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Abstract

In nuclear medicine, two frequent applications of 177Lu therapy exist: DOTATOC
therapy for patients with a neuroendocrine tumor and PSMA thearpy for prostate
cancer. During the therapy a pharmaceutical is injected intravenously, which at-
taches to tumor cells due to its molecular composition. Since the pharmaceutical
contains a radioactive 177Lu isotope, tumor cells are destroyed through irradiation.
Afterwards the substance is excreted via the kidneys. Since the latter are very sen-
sitive to high energy radiation, it is necessary to compute exactly how much ra-
dioactivity can be administered to the patient without endangering healthy organs.
This calculation is called dosimetry and currently is made according to the state
of the art MIRD method. At the beginning of this work, an error assessment of the
established method is presented, which has determined an overall error of 25% in
the renal dose value. The presented study improves and personalizes the MIRD
method in several respects and reduces individual error estimates considerably.

In order to be able to estimate of the amount of activity, first a test dose is
injected to the patient. Subsequently, after 4h, 24h, 48h and 72h SPECT images
are taken. From these images the activity at each voxel can be obtained a specified
time points, i. e. the physical decline and physiological metabolization of the
pharmaceutical can be followed in time. To calculate the amount of decay in each
voxel from the four SPECT registrations, a time activity curve must be integrated.
In this work, a statistical method was developed to estimate the time dependent
activity and then integrate a voxel-by-voxel time-activity curve. This procedure
results in a decay map for all available 26 patients (13 PSMA/13 DOTATOC).

After the decay map has been estimated, a full Monte Carlo simulation has
been carried out on the basis of these decay maps to determine a related dose
distribution. The simulation results are taken as reference (“Gold Standard”) and
compared with methods for an approximate but faster estimation of the dose dis-
tribution. Recently, a convolution with Dose Voxel Kernels (DVK) has been estab-
lished as a standard dose estimation method (Soft Tissue Scaling STS). Thereby
a radioactive Lutetium isotope is placed in a cube consisting of soft tissue. Then
radiation interactions are simulated for a number of 1010 decays. The resulting
Dose Voxel Kernel is then convolved with the estimated decay map. The result is
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a dose distribution, which, however, does not take into account any tissue density
differences. To take tissue inhomogeneities into account, three methods are de-
scribed in the literature, namely Center Scaling (CS), Density Scaling (DS), and
Percentage Scaling (PS). However, their application did not improve the results
of the STS method as is demonstrated in this study. Consequently, a neural net-
work was trained finally to estimate DVKs adapted to the respective individual
tissue density distribution. During the convolution process, it uses for each voxel
an adapted DVK that was deduced from the corresponding tissue density kernel.
This method outperformed the MIRD method, which resulted in an uncertainty of
the renal dose between−42.37−10.22% an achieve a reduction in the uncertainty
to a range between −26.00%− 7.93%. These dose deviations were calculated for
26 patients and relate to the mean renal dose compared with the respective result
of the Monte Carlo simulation. In order to improve the estimates of dose distri-
bution even further, a 3D 2D neural network was trained in the second part of the
work. This network predicts the dose distribution of an entire patient. In combi-
nation with an Empirical Mode Decomposition, this method achieved deviations
of only −12.21% − 2.13% . The mean deviation of the dose estimates is in the
range of the statistical error of the Monte Carlo simulation.

In the third part of the work, a neural network was used to automatically seg-
ment the kidney, spleen and tumors. Compared to an established segmentation
algorithm, the method developed in this work can segment tumors because it uses
not only the CT image as input, but also the SPECT image.



Zusammenfassung

In der Nuklearmedizin gibt es zwei Anwendungen einer 177Lu-Therapie, zum
einen die DOTATOC-Therapie für Patienten mit einem neuroendokrinen Tumor
und zum anderen die PSMA-Thearpie für Prostatakrebs. Bei dieser Therapieform
wird intravenös ein Stoff gespritzt, welcher sich aufgrund der molekularen Zusam-
mensetzung an Tumorzellen anlagert. Da an die Moleküle ein radioaktives Lu-
Isotope gekoppelt ist, werden so Tumorzellen durch die Bestrahlung getötet. Mit
der Zeit wird der Stoff über die Nieren ausgeschieden. Da es sich bei den Nieren
um ein strahlen-sensitives Organ handelt, muss vor der Injektion genau berechnet
werden, wie viel Aktivität dem Patienten gespritzt werden kann, ohne die gesun-
den Organe zu gefährden. Diese Berechnung nennt man Dosimetrie und wird
laut Stand der Technik mittels MIRD Verfahren durchgeführt. Zu Beginn dieser
Arbeit wird eine Fehlerabschätzung der etablierten Methode vorgestellt, welche
einen Gesamtfehler von 25% beim Nierendosiswert ermittelt hat.

Um eine Abschätzung der Aktivitätsmenge treffen zu können, wird dem Pa-
tienten zunächst eine Testdosis gespritzt. Anschließend werden nach 4h, 24h, 48h
und 72h SPECT-Bilder aufgenommen. Aus den Bildern kann die Aktivität pro
Voxel zu einen gewissen Zeitpunkt abgelesen werden. Um nun aus den vier Mo-
mentaufnahmen zu berechnen, wie viel Zerfälle pro Voxel stattgefunden haben,
muss über eine Zeit-Aktivitätskurve integriert werden. In dieser Arbeit wurde
ein statistisches Verfahren entwickelt, um eine voxelweise Zeit-Aktivitätskurve
abzuschätzen und anschließend zu integrieren. Resultat dieses Verfahrens ist eine
Zerfallskarte für jeden der 26 vorhandenen Patienten (13 PSMA/13 DOTATOC).

Nachdem die Zerfallskarte berechnet wurde, kann anhand dieser eine volle
Monte Carlo Simulation erfolgen, welche eine Dosisverteilung ermittelt. Diese
wird als Gold Standard angenommen und mit den Verfahren zur schnelleren Ab-
schätzung der Verteilung verglichen. Als Standard Methode (Soft Tissue Scaling
STS) wurde eine Faltung mit einem Dose Voxel Kernel (DVK) publik. Dabei wird
in einem Würfel bestehend aus Weichteilgewebe ein Lutetium-Isotope platziert,
anschließend werden 1010 Zerfälle simuliert. Der resultierende Dose Voxel Ker-
nel wird dann mit der Zerfallskarte gefaltet. Resultat ist eine Dosisverteilung,
welche jedoch keine Dichteunterschiede berücksichtigt. Um Letztere zu berück-
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sichtigen, existieren in der Literatur drei Methoden, nämlich Center Scaling (CS),
Density Scaling (DS) und Percentage Scaling (PS). Diese erzielten jedoch in dem
in der Arbeit durchgeführten Vergleich keine Verbesserung zur STS Methode.
Um auf die jeweilige Dichteverteilung angepasste DVKs abzuschätzen, wurde
ein neuronales Netz trainiert. Dieses verwendet während des Faltungsprozess
für jeden Voxel einen anderen DVK, der für diesen Dichtekernel vorhergesagt
wurde. Durch diese Methode konnte statt −42.37% − 10.22% Abweichung in
der Nierendosis eine reduzierte Range von−26.00%− 7.93% erzielt werden. Die
Abweichungen sind ein Mittelwert über 26 Patienten und betreffen die mittlere
Nierendosis im Vergleich mit der Monte Carlo Simulation. Um die Schätzungen
der Dosisverteilung noch zu verbessern, wurde im zweiten Teil der Arbeit ein 3D-
2D-Neural-Network trainiert. Dieses Netz sagt die Ganzkörper-Dosisverteilung
eines gesamten Patienten vorher. In Kombination mit einer Empirical Mode De-
composition erzielte diese Methode Abweichungen von nur −12.21% − 2.13%.
Diese mittlere Abweichung der Dosisschätzungen liegt im Bereich des statistis-
chen Fehlers der Monte Carlo Simulation.

Im dritten Teil der Arbeit wurde ein Neuronales Netz verwendet um automa-
tisiert die Niere, Milz und Tumore zu segmentieren. Im Vergleich zu einem
etablierten Segmentierungsalgorithmus kann die in dieser Arbeit entwickelte Meth-
ode Tumore segmentieren, da sie nicht nur das CT Bild als Eingabe verwendet,
sondern auch das SPECT Bild.
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Introduction

More and more therapies with radiopharmaceuticals, labeled with beta emitting
isotopes, are established, making the need for a patient-specific dosimetry of fun-
damental importance [22, 157, 55]. With the aid of hybrid Single-Photon Emis-
sion Computed Tomography / CT (SPECT/CT) and Positron-Emission Tomogra-
phy / CT (PET/CT) imaging techniques, it is possible to obtain tissue density
information in conjunction with the distribution of radioactivity inside the human
body. The spatial resolution of nuclear medicine imaging of such activity distri-
butions is in the mm to cm range. Consequently, macroscopic non-uniformities
in the activity distribution can be detected. In [141, 53] an overview of imaging-
based patient-specific dosimetry methods is given.

First of all, a spatial distribution of radioactivity over time using the patient’s
own anatomy is needed to obtain as output the spatial distribution of absorbed
energy dose. [142, 69] A well-known dosimetry method is the calculation of
S-values according to the Medical Internal Radiation Dose Committee (MIRD)
formalism, where a standard phantom is defined [121]. The aim of this work is to
obtain a patient specific dosimetry by using Dose Voxel Kernel (DVK).

The energy dose produced in a specific volume can be calculated as the linear
superposition of contributions from each voxel (volume element) in the spatial
activity distribution treated as a radiation point source. The energy dose produced
by a radiation point source of isotropic unit activity in a homogeneous medium
of infinite extension is called a Dose Point Kernel (DPK) [119, 18]. A number of
publications compare DPK data bases generated with different Monte Carlo Simu-
lation (MC) softwares such as GATE, FULKA, MCNP4C, CGSnrc and GEANT4
[115, 22]. The generally considered tissues are bone, lung, soft tissue and water.
All data bases contain DPKs for the radioactive isotopes Iodine 131I and Yttrium
90Y . Instead of calculating a continuous DPK, a discrete DVK, also called S-voxel
kernel, can be determined [113, 114]. The voxel size can be chosen arbitrarily,
because the kernel can be scaled, as shown in [113, 125, 42]. To obtain the dis-
tribution of absorbed energy dose based on the patient’s anatomy, the decay map
has to be convolved with the DVK.

The estimation of DVKs is hardly explored in literate, yet some studies are
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reported. Dieudonne at al. [36] report a comparison of dose estimations obtained
with either a full MC simulation or by convolution with a DVK. The latter was
computed for homogeneous soft tissue only and results have been reported for
two patient specific dose estimations. In contrast, Scarinci et al. [137] com-
puted DVKs for several tissues, but did not provide any comparison to the stan-
dard MIRD method. Hence possible improvements cannot be quantified, limiting
the value of this study. Rather than computing DVKs for many tissues, results
obtained with soft tissue density kernels could be scaled according to the tissue
density under study. Along these lines, Dieudonne at al. [37] proposed that the
product of the energy dose per voxel times the mass density of that voxel should be
an invariant of the system. This proposal leads to the following density correction:

Dρ(r) · ρ(r) = DST (r) · ρST (1)

whereDST (r) = ∂E(r)/ρST∂Vvox is the dose for one voxel with volume Vvox,
centered at r = (x, y, z)T , and calculated for soft tissue as the material inside the
voxel, ρ(r) is the voxel mass density, Dρ(r) is the density-corrected voxel dose
value and ρST = 1040 kg/m3 is the mass density of soft tissue. This density scal-
ing of absorbed energy dose was demonstrated on three different clinical cases.
In each case, three different dose estimation methods were employed: a full MC
simulation of the DVK, a convolution of the TIA map with a soft tissue DVK and
finally a convolution with a density-scaled DVK

In yet another recent study, the DVKs where first scaled according to the en-
ergy dose distribution calculated in different tissues, and then convolved with the
activity distribution. The aim was to take into account interface regions, where the
mass density changes abruptly. This method is evaluated on the Zubal phantom
for three different dose distributions. [76].

Similarly, the aim of the work reported in [100] was to evaluate the appli-
cation of tissue-specific dose kernels instead of water dose kernels to improve
the accuracy of patient-specific dosimetry by taking tissue heterogeneities into
consideration. Tissue-specific DPKs and DVKs for Yttrium-90 (90Y ), Lutetium-
177 (177Lu), and Phosphorus-32 (32P ) were calculated using the MC code GATE
(version 7). The calculated DPKs for bone, lung, adipose, breast, heart, intestine,
kidney, liver, and spleen are compared with those of water. The dose distribu-
tion in normal and tumorous tissues in lung, liver, and bone of a Zubal phan-
tom was calculated using tissue-specific DVKs instead of those of water in con-
ventional methods. For a tumor defined in a heterogeneous region in the Zubal
phantom, the absorbed dose was calculated using a proposed algorithm, taking
tissue heterogeneity into account. The algorithm was validated against full MCs
and indicated that the largest differences between water and other tissue-specific
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DPKs occurred in bone, whereby the difference amounted to 90Y : 12.2± 0.6 %,
32P : 18.8 ± 1.3 %, and 177Lu : 16.9 ± 1.3 %. The second largest discrep-
ancy corresponded to the lung with 90Y : 6.3 ± 0.2 %,32 P : 8.9 ± 0.4 %, and
177Lu : 7.7 ± 0.3 %. For 90Y , the mean absorbed dose in tumorous and nor-
mal tissues was calculated using tissue-specific DVKs in lung, liver, and bone.
The results were compared with doses calculated considering the Zubal phantom
water equivalent and the relative differences were 4.50%, 0.73%, and 12.23%, re-
spectively. For the tumor in the heterogeneous region of the Zubal phantom that
includes lung, liver, and bone, the relative difference between mean calculated
dose in tumorous and normal tissues based on the proposed algorithm and the val-
ues obtained from full MC dosimetry was 5.18%. The authors concluded that their
algorithm potentially enabled patient-specific dosimetry and improved estimates
of the average absorbed dose of Yttrium-90 in a tumor located in lung, bone, and
soft tissue interface by 6.98% compared with the conventional methods.

In [93] it was pointed out that the aim of personalized radiotherapy is clearly
expressed in the EU directive 2013/59/EURATOM Article 56:

For all medical exposure of patients for radiotherapeutic purposes, exposures
of target volumes shall be individually planned and their delivery appropriately
verified taking into account that doses to non-target volumes and tissues shall be
as low as reasonably achievable and consistent with the intended radiotherapeutic
purpose of the exposure.

This statement formulates the goals onto which this thesis will also concen-
trate, namely first an individual planning of radiation energy delivery and second
a verification of the energy dose absorbed in the target volume.



16 CONTENTS



Chapter 1

Nuclear Medical Physics

1.1 177Lu radionuclide therapies

In the department of nuclear medicine of the University Hospital Erlangen, two
radionuclide therapies are routinely performed with 177Lu - labeled molecules.
These therapies provide a treatment either for Neuroendocrine tumor (NET)s or
for PC. In this work, the dose values for both diseases were evaluated.

1.1.1 Neuroendocrine tumors (NETs)

NETs are defined as epithel neoplasms with predominant neuroendocrine differ-
entiation that can be observed arising from neuroendocrine cells throughout the
body [78]. Data from the Surveillance, Epidemiology, and End Results database
suggest that NETs are more prevalent than previously reported with 51% of NETs
arising from the gastrointestinal tract, 27% from the lungs and 6% from the pan-
creas [169, 170]. NETs of the midgut commonly metastasize to the liver, the
mesentery and the peritoneum. Clinically, they are regarded as functional if they
are associated with symtoms of hormonal hypersecretion, the so called carcinoid
syndrome, or non-functional if they are not associated with hormonal hypersecre-
tion [153]. First-line systemic therapy is primarily based on somatostatin analogs
which significantly lengthen time to tumor progression and improve control of
hormonal secretion [127, 25]. Besides everolimus, a potent inhibitor of mam-
malian target of rapamycin, for the treatment of non functional neuroendocrine
tumors, so far there have been no standard second-line systemic treatment op-
tions [170, 83]. However the recent food and drugs administration approvel of
177Lu-DOTATATE for the treatment of Somatostatin Receptor (SSTR) positive
gastroenteropancreatic tumors, based on the results from the phase 3 Neuroen-
docrine Tumors Therapy trial opens new perspectives for the treatment of NETs

17
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[153]. 177Lu emits beta-particels with a maximum energy of 149 keV , a maxi-
mum particle range of 2 mm and has a physical half-life of 6.7 d. Besides beta-
particles it also emits gamma photons of 208 keV , which can be directly used
for uptake quantification by serial scintigraphy and Single-Photon Emission Com-
puted Tomography (SPECT) [47]. Most of the clinical protocols rely on empiri-
cal criteria for choosing the administered activity and the number of cycles [20].
Special emphasis has to be placed on the absorbed doses for kidney and bone
marrow, since they are considered as the dose limiting organs in 177Lu- Peptide
Radionuclide Receptor Therapy (PRRT) [133, 162]. Due to the large intrapatient
and intralesion variability of tumor uptake in PRRT of NETs [30] it is of utmost
importance to improve individualized therapy planning. Therefore methods for
accurate dosimetry of tumorous- and non-tumorous tissue and determination of
predictive factors that are associated with high uptake of 177Lu-DOTATATE in
NETs are needed. As yet only a few previously conducted studies reported the
use of the MIRD scheme and the unit density sphere model from Olinda for cal-
culation of tumor-absorbed doses in 177Lu-DOTATATE therapy [30, 67]. The
aims of the present study were to evaluate the use of three-dimensional tumor
dosimetry based on particle filtering methods and MC to determine the Total Tu-
mor Dose (TTD) and to find predictive factors that are associated with a high TTD
in patients with SSTR-positive NETs that underwent 177Lu-DOTATATE therapy.

1.1.2 Prostate cancer (PC)
Androgen Deprivation Therapy (ADT) is the mainstay of therapy in patients with
locally advanced PC, biochemically recurrent disease after failure of local treat-
ments and in patients with metastatic PC [74, 64]. Although initially being highly
effective in most men with metastatic castration-sensitive PC (mCSPC), disease
progression to mCSPC occurs in the majority of men within 2-3 years [56] and is
associated with a poor prognosis and short overall survival [146]. Docetaxel and
cabazitaxel are the only United States Food and Drug Administration approved
chemotherapies for the treatment of metastatic castration-resistant PC (mCRPC)
patients providing increased progression-free survival and also overall survival,
especially in combination with ADT [70, 154]. Recently radionuclide therapy
has gained increasing importance with the approval of the alpha emitting parti-
cle 223Ra-dichloride for the treatment of mCSPC patients with symptomatic bone
metastases, but without known visceral metastases demonstrating overall survival
and prolonging the time to the first symptomatic skeletal event [116]. However
about one third of patients suffering from advanced prostate cancer present with
lymph node or visceral metastases which are unresponsive to bone-seeking radio-
pharmaceuticals [122]. Radioligand therapy using 177Lu-labeled Prostate Spe-
cific Membrane Antigen (PSMA) (prostate specific membrane antigen) has been
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proven to be an effective therapeutic option with a favorable toxicity profile in
this heavily pretreated patient population [168, 23, 124, 3]. Since the PSMA ex-
pression of PC cells is directly correlated to androgen independence, metastasis
formation and progression of disease [97] the PSMA-targeting theranostic con-
cept offers advantages for diagnosis and also therapy. To achieve best therapeutic
results in radioligand therapy accurate dosimetry is crucial to determine the opti-
mal treatment activity resulting in tumor irradiation with the maximum absorbed
dose without causing toxicity to critical organs. Besides the high and specific up-
take of PSMA ligands in PC cells, different normal organs (e.g. kidney, salivary
glands, bone marrow) exhibit tracer accumulation [33]. Furthermore due to the
intra patient and intra-lesion variability of tumor uptake in 177Lu-PSMA therapy
[112] individualization of therapy planning is of utmost importance. A particu-
lar advantage for therapeutic dosimetry is the mode of decay of 177Lu since it
emits beta particles with a maximum energy of 149 keV providing tumor irradia-
tion but also gamma photons of 208 keV allowing uptake quantification by serial
scintigraphy and SPECT [158]. For 177Lu-PSMA therapy as yet only a few previ-
ously conducted studies reported the use of the MIRD scheme and the unit density
sphere model from Olinda for calculation of absorbed dose in normal organs and
tumor lesions [112, 33]. The aim of this study was to evaluate the use of a novel
three-dimensional tumor dosimetry based on particle filtering methods and Monte
Carlo simulations to determine the TTD (Total Tumor Dose) and to find predictive
factors that are associated with a high TTD in patients suffering from mCRPC that
underwent 177Lu-PSMA-617 therapy.

1.2 The Dosimetry Chain for Radionuclide Therapy
The dosimetry process, dealing with quantitative imaging and image-based dosime-
try, i. e. correcting for photon attenuation, photon scatter, γ-camera limitations
and voxel-based calculation of the absorbed energy dose, encompasses three ma-
jor steps:

• Image analysis, including image registration and segmentation as well as
classification of normal tissue versus tumors.

• Pharmakokinetics modeling applied to data obtained from images acquired
at consecutive time points.

• This allows to compute the total amount of absorbed energy dose. In addi-
tion, biologically effective dose and normal-tissue control probability need
to be considered. The total amount of absorbed energy dose can be calcu-
lated employing one of three different methods [21]:
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Figure 1.1: Steps of the dosimetry chain according to the MIRD protocol

– Multiplication of a global dose kernel, called S-value, with the cumu-
lated activity according to MIRD

– Convolution of activity distributions with dose-voxel-kernels (DVK)

– Full Monte Carlo simulation (MC)

Any successful implementation has to rely on a close collaboration of medical
physicists and technologists.

The order of the steps can vary, depending on the used dose calculation method.
In figure 1.1 the steps for the MIRD-method are illustrated. For the voxel-wise
methods (MC and DVK), three steps are identical but are applied in a different
order as can be seen in figure 1.2.

The three dose estimation methods require the assessment of the 3D distribu-
tion of the radionuclide within the body. Over the last few years, efforts moved
towards image processing methods to quantify a spatial and temporal activity dis-
tribution with good accuracy [48], [90], [27], [26]. With the advent of the latest
PET/CT and SPECT/CT technologies, quantification of activity distributions can
be performed with resolutions adequate for voxel dosimetry, typically of 5 mm
or even less, co-registering functional and anatomical images. The information of
both
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Figure 1.2: Steps of a voxel-wise dosimetry chain

• density pattern (Computed Tomograpy (CT)) and

• accumulated activity distribution (SPECT),

available in a voxel geometry, form essential resources for any dose estimation.
If SPECT images are available at subsequent time points, the time dependence of
the activity distribution, the (Time Activity Curve (TAC)), can be modeled. In this
study, the number of decays, i. e. the integral over the TAC, has been estimated
from 4 SPECT images and one CT image.

X-ray CT provides depth information from multiple projections. Image recon-
struction from multiple projections assumes that the activity distribution remains
stationary throughout the acquisition. This means that the difference in spatial
distribution of nuclear disintegrations is, in the acquired projection images, only
a function of the projection view. The task for any reconstruction method is then
to estimate the individual activity distribution in the patient, possibly at a number
of subsequent time points. For many years, Filtered Back-Projection (FBP) was
the golden standard of reconstruction methods, but today, the clinical use of itera-
tive reconstruction methods is established. This family of reconstruction methods
all include a computer model of the imaging system. The principal steps in an
iterative reconstruction method are the following:
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• From a first estimate of the internal source distribution, the computer model
calculates a projection image.

• This image is then compared with a measured projection to determine where
in the modeled image differences occur.

• Most reconstructions in nuclear medicine use the Expectation Maximization
(EM) algorithm [34], [101], [79].

Iterations go on until the ratio between the modeled and the measured data
converges to one. The initial image is multiplied by a tomographic error image.
The latter is obtained from back-projecting the ratios. This is done for all projec-
tion angles. Note that the noise in these images shows a Poisson distribution. A
version of the EM algorithm is the ordered-subsets EM algorithm [63].

1.2.1 Time-Activity-Curve (TAC)
The amount and rates of radiopharmaceutical uptake and excretion is governed by
passive as well as active physiological mechanisms and varies amongst individu-
als. These parameters directly influence absorbed dose calculations and need to
be determined for each patient. The method used to determine TACs for different
organs and tissues is

• to perform imaging at several time points after radiopharmaceutical admin-
istration and

• to determine the activity concentration in different tissues at every time
point.

The absorbed dose is associated with the area under this TAC. The activity
A(t) of a radionuclide is given as the number of nuclear disintegrations N(t) per
unit time and decreases exponentially in time. Thus a sum of exponential curves
with different time constants can then be used to fit patient data [148] according
to

A(t) =
∑
S∈S

A(rS, 0) exp(−λphys · t)

where A(t) = dN(t)/dt denotes the total activity, A(rS, t) = dN(rS, t)/dt the
nuclide-specific activity at voxel location rS in the Volume Of Interest (VOI) S
and where the rate constant λphys = 1/(τphys) describes the kinetics of removal
of activity components A(rS, t) with a nuclide-specific lifetime τphys. The latter
is related to the half-time of the nuclide via t1/2 = ln(2)τ . In addition to this
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physical lifetime, also a biological lifetime is of relevance for removing activity
components. If the biological removal also follows an exponential law, the rate
constants can be summed up to an effective rate constant

λeff = λphy + λbiol (1.1)

which results in an effective lifetime

τeff =
τbiol · τphys
τbiol + τphys

(1.2)

This finally results in a Time Integrated Activity (TIA) given by

Ã(rS) ≡ N(rS) =

∫ ∞
0

A(t)dt =
∑
i

∫ ∞
0

A(rS, 0)e−λeff (rS)·tdt

=
∑
S

A(rS, 0)

λeff (rS)
=
∑
S

·A(rS, 0) · τeff (rS) (1.3)

where the sum extends over all voxels of the entire VOI. Note that for the effective
lifetime we have

τeff ≤
{
τphys if τphys ≤ τbiol
τbiol if τbiol < τphys

(1.4)

Note also that solving the equation for an effective lifetime, the units for the bi-
ological and physical lifetimes must be the same. If a voxel-wise dosimetry is
performed, the integration of the time activity curve results in a voxel-wise map
of the number of decays per voxel. For the MIRD method, the number of decays,
which take place in the kidney, can be calculated by integration.

