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The purpose of this study was to elucidate whether DC NK lectin group receptor-1 (DNGR-
1)-dependent cross-presentation of dead-cell-associated antigens occurs after transplan-
tation and contributes to CD8" T cell responses, chronic allograft rejection (CAR), and
fibrosis. BALB/c or C57BL/6 hearts were heterotopically transplanted into WT, Clec9a~/-,
or Batf3~/~ recipient C57BL/6 mice. Allografts were analyzed for cell infiltration, CD8*
T cell activation, fibrogenesis, and CAR using immunohistochemistry, Western blot, QRT?-
PCR, and flow cytometry. Allografts displayed infiltration by recipient DNGR-1* DCs, signs
of CAR, and fibrosis. Allografts in Clec9a~/~ recipients showed reduced CAR (p < 0.0001),
fibrosis (P = 0.0137), CD8™ cell infiltration (P < 0.0001), and effector cytokine levels com-
pared to WT recipients. Batf3-deficiency greatly reduced DNGR-1* DC-infiltration, CAR
(P < 0.0001), and fibrosis (P = 0.0382). CD8 cells infiltrating allografts of cytochrome C
treated recipients, showed reduced production of CD8 effector cytokines (P < 0.05). Fur-
ther, alloreactive CD8* T cell response in indirect pathway IFN-y ELISPOT was reduced in
Clec9a~/~ recipient mice (P = 0.0283). Blockade of DNGR-1 by antibody, similar to genetic
elimination of the receptor, reduced CAR (P = 0.0003), fibrosis (P = 0.0273), infiltration
of CD8* cells (p = 0.0006), and effector cytokine levels. DNGR-1-dependent alloantigen
cross-presentation by DNGR-1* DCs induces alloreactive CD8" cells that induce CAR and
fibrosis. Antibody against DNGR-1 can block this process and prevent CAR and fibrosis.
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Introduction

Chronic rejection ultimately leading to allograft fibrosis and dys-
function constitutes a major constraint to long-term graft survival
in transplantation [1-5]. In contrast to early post-transplant acute
rejection episodes, which can be effectively treated with stan-
dard immunosuppressors to prevent activation and proliferation of
alloreactive T lymphocytes, chronic rejection cannot be controlled
sufficiently by these immunosuppressive therapies [6-9]. Activa-
tion of the immune system in the chronic setting is likely mediated
through recognition of non-infectious damaged tissues [10-12].
This connection between cell injury and allograft rejection was
proposed many years ago and posits that ischemia-reperfusion
injury and other traumas during transplantation results in death
of allograft cells, which expose intracellular molecules that trig-
ger defensive immune responses in the host [13]. These intra-
cellular molecules are termed damage-associated molecular pat-
terns (DAMPs) and include molecules such as HMGB-1, ATP,
uric acid, DNA, and others, which can in many instances engage
innate immune receptors and promote inflammatory and adaptive
immune responses [14,15].

DAMPs also include actin filaments, which can be recognized
by the DC NK lectin group receptor-1 (DNGR-1, also known as
CLEC9A) [16,17]. DNGR-1 is expressed by a subset of DCs in
lymphoid and non-lymphoid tissues of mouse and human [18-
24] that requires the Batf3 transcription factor for its develop-
ment. The study of Batf3~/~ mice lacking DNGR-1" DCs (known
as cDC1) has revealed that the latter play an essential and non-
redundant role in CD8" T cell responses against cell-associated
antigens such as tumours and allografts, as well as against many
viruses [24-26]. Interestingly, DNGR-1 serves not only as a marker
for the Batf3-dependent ¢cDC1 subset but appears to be required
for its function as DNGR-1-deficient (Clec9a™'~) mice recapitu-
late many of the functional defects of Batf3~/~ mice despite the
fact that their ¢cDCls develop normally. This is likely because
F-actin engagement by DNGR-1 promotes cross-presentation of
dead cell-associated antigens and cross-priming of cytotoxic CD8*
T cells (CTL) [16-19,27-29]. More specifically, F-actin-dependent
DNGR-1 signaling facilitates the process whereby antigens asso-
ciated with dead cell cargo taken up by cDC1 are shuttled into
the MHC class I (MHC I) cross-presentation pathway. The lat-
ter includes the transporter associated with antigen processing 1
(Tap1) complex, which is essential for antigenic peptide transloca-
tion into the ER and, in synergy with other ER chaperones, for load-
ing of the MHC I heavy chain/f-2-microglobulin (32M) light chain
complex [30-37].

Given the link between cell death and immunity to allo-
transplants, the present study aimed to test a possible involve-
ment of DNGR-1 and of ¢DC1 in cross-priming CD8' T cells
against allograft antigens in a model of chronic rejection.
Using a combination of genetic approaches and antibody block-
ade, we report that chronic allograft rejection and fibrosis can
be prevented by inhibition of the DNGR-1 receptor and/or
loss of DNGR-1* DCs. These findings identify DNGR-1 as an
important point of control in immunity to allotransplants that
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could be targeted therapeutically to ameliorate chronic allograft
rejection.

Results

Cell necrosis in cardiac allografts exposes DAMPs and
leads to infiltration by DNGR-1* DCs

To investigate if cardiac allogeneity impacts early immune
responses, BALB/c allografts transplanted into CD4% T cell
depleted C57BL/6 mice, which is a model of chronic allograft
rejection and shows median allograft survival of 27 days, were
evaluated by histology and RNA analysis at early times after trans-
plantation (Fig. 1A). Immunohistochemistry revealed early cell
infiltration, and necrosis of cells within allografts (nucleus loss
in cardiomyocytes, eosinophilic cytoplasms) at day 3 with further
increases at day 5 after transplantation in comparison to syngeneic
grafts (Fig. 1B; Supporting Information Fig. S1A and B). Addi-
tionally, in allografts, expression of death receptor and necrosis
related genes such as TNF, myelin-associated glycoprotein (MAG),
Fas ligand (Fasl), cytochromes, and CD40 was upregulated begin-
ning at day 1 and increasing until day 5 after transplantation
(Supporting Information Fig. S1C) [38-42]. This was accompa-
nied by a higher CD11c¢*DNGR-1" DC infiltration of the allografts
(BALB/c—C57BL/6) in comparison to syngrafts as demonstrated
by double immunofluorescence staining (Fig. 1C and D; p < 0.001;
Supporting Information Fig. S2). In contrast, no difference in
DC subset composition was seen in the spleens of mice trans-
planted with allografts and syngrafts (Supporting Information
Fig. S3).

