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Abstract
Objective: To investigate SNPs in bone- and cartilage-related genes and their inter-
action in the aetiology of sagittal and vertical skeletal malocclusions.
Settings and sample population: This study included 143 patients and classified as 
follows: skeletal class I (n = 77), class II (n = 47) and class III (n = 19); maxillary retru-
sion (n = 39), protrusion (n = 52) and well-positioned maxilla (n = 52); mandibular 
retrognathism (n = 50), prognathism (n = 50) and well-positioned mandible (n = 43); 
normofacial (n = 72), dolichofacial (n = 55) and brachyfacial (n = 16).
Materials and methods: Steiner's ANB, SNA, SNB angles and Ricketts’ NBa-PtGn angle 
were measured to determine the skeletal malocclusion and the vertical pattern. Nine SNPs 
in BMP2, BMP4, SMAD6, RUNX2, WNT3A and WNT11 were genotyped. Chi-squared test 
was used to compare genotypes among the groups. Multifactor dimensionality reduction 
(MDR) and binary logistic regression analysis, both using gender and age as co-variables, 
were also used. We performed Bonferroni correction for multiple testing.
Results: Significant associations at P < .05 were observed for SNPs rs1005464 
(P = .042) and rs235768 (P = .021) in BMP2 with mandibular retrognathism and for 
rs59983488 (RUNX2) with maxillary protrusion (P = .04) as well as for rs708111 
(WNT3A) with skeletal class III (P = .02; dominant model), rs1533767 (WNT11) with a 
brachyfacial skeletal pattern (P = .01, OR = 0.10; dominant model) and for rs3934908 
(SMAD6) with prognathism (P = .02; recessive model). After the Bonferroni correc-
tion, none of the SNPs remained associated. The MDR predicted some interaction for 
skeletal class II, dolichofacial and brachyfacial phenotypes.
Conclusion: Our results suggest that SNPs in BMP2, BMP4, SMAD6, RUNX2, WNT3A 
and WNT11 could be involved in the aetiology of sagittal and vertical malocclusions.
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1  | INTRODUC TION

Skeletal malocclusions are complex craniofacial growth and develop-
mental problems.1 They are a set of human craniofacial morphologic 
characteristics that either exceed or exhibit deficiency of maxillary 
and mandibular dimensions, resulting in an improper relationship of 
the jaws that distorts the balance of the face.2 Evidence gained espe-
cially from family and twin studies has demonstrated that genetic fac-
tors are strongly involved in the aetiology of skeletal malocclusions3,4

Genes encoding proteins involved in bone and cartilage biology 
and skeletogenesis are candidate for skeletal malocclusions. The 
Bone Morphogenetic Protein (BMP) family is the largest subfam-
ily of the structurally conserved transforming growth factor-beta 
(TGF-β) superfamily. BMPs are multi-functional growth factors that 
regulate the development, proliferation and differentiation5,6 of 
mature osteoprogenitor cells into osteoblasts.6 A review including 
several studies has shown the involvement of BMP2 in bone forma-
tion,5 and BMP4 is involved in cell differentiation during skeletogen-
esis.7 BMPs are also among the key pathways regulating craniofacial 
development and facial patterning. They regulate postnatal cra-
niofacial growth and are associated with dental structures.5 BMPs 
are involved during cartilaginous development, as are SMADs.7,8 
SMADs are important signalling pathway proteins that regulate the 
transcription of TGF-β superfamily genes. SMAD6 inhibits BMP sig-
nalling by interacting with transcription repressors.9

RUNX2 (Runt-related transcription factor) is a key transcription fac-
tor associated with osteoblast differentiation and is considered a master 
regulator of skeletogenesis. RUNX2 is essential for the differentiation of 
pluripotent mesenchymal cells into osteoblasts, but also acts in mature 
osteoblasts maintaining the expression of bone matrix protein genes.10 
RUNX2 is expressed in different craniofacial tissues such as cartilage 
during the proliferation and maturation of chondrocytes.10,11 Wnt sig-
nalling, one of the key cascades regulating development, is involved in 
important aspects of organogenesis such as control of cell polarity, fate 
and migration,12 during cartilage and bone development, repair and re-
generation.13 The expression of Wnt signalling pathway genes during 
craniofacial development has been extensively investigated.14

Genetic factors are involved in the aetiology of skeletal maloc-
clusions and in vertical, sagittal, and transverse interrelationships of 
the dental arches.2 Single-nucleotide polymorphisms (SNPs) are the 
most frequent variations in the human genome. SNPs in many genes 
were associated with different skeletal malocclusion phenotypes in 
different populations.15-22 Therefore, in this study we investigated 
SNPs in bone- and cartilage-related genes in the aetiology of sagittal 
and vertical skeletal malocclusions.