1.2.2 Energy dose rate and energy dose
The rate dDE(rT , t)/dt at which, at time t after administration, radiation energy
dose is delivered within a patient to target tissue at location rT from a radioactive
material distributed uniformly within source tissue located at rS is given as:

dDE(rT , t)

dt
:= ḊE(rT , t) = A(rS, t)K(rT ← rS, t)

[
J

kg · s
=
Gy

s

]
(1.5)

whereA(rS, t) is the time-dependent activity of a radionuclide in source tissue rS ,
i.e. A(rS, t) counts the number of nuclear disintegrations happening at time t in
source tissue located at rS . Further, K(rT ← rS, t) = ḊE(rT , t)/A(rS, t) denotes
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the radionuclide-specific energy dose kernel representing, at time t after admin-
istration, the energy dose absorbed in target tissue rT per unit activity present in
source tissue rS . The energy dose rate, i. e. d2E(rT , t)/dm dt = dDE/dt, thus
denotes how much energy is deposited in a unit mass in unit time. In practice,
more handy units are µGy

hr
or mGy

yr
.

Absorbed energy dose DE(rT ), i. e. the deposited radiation energy per unit
mass over a timespan TD, is the fundamental quantity for coupling to the radiobi-
ological effect. It is defined as the radiation energy dE(rT ) absorbed in a target
tissue contained in a volume dVT = d3rT with mass density ρm yielding a target
mass dm = ρmd

3rT , i. e. we have

DE(rT ) :=
dE(rT )

dm

=
dE(rT )

ρmdVT
=
ε(rT )

ρm

=

∫ TD

0

dDE(rT , t)

dt
dt

=
∑
rS

∫ TD

0

A(rS, t)K(rT ← rS, t)dt

≈
∑
rS

Ã(rS)K(rT ← rS) (1.6)

measured in
[
J
kg
≡ Gy

]
. The time-dependent activity in the source tissueA(rS, t)

is obtained

• by numeric solution of a set of first-order coupled differential equations de-
fined by compartment models for all organs and suborgan tissues of interest.

• directly via quantitative imaging, including planar imaging, SPECT, and
Positron-Emission Tomography (PET), or by tissue sampling (e.g., biopsy,
blood, or urine collection).

In most instances, the time dependence of the dose kernel K(rT ← rS, t)
may be neglected, as when the source and target masses remain constant over the
period of irradiation, justifying the use of the approximation given with the last
equation. The integral

Ã(rS) =

∫ t2

t1

A(rs, t)dt (1.7)
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is usually called time-integrated or cumulated activity (TIA) and describes the
total number of decays occurring in the source region during the time interval TD.

In nuclear medicine, due to tissue heterogeneities, mean absorbed energy dose
〈DE(rT )〉 is quoted, which is given by

〈DE(rT )〉 =
1

MT

∫
VT

DE(r)ρm(r)d3r (1.8)

where MT is the total mass of tissue inside a target volume VT . The latter might
represent a tissue voxel or a whole organ for which the absorbed dose is deter-
mined.

In order to account for the biological effect of the radiation, equivalent energy
doseDeq = w ·DE [Sv] has to be considered, where Sv denotes Sievert andw rep-
resents a tissue-related weight factor (often called relative biological efficiency).
The weights are w = 1 for electrons and photons, but w = 20 for α - particles and
w = 2− 20 for neutrons depending on their kinetic energy.

If the fluency Ψ of a particle beam is known, the energy dose can be computed
as

DE = N
dE

dm
= N

dE

ρmdV
=

1

ρm

N

σ

dE

dx
DE · ρm = Ψ · LET

where N is the number of particles, σ the beam cross section, Ψ = N/σ is the
fluency, ρm the mass density and dE/dx the energy loss per unit length, also called
stopping power or linear energy transfer.

Energy dose should not be confused with radiation dose DQ, which denotes
the amount of charge dQ [C] deposited in a unit mass dm [kg]. Accordingly we
have

DQ =
dQ

dm

[
C

kg

]

1.2.3 Radiation energy transport and dose kernels
In Radiotherapy, any dosimetry of internally distributed radionuclides relies on
the description of the radiation energy transport from a source to a target region
[160], i. e.

〈DE(rT )〉 =
∑
rS

Ã(rS) ·K(rT ← rS)

Here the dose kernel is given by
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K(rT ← rS) =
c

MT

∑
i

niEiΦ (rT ← rS, Ei)

where c = 1 [(Gy·kg)/(MBq·s·MeV )] ifDE [Gy], Ã [MBq·s], Ei [MeV ],m [kg],
and c = 2.13 if DE [rad], A [µCi],m [g], Ei [MeV ] [94]. The dose kernel
K(rT ← rS), if summed up over all fractions of absorbed energy Φ(rT ← rS, Ei)
within a whole organ, is commonly called S-value. It is measured in [Gy/(Bq ·s]).
Here the absorbed fraction Φ (rT ← rS, Ei) of incident radiation energy repre-
sents the ratio of the energy E absorbed in target region rT to the energy E0

emitted in the source region rS

Φ(rT ← rS) =
E(rT )

E0(rS)

Furthermore, specific absorbed fraction Φspec of energy is the ratio of absorbed
fraction by the mass of the target tissue mT

Φspec(rT ← rS) =
Φ(rT ← rS)

mT

Thus the S-value represents the mean absorbed dose 〈DE(rT )〉 to the target
organ centered at location rT per unit of accumulated activity Ã(rS) in the source
region rS , that is to say, it describes the fraction of the kinetic energy Ekin [J ]
released by each particle type, i, with ni emitted particles per radioactive decay,
which will be absorbed in the target volume with total mass MT (t) [kg]. Hereby
∆i = niEi, where Ei represents the energy emitted for radiation type i with prob-
ability ni. In principle, the equation is valid for different kinds of volumes, from
organs down to cells, but for smaller volumes, the stochastic nature of radiation
interaction renders the mean value less representative of the actual energy deposi-
tion.

1.2.4 MIRD-method
The method defines a protocol for an estimation of the absorbed energy dose to
organs of interest using anatomic phantoms representative of any patient or, at
least, an average patient. This method computes the mean organ dose due to

• electron and α-particle emissions with their accompanying photon emis-
sions within the source organ, and

• the energy dose deposited by photons emitted within surrounding organs
and tissues.
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This technique represents a macroscopic approach to dose estimation and is
currently implemented in the Organ Level Internal Dose Assessment with Expo-
nential Modeling (OLINDA) software [149]. The method is easy to use, but only
an average absorbed dose 〈DE〉 can be estimated. Neither heterogeneities in ei-
ther tissue composition or radioactivity distribution nor the anatomic geometry of
the source and target tissues within the body of the patient are considered.

Dosimetric parameters relevant to the MIRD protocol

In any real internal dose problem, there will be more than one organ which con-
centrates the activity, and many targets for which the absorbed dose is required.
In this case, the MIRD equation needs to be solved for each source region rS and
target region rT as follows [150].:

DE(rT ) =
∑
S

Ã(rS)S(rT ← rS)

= A0

∑
S

τSS(rT ← rS)

=
c

MT

∑
S

wSÃ(rS)
∑
i

niEiΦi(rT ← rS)

where a source residence time τS is defined as

τS =
Ã(rS)

A0

and where A0 is the administered activity. Thus more than one organ can be taken
into consideration using compartmental modeling [107]. Goodness of fit can be
assessed through an Akaike information criterion (AIC) [81] or an F-test [89].
Attempts have also been made to compile patient data in order to use the group
behavior as a prior when applying Bayesian techniques.

These generic expressions comply well with the most recent MIRD expres-
sions discussed above. The OLINDA software uses a somewhat simpler expres-
sion given by

D = N ·DF
DF =

k

m

∑
i

niEiΦiwri

where DF is conceptually similar to the S-value defined in the MIRD system.
The number N ≡ Ã(rS) of disintegrations is the integral of a time-activity curve
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for a source region. A number of anthropomorphic phantoms exist that can be
used to produce dose estimates for standardized individuals.

1.2.5 Voxelwise dosimetry
Voxelwise dosimetry represents a mesoscopic approach to dose estimation. It
means employing voxelized geometries in representing organs as tagged voxels
of differing activity levels. MC radiation transport simulations then assess dose at
the voxel level. Geometries have to be deduced from phantoms or from a regional
CT image of the patient [144], [171]. The MC approach, furthermore, can yield
a Dose Voxel Histogram for radiation sources both inside and outside the target
organ.

The average energy dose 〈DE〉 absorbed at any target organ can be obtained by
tracking energy deposition events within the target organ by direct MC transport
simulations. The computations consider two contributions:

• The average absorbed dose to a voxel within the organ of interest due to α-
and β-particle as well as γ-photon emissions within that organ

• The energy dose to a voxel in the organ of interest due to γ-photon emissions
in the surrounding organs or tissues.

The technique can handle tissue heterogeneities (bone, soft tissue, air, lung,
and such) as well as patient-specific anatomic geometry of all source and target
tissues as well as the non-uniform source distributions [61], [60], [35], [123].
Because of statistical sampling limitations, the energy dose is usually averaged
across a group of voxels or all voxels of a given target organ. However, the ap-
proach is time-consuming and computationally demanding. For anatomic regions
characterized by a uniform tissue density, the S-value technique represents an ex-
cellent option, with rapid computation and still-good dosimetric accuracy [36]. In
particular, the S-value concept is possibly the most applied, easy to implement,
not requiring volume and complying with the familiar MIRD formalism [84]. But
the S-value method represents a macroscopic approach lacking resolution at the
voxel level. With it, dose values can only be calculated for whole organs.

If one is to boil down the resolution to the size of single voxels, currently two
different methods exist for performing internal dosimetry at the voxel level [157],
[152]:

• the above mentioned full Monte Carlo simulation (MC) or

• a convolution with a dose-voxel-kernel (DVK).



1.2. THE DOSIMETRY CHAIN FOR RADIONUCLIDE THERAPY 29

When the amount and distribution of radioactivity A(rT , t), represented in the
SPECT- or PET-image is known, the resulting energy dose distribution DE(rT , t)
can be determined by transforming the activity distribution from the image to
absorbed radiation energy using an appropriate dose kernel K(rT ← rS). The
source and target regions centered at rS and rT , respectively, are those defined
within the anatomic model and may represent voxels from SPECT or PET images.
Hence, rS denotes the location of the source voxel and rT the corresponding loca-
tion of the target voxel. The kernel thus contains information on how the radiation
energy resulting from one nuclear disintegration is spatially deposited. The kernel
transfers an activity distribution to an absorbed energy distribution by weighting
the energy deposition of the particles over its range. An energy deposition im-
age is obtained by applying the kernel to the original activity distribution image
through a convolutive filtering process. Each voxel assigns energy, measured in
either [J ] or [MeV ], and by dividing it with the mass of the voxel, a specific en-
ergy, or absorbed dose, measured in [Gy] can be generated in each voxel of the
image. The values in this specific energy (or dose) image can then be used to
generate a Dose-Volume Histogram [40]. The latter presents the volume (or a per-
centage of the volume) that receives some dose in a given range of dose levels. If
the respective volume refers to one voxel, this is referred to as DVK dosimetry.
The DVK method is widely used today, particularly for the more commonly used
radionuclides which emit electrons, including Auger electrons, and photons.

In summary, at the voxel level, the absorbed dose to a target voxel located at
rT due to the cumulated activities in source voxels located at rS can be expressed
as:

DE(rT ) =
∑
S∈S

Ã(rS)Kvox(rT ← rS)

where the sum is extended to all source voxels. In voxel-wise dosimetry, the DVK
is defined as the absorbed dose to the target voxel per unit decay in the source
voxel, when both voxels are contained in an infinite homogeneous medium of
mass density ρm. According to this definition, DVKs can be obtained by MC
simulations of voxel geometries representing an infinite medium of uniform com-
position. The radionuclide is placed at the center of this geometry, and the ab-
sorbed dose is scored in surrounding voxels. The mathematical convolution of
pre-calculated DVKs, i. e. energy dose per unit decay as a function of distance,
with a cumulated activity map provides the absorbed dose distribution for the bi-
ological system considered [98].
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1.3 Uncertainties in dose estimation
Any error analysis has to start with the data collection systems. Data uncertainty
my result from limitations on energy resolution, low spatial resolution due to col-
limator septal penetration by high energy photons, data loss due to scatter and
attenuation as well as inherent statistical variations of measurements on radionu-
clides. Reports on total error quantifications range from a few percent for large
organs to some 20 % for small or low Signal to Noise Ratio (SNR) objects. A
summary of the terms contributing to uncertainties in calculated dose estimates
in nuclear medicine was given by [150] in terms of the variability of the nuclear
medicine population. The conclusion was that the two variables with highest im-
pact onto error estimates were the cumulated activity Ã and organ masses m.
Further issues to be considered are the following:

• The biokinetic parameters, fractional uptake and half-life, vary substantially
(factor > 2) across individuals. So, just applying a dose coefficient, mea-
sured in [mSv/MBq], from a standard model to any given patient leads
to a relatively large uncertainty in dose estimation [106]. It is unfortunate
that patient-individualized dose calculations are not performed routinely for
therapeutic administrations of radiopharmaceuticals, although this practice
is increasing in Europe [44], [11], [19], [117].

• Simply administering a standard activity (Ã [MBq]) or specific activity
(Ã/M [MBq/kg], Ã/O [MBq/m2]) per unit body mass M or surface area
O to all patients cannot permit the delivery of an adequate therapy to all
patients. In general, several nuclear medicine images are needed, yielding
A(rS, t) to establish the uptake and clearance patterns in normal tissues and
tumors [147].



Chapter 2

Monte Carlo Simulation (MC)

The following short summary lends credit from [75].
Photons interact with surrounding matter via four basic processes:

• Rayleigh scattering: A coherent scattering with the molecules (or atoms) of
the medium

• Photoeffect: A photo-electric absorption of a photon and transfer of its en-
ergy to an electron

• Compton scattering: An incoherent scattering with atomic electrons

• Particle production: A materialization into an electron/positron pair in the
electromagnetic field of the nuclei and surrounding atomic electrons

The last three collision types transfer energy from the photon beam to elec-
trons. Depending on energy and the medium, in which the transport takes place,
one of them dominates the total absorption cross-section:

• At low energies, E < 100 keV , the Photoeffect dominates .

• At intermediate energies, 100 keV ≤ E ≤ 1 MeV , the Compton effect is
the most important process .

• The pair production process dominates at energies E ≥ 1.02 MeV larger
than the mass - equivalent energy of the resting particle pair.

Electrons, as they traverse matter, loose energy by three basic processes:

• Inelastic collisions with atomic electrons

• Bremsstrahlung and positron annihilation

31
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Radiative energy loss transfers energy back to photons and leads to the cou-
pling of the electron and photon radiation fields. The bremsstrahlung process is
the dominant mechanism of electron energy loss at high energies, inelastic col-
lisions are more important at low energies. In addition, electrons participate in
elastic collisions with atomic nuclei which occur at a high rate and lead to fre-
quent changes in the electron direction. Inelastic electron collisions and photon
interactions with atomic electrons lead to excitations and ionizations of the atoms
along the paths of the particles. Highly excited atoms, with vacancies in inner
shells, relax via the emission of photons and electrons with characteristic ener-
gies.

The coupled integro-differential equations that describe the electromagnetic
shower development are prohibitively complicated to allow for an analytical treat-
ment except under severe approximations. The MC technique is the only known
solution method that can be applied for any energy range of interest. MC of parti-
cle transport processes are a faithful simulation of physical reality:

• Particles are drawn from a source distribution deduced from activity distri-
butions known across a target VOI

• These particles travel certain distances, determined by a probability distri-
bution depending on the total interaction cross section Ω

• At the site of a collision, they scatter into another energy and/or direction
according to the corresponding differential cross section σ

• During such collisions, possibly new particles are produced that have to be
transported as well.

This procedure is continued until all particles are absorbed or leave the VOI
under consideration.

Quantities of interest can be calculated by averaging over a given set of MC
particle histories (also refereed to as showers or cases). From mathematical points
of view each particle history is one point in a d-dimensional space (the dimension-
ality depends on the number of interactions) and the averaging procedure corre-
sponds to a d-dimensional MC integration. As such, the MC estimate of quantities
of interest is subject to a statistical uncertainty which depends on N , the number
of particle histories simulated, and usually decreases as N−1/2. Depending on the
problem under investigation and the desired statistical accuracy, very long calcu-
lation times may be necessary.

An additional difficulty occurs in the case of the MC of electron transport. In
the process of slowing down, a typical fast electron and the secondary particles
it creates undergo hundreds of thousands of interactions with surrounding matter.
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Because of this large number of collisions, an event-by-event simulation of elec-
tron transport is often not possible due to limitations in computing power. To cir-
cumvent this difficulty, Berger [14] developed the “condensed history” technique
for the simulation of charged particle transport. In this method, large numbers of
subsequent transport and collision processes are “condensed” to a single “step”.
The cumulative effect of the individual interactions is taken into account by sam-
pling the change of the particle’s energy, direction of motion, and position, at the
end of the step from appropriate multiple scattering distributions. The condensed
history technique was motivated by the fact that single collisions with the atoms
cause in most cases only minor changes in the particle’s energy and direction of
flight. This technique made MC of a charged particle transport possible but intro-
duced an artificial parameter, the step-length. The dependence of the calculated
result on the step-length has become known as a step-size artifact [17].

2.1 Radionuclide
For estimating the absorbed radiation dose elicited from a 177Lu radiation source
into the surrounding tissue (air, lung, bone), N MC have been performed, each
encompassing M nuclear disintegrations, shortly called radioactive decays.

During one such decay, 177Lu transforms into 177Hf according to the follow-
ing state transitions.

The related γ - radiation shows several spectral lines according to the scheme
seen above and the lines exhibit very small line widths. Hence, one could model
the spectrum as a sum of discrete Lorentzians.
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Here a Lorentzian line is given in the time domain and its conjugated Fourier
domain, respectively by

L(t) = H(t)L0 exp(−t/τ)

L(ω) =
L0

1/τ + iω
=

L0√
(1/τ)2 + ω2

exp(−iφ)

where H(t) denotes the Heaviside step function, ω = 2πν with ν [Hz] the fre-
quency, τ the average life-time, φ = arctan(ωτ) and i =

√
−1 denotes Euler’s

number. The Lorentzian line in the frequency domain consist of a real and an
imaginary part according to

L(ω) =
(1/τ)L0

(1/τ)2 + ω2
− i ωL0

(1/τ)2 + ω2

= τL0

(
1

1 + (ωτ)2
− i ωτ

1 + (ωτ)2

)
The real part of this complex Lorentzian provides the conventionally observed

absorption mode, often called a Lorentz line.
Hence, using 177Lu the main dates are:

Table 2.1: Relevant characteristic quantities of a 177Lu radiation

Nuclide β(MeV ) Range (mm) T1/2 (d) γ(keV )
177Lu 0, 50 2 6, 7 113(6%)

2.2 Standard Error for Dose Estimation
In the following, the dose will be denoted by X and is considered a random vari-
able resulting from independent nuclear disintegrations, simply called decays.
Hence, xmn denotes the decay event m happening in simulation run n inside a
voxel of volume Vvox [mm3] = 4.7 [mm] · 4.7 [mm] · 4.7 [mm] and tissue density
ρm [mg · mm−3] where m denotes the average mass of either air, lung tissue or
bone.

Following, we will consider two strategies:

• Consider M simulated decays as one sample of data and simulate N such
samples in total
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• Consider NM simulated decays as one grand sample of data and simulate
L such grand samples in total

Typically we talk about N ≈ 102 and M ≈ 104.

Relation between standard error (SE) and standard deviation (SD) The Stan-
dard Error (SE) denotes the Standard Deviation (SD) of a sampling distribution of
a statistic. The latter can be, for example, the average energy dose 〈DE(rT )〉Vvox
in a voxel of tissue. Hence, the SE depicts the dispersion of sample means around
the population mean, while the SD denotes the dispersion of individual measure-
ments around the population mean.

Now for a given sample size, the SE equals the SD divided by the square root
of the Sample Size (SS), i. e.

SE =
SD√
SS

Following we denote the sample SE by sen and the grand SE by SE, the
sample SD by sdn and the grand SD by SD.

Sample SE First we consider each 177Lu decay as an independent event and
we simulate M such decays. We then consider these M simulated decays as one
sample of data. Each such decay deposits an amount xmn [Gy] of energy dose
in the surrounding tissue. Averaging over M independent decay events yields an
average energy dose

〈xn〉 =
1

M

M∑
m=1

xmn

which we call sample mean and which is deposited in one voxel during one single
simulation run n. The size of the sample is now SS = M . Each single dose xnm,
deposited in one voxel during one decay event, is scattered around its sample mean
〈xn〉, and this scatter is characterized by the corrected sample standard deviation

sdn =

√√√√ 1

M − 1

M∑
m=1

(xmn − 〈xn〉)2

where the factor in front of the sum term represents the Bessel correction (M − 1
instead of M ), which assures an unbiased variance (not standard deviation! The
latter is still biased due to the non-linear sqrt operation). The sample standard
deviation then yields a sample standard error according to
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sen =
sdn√
M

=
1√
M

√√√√ 1

M − 1

M∑
m=1

(xmn − 〈xn〉)2

≈ 1

M

√√√√ M∑
m=1

(xmn − 〈xn〉)2

≈ 1

M

√√√√ M∑
m=1

x2
mn −M〈xn〉2 (2.1)

Repeating such simulations N times, yields N samples of mean energy doses
deposited in a voxel. These N samples provide an estimate of the underlying un-
known sampling distribution of mean energy doses 〈xn〉 deposited in each voxel.

The underlying sampling distribution can be characterized by

• a grand average deposited energy dose which, in abuse of notation, could
be called a population mean

〈〈x〉〉 =
1

N

N∑
n=1

〈xn〉 =
1

MN

N∑
n=1

M∑
m=1

xmn

Note that if N → ∞, then the grand average tends towards the population
mean energy dose.

• the grand mean standard deviation of the fluctuating sample means around
the grand average, i. e. the width of the sampling distribution, which we
could accordingly call the standard deviation of the mean

SD =

√√√√ 1

N − 1

N∑
n=1

(〈xn〉M − 〈〈x〉〉MN)2

=

√√√√ 1

N − 1

[
N∑
n=1

〈xn〉2M −N〈〈x〉〉2MN

]
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As we have estimates of all quantities available entering the last line, we can easily
estimate the SD of the sampling distribution.

The related standard error SE is then obtained via

SE =
SD√
N

(2.2)

=
1√
N

√√√√ 1

N − 1

[
N∑
n=1

〈xn〉2M −N〈〈x〉〉2MN

]

≈ 1

N

√√√√ N∑
n=1

〈xn〉2M −N〈〈x〉〉2MN

≈ 1√
N

√
〈〈xn〉2M〉N − 〈〈x〉〉2MN

Substituting from above yields

SE =
SD√
N

=
1√
N

√√√√√ 1

N − 1

 N∑
n=1

(
1

M

M∑
m=1

xmn

)2

−N

(
1

MN

N∑
n=1

M∑
m=1

xmn

)2


≈ 1

MN

√√√√ N∑
n=1

(
M∑
m=1

xmn

)2

−N

(
N∑
n=1

M∑
m=1

xmn

)2

(2.3)

Relative SE A relative SE can be obtained by simply dividing SE by the mean
according to

rSE =
SE

〈〈x〉〉
· 100 (2.4)

≈ 100√
N

√
〈〈xn〉2M〉N − 〈〈x〉〉2MN

〈〈x〉〉2MN

≈ 100 ·

√√√√√√
∑N

n=1

(∑M
m=1 xmn

)2

(∑N
n=1

∑M
m=1 xmn

)2 −N (2.5)
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Total SE Alternatively, this collection of N simulations, each consisting of M
decays, can be considered one sample of data of size MN . Sample mean energy
dose and related sample standard deviation and sample standard error can then be
computed as follows:

tSE =
1√
NM

√
V ar(xnm) =

=
1√
NM

√√√√ 1

NM − 1

[
N∑
n

M∑
m

(xnm − 〈〈x〉〉)2

]

=
1√
NM

√√√√ 1

NM − 1

[
(
N∑
n

M∑
m

x2
nm)−NM · 〈〈x〉〉2

]

≈ 1√
NM

√
[〈〈x2〉〉MN − 〈〈x〉〉2MN ]

(2.6)

〈〈x〉〉 is the mean over all mean values from each run.
The values for xnm are unknown, thus the term

∑M
m x2

nm has to be replaced
by an expression of known quantities. To achieve this goal, consider the standard
error for a single run:

sen =
1

M

√√√√ 1

M − 1
[(

M∑
m

x2
nm)M −M2 · 〈x〉2n]

M∑
m

x2
nm = se2

nM(M − 1) +M · 〈x〉2n

Because M � 1 this can be easily approximated by the following expression

1

M

M∑
m

x2
nm = se2

n(M − 1) + 〈x〉2n

〈x2
n〉 = se2

n(M − 1) + 〈x〉2n
〈x2

n〉 ≈ M · se2
n + 〈x〉2n

The term
∑M

m x2
nm can be replaced now by the exact expression, and the total

standard error (tSE) for the total number of decay events across all sessions, i. e.
for all samples, can be calculated as:
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tSE =
1

NM

√√√√ NM

NM − 1

(
N∑
n

((M − 1) · se2
n + (〈x〉n)2)− (NM) · 〈〈x〉〉2

)

If, instead, the approximate expression is plugged in, one obtains

tSE =
1

NM

√√√√ 1

NM − 1

(
N∑
n

(M · se2
n + 〈x〉2n)N − (NM)2 · 〈〈x〉〉2

)

≈ 1

NM

√√√√ N∑
n

(M · se2
n + 〈x〉2n)− (NM) · 〈〈x〉〉2

Relative SE: We are interested in the relative standard error. Therefore, we
have to divide the tSE by the population mean 〈〈x〉〉 and replace the sen.

rtSE =
1

NM

1

〈〈x〉〉

[
1

NM − 1

(
N∑
n=1

(
rse2

n〈x〉2nM(M − 1) +M · 〈x〉2n
)
N

−(NM)2

1
· 〈〈x〉〉2

)]1/2

However, estimating a grand mean (“population”) energy dose and related
standard error can be obtained only if a set of samples is collected.