Comparable to the results in mice, human cardiac allografts
undergoing rejection showed greater leucocytic cell infiltration
and collagen deposition at day 20 after transplantation than
allografts without signs of rejection (Fig. 1E; mouse data, Fig. 3B
and C). Notably, the human samples from rejecting hearts were
infiltrated by CD11c*DNGR-1* DCs whereas these DCs were
absent in human biopsies from healthy transplants (Fig. 1F and G;
p < 0.001).

Graft-infiltrating DNGR-1* c¢DCl1s are of recipient
origin and take up donor fragments

To elucidate if graft-infiltrating DNGR-1" dendritic cells are of
recipient or donor origin, we performed a triple immunofluores-
cence staining for H2 (C57BL/6) and H2¢ (BALB/c) in com-
bination with CD11c and DNGR-1. This staining showed that
graft-infiltrating DNGR-17 DCs are H2" and not H2¢ positive
in immunofluorescence staining and therefore are of C57BL6
recipient origin (Fig. 2A and B). The highest numbers of these
graft-infiltrating DNGR-1" DCs can be found on day 5 after
transplantation with a decrease till day 20 after transplant
(Fig. 2C). At both time points, no H2¢ positive DNGR-1* DCs that
would indicate passenger DCs from BALB/c origin were detected.
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Figure 1. DNGR-1" DCs infiltrate mouse cardiac allografts and human cardiac allografts undergoing chronic rejection. (A) Wild-type (WT) C57BL/6
recipients were transplanted with BALB/c donor hearts (BALB/c — WT C57BL/6, allografts; n = 11) with a median graft survival time of 27 days
which was significantly shorter when compared to syngeneic controls (C57BL/6 — WT C57BL/6, syngrafts; n = 8; p < 0.0001). CD4" T cells were
depleted in all recipients. Further, Clec9a~~ (n = 5; p < 0.01), Batf3~/~ (n = 11; p < 0.001), and a-DNGR-1 (n = 6; p < 0.001) treated C57BL/6 recipients
transplanted with BALB/c donor hearts showed significantly prolonged allograft survival. (B) On day 5, cell infiltration (eosinophilia) and necrosis
of cells within the allografts (nucleus loss in cardiomyocytes) were evaluated in H&E and light microscopy. Scale bar 100 pm, magnification
20x and 100x. (C) Allogeneic (BALB/c — WT C57BL/6) and syngeneic cardiac transplants (C57BL/6 — WT C57BL/6) were analyzed on day 5 post
transplantation. Representative immunofluorescence (IF)-staining shows DNGR-1*CD11c cell (DNGR-1" dendritic cell, DNGR-1* DC) within the
allografts compared to the syngrafts. The double positive cells for DNGR-1 (green) and CD11c (red) are in yellow; nucleus is stained in blue. Scale
bar 50 pm in magnification 40x and Scale bar 10 pm in magnification 200x. (D) Quantification of DNGR-17CD11c/total positive CD11c cells per
high power field (HPF) within the allografts (BALB/c — WT C57BL/6) on day 5 compared to syngrafts (C57BL/6—WT C57BL/6) is depicted (n = 6
per group; shown as mean =+ SD; Student's t-test). Error bars represent mean =+ SD. (E) Paraffin-embedded human heart allografts (Rejection 1, 2,
and No Rejection as control) were obtained. Representative H&E-staining of cell infiltration (upper panel) and Masson’s Trichrome (MT)-staining
of collagen deposition (in blue, lower panel) within the rejection (1, 2) compared to the no rejected allografts are illustrated. Scale bar 100 um,
magnification 20x. (F and G) Representative IF-staining and quantification of DNGR-1* DCs (DNGR-1* CD11c in yellow; nucleus in blue) in the
Rejection (lower panel) compared to the No Rejection groups (upper panel) is illustrated. Scale bar 50 pm, magnification 40x. (A-F) Data are from
two experiments with four to six mice per experiment. Reactive oxygen species, ROS; Tumor necrosis factor, TNF; Myelin-associated glycoprotein,
MAG; Fas ligand, Fasl; cytochromes, Cyba, Cybb; CD40; **p < 0.001; paired Student’s t-test.

However, we were able to depict H2¢ positive BALB/c donor frag-
ments (not DNGR-1 or CD11c positive) in cytoplasm of DNGR-1*
DCs (Fig. 2D).

Absence of DNGR-1 reduces chronic rejection,
allograft fibrosis, and CD8" T cell infiltration

Since DNGR-1* ¢DC1s infiltrated allografts but not syngrafts, we
tested whether genetic abrogation of the DNGR-1 receptor could
prevent chronic allograft rejection and fibrosis. Indeed, Clec9a™'~
recipient mice that are deficient for the DNGR-1 receptor [27]

