sgRNA 1.5 µg 

CaCl2 (2 M) 31 µl 

H2O (Millipore) ad. 250 µl 

 

The mixture was added dropwise to the cells. 7 h after transfection, the medium was 

changed to HEK293T medium and cells were cultivated for another 48 h. The 

transfected cells were then transferred onto a black Poly-L-Lysine coated 96-well plate 

with transparent bottom to enable a standardised fluorescence evaluation. For this 

reason, the cells were detached from the 6-well plate by changing the medium to 1 ml 

of a trypsin solution (1x v/v in PBS). After an incubation step of 5 min at 37 °C, 2 ml of 

HEK293T medium were added. The cell suspension was transferred into a 15 ml falcon 

tube and centrifuged for 3 min at 1000 g. The supernatant was removed and 4 ml fresh 

medium were added to the cells. After gently mixing the suspension, 50 µl were added 

per well on the 96-well plate and thereafter filled up to 100 µl using HEK293T medium. 

The cells were cultivated for another 24 h at 37 °C. 

3.2.3.3 Evaluation of sgRNA efficiency 

72 h after transfection, sgRNA efficiency was analysed by measuring fluorescence 

intensities of transfected cells. Therefore, the culture medium of each well was 

changed to 100 µl 1 x PBS and the whole plate was transferred into a FLUOstar 

OPTIMA plate reader. Two fluorescence spectra were recorded: (1) eGFP (excitation: 

488 nm, Emission 509 nm) to detect sgRNA efficiency, and (2) mCherry (excitation: 

587 nm, Emission 610 nm) to evaluate transfection efficiency. eGFP raw fluorescence 
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counts were normalised for transfection efficiency and thereafter compared to cells, 

which were transfected using only pCAG-EGxxFP without px330-mCherry. 

Additionally, fluorescence images were taken for documentation purposes concerning 

the above mentioned channels. 

3.2.4 Deletion of the minimal haplotype in the ARMS2-HTRA1 locus 

The CRIPSR/Cas9 system can be applied to induce large genomic deletions. 

Therefore, two sgRNAs flanking the target region have to be transfected in combination 

with a Cas9 expression cassette. 

3.2.4.1 Transfection of HEK293T cells with Lipofectamine 

HEK293T cells were transfected with a combination of one px330-eGFP vector 

carrying the first sgRNA, which targets the upstream region of the minimal haplotype, 

and one px330-mCherry vector targeting the downstream region. Lipofectamine 3000 

was used according to the manufacturer’s protocol for 6-well plates and 1.5 µg of each 

vector were included in the reaction. 

3.2.4.2 FACS sorting and single-cell cultivation 

72 h after transfection with Lipofectamine 3000, HEK293T cells were transferred into 

a 15 ml falcon tube as described in 3.2.3.2 and underwent “Fluorescence activated cell 

sorting” (FACS). FACS was applied to filter for living cells, which showed an eGFP-, 

and mCherry fluorescence. Cells, which fulfilled these criteria were transferred onto 

one well of a Poly-L-Lysine coated 6-well plate and incubated until confluency. During 

that incubation, half of the medium was exchanged every second day gently by not 

detaching the cells from the plate. After the transfected cells reached 100 % 

confluency, one half of the cells was transferred into a new well for further cultivation 

and the other half was frozen at -80 °C for long term storage using HEK29T freezing 

medium. 

48 h later, the cells were detached from the plate and counted using the CASY TT 

system. The cells were then diluted in HEK293T cultivation media to an approximate 

concentration of one cell in 40 µl. 40 µl of this dilution were transferred into one well of 

a Poly-L-Lysine coated 96-well plate until the whole plate was occupied. The cells were 

then monitored daily to ensure that exclusively one cell colony arose per well, 
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otherwise the well was excluded from further analysis. During monitoring, the medium 

was changed weekly until single clones reached 100 % confluence. Thereafter, cells 

were split 1:3 on two wells of a six well plate, one for isolation of genomic DNA (gDNA) 

and one for RNA extraction. The remaining cells were frozen. 

3.2.4.3 gDNA isolation 

gDNA of HEK293T cells was isolated following the protocol from Lairds et al. (1991) 

[102].  

3.2.5 Measuring gene expression 

3.2.5.1 RNA isolation 

RNA isolation from mammalian cells was conducted using the Qiagen RNeasy Mini Kit 

according to the manufacturer’s instructions. RNA was eluted two times in 50 µl 

RNase-free water and RNA concentration was determined using a NanoDrop® 

ND1000 Spectrophotometer. The RNA was stored at -20 °C for short term and at -80 

°C for long term use. 

3.2.5.2 cDNA synthesis 

For complementary DNA (cDNA) synthesis, 1µg of RNA was diluted in 12.5 µl RNase-

free H2O and mixed with 1 μl of poly(dT) primer (30 nmol). The mixture was then heated 

to 70 °C for 5 min and thereafter the cDNA synthesis reaction mix (Table 24) was 

added. This reaction was incubated in a thermocycler for 10 min at 25 °C, followed by 

42 °C for 1 h and a final step of 70 °C for 15 min. 

Table 24: Composition of cDNA synthesis reaction mix 

Component  Volume  

5x Reaction Buffer for RevertAid™ Reverse 
Transcriptase 

4 µl 

dNTPs (1.25 mM) 2 µl 

RevertAid™ Reverse Transcriptase 0.5 µl 

 

After cDNA synthesis, 30 µl RNase-free H2O were added to the reaction volume to 

dilute the cDNA for further applications. The cDNA was stored at 8 °C for short term 

use and at -20 °C for long term storage. 
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3.2.5.3 Quantitative real-time PCR 

Quantitative real-time PCR (qRT-PCR) was performed with primers based on the 

“Universal Probe Library” by Hoffmann-La Roche. The qRT-PCR experiments were 

conducted in triplicates on 384-well plates using the QuantStudio™ 5 Real-Time PCR 

System. The reaction mix and the PCR conditions are given in Table 25 and Table 26. 

Table 25: Reaction mix for qRT-PCR analysis 

Component  Volume  

cDNA (20 ng/μl) 2.5 µl 

2x TaqMan Gene Expression Master Mix 5 µl 

Primer forward (10 μM) 1 µl 

Primer reverse (10 μM) 1 µl 

Probe 0.125 μl 

H2O (Millipore) 0.375 μl 

 

Table 26: qRT-PCR conditions 

Step of the reaction Temperature Duration Cycles 

Denaturation  95 °C 40 s  

Annealing  60 °C 60 s  

Elongation  72 °C 2 min 40 

 

The data were analysed using the ΔΔCt-approach and gene expression levels were 

normalised in regard to the housekeeper gene “succinate dehydrogenase complex 

flavoprotein subunit A” (SDHA). 

3.2.6 Targeted enhancement of gene expression 

Targeted enhancement of gene expression was performed with the help of the dCas9-

VPR vector generated by Chavez et al. (2015) [66]. This approach required two 

expression constructs: (1) the sgRNA expression cassette and (2) the dCas9-VPR 

encoding construct. An alternative px330 vector was generated, because the px330 

vector family carries the Cas9 expression cassette, which is impedimental for gene 

expression enhancement. Therefore, the px330-GFPo was created by cutting out the 

Cas9 expression cassette of a px330-eGFP vector using the restriction enzymes 

EcoRI-HF and AgeI. The cloning procedure followed the protocols described in 3.2.1. 

To enhance gene expression, a double-transfection of the px330-GFPo vector 

including a sgRNA and the dCas9-VPR vector was required. This was performed in 
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HEK293T cells using Lipofectamine 3000 as described in 3.2.4.1. 72 h after 

transfection, qRT-PCR was conducted to measure the gene expression of target 

genes.  
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4 Results 

4.1 A mega-analysis of eQTL in liver tissue 

The first project explored the regulatory landscape of gene expression in liver tissue to 

understand functional consequences of genetic variants associated with complex 

diseases. In addition, this project should provide the basis for further eQTL studies by 

elaborating a detailed data analysis protocol. For this reason, publicly available data 

from four independent studies (Table 27) were collected. Each of these studies 

calculated eQTL in liver tissue and evaluated the results regarding different aspects. 

In this thesis, the studies were named after their first author in the case of (1) Schadt 

et al. [69], (2) Schroeder et al. [41], and (3) Innocenti et al. [47] or the respective 

consortium in case of (4) GTEx v6 [44]. Overall, genotype and gene expression data 

of a total of 588 individuals were included in the analysis. 

Table 27: Study overview of datasets combined in the liver eQTL database 

Study Schadt [69] Schroeder [41] Innocenti [47] 

GTEx 
Start/Mid* 

[44] 
Sample size 
after QC 

178 149 178 83 

Origin of liver 
tissue 

Post-mortem tissue 
and resections from 

donor livers 

Normal tissue 
resected during 
surgery for liver 

cancer 

Post-mortem tissue 
and resections from 

donor livers 

Post-mortem 
tissue 

RNA array Agilent Custom 44k 
Illumina Human WG-

6v2.0 
Agilent 4×44k 

RNA-seq 
(Illumina 

HiSeq 2000) 
Genes before 
QC 

40,638 48,701 45,015 56,318 

Genes after 
QC 

24,123 

DNA array 
Affymetrix 500k; 
Illumina 650 Y 

Illumina 
HumanHap300 

Illumina 610 Quad 
Illumina 
Omni 

5M/2.5M* 
Variants 
before QC 

449,699 318,237 620,901 
2,526,494/ 
2,378,075* 

Variants after 
QC 

383,719 296,718 545,886 
2,389,798/2,

119,410* 
Variants 
merged before 
imputation** 

861,575 

Variants after 
imputation and 
QC 

6,256,941 

QC = quality control; * GTEx v6 includes two data releases: Start and Mid, which used partially different 
platforms: Omni 2.5M for the first data release (GTEx start) and Omni 5M for the mid-point release 
(GTEx mid). ** After quality control, the genotype files of the four studies were merged into a single file 
and variants, which did not overlap between datasets, were assigned as missing. Variants had to be 
genotyped in at least 100 samples or were excluded. 
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The investigated liver eQTL studies used different genotyping and expression profiling 

platforms (Table 27), which demanded a stringent QC to jointly analyse the data. The 

QC was applied to all included individuals, genotyped variants, and the measured gene 

expression. A detailed overview of all QC steps is provided in the Bioinformatical 

protocols section. Briefly, only individuals of European descent with low missing rates 

of genotype and gene expression data were included. The QC of genotyped variants 

filtered for variants: (1) measured in all datasets, (2) with allele frequencies comparable 

to the 1000 Genomes Project reference panel, (3) located on autosomes, (4) with MAF 

above 5 %, and (5) no significant deviation from HWE. This procedure resulted in 

861,575 variants for imputation. The gene expression data underwent a separate QC 

depending on the data source. 24,123 genes, which were measured in at least two 

datasets were considered for further data processing. 

4.1.1 Elaboration of a data-normalisation protocol 

Each of the four studies used distinct platforms and data processing protocols, which 

required a normalisation pipeline. Normalisation was necessary for genotype and gene 

expression data. The different genotype files were combined and imputed using the 

same reference panel. This enabled the analysis of 6,256,941 shared genetic variants. 

The gene expression data underwent different processing protocols before joint 

analysis because three studies used microarray platforms, whereas the GTEx data 

were based on RNA-Seq (Table 27). Therefore, gene expression values were merged 

into one matrix and log2 transformed to evaluate potential cofounder effects by PCA. 

This analysis showed that samples of the same dataset clustered together and that the 

range of expression values varied between the studies (Figure 6 A and D). 
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Figure 6: Gene expression data normalisation process. 
A PCA was conducted on the merged gene expression data of the four datasets (GTEx, Innocenti, 
Schadt, Schroeder), at three different consecutive normalisation steps: (A) raw log2 transformed merged 
data (no normalisation), (B) quantile normalised data and (C) after adjustment for known batch effects 
using ComBat. In addition, the gene expression values are presented as boxplots at the same stages 
(D-F). (Figure published in Strunz et al., 2018 [103]) 

Next, quantile normalisation (QN) was performed to adjust gene expression values in 

regard to their scale. After QN, the datasets Schroeder, Innocenti, and GTEx 

converged regarding principal component (PC) 1. In addition, gene expression value 

ranges showed comparable median values and variability (Figure 6 B and E). Since 

QN alone was not sufficient to normalize all studies, an empirical batch correction 

method called ComBat [93] was applied. After these normalisation steps, clustering of 

individuals with regard to their original dataset was not apparent to any further extent 

(Figure 6 C and F). 

4.1.2 Analysis of local eQTL 

eQTL calculation was first performed for each of the four studies separately using a 

linear regression model, which was adjusted for several covariates and included one 

gene and one variant at a time. Only local eQTL were considered for further analysis 

by investigating a window of 1 Mbp up- and downstream of the transcription start site 

or polyadenylation site of a gene locus. Next, mixed effects models were applied to 

perform a meta-analysis based on the effect sizes and standard errors of each study. 