Collecting L � 1 samples would allow to estimate the underlying sampling
distribution, characterized by the grand mean energy dose and its “population”
standard deviation. This latter standard deviation divided by the grand mean is
called the total standard error (total SE tSE), i. e. the SE of the total number
of simulations. This could be done in analogy to above using the expressions
computed in this section.
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Chapter 3

Particle filter (PF)

Non-linear dynamical systems evolve either continuously or via transitions be-
tween discrete states. The latter approximation is only reasonable if the mean
residence time in any state is longer than the transition time. Particle filters repre-
sent discrete state space models which estimate the states X(r, t) of a dynamical
system from noisy and disturbed observations Z(r, t). This is achieved by com-
bining available measured data Z(r, t) with prior knowledge about the underlying
physical phenomena driving the dyanmics and the measurement process. The un-
derlying physics allow to construct a state evolution model while the known mea-
surement process provides information to construct an observation model. With
these ingredients and observations of the system dynamics, estimates of the unob-
servable dynamic state variables can be produced sequentially.

State evolution models are commonly based on a Markov model, while obser-
vation models need to reflect the specifics of the physical measurement process.
Both, evolution and observation models are most often described in terms of con-
ditional probability density functions. Hence we have (throughout we use the
short hand notation z(tk) ≡ zk, {z(t0), . . . , z(tk)} ≡ z0:k etc.)

xk+1 ∼ p (xk+1|x0:k) ≈ p (xk+1|xk) (3.1)
zk ∼ p (zk|x0:k) ≈ p (zk|xk) (3.2)

where ∼ means “represented through”, xk denotes an unobservable state vector
of the dynamical system and zk a corresponding observation vector of the system
through a measurement at discrete time tk [96]. Note that the conditional proba-
bility densities only depend on the last state of the system. This is in accord with
the Markov assumption which expresses common intuition that any prediction
of a future state should be based primarily on the recent history of the evolving
system.

41
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Now given the task that we want to predict unobservable states of an evolving
system from sequential noisy observations, Bayesian inference [111] allows to
integrate available information, i. e. observations z0:k and an associated physical
model of the dynamical system, parametrized through dynamic states x0:k. As
new information zk is available, it can be combined with previous information
p(x0:k−1, z0:k−1) via the Bayes Theorem to deduce the underlying system state
xk. Employing the Markov assumption we have

p(xk|z0:k) = p(xk|zk, z0:k−1) ≈ p(zk|xk)p(xk|zk−1)∑
k (p(zk|xk)p(xk|zk−1))

(3.3)

The latter forms the basis for statistical estimates of the posterior density
p(xk|z0:k) of the unobservable state vector xk given the likelihood of the obser-
vation p(zk|xk), some prior knowledge p(xk|zk−1) about the observation process
and the data evidence p(zk).

Note that the term posterior density denotes different densities depending on
the application:

• Filtering: p(xk|z0:k)

• Prediction: p(xk+τ |z0:k)

• Smoothing: p(xk−τ |z0:k)

where τ > 0 denotes the prediction or smoothing lag.
The most widely known Bayesian filter method is the Kalman filter [72],

which, however, relies on linear models with additive Gaussian noise, i. e. it
assumes the distribution p(xk|z0:k) to be a multi-variate Gaussian. Extensions
of the Kalman filter concern sequential Monte Carlo methods [43] which repre-
sent the posterior density in terms of random samples (particles) and associated
weights. Such sequential Monte Carlo methods are variously known as Parti-
cle Filter, bootstrap filter [50], survival of the fittest [73], condensation algorithm
[68] and can be applied to non-linear models with non-Gaussian errors [39]. Thus,
given any dynamical state representation f(xk), one can estimate the related ex-
pected value via

E(f(xk)) =

∫
f(xk)p(xk|z0:k)dxk

=

∫
f(xk)p(zk|xk)p(xk|zk−1)dxk∫
p(zk|xk)p(xk|zk−1)dxk

≈
L∑
l=1

w
(l)
k f(x

(l)
k ) (3.4)



43

Here x
(l)
k denotes a set of samples, called particles, drawn from the posterior dis-

tribution p(xk|zk−1). The sampling weights are given by

w
(l)
k =

p
(
zk|x(l)

k

)
∑L

l′=1 p
(
zk|x(l′)

k

) (3.5)

where the same samples are used in the numerator and the denominator. Hence
a particle filter approximates the posterior distribution p(xk|z0:k) by a set of par-
ticles x

(l)
k , sampled from p(xk|zk−1), and their weights {w(l)

k }. The latter are
normalized to 0 ≤ w

(l)
k ≤ 1 and obey the closure relation

∑
l w

(l)
k = 1.

In practice one is concerned with a sequential sampling scheme, which works
as follows:

• Suppose, a set of samples {x(l)
k } and related weightsw(l)

k have been obtained
at time tk. These samples and weights represent the posterior distribution
p(xk|zk) at time step tk.

• Suppose, an observation zk+1 has been made subsequently

How can one estimate corresponding samples x
(l)
k+1 and weights w(l)

k+1?

• First, new samples are drawn from the distribution

p(xk+1|z0:k) =

∫
p(xk+1|xk, z0:k)p(xk|z0:k)dxk

=

∫
p(xk+1|xk)p(xk|z0:k)dxk

=

∫
p(xk+1|xk)p(xk|zk, z0:k−1)dxk

=

∫
p(xk+1|xk)p(zk|xk)p(xk|zk−1)dxk∫

p(zk|xk)p(xk|zk−1)dxk

=
L∑
l=1

w
(l)
k p
(
xk+1|x(l)

k

)
(3.6)

where the conditional independence property has been used

p(xk+1|xk, z0:k) = p(xk+1|xk) (3.7)
p(zk|xk, z0:k−1) = p(zk|xk) (3.8)
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The above distribution is a mixture distribution. Hence, samples x
(l)
k can be

drawn by choosing a mixture component l with probabilityw(l)
k and drawing

a sample from the corresponding mixture component of the distribution.

• Second, for each sample the new observation zk+1 is used to estimate the
related weights

w
(l)
k ∝ p(zk+1|x(l)

k+1) (3.9)

Thus using a probabilistic description and the Markov assumption, one is con-
cerned with the following densities:

• The likelihood of the state p(xk|zk−1)

• The Markov transition model p(xk+1|xk)→ state evolution model

• The sensor model p(zk|xk)→ observation model

3.1 State Estimation
While theoretical derivations are based on the general Markov model, algorithms
are based on evolution and observation models as detailed next.

3.1.1 The model equations
Let the dynamic state of a system be described by a state vector x(t) ∈ RN

whose components represent the dynamical variables of the system. The dynamic
evolution of the system, called the state evolution model f(...), is described by the
following equation for the state vector

x(tk) ≡ xk = f
(
xk−1, ε

(x)
)

where k = 1, 2, ....... denotes discrete time instances tk and ε(x) ∈ RL denotes the
state noise.

If measurements are available at tk, they are collected in the observation vector
z, and its relation to the state vector is given by the observation model h(...)

z(tk) ≡ zk = h
(
xk, ε

(m)
)

where ε(m) ∈ RM denotes the measurement noise. The various noise distributions
p(ε(x)) and p(ε(m)) are assumed to be known. In some applications, also additional
known control variables uk enter the problem, but are omitted here.
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The state estimation problem aims at obtaining information about the state
vector xk based on the state evolution model f(...) and based on the measurements
z1:k, given by the observation model h(...).

3.1.2 The simplifying assumptions
The state evolution and observation models rely on the following simplifying as-
sumptions:

• The sequence of state vectors xk forms a Markov process [41] and does not
depend on the sequence of observations

p(xk|x0:k−1, z1:k−1) = p(xk|xk−1)

• The observations zk form a Markov process with respect to the history of
the state vector xk, i. e.

p(zk|x0,x1,x2, . . . ,xk−1) = p(zk|xk)

• The probability of an observation only depends on the current state

p(zk|x0:k, z1:k−1) = p(zk|xk)

• For i 6= j the noise vectors ε
(x)
i and ε

(x)
j , as well as ε

(m)
i and ε

(m)
j , are

mutually independent

• The noise vectors ε
(x)
i and ε

(m)
j are mutually independent for all i, j =

1, 2, ....

• All noise vectors are also mutually independent of the initial state x0

3.1.3 The problems to be solved
Several problems can be tackled with this approach

• The prediction problem determines p(xk|z1:k−1), i. e. it predicts the state of
the system at time tk based on observations made at times t1, . . . , tk−1

• The filtering problem determines p(xk|z1:k), i. e. it filters out from the ob-
servations made up to time point tk the state of the system at time tk.



46 CHAPTER 3. PARTICLE FILTER (PF)

• The fixed lag smoothing problem determines p(xk|z1:k+τ ), i. e. it deter-
mines the state of the system at time tk given observations over a time span
t1, . . . , tk+τ , where τ ≥ 1 denotes the fixed time lag.

• The whole domain smoothing problem determines p(xk|z1:K), where z1:K =
zi, i = 1, . . . , K denotes the complete observation sequence.

In this study, only the filtering problem is of interest here. By assuming that
p(x0|z0) = p(x0) is available, the posterior probability density p(xk|z1:k) is then
obtained with Bayesian filters in two steps: prediction and update.

3.2 The Kalman Filter
The simplest way to solve the filtering problem is to use a Kalman filter [72]. Us-
ing the latter for state estimation of a dynamical system, it is tacitly assumed that
the evolution and observation models are linear. Also, it is assumed that the noise
in such models is additive and follows a Gaussian distribution with known mean
and covariance. Then, the posterior density p(xk, z1:k) is also Gaussian. Hence,
for linear dynamical systems, the Kalman filter provides an optimal solution to
the state estimation problem with an exactly estimated posterior density.

Given these assumptions for linear systems, the evolution and observation
models can be formulated as follows:

Evolution model : xk = Fkxk−1 + sk + ε
(x)
k−1 (3.10)

Observation model : zk = Hkxk + ε
(m)
k (3.11)

where F and H are known matrices for the linear evolutions of the state x(tk) and
of the observation z(tk), respectively, and s(tk) is a known vector of inputs.

Assuming that the system noise ε(x) and measurement noise ε(m) have zero
mean and covariance matrices C(εx) and C(εm), respectively, the prediction and
update steps of the Kalman filter are given by

• Prediction: Responsible for projecting forward in time to obtain the a priori
estimate at the next time step of the mean and variance.

x̃k = Fkx̂k−1 + sk

(C̃
(x)
k ) = FkC

(x)
k−1F

T
k + C(εx)
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• Update: Incorporates the new observation, zk, into the a priori estimate to
obtain an improved a posteriori estimate.

Kk = (C̃
(x)
k )HT

k

(
Hk(C̃

(x)
k )HT

k + C(εm)
)−1

x̂k = x̃k + Kk (zk −Hkx̃k)

C
(x)
k = (I−KkHk) (C̃

(x)
k ) (3.12)

where K denotes the gain matrix of the Kalman filter.

After estimating the state variable x̂(tk) and its covariance matrix C
(x)
k in the

prediction step, their corresponding a posteriori estimates are obtained in the up-
date step with the utilization of the measurements z(tk).

3.3 Bayesian Filters
The Bayesian solution to compute the posterior distribution, p(xk|z1:k), of the
state vector x(tk), given past observations z1:k, is given by the general Bayesian
update recursion

measurement update : p (xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.13)

normalization : p(zk|z1:k−1) =

∫
RN

p(zk|xk)p(xk|z1:k−1)dxk (3.14)

time update : p(xk+1|z1:k) =

∫
RN

p(xk+1|xk)p(xk|z1:k)dxk(3.15)

The posterior distribution is the primary output from a nonlinear filter, from
which standard measures as the minimum mean square estimate x̂mmsk|k and its

covariance C
(x),mms
k|k can be extracted:

x̂mmsk|k =

∫
xkp(xk|z1:k)dxk (3.16)

C
(x),mms
k|k =

∫
(xk − x̂mmsk ) (xk − x̂mmsk )T p(xk|z1:k)dxk (3.17)

For a linear Gaussian model, the Kalman filter recursion relations provide a
solution to this Bayesian filtering problem. But for non-linear or non-Gaussian
models no finite-dimensional representations of the posterior density exist, and
numerical approximations are needed.
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3.4 Particle Filter
If linear Gaussian evolution - observation models are inadequate, the use of the
Kalman filter does not result in optimal solutions. In such cases the posterior
density of underlying states xk, given the sequence of observations z0:k is not
analytic, implying that the distribution p(xk|z0:k) cannot be expressed in a simple
form. The application of Monte Carlo techniques then appears as the most general
and robust approach to analyze non-linear system dynamics and/or non-Gaussian
state distributions. This is the case despite the availability of the so-called ex-
tended or unscented Kalman filter, which generally involves a linearization of the
problem.

The particle filter (PF) is also known under various names as there are:

• the bootstrap filter,

• the condensation algorithm,

• interacting particle approximations,

• survival of the fittest.

The particle filter approximates the posterior distribution of unobservable states,
p(xk|z0:k), with a discrete density which will be evaluated at a dynamic stochastic
grid in this work.

3.4.1 Sampling on a dynamic stochastic grid
The Particle Filter (PF) is based on a direct application of the Bayesian recursion
relations and approximates the posterior distribution, p(xk|z0:k), with a discrete
density sampled on a dynamic stochastic grid. This kind of sampling has some
noteworthy properties:

• A dynamic stochastic grid xik changes over time and represents a very effi-
cient representation of the state space.

• The PF generates and evaluates a set {xi1:k}Ni=1 of N different trajecto-
ries rather than current states xik only. This affects the time update of the
Bayesian recursion relations as follows:

p
(
xi1:k+1|z1:k

)
= p

(
xi1:k|z1:k

)
p
(
xik+1|xi1:k, z1:k

)
= wik|kp

(
xik+1|xik

)
(3.18)
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• The new grid is obtained by sampling from

p (xk+1|z1:k) =
N∑
i=1

p
(
xi1:k+1|z1:k

)
=

N∑
i=1

wik|kp
(
xik+1|xik

)
(3.19)

Employing importance sampling amounts to introducing an auxiliary proposal
density q (xk+1|xk, zk+1), from which it is easy to sample. The advantage of us-
ing an auxiliary proposal distribution can be seen, if one rewrites the Bayesian
recursion as follows:

p (xk+1|z1:k) =

∫
RN

p (xk+1|xk) p (xk|z1:k) dxk (3.20)

=

∫
RN

q (xk+1|xk, zk+1)
p (xk+1|xk)

q (xk+1|xk, zk+1)
p (xk|z1:k) dxk

Now for each particle a random sample from this auxiliary proposal distribu-
tion xik+1 ∼ q (xk+1|xik, zk+1) is drawn, and the posterior probability is adjusted
for each particle with the importance weight

p (x1:k+1|z1:k) =
N∑
i=1

p
(
xik+1|xik

)
q
(
xik+1|xik, zk+1

)wik|kδ (x1:k+1 − xi1:k+1

)
= wik+1|kδ

(
x1:k+1 − xi1:k+1

)
(3.21)

Note that the proposal distribution q
(
xik+1|xik, zk+1

)
depends on the last state

in the particle trajectory xik as well as the next measurement zk+1. The sim-
plest choice of proposal distribution is to use the dynamic model itself, i. e.
q
(
xik+1|xik, zk+1

)
= p

(
xik+1|xik

)
, leading to wik+1|k = wik|k.

Thus, the Particle Filter is a sequential Monte Carlo technique for the solution
of the state estimation problem. It is a sampling method which approximates the
posterior distribution by making use of its temporal structure. Again, the key
idea is to represent the required posterior density function by a set of random
samples (particles) with associated weights yielding a particle representation of
the posterior density according to

p(xk|z0:k) ≈
N∑
i=1

wik−1δ
(
xk − xik−1

)
where wik represents the weight of particle xik. Estimates are then computed based
on these samples and weights. As the number of samples becomes very large,
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this Monte Carlo characterization becomes an equivalent representation of the
posterior probability function, and the solution approaches the optimal Bayesian
estimate.

Note that for the posterior density a recursive representation exists according
to

p (xk|z0:k) = α · p (zk|xk)
∫
dxk−1p (xk−1|z0:k−1) p (xk|xk−1)

With a particle representation, this recursive relation simplifies to

p (xk|z0:k) ≈ α · p (zk|xk)
N∑
i=1

wik−1p
(
xk|xik−1

)
How do we create a proper set of particles for representing the posterior distri-
bution p (xk|z0:k)? The answer is importance sampling which will be explained
next.

3.4.2 Sequential importance sampling
The technique of importance sampling is a method for generating fair samples of
a distribution p(x(t)). Suppose p(x(t)) is a density from which it is difficult to
draw samples, but it is easy to evaluate p(xi(t)) for some particular instances xi,
i. e. on a grid. Then, an approximation to p(x) can be given by:

p(x) ≈
N∑
i=1

wiδ
(
x− xi

)
(3.22)

wi =
p(x)

q (xi)
(3.23)

where q(xi) denotes any auxiliary proposal distribution, also called importance
density. In particular, a uniform sampling of the state space could be used but
would lead to sample depletion, or sample degeneracy, or sample impoverish-
ment. A more direct auxiliary proposal distribution would be an approximation
to the posterior density p (xk|z1:k). This is achieved by re-sampling, which intro-
duces the required information feedback from the observations, so trajectories that
perform well, will survive the re-sampling.

A generic Particle Filter algorithm

• Choose
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– a proposal distribution q (xk+1|x1:k, zk+1),

– a re-sampling strategy and

– the number of particles N .

• Initialization: Generate xi1 ∼ px0 , i = 1, . . . , N and set wi1|0 = 1
N

.

• Iteration: for k = 1, 2, ...... do

– Measurement update: For i = 1, 2, . . . , N compute

wik|k =
wik|k−1p (zk|xik)∑N
i=1 w

i
k|k−1p (zk|xik)

– Estimation: The filtering posterior density is approximated by

p̂ (x1:k|z1:k) =
N∑
i=1

wik|kδ
(
x1:k − xi1:k

)
and the mean is approximated by

〈x〉 ≈
N∑
i=1

wik|kx
i
1:k

– Re-sampling: Optionally at each time, take N samples with replace-
ment from the set {xi1:k}Ni=1 where the probability to take sample i is
wik|k = 1/N

– Time update: Generate predictions according to the chosen proposal
density

xik+1 ∼ q
(
xk+1|xik, zk+1

)
and compensate for the importance weight

wik+1|k = wik|k
p
(
xik+1|xik

)
q
(
xik+1|xik, zk+1

)
Note that the algorithm exhibits the fundamental structure of the Bayesian

recursion relations as detailed above. Most common forms of PF algorithms com-
bine the weight updates into one equation according to

wik|k ∝ wik−1|k−1

p (zk|xik) p
(
xik|xik−1

)
q
(
xk|xik−1, zk

)
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The PF algorithm outputs an approximation of the trajectory posterior density
p (x1:k|z1:k). For a filtering problem, the simplest solution would be just to extract
the last state xik from the trajectory xik and use the particle approximation

p̂ (xk|z1:k) =
N∑
i=1

wik|kδ
(
xk − xik

)
However, this is incorrect as in general all paths xj1:k−1 can lead to the state xik. The
correct solution, taking all paths leading to xik into account, leads to an importance
weight

wik+1|k =
N∑
j=1

wjk|k
p
(
xik+1|x

j
k

)
q
(
xik+1|xik, zk+1

)
which replaces the time update of the normalized weights given in the generic PF
algorithm above. This solution is called the marginal Particle Filter (mPF) which
has many applications in system identification and robotics. Unfortunately, the
complexity is now of order O(N2).

Prediction to get p (x1:k+m|z1:k) can be implemented by repeating the time
update in the generic PF algorithm m times.

Importance re-sampling

The basic particle filter suffers from sample depletion where all but a few particles
will have negligible weights. Re-sampling solves this problem, but inevitably
destroys information and thus increases uncertainty by the random sampling. In
this work the bootstrap PF, also called Sampling Importance Resampling (SIR),
is employed which applies re-sampling each time. To avoid sample depletion,
an auxiliary importance density needs to be selected appropriately as the prior
density p

(
xk|xik−1

)
.

The SIR algorithm

The SIR algorithm uses re-sampling at every iteration. It can be summarized in
the following steps, as applied to the system evolution from tk−1 to tk:

Step 1 – For i = 1, . . . , N draw new particles xik from the importance density
by employing the transition model

q(xk) =
N∑
i=1

wik−1p
(
xk|xik−1

)
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To do so, choose a random number r uniformly from [0, 1] and choose
particle i = r, then sample from the prior density p

(
xk|xik−1

)
.

– Use the corresponding likelihood to calculate corresponding weights

wik = p
(
zk|xik

)
The samples xik, employed above, are fair samples from p (xk|z0:k−1)
and re-weighting them accounts for the evidence of the observations
zk.

Step 2 Calculate the total weight Wk =
∑N

i=1w
i
k.

Normalize the particle weights wik = W−1
k wik ∀i = 1, ...., N

Step 3 Re-sample the particles by doing

– Compute the cumulative sum of weights W i
k = W i

k−1 + wik;∀i =
1, . . . , N, W 0 = 0

– Let i = 1 and draw a starting point u1 from a uniform distribution
U [0, N−1]

– For j = 1, . . . , N do the following

* move along the cumulative sum of weights by setting uj = u1 +
N−1(j − 1)

* while uj > W i set i = i+ 1

* assign samples xjk = xik

* assign weights wjk = N−1

The resampling procedure just described avoids to have many degenerate par-
ticles with vanishing weights but it also leads to a loss of diversity in the sense that
the resulting samples may contain many redundant particles. This phenomenon
is called sample impoverishment and is often observed in case of small process
noise. In this situation, all particles collapse to a single particle within few in-
stants tk.

Effective number of samples

An indicator of the degree of depletion is the effective number of samples, defined
in terms of the coefficient of variation σεx as

Neff =
N

1 + σ2
εx(w

i
k|k)

=
N

1 +
V ar

(
wi
k|k

)
E{wi

k|k}

2 =
N

1 +N2V ar
(
wik|k

)
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The effective number of samples is thus at its maximum Neff = N when all
weights are equal wik|k = 1

N
, and the lowest value it can attain is Neff = 1,

which occurs when wik|k = 1 with probability 1/N and wik|k = 0 with probability
(N − 1)/N .

In practical applications this number could be approximated by

N̂eff =
1∑N

i=1

(
wik|k

)2

when we have 1 ≤ N̂eff ≤ N . Again the upper bound Neff = N is attained
when all particles have the same weight, and the lower bound Neff = 1 when all
the probability mass is devoted to a single particle. The resampling condition in
the PF can now be defined as Neff < Nth, and the threshold can for instance be
chosen as Nth = 2N

3
.

Choice of proposal/importance distribution

The choice of proposal distribution clearly influences the depletion problem. The
most general proposal distribution has the form q (x1:k|z1:k). This means that the
whole trajectory needs be sampled at each iteration, which in real-time applica-
tions is not realistic. But the general proposal can be factorized as

q (x1:k|z1:k) = q (xk|x1:k−1, z1:k) q (x1:k−1|z1:k)

The most common approximation in applications is to reduce the path x1:k−1

and only sample the new state xk, so the proposal distribution q (x1:k|z1:k) is re-
placed by q (xk|x1:k−1, z1:k), which, due to the Markov assumption, can be written
as

q (xk|x1:k−1, z1:k) ≈ q (xk|xk−1, zk) .

The approximate proposal density predicts good values of the current state xk
only, not of the whole trajectory x1:k. For further insight, one needs to discuss the
dependence of this proposal distribution on the SNR. Here, the SNR is defined as
the ratio of the maximal value of the likelihood and prior, respectively,

SNR ∝ maxxkp(zk|xk)
p(xk|xk−1)

Note that for a linear Gaussian model this yields

SNR ∝

√
det(Cεx)

det(Cεm)
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Thus, the SNR is high if the measurement noise is small compared to the signal
noise. Given this measure, one could consider different sampling strategies, but
here only the one used in this work is explained.

Likelihood sampling: For medium or high SNR, samples are drawn from the
likelihood p (zk|xk).

The proposal distribution q
(
xk|xik−1, zk

)
can be factorized as follows

q
(
xk|xik−1, zk

)
≈ p

(
xk|xik−1, zk

)
= p

(
xk|xik−1

) p (zk|xik−1,xk
)

p
(
zk|xik−1

)
= p

(
xk|xik−1

) p (zk|xk)
p
(
zk|xik−1

) (3.24)

Now consider the case that the likelihood p (zk|xk) is much more peaky than the
prior p(xk|xk−1) and if it is integrable in state space, xk, then one can set

d2(xn,xm)p
(
xk|xik−1, zk

)
∝ p (zk|xk)

Thus, a suitable proposal distribution for the high SNR case is based on a scaled
likelihood function

q
(
xk|xik−1, zk

)
∝ p (zk|xk)

This choice then yields the following weight update

wik|k = wik−1|k−1p
(
xik|xik−1

)
Sampling from the likelihood requires that the likelihood function p (zk|xk) is
integrable with respect to xk. This is not the case when N > L, i. e. the number
of unobservable states is larger than the number of observations (measurements).
The interpretation in this case is that for each value of zk, there is an infinite-
dimensional manifold of possible xk to sample from, each one equally likely.