© 2020 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

showed significantly prolonged allograft survival (p < 0.01;
Fig. 1A), decreased immune cell infiltration and histology rejec-
tion score of allografts compared to WT recipients (p < 0.0001;
Fig. 3A). This was accompanied by a significant reduction of colla-
gen I deposition in allografts both in Masson’s trichrome staining
and PCR (p = 0.0137; Fig. 3B). Further, profibrotic cytokines
such as active TGF-1 (p = 0.0043) and CTGF (p = 0.0040)
were detected at significantly reduced levels in allotransplanted
Clec9a~/~ compared to WT recipient mice (Fig. 3C). These results
were corroborated by immunofluorescent detection of phosphory-
lated Smad3 in allografts transplanted into WT recipient animals
but not into Clec9a~~ mice (Fig. 3D).
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Figure 2. Graft-infiltrating DNGR-1* c¢DCl1s are of recipient origin and take up donor fragments. Wild-type C57BL/6 recipient were transplanted
on day 0 with BALB/c donor hearts (BALB/c — WT C57BL/6, allografts). Grafts harvested on day 5 and day 20 were analyzed to determine the origin
of DNGR-1" DC (DNGR-17CD11c") within the allografts. (A) Representative IF-staining showing recipient origin of DNGR-1* DCs with positivity
for H-2° (H-2°* DNGR-1* DC, in violet, nuclei in blue; (a) higher magnification (x200)) in allografts at day 5 and day 20 after transplantation. Scale
bar 50 um, magnification 40x. (B) Representative IF-staining showing DNGR-1" DCs (DNGR-1" CD11c" in yellow or orange, nuclei in blue; (b)
higher magnification (x200)) with absence of H-29+ (donor BALB/c origin) in allografts at day 5 and day 20 after transplantation. Scale bar 50 pm,
magnification 40x. (C) Quantification (mean + SD; Mann-Whitney U-test) per HPF (graph) of H-2* DNGR-1* DCs (recipient origin) and H-24+
DNGR-1* DCs (donor origin) within the allografts at day 5 (n = 4) compared to day 20 after transplantation (n = 4). (D) Representative IF-staining
showing H-2¢ expressing donor fragments (in magenta; white arrow) surrounded by DNGR-1+ CD11c* DCs (in yellow); allograft was harvested on
day 5. Scale bar 10 um, magnification 200x. (A-D) Data are from two independent experiments with four to six mice per experiment. *p < 0.05;

**p < 0.01; **p < 0.001.

In Clec9a™~ mice, numbers of allograft infiltrating CD8*
T cells were significantly reduced in comparison to WT recipients
or mice receiving syngeneic grafts (p < 0.0001; Fig. 4A). This was
accompanied by a significant reduction of CD8 effector cytokines
IFN-y and IL-33 in the Clec9a~/~ animals (IFN-y p = 0.0151, IL-33
p < 0.0001; Fig. 4B) while trafficking of cDC1s into the allograft
was not impaired (Supporting Information Fig. S4).

Batf3 is necessary for chronic allograft rejection
It is described previously that the development of DNGR-1 express-
ing cDC1s is dependent on the transcription factor Batf3 [24, 25].

Indeed, leucocytic cell infiltration was significantly decreased in

© 2020 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Batf3~/~ mice receiving allografts when compared to WT recipi-
ents (p < 0.0001; Fig. 5A; Supporting Information Fig. S4) and
allograft survival was prolonged significantly (p < 0.001; Fig. 1A).
Absence of Batf3 in recipient mice also prevented collagen deposi-
tion in the allografts as shown both by Masson’s trichrome staining
and PCR (p = 0.0382; Fig. 5B), as well as the induction of profi-
brotic cytokines and activation of Smad3 (p = 0.0132; CTGF p =
0.0352; Fig. 5C and D). As expected, the population of DNGR-1"
¢DC1s infiltrating allografts was significantly reduced in Batf3~/~
mice (Supporting Information Fig. S5A) and was associated with
a paucity of activated CD8" T cells (p < 0.0001; Supporting
Information Fig. S5B) and RT-PCR levels of effector cytokines
(IFN-y p < 0.0001, IL-33 p = 0.0250; Supporting Information
Fig. S5C).
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Figure 3. DNGR-1 deficiency in recipient mice prevents chronic rejection of cardiac allografts and fibrosis. Wild-type (WT) and DNGR-1 deficient
(Clec9a~/~) C57BL/6 recipients were transplanted on day 0 with BALB/c donor hearts (BALB/c — WT C57BL/6 and BALB/c — Clec9a~/~ C57BL/6,
allogeneic transplants). Control C57BL/6 recipient were transplanted with C57BL/6 donor hearts (C57BL/6 — WT C57BL/6, syngeneic transplants).
Recipient mice were depleted of CD4" T cells with anti-CD4 antibody, i.p. (1 mg/mouse) on days -1, 0, and 7 and mice were analyzed on day 20
(n = 5-10 per group). (A) Representative H&E-staining of cell infiltration within the allografts and histology score of the allogeneic transplants
into the Clec9a”~ C57BL/6 recipients compared to the transplants into WT C57BL/6 recipients and syngeneic transplants. Scale bar 100 pm in 20x
magnification and Scale bar 50 pm in 40x magnification. (B) Masson's Trichrome-staining shows collagen deposition (in blue) within the allografts
into Clec9a’~ C57BL/6 compared to the WT C57BL/6 recipients or syngrafts. Collagen mRNA expression within the allografts into Clec9a”~ C57BL/6
compared to WT C57BL/6 recipients is depicted (graph; n = 6 per group). Scale bar 100 pm in 20x magnification and Scale bar 50 pm in 40x
magnification. (C) Determination of active TGF-p; and CTGF mRNA expression within the allogeneic transplants into Clec9a”~ C57BL/6 compared
to WT C57BL/6 recipients or syngrafts are illustrated (n = 6 per group). (D) Representative IF -staining of phosphorylated smad3 (Phospho-Smad3,
in red) within the allografts into Clec9a’~ C57BL/6 compared to WT C57BL/6 is depicted. Scale bar 50 pum, magnification 40x. (A-D) Data are from
two independent experiments and are shown as mean + SD and unpaired one-tailed Student’s t-test was applied to compare two groups. *P < 0.05.