These models estimated one joint effect size, standard error and a combined P-value 

for each eQTL. All P-values were adjusted for multiple testing by calculation of the FDR 

[104] and Q-values smaller than 0.001 were considered statistically significant. At this 
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threshold, 101,148 eVariants and 1,313 genes regulated by eQTL were identified 

(Table 28). Remarkably, only 38.5 % (see GTEx Start/Mid) to 60.9 % (see Innocenti) 

of significant eGenes in the single studies remained significant in the meta-analysis.  
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Table 28. eQTL results of single datasets and the merged analyses 

 

 

 

   
Schadt Schroeder Innocenti GTEx Start/Mid Meta-Analysis Mega-Analysis 

Q-value  

< 0.05 

eQTL  73,999 165,518 122,474 54,639 222,521 444,276 

eVariants (unique) 68,636 154,799 114,635 49,176 205,942 383,213 

eGenes (unique) 1,592 3,453 2,635 1,983 4,811 7,612 

Overlapping eGenes 

Meta-analysis 
802 (50.38 %) 1,578 (45.7 %) 1,379 (52.33 %) 661 (33.33 %) 4,811 (100 %) 4,486 (58.93 %) 

Overlapping eGenes 

Mega-analysis 
1,100 (69.1 %) 2,168 (62.79 %) 1,805 (68.5 %) 1,023 (51.59 %) 4,486 (93.24 %) 7,612 (100 %) 

Q-value  

< 0.001 

eQTL  29,546 71,423 52,565 19,802 101,148 202,489 

eVariants (unique) 27,689 69,292 49,594 16,953 95,257 183,872 

eGenes (unique) 363 913 670 387 1,313 1,959 

Overlapping eGenes 

Meta-analysis 
215 (59.23 %) 491 (53.78 %) 408 (60.9 %) 149 (38.5 %) 1,313 (100 %) 1,260 (64.32 %) 

Overlapping eGenes 

Mega-analysis 
288 (79.34 %) 688 (75.36 %) 537 (80.15 %) 207 (53.49 %) 1,260 (95.96 %) 1,959 (100 %) 

P-value  

< 1 x 10-6 
Independent Signals - - - - - 2,060 
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Data preparation and QC of the four datasets further allowed to jointly analyse the 

merged genotype and gene expression data by calculation of eQTL in the entire 

database. This mega-analysis is known to have a higher statistical power in 

comparison to the classical meta-analysis approach [48,105]. The mega-analysis 

yielded 202,489 statistically significant eVariants affecting the expression of 1,959 

genes (Q-value < 0.001). Compared to the results from the meta-analysis, the mega-

analysis provided a two-fold increase in the number of eVariants and a 1.5-fold 

increase in the number of differentially regulated genes. Both, mega- and meta-

analysis discovered more significant results than any of the four individual studies 

alone. Furthermore, the overlap of single study results and the mega-analysis is on 

average 19 % higher (53.5 to 80.15 %) than the overlap observed with the meta-

analysis (Table 28). Because of these observations, all further evaluations were based 

on the mega-analysis results. Moreover, the mega-analysis enabled the detection of 

independent eVariants using a conditional eQTL analysis. Therefore, the eQTL 

analysis was repeated for each significant eGene after additionally adjusting the linear 

regression model for the most significant eVariant identified for the respective gene. P-

values lower than 1.00 x 10-6 were considered significant (corresponding to a Q-value 

of 0.001 in the primary mega-analysis). The procedure was repeated until no further 

significant independent eVariants were found. With this approach, 101 additional 

independent eVariants regulating 93 of the 1,959 liver eGenes were identified. 

Interestingly, several independent signals would have not been considered significant 

(Q-value < 0.001) in the primary mega-analysis (Figure 7). 

 

Figure 7: Manhattan plot of the eQTL mega-analysis in liver. 
A mega-analysis was conducted including 588 samples of four independent studies detecing eVariants 
in liver tissue. The Manhattan plot shows the −log10 Q-values of the most significant eVariant for each 
of the 24,123 analysed autosomal genes. Additionally, 101 independent secondary signals were 
identified and are highlighted in red. The blue line depicts the threshold for significance 1.00 x 10-3. 
(Figure published in Strunz et al., 2018 [103]) 
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4.1.3 Characterisation of eVariants in liver tissue 

 

The liver eQTL results were further evaluated to better understand potential molecular 

mechanisms. First, the most significant eVariant and independent signals for each 

eGene were plotted in regard to their genomic position (Figure 8). 

Figure 8: Characterisation of 
independent eVariants based on their 
genomic localisation. 
The distance to the transcription start site 
(TSS, red line) is plotted against the -
log10 P-values of the most significant 
eVariant for the respective eGene, 
including secondary signals 
(independent hits). Negative/positive 
distances denote that the variant is 
located upstream/downstream of the 
TSS in regard to the direction of 
transcription. (Figure published in Strunz 
et al., 2018 [103]) 

 

Most of the significant eVariants were located close to the respective TSS. Altogether, 

1,599 out of 2,060 independent eVariants were located within 100,000 base pairs 

around the TSS. Nevertheless, 55 eVariants were located more than 500 kbp away 

from the regulated eGene. 

In a next step, eVariants were further characterised in regard to known DNA features 

and regulatory elements by searching RegulomeDB [106]. This database applies a 

seven-level functional scoring system to grade genetic variants. Category one variants 

affect very likely transcription factor binding and alter gene expression, whereas 

category 7 variants lack evidence for any functional relevance. Altogether, three 

groups of variants from the liver eQTL database were evaluated: (1) all unique 

significant eVariants of the mega-analysis (N = 183,872), (2) the most significant 

eVariant per eGene and the independent signals (N = 2,060), and (3) a random set of 

200,000 genetic variants within 1 Mbp of a gene locus, which served as “control” 

(Figure 9 A). Remarkably, the first set including all eVariants was enriched in 

RegulomeDB classes one to four (P-values < 6.82 × 10−09). In addition, the second set 

of independent signals revealed an even stronger enrichment in classes one to four 

compared to controls and compared to all eVariants (P-values from 1.72 × 10−04 to 

8.27 × 10−11). 
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Figure 9: Functional annotations and predicted consequences of local eVariants. 
Three sets of variants were evaluated by employing two different databases. Set one (mega-analysis) 
consists of all significant mega-analysis eVariants (Q-Value < 0.001) while the second group comprises 
the most significant eVariant and the independent hits for each eGene. Set three (control) includes 
random variants of the imputed genotype file, which are located next to at least one gene within a 
distance of a maximum of 1 Mbp. (A) The chart depicts the percentage of variants per variant set 
categorised into seven groups by RegulomeDB. The seven-level functional score is based on a 
synthesis of data derived from various sources: category 1 variants are very likely to affect transcription 
factor binding and are linked to gene expression of a target gene (i.e. are known eVariants); categories 
2 and 3 are likely to affect at least transcription factor binding and several other regulatory effects; 
categories 4-6 show minimal functional indication while category 7 variants lack evidence for any 
functional relevance.(B) The chart shows the percentage of variants classified into ten classes of 
consequences according to the Ensembl Variant Effect Predictor (VEP). For variant set one (mega-
analysis) and two (independent hits), only the predicted consequence affecting the identified eGene was 
included. For the control group, one random gene within a variant–gene distance of a maximum of 1 
Mbp was chosen. If the variant had different effects on transcripts of the same gene, the most severe 
effect was selected. *** P-value for difference between groups < 0.001. (Figure published in Strunz et 
al., 2018 [103]) 

Besides characterisation of eVariants in regard to transcription factor binding and gene 

regulation, another database was used to analyse potential molecular mechanisms 

based on gene structure and variant position. The ensembl variant effect predictor 

(VEP) [107] rates variants in regard to all surrounding transcripts and classifies them 

according to potential functional consequences. Control variants were predominantly 

located upstream (49.22 %) and downstream (49.09 %) of known gene structures. 

Another 1.63 % of the control variants were found in introns of genes. Less than 0.1 % 

of the control variants were assigned to functional categories such as missense or 

untranslated transcript region (UTR). Interestingly, the proportion of intronic variants 

was significantly larger in both, the mega-analysis variants (19.72 %, P < 1.00 × 10−150) 

and the independent hit variants (29.17 %, P < 1.00 × 10−150) (Figure 9 B). Additionally, 
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other predicted categories like UTR or coding region variants occurred more often (P-

values < 1.72 × 10−07). 

Taken together, these findings indicate that significant eVariants are more often 

localised within known gene structures and are likely regulatory variants as they are 

found within regions of transcription factor binding and open chromatin. This is 

especially the case for the most significant eVariants and independent secondary 

signals. 

4.1.4 Liver eQTL of AMD-associated variants 

The liver eQTL database was further used to identify molecular mechanisms, which 

might be relevant for AMD aetiology. For this reason, the 52 independent AMD-

associated variants identified by Fritsche et al. (2016) [18] were investigated in regard 

to gene expression regulation in liver. 31 of these 52 variants were successfully 

genotyped or imputed in the liver eQTL database and showed an allele frequency > 5 

%. Interestingly, 8 of these variants were associated with gene expression of 15 unique 

eGenes (Q-value < 0.05, Table 29).  

Table 29: Liver eVariants overlapping with genome-wide significant AMD-associated variants 

CHR: chromosome; SE: standard error of the effect size; * IH: Independent hit according to Fritsche et 
al. (2016) [18] ** Effect size of a single AMD risk increasing allele 

IH* dbSNP ID CHR 

Position 

[hg19 ] 

Gene 

Symbol 

eQTL Q-

Value 

Effect 

size** SE 

Non-risk 

allele 

Risk 

allele 

1.2 rs570618 1 196,657,064 CFHR1 4.34E-10 0.711 0.099 G T 

1.1 rs10922109 1 196,704,632 CFHR4 1.66E-21 1.118 0.105 A C 

1.1 rs10922109 1 196,704,632 CFHR1 2.54E-21 0.992 0.094 A C 

1.1 rs10922109 1 196,704,632 CFHR3 2.11E-14 0.923 0.107 A C 

1.1 rs10922109 1 196,704,632 F13B 0.012 0.216 0.057 A C 

1.1 rs10922109 1 196,704,632 CFH 0.025 0.338 0.095 A C 

1.6 rs61818925 1 196,815,450 CFHR3 1.55E-06 0.649 0.113 G T 

1.6 rs61818925 1 196,815,450 CFHR1 0.006 0.416 0.103 G T 

1.6 rs61818925 1 196,815,450 CFHR5 0.011 -0.371 0.096 G T 

11 rs7803454 7 99,991,548 PILRB 5.72E-24 0.251 0.022 C T 

11 rs7803454 7 99,991,548 PILRA 1.04E-08 0.372 0.056 C T 

23.1 rs2043085 15 58,680,954 ALDH1A2 0.016 0.207 0.056 T C 

23.2 rs2070895 15 58,723,939 LIPC 6.88E-07 0.561 0.095 A G 

23.2 rs2070895 15 58,723,939 ADAM10 0.021 -0.217 0.06 A G 

24.2 rs17231506 16 56,994,528 CETP 0.008 -0.216 0.055 C T 

27 rs6565597 17 79,526,821 TSPAN10 2.46E-07 -0.526 0.086 C T 

27 rs6565597 17 79,526,821 ACTG1 0.016 0.312 0.084 C T 

27 rs6565597 17 79,526,821 ANAPC11 0.036 -0.171 0.05 C T 
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Several of the AMD-associated variants are located in the CFH locus (IH 1) and 

influence gene expression of CFH and CFHR genes. Particularly, the independent hit 

variant rs10922109 (independent hit 1.1 in Fritsche et al. 2016 [18]) tags a common 

deletion of CFHR1/CFHR3. Since the deletion of both genes is protective against AMD, 

the risk increasing allele results in an elevated expression of the two genes, which is 

represented by the respective effect sizes in Table 29 (rs10922109 - CFHR1: 0.992 

and rs10922109 - CFHR3: 0.923). Besides the CFH locus, two other eGenes are well 

known in AMD-related research: LIPC and CETP. Both genes are be involved in HDL 

metabolism and are specifically well characterised in liver tissue.  

4.2 Investigation of local eQTL in the GTEx project 

Several studies showed that regulation of gene expression is a tissue dependent 

process [108,109]. The GTEx project measured genotype and gene expression data 

of various tissues from more than 600 donor individuals. These data were composed 

using clearly defined sample collection criteria and sample processing steps [44,46]. 

Furthermore, the GTEx consortium initially performed the tissue-specific analysis of 

local eQTL and made a curation of their significant results accessible online. 