3.4.3 Resampling Schemes
The method of sampling from the likelihood has the drawback that it becomes
unstable as k increases. There is a discrepancy between the weights, therefore
the algorithm can be stabilized by performing a re-sampling sufficiently often.
The weighted approximate density is modified by each re-sampling step. This is
done by eliminating particles with low weights and multiplying particles with an
important weight. The filtering posterior density then becomes:

p̂ (x0:k, z1:k) =
N∑
i=1

ni
N
δ(x0:k − xi0:k)
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where ni is the number of copies of particle xi0:k. In the following, the three main
re-sampling schemes will be described.

Multinomial Resampling

The multinomial resampling scheme generates N ordered uniform random num-
bers on the interval (0, 1]. The new particle set is selected according to the multi-
nomial distribution [38].

uk = uk+1ũ
1
k
k , with ũk ∼ U [0, 1)

uN = ũ
1
N
N

xk = x(F−1(uk))

= xi with i so that uk ∈
[ i−1∑
s=1

ωs,
i∑

s=1

ωs
)
,

where the generalized inverse of the cumulative probability distribution is F−1.
The weights are normalized.

Systematic resampling

With systematic re-sampling, the particle set is selected according to the multino-
mial distribution of N generated ordered numbers uk.

uk =
(k − 1) + ũ

N
, with ũ ∼ U [0, 1)

Residual resampling

With residual re-sampling, the variance can be decreased. We define:

N i = bnωic+ N̄ i, for i = 1, . . . ,m,

where the N̄1, ..., N̄n are multinomially distributed, and bcmeans the integer part.
The multinomial distribution M(n−R; ω̄1, ..., ω̄n) has the following arguments:

R =
m∑
i=1

bnωic

ω̄i =
nωi − bnωic

n−R
, i = 1, ...,m
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The multinomial counts N̄1, ..., N̄n are generated in the same way as in the multi-
nomial re-sampling described above.
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Chapter 4

Bi-dimensional EMD

In nuclear medicine radiation therapy presupposes an estimation of an absorbed
energy dose distribution from known X-ray CT-based mass density distributions
combined with SPECT-PET-based radioactivity distributions. Such mappings can
be learned employing Deep Neural Networks (DNN). However, such deep neural
architectures are complex and training such networks is computationally expen-
sive. The current study elaborates on exploratory image analysis techniques which
try to extract characteristic features from given mass density distributions. Such
features might represent a simpler yet informative input to a DNN and may reduce
the computational load considerably.

Traditionally, exploratory feature extraction techniques like Principal Compo-
nent Analysis (PCA) [24, 28] and Non-negative Matrix and Tensor Factorization
[29] offer a global rather than local analysis. However, these methods are built
upon assumptions and constraints (orthogonality, statistical independence) which
might not always be obeyed. Generally, spatial variations of mass density dis-
tributions as well as spatio-temporal variations of activity distributions in fMRI
images represent non-linear and non-stationary signals while the techniques men-
tioned require at least wide-sense stationary signals. A decade ago, [62] proposed
an empirical method to analyze such data sets called Empirical Mode Decompo-
sition (EMD). Together with a Hilbert transform, this method allows to study
the instantaneous frequency content of signals. Its noise - assisted variant, called
EEMD represents a powerful tool for analyzing biomedical time series.

Concerning biomedical images, obviously, two-dimensional data arrays were
of special interest [126]. With Bi-Dimensional EMD (BEMD), it is generally
required to find local maxima and minima and subsequently interpolating these
points in each iteration of the process [88, 110, 31, 91, 167, 109]. In [31] inter-
polation methods based on a Delaunay triangulation with subsequent cubic inter-
polation on triangles has been studied. Instead of considering envelope surface
interpolation, Bhuiyan et al. [15, 16] studied both a direct envelope surface es-

59
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timation method and radial basis function interpolators. Similarly, Xiong et al.
[167] implemented a FastRBF algorithm for the estimation of the envelope sur-
faces. However, detection and interpolation of local extrema render the process
complicated and time consuming. A major breakthrough has been achieved by
Wu et al. [166], who proposed a Multi-dimensional Ensemble Empirical Mode
Decomposition (MEEMD) for multidimensional data arrays. MEEMD turned out
to be the best choice in practical applications, for example, medical image analy-
sis [6], image analysis [108], texture analysis [92], laser speckle contrast images
[65] etc..

In this study, a novel and computationally highly efficient BEMD approach is
considered, which replaces the direct cubic spline envelope surface interpolation
step by an interpolation based on Green’s function with tension [164, 5]. This
technique is applied in this study to images representing mass density distributions
for extracting Bi-dimensional Intrinsic Mode Function (BIMF)s on various spatial
scales. These characteristic textures might be usefull on the one hand to estimate
the number of filters to be applied in the Convolutional Neural Network (CNN)s
or to use them immediately as input to the DNN.

4.1 Canonical Bi-dimensional EMD
EEMD tries to extract from any multi-variate signal simple oscillations locally.
These component signals are called Intrinsic Mode Function (IMF), henceforth
called intrinsic modes for short. In case of images such spatial oscillations can
be seen as characteristic textures of the given intensity distribution. Note that
intensities can only be positive, hence to apply EMD, images need to be centered
beforehand. IMFs are obtained from the signal through a process called sifting,
which results in pure oscillations with zero-mean but time-varying amplitude and
frequency. Furthermore, IMFs are ordered according to their frequency content.
In contrary to wavelet analysis, EMD is a data driven algorithm that decomposes
the signal without prior knowledge.

The decomposition of an image starts by vectorizing it into a row vector x̃m ∈
RN . All images are then collected row-by-row into a data matrix XM×N . Next
EEMD is applied to each column X∗n ≡ xn of the M × N - dimensional data
matrix X, where M denotes the number of samples and N gives the dimension of
the data vectors, i. e. the number of pixels in every image. The 1D-EEMD of the
n-th column becomes

xn := X∗,n =
J∑
j=1

C(j)
∗,n (4.1)

where the column vectorC(J)
∗,n represents the residuum of the n-th column vector of
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the data matrix. This finally results in J component matrices, each one containing
the j-th component of every column xn, n = 1, . . . , N of the data matrix X.

C(j) = [c
(j)
1 c

(j)
2 · · · c

(j)
N ] = [C

(j)
∗,1 C

(j)
∗,2 · · · C

(j)
∗,N ] (4.2)

Next one applies an EEMD to each row of eqn. 4.2 yielding

C(j)
m,∗ =

(
c

(j)
m,1c

(j)
m,2 · · · c

(j)
m,N

)
=

K∑
k=1

(
h

(j,k)
m,1 h

(j,k)
m,2 · · ·h

(j,k)
m,N

)
=

K∑
k=1

H(j,k)
m,∗(4.3)

where c(j)
m,n =

∑K
k=1 h

(j,k)
m,n represents the decomposition of the rows of matrix

C(j). These components h(j,k)
m,n can be arranged into a matrix H(j,k) according to

H(j,k) =


h

(j,k)
1,1 h

(j,k)
1,2 · · · h

(j,k)
1,N

h
(j,k)
2,1 h

(j,k)
2,2 · · · h

(j,k)
2,N

...
... · · · ...

h
(j,k)
M,1 h

(j,k)
M,2 · · · h

(j,k)
M,N

 (4.4)

The resulting component matrices have to be summed to obtain

C(j) =
K∑
k=1

H(j,k). (4.5)

Finally this yields the following decomposition of the original data matrix X

X =
J∑
j=1

C(j) =
J∑
j=1

K∑
k=1

H(j,k) (4.6)

where each element is given by

xm,n =
J∑
j=1

K∑
k=1

h(j,k)
m,n (4.7)

To yield meaningful results, components h(j,k)
m,n with comparable scales, i.e.

similar spatial frequencies of their textures, should finally be combined [166] ac-
cording to a Comparable Minimal Scale Combination Principle (CMSC). In prac-
tice, for two-dimensional data sets this implies that the components of each row,
which represent a common horizontal scale, and the components of each column,
which represent a common vertical scale, should be summed up [166].

Hence, the CMSC - principle leads to BIMFs given by

S(k′) =
K∑
k=1

H(k,k′) +
J∑

j=k′+1

H(k′,j) (4.8)

which thus yields a decomposition of the original data matrix X into BIMFs ac-
cording to
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X =
K∑
k′=1

S(k′) (4.9)

where S(K) represents the non-oscillating residuum. The extracted BIMFs can
be considered features of the data set which, according to the CMSC - principle,
reveal local textures with characteristic spatial frequencies which help the further
analysis. The latter can be improved using a noise-assisted variant, which mainly
helps to avoid mode mixing due to local frequency degeneration.

4.2 Noise-assisted BEMD
Each CT slice is encoded as a two-dimensional array of intensity values X =
{xmn},m = 1, . . . ,M ;n = 1, . . . , N . These pixels represent discrete intensity
values at the coordinates xm ≡ m, yn ≡ n of a continuous intensity distribution
f(x, y). Before image decomposition, pixel values are z-scored, i. e. normalized
to zero-mean and unit variance.

Next a special variant of a noise - assisted EEMD, starting with two noisy
versions of every image, is proposed. First white noise with zero mean and stan-
dard deviation σn = 0.2 is added and subtracted, thus forming the two versions
f̃ ∗(x, y): f̃+(x, y) = f(x, y)+ε and f̃−(x, y) = f(x, y)−ε. Therefore, the EMD
of each noisy input image yields

f̃ ∗(m,n) =
J∑
j=1

c∗j(m,n) (4.10)

where c∗J(m,n) denotes the residuum, and the c∗i (m,n) designate the noisy
bi-dimensional intrinsic modes. Note that by averaging the two noisy versions
0.5(f+(x, y) + f−(x, y)), the original image f(x, y) is obtained. Therefore per-
forming the BEEMD with a fixed number J of Bi-dimensional Intrinsic Mode
(BIM), each BIM of f(x, y) is naturally obtained by averaging the correspond-
ing BIMs of the noisy versions. The main steps of this noise-assisted BEMD
[108, 102], [5] are as follows:

1. Assign the number of intrinsic modes (BIMs) J = 6
Assign the number of sifting steps L = 5
Initialize c∗1(m,n) = f̃(m,n).

2. Extract the j = 0, 2 . . . J BIMs

(a) Do the sifting by repeating the following steps:
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i. Extract all local 2D-maxima and 2D-minima of ĉ∗(x, y).
ii. Build a 2D surface interpolation by employing the extrema from

the previous step to obtain a 2-D envelope surface smax(x, y) of
maxima, and a 2-D envelope surface smin(x, y) of minima. Cal-
culate the average of the envelope surfaces 〈s(x, y)〉

〈s(x, y)〉 = 0.5(smax(x, y) + smin(x, y))

iii. Update function ĉ∗(x, y) by subtracting the average surface 〈s(x, y)〉
from the ĉ∗(x, y);

ĉ∗(x, y)← ĉ∗(x, y)− 〈s(x, y)〉

(b) If the sifting loop doesn’t finish, go to step 2(a)i. Otherwise a BIM is

c∗i (x, y) = ĉ∗(x, y)

3. Calculate the new ĉ∗(x, y) by subtracting all the computed BIMs from the
noise - enhanced image.

ĉ∗(x, y) = f̃ ∗(x, y)−
∑

i<(i+1)

c∗i (x, y)

4. If (i + 1) < I , go to step 2 and estimate the next (i + 1) BIM, otherwise
ĉ∗(x, y) = c∗I(x, y) is the residuum.

Common ensemble decomposition algorithms apply this procedure to an en-
semble of E noisy versions of the original image with concomitant increase in
computational costs.

Employing Green’s function in Tension - BEEMD (GiT-BEMD), only two
noisy versions of each image are needed, reducing the computational load dra-
matically.

4.3 Green’s function-based BEEMD
A major drawback of this or similar BEMD techniques is that the number of BIMs
and their characteristics are highly dependent on the envelope estimation tech-
niques used in the sifting process, on the methods to detect extrema, and on stop-
ping criteria during the iterations. The following section presents a new variant
of BEMD, which is based on a Green’s function expansion of the interpolating
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surfaces including surface tension and containing all extremal values of the bi-
dimensional data set. Introducing a tension parameter alleviates surface interpola-
tion problems and greatly improves the stability of the method relative to gridding
without tension. GiT-BEMD thus differs from the canonical BEEMD algorithm
basically in the process of robustly estimating the upper and lower surfaces, and
in limiting the number of iterations per BIMF to a few iterations only. The de-
tails of the extrema detection and surface formation of the GiT-BEMD process
are discussed in the following section according to [5].

4.3.1 Extraction of local extrema

Local extrema are points that have the largest or smallest pixel values relative
to their K-connected neighbors, therefore in a 2D image the pixel (m,n) with
coordinates (xm, yn) has K = 8 connected neighbors with coordinates (m ±
1, n), (m,n ± 1), (m ± 1, n ± 1), (m ± 1, n ± 1). The 2D array of local max-
ima is called a maxima map, and the 2D array of local minima is called a min-
ima map, respectively. A neighboring window method is employed to detect
local extrema during intermediate steps of the sifting process for estimating a
BIM of any source image. In this method, a data point/pixel is considered a
local maximum (minimum), if its value is strictly higher (lower) than all of its
neighbors. Let P = {Pi|i = 1, ....I} be a set of local minima (maxima) of an
M × N - dimensional data matrix X such that it exists a small (large) neighbor-
hood around any such local optimal point Pi on which the pixel value is never
larger (smaller) than f(xi, yi) at Pi. Local extrema occur only at critical points.
Let D(m,n) = fmmfnn − (fmn)2. If D > 0 at a critical point, then the critical
point Pi is a local extremum. The signs of fmm and fnn determine whether the
point is a maximum or a minimum. IfD ≤ 0 at a critical point, then the point Pi is
a saddle point. Though, in practice, a 3× 3 window results in an optimal extrema
map for a given 2D image for many applications, sometimes a larger window size
is suitable especially with large scale images.

4.4 Green’s function for estimating envelopes

In BEEMD, spline interpolation is basically used to find the smoothest surface
passing through a grid of irregularly spaced extrema, either maxima or minima.
With GiT-BEMD, Green’s functions are employed instead. The latter are deduced
from proper data constraints to expand the interpolating surface under tension.
Thus the envelope surfaces connecting local extrema in 2D space are determined
to minimize the curvature of the surface in the presence of surface tension [164].
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Interpolation with Green’s functions implies that the points of the interpolating
envelope surface can be expressed as

s(xu) =
V∑
v=1

wvΦ(xu,xv) (4.11)

where V = MN , xu denotes any point where the surface is unknown, xv rep-
resents the v-th data constraint, Φ(xu,xv) is the Green’s function and wv is the
respective weight in the envelope representation. Several works discuss the use of
Green’s functions in interpolation problems (see for example [163]). Following,
the basics of the Green’s function method for spline interpolation using surface
tension is summarized and closely follows [5].

The Green’s function Φ(x) obeys the following relation at any data constraint
xv, v = 1, . . . , V [134][

D∆2
op − T∆op

]
Φ(xu,xv) = δ(xu − xv) (4.12)

where, ∆2
op and ∆op = ∇2, denote the bi-harmonic, the Laplace and the Nabla

operator, respectively, D is the flexural rigidity of the curve or surface, T is
the tension used at the boundaries, and Φ(xu,xv) represents the Green’s func-
tion containing the spatial position vectors xu,xv as argument. With vanishing
surface-tension, i. e. T → 0, the minimum curvature solution Φ(xu,xv) =
x2
uv log(xuv), xuv = |xu − xv| is achieved [134]; while in case of a vanishing

surface rigidity, i. e. D → 0, the solution approaches Φ(xu,xv) = log(xuv). The
general solution is expected to retain these limiting characteristics. To obtain the
former, rewrite eqn. 4.12 in terms of the curvature Ψ(x) = ∇2Φ(x) of the Green’s
function and transform it to the conjugate Fourier domain where it then reads[

∆op +
p2

k2

]
Ψ(k) = − 1

T

p2

k2
. (4.13)

Here k = |k| represents the radial wave number, p2 = T
D

, k denotes the wave
number vector and Ψ(k) represents the Fourier transform of Ψ(x). In Fourier
space, the solution is obtained as

Ψ(k) = − 1

T

(
p2

k2 + p2

)
(4.14)

From this the general solution of eqn. 4.12 in a 2-D spacial domain [164] can
be achieved by using the inverse Hankel transform as

Ψ(x) = − 1

T

∫ ∞
0

p2

k2 + p2
J0(kx)kdk = − 1

T
p2K0(px) (4.15)
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where K0 denotes the modified Bessel function of the second kind and order
zero given by

K0(px) =

∫ ∞
0

cos(kpx)dk√
k2 + p2

∝
{

exp(−px) if px→∞
− log(px) if px→ 0

(4.16)

Integrating Ψ(x) twice and rescaling, finally, yields the Green’s function Φ(x)
and its local gradient∇Φ(x) as

Φ(xu,xv) = log(p|xu − xv|) + K0(p|xu − xv|) = log(pxuv) + K0(pxuv) (4.17)

∇Φ(xu,xv) = p ·
[

1

pxuv
−K1(pxuv)

]
· (xu − xv)

|xu − xv|
= p ·

[
1

pxuv
−K1(pxuv)

]
· euv

where p ∝ T represents the tension parameter, |....| denotes the Euclidean dis-
tance, K0(.) represents the modified Bessel function and euv denotes the unit vec-
tor pointing along the direction xu − xv. Hence, by decreasing the tension pa-
rameter p ∝ T , the solution is expected to reach the minimum curvature solution
represented by the bi-harmonic Green’s function [134]. In contrary, increasing
the tension parameter T , thus also p, renders the arguments of Φ(x) large and
leads to an interpolating surface dominated by tension. Thus varying the tension
p achieves a continuous spectrum of Green’s functions reflecting the trade-off be-
tween the minimum curvature solution driven by the log(px) term and the impact
of the surface tension via the modified Bessel function K0(px). Finding an opti-
mal tension parameter is still an open problem. If intrinsic data modes are to be
used for classification purposes, an optimal tension parameter could be identified
as the one achieving maximal classification accuracy. The effect of the tension
parameter is illustrated in Fig. 4.1.

Including V data constraints yields for the defining equation and its solution
[134]

∆op

[
∆op − p2

]
c(xu) =

V∑
v=1

wvδ(xu − xv)

c(xu) =
V∑
v=1

wvΦ(xu − xv) (4.18)

The coefficients wv can be obtained by solving the system of linear equations
Gw = c where the Green’s matrix G collects all Green’s functions Φ(xm − xv)
at the data constraints v = 1, . . . , V . Corresponding slopes sm in directions n̂m
can be obtained by evaluating the relations

sm =
N∑
m=1

wm∇Φ(xm − xn) · n̂m m = 1, . . . , N.
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Figure 4.1: The figure shows the three splines along with their tension values that
pass through the same extremal (local maxima and minima) points. Note that
when the tension vanishes T = 0, the points are connected by a cubic spline; and
when T = 1, it is representing a linear spline.

In summary, the interpolation procedure is based on two steps: the first step
estimates the weights w = [w1 w2 . . . wP ] and the second step estimates the
interpolating envelope surface:

• The surface values s(xv) = [s(x1), . . . , s(xV )]T ≡ c = [c1, c2, . . . , cV ]T

are known in a total of V = MN locations xv = [xm, yn]T . Then using the
interpolation equation 4.11 for each of the known points, a linear system
with V equations is obtained

Gw = c

where the m-th row of matrix G ∈ RM×N is the evaluation of the Green’s
function Φ(xu,xv), v = 1, 2 . . . V . The corresponding weights are then
obtained as w = G−1c.

• Using the weights w, the value s(xu) ≡ cu of the envelope surface can be
estimated at any point xu by solving equation 4.11, which can be re-written
as

cu = wTΦ (4.19)

where the vector Φ = [Φ(xu,x1) Φ(xu,x2) . . .Φ(xu,xV )]T contains the
Green’s function values of all distances between the V data constraints and
the considered location.
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4.5 Dimension reduction by PCA
Having achieved a decomposition of the mass density distribution into its under-
lying BIMs, the latter represent characteristic textures, which are confined to spe-
cific spatial frequency bands and are nearly orthogonal locally but not globally. To
achieve global orthogonality, a PCA may be performed on the matrix X ∈ RM×N
containing all intrinsic modes of the mass density distribution. The goal of PCA
is to find a smaller, yet informative set of variables with less redundancy which
represents the original signal as accurately as possible [66]. PCA performs an
eigendecomposition of the centered data correlation matrix Cor = XTX with or-
thogonal eigenvectors which span the input space and ordered eigenvalues which
represent corresponding data variances along these new coordinates. By deliber-
ately neglecting eigenvectors belonging to small eigenvalues during reconstruc-
tion, a more compact representation of the data can be achieved with minimal
information loss in a least mean squares sense. Thus PCA can be employed to
reduce the dimensionality of the mass density textures extracted by GiT-BEMD.



Chapter 5

Neural networks (NNs)

Artificial Neural Network (NN) represent graphical models which form the sub-
strate for flexible learning systems. Depending on their structure they can im-
plement different learning modalities like supervised or unsupervised learning,
correlation-based or competitive learning, reinforcement learning, imitation and
transfer learning etc. Feed-forward networks resemble directed acyclic graphs
with nodes and edges and one or more hidden layers of nodes which have no direct
contact to the outside world. Accordingly they correspond to shallow [57], [95]
or deep architectures [172], [49], [2]. While the former are generally fully con-
nected, the latter are not. Rather they implement the concept of receptive fields,
which restrict the region in input space from where any neuron can receive stim-
uli. During repeated stimulus presentation, the weights of the network become
trained in a supervised fashion if a set of labelled training data is available. Given
any appropriate objective function at the output, weight adaptation is performed
through gradient descent learning, which seeks to minimize the given objective
function.

5.1 Gradient descent optimization in NNs

5.1.1 General
First of all a few general statements concerning gradient descent learning in neu-
ral networks [57], [130]:

• Gradient descent is an optimization algorithm for finding the weights of
machine learning algorithms such as NNs.

• It works by having the model making predictions on training data and using
the error on the predictions to update the model in such a way as to reduce
the error. This is called error-backpropagation.

69
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• The training error of a NN as a function of its weights is highly non-convex.

• The problem of training NNs is NP-hard

• With a finite number of functions, say N , every training error will be close,
by a small constant factor, to every test error once you have more than logN
training cases.

• If every training error is close to its test error, then overfitting is basically
impossible.

5.1.2 Gradient descent
Gradient descent learning comes in three variants [49]:

• Incremental (stochastic) learning

– Present one randomly chosen training example and then update the pa-
rameters according to the prediction error, then choose the next train-
ing sample randomly and so on. If one has presented all training sam-
ples once, an epoch is finished.

– Stochastic learning can escape from local optima, is often fast and
shows learning performance immediately. But stochastic learning is
noisy so it is harder to settle in a local optimum, it may take longer on
large datasets and can have a high variance over the training set.

• Minibatch learning

– One partitions its training dataset (the batch) into subgroups (the mini-
batches), presents one minibatch and then updates the parameters ac-
cording to the total error accumulated with the minibatch, then one re-
peats this procedure for every minibatch. When all minibatches were
presented, an epoch is finished.

– Minibatch learning can avoid local optima while having more stable
gradients and is computationally efficient as a good compromise be-
tween incremental and batch learning. But minibatch learning needs
an additional hyperparameter (the minibatch size) and needs part of
the training dataset to be stored in memory. A good default minibatch
size seems to be 32 according to literature reports. Minibatch size can
be optimized independent from all other hyperparameters. Minibatch
size and learning rate should be optimized after all other hyperparam-
eters and then batch size should be fixed while learning rate can still
be adapted further.
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• Batch learning

– One presents all training data once as a batch and then updates the
parameters according to the total error of the prediction. This is called
an epoch.

– Batch learning may be more efficient due to lesser updates, has more
stable gradients and is easy to parallelize. But batch learning may
experience premature convergence, it may get stuck in a local opti-
mum, the entire training dataset needs to be available in memory dur-
ing learning and training becomes slow on large datasets

5.1.3 RMSProp

Stochastic Gradient Descent (SGD) is a stochastic approximation to the gradient
descent optimization [59]. It is an iterative method to optimize a differentiable
objective function. Hence the task is as follows: Minimize the following objective
function

Q(w) =
1

N

N∑
n=1

Qn(w)

Each summand is typically associated with the n-th observation in the training
data set. Such sum-minimization problems arise, for example, in least squares
minimization problems, Maximum Likelihood Estimation (MLE) or empirical risk
minimization. Minimizers of sums are called M-estimators.

• A batch gradient descent method would iterate the following

w = w − η∇wQ(w) = w − η

N

N∑
n=1

∇wQn(w)

with η the step size or learning rate.

• A minibatch gradient descent method would iterate the following

w = w − η∇wQ(w) = w − η

K

K∑
n=1

∇wQn(w), K � N

with η the variable step size or learning rate (see next item).
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• A stochastic gradient descent method, instead, approximates the above by

w = w − η∇wQn(w)

where an adaptive learning rate is generally used.

• With RMSProp [59], [130] the learning rate for each weight is divided by a
running average of the magnitudes of recent gradients for that weight

– compute running average

v(w, t) = γv(w, t− 1) + (1− γ) (∇wQn(w))2

where γ is a forgetting factor

– weight parameter update

w = w − η√
v(w, t)

∇wQn(w)

5.2 Deep Learning
The flexibility of neural networks is a very powerful property [138], [54], [86].
DNN profit from a multi-stage processing. In addition,

• DNNs possess the ability to handle nonlinear data

• DNNs allow for many modifications.