Selective apoptosis and DNGR1~" reduces CD8* T cell
allorecognition and allograft rejection

To formally assess the CD8 T cell alloimmune response within
our model in vivo, we performed additional experiments with
cytochrome C injection of recipient mice. In previous functional
studies, both in vivo and in vitro it has been shown that cytochrome
c profoundly abrogates OVA-specific CD8 T cell proliferation
through its apoptosis-inducing effect on cross-presenting DCs

© 2020 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

[43]. In these experiments, in vivo injection of cytochrome C
abolished the induction of cytotoxic T lymphocytes to exogenous
antigen and reduced subsequent immunity to tumor challenge.
Importantly, this model allows assessment of cross-presentation
that is totally in vivo that is ideal for our setting of alloimmunity
in transplantation [43].

In detail, we injected C57BL/6 recipient mice that were trans-
planted with BALB/c hearts with three dosages of cytochrome C
and analyzed analogous to our original experiments.
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Figure 4. DNGR-1 deficiency in recipient mice prevents infiltration by CD8" T cells. Infiltration by CD8" T cells and effector cytokine expression
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C57BL/6 compared to WT C57BL/6 recipients or syngeneic transplants (n = 5-10 per group). Scale bar 100 pm in 20x magnification and Scale bar
50 um in 40x magnification. (B) Quantification of mRNA expression (normalized against housekeeping gene B-actin)of effector cytokines (IFN-y
and IL-33) within the allogeneic transplants into Clec9a’~ C57BL/6 compared to WT C57BL/6 recipients (n = 5-10 per group). (A and B) Data are
from two independent experiments and are shown as mean =+ SD and unpaired one-tailed Student’s t-test was applied to compare two groups.

*p < 0.05.

Cytochrome C injected recipient mice showed significantly
decreased immune cell infiltration and histology rejection
score of allografts compared to WT recipients (p = 0.0055;
Supporting Information Fig. S6A). This was accompanied by a
significant reduction of collagen I deposition in allografts both
in Masson’s trichrome staining and PCR (p = 0.0152; Supporting
Information Fig. S6B) and also reduced CTGF levels (p =
0.0260; Supporting Information Fig. S6C). These results were
corroborated by immunofluorescent detection of phosphorylated
Smad3 in allografts transplanted into WT recipient animals but
not into cytochrome c injected mice (Supporting Information
Fig. S6D).

Further the numbers of DNGR-1" ¢DCls infiltrating allografts
were significantly reduced in cytochrome C-treated mice (p =
0.0116; Fig. 6A) and was associated with decreased numbers of

© 2020 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

activated CD8™ T cells (p = 0.0097; Fig. 6B). CD8™ T cells isolated
out of allografts transplanted into cytochrome C-treated recipient
mice, showed significant reduced production of CD8 T effector
cytokines IFN-y, TNF-a (and IL-2, IL-4, IL-13, and also the cyto-
toxic marker perforine 1; data not shown; all p < 0.05; Fig. 6C).
Further, IFN-y response by CD8™ T cells in an indirect pathway
Elispot was significantly decreased in Clec9a~'~ compared to WT
recipient mice (p = 0.0283; Fig. 6D).

Additionally, in all our experimental groups that show reduced
allograft rejection due to either reduced BATF3 dependent DCs
or impaired DNGR-1 receptor function (Cleac9a~~ and DNGR-1
antibody treated mice) reduced IFN-y levels were detected. This
altogether underlines that indeed DNGR-1* DCs cross-prime CD8™
T cells and that these primed CD8 T cell effector responses con-
tribute to allograft rejection and fibrosis.
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Figure 5. Batf3 deficiency in recipients reduces fibrosis and chronic rejection of allografts. Wild-type and Baft3~/~ C57BL/6 recipients were
transplanted with BALB/c donor hearts (BALB/c — WT C57BL/6 or Baft3~/~ C57BL/6, allogeneic) and with C57BL/6 donor hearts (C57BL/6 — WT
C57BL, syngeneic) and analyzed on day 20 (n = 5-8 per group). All recipients were depleted of CD4" T cells. (A) H&E staining shows cell infiltration
within the allografts and histology score of allografts of the Batf3~/~ C57BL/6 compared to WT C57BL/6 recipients or syngraft groups. Scale bar
100 pm in 20x magnification and Scale bar 50 pm in 40x magnification. (B) Deposition in MT (in blue) and mRNA expression (normalized against
housekeeping gene p-actin) of collagen within the allografts of Batf3 deficient compared to WT recipient or syngeneic transplants are depicted.
Scale bar 100 pm in 20x magnification and Scale bar 50 um in 40x magnification. (C) Levels of active TGF-p; and mRNA expression of CTGF within
the allografts of Batf3~/~ C57BL/6 compared to the WT groups and syngrafts are shown. (D) Immunofluorescence-staining of Phospho-smad3 (red,
nucleus in blue) in allografts of the Batf3~/~ C57BL/6 compared to WT recipients is shown. Scale bar 50 um, magnification 40x. (A-D) Data are

from two independent experiments and are shown as mean =+ SD and unpaired one-tailed Student’s t-test was applied to compare two groups.
*
p < 0.05.

Blockade of DNGR-1 receptor prevents chronic

reduced numbers of allograft-infiltrating cells (p = 0.0003; Fig.
allograft rejection and fibrosis

7A) and collagen I deposition into allografts (P = 0.0273; Fig. 7B).

Similar to genetic disruption of Clec9a, the profibrotic cytokines
Finally, blockade of DNGR-1 with specific mAb was tested for the =~ were significantly reduced in mAb treated compared to the con-

ability to phenocopy genetic loss in allograft recipients and dimin-  trol group (active TGF-B; p = 0.0035; CTGF p = 0.0267; Fig. 7C).
ish chronic allograft rejection and fibrosis. Notably, mAb treatment ~ Further, mAb treatment significantly reduced the infiltration of
significant prolonged allograft survival (p < 0.0001; Fig. 1A), allografts by CD8" T cells (p = 0.0006; Fig. 7D), as well as the