2  | MATERIAL S AND METHODS

2.1 | Sample

The Human Ethics Committee of the (identifying information) 
approved this study. Informed consent was obtained from all 

patients/children and/or their parents/legal guardians (in the case 
of minors).

Following the Strengthening the Reporting of Genetic 
Association study (STREGA) statement checklist,23 we evaluated 
genomic DNA (gDNA) extracted from saliva samples and pre-treat-
ment lateral cephalograms from self-reported Caucasians as pre-
viously described.15 All the included patients were enrolled in the 
orthodontic treatment at the (identifying information).

Biologically unrelated patients with no underlying syndromes 
nor congenital alterations and those without previous orthodontic 
and/or orthopaedic treatments were consecutively included in this 
study from 2015 to 2017. All patients that met the inclusion criteria 
were invited to participate in the study. Among 146 assessed indi-
viduals, one oral cleft patient and two patients, whose siblings were 
already included in the study, were excluded, yielding a total of 143 
included patients.

2.2 | Phenotypes definition

Pre-orthodontic lateral cephalograms with the mandible in centric 
relationship were used, and digital cephalometric tracings per-
formed by a calibrated orthodontist using the software Dolphin 
Imaging version 8.0 (Dolphin Imaging, Chatsworth, CA, USA).16 
Steiner's ANB, SNA, SNB angles and Ricketts’ NBa-PtGn angle 
were measured to determine the sagittal skeletal jaw relationship 
(skeletal malocclusion) and the vertical pattern. The following land-
marks were used for cephalometric analysis: point A, point B, sella 
(S) and nasion (N). Sagittal skeletal discrepancies were assessed 
using angular measurements: SNA (sella, nasion and subspinale 
point A), SNB (sella, nasion and supramentale point B) and ANB 
(subspinale point A, nasion and supramentale point B). Vertical 
skeletal discrepancies were assessed using Nasion Basion-Pt Point 
Gnathion angle (NBa-PtGn). The sample was classified according 
to the ANB angle as class I (0°-4°), class II (>4°) or class III (<0°); ac-
cording to the SNA angle as maxillary retrusion (<80°), well-posi-
tioned maxilla (80°-84°) or maxillary protrusion (>84°); according 
to the SNB angle as mandibular retrusion (<78°), well-positioned 
mandible (78°-82°) or mandibular prognathism (>82°) and accord-
ing to the NBa-PtGn angle as mesofacial (87°-93°), dolichofacial 
(<87°) or brachyfacial (>93°).

gDNA was used for genotyping analysis. Nine SNPs, which were 
previously associated with diseases or development dysfunction 
in bone and/or cartilage, were selected for this study. Validated 
probes supplied by Applied Biosystems (Foster City, CA) were 
used: rs1005464 (A > G, C___8954270_20) and rs235768 (A > T, 
C___2244893_10) in BMP2, rs17563 (A > G, C___9597660_20) in 
BMP4; rs2119261 (C > T, C___9136214_10) and rs3934908 (C > T, 
C__27896468_10) in SMAD6, rs59983488 (G > T, C__27841338_10) 
and rs1200425 (A > G, C___1440244_10) in RUNX2, rs708111 
(A > G, C___7543813_10) in WNT3A, and rs1533767 (A > G, 
C___7624882_10) in WNT11. The characteristics of each SNP are 
demonstrated in Supplementary Table S1. The genotyping was 
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blindly performed using the Taqman™ method for real-time PCR 
(ABI PRISM® 7900HT Sequence Detection System, Foster City, CA, 
USA). Additionally, 10% of the sample was genotyped twice and 
an agreement of 100% was observed. The reaction was previously 
described.15

2.3 | Statistical analysis

Chi-squared test was used to estimate the Hardy-Weinberg equilib-
rium and to compare genotype distribution among groups. Binary 
logistic regression analysis adjusted by gender and age was also 
performed. The established alpha for the exploratory results was 
P < .05. We also used the formal threshold for statistical significance 
after Bonferroni correction for multiple testing P < .0055 (0.05/9 
SNPs).