Nevertheless, not all of the results are available through their online repository. For this 

reason, one objective of this thesis was to download the raw data of the GTEx project 

and to create an openly accessible in-house database at the Institute of Human 

Genetics Regensburg. This database was generated based on the data processing 

protocol of the above presented eQTL analysis in liver tissue. The in-house GTEx 

database was created with GTEx version 6 (v6) and later updated to GTEx version 7 

(v7), which included additional samples and used whole genome sequencing instead 

of genotyping microarrays. Supplementary Table 1 summarises the information for 

the 48 tissues of GTEx v7, which were integrated and analysed. The sample size 

varied from 72 (see “Brain substantia nigra” and “Minor salivary gland”) to 418 (see 

“Muscle skeletal”) with a mean sample size of 183.6 (SD 94.4) across all tissues. The 

mean number of expressed genes per tissue was 29,591.9 (SD 3,065.9) (Figure 10). 

Remarkably, in testis (sample size: 197) 42,810 genes were expressed, which equates 

to 76.2 % of all 56,202 in GENCODE version 19 annotated genes [110]. 
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Figure 10: Expressed genes and eGenes of GTEx v7. 
GTEx v7 compromises gene expression, genotype, and covariate data of 48 different tissues and cell types. Local eQTL were calculated for each tissue seperately 
and adjusted for multiple testing (Q-value). The barplot visualises the number of expressed genes per tissue and the identified eGenes using two significance 
thresholds: Q-value < 0.05 (grey) and Q-value < 0.001 (black). The sample size for each tissue (n) is given in brackets. 
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The number of eGenes varied widely from 19.4 % (5,741 of 29,667 genes, see “Small 

intestine terminal ileum”) to 57.17 % (19,890 of 34,789 genes, see “Thyroid”) of all 

expressed genes in the respective tissue (Q-value < 0.05). A linear regression model 

showed that the number of expressed genes significantly (P-value: 0.000315, R2: 

0.23) correlates with the sample size per tissue (Figure 11 A). Remarkably, another 

analysis revealed an almost linear relationship (P-value: 2.38 x 10-19) with an R2 of 

0.83 between the tissue-specific sample size and the number of detected eQTL 

(Figure 11 B). 

 

Figure 11: Correlation of sample size and tissue-specific paramters of GTEx v7. 
A linear regression model was used to investigate the correlation of the tissue-specific sample size with 
the respective number of (A) expressed genes and (B) eQTL (Q-value < 0.05). The regression line is 
depicted in blue and the regression coefficent (R2) for each model is shown in the bottom right corner. 

Altogether, the in-house GTEx database included eQTL data regarding 48 tissues and 

was created as a basis to enable further projects outside the scope of this thesis. These 

projects included for example the calculation of combinatory effects regarding AMD-

associated eVariants and the evaluation of potential pleiotropic effects of eVariants. 

4.3 Distant eQTL in the ARMS2-HTRA1 locus 

4.3.1 Distant eQTL calculation 

Processing of the GTEx database enabled various further projects besides the 

calculation of local eQTL. One of these projects aimed at elucidating potential distant 

eQTL effects of AMD-associated variants and focused on the ARMS2-HTRA1 locus at 

10q26. This locus showed the most significant AMD-association in the European 
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population (P-value 6.5 x 10−735) and the highest OR (2.81) of all 34 loci identified by 

Fritsche et al. (2016) [18]. The low P-values and the high LD in the ARMS2-HTRA1 

locus (Figure 2 B) initially hindered detailed statistical investigations. Finally, a 

haplotype analysis of Grassmann et al. (2017) [25] refined the AMD-associated signal 

to a region of 5,196 bp (chr10:124,210,369-124,215,565, hg19), called the “minimal 

haplotype”. Additionally, the locus contains two variants, which are known to locally 

regulate the gene expression of ARMS2 through different mechanisms. rs3750846, 

the lead variant of the study from Fritsche et al. (2016) [18], co-localises with a deletion 

of the ARMS2 gene. The other variant, rs2736911 results in a truncated ARMS2 

protein (R38X). Interestingly, rs2736911 was not found to be associated with AMD [22].  

To investigate potential regulatory mechanisms, local and distant eQTL were 

investigated for the ARMS2-HTRA1 locus in all GTEx v6 tissues, since GTEx v7 was 

initially not available. After the eQTL calculation, a meta-analysis jointly evaluated 

single tissue results. In this analysis, both variants regulate the expression of ARMS2 

(Q-values: rs3750846 1.5 x 10-09, rs2736911 2.8 x 10-31). Altogether the expression of 

1,098 respectively 1,120 eGenes was significantly (Q-value < 0.05) associated with 

rs3750846 or rs2736911. To identify different regulatory effects, the gene lists were 

filtered to exclude (1) genes regulated by both variants, (2) genes, which expression 

was correlated with ARMS2 expression, and (3) genes involved in housekeeping 

processes. Housekeeping genes were identified by sorting out genes matching the GO 

processes including the phrases: “ribonucleo” and “metaboli”. Filtering was performed 

to identify the potentially AMD-associated mechanism separated from the shared 

regulation of ARMS2. Interestingly, a gene enrichment analysis showed that the gene 

list of rs3750846 included mainly immune system related genes, whereas rs2736911 

regulates genes involved in cell cycle processes (Table 30). 
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Table 30: Ten most significant gene enrichment analysis results of eGenes associated with 
rs3750846 or rs2736911 

rs3750846 (922 genes) rs2736911 (962 genes) 

GO term name 
eGenes in 
GO term 

Adjusted 
P-value GO term name 

eGenes in 
GO term 

Adjusted 
P-value 

Neutrophil mediated 
immunity 

52 6.69E-05 Cell cycle 152 7.06E-11 

Myeloid leukocyte activation 59 1.38E-04 Organelle organisation 262 2.71E-09 

Myeloid cell activation 
involved in immune 
response 

53 2.69E-04 Cilium assembly 44 6.33E-06 

Neutrophil degranulation 49 4.67E-04 Ciliary basal body docking 21 1.59E-05 

Response to stress 228 5.48E-04 
Antigen processing and 
presentation of exogenous 
antigen 

28 4.83E-05 

Multi-organism process 159 1.22E-03 
Negative regulation of ubiquitin-
protein transferase activity 

17 8.53E-04 

Translational elongation 20 2.08E-02 Cell division 55 3.26E-03 

Acute inflammatory 
response 

19 3.51E-02 Intracellular transport 135 3.99E-03 

Response to biotic stimulus 68 3.99E-02 Chromosome segregation 37 6.87E-03 

Protein folding 26 4.10E-02 
Protein deneddylation  
(removal of the ubiquitin-like 
protein NEDD8) 

6 6.90E-03 

 

Taken together, rs3750846 regulates 922 genes, which expression showed no 

association with the non AMD-associated variant rs2736911, and which were enriched 

for immune system related processes. To further narrow down this gene list, a mega-

analysis including all GTEx v6 tissues was conducted based on the merged and 

normalised gene expression files. Furthermore, the mega-analysis was adjusted for 

tissue donors because some individuals donated multiple organs. After filtering for 

significant eGenes (Q-value < 0.01), which were not involved in housekeeping 

processes, rs3750846 regulated the expression of 455 genes. Again, ARMS2 revealed 

the most significant result (Q-value 3.7 x 10-12). The mega-analysis approach facilitated 

to conduct a conditional analysis, which was adjusted for the expression of the most 

significant gene and was repeated until none of the primary significant signals (round 

0) remained. Interestingly, the adjustment for ARMS2 expression (round 1) did not 

affect the significance of any other eGene (Figure 12). The most significant gene after 

adjustment for ARMS2 was CD300E (Q-value 1.3 x 10-12), which is known to participate 

in innate immune response [111–113]. Adjustment for CD300E resulted in 114, mostly 

immune related, genes losing significance (arrow, Figure 12). The subsequent 

adjustments for XKR9 and KLHDC4 altered the list of eGenes only marginally, whereas 

ZNRD1 (round 5) resulted in once more 102 eGenes loosing significance. 

 



Results 

58 

 

Figure 12: Conditional mega-analysis of rs3750846-associated eGenes in GTEx v6. 
Gene expression and genotype files from all GTEx v6 tissues were merged to conduct a mega-analysis regarding rs3750846. The eQTL analysis resulted in 455 
genes which were clustered based on their gene expression using the hclust function in R and are shown as dendrogram (top). The bar below the dendrogram 
visualises if a gene is known to participate in immune system processes (“Immune gene”, turquoise). After the primary analysis (round 0), the eQTL calculation 
was adjusted for the most significant gene and repeated as long as at least one eGene reached significance (Q-value < 0.01, bars from top to bottom). Genes, 
which lost significance turn black in this schematic figure. The three colors red, green, and blue mark if an adjustment led to noticable changes in the list of significant 
eGenes, determined by another clustering analysis. The highlighted cluster (arrow) marks immune genes, which lost significance after adjustment for CD300E 
(round 2). 
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After the conditional mega analysis, the hypothesis emerged suggesting that the strong 

AMD-association of rs3750846 could be caused by distant effects on gene expression, 

which are shared by various tissues and cell types. Several parameter were chosen to 

further evaluate rs3750846-associated eGenes and to finally test the hypothesis in 

vitro. The eGenes were categorised for (1) high absolute effect sizes (> 0.05) in the 

mega-analysis and (2) for regulation by local eVariants (Q-value < 0.05). If this was the 

case, the respective local eVariants were explored in the AMD GWAS data as given in 

Fritsche et al. (2016) [18] for their AMD-association (Q-value < 0.05). This procedure 

was applied to validate the potential relevance of the eGene in the context of AMD. 

Furthermore, the eGenes of interest were queried for immune-related GO terms, and 

if they were shown to be expressed in HEK293T cells. These criteria resulted in 13 

potential candidate genes, which fulfilled most aspects (Table 31).  

Table 31: Manually curated list of potential rs3750846 target genes for experimental validation 

Symbol 

Strong effect of 
rs3750846 in mega-

analysis (ABS > 0.05)* Local AMD-associated eVariants**  Immune related 
Expressed in 
HEK293T*** 

C17orf62 - (-0.01) + - + 

CD300E + (-0.065) - + + 

CYP1A1 + (0.093) - - + 

DAZAP1 - (-0.006) + - + 

DEFA5 + (-0.091) + + + 

FCN1 - (-0.045) + + + 

FLOT2 - (-0.011) + - + 

IL6 + (-0.063) - + + 

LILRA3 + (-0.1) + + NA 

MUC7 + (-0.127) + + + 

NFKB1 - (-0.007) + + + 

PILRB - (0.011) + + NA 

TNFAIP1 - (-0.011) + + + 

* Effect size of the AMD risk increasing allele, ** Fritsche et al. (2016) [18] Q-value < 0.05 (calculated 
over all GWAS variants), *** Mean expression of untreated HEK293T cells of three studies [114–116]; 
NA = gene was not measured or not detected 

4.3.2 Genome editing to delete the minimal haplotype in HEK293T cells 

After bioinformatical analysis of the 10q26 locus, an experimental approach was chosen 

to evaluate the hypothesis regarding distant regulatory mechanisms of AMD-associated 

variants located in the minimal haplotype region. The experiments were designed to 

experimentally manipulate the ARMS2-HTRA1 locus using the CRIPSR/Cas9 system 

[117] (Figure 13).  
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Figure 13: Scaled overview of the genomic region flanking the minimal haplotype. 
Grassmann et al. (2017) [25] performed an haplotype analysis of the ARMS2-HTRA1 locus and 
identified a 5,196 bp (chr10:124,210,369-124,215,565, hg19) genomic region, which most likely 
harbours the variants causative for the GWAS signal. Several sgRNAs (orange) were designed 
upstream (UP), within (MID), and downstream (DOWN) of the minimal haplotype region. After sgRNA 
specificity testing, six sgRNAs (blue) were chosen for further experiments. No sgRNAs were designed 
to target the genomic repeat region (red), because these might also bind to other regions in the genome. 
The figure shows the genomic region chr10:124,209,369-124,216,565 and was scaled to correctly 
present the positions of all shown elements. 

sgRNAs were created to recruit the Cas9 endonuclease and to introduce DSBs at the 

ARMS2-HTRA1 locus. Subsequent recombination events are expected to result in a 

deletion of all or parts of the minimal haplotype region. Five sgRNAs were bioinformatically 

designed to bind up- (UP) or downstream (DOWN) of the minimal haplotype. These 

sgRNAs were tested for specificity using the pCAG-EGxxFP system established by 

Mashiko et al. (2013) [118] (Figure 14 A). The pCAG-EGxxFP vector contains an EGFP 

expression cassette, which is interrupted by the sgRNA target sequence. If the sgRNA 

specifically binds its target, the Cas9 endonuclease is recruited and introduces a DSB. The 

subsequent recombination event restores the EGFP cassette and leads to a fluorescence 

signal, which can be detected via microscopy. The number of positively transfected cells 

showing green fluorescence serves as quantitative marker for sgRNA specificity. Figure 

14 B presents a representative set of experiments included in the testing of 5 UP sgRNAs. 

These were separately cloned into the px330-mCherry vector and transfected into 

HEK293T cells in combination with the corresponding pCAG-EGxxFP vector. 
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Figure 14: Specificty test of UP sgRNAs. 
(A) Schematic overview of the vector set required for the sgRNA specificty test. The px330-mCherry 
vector carries one sgRNA- (blue) and a Cas9 (grey) expression cassette follwed by a mCherry 
enconding sequence (red). The pCAG-EGxxFP construct carries an EGFP expression cassette (green) 
interrupted by the respective sgRNA target sequence (blue). (B) Exemplary set of experiments to test 
the efficiency of five sgRNAs located upstream (UP) of the minimal haplotype defined by Grassmann et 
al. (2017) [25]. Each sgRNA was cloned into the px330-mCherry vector and double transfected in 
combination with the corresponding pCAG-EGxxFP construct. Green flourescence represents sgRNA 
specificity, whereas red flourescence marks the transfection efficency of px330-mCherry. (C) 
Quantitative evaluation of three independent UP sgRNA tests using the FLUOstar OPTIMA plate reader. 
Measurement values were normalised to the green background flourescence of the pCAG-EGxxFP 
vector (top left in B) and to the mean transfection efficency (red flourescense) per experiment. 