The major difference of DNN compared to shallow nets, for example Multi-
Layer Perceptrons (MLP), is the use of the concept of receptive fields. The latter
denoted the region in input space from where every node in a given processing
layer of a NN receives input stimuli. Whereas in shallow feedforward neural
networks all nodes in a subsequent layer are fully connected to all nodes in the
preceding layer, in a DNN each node of a subsequent layer only receives input
from a limited region of the preceding layer. Information processing then proceeds
via a convolution operation.

5.2.1 2D Convolutions
The operation

The convolution operation uses a 2D data array, i. e. a matrix, which is often
called a kernel or a filter [49]. The matrix elements represent weights. The kernel
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Figure 5.1: Convolutive filtering

slides over the 2D input data array, often an image, and multiplies elementwise
the entries of the input data array with the corresponding weights of the kernel
(see figure 5.1). Finally a weighted sum is computed which represents the output
of the filter, i. e, the result of the convolution operation. If the stride of the kernel
is larger than one, dimension reduction is achieved as well.

Convolutive filtering thus combines information locally, often called context,
available in the preceding layer (input) into a new feature represented in the node
at the subsequent layer (output). The feature, which is extracted thereby, obvi-
ously depends on the weights of the filter as well as its size. In that way the
sliding kernel generates a new feature map, where each node also encodes the
local context of any node of the preceding layer. This local information process-
ing drastically reduces the number of kernel weights (or filter coefficients) to be
adapted or learnt. Note that input location and output location roughly correspond
to each other, keeping locality largely preserved.

To illustrate the convolution operation in 3D, imagine we start with a 9×9×9
input array and use NF = 4 filters with an RF size s = 3 × 3 × 3. If we also
include padding with one sheet of voxels around the data cube, we get NFM = 4
new feature maps with equal size i. e. encompassing 93 voxels, after the first
convolution step. If we repeat filtering, using different filters, of course, we would
get NFM = NF × NFM = 16 new feature maps. If, instead, we would only use
one type of filter for this second convolution layer, hence we would get NFM = 4
new feature maps. Even more restrictive, we could use for the second convolution
step the same filters as used in the first convolution step. We then would focus on
the same features, but on an increasing scale compared to the preceeding layer,



74 CHAPTER 5. NEURAL NETWORKS (NNS)

Figure 5.2: Zero padding

i. e. the receptive field size would be increased.

Padding, pooling and strides

Keeping the output feature map the same size as the input feature map is only
possible, if at the borders of the input array an operation called padding is per-
formed, whereby extra pixels (or voxels) are added along the borders, depending
on the filter size. If the filter represents an array of 3× 3 pixels, one row of extra
pixels needs to be added. If, instead, the filter array has size 5 × 5, two rows of
extra pixels would be needed (see figure 5.2). For zero-padding, the activities of
these extra pixels are commonly chosen to be zero. These extra pixels allow every
border pixel to be the center of the kernel and to be mapped to the subsequent
feature map.

If, however, during filtering the spatial dimension should to be reduced, this
could be achieved conveniently with a pooling operation. For example, a 2 × 2
region of the input array could be pooled to one output pixel by either computing
the mean of the pixels in this region or by simply mapping the largest value of it
for the output pixel (average or max pooling).

Spatial contraction could be achieved also via striding, which means skipping
some of the slide locations of the kernel. For example, a stride of 2 only picks
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every second slide and skips the one between. This downsizes the output roughly
by a factor of two. A stride of 3 skipps two slides between the ones to be picked,
downsizing by a factor of three roughly etc. Recent deep learning architectures
favor strides over pooling, because the convolution operation still keeps some of
the “skipped” information.

Multi-channel versions

Given the application we consider in this study, we choose to have two input
channels: one providing the mass density maps and the other providing the activity
distributions from the SPECT or PET images. Thus a filter represents a collection
of two kernels, where each channel has its own unique kernel, and each such
kernel produces one and only one layer of new feature maps. During convolution,
each of the kernels of the filter slides over its respective input channel to produce a
filtered version of it. The weights of the different kernels are in general different,
thus allowing to put more emphasis on one input channel than on the others. The
filter as a whole finally produces one overall output channel by summing up all
the processed versions. In addition, each output filter has one bias term, which
gets added to the output channel.

To summarize, each filter processes its input with its own, different set of
kernels and a scalar bias term to produce a single output channel. The latter are
then concatenated together to produce the overall output. The number of output
channels thus equals the number of filters. A non-linear transformation, i. e. an
activation function, is subsequently applied, before the output is input to the next
convolutional layer for further processing.

Locality

Kernels have to learn weights from only a set of local inputs. Hence striding the
kernel across all the input image, it will learn features general enough to be found
at any location inside the image. Consider an edge detector like a sobel filter (see
Fig. 5.3). It receives only local input, but is applied across an entire image and
everywhere detects the same feature, a contrast edge. But a small kernel cannot
detect an entire face, for example. Now remember that convolved images are still
images. Hence, convolution operations, using filter kernels, can be stacked. It is
here, where the concept of a receptive field comes in.

Receptive fields

The concept of receptive fields determines the context which is locally represented
in any node of the subsequent feature map. Through striding the filter kernel
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Figure 5.3: Sobel edge detector

across the entire input feature map, its weights get trained to detect always the
same feature in all the input array. On the other hand striding or pooling reduces
the size of the subsequent feature map whereby the receptive field gets larger and
larger although the size of the kernel stays the same in all convolution layers.
Thus each single pixel in the output is a representative of a larger and larger area
from the same rough location from the original input. In that way, the whole
convolutional filtering process increases the number of filters but each subsequent
filter is characterized by larger and larger receptive fields until the latter extends
over all the input image.

In summary, by detecting low level features first and progressively combine
them to higher level features through convolutions and striding, it eventually de-
tects entire visual concepts such as faces, trees, birds or other objects.

5.2.2 ReLUs in DNNs

While error back-propagation learning in shallow NNs employ sigmoidal acti-
vation functions for their hidden layer nodes, activations of hidden neurons in
DNNs need not be bounded. Hence Leaky Rectified Linear Units (ReLU), g(z) =
max(α, z) can replace sigmoidal activation functions like the logistic function
(physicists call it Fermi function). ReLUs [105], [1] allow for better approxima-
tion quality as they avoid the flat spot problem during Backprop learning:

• Note that gradient estimation in layer l amounts to multiply the local gra-
dient in layer l + 1 with the partial derivative of the sigmoidal activation
function.

• The latter has small values except when the input is close zero.

• Small gradients result in inefficient learning.
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To see this, compare the gradient of a logistic vs a ReLU activation function in
figure 5.4.

Figure 5.4: On the left side the gradient of a logistic activation function is illus-
trated and on the right side of the ReLU.

5.3 Convolutional neural networks (CNNs)

CNN were proposed by LeCun [87] and represent biologically-inspired variants
of MLPs. This can be seen considering the visual cortex. It contains a complex
arrangement of cells, where simple cells function as edge detectors, while com-
plex cells provide invariance to the exact spatial position of the edges as well as
their orientation. All cell types are characterized by local receptive fields, which
act as local filters over their input domains and are tiled to cover the entire input
space.

5.3.1 Architecture of CNNs

Fully connected networks suffer from the curse of dimensionality. With DNNs,
the concept of localized receptive fields entails local connectivity in all hidden
layers. The architecture thus ensures that the learnt filters produce the strongest
response to a spatially local stimulus.
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Local receptive fields also substantially reduce the number of connections to
be learnt. However, stacking many such layers still would lead to global filters
with many connections.

Weight sharing and translational invariance

Further reduction of the number of connections can be achieved via sharing cor-
responding weights.

Note that weight sharing resembles convolution:

• 1D-convolution

o[n] = f [n]⊗ g[n] =
∞∑

u=−∞

f [u]g[n− u] =
∞∑

u=−∞

f [n− u]g[u] (5.1)

• 2D-convolution

o[m,n] = f [m,n]⊗ g[m,n] =
∞∑

u=−∞

∞∑
v=−∞

f [u, v]g[m− u, n− v] (5.2)

Striding each filter hi across the entire input space allows for features to be
detected regardless of their position in the input space. All features share the
same set of parameters and combine into a feature map H(k)
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h
(k)
ij = tanh

(
(W(k) ⊗ x)ij + bk

)
(5.3)

Training still employs modified backpropagation learning, whereby the gradi-
ent of a shared weight is simply the sum of the gradients of the parameters being
shared. Weight sharing is also often accompanied with a max-pooling operation,
which represents a nonlinear sub-sampling method. If max-pooling is employed,
the outputs of the max-pooling layer are invariant to shifts in the inputs. Thus it
provides additional robustness to spatial position and reduces the dimensionality
of intermediate representations. Of course, the max operation can be replaced by
an averaging operation.

Brightness invariance

CNNs commonly also contain Local Contrast Normalization (LCN) layers, where
z-scoring is applied, i. e. in the LCN layer the mean is subtracted from the out-
puts of the max-pooling layer, and a division by the standard deviation of the
input activities is performed. Such LCN layers provide, for example, brightness
invariance, which is useful for image processing.

Modified BackProp

The standard error back-propagation algorithm needs to be modified to deal with
deep architectures [87]: The forward pass performs an explicit computation with
all weights. Thereby one has to remember which branch yields the max value. In
the backward pass, all gradients ∂J(W)/∂wm are computed for that branch only.
When updating the weights, the average of all gradients from shared weights is
used, for examples

wm − η

(
1

M

M∑
m′=1

∂

∂wm+m′
J(W)

)
(5.4)

where wm = wm+m′ represent shared weights.

CNNs with multi-channel inputs

Images typically have multiple input channels, for example RGB channels. Thus
we need to modify the filter to look at multiple channels. Weights are usually not
shared across channels.
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CNNs with multiple maps

Basic CNNs have only one filter per input position. This simple architecture can
be extended to have many filters per spatial location. Each set of outputs, produced
by a single filter, is called a feature map. To pass information forward, the output
is treated as an image with multiple channels. Each output map represents an
input channel. Thus a richer representation of the data can be achieved by each
hidden layer having multiple feature maps. The weights W of a hidden layer
can be represented in a 4D tensor containing elements for every combination of
a destination feature map, a source feature map, a source vertical position, and a
source horizontal position. The biases b can be represented as a vector containing
one element for every destination feature map.

In the example given above, layer m− 1 contains four feature maps and layer
m contains two feature maps H(0),H(1). Pixel activities in H(0) and H(1) are
computed from pixel activities of layer (m − 1) which fall within their 2 × 2
receptive field in the layer below. Thus the receptive field spans all four input
feature maps. The weights W(0),W(1) of the feature maps H(0),H(1) form 3D
weight tensors. Thereby, W kl

ij denotes the weight connecting each pixel of the
k-th feature map at layer m, with the pixel at coordinates (i, j) of the l-th feature
map of layer (m−1). Note that a randomly initialized filter acts very much like an
edge detector. Also, weights are sampled randomly from a uniform distribution in
the range {− 1

fan−in ,
1

fan−in}.

5.4 U-Nets

CNNs are typically used for classification tasks, hence the above discussed dimen-
sion reduction steps do not matter. But image processing applications also need
to preserve localization information. Also with biomedical image processing, a
huge training data set is almost never available. One way around this bottleneck is
to use a sliding window approach. However, the latter approach is very slow and
highly redundant. Furthermore, localization accuracy has to be balanced against
the use of context, and feature size is limited by window size. Especially if at the
output spatial information is needed in form of a 2D array, like in a segmentation
task, the dimension reduction steps need to be reverted by up-sampling. Ron-
neberger [129], to solve image segmentation problems, recently proposed a fully
convolutional network called U-Net (see Fig. 5.5), which, at every up-sampling
step, takes into account input from the corresponding down-sampling level to pre-
serve information about spatial resolution at the various levels.

The fully CNN supplements a CNN by successive layers, where down-sampling
operators (striding, pooling) are replaced by up-sampling operators. These sup-
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Figure 5.5: An illustration of a typical U-Net architecture.

plemental layers increase the resolution of the output. In addition, high resolution
features from the contracting (down-sampling) paths are combined with upsam-
pled output. A successive convolution layer can then assemble a more precise
output. The up-sampling path contains a large number of feature channels. The
latter allow the network to forward context information to higher resolution lay-
ers. Thus the expansive path and the contractive path run parallel to each other.
This yields the U-shaped architecture.

CNNs commonly employ image patches rather than whole images. But a
patch-based approach limits context information and feature size. The receptive
fields of these networks are bounded by the patch size. U-Net CNNs allow to
use entire images of arbitrary sizes, instead. This becomes important, if large
structures need to be recognized like in a segmentation task or the prediction task
studied in this thesis.

As no classification is intended, the U-Net doesn’t have any fully connected
layers. The output map only contains pixels whose full context is available in the
input layer. Hence arbitrarily large images can be analyzed by an overlap-tile strat-
egy. This tiling strategy prevents the resolution to be limited by the GPU memory
rather than the patch size. With biomedical images usually only few traing data is
available. Hence excessive data augmentation by elastic transformations is neces-
sary. Such elastic transformations can be realistically simulated with biomedical
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images. The U-Net simply learns invariance to such transformations.

5.4.1 Network Architecture
Following, a typical U-net architecture will be exemplified and its functioning de-
scribed. Later this generative architecture will be taylored to the specific needs of
the tasks to be solved. The network architecture used by Ronnenberg et al. [129]
has a contracting (down-sampling) and an expanding (up-sampling) branch. It was
designed for segmentation tasks. Other tasks may need different architectures as
will be discussed later on.

• The contracting path of a typical U-Net looks like a CNN with

– repeated unpadded or padded convolutions

– a leaky ReLU

– a max-pooling operation with stride 2, i. e. a kernel size 2 × 2, for
down-sampling

– at each max-pooling layer, the input image size is divided by the size
of the max-pooling kernel size

– at each down-sampling step, the number of feature maps is doubled

• The expanding path consists of

– an up-sampling of the feature maps, implemented with a convolution
kernel

– kernel weights that are learned during training

– an up-convolution that halves the number of feature maps

– a concatenation with the related (cropped in case of no padding) fea-
ture map from the contractive path

* this incorporates information available at the down-sampling stage
into the up-sampling operations

* hence fine-details captured in the descending part is used at the
ascending part

– convolutions followed by a leaky ReLU

– The cropping accounts for the loss of border pixels in every unpadded
convolution. In case of padding, cropping is not needed.

• The final convolution layer maps each feature vector to the desired number
of tissue classes to be segmented.
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During up-sampling,

• the output of any previous step is convolved

– by initially up-scaling the image by a factor of two using nearest neigh-
bor interpolation

– then convolving with a convolution kernel size 2× 2 and

– followed by a leaky ReLU layer

• Then concatenate with the corresponding down-sampling layer.

• Finally, two convolution layers, each followed by a leaky ReLU layer, are
applied to this concatenated image.

After up-sampling, a final convolution layer and following sigmoidal unit pro-
duce probability outputs for each tissue class. Convolutions can be padded or not.
A padded convolution allows the entire image to be processed at once.

5.4.2 Training
Following, network training will be discussed from a general perspective assum-
ing a biomedical image segmentation task, for example kidney segmentation in an
X-ray CT image slice. Actually performed training procedures will be discussed
later when it comes to discuss specific applications. For training U-nets, input
images and related output maps are commonly used. Learning the kernel weights
is performed with SGD learning. The SGD can be implemented with Caffe, Keras
and Tensorflow or PyTorch. In this study, Tensorflow and Keras have been em-
ployed. Also to preserve input image size, zero-padding has been applied. Finally,
large input tiles, or alternatively more convolutional layers, should be favoured in
general over a large mini-batch size. A high momentum, furthermore, will assure
that a large number of previously seen training samples determines the update in
every subsequent optimization step.

The loss function Q is evaluated by first applying a softmax transformation
pixelwise to the final feature map yielding

pk(x) =
exp(ak(x))∑
k′=1 exp(ak′(x))

(5.5)

where

• ak(x) denotes the activation in feature channel k at the pixel position x ∈
Ω ⊂ Z

• K denotes the number of tissue classes
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• pk(x) is the approximated maximum-function

– Hence pk(x) ≈ 1 for the k that has the maximum activation ak(x)

– And pk(x) ≈ 0 for all other k

The softmax operation is commonly combined with a cross-entropy loss func-
tion Q(p|w). The latter penalizes at each spatial position x ∈ Ω the deviation of
the class probability pl(x)(x) from 1 using

Q(p|w) =
∑
x∈Ω

w(x) log(pl(x)(x)) = KL(p|w) +H(w) (5.6)

KL(p|w) =
∑
x∈Ω

w(x) log

(
pl(x)(x)

w(x)

)
H(w) =

∑
x∈Ω

w(x) log(w(x))

Here KL(p|w) denotes the Kullback-Leibler divergence (Kullback-Leibler di-
vergence (KL)) and Hw the information entropy of the distribution w(x). Further-
more, l : Ω → {1, . . . , K} is the true label of each pixel, while w : Ω → R is
a weight map, which can be considered the true distribution w(x) ≡ p(x). The
latter needs to be pre-computed for each ground truth segmentation. For exam-
ple, Ronneberger et al. [129] considered cell segmentation, where these weights
compensated the different frequency of pixels from a certain tissue class. For cell
segmentation, the latter class encompassed pixels in the small borders between
close cells. The separation border was computed using morphological operations
and the weight map was computed as

w(x) = wc(x) + w0 · exp

(
−(d1(x) + d2(x))2

2σ2

)
Here wc : Ω → R denoted the weight map to balance the class frequencies,

d1 : Ω → R denoted the distance to the border of the nearest cell, d2 : Ω → R
denoted the distance to the border of the second nearest cell and w0, σ had to be
set by the user.

Good initialization is extremely important. Weights should be initialized such
that each feature map in the network has approximately unit variance. In a deep
network with alternating convolution and ReLU layers, weights should be drawn
from a Gaussian distribution with variance σ2 = 2/N . Here N denotes the fan-in
of a node.
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Data augmentation Data augmentation is necessary if only few samples are
available. It helps to teach the network desired invariances and robustness prop-
erties. With biomedical images, mostly shift and rotation invariance is needed,
but also robustness to deformations and robustness to gray value variations need
to be achieved. Random elastic deformations seem best for data augmentation
with only few annotated samples. Drop-out layers at the end of the contracting
path implicitly augment data also. In this study data augmentation is not used,
however.
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Chapter 6

Dataset

6.1 Patient collective

Table 6.1: Patient data concerning the DOTATOC radiotherapy. Here m denotes
the weight of each person, A0 the initially injected radioactivity, g the grading
of the NET, CgA1 denotes the CgA before therapy and CgA2 after therapy, ∆t
the time betweent the CgA values, n the number of therapy cycles and the sex is
coded in 1 for female and 0 for male.

Age sex g m A0 CgA1 CgA2 ∆t n
[y] (kg) (MBq) (µg/l) (µg/l) (m)
45 1 3 64 6077 494 1026 5 4
66 0 3 79 6375 1121 706 4 4
54 0 1 77 7054 661 1956 4 2
67 1 2 70 6821 1352 1473 6 3
78 0 2 88 5773 34 31 4 3
54 0 2 56 7023 54 77 4 3
67 0 2 75 5809 597 1748 2 2
54 0 2 71 6644 1319 682 4 4
77 1 2 49 6378 224 246 1 1
52 0 3 78 6233 46 83 5 2
52 0 3 103 7265 76 47 4 3
71 0 2 118 6757 51 51 3 2
49 0 3 80 6328 139 214 2 2

66.5 2.3 77.5 6503 589.8 768.1 3.9 2.8

This study comprises 26 patients suffering from NETs (13) or PC (13) and
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Table 6.2: Patient data concerning the PSMA radiotherapy. Here m denotes the
weight of each person,A0 the initially injected radioactivity,Gleason the Gleason
Score of the PC, PSA1 denotes the PSA level before therapy and PSA2 after
therapy, ∆t the time betweent the PSA values and n the number of therapy cycles.

Age Gleason m A0 PSA1 PSA2 ∆t n
[y] (kg) (MBq) (ng/ml) (ng/ml) (m)
80 9 88 6699 1277 594 2 1
67 8 104 6997 96 120 6 2
75 9 74 6314 22 5 2 1
55 6 113 5931 122 523 2 1
61 9 85 6899 32 74 5 2
66 9 97 7139 92 199 2 1
63 9 94 7103 484 289 2 1
65 9 80 7030 58 0.1 3 2
66 9 86 6545 469 445 1 1
78 9 106 6768 93 86 3 2
79 9 75 6915 138 25 2 1
62 8 68 6824 2251 1946 2 1
55 9 94 7006 148 53 2 2

65.7 8.4 90 6782 406.3 336.0 2.6 1.4

which underwent a 177Lu-DOTATOC or 177Lu-PSMA therapy. The patient cohort
consists of 23 male and 3 female patients with an average age of 63.8 ± 10 years
at time of therapy. The on average injected activity was A0 = 6643± 421 MBq.

The information about the patients suffering on NET is collected in table 6.1
and for the patients with prostate cancer in 6.2.

6.2 Image Acquisition
SPECT: Data was acquired on a SPECT/CT system (Siemens Symbia T2) at
time points 4h, 24h, 48h, and 72h after administering the radiopharmaceutical.
The acquisition of the 24 h p.i. image was carried out as part of a hybrid SPECT/CT
acquisition, After manual co-registration, the CT part was used for attenuation
correction of the subsequent SPECT. Acquisition was done based on an in-
house standard quantitative 177Lu - protocol, which is described in detail in [132].
Therefore, it is herein only briefly outlined:

• SPECT using medium energy collimators, 3◦ angular sampling, 15 min total
dwell time
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• Iterative ordered-subset conjugate-gradient reconstruction of the 208 keV
photopeak data with 24 iterations, 1 subset, matrix 256x256

• Point-spread-function modelling in reconstruction

• Triple energy window based scatter correction

• CT-based attenuation correction

• No post-reconstruction smoothing

The reconstruction, using the ordered-subset conjugate-gradient algorithm,
was carried out on a Siemens research workstation. The algorithm outputs fully
quantitative reconstructed SPECT images providing activities per voxel measured
in [Bq/ml]. Furthermore the SPECT data is alined with the corresponding CT
data.

CT: Additionally, a low-dose CT was carried out as part of the multi-modal
SPECT/CT acquisition to enable necessary attenuation corrections of the SPECT
images. The CT covered the same field-of-view as the SPECT and was acquired
and reconstructed using the following parameters:

• Slice collimation of 2 x 5 mm, pitch of 1.8, time per rotation of 0.8 s, tube
voltage of 130 kVp, tube current of 30 mAs effective

• Filtered-Back-Projection reconstruction with B08s and B41s Kernels, 512x512
matrix, 2.5 mm slice thickness

• B08s image was used for attenuation correction of the SPECT data

• B41s image was used for defining organ and tumor volumes-of-interest

Reconstructed SPECT images were partitioned into voxels of size Vvox =
4.79 mm3 and were cropped to 823 voxels. Thereby large portions of the re-
constructed volume were removed which predominantly contained air.
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6.3 Common Preprocessing

Figure 6.1: CT-image, SPECT-image and hyprid SPECT/CT-image as shown in
ITK-snap. In the right bottom corner the segmentation of the right and left kidney,
the spleen and a liver tumor can be seen.

In figure 6.1 a CT-image, a SPECT-image and a SPECT/CT-image are pre-
sented. For all patients, the kidneys, spleen and tumors were segmented by a
medical expert. The tumors were sorted to bone lesion, lymph nodes, visceral
and primary tumor. The segmentation was done using the software ITK-snap
[173], which was carried out on the original CT data sets. The resulting segmen-
tation was subsequently down-sampled to match the voxel-size of (4.7mm)3 of
the SPECT image. For each patient, the following information is available:

• SPECT-Image acquired 4h after injection

• SPECT-Image acquired 24h after injection

• SPECT-Image acquired 48h after injection

• SPECT-Image acquired 72h after injection
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• CT-Image acquired 24h after injection

• Organ and tumor segmentation

Exemplarily, for one patient and one slice the eight images are illustrated in
figure 6.2.

Figure 6.2: The four SPECT-images, the CT-image and the corresponding seg-
mentation map illustrated for one slice of one patient.
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Chapter 7

Error of the standard MIRD method

This chapter is abstracted from [TIG-1]. In this chapter, the influences on the
dose value calculated by the standard MIRD method as described in chapter 1.2.4
were evaluated. In figure 1.1 the basic steps of this method are illustrated. The
following steps were examined:

• Segmentation of an organ on CT,

• Registration of 4 SPECT-images on CT,

• Amount of activity within organ,

• Integration of time-activity-curve,

• Scale with standard phantom and

• Multiplication with S-Value.

7.1 Segmentation of an organ on CT
The kidneys of 26 patients were segmented by two medical physicists. The kid-
neys deliberately were not segmented very precisely, because in clinical routine
this approach is very time consuming. Furthermore, the renal pelvis was included
by some patients and also kidney cysts.

7.2 Registration of 4 SPECT-images on CT
The SPECT images from different time points were registered by a medical physi-
cist to the CT acquired roughly 24 h after injection of the radiopharmaceutical.
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Afterwards the organ-specific activity is calculated which varies between patients.
Two medical physicists registered the 4 images of 26 patients to the correspond-
ing CT and calculated the time activity curve where each time point is weighted
equally. The activity contour remained unchanged.

7.3 Amount of activity within organ
Normally the activity contour is defined by a medical physicist. The activity con-
tained in the kidney is spread because of the partial volume effect. Therefore the
activity contour is defined with some margin around the kidney. Kidneys with
tumors and joint organs are excluded. Consequently, the actual contour depends
on the defining medical physicist. The influence of this “human factor” onto the
accuracy will be evaluated in this section. Two medical physicists defined proper
ROIs in equally registered SPECT/CT images. Afterwards, a simple exponential
time activity curve with equally weighted activities was approximated and inte-
grated.