© 2020 The Authors. European Journal of Immunology published by www.eji-journal.eu
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Figure 6. Selective apoptosis and DNGR1~/" in cross-presenting cDC1s reduces indirect CD8* T cell allorecognition and effector cytokine produc-
tion. Wild-type C57BL/6 depleted of CD4* T cells and treated with cytochrome C (Cyt C) (5 mg/mouse in PBS) on days -1, 2, and 7 relative to the
day of transplantation (day 0), were transplanted with BALB/c donor hearts (BALB/c — WT C57BL/6 + Cyt C) and analyzed on day 20 after trans-
plantation (n = 5 per group). Allogeneic groups with BALB/c — WT C57BL/6 + PBS were used as control. (A) Representative IF-staining of DNGR-1"
DC (DNGR-1* CD11c" in yellow, the nucleus is stained in blue) and their quantification (DNGR-1* DC/total CD11c positive cells (in red) per HPF
within the allografts of Cyt C treated compared to PBS control groups is depicted. Scale bar 50 um, magnification 40x. (B) Immunohistochemical
staining showing CD8* T cells (positive cells are in brown) and their quantification per HPF within the Cyt C compared to PBS-treated allogeneic
transplants. Scale bar 100 pm in 20x magnification and Scale bar 50 pm in 40x magnification. (C) Determination of mRNA expression (normalized
against housekeeping gene p-actin) of CD8 T effector cytokines IFN-y and TNF-a within the allografts of Cyt C treated recipients compared to PBS
control groups. (D) Indirect pathway IFN-y Elispot: CD11c* cells were isolated from spleens of WT and DNGR-1~/~ C57BL/6 recipient mice and
loaded with alloantigen from allografts (BALB/c—C57BL/6, day 5 post transplantation). Splenic C57BL/6 CD8" T cells were co-incubated for 3 days.
Number of spots (IFN-y expressing cells) per well are compared between WT and DNGR-1~/~ group. WT alone group (only C57BL/6 CD8* T cells)
was used as negative control. (A-D) Data are from two independent experiments and are shown as mean + SD and Mann-Whitney U-test was
applied to compare two groups. *p < 0.05; *p < 0.01.

induction of rejection-associated cytokines (IFN-y p = 0.0002, IL-  Discussion

33 p = 0.0393; Fig. 7E).

We corroborated these results in the fully immunocompetent
Bm12—C57BL/6 heart transplantation model. In this model, tem-
porary CD4" T cell depletion is not necessary to induce chronic
allograft rejection and fibrotic organ remodeling. Antibody

A transplanted organ experiences various traumas, from phys-
ical manipulation to varying oxygen tension, that can cause
death of graft cells and consequently cause release of DAMPs
[15,44]. DAMPs have been proposed to contribute to the inordi-

blockade of DNGR-1 also resulted in reduction of chronic
rejection and fibrosis, similar to the extent seen in the BALB/c
into C57BL/6 with CD4" T cell depletion model (Supporting
Information Fig. S7TA-E). Therefore, DNGR-1 blockade is a useful
means of ameliorating chronic rejection in two mouse models of
allotransplantation.

© 2020 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

nate immunogenicity of allografts through engagement of DAMP
receptors on host immune cells but the mechanisms involved
remain unclear [12,15]. Here, we establish a connection between
DAMP recognition and chronic CD8" T cell-mediated responses
leading to cardiac allograft fibrosis. We show that a subset of spe-
cialized DCs with a superior capacity to cross-prime CD8* T cells,
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Figure 7. Blockade of DNGR-1 prevents fibrosis and chronic cardiac allograft rejection in BALB/c — C57BL/6 model. Wild-type C57BL/6 depleted of
CD4" T cells and treated with anti-DNGR-1 monoclonal antibody, mAb (100 pgi.p. in PBS), or IgG1 as control, on days 0, 3, 10, and 17 relative to the
day of transplantation (day 0) were transplanted with BALB/c donor hearts (BALB/c — WT C57BL/6 + a-DNGR-1) and analyzed on day 20 (n = 5 per
group). Allogeneic groups with BALB/c — WT C57BL/6 + IgG were used as control. (A) Representative H&E-staining of cell infiltration and histology
score (graph on the right) of the allografts transplanted into anti-DNGR-1-treated recipients compared to the isotype control groups are illustrated.
Scale bar 100 pm in 20x magnification and Scale bar 50 pm in 40x magnification. (B) Representative MT-staining of collagen deposition (in blue)
and quantification of mRNA expression (normalized against housekeeping gene p-actin) of collagen (graph) within the allografts transplanted into
anti-DNGR-1-treated recipient compared to the group that received IgG are shown. Scale bar 100 um in 20x magnification and Scale bar 50 um in
40x magnification. (C) Quantification of active TGF-p1 and mRNA expression of CTGF within the allografts transplanted into anti-DNGR-1-treated
recipients compared to the IgG groups. (D) Immunohistochemical staining showing CD8* T cells (positive cells are in brown) and their quantification
per HPF (graph) within the anti-DNGR-1 treated compared to isotype treated allogeneic transplants. Scale bar 100 pm in 20x magnification and
Scale bar 50 pm in 40x magnification. (E) Determination of mRNA (normalized against housekeeping gene p-actin) expression of effector cytokine
(IFN-y and IL-33) within the allografts transplanted into anti-DNGR-1 treated recipient compared to control group that received IgG. (A-E) Data are

from two independent experiments and are shown as mean =+ SD and Mann-Whitney U-test was applied to compare two groups. *p < 0.05.

cDCls, is absolutely crucial for CD8" T cell-mediated allograft
rejection. Importantly, we further reveal a critical role for the
DAMP receptor, DNGR-1, expressed by the ¢cDC1 subset in medi-
ating this rejection and show that blockade of this receptor con-
tributes to allograft acceptance. Our findings help illuminate the
immune mechanisms involved in allograft rejection and highlight
how increased understanding of such processes can suggest poten-
tial avenues for therapeutic intervention.