After quantitative evaluation of sgRNA specificity, two sgRNAs upstream (UP sgRNA 

2 and 3, Figure 14 C) and downstream (DOWN sgRNA 1 and 2) were chosen for the 

targeted deletion of the minimal haplotype (Figure 13). Therefore, a combination of 

one UP (px330-eGFP vector) and one DOWN sgRNA (px330-mCherry vector) was 

transfected into HEK293T cells. After an incubation time of 72h, FACS sorting was 

performed to identify cells positively transfected with both constructs. Then, single cells 

were isolated using a dilution series and seeded onto new plates with a statistical 

dilution of one cell per well. Two PCR reactions targeting the minimal haplotype region 

(Figure 15 A) enabled the identification of introduced genomic alterations. Altogether, 

18 single clones homozygous for the deletion were identified (Figure 15 B). Additional 

18 clones did not show any recombination events and served as controls, since they 

underwent the same processing protocol.  
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Figure 15: Genotyping and qRT-PCR of HEK239T cells edited in the ARMS2-HTRA1 locus. 
(A) Two PCRs were conducted to genotype HEK293T single clones after genome editing with one 
sgRNA binding upstream and one sgRNA binding downstream the minimal haplotype region. The 
regions covered by PCR 1 and 2 are visualised by the black lines above the annotation. The elongation 
time for both PCRs was 1 min, which is too short to amplify the full minimal haplotype region with PCR 
1. Therefore, no amplicon of PCR 1 indicates that no deletion occured. (B) Genoytpe PCR results of 
seven representative single clones. The zygosity state was determined based on the results of PCR 1 
and 2 and is given as: Homozygous for minimal haplotype deletion (D), hemizygous (H), or wild type 
(WT). The PCRs were replicated indedpently for at least two times to validate genotyping results. (C) 
qRT-PCR results regarding 6 exemplary target genes (Table 31). Shown are the mean values of 7 WT 
clones and 8 deletion clones. The results were normalised in regard to the respective WT clones 

qRT-PCRs regarding the potential target genes (C17orf62, CD300E, CYP1A1, 

DAZAP1, DEFA5, FCN1, FLOT2, IL6, LILRA3, MUC7, NFKB1, PILRB, and TNFAIP1) 

of the ARMS2-HTRA1 locus did not reveal any significant differences in gene 

expression despite the deletion of the minimal haplotype region (Figure 15 C). It is 

important to note that no implications about the potential effect direction are possible 

because eQTL results were based on the AMD risk allele (Table 31) but in this 

approach the whole minimal haplotype region was deleted. 

4.3.3 Enhancing gene expression in the minimal haplotype region 

Besides the deletion of the minimal haplotype region, a further approach aimed to 

enhance its potential influence on gene expressing regulation. Therefore, a protocol 

published by Chavez et al. (2015) [66] was employed. The workgroup generated the 



Results 

63 

tripartite activator “VP64-p65-Rta” (VPR), which was fused to a dCas9. Using this 

construct, targeted enhancement of gene expression is possible without changing the 

natural chromosomal context. To establish the VPR method at the Institute of Human 

Genetics Regensburg, the findings of Chavez et al. (2015) were first replicated by 

targeting the gene MIAT with a mixture of the same sgRNAs as published by Chavez 

et al. (2015). Remarkably, gene expression of MIAT was enhanced by a fold change 

of 113.4 (SD: 14.3) in comparison to a transfection of HEK293T cells, which did not 

include the MIAT sgRNAs (Figure 16 A). 

 

Figure 16: Enhancement of gene expression using dCas9-VPR in HEK293T cells. 
(A) qRT-PCR results after double transfection of HEK293T cells (n = 3) with a mixture of four MIAT 
sgRNAs published by Chavez et al. (2015) [66] and the dCas9-VPR vector. (B) Targeted enhancement 
of gene expression within the ARMS2-HTRA1 locus was performed with the help of the two sgRNAs 
MID 8 (n = 6) and MID9 (n = 4). qRT-PCR results of five exemplary bioinfomatically predicted target 
genes (Table 31) and HTRA1 are shown. qRT-PCRs were normalised in regard to dCas9-VPR 
transfected HEK293T cells (control, n = 7) without supplying any sgRNA. 

Eleven sgRNAs (MID sgRNA 1 to 11) were tested for efficiency following the protocol 

described above and the two sgRNAs MID 8 and 9 (Figure 13) were chosen for 

targeted enhancement of the ARMS2-HTRA1 minimal haplotype region. Nevertheless, 

qRT-PCRs of the bioinformatically predicted target genes did not show any significant 

changes in gene expression of dCas9-VPR and MID sgRNA transfected cells in 

comparison with control cells (Figure 16 B). The usage of sgRNAs UP 2, UP 3, DOWN 
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1, and DOWN 2 in combination with dCas9-VPR failed also to reveal an altered 

expression of target genes. 

4.4 RNA sequencing and eQTL analysis of retinal tissue 

4.4.1 Study overview of the retinal eQTL database 

The liver eQTL database and GTEx did not include eye tissue, which would be a 

valuable resource for the investigation of ocular diseases and traits. To date, only a 

single study calculated eQTL in retina, but included over 300 AMD patient eyes in their 

dataset of a total of 406 samples. Therefore, one aim of the current thesis was to 

analyse gene expression regulation in 161 healthy retinal samples collected at the 

Institute of Human Genetics Regensburg. Furthermore, two other collaboration 

partners, namely the University Hospital in Cologne and the National Eye Institute 

(NEI), shared their raw RNA-Seq and genotype data to enable an eQTL mega-analysis 

of healthy retinae. The data processing and QC was performed similar to the mega-

analysis in liver tissue. After QC, 314 samples were available for further analysis 

(Table 32).  
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Table 32: Study, sample, and result summary of the Retina eQTL database 

Dataset 
Human 

Genetics 
Regensburg 

University 
Hospital 
Cologne 

NEI 
Bethesda [70] 

Sample size before QC/ after QC 161 / 144 78 / 76 105 / 94 

Mean Age 59.2 (SD: 16.8) 
70.1 (SD: 

12.6) 
74.2 (SD: 9.4) 

Gender (M / F) 97 / 47 37 / 39 46 / 48 

RNA-Seq library 

NEXTFLEX® 
Rapid 

Directional 
RNA-Seq 

Library Prep Kit 

TruSeq® 
Stranded 
mRNA 
Library 

Preparation 
Kit 

TruSeq® 
Stranded mRNA 

Library 
Preparation Kit 

RNA-Seq platform Illumina HiSeq platform 

RNA-Seq depth 20 m SE 50 - 80 m PE 10 - 20m PE 

Read length 83 bp 51 bp 125 bp 

Expressed genes (CPM > 1 in 10 % of 
samples) 

18,290 18,971 18,401 

Expressed genes overlapping 17,405 

Genotyping Platform 
Custom 

HumanCoreExo
me BeadChip 

Infinium® 
OmniExpres

s-24 v1.2 
BeadChip 

UM_HUNT_Biob
ank v1.0 chip 

Imputed variants after QC 8,686,883 

eVariants (Q-value < 0.05) 869,464 

eVariants (Q-value < 0.05, unique) 600,077 

eVariants regulating several Genes (Q-value 
< 0.05) 

149,078 

eGenes (Q-value <0.05, unique) 9,733 

Independent signals (P-value < 4.0 x 10-4) 15,262 

eVariants (Q-value < 0.001) 426,461 

eVariants (Q-value < 0.001, unique) 305,268 

eVariants regulating several Genes (Q-value 
< 0.001) 

69,116 

eGenes (Q-value <0.001, unique) 2,757 

Independent signals (P-value < 3.9 x 10-6) 3,082 

PE = Paired-end; QC = quality control; SD = standard deviation; SE = Single-end 

RNA-Seq reads were initially analysed separately per individual dataset. A total of 

2,412 genes were found to be exclusively expressed (CPM > 1 in at least 10 % of the 

samples) in only one or two of the three datasets and were subsequently excluded. 

This left information on a total of 17,405 genes shared between the three datasets 

which were combined and normalised together. Regarding the genotype data, each 

dataset was separately imputed, which resulted in 8,686,883 overlapping and quality-

controlled variants (Table 32). 

The merged genotype- and gene expression data were then explored for local eQTL. 

Local eQTL were calculated by including all variants on the same chromosome that 
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are located within 1 Mbp up- or downstream of the TSS or polyadenylation site of the 

respective gene. After adjustment for multiple testing, 869,464 significant eVariants (Q-

value < 0.05) were identified, which regulate 9,733 unique eGenes (Table 32). 

Moreover, a conditional analysis revealed 5,529 additional independent (secondary) 

signals by adjusting for the respective most significant primary eVariant (P-value < 4.0 

x 10-4). A more stringent adjustment for multiple testing (Q-value < 0.001) resulted in 

2,757 unique eGenes and 325 secondary signals (P-value < 3.9 x 10-6). 

4.4.2 Characterisation of gene expression regulation in retina 

The primary and secondary signal eVariants were first characterised with respect to 

their significance and position regarding the corresponding eGenes (Q-value < 0.05) 

(Figure 17 A). Signals were widely distributed around the TSSs of the respective 

eGenes. Interestingly, highly significant eVariants were observed to be located closer 

to the TSS in comparison to less significant eVariants. Nevertheless, some eVariants 

were located several thousand bp away from the respective TSS and showed highly 

significant P-values. This was especially the case for the eQTL rs577360216 - 

MAPK8IP1P2 (P-value: 5.59 x 10-117, TSS distance: +668,829 bp) and rs6075340 - 

SIRPB1 (P-value: 5.17 x 10-96, TSS distance: +293,628 bp). 

 

Figure 17: Genomic localisation of eVariants in the retinal eQTL database. 
(A) The distance of each eVariant to the TSS of the respective eGene is plotted against the significance 
of the association (−log10 P-value). Shown are the primary (dark grey) and independent secondary, 
(light grey) eVariants for each eGene. Negative/positive distances denote that the variant is located 
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upstream/downstream of the TSS with regard to the direction of transcription. (B) Boxplot of the absolute 
distance of primary and secondary signals to the TSS. Significance was assessed by a Mann-Whitney-
U-Test (P-value = 4.2 x 10-104). (Figure modified from Strunz et al., 2020 [119]; Note that the shown 
figure differs from the publication because the data preparation protocol changed during manuscript 
revision. Details are given in the respective method sections.) 

Interestingly, more than half (8,488/15,262) of the independent signals were located 

downstream of the respective TSSs. Furthermore, primary signals were found to be 

located significantly closer to the TSS in comparison with secondary signals (Figure 

17 B, P-value = 4.2 x 10-104).  

149,078 (24.8 %) of the 600,077 unique eVariants (Q-value < 0.05) regulated the 

expression of more than one eGene. Therefore, the question arose if these highly 

regulatory active variants are distributed randomly over the genome or if they cluster 

in so called “regulatory clusters”. To answer this question, the list of eVariants was 

filtered for (1) a Q-value of 0.001 (305,268 eVariants, Table 32) and (2) eVariants 

regulating at least three genes, resulting in 25,299 variants for further analysis. 

Thereafter, variants, which were located close to each other (1 Mbp window) were 

assigned to the same cluster. This analysis revealed 76 regulatory clusters, which are 

distributed over the whole genome (mean number of clusters per chromosome: 3.45, 

SD: 2.39) (Figure 18). Remarkably, chromosome 7 harbours most clusters (9 of 76), 

whereas no clusters were found on chromosome 4 and chromosome 13. The cluster 

size varied widely from 1 bp (clusters 5:122982802-122982802, 10:79629844-

79629844, 11:7885630-7885630, 11:49154505-49154505, 16:19584627-19584627), 

each containing a single eVariant regulating several eGenes to 6,433,565 bp for cluster 

6:26678284-33111849 regulating 42 genes. 
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Figure 18: Chromosomal position of regulatory clusters in retinal tissue. 
Highly significant eVariants regulating three or more eGenes (Q-Value < 0.001) were combined into 76 
regulatory clusters (orange) and mapped onto the human genome (window size 1 Mbp). The plot was 
generated by using the chromoMap package in R [120]. 