7.4 Integration of time-activity-curve (TAC)
Usually a SPECT image is acquired at four time points (4 h, 24 h, 48 h, 72 h).
Two patients were excluded in this section because less than four images were
acquired. In most cases, the measured activity in the kidneys of the second time
point is higher than for the first one. A reason for this apparent anomaly could be
a delayed onset of physiological processes e.g. delayed tracer excretion from the
kidneys. If so, the later time points seem more important for the determination of
the time activity curve than the activity at the first time point [85]. One possibility
to take this into account would be a weighted fit, as it is practiced in this study. For
25 patients, the time-activity curve of each patient was fit to a mono-exponential
function. The time integrated function yields the Area Under the Curve (AUC).
The weights were chosen as shown in table 7.1.

Another possibility to manipulate the fit is to add a time point at 600 h with an
activity value of zero as proposed in [69]. Strictly speaking, this contradicts the
exponential character of the decay curve, but in practice the effect is to force the
fit curve to zero.

A mean AUC per patient has been calculated from the measured AUCs of all
patients as well as a related mean relative standard deviation. Furthermore, the
mean relative deviation and the maximal and the minimal deviations were also
determined per patient. Finally, the mean over all patients of these quantities were
calculated.
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Table 7.1: Weights used for fitting a time activity curve

time point 4h 24h 48h 72h
weights x 1 1 1 1
weights a 1 10 10 10
weights b 1 100 100 100
weights c 1 1 10 10
weights d 1 1 100 100
weights e 1 1 1 10
weights f 1 1 1 100

For four patients of the data set, an additional time point at 144 hwas acquired.
If this point is taken into account, the same parameters of best fit are obtained as
for the inclusion of an additional point at t = 600 h, as their weights are assumed
to be equal.

7.5 Scale standard phantom and multiply with S-
Value

To calculate, from the number of decays per organ, the corresponding absorbed
dose, the toolbox OLINDA uses S-values calculated by MCs on a standard phan-
tom. But for the MC, a homogeneous activity distribution is assumed. To get
closer to the real patient, the S-value was scaled with the inverse organ mass mT .
To evaluate the influence of the assumption of a standard phantom, MCs of the
whole patient with an inhomogeneous but known activity distribution were per-
formed. Additionally, the number of nuclear disintegrations per organ from the
isotope distribution was taken and multiplied with the S-value and the inverse
organ mass.

7.6 Results

Dependence of estimated accumulated activity on various influencing factors and
related error statistics are collected in the following table.

The components of the total error of the dosimetry chain are listed in table 7.3.
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Table 7.2: Dependence of estimated accumulated activity on various influencing
factors and related error statistics

Calculation of Ã(rS) 〈Ã(rS)〉 Error (%)
SPECT/CT registration 3.28 h 3.4± 4.4 (0.02− 13.9)
Activity contours 3.33 h 6.5± 7.5 (0.3− 28.6)
Time activity curve 2.91 h 7.2± 4.8 (1.6− 22.9)

Table 7.3: Total error estimate

Dosimetry step Error (%)
Resulting AUC error 17.1± 16.7
Dose kernel vs. Monte Carlo 16.7± 12.8
Kidney segmentation 5.4± 2.9
Activimeter accuracy 5.0

Total Error 25.0

7.7 Discussion
The absorbed dose for an organ of interest and its related uncertainty can be cal-
culated by the following expressions:

D(Ã, A0,mPat) = Ã(rT ) · Sphant ·m
Phant
T

mPat
T

· A0(rT , 0) (7.1)

dD(Ã, A0,mPat) =

√(
∂D

∂Ã
dÃ

)2

+

(
∂D

∂mPat

dmPat

)2

+

(
∂D

∂A0

dA0

)2

dD(Ã, A0,mPat)

D(Ã, A0,mPat)
=

√√√√(dÃ
Ã

)2

+

(
dA0

A0

)2

+

(
−dmPat

mPat

)2

where D is the dose in Gy, Ã the area under the TAC, Sphant the S-value for
a standard phantom, mphant the targeted organ mass of the phantom, mpat the
corresponding targeted organ mass of the patient and A0 the applicated activity.
The total dose error is estimated, assuming Gaussian error statistics, from the
known uncertainties of the independent variables.

All these quantities entering an estimate of the absorbed dose have been eval-
uated previously and are reported variously in literature. The residence time is
influenced by the registration, activity contour and the weights of the fit function
for the time-activity curve. The mean deviation caused by human registration is
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3.4± 4.4%. In [133] different activity contours in both planar and 3-dimensional
data arrays were evaluated and differences were asserted. In the current study, the
relative deviation between the AUC, calculated independently by two physicists,
was on average 6.5% ± 7.5%. If the contour is drawn by a human, any tumor
located close to the kidneys can be excluded deliberately.

The weights for the fit function also influence the AUC for dose calculation.
In [45] different fit functions were chosen for planar images. In the current study,
however, the weights were chosen differently, whereby always the later images
became stronger weights. On average across the whole patient cohort, a mean
relative deviation of 7.2% ± 4.8% between fit functions with different weights
was achieved. The deviation strongly depended on the activity values which have
been calculated by summing up all activity values within the activity contour. To
extract a deviation value for the residence time, one can add the individual errors
as (3.4±4.4%)+(6.5%±7.5%)+(7.2%±4.8%) = 17.1%±16.7%. The range of
errors which can happen is between 0.4% and 33, 8%, which strongly depends on
the patient anatomy, position of the tumor and the registration of different SPECT
images.

After the residence time is estimated, the value is multiplied by the organ
specific S-value. The S-value has been scaled by the organ mass to improve the
results. A mean deviation, averaged over all patients, of 16.7% ± 12.8% results
between a dose value from a full Monte-Carlo simulation and one estimated by the
scaled S-values. The values are close to those calculated by [80], where a mean
deviation of 26% in 9 patients was obtained. For the evaluation, the individual
total organ activity as well as the mass of the organ were known. In general, the
mass of the segmented kidney has to be estimated from a CT image. For this
reason the interobserver variability of the kidney segmentation was evaluated. An
averaged precision of the kidney volume of 5.4% ± 2.9% between two observer
was achieved. It is close to the result from [9] where a deviation of 11.2% between
two observers was reported.

The product of scaled S-value and AUC is multiplied with the applicated ac-
tivity. This value can be measured by an activimeter with a accuracy of 5.0%.

All in all a relative error of
√

(17.1%)2 + (16.7%)2 + (5.4%)2 + (5.0%)2 =
25.0% has to be expected during the dosimetry within a 177Lu radiotherapy. It is
important to take into account that some of the relative errors which can happen
cancel each other. A good way to avoid errors is a standardized method where all
patients are handled according to a prescribed protocol.

-
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Chapter 8

Time-integrated activity map (TIA)

This chapter is abstracted from [TIG-2]. In this chapter the four SPECT-images as
shown in figure 6.2 will be integrated voxel-wise to obtain the number of decays
per voxel. The activity values will be denoised by the particle filter. After the
denoising, a mono-exponential function is fit to the data and integrated over time.

8.1 Model equations
For dosimetry it is more important to have a patient specific model than an on-
line tracking method. Therefore all SPECT images were used to estimate a state
evolution model. First of all, VOIs were segmented in a CT image by a medical
expert. To this contour a safety margin of 2 voxels was added to account for
partial volume effects as well as deviations from the registration or inter-organ
movements. By summing up the activity values of all voxels enclosed by the
contour, an organ-specific total activity was obtained for each time point. An
additional time point was added at tk = 600 h, at which the specific activity was
set to 0 Bq/ml deliberately. The time-dependent activity (see figure 8.2) was
expressed by a parametrized analytic function which was fit to the observed time-
dependent activities according to

ln

(
a(t)

a(0)

)
= −

(
ln(2)

T1/2

· t
)

= − t

τeff
(8.1)

Note that the effective lifetime

τeff =

(
1

τphys
+

1

τbiol

)−1

=
T1/2

ln 2
(8.2)

is composed of the physical lifetime of the radionuclide and its biological
lifetime due to the metabolic turnover of the radio-pharmaceutical. While the bi-
ological half-life of the isotope should be identical across an organ, the amplitude
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Figure 8.1: Time activity curve for one kidney: f(0) = 1%IA, T1/2 = 77.9h.

a(0) of the TAC is different for every voxel. Note that a(0) is different from the
initially injected activity A0 and generally unkown.

State evolution model (SEM): For each voxel of the kidney an own State Evo-
lution Model (SEM) is computed. At the beginning, the four activity values of
the same voxel plus an additional value of a(tk) = 0Bq/ml at tk = 600 h are
approximated by a mono-exponential decay. Hereby, the half-life is assumed to
be equal to the previously computed half-life of the whole kidney. From this fit,
the amplitude 〈a(0)〉 of the state evolution model can be obtained. Moreover, the
inevitable noise on the data is modeled as Gaussian white noise with an amplitude
corresponding to 0.1〈a(0)〉.

Observation model (OM): The Observation Model (OM) h represents the dis-
tribution of acquisition times of the SPECT image and is modeled by a Normal
distribution around the estimated particle.

Similarity measure The aim of the voxel-wise integration of the activity is to
obtain the number of nuclear disintegrations NLu

n for each voxel n ∈ S according
to:

NLu
n =

∫ tK

0

an(t′)dt′ ≈
K∑
k=1

an(tk) ·∆t (8.3)

where K = 5 in this study. The activity distribution is assumed to be identical for
each voxel, hence it can be estimated for each organ at every time point. This fact
can be explored to find a good parameter configuration. As similarity measure the



8.2. OTHER METHODS 101

KL was used. An averaged histogram of the k = 4 time points was calculated, for
which the histograms were centered. A histogram of the voxel activities h(〈an〉)
was calculated, where 〈a〉n = (1/K)

∑
k an(tk) denotes the activity of voxel n

averaged over the four time points. The similarity between different histograms
has been computed employing the KL.

Figure 8.2: Left side two histograms with a Kullback-Leibler divergence of 0.67
and on the right side with 0.12.

8.2 Other Methods
Instead of fitting the activity values as smoothed by the particle filter (’particle
fit’), one can use another approach to calculate a voxel-wise decay map. One
can fit a mono-exponential function to the four activity values per voxel. In the
following this method is called ’simple fit’.

For each method the TIA in a specific source region S was calculated by inte-
grating, for every voxel, the fit function over time and sum over all voxels.

TIAS = A0

∑
n∈S

∫ ∞
0

·e−
t

τeff,n dt

where S is the source region, n indicates one voxel, A0 denotes the injected
activity and τeff,n the half-life, which can differ between the voxels for both,
the ’simple fit’ and ’particle fit’ method. Note that the approximation an(t0) ≈
A0∀ n ∈ S accounts for the fact that the complex metabolic processes which dis-
tribute the radioactive pharmaceutical in the body is generally unknown. Finally,
also the distribution of half-lives across all voxels in the VOIs was calculated.
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8.3 Results

8.3.1 Parameter evaluation
Finding a good parameter configuration, which yields similar histograms of the
number of decays within an organ, and which also yields a good match to the
measured activity distribution of all activity values within a VOI, the standard de-
viations for the state evolution model and the observation model were considered
adjustable parameters. The configurations were computed for all 26 patients, and
for each configuration, the histogram of the number of decays per voxel was deter-
mined and compared with the averaged activity histogram. The KL was computed
for all configurations. The σobs was varied between 0.35 ≤ σobs ≤ 0.99. The con-
sidered standard deviations are rather large because the estimated precision of the
activity measurement through SPECT imaging is in this range according to [128].

In the following table, the KLs, averaged over all patients, are collected:

Table 8.1: Kullback - Leibler divergences, averaged over the entire patient cohort

model� observation 0.35 0.5 0.75 0.99
0.01 0.12 0.17 0.17 0.17
0.10 0.16 0.17 0.17 0.17
0.25 0.16 0.16 0.16 0.16
0.35 0.58 0.54 0.48 0.46

The values in each row are very similar to each other, indicating that the KL
is rather robust against uncertainties in the observation model. The smallest value
for the KL is marked in blue.

Table 8.2: Relative deviations of the sum of voxel-wise integrated activities from
the corresponding whole organ integrated activity in percent

model� observation 0.35 0.5 0.75 0.99
0.01 −34.2% −32.6% −32.6% −32.6%
0.10 −35.8% −33.7% −33.4% −33.4%
0.25 −44.4% −40.3% −39.0% −38.5%
0.35 −64.4% −59.3% −56.3% −55.9%

As a second decision criterion for an optimal parameter configuration, the
relative deviation of the total number of decays estimated either by integrating the
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time-dependent activity at every voxel and then summing over all voxels within
the VOI or by integrating the whole organ (here the kidney) activity over time was
calculated.

In the following table the resulting relative deviations are collected. The devi-
ations for the total number of decays are large because of a high statistical uncer-
tainty in the voxel activity values. To correct for these large deviations, the voxel-
wise integrated activity map can be normalized with the total number of decays per
organ. For the following results, we choose the parameters as σobservation = 0.35
and σmodel = 0.10.

To obtain stable results for the single activity values, the number of particles
for each time step was varied. In figure 8.3 the determined difference between the
total number of decays per organ for different numbers of particles and the total
number of decays for 2000 particles is illustrated. With only 150 particles, the
difference to the reference value almost disappears.

Figure 8.3: Variation of the number of particles.

Moreover, while applying the particle filter, different resampling schemes were
evaluated, but there was no difference in the total number of decays per organ.
Therefore we decided to perform no resampling. The possibility to loose too
much diversity is very low with only four time steps.

8.3.2 Voxelwise TAC

For each voxel, a state evolution model was defined through four measured time
points. According to the state evolution model and the observation model, par-
ticles were generated and an estimation of the true activity value was obtained
through its likelihood. An analytic function was then adapted to either the four es-
timates of the true activity values or the observed activity values. In figure 8.4, the
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actual measurements and the estimates of the state evolution model as represented
by properly adapted analytic functions, whereby the adaptation to the observed
values is drawn in black and the adaptation to the estimates of the true activity
values is colored in gray. Through particle filtering, the outlier at the second time
point could be eliminated very well.

Figure 8.4: Time activity curve vor two different voxels at four time steps.

8.3.3 Whole patient

In figure 6.2, one slice of the SPECT images at four time points for one patient
have been illustrated. Now the voxel-wise results for the integration of the TACs
are shown in figure 8.5. The red voxels in the right image, showing the results
from the simple fit method, are those with a diverging integral, the calculated
number of decays is equal to infinity.

The voxel-wise integration of the particle filtered activity values was per-
formed for the whole patient. For the segmented organs (kidney, spleen and tu-
mor), a corresponding half-life was calculated and used for the state evolution
model. For the voxels outside the VOIs, an over all voxels from the same tissue
class averaged half-life was calculated and used for the model. For each VOI, a
histogram of the number of decays per voxel was obtained and is shown in fig-
ure 8.6. A second histogram is also shown, were the number of decays per voxel
is presented, which is calculated by a simple voxel-by-voxel integration. Both
histograms are almost indistinguishable.

Considering the histograms of all voxel-specific half-lives, which were used
in the analytic function for the determination of the TIA, the particle filter method
yielded histograms centered at the half-life from the state evolution model, while
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Figure 8.5: One slice of the results for the particle filtering method (left) and the
simple fit method (right).

Figure 8.6: Histograms of number of decays per voxel for the particle filter method
(blue) and the voxel-wise simple fit of the four activity values (red).

the simple fit method very often yielded half-lives larger than the physical half-
life of Lutetium (see figure 8.7). Also the widths of the two distributions differ
considerably. The much narrower width of the distribution for the particle filter
method depends on the σ parameters of the SEM and the OM.

8.4 Discussion
In this work, we proposed a method for processing voxel-wise TACs prior to fitting
them to mono-exponentials and subsequently integrating them temporally. The
TACs were obtained by sequential, quantitative SPECT/CT imaging for dosimetry
of 26 patients under Lu-177 targeted radiotherapy. The proposed pre-processing
method is a Particle Filter, which belongs to the class of sequential Monte-Carlo
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Figure 8.7: Histograms of halflives per voxel for the particle filter method (blue)
and the voxel-wise simple fit of the four activity values (red). The halflife for the
whole organ is 81.6h.

methods. The aim of the method is a de-noising of the observed TACs. The goals
were the following:

• The whole-organ TIA map, as obtained on basis of the filtered data, should
be as similar as possible to the conventional evaluation. The latter obtains
TIA maps by fitting and integrating the organ-averaged time-activity curve.

• The histograms of the TIA maps, resulting from the PF, should resemble the
TIA-histograms, as initially estimated from SPECT images.

We have shown that Particle Filters are suitable for a reduction in the variance
of the effective half-lives of voxels in kidneys, spleen, and tumors. Most notably,
the number of voxels which exhibit half-lives longer than the physical half-life of
the radioisotope is significantly reduced.

For two voxel-specific methods to estimate whole organ TIAs, namely par-
ticle fit (PFF) and simple fit (SF), we quantified deviations to whole-organ TIAs
estimated by time-integration of the whole organ activity.

When comparing the resulting half-lives, we found that application of particle
filtering results in a strong reduction of variance, compared to SF. As intended,
the voxel-specific half-lives for PFF were distributed around the half-life used
in the state evolution model. Importantly, the number of voxels which exhibit a
longer-than-physical half-life was greatly reduced with PFF, compared to SF. In
summary, the PFF method does not fix the half-life to a single value, rather it
exhibits a narrow distribution and reduces the number of implausible half-lives to
almost zero in our study.

Unfortunately, literature for comparing different methods for fitting voxel-
specific TACs is scarce so far. Thus, no generally accepted standard-method ex-
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ists. Guidelines recommend either not modeling at all, rather performing trape-
zoidal integration of TACs, or modeling by exponential functions [159, 145], al-
though these recommendations are usually in the context of whole-organ dosime-
try.

In the literature of voxel-based dosimetry in targeted radiotherapy, most groups
applied no modeling at all for the time period covered by imaging, and mono-
exponential extrapolation after the last imaging [143, 123, 165, 52, 135]. Jackson
et al. [69] used tri-exponential modeling of the TAC, but applied regularization
in order to limit the number of voxels with implausible TIA. In the study of Kost
et al. [82], the user could choose between mono- or bi-exponential modeling of
pharmakokinetics. However, the focus of their study was not on the comparison
of the different models and consequently they did not report on this.

Marcatili et al. [99] implemented an algorithm which automatically selects the
best model for each voxel, either pure mono-exponential decay or linear uptake
followed by mono-exponential decay, and no modeling and trapezoidal integra-
tion as fall-back if modeling fails. They did not provide a systematic comparison
between the different models but stated that the fall-back was used in less than 5%
of voxels for their application (I-124 PET). However, it could be hypothesized that
for SPECT imaging of typical 177Lu activities, the image noise would be compa-
rably higher than for PET, which potentially could affect fitting of per-voxel TACs
negatively.

To the best of our knowledge, the study of Sarrut et al. [136] is the only study
that systematically compared different models for voxel-wise TAC fitting. They
focused on an algorithm called VoMM, that automatically selected the best model
for fitting the TAC of individual voxels. The models considered were mono- or
bi-exponential functions with variable degrees-of-freedom of the fit ranging from
2 to 4 parameters. They compared the results obtained by VoMM and by using
fixed models for all voxels in a numerical experiment with varying noise levels
and also in one dosimetry patient. In any case, 6 imaging time points were used.
For the numerical experiment, they evaluated the Root Mean Squared Error be-
tween ground-truth and modelled TIAs and also the percentage of voxels which
could not be fit successfully (%FF). They found that the Root Mean Squared Error
and %FF was lower for VoMM as compared to the fixed models. Notably, they
also showed that a low count number and thus high noise level in a voxel’s TAC
would result in an increased Root Mean Squared Error and %FF. For their patient
data, they found that %FF was lower for the VoMM than for most fixed models.
However, one fixed model did have an even lower %FF.

Altogether, literature on this topic shows that voxel-wise fitting of TACs, sub-
sequent calculation of TIAs, and thus voxel-specific dosimetry is feasible. How-
ever, it also turns out that especially the TAC fitting is most likely negatively
affected by noise. Most groups apply some technique to either circumvent mod-
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eling of especially the early part of the TACs by using numerical integration or
implement some kind of regularization in order to limit the bias introduced by
voxel noise. Most groups did only assess if voxel-wise fitting could be done suc-
cessfully from an algorithmic point of view, but did not evaluate if a successful fit
resulted in feasible TIAs. Based on our experience and from our results obtained
by the simple fit method, we suspect that many voxels’ TIAs, although obtained
by successful fitting, are still incorrect. This problem could be alleviated by ap-
plication of Particle Filters, which could be understood as de-noising based on
a plausible assumption/model. Altogether, we think that particle filters offer an
interesting alternative to methods reported from literature and should be further
evaluated in forthcoming studies.



Chapter 9

Dose estimations

This chapter is based on [TIG-3, TIG-4, TIG-5, TIG-6]. The four SPECT-images
were integrated over time to obtain the nuclear decays per voxel. Afterwards from
this decay map a dose distribution can be calculated. There are different method
to calculate the dose. In this chapter seven different methods will be compared to
each other.

9.1 Ground truth: Monte Carlo simulations (MC)

In the previous chapter, the number of 177Lu decays per voxel for one therapy
cycle was derived from four SPECT images. For calculating patient-specific maps
of mass density, the CT part of the SPECT/CT acquisition was used. In CT,
the attenuation coefficient µ of tissue for polychromatic X-rays is measured and
usually given in Hounsfield Units (HU), which expresses the degree of attenuation
relative to water and air (see Equation 9.1).

H(µtissue) =
µtissue − µwater

µwater − µair
· 1000[HU] (9.1)

where −1024 = −210 ≤ H [HU] ≤ 4096 = 212.
Since attenuation is mainly caused by interactions between photons and elec-

trons, µ is strongly correlated to electron density, which itself is correlated to mass
density ρ. For this, a CT image can be used to estimate a mass density map, usu-
ally by using a piecewise linear relation, with different slopes for HU ≤ 0 and
HU ≥ 0. It can be derived for every CT-scanner by special calibration phantoms.
A system-specific CT calibration was not carried out. Instead, mass density was
calculated as defined in [8].

109
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ρ(x) =

{
0.0011 · x+ 1 for x ≤ 0

0.0007 · x+ 1 for x > 0
(9.2)

where ρ(x) is the mass density in units of g/cm3 belonging to a voxel with
HU number x.

In reality, especially for absorption of beta-particles, not only the mass-density
determines absorptive properties but also the varying atomic composition of tis-
sues (e.g. effective mass- and atomic numbers) in every voxel. Unfortunately, an
exact determination of these parameters with a single CT acquisition is not possi-
ble, but several methods for a rough estimate of tissue type exist. We used a clas-
sification based on each voxel’s mass density, as proposed in [139]. The assigned
tissue-type, composition of tissue-type, and respective range of mass densities can
be found in table 9.2 and in table 9.1.

Table 9.1: Prototypical materials ordered by their characteristic atomic composi-
tion

Z A Atom 1 2 3 4, 5, 6 7 8 9
6 12.01 C 0.0001 0.1023 0.6372 0.2322 0.1078 0.2780 0.1443
7 14.01 N 0.7553 0.0287 0.0080 0.0249 0.0277 0.0270 0.0420
8 16.00 O 0.2318 0.7571 0.2323 0.6302 0.7547 0.4100 0.4461

18 39.95 Ar 0.0128
1 1.01 H 0.1013 0.1195 0.1045 0.1006 0.0640 0.0472

11 22.99 Na 0.0005 0.0011 0.0008
15 30.97 P 0.0008 0.0002 0.0013 0.0018 0.0700 0.1050
16 32.06 S 0.0023 0.0007 0.0020 0.0024 0.0020 0.0032
17 35.45 Cl 0.0027 0.0012 0.0013 0.0008
19 39.10 K 0.0019 0.0003 0.0020 0.0030
12 24.31 Mg 0.0007 10−5 0.0001 0.0019 0.0020 0.0022
20 40.08 Ca 10−5 10−5 0.0002 10−5 0.1470 0.2099
26 55.85 Fe 0.0004 10−5 10−5 10−5

30 65.39 Zn 10−5 10−5 10−5 10−5 0.0001

For generating ground truth data, a full MC of radiation transport was carried
out for each patient. For this, the GEANT4-based GAMOS 5.0.0 toolkit was used
[10]. The procedure is briefly described in the following:

• A voxelized geometry was generated based on the tissue classes and mass-
density of each voxel, determined as described before. The size of voxels
was 4.8× 4.8× 4.8 mm3, identical to that of decay, density, and tissue-type
maps.
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Table 9.2: Prototypical materials ordered by their characteristic densities. The
material Soft-Tissue, is defined by the atomic composition and aggregated density
range of materials marked by ∗. In the fourth column the percentage ratios of
voxels from one tissue class referred to the total number of voxels within the body
are illustrated. In the fifth column the percentage dose in each tissue class is
shown.

Density range Material name Index ratio of voxel ratio of dose
g/cm3 (%) (10−5%)

[0.000, 0.207) air 1 32.9 7.8
[0.207, 0.919) lung 2 35.6 28.2
[0.919, 0.979) adipose 3 13.5 42.9
[0.979, 1.004) breast∗ 4 6.3 45.8
[1.004, 1.043) phantom∗ 5 28.0 69.6
[1.043, 1.109) liver∗ 6 7.1 58.5
[1.109, 1.113) muscle 7 0.1 38.4
[1.113, 1.496) bone compact 8 3.8 45.9
[1.496, 1.654] bone cortical 9 0.4 44.6

• The decay modes of 177Lu and emitted gamma and beta energy spectra were
defined according to [10].

• In total, 1.2 · 1010 decays of 177Lu were performed using GAMOS on a
high-performance cluster (number of nodes: 176).

• The decays per voxel was taken from the decay map, as described before.

• Deposited energy was scored per voxel in units of Gray per decay.