Allograft rejection is the result of a complex interplay of mech-
anisms and factors [5]. Rejection episodes are mainly driven by
CD4" Thl cells that produce IFN-y and TNF [45,46]. In the
absence of a Thl-mediated alloimmune responses, CD4* Th17
cells can also drive a pro-inflammatory response that accelerates
chronic allograft rejection with IL-17A as a key cytokine [47]. In

© 2020 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

this study, we utilized depletion of CD4™ cells to reveal an impor-
tant yet underappreciated role also for CD8" T cells in the devel-
opment of chronic organ rejection [48-50]. The fact that CD8™
T cells can contribute to such rejection highlights their impor-
tance as potential targets in immunotherapies aimed at provoking
long-term graft acceptance.

The most straightforward interpretation of our experiments is
that DNGR-17" ¢DC1s infiltrate allogeneic grafts and acquire allo-
graft antigens. Some of those cDC1 then migrate to draining lymph
nodes where they cross-present the graft antigens on MHC class I
and cross-prime CD8" T cells. The primed T cells can then home
to the graft and produce effector cytokines such as IFN-y and
IL-33. As a consequence, active TGF-$; and CTGF are induced
locally and lead to allograft fibrosis. The conundrum is that,
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leaving aside the possibility of cross-dressing [51], the primed
CD8™ T cells are restricted by host MHC and, therefore, cannot be
restimulated directly by allograft cells. It is possible, therefore, that
they are restimulated within the graft once again by cDC1 locally
cross-presenting alloantigens, which would reinforce the observed
dependence on that DC subtype and on the DNGR-1 receptor. An
analogous role for ¢cDC1 has been proposed in tumor immunity
whereby ¢DC1 prime an antitumor CD8* T cell response in tumor
draining lymph nodes but also restimulate effector CD8" T cells
within the tumor itself [52-54]. The fact that CD8" T cells would
utilize the indirect presentation pathway to respond to alloanti-
gens within grafts may also explain why their primary contribu-
tion in this setting appears to be production of cytokines leading to
fibrosis rather than direct acute destruction of allograft cell targets
as the latter cannot be directly recognized.

DAMP release and inflammation due to transplantation should
be the same in syn- and allografts yet, in our study, cDC1 accu-
mulated to a much greater extent in allografts than in syngeneic
grafts. One point that remains unclear is why and how allogeneity
is detected at these early time points to control accumulation of
¢DCl1s. Early accumulation of alloreactive T-cells could be involved
and those cells could produce chemokines such as XCL1/2 that
attract cDC1 in a positive feedback cycle [55,56]. However, we
saw no difference in cDC1 accumulation in allografts transplanted
into mice lacking CD8" T cells (data not shown). Alternatively,
allogeneic determinants might be recognized early after trans-
plantation not by T cells but by host NK cells that produce XCL1/2
and CCLS5 to recruit cDC1 into grafts as recently demonstrated for
tumors [57]. Further experimentation will be necessary to assess
these possibilities.

In summary, our experiments suggest that immune activation
leading to chronic allograft rejection and fibrosis can be triggered
by DAMPs, including F-actin, that are detected by graft-infiltrating
host cells. F-actin is recognized by DNGR-1, a receptor that is
expressed on c¢DC1s that develop under the control of the tran-
scription factor Batf3. DNGR-1 is a universal marker of mouse
and human cDC1s in lymphoid and non-lymphoid tissues [18-
22,24] and targeting antigens to DNGR-1 receptor has been used
to induce specific immune responses in vaccination modalities
[18,58,59]. In this current study, antibodies to DNGR-1 were used
instead to block the receptor and shown to be effective at prevent-
ing chronic graft rejection in two different mouse heart transplan-
tation model. These experiments suggest that antibody blockade
of DNGR-1 can prevent the immune cascade leading to chronic
allograft rejection and fibrosis and could therefore be exploited in
humans in a therapeutic setting.

Materials and methods
Mice

Eight to 10 weeks (w) old female BALB/c (H-29) and Bm12
(H2-Ab1P™m12) a5 donors and 12-14 weeks old WT and deficient

© 2020 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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(-/-) Batf3™kmm/J (Batf37-) and Clec9a™!1¢"s/J (Clec9a”") recip-
ient female mice on C57BL/6 (H-2P) background were purchased
from Jackson Laboratory (Bar Harbor ME, USA). Mice were then
bred in the animal facility of the Department of Surgery (Univer-
sity Medical Center Regensburg, Germany). All mice were housed
under pathogen-free conditions and handled according to the local
institutional guidelines. The experiments were approved by the
local animal committee (TVA DMS-2532-2-102).

Heterotopic heart transplantation

Cardiac allografts from donors BALB/c and Bm12 mice were
heterotopically transplanted into WT and C57BL/67" as previ-
ously established by Corry et al. and adapted in our laboratory
[2,5,60,48]. Donor hearts were perfused through the abdominal
vena cava with 3 mL of cold 0.9% saline containing 500 IE hep-
arin (Ratiopharm, Ulm, Germany) then harvested and placed in
4°C saline until transplantation. Abdominal palpation was regu-
larly carried out to ensure the beating of the allograft. Functioning
hearts were then harvested for analyses. In the BALB/c—C57BL/6
model transient CD4" T cell-depletion was used for generation
of chronic allograft rejection [48-50]. This model further allows
investigation of allograft rejection in absence of CD4* T cells. The
Bm12—C57BL/6 model is a fully immunocompetent model also
with the development of chronic allograft rejection.

Human samples

Chronic rejected and control human cardiac graft specimens were
obtained from surgical biopsies (Department of Cardiac Surgery,
Bad Oeynhausen, Germany). The paraffin-embedded tissue sam-
ples were sectioned at 3-4 pm. This was approved by the local
ethics committee.

Antibody treatment

CD4% T cell depletion in vivo: Recipient mice were injected
intraperitoneally (i.p.; 1 mg/mouse) on day -1, 0, and 7 relative
to day of transplantation (day 0) with rat anti-mouse CD4 mono-
clonal antibody, mAb (IgG2b, clone GK 1.5; Bioxcell, Cologne, Ger-
many) to transiently deplete CD4™ T cells as previously described
[61].