4.4.3 Retinal eQTL and AMD-associated genetic variants 

The 52 AMD-associated IHs identified in the AMD GWAS of Fritsche et al. (2016) [18] 

were investigated in the retinal eQTL database. 41 of these were genotyped or imputed 

into the dataset and 7 variants regulate the expression of at least one eGene (Q-value 

< 0.05) (Table 33). Altogether, 13 unique eGenes were regulated by AMD-associated 

variants. 

Table 33: Genome-wide significant AMD-associated variants regulating genes in retinal tissue 

IH* dbSNP ID CHR 
Position 
[hg38 ] 

Gene 
Symbol 

eQTL Q-
Value Beta** SE 

Non-Risk 
allele 

Risk 
allele 

8.3 rs204993 6 32,187,804 HLA-DQB1 1.54E-05 -0.484 0.086 A G 

8.3 rs204993 6 32,187,804 TSBP1-AS1 1.85E-04 0.190 0.037 A G 

11 rs7803454 7 100,393,925 PILRA 4.50E-51 0.850 0.044 C T 

11 rs7803454 7 100,393,925 PILRB 7.29E-27 0.785 0.061 C T 

11 rs7803454 7 100,393,925 STAG3L5P 1.83E-23 0.557 0.047 C T 

11 rs7803454 7 100,393,925 ZCWPW1 3.93E-03 0.155 0.036 C T 

18 rs3750846 10 122,456,049 BX842242.1 5.22E-10 0.204 0.027 T C 

19 rs3138141 12 55,721,994 AC009779.3 1.91E-03 -0.170 0.037 C A 

24.1 rs5817082 16 56,963,437 MT3 1.52E-02 -0.273 0.069 CA C 

24.1 rs5817082 16 56,963,437 RSPRY1 2.63E-02 0.082 0.022 CA C 

24.1 rs5817082 16 56,963,437 GNAO1 3.00E-02 -0.129 0.034 CA C 

26 rs11080055 17 28,322,698 TMEM199 1.28E-02 0.069 0.017 A C 
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27 rs6565597 17 81,559,795 ARL16 3.96E-02 0.101 0.028 C T 

CHR: chromosome; SE: standard error of the effect size; * IH: Independent hit according to Fritsche et 
al. 2016 [18] ** Effect size of a single AMD risk increasing allele 

4.4.4 Investigation of GWAS variants with regard to different ocular traits 

The retina eQTL database facilitates not only the analysis of gene expression 

regulation in the context of AMD, but may be applied to address various other related 

questions. Christina Kiel, a researcher at the Institute of Human Genetics, generated 

a curated list of variants associated with at least one of 82 different traits and diseases 

(at genome-wide significance, P-value < 5.0 x 10-8) [121]. The data collection also 

included variants regarding 12 distinct ocular traits and diseases derived from 16 

published GWAS (Table 34). 

Table 34: Complex eye diseases and traits investigated in the context of retina eQTL 

(data kindly provided by Christina Kiel, Institute of Human Genetics, Regensburg [121]) 

Complex eye disease or trait PubMed ID 

GWAS 
Variants 
after QC 

Variants 
included 
in study 

eVariants 
(Q-Value < 

0.05) 

eGenes 
(Q-Value 
< 0.05) 

Age-related macular degeneration 26691988 52 41 7 13 

Central corneal thickness 30622277 39 38 3 3 

Diabetic retinopathy 
26188370, 
30178632 

3 3 0 0 

Intraocular pressure 

28073927, 
29235454, 
29617998, 
29785010, 
30054594 

251 243 32 47 

Macular thickness 30535121 135 129 29 45 

Myopia 23468642 22 22 3 3 

Optic disc - cup area 28073927 24 23 2 2 

Optic disc - disc area 28073927 16 16 4 4 

Primary angle closure glaucoma 27064256 8 7 1 2 

Primary open-angled glaucoma 
26752265, 
29891935 

50 49 4 5 

Refractive error 
29808027, 
23396134 

119 98 14 21 

Vertical cup-disc ratio 28073927 22 21 1 1 

QC = quality control 

The number of GWAS variants varied widely from 3 (see “diabetic retinopathy”) to 251 

(see “intraocular pressure”). Overall, 690 variants were included in the retinal eQTL 

database and 100 of these showed an association with at least one eGene (Q-value < 

0.05). 125 unique eGenes were identified, since some disease- or trait-associated 

eVariants regulate multiple genes. Remarkably, 17 of these eGenes are regulated by 

eVariants associated with multiple different phenotypes (Figure 19). For example, 
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lower expression of the non-annotated protein coding gene AC009779.3 is potentially 

associated with increased risk for AMD, refractive error, and increased macular 

thickness while decreased gene expression of AC009779.3 is associated with an 

increased risk of myopia. Furthermore, AMD-associated variants were also found to 

upregulate the expression of PILRA, which expression change is also potentially linked 

to macular thickness, and to downregulate HLA-DQB1, which is downregulated by 

intraocular pressure-associated variants. 

 

Figure 19: Retinal eGenes regulated by multiple complex eye disease- or trait-associated 
variants. 
17 eGenes (orange) were regulated by genome-wide significant GWAS variants of at least two different 
complex eye diseases or traits (blue). Connective lines are colored according to the eQTL effect 
direction of the risk-/trait- increasing allele. Red lines reflect higher gene expression whereas blue lines 
represent downregulation of expression. AMD = age-related macular degeneration; CCT = central 
corneal thickness; IOP = intraocular pressure; MT = macular thickness; MYP = myopia; ODCA = optic 
disc - cup area; ODDA = optic disc - disc area; PACG = primary angle closure glaucoma; POAG = 
primary open-angled glaucoma; RE = refractive error. (Figure modified from Strunz et al., 2020 [119]; 
Note that the shown figure differs from the publication because the data preparation protocol changed 
during manuscript revision. Details are given in the respective method sections) 

4.5 TWAS based on AMD genetics and the GTEx project 

eQTL analyses are based on linear regression models and usually consider one 

genetic variant and one gene at a time. Gamazon et al. (2015) proposed a more 
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complex model, which uses classical machine learning approaches and called it 

PrediXcan [53]. This algorithm is applied to determine a set of genetic variants which 

consistently influence gene expression in a given tissue. In a second step, these 

variants can be extracted from a GWAS dataset to predict the relative gene expression 

of study participants. Finally, the imputed gene expression is correlated to the 

individuals’ disease status to identify disease-associated genes. The three step 

procedure is called TWAS and can be applied to identify genetically regulated genes, 

which are potentially relevant for disease aetiology. 

4.5.1 Identification of 106 genes associated with AMD 

The PrediXcan algorithm [53] was applied to the full IAMDGC dataset [18], which 

includes genotype and phenotype data from 16,144 late-stage AMD cases (including 

clinical diagnoses of GA and/or CNV), and from 17,832 AMD-free controls. The 

prediction models from 27 tissues were retrieved from PredictDB (http://predictdb.org/, 

accessed September 3rd 2018) and were implemented into the analysis. These tissues 

have been chosen because genotype and gene expression data of more than 130 

individuals were available for prediction model building. After separate gene 

expression imputation for each tissue, a linear regression model was applied to identify 

late-stage AMD-associated genes based on the individual’s AMD status. P-values 

were adjusted for multiple testing using the FDR approach and genes with a Q-value 

smaller than 0.001 were considered to be significantly associated with AMD. In each 

tissue, a minimum of 11 (see “Brain Cerebellum” and “Heart Left Ventricle”) and up to 

28 (see “Adipose Subcutaneous” and “Nerve Tibial”) AMD-associated genes (Figure 

20) were identified (mean 17.63; SD 5.02). Altogether, 106 unique genes were 

significantly AMD-associated in at least one tissue (Supplementary Table 2).  
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Figure 20: TWAS results for 27 tissues. 
A TWAS was conducted based on the genotypes of 16,144 late-stage AMD cases and 17,832 AMD-
free controls. Prediction models of 27 tissues were included in the analysis. The schematic overview 
demonstrates the number of significant AMD-associated genes (Q-value < 0.001) within the respective 
tissue. If a gene was found exclusively in a single tissue, it was marked as tissue-specific (TS). Tissue 
classification was performed manually according to main functions or metabolic assignments. Adipose 
SU: Adipose Subcutaneous; Adipose VO: Adipose Visceral Omentum; Artery AO: Artery Aorta; Artery 
TI: Artery Tibial; Brain CE: Brain Cerebellum; Breast MT: Breast Mammary Tissue; Cells TF: Cells 
Transformed fibroblasts; Colon SI: Colon Sigmoid; Colon TR: Colon Transverse; Esophagus GJ: 
Esophagus Gastroesophageal Junction; Esophagus MC: Esophagus Mucosa; Esophagus MS: 
Esophagus Muscularis; Heart AA: Heart Atrial Appendage; Heart LV: Heart Left Ventricle; Muscle SK: 
Muscle Skeletal; Nerve TI: Nerve Tibial; Skin NSS: Skin Not Sun Exposed Suprapubic; Skin SEL: Skin 
Sun Exposed Lower leg. (Figure published in Strunz et al., 2020 [122]) 

Of 106 AMD-associated genes, 88 are located in loci known to be AMD-associated 

with genome-wide significance. 18 additional genes were not located in proximity 

(window size of 1MB) to any of the 52 independent hits identified by Fritsche et al. 

(2016), and may denote novel AMD loci [18] (Figure 21). The linear regression models 

also provide an effect size based on the regression slope (beta). Positive effect sizes 

point to predicted gene expression in healthy tissue being higher in AMD cases than 

controls. Negative betas are suggestive for decreased gene expression with higher 

AMD risk. The largest effect sizes ranged from -0.38 (ARMS2, see “Testis”) to +0.35 

(CFHR1, see “Liver”) (Supplementary Table 2). The mean absolute beta across all 

AMD-associated genes was 0.035 (SD: 0.039). 
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Figure 21: Manhattan plot of the AMD-associated genes in all 27 investigated tissues. 
Linear regression models were performed to correlate the predicted gene expression of 27 tissues with 
AMD and control status. The Manhattan plot shows the −log10 Q-values and the chromosomal position 
for all predictable genes. Genes, which were significantly AMD-associated (Q-Value < 0.001; red line) 
in at least one tissue were highlighted in blue, if the gene was located in a known AMD locus, or green 
if the locus was not genome-wide significant in the GWAS of Fritsche et al. (2016) [18]. (Figure published 
in Strunz et al., 2020 [122]) 

Interestingly 54 out of the 106 genes were significantly AMD-associated in more than 

one of the 27 tissues (Figure 20 and Supplementary Table 2). Remarkably, sixteen 

genes (ADAM19, ARMS2, BTBD16, CFH, CFHR1, CFHR3, GPR108, PILRA, PILRB, 

PLA2G12A, PLEKHA1, PMS2P1, PPIL3, RDH5, STAG3L5P, and TNFRSF10A) were 

AMD-associated in over 10 tissues. Furthermore, some genes showed an AMD 

association of predicted gene expression in almost all analysed tissues. This is 

especially the case for three genes (PILRA, PILRB, and STAG3L5P) located within the 

known AMD Locus 11 [18]. 

4.5.2 Comparison to AMD TWAS of retinal tissue 

The study of Ratnapriya et al. (2019) included a TWAS analysis based on retinal eQTL 

data and the summary statistics of the AMD GWAS from Fritsche et al. (2016) [18,70]. 

The TWAS comprised data of 406 retinae, which were mainly derived from AMD 
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patients. Altogether, the TWAS identified 31 significantly AMD-associated genes (Q-

value < 0.001, genetic model R2 ≥ 0.01) of which 22 were located outside the MHC 

locus. These genes were compared to the PrediXcan analysis regarding the 27 GTEx 

tissues to identify potential retinal-specific effects. 16 of the 22 genes were also found 

to be AMD-associated in at least one of the 27 GTEx tissues and are therefore unlikely 

to represent retinal-specific effects. Remarkably, only two genes showed different 

effect directions in the retinal tissue TWAS compared with other GTEx tissues. One of 

these genes was HTRA1, of which the retinal expression was predicted significantly 

lower in AMD cases than controls. This was also true for the two tissues “Esophagus 

Mucosa” and “Esophagus Gastroesophageal Junction”. In contrast, predicted HTRA1 

expression was significantly higher in AMD cases than controls in five GTEx tissues 

(see “Thyroid”, “Skin Sun Exposed Lower leg”, “Heart Atrial Appendage”, “Pituitary”, 

and “Testis”). On the other hand, the predicted retinal expression of PLA2G12A, 

located on chromosome 4, was lower in AMD cases compared to controls. The 

opposite effect direction was observed in all 13 GTEx tissues in which predicted 

PLA2G12A expression was significantly associated with AMD status.  