9.1.1 Dose Voxel Kernel (DVK)
For calculating the DVKs, a MC of 2 ·108 of 177Lu decays at a random position in
the center voxel of a 9× 9× 9 cube of voxels (each 4.8× 4.8× 4.8 mm3) of cer-
tain tissue-type and density was simulated and the deposited energy scored. This
was carried out using the GAMOS Monte-Carlo toolkit on a high-performance
cluster. The accuracy and precision of results obtained by DVK dosimetry are not
only influenced by the method for adapting the DVK to heterogeneous tissue, but
also by the statistical uncertainty and size of the DVK. The standard error for
individual voxels of the DVK were calculated as described before in section 2.2
, using M = 107 and N = 20. For the analysis of adapting DVKs to different
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densities and tissue types, the kernel size was kept constant at 9 × 9 × 9 voxels,
each with a voxel size of 4.8× 4.8× 4.8mm3, which represents a common size in
DVK dosimetry [42, 37]. The mean error of the voxel values of a typical Kernel
(t = ST, ρ = 1.04) with a total number of 2 · 108 simulated decays is ∼ 0.48%.
The error is smaller for voxels near the center of the DVK, compared to more
distant ones, as can be seen in Figure 9.1 for a Kernel with t = ST, ρ = 1.04.

Figure 9.1: Relative error in percent resulting for one voxel from DVK convolu-
tion computations.

Having obtained proper DVKs from MC simulations, the error resulting from
the DVK convolution with the accumulated activity map needs to be estimated as
a next step. Let ki,j,k denote the DVKs for a tissue cube of size 9 × 9 × 9 = 729
voxels. The absolute error for each voxel is designated as ei,j,k, and the accu-
mulated radioactivity distribution A is assumed to be uniform. The relative error
for the calculated dose value for one voxel D(r) centered at r can be estimated
through the following equation:

D(r)± er
D(r)

= A ·
∑
i,j,k

(
kijk ± eijk∑

i,j,k kijk

)
(9.3)

In Figure 6.1, the occurrence of relative errors per voxel, resulting from DVK
convolutions and estimated for all 200 computed basic kernels, is illustrated in
form of a histogram. The mean error is 0.0113%, which is very small because of
the high number of decays which were simulated. The error is of the same size as
the error resulting from MC simulations. Consequently, the dose distribution can
be estimated with high accuracy.
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9.1.2 Statistical error of a whole body simulation
For one representative patient, the error of the MCs was determined (see Figure
9.2). The estimated values of the absorbed dose in a voxel inside the body result in
a histogram representing a uniform distribution. The mean absorbed energy dose
of this voxel isD = (0.72±0.41)×10−5 [Gy/decay]. If we take into account that
1200 samples were drawn to obtain this mean value, a relative standard error of
rSE = 1.67% results. Altogether, the error of the MC simulations was found to
be rSE ≤ 2% for voxels belonging to the evaluated organs. The highest deviation
from the mean absorbed dose is obtained in the air surrounding the patient with a
maximal error of rSE = 4.50%. Figure 9.2 shows the per-voxel deposited dose
and the corresponding rSE estimate at one representative slice position.

Altogether, the achieved precision is similar to comparable studies from liter-
ature, e.g. Moghadam et al. [76] state a precision below 2%, but did not disclose
how this had been determined. In the study of Dieudonne et al. [37], the authors
provide a precision of 4.7% for individual voxels, but did as well not describe the
method for determining this number. Overall, the precision of our simulations
should be sufficient for ground truth requirements.

Figure 9.2: On the left side, the result of a MC for one patient is shown. The
colorbar reflects an encoding of the deposited dose in [Gy/decay]. On the right
side, the rSE for the MC is shown. The colors give information about the error in
%.

9.1.3 Homogeneous patient
To quantify the error induced by the convolution method for 26 patients, a full
Monte Carlo simulation was determined on a homogeneous body consisting of
soft tissue with a density of 1 g

cm3 . In addition, a full MC on the CT-densities
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was calculated. Both assumed the same distribution of the number of nuclear
disintegrations. The total dose per organ was calculated and compared to the dose
distribution determined by convolution of the decay distribution with a soft tissue
kernel.

The total organ dose for different organs was compared between the soft-
convolution method and the full MChomo of a homogeneous patient and the soft-
convolution method and the full MCCT on the CT-derived mass density distribu-
tions. To characterize differences, the percentage deviation between both meth-
ods was calculated for each patient and each segmented organ. The results are
collected in the following table 9.3.

Table 9.3: Relative deviation between MChomo und MCCT in percent.

organ� method MChomo vs. STS MCCT vs. STS
left kidney 5.67± 1.96% 8.62± 8.21%

right kidney 6.11± 3.28% 13.81± 17.77%
spleen 7.45± 8.13% 13.37± 16.92%

Figure 9.3: Percentage deviation of total dose values of the left kidney (left side)
and right kidney(right side) between three methods for 24 patients.

Note that any estimation, with the neural network, of the dose voxel kernel
(DVK) based on heterogeneous mass density kernels, cannot estimate the whole
organ dose better than 5.67% for the left kidney, 6.11% for the right kidney and
7.45% for the spleen. Relative to the current results, any improvement must
achieve values better than 8.62%, 13.82% and 13.37%. With the large patient
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cohort, we know for each patient the limiting values and can precisely evaluate
the quality of our neural network results.

To evaluate the size of the DVK, the MC for one patient was determined on an
artificial body only consisting of soft tissue instead of the CT image. Therefore,
only the influence of the activity distribution and the DVK size can be seen in this
simulation. With increasing size of the DVK used for convolving the decay distri-
bution, the mean deviation relative to values from full MC simulations decrease,
as can be seen in Table 9.4.

Table 9.4: Deviation (in %) for dose values obtained by DVK-Dosimetry, relative
to full MC simulations in dependence of the used kernel size.

DVK-Size (Voxels) left kidney (%) right kidney (%) Spleen (%)
813 2.00 3.80 1.68
513 2.15 3.90 1.79
313 2.32 4.09 1.98
93 3.81 5.72 3.56
73 4.15 6.11 3.90
53 4.54 6.53 4.28
33 4.95 6.96 4.68

In our evaluation of the influence of DVK size, it was shown for dose deter-
mination in soft-tissue that DVK methods systematically underestimate deposited
dose, compared to values obtained from full MC simulations. Most likely, this is
due to the truncation of radiation transport by the limited size of a DVK, whereas
radiation transport in the MC simulations is only limited by the comparably larger
size of the simulation volume. Consequently, this underestimation decreases with
increasing size of the DVK.

9.2 Dose estimation with DVK via Scaling

In this chapter, the four methods Soft Tissue Scaling (STS), Center Scaling (CS),
Density Scaling (DS) and Percentage Scaling (PS) will be compared with each
other. As ground truth, the full MC was used. The organ and tissue type-wise
dose estimation is evaluated.

The following considerations refer to dose kernels K(rT ← rS) consisting of
9× 9× 9 voxels, where each voxel represents a volume of Vvox = 4.73 [mm3].



116 CHAPTER 9. DOSE ESTIMATIONS

9.2.1 Soft Tissue Scaling (STS)
The simplest way to obtain a dose distribution from the decay map is to convolve
the decay map with a DVK corresponding to soft tissue with a mass density of
1.0

[
kg
dm3

]
. This standard method, simply called soft scaling henceforth, assumes

a homogeneous patient consisting only of soft tissue. Dose inhomogeneities be-
cause of density changes are not taken into account, rather only inhomogeneities
because of spatially varying activity distributions are accounted for. Henceforth
such DVKs will be called soft tissue kernels Kst

vox(rT ← rS) for short.

9.2.2 Center Scaling (CS)
If the dose kernel consists of several voxels of possibly differing tissues, almost
60% of the energy relieved during a nuclear disintegration is deposited in the
center voxel. For this reason, one could come to the conclusion that the soft tissue
convolution can be improved by convolving the mass density distribution not only
with one soft tissue kernel but rather with 200 tissue kernels Km

vox(rT ← rS, ρm)
corresponding to tissue mass densities ρm between 10

[
kg
m3

]
and 2000

[
kg
m3

]
. To

each voxel of the decay map a DVK is assigned which corresponds to a tissue
density which is closest to the mass density of the respective CT-voxel.

9.2.3 Density Scaling (DS)
As mentioned above, the result of each MC simulation is a DVK Kvox(rT ←
rS) in the unit Gy/decay. It is related to the mean energy imparted to matter
inside a voxel per unit mass by ionizing radiation resulting from a single nuclear
disintegration a(rS, t):

Kvox(rT ← rS) =
DE(rT )

A(rS)
(9.4)

DE(rT ) =
ε(rT )

ρm(r)
(9.5)

where ε(rT ) represents the energy density and ρm(r) the spatially varying mass
density inside the voxel. Consequently, the absorbed energy dose depends strongly
on the mass density of the tissue inside the voxel. A simple work-around the plain
soft tissue approximation was proposed in [37] by considering the absorbed en-
ergy density ε(rT ) as a system invariant, i. e.

Dm(rT ) · ρm(rT ) ≡ εm(rT )
!

=
εst(rT ) ≡ Dst(rT ) · ρst(rst). (9.6)
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HereDst(rT ) denotes the DVK, which is calculated in a MC for a target voxel con-
taining soft tissue with mass density ρst = 1040 kg/m3. Furthermore, ρm(rT ) rep-
resents the voxel mass density of the actual target tissue considered, and Dm(rT )
represents the corresponding density corrected dose value. Hereby, it is assumed
that the deposited energy density εm ≈ εst is largely independent from the tissue
composition. This assumption might be reasonable if the atomic composition of
the considered tissues is roughly similar to soft tissue. However, it might be ex-
pected to fail in case of materials like bones or lung. The idea behind this first
order approximation is that the elementary radiation - matter interactions stay the
same, only the event probability changes with density.

9.2.4 Percentage scaling (PS)
Rather than taking into account different tissue densities for DVK calculations
via a density scaling method as discussed above, in this thesis a new method is
proposed to account for tissue heterogeneity following ideas first expressed in
[76].

Consider a kernel whose volume encompassesN3
V voxels, where the voxel size

plays only a minor role as long as its length dimension is larger than the effective
range of the emitted radiation. A radioactive isotope is placed in the center voxel
located at rT ∈ N3 on a regular grid, where the nodes are index with (i, j, k). In the
following, the DVK S(i, j, k) will be computed based on a heterogeneous mass
density distribution discretized to the length scale of a voxel (typically 5 [mm].
To do so, the DVKs Sm(i, j, k) for all tissues with mass density ρm which make
up the kernel volume VK = N3

V · Vvox are needed. The dose values for such a
heterogeneous kernel at the target location rT = (rirjrk)

T can be estimated as
follows (ri ≡ i, rj ≡ j, rk ≡ k for short):

Dm(i, j, k) =
Dst(i, j, k)

Dst(c, d, e)
·Dm(c, d, e)

with
c = i+ 1, d = j + 1, e = k + 1 if c < 0, d < 0, e < 0)

c = i− 1, d = j − 1, e = k − 1 if c > 0, d > 0, e > 0)

where the dose delivered to any voxel of the kernel depends on the dose de-
posited in the neighboring voxels which are located closer to the center voxel.
The percentage decrease of the dose in the homogeneous kernel is used to scale
the dose value in the heterogeneous kernel. We will refer to this method as the
’Percentage’-method in the following.
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9.3 Dose estimation with DVK via NN (DVK-NN)

9.3.1 Network architecture
The network architecture for a 3D convolutional U-Net, as employed in this study,
is illustrated in figure 9.4. The architecture of the U-Net depends on the size of
the input data array, here the mass density kernels. We choose 3D density kernels
consisting of 9 × 9 × 9 voxels corresponding to a physical volume of roughly
45 mm3.

Figure 9.4: Network architecture, where each convolutional layer includes a leaky
ReLu activation layer and a batch normalization layer.

Each convolutional filtering operation is followed by an activation using a
leaky ReLU activation function. Furthermore, batch normalization is applied also.
Convolutional filtering was performed with a 3D filter size of 3 × 3 × 3 voxels
and was always accompanied by padding to preserve the size of the input array.

The following convolutional filtering possibilities emerge:

• The first convolutional step will employ four filters to create four feature
maps

• The second convolutional step uses only one filter for each feature map.
This keeps the number of feature maps constant but increases the receptive
field size in the input data array.
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Downsampling was done employing striding and pooling. Starting with a 9×
9 × 9 density kernel and applying a stride of one and average pooling with a
3× 3× 3 pooling filter, we get the following sequence of feature kernels :

9× 9× 9→ 5× 5× 5→ 3× 3× 3→ 1× 1× 1

The number of filters has been doubled at each down-sampling step. Here
the pooling filter simply slides along the Cartesian axes with a step size of one
voxel and condenses context information into the voxels of the resulting feature
map while keeping the spatial location relative to the input data array roughly
constant. This results in at most 3 down-sampling steps with average pooling but
with no voxel information being skipped. The last down-sampling step does not
seem to be useful and has been omitted.

9× 9× 9→ 5× 5× 5→ 3× 3× 3

Upsampling is needed to arrive at an output array with the same dimensions
as the input array. Starting with the 3× 3× 3 array, upscaling has been performed
by linear nearest neighbor interpolation to yield a 9× 9× 9 array.

For training, the following loss function was used:

loss =
729∑
i

∣∣∣∣log

(
ai
âi

)∣∣∣∣ · log(ai)∑729
j log(aj)

(9.7)

where log(âi) and log(ai) are the logarithms of the dose values âi estimated
by the neural network and ai the dose values calculated by a Monte Carlo simu-
lation, respectively. Logarithmically scaled dose values were chosen because of
numerical problems with representing the original dose values.

For each voxel ai of the DVK determined through a MC, the error ∆ai is
known. Therefore, the value of the loss function is limited by the precision of the
MC.

Noting that âi = ai±∆ai, hence the loss function can be re-written as follows:

loss =
729∑
i

| log(ai)− log(âi)| ·
10− log(ai)∑729

j log(aj)

=
729∑
i

| log(ai)− log(ai ±∆ai)| ·
10− log(ai)∑729

j log(aj)

=
729∑
i

∣∣∣∣log

(
ai

ai ±∆ai

)∣∣∣∣ · 10− log(ai)∑729
j log(aj)

(9.8)

With 20785 training kernels an average loss value of 6.4 · 10−5 resulted.
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The loss function takes into account that it is important to have a precise dose
estimation for the center voxel with a generally high dose value rather than for the
peripheral voxels with small dose values.

Through parameter evaluation, the first loss function (eqn. 9.7) yielded much
better results than the second one. Also the hyperparameters α of the leaky ReLU-
function, the batch size Nmb and the number of filters Nconv were evaluated. The
best results were achieved, if the hyperparameters were set as given in table 9.5.

Table 9.5: Hyperparameters of the loss function

number of filters in the first convolution layer Nconv = 4
leakage parameter of the ReLU-function α = 0.1
mini-batch size Nmb = 32

9.3.2 Training data and evaluation
This study focuses only on the prediction of dose values for the kidneys. Density
kernels with a size of 9×9×9 voxels were taken from the extracted organ volume
(see chapter 6.3) with a shift of one voxel. Consequently, for each patient and each
kidney we end up with a set of density kernels which sum up to one entire kidney.

Figure 9.5: On the left side, a CT image from the left kidney, divided in density
kernels, one of which is illustrated in the middle. With a MC, the DVK has been
calculated (seen on the right side). The MC should be replaced by a NN

Four of the 26 patients were chosen randomly for training the network. These
8 kidneys consisted of 31000 density kernels encompassing 9× 9× 9 voxels. For
each density kernel, a Monte Carlo was performed with 2 · 108 decays. The MC
parameters were chosen identically to those used in the calculation of DVKs as
explained in chapter 9.1.1. Next, these mass density kernels were used, together
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with the corresponding DVKs as obtained from the MC simulations, to train the
NN (see figure 9.5).

After training, the kidneys of the remaining 22 patients were predicted. The
average dose values for the kidneys, as predicted by the NN, were compared to
the corresponding dose values as resulting from full MC simulations. The NN
estimates DVKs. With each estimated 9 × 9 × 9 DVK, the dose absorbed in one
voxel can be calculated by way of a convolution operation. Now, the DVK of
the center voxel is the most important, because on average 70% of the dose is
absorbed there. Consequently, if the DVK of the center voxel is estimated very
badly, the dose value will be far away from the truth. For this reason, the DVKs of
most of the voxels of a kidney can be estimated very precisely but the volume can
also contain strong outliers. To get rid of these outliers, a statistical data analysis
was applied after the estimation of the dose values from any kidney.

To detect outliers in the estimated dose distribution of a kidney, we use the
modified Thompson τ technique for outlier detection [7]. It is defined as:

τ =
tα

2
· (n− 1)

√
n ·
√
n− 2 + tα

2

where n is the number of data points, tα
2

is the critical student’s t value, based
on α = 0.05.

After deleting the outliers, the mean dose values for the kidneys have been
calculated.

However, after training the estimation of the kidneys of the 22 patients were
not yet satisfactory. Therefore the training data set was extended. But as the
MC simulation of the density kernels is very time consuming, it was not possible
to simulate all density kernels from a larger number of kidneys. Therefore, we
decided to select four additional patients, where the deviations of the predictions
from the MC results were the largest. From these patients, we extracted for each
kidney all voxels with a larger than 3% deviation from the MC result. These
voxels then entered in an additional MC. The new DVKs were then added to the
training data set and the NN was trained again. In summary, finally the kidneys of
8 patients with altogether 21274 density kernels were used.

The new training was performed with 52274 data sets which each was divided
in 80% training data and 20% validation data. The loss functions for training and
validation in dependence on the number of epochs is illustrated in Fig. 9.6.

With the trained NN, the DVKs of 28 kidneys from 14 patients were predicted.
Afterwards the predicted DVKs of each kidney were reconstructed to obtain the
voxel-wise dose values for the entire kidney. Any outliers were deleted beforehand
and the mean dose per kidney was calculated and is denoted in the following as
DVK via Neural Networks (DVK-NN).
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Figure 9.6: Training and validation loss function in dependence of the number of
epochs.

The center voxel of every DVK is the most important voxel as it contains the
radiation source. In Fig. 9.7 the percentage deviations between the voxel dose
values calculated by the MC simulation compared with the NN method are illus-
trated in dependence on the density of the center voxel. It is shown that the densi-
ties around ρm = 1 g

cm3 can be estimated very precisely with the NN method. The
reason for this is that the training data which was used is not uniformly distributed
across the given density range as can be seen in Fig. 9.7, where the occurrence of
each density within the training data is presented. Most training data consists of
density kernels with a center voxel density close to 1 g

cm3 .

Figure 9.7: Percentage deviation between MC and the two methods in dependence
on the density of the center voxel of the density kernel. The occurrence of the
density within all kidneys can also be seen on the ordinate.
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9.4 Dose estimation of whole patients via NN

9.4.1 Preprocession

The body of each patient was segmented from the CT image and the SPECT-
related decay map to reduce computation time. Therefore, the data sets have dif-
ferent sizes in each spatial dimension. Along the x- and y-directions, the images
were rescaled to a size of 80× 80 pixels.

The data sets of the 26 patients had different sizes. For better performance of
the DNN, 5 adjacent slices were selected from the 3D imaging data (CT, SPECT)
of each patient. These imaging data from all patients were rescaled to an 80 ×
80 voxel array in x− and y− direction (see figure 9.8). Taking only 5 slices is
motivated by the physical nature of the emitted radiation of Lutetium, which is a
β− emitter. The range of the emitted β-radiation is at most two voxels wide, given
a voxel size of (4.89 mm)3. Therefore, to estimate the dose of the center slice
it would be enough to know the decay distribution and the density distribution of
two slices neighboring the center slice along the z-direction. So the idea is to have
two 3D inputs to a DNN and one 2D output in a U-Net-like DNN architecture.
All images were normalized to the respective maximal value of the entire data set.

Figure 9.8: Selection of 5 slices from one patient used for estimating the dose of
the center slice.
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9.4.2 Net architecture
The study intended in letting a DNN learn, in a supervised fashion, the true dose
map as it resulted from a full MC of the whole body of the patient. As input, the
mass density map and the dose map, as calculated with the simple STS method,
were provided. To achieve this goal, and to evaluate the dose map as predicted by
the DNN, for each patient the kidneys, the spleen and all tracer positive metastases
had to be segmented by a medical expert first.

In figure 9.9, the architecture of the DNN is illustrated. One input is given by
the density map and the other input corresponds to the approximate dose map, as
calculated with the standard method. Each input data array had a size of (80 ×
80×5) voxels. Two consecutive convolutions with appropriate filters, followed by
a mini-batch normalization and a leaky ReLU activation function, were applied.
Afterwards, the data tensor was down-sampled by max-pooling. These steps were
repeated four times until the tensor had a size of (5 × 5) voxels. Next, the two
down-sampled input tensors were concatenated and convolved as before. The
combined matrix was then up-sampled and convolved until it reached its final size
of (80× 80) pixels.

Figure 9.9: Net architecture with two 3D inputs and one 2D output.

The mini-batch size had to be set to one because of limitations of the main
on-board memory. The filter size was varied from (5× 5), (7× 7) and (9× 9), and
also the number of filters was varied from 4 to 8 and finally to 16 filter maps. As
loss function, the mean squared reconstruction error of the entire dose map was
used according to

LwSE =
1

Nvoxel

∑
r∈Ω

(
D(r)− D̂(r)

)2

(9.9)
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where Nvoxel denotes the number of voxels in the dose map at the output of the
net. Also D(r) denotes the dose map as obtained from a whole body MC simula-
tion, while D̂(r) denotes the corresponding dose map as obtained from the hybrid
NNET.

Based on the idea that a two-dimensional GiT-BEMD provides intrinsic modes,
which reflect the characteristic spatial scales in their textures of the given mass
density and activity maps, the DNN was modified by replacing the CT input by
one out of six IMF obtained from a GiT-BEMD. The six IMFs for the slice in
figure 6.2 are illustrated in figure 9.10.

Figure 9.10: The six IMFs for a patient suffering from a prostate cancer.
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Parameter evaluation

Parameter evaluation was performed as follows: First from the 3D X-ray CT im-
ages of all 26 patients, 1385 packs of 5 adjacent density map slices were extracted,
thus yielding a total of 5 · 1385 slices. This dataset was divided into a training and
validation dataset encompassing 5 ·1035 density map slices and a hold-out dataset
corresponding to 5 · 350 density map slices from the remaining 6 patients used for
testing. Note that each input dataset, for instance each density map, or their equiv-
alent IMs, or activity map, encompassed 5 adjacent slices always. The training set
contained 5 · 779 density map slices from 16 patients and the validation dataset
amounted to 256 density map slices from the remaining 4 patients. The latter was
used repeatedly during training to track the generalizability of the learning process
and to avoid overfitting. Training was terminated whenever the training error did
not change for the last 10 epochs within a margin of ε ≤ 10−5 or the validation loss
started to increase. Finally the hold-out dataset was used to estimate the predic-
tion accuracy and get an estimate of the variance of the parameter estimation. For
better statistics 10 bootstrap samples were drawn from the training and validation
datasets resulting in a total of 7790 density maps for training and 2560 datasets for
validation, respectively. The resulting MSE of the test dataset was compared for
different parameter configurations. Finally, the resulting best parameter configu-
ration was chosen to perform a leave-one-out cross-validation (LOOCV) with all
26 patients. This helped to estimate, in a clinical context, the accuracy with which
whole organ doses could be estimated with the newly proposed method.

Without EEMD The validation losses for the different settings are collected in
the following table 9.6:

Table 9.6: Testing losses are given in units of 10−2Gy2 for different hyperpa-
rameter settings. FS denotes filter size and NF counts the number of filters used.
The stars mark a significant difference between a configuration and the best one
(p < 0.05).

FS \ NF 4 8 16
(5× 5× 5) 1.4± 1.3 1.5± 1.2 2.9± 3.5 ∗
(7× 7× 5) 3.6± 2.3 1.0± 1.2 1.4± 2.1
(9× 9× 5) 1.5± 2.2 2.0± 2.7 ∗ 3.4± 2.0

The testing loss L = 1.0·10−2 Gy2 = (1.0·10−1)2 Gy2 achieved lowest values
for a configuration with eight filters and a filter size of 7×7 pixels. The differences
between most estimates are not statistically significant according to a Wilcoxon
sign rank test. Only two estimations are significantly different, with a p-value of
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p < 0.05, from the selected configuration with smallest test loss. These significant
losses are marked with a star in the table. The missing statistical significance of
most other values is a consequence of the small number of patients in the cohort.
Still the minimal loss configuration was used for all subsequent calculations.

With EEMD Based on the idea that an EMD provides intrinsic modes (IMs),
which reflect characteristic spatial-frequency scales and related textures of the
given density and activity maps, the U-net was modified by replacing the density
maps M(r) by their corresponding sets of IMs resulting from a slicewise Greens-
function-in-tension-based bidimensional ensemble empirical mode decomposi-
tion (GiT-BEEMD) analysis [5], where a thorough discussion of the impact of
the different model parameters is given. Finally, a principal component analysis
(PCA) has been applied to reduce the dimensionality of the IMs. The IMs obtained
from decomposing the density map slice in Fig. 6.2 are illustrated in Fig. 9.10.
The idea behind using a GiT-EEMD and the related IMs is the following: CNNs
extract feature maps which are composed of textures on spatial scales depending
on the chosen filter size. But this is what an EMD also achieves. However its re-
lated IMs, which are characteristic of the inherent textures contained in the input
stimulus patterns, reflect the statistical properties of the intensity distributions of
the stimuli. Hence it might be profitable to present partial density maps, which
only contain inherent textures on characteristic spatial scales instead of complete
density maps with a mix of all inherent textures. This might ease the learning
process and help to reduce the variance of the output data arrays.