DNGR-1 antibody blocking in vivo: Rat anti-mouse DNGR-1
(7H11) mAD has been described [18, 27]. Recipient mice received
100 g of mAD i.p. in PBS or, as control, only PBS on day 0, 3, 10,
and 17 after transplantation.

Cytochrome C depletion in vivo: Cytochrome C (Cyt C)
is known to be able to induce an Apaf-1-dependent apopto-
sis selectively in cross-presenting DCs (https://doi.org/10.1073/
pnas.0712394105). Horse heart Cyt C (C2506, Sigma, St. Louis,
MO) was dissolved in PBS at 20-50 mg/mlL ant stocked at -
20°C. All treatments of recipient mice were performed in vivo
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and consisted of 5 mg doses of Cyt C in PBS administered intra-
venously (i.v.) on day 1 prior heart transplantation then subcuta-
neously (s.c.) on day 2 and 7 post heart transplantation. Recipient
receiving only PBS solution (100 pL/mouse) were used as control
groups.

Cardiac cell isolation

Cells were isolated from cardiac grafts as previously described
[48]. Briefly, tissue was minced with scalpels in the presence of
sterile RPMI 1640 medium containing 10% FCS, 600 U/ml colla-
genase II (Roche Diagnostics, Mannheim, Germany) and deoxyri-
bonuclease I (DNAse, from bovine pancreas; Sigma, Munich, Ger-
many). The mixture was slowly shaken at room temperature (RT)
for 2 h. The supernatant (SN) was obtained and filtered through a
100-pm-nylon cell strainer. Remaining tissue was again digested
in 5 mL of same solution at 37°C and then strained. Filtered mate-
rial was centrifuged and red blood cells were lysed with ACK
lysis buffer (BioWhittacker, Lonza, MD, USA). The pellet contain-
ing cells was passed through a 40-pm-nylon cell strainer. For the
CD8™ T cell isolation, negative selection procedure was performed
as recommended by manufacturer (MACS, Miltenyi Biotec: mouse
CD8a™ T Cell Isolation Kit). After elution of MicroBeads conju-
gated cells through magnetic MACS LS column, the fraction con-
taining CD8™ T cells was recovered and washed by centrifugation.

Histology and immunohistochemistry

Formalin-fixed and paraffin-embedded (mouse and human)
or frozen (mouse) cardiac graft specimens were prepared and
sectioned (3—4 pm). For hematoxylin and eosin staining, paraffin-
embedded sections were deparaffinized and fixed successively in
Roti and ethanol solutions. Slides were washed with water and
stained in hematoxylin for 13 s, washed again, and immersed
in eosin for 24 min. Slides were returned with washing to the
fixation buffers beginning from ethanol to roti and mounted with
Roti" -Histokitt mounting medium (Carl Roth GmbH + Co. KG,
Karlsruhe, Germany) for microscopy. For immunohistochemistry
(IHC), after deparaffinization and fixation (immersion into Roti
and ethanol for paraffin-embedded and in methanol-ethanol
solution for frozen sections), slides were blocked with PBS+20%
goat serum (Sigma-Aldrich, St Louis, MO, USA) for 20 min
at RT. After incubation overnight (O/N) in humid chamber at
4°C, slides were stained with monoclonal rat anti-mouse CD8a
antibody (Ab25478; Abcam, Cambridge, UK; dilution 1:50) in
PBS + 1% goat serum (GS). After washing with PBS, slides
were stained with the secondary goat anti-rat-Fab2 (sc-3822;
Santa Cruz Biotechnology, Heidelberg, Germany) for 1 h at RT
in PBS+ 1% GS. Then, sections were incubated with SensiTek
HRP solution (ScyTec Laboratories, Logan, UT, USA) and positive
signals were visualized using an AEC+ High Sensitivity Substrate
Chromogen kit (Dako, Hamburg, Germany). Slides were finally
mounted using Aquatex® aqueous mounting agent (Merck

© 2020 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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KGaA, Darmstadt, Germany) and images were taken with Axio
Observer Z1 microscope (Carl Zeiss, Oberkochen, Germany). For
the evaluation of cardiac allograft rejection, the revised 2004
ISHLT grading system was used [23]. Graft-infiltrating CD8"
cells were manually counted using ImagelJ software version 1.48
(http://imagej.nih.gov/ij), in ten high power fields (HPFs) at
20x magnification. For analysis, at least 10 high-power fields
(HPF) were selected per slide. All results are presented as
the mean + SEM and all analysis was performed in a blinded
fashion.

Immunofluorescence

Slides were stained as described in immunohistochemistry section
until primary Ab step. The primary antibodies: Armenian Hamster
monoclonal antibody (ab119342: Abcam, Cambridge, UK) against
CD11c (mouse and human), Rat purified IgG1 (BioLegend, Fell,
Germany) against DNGR-1 (mouse), Mouse purified IgG1 (BioLe-
gend) against DNGR-1 (human), and rabbit monoclonal antibody
(ab52903) against phosphorolysed Smads3, Phospho-Smad3
(mouse and human) were used (at dilution 1:50 in PBS+ 1% goat
serum) and samples were incubated O/N at 4°C. Secondary (Cy2
or Cy3) conjugated goat anti-rabbit, goat anti-rat, goat ant-mouse,
or goat anti-Armenian Hamster IgG were used for detection. For
the H-2b and H-2d positive cells detection, primary antibodies PE-
conjugated anti-mouse H-2b (eBioscience, clone: AF6-88-5.5.3)
and anti-mouse H-2d (BioLegend, clone: SF1-1.1) were used
at dilution 1:150. Polyclonal rabbit anti-PE (Novus Biologicals)
as secondary antibody was used at dilution 1:150, then Cy5
conjugated goat anti-rabbit (Dianova) was used for the detection.
DNA was labelled with 4’,6-Diamidino-2-Phenylindole, Dihy-
drochloride (DAPI; dilution 1:2000-5000 in PBS+1% goat serum)
for 2-3 min. Reaction was stopped using distilled water and
slides were mounted with Fluorescence Mounting Medium (Dako,
Hamburg, Germany). Images were taken using an Axio Visio
microscope (Carl Zeiss, Oberkochen, Germany). For the analysis,
at least 10 high-power fields were selected per slide in a blinded
fashion.