Two of the remaining six genes, exclusively found by Ratnapriya et al. (2019), were 

not measured in the GTEx dataset: the long non-coding RNA STAG3L5P-PVRIG2P-

PILRB and the uncharacterised gene RP11-644F5.10 (ENSG00000258311). 

Therefore, no conclusions can be drawn. The remaining four genes are expressed in 

several GTEx tissues, but were not AMD-associated in any of the 27 tissues 

investigated. Two out of these four genes are the uncharacterised transcripts PARP12 

and CTA-228A9.3. Finally, the remaining two genes are the protein coding genes 

MEPCE and RLBP1. The latter encodes the retinaldehyde-binding protein 1, which 

uses 11-cis-retinaldehyde or 11-cis-retinal as physiologic ligands. 
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5 Discussion 

Publically available GWAS data reveal a plethora of loci and variants which are 

genome-wide associated with complex diseases and traits. For a number of reasons, 

functional interpretation of disease-associated genetic variants remains challenging 

and requires large scale approaches to avoid missing the potential small effects. Most 

of the GWAS genetic variants are located in non-coding regions of the genome and 

are common in healthy individuals [33]. Additionally, the extensive LD often hinders 

the identification of the signal causing variant or the respective gene. Therefore, 

investigation of gene expression regulation enables to combine statistical methods with 

the analysis of molecular data. This lays the foundation to generate new hypotheses 

regarding causal genes in GWAS loci and potentially disease relevant pathways. 

Three databases regarding gene expression regulation were generated in this doctoral 

thesis. First, four different studies investigating gene expression in liver tissue were 

processed and combined to enable an eQTL mega-analysis. According to the 

established data processing protocol, gene expression and genotype data of the GTEx 

project were prepared to build an in-house database, which includes data of 48 

different tissues and cells. This database was helpful to support ongoing projects at 

the Institute of Human Genetics and to generate new hypotheses. In a further project, 

an eQTL database including 314 retinal tissue samples from three independent study 

sites was generated and analysed in regard to multiple complex phenotypes. The large 

datasets were established to enable new insight into the aetiology of AMD, a complex 

eye disease with a strong genetic background. Besides the identification of gene 

regulatory functions within AMD-associated loci, a new hypothesis regarding the 

ARMS2-HTRA1 locus was generated and evaluated experimentally using genome 

editing via the CRISPR/Cas9 technology. In a final project of this thesis, machine 

learning was applied to allow an unbiased investigation into AMD genetics. This 

analysis resulted in a list of 106 AMD-associated genes potentially involved in various 

molecular pathways throughout the whole body. 

The analysis of gene expression in single tissues revealed that many genes are 

genetically regulated and that the number of eGenes varies between tissues and 

databases. For example, 31.6 % of all expressed genes in the liver eQTL database 

were eGenes (7,612 of 24,123), whereas in the retinal eQTL database this was the 

case for 55.9 % (9,733 of 17,405).  
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A more detailed investigation of the liver eQTL database revealed that single studies 

showed remarkably less eGenes in comparison to the combined analysis. This may 

be attributable to smaller sample sizes as a correlation of sample size and the number 

of eQTL has been observed in the GTEx database (R2 = 0.83), but could also be due 

to the different data processing protocols. The four liver eQTL studies applied either 

microarrays or RNA-Seq to detect gene expression. The main difference of both 

techniques consists in the measurement type and the following quantification. 

Microarrays compare fluorescence signals of single probes with a given reference on 

the same chip, whereas RNA-Seq quantifies short reads and assembles them to 

transcripts, which requires a normalisation for each sample on the same flow cell. 

Independently from the measurement technique, gene expression data need always 

to be normalised to enable the comparison of different samples, even within the same 

dataset. This process complicates the evaluation of eQTL and their respective effect 

size, because an effect size of one dataset is often not comparable to effect sizes in 

other studies. For example, the eVariant rs7803454 regulates gene expression of 

PILRB in the liver database (effect size: 0.251) and the retinal eQTL database (effect 

size: 0.785), while it is impossible to make implications whether the effect is stronger 

in one of the tissues in comparison to the other. Several strategies could be applied to 

normalise effect sizes: (1) compare effect sizes to known physiological effects, or (2) 

scale gene expression values to a defined mean and SD. The first approach could be 

applied based on the eQTL rs10922109 – CFHR1 (effect size: 0.992, liver eQTL 

database) as several studies showed that rs10922109 shares a haplotype with the 

deletion of the genes CFHR1 and CFHR3 [123]. However, CFHR1 and CFHR3 are not 

ubiquitously expressed and defining an appropriate physiological effect as reference 

is challenging. The second approach was applied to compare the different tissues of 

the GTEx project, since exactly the same data measurement and processing protocol 

was used for all samples. However, the normalisation processes before eQTL 

calculation may always influence the comparability of effect sizes between datasets. 

Nevertheless, the effect direction seems to be a valuable criterion to evaluate eQTL 

with respect to their potential physiological impact because its algebraic sign is 

independent of gene expression processing. 

Furthermore, the measurement of gene expression in 314 retinal tissue samples 

originating from three independent study sites revealed that 2,412 genes were 

exclusively detected in only one or two of the studies. It is important to remark, that 
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even if comparable measurement methods and the exact same raw data analysis 

pipeline were applied, hidden batch effects may influence results in single datasets 

[124,125]. Therefore, data of one study site should always be assessed in comparison 

with other datasets, to avoid at best the detection of false positive results. Alternatively, 

false positive findings can be minimised by correcting for multiple testing. The 

investigation of local eQTL in retina for example required adjustment for over 108.8 

million tests. So far, there is no gold standard for this procedure although several 

different adjustment approaches including Bayesian methods, permutation testing, and 

FDR calculation, are well accepted [126]. Adjustment for multiple testing gets even 

more complicated due to small eQTL effect sizes and the high variability of gene 

expression values between samples. All presented results in this thesis were based 

on stringent FDR thresholds to minimise detection of false positives, although some 

effects might remain unnoticed. 

As a first take home message, the comparison of effect sizes should always be 

performed with caution and should rather focus on effect directions, since these are 

independent of measurement and normalisation methods. Furthermore, combining 

single eQTL studies with further datasets omits findings caused by hidden confounders 

as well as batch effects and even enhances the potential to detect more effects 

because of the higher sample size. 

Evaluating the functional impact of eQTL is a highly discussed area facing several 

potential limitations: (1) mRNA abundance is only partly correlated with protein levels 

[40], (2) eQTL are frequently measured in post mortem tissue, which might not reflect 

the in vivo situation [127], (3) LD structures complicate the identification of true causal 

variants [128,129], and (4) the mechanisms underlying the eQTL signals often remain 

elusive [39]. Addressing these questions requires further methods and model systems. 

One of the most recent developments in the genome-editing field was the introduction 

of the CRISPR/Cas9 system, which enables targeted alteration of DNA sequences. In 

this study two strategies were applied to investigate experimentally gene expression 

regulation events, identified in the 10q26 (ARMS2-HTRA1) locus. First, two sgRNAs 

combined with a Cas9 endonuclease expression cassette were transfected into 

HEK293T cells to introduce the genomic deletion of the 5,196 bp “minimal haplotype” 

region defined by Grassmann et al. (2017) [25]. Thereafter, the deletion was 

successfully detectable via PCR reactions based on genomic DNA. Nevertheless, 
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gene expression of the previously bioinformatically predicted target genes showed no 

difference in modified single cell clones. The second approach aimed to enhance the 

computationally predicted effects using the dCas9-VPR construct generated by 

Chavez et al. (2015) [66]. The required protocol was first established in HEK293T cells 

by replicating the findings of Chavez et al. After generating a 113-fold enhancement of 

MIAT expression, dCas9-VPR was also applied in the minimal haplotype region at 

10q26. Again, no alterations in gene expression of the predicted target genes were 

observed.  

The failed replication of the bioinformatical hypothesis may be attributable to various 

reasons. The immortalised HEK293T cell line was chosen because of its comparably 

simple handling and the known high transfection efficiency. However, it is derived from 

embryonic kidney cells and might not reflect the physiological background of the GTEx 

post mortem samples. It was further seen as a promising model system because the 

observed eQTL were traceable in many tissues and most of the rs3750846-associated 

eGenes were known to be expressed in HEK293T cells. Another complication may be 

caused by the complexity of the minimal haplotype since it contains a 3,105 bp 

genomic repeat region harbouring multiple short interspersed nuclear elements 

(SINEs). This area is not specifically targetable by sgRNAs because genome editing 

might also affect additional loci. Furthermore, other studies previously reported gene 

expression regulation events caused by SINEs [130–132]. In addition, the minimal 

haplotype region is poorly covered by databases concerning chromatin conformation 

and accessibility [133], which could reveal potential mechanisms causing the distant 

eQTL effects. In general, prediction of the introduced molecular alterations caused by 

the deletion of the minimal haplotype region is challenging because the effect sizes of 

the beforehand calculated eQTL cannot be included in the evaluation. eQTL provide 

information about changes in gene expression based on allelic differences of specific 

variants. Deleting the whole genomic region around the variant generates a situation 

which is therefore not covered by eQTL. The affected gene regulation network might 

be seriously altered, whereby compensatory effects could also occur, especially if 

important pathways like the complement system are involved [134]. 

The very first successful in vitro CRISPR/Cas9 application investigating local eQTL 

was published in 2019 by Schrode and colleagues [68]. They altered the eVariant 

rs4702 in NGN2 excitatory neurons derived from human induced pluripotent stem cells 
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and replicated a beforehand identified eQTL in brain tissue [135]. The allelic 

conversion of rs4702 from AA to GG enabled to further explore the eQTL driving 

mechanisms in this locus and to assess its functional consequences. Nevertheless, 

allelic conversion was so far only applied to one specific local eQTL and its success 

rate might depend on the investigated genomic region and the respective haplotype 

structure. Another promising approach to explore eQTL in vitro and to resolve LD 

structures is based on cloning short genomic sequences around eVariants in front of a 

minimal promoter followed by a barcoded open reading frame. The generated 

constructs are then introduced into cultured cells, which are incubated for several 

hours. Next, DNA and RNA are isolated and compared to each other. The ratio of both 

provides information regarding the transcriptional influence of the eVariant. This 

approach can be further applied considering different alleles and various variants in 

one locus to resolve LD structures and to accurately identify regulatory DNA motifs. 

Ulirsch et al. first described this protocol to shed light on GWAS variants of red blood 

cell traits and called it massively parallel reporter assay [129].  

Altogether, developing methods for the functional validation of eQTL is highly relevant 

because eQTL do often not allow direct implications on the underlying biological 

mechanisms. Genome editing techniques enable targeted modification of genomic 

DNA and facilitate the generation of new model systems. Nevertheless, validating 

distant eQTL remains a complex task, which was not achieved so far. The generated 

hypothesis regarding the ARMS2-HTRA1 locus requires further investigations. This 

might be achieved with the help of other eQTL databases and by refinement of the 

applied in vitro models. 

Besides the identification of rs3750846 in the ARMS2-HTRA2 locus, Fritsche et al. 

(2016) detected 51 additional AMD-associated IHs distributed over 33 loci. Many of 

the 18 secondary but independent signal variants in a respective locus showed very 

low MAFs (< 1 %) and are usually not covered in other studies due to MAF thresholds 

or unreliable imputation. At first, investigation of potential disease relevant gene 

expression regulatory events was performed by searching eQTL databases for 

disease-associated variants. In case of AMD, 31 respectively 41 IHs were covered in 

the generated liver and retina databases. Eight IHs, distributed over 5 loci, were 

eVariants in liver and regulated the expression of altogether 15 unique eGenes. In 

contrast, seven IHs, each positioned in another locus, regulated 13 unique eGenes in 
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retinal tissue. Compared to retina, 6 AMD-associated variants were exclusively 

eVariants in liver tissue: rs10922109 (IH 1.1), rs570618 (IH 1.2), rs61818925 (IH 1.6), 

rs2043085 (IH 23.1), rs2070895 (IH 23.2), and rs17231506 (IH 24.2). These eVariants 

regulate the expression of 10 eGenes, with 5 eGenes known to be involved in 

complement activation (CFH, CFHR1, CFHR4, CFHR3, and CFHR5) and two genes 

being relevant for HDL metabolism (LIPC and CETP). Notably, the liver constitutes the 

main tissue for synthesis of systemic complement factors and blood lipids [136–138]. 

In contrast, a general interpretation of the five IHs being an eVariant in retinal but not 

in liver tissue remains complex, since no clearly shared pathways are detectable 

between the genes HLA-DQB1, TSBP1-AS1, BX842242.1, AC009779.3, MT3, 

RSPRY1, GNAO1, and TMEM199. Interestingly, two IHs are eVariants in both 

databases: rs6565597 (IH 27) regulates three genes in liver (TSPAN10, ACTG1, and 

ANAPC11) and one in retinal tissue (ARL16). The second shared eVariant rs7803454 

(IH 11) regulates the genes PILRA and PILRB with the same effect direction in both 

organs and two further genes exclusively in retinal tissue: STAG3L5P and ZCWPW1. 