Consequently, the density maps were replaced either by one of their IMs or by
certain combinations of them, as extracted individually from all patients. Again,
the optimal network configuration, as deduced above, was used here. The com-
bination of three IMs achieved lowest training (0.7 · 10−2Gy2) and validation
(0.9 · 10−2Gy2) losses, which with respect to the resulting standard deviations
were even superior to the one obtained with the density map as input. Therefore
this configuration was used to evaluate the network as described in the following
section.

Network validation

The data set is taken from 26 patients and encompasses 27 up to 96 slices along
the z-direction, depending on the field of interest. For the validation of the neu-
ral network, a Leave-One-Out Cross-Validation (LOOCV) was used. The neural
network was trained 26 times, whereby each time one patient was left out. After-
wards, the left-over slices were estimated by the NN. For all patients, the deviation
between the mean dose within the VOIs, as estimated by the NN or by the Monte
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Carlo simulation, was calculated and denoted in the following as Dose Estima-
tion via Neural Network (DE-NN). The LOOCV results of the NN with EMD are
called Dose Estimation via Neural Network and EMD (DE-NN-EMD).

9.5 Comparison of different methods

9.5.1 Results
To characterize the dissimilarities between two dose distributions, the relative
organ-wise deviation ∆X(Organ) for estimation method X is defined as:

∆X(Organ) =

∑NOrgan
n=1 [dMC,n − dX,n]∑NOrgan

n=1 dMC,n

(9.10)

with the dose value dX,n of voxel n calculated using DVK-method X , and
dMC,n the dose value of the same voxel computed by the full Monte-Carlo simula-
tion. NOrgan is the total number of voxels in the organ and X denotes either STS,
CS, DS, PS, DVK-NN, DE-NN or DE-NN-EMD.

In Table 9.7, the average organ-wise deviations of DVK dosimetry relative to
full MCs dosimetry can be found. Altogether, the DVK methods underestimate
the dose by about ∼ 8 to 10%.
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Table 9.7: Organ-specific, averaged absolute percentage deviations between
dosimetry based on full Monte-Carlo simulation and on DVK-convolution using
different method for adapting kernels to tissue inhomogeneities. The numbers in-
dicate average values over the population of 26 patients ± one standard-deviation

mean (%) std (%) max (%) min(%)
left Kidney

STS −7.31 13.85 −42.37 10.22
PS −8.79 13.63 −43.41 8.40
CS −8.74 13.63 −43.40 8.44
DS −9.23 13.60 −43.46 7.97

DVK-NN (only 14 kidneys) −6.69 10.00 −26.00 7.93
DE-NN −3.33 5.83 −13.43 4.76

DE-NN-EMD −3.65 4.37 −12.21 2.13

right Kidney
STS −8.48 16.18 −44.76 15.13
PS −10.03 15.87 −45.95 13.31
CS −9.92 15.79 −45.93 13.36
DS −10.30 15.94 −46.15 12.74

DVK-NN (only 14 kidneys) −6.74 12.77 −26.11 11.02
DE-NN −3.27 5.69 −13.49 4.02

DE-NN-EMD −3.75 4.25 −12.18 2.13

Spleen
STS −7.27 16.61 −41.12 20.97
PS −9.73 16.17 −42.71 17.78
CS −9.66 16.18 −42.67 17.81
DS −8.06 16.52 −41.55 19.88

DE-NN −3.58 6.01 −20.28 4.54
DE-NN-EMD −3.67 4.67 −12.40 4.57

Tumor
DE-NN −5.60 6.42 −20.28 4.54

DE-NN-EMD −4.62 4.78 −12.75 3.43

The percentage differences in dose for the right kidneys of all seven methods
are illustrated in figure 9.11.

The tissue-specific relative deviation ∆X(Tissue) for estimation method X is
defined analogously to the organ-specific deviation ∆X(Organ).

In Figure 9.12, the average deviations of estimation dosimetry relative to full
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Figure 9.11: Differences in dose for right kidneys compared between seven meth-
ods.

MC simulations dosimetry can be found, separately for lung tissue and cortical
bone. Two patients were excluded from the analysis for class 9 (cortical bone),
since large metallic implants were present in the CT images, which led to extended
image artifacts and prevented a meaningful determination of density information.

9.5.2 Discussion
The presented investigation studied the use of several methods from literature for
adapting DVKs to tissue inhomogeneities and neuronal network approaches, in
order to increase dosimetry accuracy without the need to perform elaborate and
time-consuming MCs for each voxel size, density, tissue-type, and radionuclide
in clinical use. In this study, 26 177Lu therapy patients from clinical routine are
included, for whom the results from dosimetry and full MCs dosimetry were com-
pared for several organs and tissue types. The MCs were performed employing
the GAMOS toolkit, which subsequently acted as ground truth with respect to the
absorbed energy dose in each voxel.

When analyzing the results of the organ-specific dose deviations between the
used methods and full MCs, it can be seen that on average the presented DVK-
scaling methods obtained similar results, while the neural network approaches
yielded much better results. Generally, an underestimation of dose by DVK-
convolution is seen. On average, the dose is underestimated by about ∼ 5 to 8%.

This is similar to the results from other groups which compared DVK- and
MC simulations-dosimetry. For example, Dieudonne et al. report an average
underestimation of between 2.2% and 5.6% for organs liver, spleen, and renal
pelvis medulla. Unfortunately, their results were based on one 177Lu patient only.
In a simulation study based on the Zubal phantom, Moghadam et al. [76] found
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Figure 9.12: Percentage deviations (%) for four different methods ordered accord-
ing to the tissue class lung tissue, and cortical bone.

an average deviation of 5.2% between MC simulation and DVK dosimetry for
tumorous and normal tissue. The trend of underestimation, seen in our study and
by others, could most likely be explained by the finite size of DVKs, as has been
shown in our experiment using different kernel sizes (Section 9.1.3). In fact, the
deviation from the average organ dose estimated by DE-NN and DE-NN-EMD
is in the range of the statistical error of the MC. Also the distributions of dose
estimates in every voxel agree very well with the corresponding MC results.

Since other tissue classes besides previously discussed organs could be of in-
terest for 177Lu dosimetry, e.g. in patients with lung, lymph node, or bone metas-
tases, we also evaluated the deviations between results for dosimetry methods and
full MCs for other tissues, namely lung, adipose, muscle and cortical bone tissue.
Especially for the low- and high density tissue classes, compared to soft tissue,
such as lung tissue or cortical bone, DE-NN and DE-NN-EMD achieve the best
results. The other four methods, STS, PS, CS and DS, represent bad approxima-
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tions if the tissue density differs strongly from soft tissue,
In the other studys, like [76] or [37], any scaling algorithm was evaluated only

on an artificial phantom or one patient. These study, however, were strongly fo-
cused on soft-tissue organs. Generally, the errors increase as the tissue properties
and densities differ more strongly from soft-tissue. Altogether, when looking at
the results for different types of tissues, the DE-NN-EMD performed best.

9.6 Organ dose calculation via deep neural networks

9.6.1 Data statistics
For each patient, the dose values were calculated voxel-wise. For each VOI, a
histogram of all dose values has been established, and an example of such a his-
togram is illustrated in figure 9.13. The shown distribution is asymmetric and
heavy-tailed. Such distributions can be approximated by alpha-stable distribu-
tions [51, 131].

Figure 9.13: Histogram of all dose values for a PSMA-positive bone metastasis.

An alpha-stable distribution, which is characterized by four moments, can be
described by

φ(ω) =

{
e−|γω|

α[1−i sign(ω)βtan(πα
2

)]+iµω, for α 6= 1

e−|γω|[1+i sign(ω) 2
π
βlog(|ω|)]+iµω, for a = 0

where α ∈ (0, 2] denotes the impulsiveness, β ∈ [−1,+1] the skewness, γ > 0
the scale parameter for dispersion and µ the location parameter, which can be seen
as the equivalent to the mean value in a Gaussian distribution.
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The statistical process of integrating the TAC in every voxel and the noise in
the SPECT images lead to outliers which are contained in the VOIs. The Maha-
lanobis distance was used to identify and remove those outliers [32, 118]. This
distance measure is scale-invariant, unit-less, and takes into account the two-point
correlations of the data set. To include only dose values that belong to the assumed
statistic, all values with a Mahalanobis distance smaller than one were selected.
The resulting location parameter for the alpha stable distribution was used to rep-
resent each VOI.

All patients have more than one lesion, therefore a TTD was calculated as
follows:

TDD =

∑n
i=1〈Dtumor,i〉 · Vtumor,i∑n

i=1 Vtumor,i

where Vtumor is the tumor volume, 〈Dtumor〉 the mean tumor dose value per
lesion and n the number of lesions.

9.6.2 Network architecture
The network architecture for the segmentation neural network is chosen equal to
the one described in chapter 9.4.2. The only difference are the output data and
the up-sampling process. The input are the dose distribution calculated by the
soft scaling method and the IMFs from the CT image. The output in this case
has three dimensions. Where the third dimensions has 4 slices. The first one
has the left kidney segmentation, the second the right kidney segmentation, the
third one the spleen segmentation and the last one the tumor segmentation. All
the segmentation results refer to the center slice of the five slices from the input
images.

9.6.3 Results
The neural network was evaluated with a LOOCV. The segmentations for the
right kidney, the left kidney, the spleen and the tumors were estimated by the
neural network based on the dose estimation of a soft tissue kernel and the CT
image. As ground truth a manual segmentation was used.

In figure 9.14, the manual and the estimated segmentation for one slice is
shown. The manual segmentation is binary, but the estimated segmentation has
values between 0 and 1. Hence, these values can be interpreted as occurrence
probabilities. Considering the estimated segmentation, two segments for the kid-
ney are clearly visible. One of the segments is much smaller than the other and



134 CHAPTER 9. DOSE ESTIMATIONS

Table 9.8: Absolute mean values as well as min-max values per VOI for all 26
patients

region of interest (%) mean min max
left kidney 02.80 0.01 12.69

right kidney 03.23 0.01 09.70
spleen 04.00 0.14 20.60
tumor 11.19 0.32 63.27

also has a smaller probability. The same can be seen for the spleen segmenta-
tion in this slice. These artifacts have to be removed. For this reason, after the
estimation of the segmentation for the kidneys and the spleen, all connected re-
gions were detected and only the largest one was chosen. With this method, all
additional regions outside the organ of interest could be removed.

Figure 9.14: On the left side the manual segmenation is illustrated and on the
right side the estimated one. In both images in the left top corner the left kidney is
shown, in the right top corner the right kidney, in the left bottom corner the spleen
and in the right bottom corner the tumor lesions.

For each segmentation, the mean doses were calculated based on full Monte
Carlo simulations. For each VOI, the mean dose was also computed based on a
manual segmentation. The latter and the estimated neural network segmentation
(Ground truth (GT)) were compared to each other. The absolute and relative per-
centage differences between these two values for four regions of interest of 26
patients are illustrated in figure 9.15.

The absolute mean values, the minimum and maximum per VOI of all 26
patients are collected in the following table 9.9.

All in all, the results are quite good. They could be improved by a larger
number of training data, though. The kidney and spleen segmentation were very
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Figure 9.15: Relative (left side) and absolute (right side) deviation between mean
dose value averaged over the manuall segmenation and the segmentation estimated
by the neural network.

easy for a human based on the CT image, because the interobserver variability was
small. But the tumor segmentation had a much larger variability, hence had to be
performed much more individually. Therefore, the automated tumor segmentation
was very hard.

Figure 9.16: Absolute deviation between mean dose value averaged over the man-
uall segmenation and the segmentation estimated by the neural network. On the
left side for the SPECT-CT-NN and on the left side the etablished NN.

The results of the neural network were compared with an established segmen-
tation neural network. This network used the raw CT data and estimated the kid-
neys and the spleen. A tumor segmentation was not possible because of the fact
that tumors were not visible in a low dose CT image. For each segmentation, the
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Table 9.9: Mean percentage dose deviation as well as min-max values, averaged
over all patients

region of interest mean min max
left kidney 29.54 1.24 344.13

right kidney 11.21 0.21 53.55
spleen 18.18 1.44 85.42

mean dose per organ was calculated. The percentage deviations between the dose
values of the neural network segmentation and the manual segmentation were de-
termined. The percentage values are illustrated in figure 9.16 on the right side.
There is also one outlier for the left kidney with a deviation of 344% which can-
not be seen in the images. The mean, minimum and maximum values, averaged
over all patients, are summarized in the table 9.9.



Chapter 10

Medical Achievements

In this chapter, the influence of the applied dose to the tumor lesion upon the
therapy results will be evaluated. The 177Lu therapy is established for patients
suffering from either PC or from neuroendocrine tumors (NETs). For 13 patients
that underwent 177Lu DOTATOC therapy and 13 patients that underwent 177Lu
PSMA therapy, dose values were computed for every voxel separately. These
dose values were then correlated with different clinical parameters.

10.1 Statistical analysis
The Spearman correlation coefficient was used to determine the significance of
relations. To quantify differences between two groups, a Wilcoxon rank-sum test
was applied. For all analyses, a p-value< 0.05 was considered statistically signif-
icant. The confidence intervals of binary variables were determined by assuming
a binomial distribution.

10.2 PSMA
This section is abstracted from [TIG-7]. The clinical parameters from all patients
are collected in table 6.2. The calculated dose values for the spleen, kidneys and
the tumor are summarized in table 10.1.The mean half-life for the kidney was
38.2± 16.6 h while tracer-positive tumor lesions were characterized by a half-life
of 34.9± 135.1 h. The values are in agreement with other studies [33, 161, 71].

The Gleason Score is the grading system used to determine the aggressiveness
of prostate cancer. Typical Gleason Scores range from 6 − 10. The higher the
Gleason Score, the more likely the cancer will grow and spread quickly. The TTD
was compared between Gleason Scores ≤ 8 and > 8, and a trend towards higher
TTD values with higher Gleason Scores has been observed (see figure 10.1 left

137
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Table 10.1: Dose values for all ROIs.

organ mean and standard deviation (Gy) range (Gy)
kidney 2.59± 0.63 1.67− 3.92
spleen 0.79± 0.46 0.31− 1.90
tumor 11.00± 11.97 1.28− 49.10

side). Also a trend towards a higher TTD for lymph node metastases compared
to bone metastases was observed (see figure 10.1 right side). However, statistical
significance was not reached, most probably due to the small number of patients
in our study.

Figure 10.1: A trend towards higher TTDs was observed in patients with initial
Gleason Scores of 8 or higher compared to patients with a Gleason Score below
that threshold (left side). TTD of PSMA-positive lymph node metastases in com-
parison with PSMA-positive bone metastases (right side).

PSA is a protein produced by normal, as well as malignant, cells of the prostate
gland. The PSA value measured in the blood can be used as good tumor marker
for prostate cancer patients. Therefore, the correlation between the serum-PSA
level before therapy and the following parameters was tested:

• TTD

• Tumor volume

• Total number of lesions.

A significant correlation between serum PSA levels before therapy and the
tumor load, represented by the number of PSMA-positive lesions (r = 0.56, p <
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0.05) and the volume of PSMA-positive lesions (r = 0.69, p < 0.05) was found.
A higher serum-PSA level was associated with a higher tumor load and a higher
number of lesions. The serum-PSA level has no significant correlation with the
TTD. This is in line with previous results where a higher PSMA expression and
a higher tumor load was seen with increasing tumor aggressiveness and impaired
patient outcome [120, 4].

Furthermore, the absolute and percentage differences in PSA-serum level be-
fore and after therapy were analyzed. Both parameters were tested for significance
with

• TTD

• Tumor volume

• Total number of lesions.

A significant correlation between the TTD with the percentage change of
serum-PSA levels before and after therapy was observed (Spearman, r = −0.57,
p < 0.05, see figure 10.2). Since the time between initiation and completion of the
therapy differed in our patient collective, percentage changes of serum PSA val-
ues per month were calculated and yielded a significant correlation to the TTD (r=
-0.59, p<0.05). Higher TTDs were associated with a decrease of serum PSA lev-
els, while lower TTD were associated with an increase of serum PSA levels. This
is an important finding since assessment of biochemical response as measured by
PSA serum levels, is also recommended for assessment of many therapies in ad-
vanced prostate cancer by current guidelines [58] and assessment of TTD during
multiple cycles might be a predictor of response to therapy.

No significant correlation could be found between the percentage change of
PSA-serum levels and the number and volume of tumor lesions.

In patients with higher total tumor volumes of PSMA-positive lesions, kidney
average doses were significantly lower compared to patients with small total tu-
mor volumes (r = −0.58, p < 0.05) (see Figure 10.2). In radio-ligand therapy
with somatostatin receptor type 2–specific peptides and for PSMA PET/CT, it has
been shown that tumor burden significantly affects the activity concentration in
tumor tissue and in dose-limiting organs [12, 46, 13, 77]. These results suggest
that with an increasing tumor load the biologically effective doses to tumor and
normal tissue, and also the tumor to kidney ratio decreased. These results might be
explainable by a reduction of renal uptake with less available peptide. The ratio
could be improved by applying larger amounts of peptide with correspondingly
adapted activity. However, so far, in patients with metastatic castration-resistant
prostate cancer that underwent 177Lu-PSMA-Radioligand Therapy (RLT) stan-
dard activities, and amounts of peptide are usually injected despite the consid-
erably interindividual differences in the amount of tumor burden. Large tumor
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Figure 10.2: Higher Total Tumor Doses in PSMA-positive tumor lesions cor-
related significantly with the percentage change in PSA-serum level (seft side).
Estimated kidney doses show an inverse correlation with the volume of PSMA-
positive tumor lesions (right side).

burdens might therefore lead to a less effective treatment if standard activities are
used. Further, larger ideally prospective multicenter trials with long-term follow-
up are necessary to determine whether this novel Monte Carlo based voxel-wise
dosimetry approach in combination with the histological, biochemical, and clin-
ical parameters that were evaluated in this study might have an influence on in-
dividualization of further therapy planning and on the adaption of administered
177Lu-PSMA activities.

10.3 DOTATOC
This section is abstracted from [TIG-8]. The information about the patients are
collected in table 6.1.

In figure 10.3, average dose values for subgroups of tracer-positive tumor le-
sions and representative fused axial SPECT/CT images are illustrated. The aver-
age dose per cycle was

• for the spleen 0.67± 0.41 mGy/MBq(0.20− 1.62 mGy/MBq),

• for the kidneys 0.52± 0.20 mGy/MBq(0.30− 0.97 mGy/MBq) and

• for all 198 tracer-positive tumor lesions 1.46 ± 1.26 mGy/MBq(0.20 −
5.60 mGy/MBq).

The dose values for the spleen and kidneys are in agreement with the value
of 0.6 mGy/MBq and of 0.7 mGy/MBq respectively, averaged over 59 patients
and published in [140]. Average injected activity was 6532± 449 MBq (5776−
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Figure 10.3: Averaged dose values for different kind of metastases.

7264MBq). The mean halflife for the tumor lesions was 61.3 h±117.8 h and for
the kidney 67.4 h± 20.0 h. The mean effective half-lives of 177Lu-DOTATOC in
the kidneys are very similar to the values of 63 h, averaged over 30 patients and
reported in [118].

Neuroendocrine tumors have an own tumor classification. Neuroendocrine
tumors were graded as G1, G2, or G3 based on mitotic count and Ki-67 labeling
index and presence of necrosis. Well differentiated tumors are graded into G1,
while intermediate and high grade tumors are graded in G2 and G3 respectively.
Low and intermediate grade tumors (G 1-2) absorbed a higher TTD compared to
high grade tumors (G 3) (Signed-rank-test, p= <0.05) (see Figure 10.3). Most
studies reported in the literature are conducted using 177Lu-DOTATATE PRRT
and are limited to well differentiated (G1-G2) tumors, and only a small portion
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Figure 10.4: TTD for different tumor gradings.

included G3 tumors [24, 25], which are characterized by a short overall survival
of 4 − 6 months [155]. The reason for this is probably the higher expression of
somatostatin receptors in well differentiated tumors.

Figure 10.5: Chromogranin before therapy in dependence of the TTD.

The plasma chromogranin A (CgA) level is a reliable biomarker for identi-
fying patients with advanced gastroenteropancreatic neuroendocrine tumors. The
CgA value before therapy correlated significantly with the TTD (Pearson-corr.:
ρ = 0.67, p = 0.01) (see figure 10.5). A higher CgA value resulted in a higher
TTD.

TTD values also significantly correlated with the difference between CgA val-
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Figure 10.6: Difference of chromogranin in dependence of the TTD.

ues measured before and after therapy (Pearson-correlation: ρ = −0.54, p =
0.0451) (see Figure 10.6).
It has been proposed that CgA is more frequently elevated in well-differentiated
tumors compared to poorly differentiated tumors of the midgut [104]. Further-
more, CgA is valuable in evaluating the efficacy of a broad range of therapies in
NETs, including sandostatin therapy [151] or PRRT [103]. We could demonstrate
that higher pre-therapeutic CgA values significantly correlated with the TTD, and
a higher TTD resulted in a significant decrease of CgA values. However, clin-
icians should be aware that an increase of CgA values following 177Lu-PRRT-
therapy might be observed even in patients with an objective response or stable
disease [156].

10.4 Limitations
Our studies suffer from several limitations. First of all, results should be inter-
preted with caution due to the small number of patients. Furthermore, this anal-
yses were conducted as single center studies in a retrospective fashion. Also, the
retrospective nature of these analyses have typical limitations, including possi-
ble biases stemming from patient referrals and treatments. Long-term follow-up
to determine response to therapy would have been preferable, but was not feasi-
ble. Due to the manual fashion of the VOI definition exact position and size of
the VOI are subject to intra- and inter-observer variability. Since the routinely
acquired SPECT/CT dosimetry images at our institution cover the abdomen and
pelvis, radiation dose to the parotid could not be calculated.
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Conclusion

In this study, different dosimetry methods of 177Lu therapies for neuroendocrine
tumors and prostate cancer were evaluated. During such radionuclide therapies,
the patient gets injected a radioactive substance, which is taken up tumor cells.
Four hours after injection, the first SPECT-image will be acquired. Subsequent
images are taken at 24h, 48h and 72h after injection. From the image intensities,
the activity of each voxel can be deduced and similarly a density information can
be obtained from the CT images. Medical experts are interested in the dose, which
is absorbed by the kidneys, because this is the limiting organ.

According to the standard MIRD protocol, the dose applied to the kidneys
is estimated as the product of two factors: a TIA and a dose kernel, called S-
factor. The TIA in the kidney is computed by approximating a time series of
measured SPECT intensities by a mono-exponential function, which is integrated
over time. The resulting number of nuclear disintegrations (number of decays)
are multiplied by an S-value, which can be determined through a Monte Carlo
simulation of a standard phantom. After scaling the resulting dose value by the
patient’s weight and kidney volume, a dose value for the kidney can be obtained.
However, as this standard MIRD method strongly depends on the medical expert,
the error of this method amounts to roughly 25.0%. The aim of this study was to
improve dose estimation via an objective computation without any dependence on
a medical expert. Especially a voxel-wise dosimetry should be performed instead
of an organ-wise dosimetry, and a patient-specific Monte Carlo simulation should
replace the standard human phantom.

The first challenge of this work was to calculate the number of decays per
voxel from the SPECT-images. Therefore, a statistical method called particle filter
was used. With this method the voxel-wise noise of the SPECT images could be
removed by matching the measurements to a physical model of the radioactive
decay. This method yields a homogeneous distribution of the decays per voxel
by taking into account different organs. The particle filter method was compared
to a simple fit method. The latter generally resulted in inhomogeneous decay
maps where certain voxels contained diverging numbers of decays. For 26 patients
suffering from a prostate cancer or a neuroendocrine tumor, the corresponding
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decay maps could be determined reliably.
In the main chapter of the work, different dose estimation methods were com-

pared. As ground truth, a full Monte Carlo simulation of the absorbed dose per
decay was used based on CT-derived density maps of all patients. Such Monte
Carlo simulations are very time consuming, however, and thus not integrable into
daily clinical routine. For this reason, fast methods for an accurate estimation of
the dose distribution are of special interest to physicians. One such approximate
method for dose estimation is a convolution of an activity map with simulated
dose-voxel-kernels (DVK). To compute the latter, a homogeneous density ker-
nel is implemented in a Monte Carlo simulation with a radioactive isotope in its
center. Then a large number of nuclear decays needs to be simulated to obtain
an accurate statistical dose distribution within this density kernel. If finally an
activity map is convolved with this DVK, a dose distribution will be the result.

In literature there are a few methods published to convolve activity maps with
rescaled DVKs. The re-scaling is done in various ways according to the mass
density of the voxel, because absorbed dose strongly depends on density. In this
respect, each local convolution of the activity map with a corresponding DVK
would need a different kernel. But one DVK has the size of 9 × 9 × 9 voxels,
which encompasses 729 voxels altogether. As the mass density of the voxels
varied between 0.5 to 2.0 g

cm3 with a step size of 0.01 g
cm3 , this would have resulted

in almost 150729 = 2.3·101586 different kernels, even neglecting rotational degrees
of freedom. The MC of this huge number of kernels is too time-consuming to be
performed. Therefore, a neural network was designed to predict the DVK from
a given density kernel. The results are much better than the established scaling
methods.

With the neural network method for estimation of a DVK, only the kernels
from the kidneys could be predicted because of computational time. To obtain a
dose distribution of a whole patient a second neural network was built to predict
the dose of whole patients. The network yielded results which are in a similar
range to the statistical error of the MC.

In the last sub-chapter two automatic segmentation methods were evaluated.
The kidneys, spleen and tumors were segmented automatically by an established
neural network using only the CT image and a second method which used the CT-
and SPECT-image. The results of the latter are much better than for the first one,
because tumors can only be detected in the SPECT-image.

In the last part of this study the medical achievements were explained. Through
the appropriate dosimetry method a dose value could be determined which is in
good correlation with clinical parameters. For both therapies, predicting parame-
ters for the dose could be identified. The method enables a patient specific tumor
therapy.
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