Masson’s trichrome staining

Formalin-fixed and paraffin-embedded graft tissue samples
(mouse and human) were deparaffinized and fixed as described
above in H&E staining. To improve staining quality, sections were
fixed in a Bouin’s solution (Sigma-Aldrich) for 30 min at 56°C.
Successively, slides were stained for 10-15 min in Weigert’s iron
hematoxylin working solution, Biebrich scarlet-acid fuchsin and
differentiated in phosphomolybdic-phosphotungstic acid solution
(Sigma-Aldrich) for each solution. Then, slides were transferred
into aniline blue solution (Sigma-Aldrich) and briefly differenti-
ated in 1% acetic acid. After returning to the ethanol and Roti solu-
tion, slides were mounted with Roti" -Histokitt mounting medium
and observed using Axio Visio microscope.
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Flow cytometry (FACS)

After collagenase digestion of harvested grafts and production
of a single-cell solution graft-infiltrating cells were stained using
fluorochrome-conjugated mouse-specific antibodies (all Abs were
from eBioscience, Frankfurt, Germany). Data were acquired using
a FACS Canto II flow cytometer (BD, Heidelberg, Germany) and
analyzed using FlowJo software (version 8.8.6) in adherence
to Guidelines for the use of flow cytometry and cell sorting in
immunological studies [62]

RNA isolation, RT-PCR, and PCR array

Total RNA was extracted from whole allografts or isolated CD8"
T cells using the RNeasy Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. One microgram of
total RNA was reverse transcribed using the AffinityScriptTM
QPCR cDNA Synthesis Kit (Aiglent Technologies, Boblingen,
Germany). Quantitative Real-time PCR (qRT-PCR) assay was
performed to quantify collagen 1, CTGF, TGF-1, IFN-y, and
IL-33 expression using the QuantiTect SYBR Green PCR Kit
(Qiagen GmbH, Hilden, Germany) and the Roche LightCy-
cler480 System. The following primer sequences were used:
forward (sense) 5-TGTTCAGCTTTGTGGACCTC-3’, reverse
(anti-sense) 5-TCAAGCATACCTCGGGTTTC-3’ (mouse collagen,
procollagen 1a); forward 5 AGAGGGAAATCGTGCGTGAC-

3, reverse 5-CAATAGTGATGACCTGGCCGT-3' (mouse B-

actin); forward 5-TTGCTTCAGCTCCACAGAGA-3’, reverse
3’ TGGTTGTAGAGGGCAAGGAC-5 (mouse TGF-f1); for-
ward 5-GGAAAACATTAAGAAGGGAAAA-3, reverse 3-
CCGCAGAACTTAGCCCTGTA-5 (mouse CTGEF); For-
ward 5’-ACTGGCAAAGGATGGTGAC-3", Reverse 3
CTCCAGTTGTTGGGTGTCCA-5" mouse IFN-y); and For-

ward 5 CACATTGAGCATCCAAGGAA-3, Reverse 5
AACAGATTGGTCATTGTATGTACTCAG-3’ (mouse 1L-33).
Relative gene expression was determined using the 2-2¢T
method (normalized to the mean of the expression level for the
housekeeper B-actin). Mouse Necrosis/apoptosis related-gene
expression was evaluated using a mouse Necrosis RT? Profiler PCR
Array kit (SA Biosciences, Hilden, Germany) using LightCycler
480 Real-Time PCR System (Roche). Mean of triplicated well
values and fold change in expression relative to control were
considered for each sample.

Indirect pathway IFN-y-Elispot

WT and Clec9a~'~ recipient‘'s APCs were isolated using mouse
CD11c MicroBeads UltraPure isolation kit (Miltenyi Biotec, Ber-
gisch Gladbach, Germany) and loaded for 3 day in cultures
with 500 pg/mL of alloantigen. Alloantigen (protein lysate)
was isolated after sonication in PBS 1x solution of allografts
(Balb/c—C57BL/6) harvested on day 5 after heart transplan-
tation. Protein concentration in the lysate was measured using
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WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Eur. J. Immunol. 2020. 50: 2041-2054

Bradford protein assay (B6916, Sigma-Aldrich). Note that
200 pL/well of culture medium containing 300 000 of CD11c"
DCs and 500 pg/mL of alloantigen was added and incubated
for 3 days at 37°C and 5% CO,. Then, splenic C57BL/6 WT
CD8* T cells were isolated using mouse CD8a™ T cell isolation
Kit (Miltenyi Biotec). Elispot was performed using a MB Multi-
screen PVDF plate (MAIPS4510, Millipore). Plates were pre-coated
with an IFN-y antibody (3321-2A, Mabtech) for 2 h at 37°C
and 5% CO,. Antigen-loaded DCs (as stimulators) were added
to the plates with splenic C57BL/6 WT CD8" T cells (as effec-
tors) at a ratio of 50 000:150 000 and incubated for 3 days at
37°C and 5% CO,. Following removal of the cells and washing of
the plate wells, biotinylated specific detection antibodies (3321-
2A, R4-6A2, Mabtech) were added to the wells. The resulting
antibody complex was thus detected by addition of Streptavidin-
ALP-labeled conjugate (3321-2A, Mabtech) and 1-Step NBT/BCIP
substrate solution (34042, ThermoFisher Scientific). Spots were
counted with a specific Elispot reader (EliSpot Robotic System
ELROBO5i, AID Advanced Imaging Devices GmbH Stralberg).

Statistics

All groups are shown as mean + SD of the mean and were com-
pared using a one-tailed Student's t-test or Mann-Whitney U-test
(GraphPad Prism, version 5.00). The log-rank test was used to
compare graft survival between the groups. Difference among
groups was considered statistically significant (*) if p was < 0.05.
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