PILRA and PILRB proteins are known to function as antagonists within the PTPN6 

pathway and have been previously investigated in the context of AD [139,140]. 

Remarkably, Kikuchi et al. (2019) identified chromatin looping as a key event for gene 

expression regulation in this locus [141].  

In general, it is recommended to investigate gene expression regulation in tissues, 

which are mechanistically relevant for the disease of interest [54]. AMD is a disease of 

the posterior pole and it is widely anticipated that the choroid, the RPE, and the retina 

are mainly involved in pathogenic processes concerning late-stage AMD [142]. 

Regarding these tissues, to-date solitary expression data of the retina are available in 

large scale and only 7 of the 52 (13.5 %) AMD-associated IHs were eVariants in the 

results presented in this thesis. In contrast, a recent study regarding schizophrenia, 

obviously a brain-related disease, revealed that 51 of 106 (48.1%) schizophrenia-

associated GWAS lead variants are eVariants in brain tissue [143]. In consequence, 

the rarely observed gene expression regulation by AMD-associated variants in retinal 

tissue raises the hypothesis that the retina is not the primary site of AMD pathology. 

However, no conclusion can be drawn for the choroid or the RPE since no eQTL data 

regarding these tissues are available to-date. 
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Furthermore, gene expression regulation effects occurring in single tissues are difficult 

to interpret since most proteins are only characterised regarding their general function. 

Information about potential tissue-specific interaction partners or molecular roles 

remains elusive. Additionally, proteins often show different tissue- and cell type-

specific isoforms, which are again rarely characterised.  

In case of AMD, retina-specific regulation of gene expression was only rarely observed 

in this study. In contrast, many changes in expression were detected in pathways 

relevant for the many bodily cells or tissues, like the complement and the blood lipid 

system. For these reasons, an alternative approach was used to elucidate the potential 

role of AMD-associated variants in AMD aetiology. Instead of investigating tissue-

specific eGenes, a TWAS was performed to identify significantly AMD-associated 

genes in multiple tissues. The usefulness of TWAS was already shown for various 

complex phenotypes, like pancreatic cancer [144], lung cancer [145], or autism 

spectrum disorder [146]. In the present study, a TWAS was performed based on the 

individual genetic background of 16,144 late-stage AMD cases and 17,832 non-AMD 

controls, a dataset from the IAMDGC. This method represents an unbiased approach 

since gene expression imputation was not informed about the AMD status. In addition, 

the analysis was not restricted to AMD-associated IHs, but instead considered all 

possible local gene expression regulation events. This, in the end, enabled to identify 

genes associated with AMD genetics, which were not located in significant GWAS loci 

of previous studies. The TWAS including 27 tissues identified 106 genes, being AMD-

associated in at least one tissue. Remarkably, 10 of 15 (66.7 %) eGenes in the liver 

eQTL database regulated by AMD-associated variants were also identified by the 

TWAS analysis. Three of these genes (F13B, ALDH1A2, and LIPC) were exclusively 

AMD-associated in liver tissue. This underscores the validity of the TWAS approach to 

also cover single eQTL findings. However, it should be mentioned that a small 

proportion (83 of 588, 14.1 %) of the liver database samples were included in both 

studies, the liver eQTL mega-analysis and the TWAS. 

Nevertheless, the TWAS approach also has limitations, which become particularly 

apparent in the ARMS2-HTRA1 locus, since ARMS2 expression was found to be 

associated with AMD. As described earlier, several studies point to ARMS2 expression 

being potentially not causative for the AMD GWAS signal at this locus, since 

rs2736911, which results in a truncated ARMS2 protein, was never found to be 
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associated with AMD [22,147]. These findings are not recognised by the TWAS 

because of the extensive LD structure and the highly significant AMD-associations of 

variants in this locus. The results regarding gene expression regulation should 

therefore always be evaluated in the context of other studies and experiments. 

Furthermore, the TWAS did not include RPE or choroid tissue, which might be highly 

relevant for AMD pathology. 

Altogether, 54 genes were AMD-associated in multiple tissues, which points to non-

tissue-specific processes and pathways. However, a pathway enrichment analysis of 

the 54 genes failed to identify prominent processes. Quite the contrary, a large number 

of AMD-associated genes seem not to exclusively take part in the highly discussed 

AMD relevant pathways: (1) the complement system, (2) blood lipid levels, or (3) the 

extracellular matrix, as proposed by other studies [12,18].  

It is important to note that the TWAS and all eQTL studies in this thesis were based on 

healthy tissue and do not allow implications on disease mechanisms after AMD onset. 

Especially since cell type compositions may change, as occurring in AMD-associated 

retinal degeneration, which could result in different expression profiles throughout AMD 

stages. This was already observed for RPE and choroid tissue via single-cell RNA-Seq 

[148]. Interestingly, Ratnapriya et al. (2019) found no significant difference in gene 

expression of AMD affected and healthy donor eyes and therefore analysed eQTL in 

a merged dataset [70]. However, the undetectable differences in gene expression may 

be contributable to the normalisation methods, which were based on an extensive list 

of 3,804 “housekeeping” genes [149]. Nevertheless, the 54 AMD-associated genes 

provide help to generate new hypotheses regarding AMD aetiology and highlight, that 

individuals with high genetic burden for AMD are expected to show gene expression 

changes across multiple tissues outside the retina. 

In line with the identification of genes associated with AMD genetics in multiple tissues 

are the discoveries of several studies, which found correlations between the genetic 

risk of AMD and other complex phenotypes [121,150,151]. This indicates, that genetic 

variants which contribute to AMD risk potentially have pleiotropic effects. Therefore, a 

follow up study based on the TWAS results analysed the 106 AMD-associated genes 

according to a physical overlap of their genomic position with GWAS loci of 82 complex 

phenotypes [122]. This comparison highlights 50 of 106 (47.2 %) genes that have 

relevance for AMD aetiology and that potentially affect at least one other phenotype. 



Discussion 

83 

Of course, co-localization with a GWAS signal is not a functional evidence as such, but 

these genes are a priori candidate genes to be relevant for disease formation of other 

phenotypes besides AMD. Altogether, 15 AMD-associated genes are located in loci 

associated with neurological diseases. 10 genes overlap with GWAS loci of metabolic 

traits and nine genes with autoimmune diseases [122]. 

A remarkable observation is that only 2 AMD-associated genes (RDH5 and COL4A3) 

overlapped with loci of other complex eye diseases and traits [122]. This finding reflects 

the results of the retinal eQTL database. Only three eGenes of AMD-associated 

variants are also regulated by GWAS variants of other ocular phenotypes. Kiel et al. 

(2017) made the observation that genes associated with AMD in general do not overlap 

with genes relevant for other retinopathies [152]. Taken together, genes which 

expression is associated with AMD genetics often show an altered expression in 

various tissues. Furthermore, these genes are frequently located in GWAS loci of other 

complex phenotypes or traits. 

In conclusion, three new comprehensive databases were generated in this thesis to 

allow the investigation of gene expression regulation based on genetics of complex 

diseases and traits. The first database represents a meta study of four earlier published 

datasets from liver tissue and established an up-to-date data processing and 

normalisation protocol. This enabled the re-analysis of data collected up to ten years 

ago. The second database represents the largest eQTL study in healthy retinal tissue 

to-date. Both data repositories identified thousands of regulatory effects and were 

published in open access journals to enable extensive evaluations regarding diverse 

hypotheses. Furthermore, a third database including multiple tissues was processed 

to support recent and future projects at the Institute of Human Genetics Regensburg.  

All generated data in this thesis were evaluated in the context of AMD genetics. Taken 

together, AMD-associated variants have been shown to regulate gene expression of 

numerous genes. Remarkably, many of these genes are genetically regulated in 

multiple tissues, which raises the hypothesis that a large part of AMD risk is 

accompanied by differential gene expression throughout the entire body. Furthermore, 

AMD-associated genes seem to be also relevant for many other complex phenotypes, 

which allows to put forward new hypotheses about shared mechanisms in AMD 

aetiology. 
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We should be aware, however, that gene expression is only one molecular phenotype 

of interest to investigate for disease-associated variants. Presently, various new QTL 

studies are emerging [153]. Moreover, novel model systems and experimental setups 

are required to validate bioinformatical findings. Especially targeted genome editing 

opened new avenues to investigate genetically regulated genes and processes. 
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Supplementary Table 1: Study and sample summary of the in-house GTEx v7 database 

Tissue 

Sample 
size 

Expressed 
genes 

(RPKM > 1) 

Q-value < 0.05 Q-value < 0.001 

eQTL 
eVarian

t 
(unique) 

eVariant 
(multiple 
genes) 

eGenes 
(unique) 

eQTL 
eVariant 
(unique) 

eVariant 
(multiple 
genes) 

eGene 
(unique) 

Adipose subcutaneous 321 32,045 954,180 584,487 167,434 16,715 461,840 289,459 79,581 4,567 

Adipose visceral omentum 264 31,581 595,155 388,048 97,814 12,853 283,576 183,326 44,112 3,127 

Adrenal gland 148 28,134 331,389 232,064 48,876 9,491 145,933 96,500 21,272 2,124 

Artery aorta 232 29,666 654,296 426,728 105,377 13,631 305,367 199,792 47,714 3,510 

Artery coronary 124 28,114 226,321 159,227 31,389 7,843 107,489 67,125 14,553 1,697 

Artery tibial 325 29,980 823,197 536,865 140,427 15,255 393,223 264,563 66,432 4,071 

Brain amygdala 80 26,228 145,176 103,764 12,462 5,855 56,194 34,406 4,149 1,303 

Brain anterior cingulate cortex 102 27,042 188,474 138,586 20,135 6,898 77,660 51,462 7,277 1,471 

Brain caudate basal ganglia 129 28,780 266,517 194,531 31,300 9,606 119,976 76,873 12,115 2,185 

Brain cerebellar hemisphere 114 28,521 398,574 256,283 54,530 11,613 167,590 99,206 23,458 2,750 

Brain cerebellum 144 30,637 563,368 359,234 87,436 14,881 245,695 147,380 35,925 3,917 

Brain cortex 124 28,410 331,768 234,420 43,009 11,836 135,445 91,158 14,818 3,007 

Brain frontal cortex 112 27,599 222,449 160,231 27,499 8,569 94,837 61,781 10,581 1,869 

Brain hippocampus 98 27,336 157,948 112,752 16,450 5,463 71,681 43,024 7,061 1,173 

Brain hypothalamus 101 28,334 173,870 122,671 20,117 6,575 78,546 47,527 8,844 1,376 

Brain nucleus accumbens basal 
ganglia 

118 28,500 232,540 162,429 27,222 8,372 96,635 64,121 11,170 1,815 

Brain putamen basal ganglia 101 26,761 201,573 141,451 20,410 7,487 92,215 53,811 9,047 1,572 

Brain spinal cord cervical 74 26,519 130,781 96,802 12,381 5,272 58,247 34,556 5,167 1,179 

Brain substantia nigra 72 25,943 113,778 84,726 10,280 5,143 46,369 27,536 4,707 1,090 

Breast mammary tissue 206 32,201 462,591 303,878 74,630 11,010 207,952 136,398 32,067 2,539 

Cells EBV-transformed 
lymphocytes 

93 24,521 210,273 157,696 23,797 7,673 80,240 56,250 9,685 1,901 
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Cells transformed fibroblasts 251 26,660 552,611 375,885 86,698 11,266 254,916 175,691 36,856 2,875 

Colon Sigmoid 184 29,760 416,410 282,974 63,590 11,670 183,867 122,002 27,729 2,835 

Colon transverse 204 31,085 378,260 256,162 60,334 9,659 177,658 117,144 26,195 2,196 

Esophagus gastroesophageal 
junction 

187 29,224 448,797 299,682 70,054 11,832 204,653 134,764 29,459 2,880 

Esophagus mucosa 310 31,367 758,704 489,631 122,935 15,218 363,028 235,892 58,529 4,027 

Esophagus muscularis 280 29,935 823,304 529,158 140,087 15,161 394,017 258,413 62,865 4,106 

Heart atrial appendage 224 29,081 518,888 348,663 82,143 11,972 240,167 160,478 38,948 2,912 

Heart left ventricle 233 26,849 432,501 294,186 65,593 10,348 206,252 136,333 31,253 2,416 

Liver 131 26,072 207,257 148,804 26,972 7,089 94,855 59,750 13,002 1,560 

Lung 327 34,430 797,053 491,156 133,491 15,342 383,640 234,379 64,676 3,937 

Minor salivary gland 72 28,031 123,766 90,070 12,902 5,963 51,200 30,727 5,405 1,387 

Muscle skeletal 418 27,964 843,838 539,895 143,661 14,397 413,546 268,277 68,225 3,873 

Nerve tibial 305 33,801 1,085,095 665,219 191,680 18,647 518,420 327,117 90,081 5,408 

Ovary 96 28,610 200,460 139,210 24,185 7,107 85,188 51,142 10,612 1,588 

Pancreas 174 27,931 524,816 363,890 81,784 12,348 235,522 159,041 34,454 3,245 

Pituitary 148 32,261 398,450 259,858 61,107 11,772 175,493 109,696 25,661 2,687 

Prostate 107 30,583 215,608 147,542 28,252 7,306 90,094 56,577 11,928 1,598 

Skin not sun exposed 
Suprapubic 

279 33,014 743,789 476,612 123,179 15,395 349,547 224,596 58,678 3,929 

Skin sun exposed lower leg 365 33,940 1,028,424 623,890 183,930 18,133 492,538 310,346 87,672 5,037 

Small intestine terminal ileum 102 29,667 154,391 108,823 20,377 5,741 62,724 38,319 8,279 1,159 

Spleen 114 29,403 345,287 249,183 48,509 10,444 142,080 97,621 18,226 2,592 

Stomach 190 30,497 334,985 230,703 46,490 9,547 152,316 100,470 20,160 2,128 

Testis 197 42,810 599,548 403,791 94,666 18,773 263,356 180,254 37,793 4,768 

Thyroid 342 34,789 1,244,473 737,431 224,902 19,890 605,649 369,950 107,122 5,886 

Uterus 81 27,613 158,240 107,643 17,652 6,279 66,922 36,792 7,528 1,514 

Vagina 88 29,030 150,503 107,535 14,549 6,135 69,917 40,730 7,561 1,585 

Whole blood 323 29,151 475,540 313,432 76,710 11,047 219,796 147,379 33,798 2,666 
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Supplementary Table 2: Statistically significant AMD-associated genes (Q-Value < 0.001) of the TWAS analysis 

Gene Gene position [hg19] AMD locus* 

Gene 
expressed in 

tissues 
Predictable 

tissues** 

AMD 
associated 

(FDR < 
0.001) Mean beta (SD) Strongest effect tissue*** 

C1orf21 1:184356192-184598154 none 27 15 1 -0.028 Liver 

KCNT2 1:196194909-196578355 1 27 6 6 -0.052 (0.014) Nerve Tibial 

CFH 1:196621008-196716634 1 27 12 11 -0.052 (0.049) Nerve Tibial 

CFHR3 1:196743925-196763203 1 21 20 20 0.117 (0.055) Liver 

CFHR1 1:196788887-196801319 1 25 15 14 0.105 (0.084) Liver 

CFHR4 1:196819371-196888102 1 2 2 2 0.132 (0.128) Liver 

F13B 1:197008321-197036397 1 3 1 1 0.025 Testis 

ASPM 1:197053258-197115824 1 24 2 1 0.036 Skin Not Sun Exposed Suprapubic 

ZBTB41 1:197122810-197169672 1 27 5 5 0.03 (0.023) Brain Cerebellum 

RP11.332L8.1 1:197191352-197192385 1 22 1 1 -0.017 Artery Tibial 

DENND1B 1:197473878-197744826 1 27 6 1 0.007 Esophagus Mucosa 

LHX9 1:197881037-197904608 1 6 2 1 -0.035 Liver 

CD55 1:207494853-207534311 none 27 17 3 -0.016 (0.003) Esophagus Muscularis 

CR2 1:207627575-207663240 none 15 3 1 -0.013 Muscle Skeletal 

NOSTRIN 2:169643049-169722024 none 27 18 1 -0.015 Esophagus Mucosa 

PPIL3 2:201735630-201754026 none 27 27 16 0.037 (0.004) Adipose Subcutaneous 

NDUFB3 2:201936156-201950473 none 27 6 4 0.005 (0.001) Adipose Subcutaneous 

COL4A3 2:228029281-228179508 2 27 7 2 -0.023 (0.011) Nerve Tibial 

TBC1D23 3:99979844-100044095 4 27 13 4 -0.017 (0.013) Adrenal Gland 

NIT2 3:100053545-100075710 4 27 17 5 -0.013 (0.005) Lung 

RP11.114I8.4 3:100080031-100080481 4 27 8 2 0.009 (0.001) Thyroid 

TOMM70A 3:100082275-100120036 4 27 14 2 0.013 (0.012) Nerve Tibial 

TMEM45A 3:100211463-100296288 4 27 11 1 -0.011 Adrenal Gland 

CCDC109B 4:110481361-110609784 5 27 3 1 -0.012 Adipose Visceral Omentum 
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CASP6 4:110609875-110624739 5 27 5 3 0.021 (0.006) Heart Atrial Appendage 

PLA2G12A 4:110631145-110651233 5 27 15 13 0.021 (0.007) Esophagus Mucosa 

CFI 4:110661852-110723335 5 27 2 1 -0.01 Adipose Subcutaneous 

ADAM19 5:156822607-157002783 none 27 21 12 -0.013 (0.006) Adipose Subcutaneous 

IP6K3 6:33689444-33714762 none 27 17 1 0.019 Cells Transformed fibroblasts 

PPP2R5D 6:42952237-42979831 9 27 7 2 -0.013 (0.004) Stomach 

ZKSCAN1 7:99613204-99639312 11 27 8 1 -0.007 Artery Aorta 

STAG3 7:99775186-99818169 11 27 10 1 -0.007 Adipose Subcutaneous 

PMS2P1 7:99927805-99939531 11 27 17 14 -0.013 (0.005) Testis 

STAG3L5P 7:99934035-99947781 11 27 27 27 0.039 (0.006) Artery Tibial 

PILRB 7:99949799-99965356 11 27 27 27 0.042 (0.004) Adipose Subcutaneous 

PILRA 7:99971068-99997719 11 27 26 26 0.038 (0.006) Brain Cerebellum 

ZCWPW1 7:99998476-100026415 11 27 9 3 0.016 (0.005) Nerve Tibial 

TSC22D4 7:100060982-100076902 11 27 14 8 0.014 (0.007) Thyroid 

NYAP1 7:100081550-100092422 11 27 7 3 -0.017 (0.007) Skin Sun Exposed Lower leg 

RP11.325F22.5 7:104558007-104567077 10 23 3 1 0.013 Adipose Subcutaneous 

RP11.325F22.2 7:104581510-104602781 10 25 10 1 0.003 Adipose Visceral Omentum 

TNFRSF10A 8:23048189-23082639 12 27 20 14 -0.018 (0.008) Cells Transformed fibroblasts 

TRPM3 9:73143979-74061751 14 18 6 1 0.022 Testis 

RORB 9:77112281-77308093 13 24 4 1 -0.01 Cells Transformed fibroblasts 

TGFBR1 9:101866320-101916474 15 27 4 1 0.009 Whole Blood 

ZFP37 9:115800660-115819039 none 27 10 1 -0.017 Adipose Subcutaneous 

FGFR2 10:123237848-123357972 18 27 5 1 -0.021 Skin Not Sun Exposed Suprapubic 

ATE1 10:123499939-123688316 18 27 20 2 0.024 (0.009) Stomach 

TACC2 10:123748709-124014060 18 27 13 1 -0.034 Breast Mammary Tissue 

BTBD16 10:124030821-124097677 18 25 23 14 0.02 (0.033) Brain Cerebellum 

PLEKHA1 10:124134212-124191867 18 27 19 18 -0.051 (0.033) Brain Cerebellum 

ARMS2 10:124214169-124216868 18 26 14 14 -0.098 (0.09) Testis 

HTRA1 10:124221041-124274424 18 27 9 7 0.031 (0.068) Testis 

DMBT1 10:124320181-124403252 18 16 3 3 -0.02 (0.008) Skin Sun Exposed Lower leg 
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RP11.318C4.2 10:124516210-124558696 18 5 3 2 -0.011 (0.003) Skin Sun Exposed Lower leg 

RP11.107C16.2 10:124578332-124585965 18 6 2 1 -0.016 Skin Sun Exposed Lower leg 

RP11.564D11.3 10:124639246-124658230 18 18 3 1 0.012 Brain Cerebellum 

IKZF5 10:124750322-124768333 18 27 8 1 -0.031 Stomach 

ACADSB 10:124768495-124817827 18 27 6 1 -0.014 Adipose Subcutaneous 

RP11.777F6.3 11:87034801-87035401 none 27 2 1 0.007 Testis 

CEP57 11:95523129-95565857 none 27 23 3 -0.02 (0.005) Skin Not Sun Exposed Suprapubic 

AP001877.1 11:95556681-95557336 none 27 24 8 -0.016 (0.006) Nerve Tibial 

BLOC1S1 12:56109828-56113871 19 27 12 1 0.006 Muscle Skeletal 

RDH5 12:56114151-56118489 19 27 23 17 -0.018 (0.005) Lung 

B3GALTL 13:31774073-31906413 21 27 21 5 0.013 (0.005) Heart Left Ventricle 

PLEKHH1 14:68000018-68056027 22 27 14 2 0.016 (0.007) Artery Aorta 

RIN3 14:92980118-93155339 none 27 13 1 0.018 Colon Sigmoid 

ALDH1A2 15:58245622-58790065 23 27 6 1 0.01 Liver 

LIPC 15:58702768-58861151 23 24 15 1 0.037 Liver 

ULK3 15:75128457-75135538 none 27 17 1 -0.01 Lung 

USP7 16:8985951-9058371 none 27 3 1 0.014 Muscle Skeletal 

MT1DP 16:56677617-56678698 24 27 4 1 0.014 Lung 

HERPUD1 16:56965960-56977798 24 27 8 2 -0.009 (0.004) Esophagus Mucosa 

CETP 16:56995762-57017757 24 27 5 4 -0.017 (0.006) Colon Transverse 

NLRC5 16:57023397-57117443 24 27 9 2 -0.037 (0.019) Cells Transformed fibroblasts 

GPR56 16:57644564-57698944 24 27 2 1 -0.009 Breast Mammary Tissue 

BCAR1 16:75262928-75301951 25 27 11 2 -0.011 (0.001) Brain Cerebellum 

CFDP1 16:75327596-75467383 25 27 25 4 -0.01 (0.006) Esophagus Muscularis 

TMEM170A 16:75476952-75499395 25 27 10 2 0.019 (0.001) Adrenal Gland 

TMEM97 17:26646121-26655351 26 27 12 2 0.016 (0.001) Breast Mammary Tissue 

POLDIP2 17:26674036-26684545 26 27 15 3 0.011 (0.01) Pituitary 

TMEM199 17:26684604-26690705 26 27 14 10 0.012 (0.004) Skin Sun Exposed Lower leg 

C17orf70 17:79506911-79520987 27 27 3 1 0.008 Artery Tibial 

NPLOC4 17:79523913-79604172 27 27 24 1 0.022 Testis 
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PDE6G 17:79617489-79630142 27 27 4 1 -0.025 Testis 

AC006273.5 19:782755-785080 29 27 2 1 0.007 Skin Not Sun Exposed Suprapubic 

MED16 19:867962-893218 29 27 9 3 0.022 (0.004) Muscle Skeletal 

GRIN3B 19:1000418-1009646 29 27 26 2 -0.012 (0.002) Whole Blood 

CNN2 19:1026298-1039068 29 27 13 1 -0.029 Whole Blood 

ABCA7 19:1040102-1065568 29 27 24 2 -0.028 (0.01) Whole Blood 

CTC.503J8.6 19:6210390-6212492 28 27 4 1 -0.01 Artery Tibial 

GTF2F1 19:6379580-6393992 28 27 15 1 -0.011 Colon Sigmoid 

GPR108 19:6729925-6737614 28 27 27 22 0.031 (0.008) Thyroid 

RELB 19:45504688-45541452 30 27 1 1 -0.008 Lung 

BLOC1S3 19:45682003-45685059 30 27 4 1 0.009 Esophagus Muscularis 

DMPK 19:46272975-46285810 30 27 16 1 0.008 Stomach 

FUT2 19:49199228-49209207 none 27 11 1 -0.009 Lung 

MAMSTR 19:49215999-49222978 none 27 9 1 0.007 Adrenal Gland 

LILRA3 19:54799854-54809952 none 26 23 1 -0.016 Colon Sigmoid 

SPATA25 20:44515128-44516274 31 27 5 1 0.013 Adipose Visceral Omentum 

NEURL2 20:44517264-44517526 31 27 7 1 0.022 Adipose Visceral Omentum 

PLTP 20:44527460-44540794 31 27 23 10 0.017 (0.006) Adipose Visceral Omentum 

SLC12A5 20:44651569-44688784 31 20 10 9 -0.011 (0.014) Lung 

PICK1 22:38452318-38471708 34 27 14 1 -0.015 Colon Sigmoid 

BAIAP2L2 22:38480896-38506677 34 27 7 2 -0.023 (0.01) Esophagus Mucosa 

CBY1 22:39052645-39069859 34 27 16 1 -0.009 Liver 

* Locus number according to Fritsche et al. (2016) [18]; ** Number of tissues in which gene expression is genetically regulated and imputable according to PredictDB 
and Gamazon et al. (2015) [53]; *** Tissue which showed the highest absolute beta 
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