Multifactor dimensionality reduction (MDR), a model-free and 
non-parametric method, was used to identify SNP-SNP interac-
tions24 using gender and age (before and after the growth spurt) as 
co-variables. MDR analysed all possible SNP combinations. A 10-fold 
cross-validation (CV) was performed, which calculated the ratio for 
each combination, separating 'high' or 'low' risk genotypes for each 
phenotype. The 1000 permutation test adjusted and determined 
statistical significance of the analysis. Models with 9/10 or 10/10 CV 
consistency, the testing balancing accuracy (TBA) >0.55 and P ≤ .05 
were considered best models. Entropy values were obtained by the 
Jakulin and Bratko (2003)25 formula, and MDR created dendrograms 
and interaction graphs using these values.

3  | RESULTS

The mean age was 15.2 years (standard deviation = 7.3), 69 males 
and 74 females. The sample distribution according to the pheno-
types is presented in Table 1.

The amplification rate of each SNP was the following: 90.2% 
for rs1005464 (n = 129), 91.6% for rs235768 (n = 131), 88.8% 
for rs17563 (n = 127), 90.9% for rs2119261 (n = 130), 91.6% for 
rs3934908 (n = 131), 89.5% for rs59983488 (n = 128), 88.1% for 
rs1200425 (n = 126), 91.6% rs708111 (n = 131), and 67.8% for 
rs1533767 (n = 97). The SNPs were within the Hardy-Weinberg 
equilibrium.

All genotype distributions are demonstrated in Table 2. The 
SNPs rs1005464 and rs235768 in BMP2 were associated with man-
dibular retrognathism (P = .042, OR = 0.29, CI 95% = 0.10-0.82 
and P = .021, OR = 3.54, CI 95% = 1.32-8.84, respectively). The 
rs59983488 SNP in RUNX2 was associated with maxillary protrusion 
(P = .04, OR = 0.11, CI 95% = 0.01-0.88). In the dominant model, 
the SNP rs708111 in WNT3A was associated with skeletal class III 
(P = .02, OR = 0.30, CI 95% = 0.10-0.91). In the dominant model, 
the SNP rs1533767 in WNT11 was associated with a brachyfacial 
phenotype (P = .01, OR = 0.10, CI 95% = 0.00-0.68). In the reces-
sive model, rs3934908 in SMAD6 was associated with prognathism 
(P = .02, OR = 0.29, CI 95% = 0.09-0.83). After the Bonferroni cor-
rection for multiple testing, none of the SNPs remained associated. 
For the SNPs and phenotypes with suggestive association (P < .05), a 
logistic regression analysis was also performed using age and gender 
as co-variates (Table 3).

Phenotypes N (%) Male (%) Female (%) P-valuea 
Mean of age 
(SD) P-valueb 

Skeletal class I 77 (53.8) 40 (51.9) 37 (48.1) .22 15.2 (7.1) .43

Skeletal class II 47 (32.9) 18 (38.3) 29 (61.7) 13.8 (5.3)

Skeletal class III 19 (13.3) 11 (57.9) 8 (42.1) 18.1 (11.2)

Well-positioned 
maxilla

52 (36.4) 24 (46.1) 28 (53.8) .80 15.3 (8.3) .99

Maxillary 
retrusion

39 (27.2) 18 (46.1) 21 (53.8) 15.4 (7.3)

Maxillary 
protrusion

52 (36.4) 27 (51.9) 25 (48.1) 14.7 (6.4)

Well-positioned 
mandible

43 (30.0) 17 (39.5) 26 (60.5) .31 15.0 (7.6) .91

Mandibular 
retrognathism

50 (35.0) 27 (54.0) 23 (46.0) 15.4 (7.6)

Mandibular 
prognathism

50 (35.0) 21 (42.0) 29 (58.0) 15.0 (7.0)

Normofacial 72 (50.3) 37 (51.4) 35 (48.6) .21 15.0 (6.8) .46

Dolichofacial 55 (38.5) 22 (40.0) 33 (60.0) 15.0 (7.5)

Brachyfacial 16 (11.2) 10 (62.5) 6 (37.5) 15.8 (9.6)

aChi-squared test. 
bKruskal-Wallis. 

TA B L E  1   Population characteristics for 
each phenotype
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TA B L E  2   Genotype distribution of each SNP according to each phenotype in sagittal and vertical patterns

Gene SNP Phenotypes Genotypes n (%) P-value

BMP2 rs1005464 GG GA AA

Skeletal class I 50 (70.4) 20 (28.2) 1 (1.4) Ref.

Skeletal class II 26 (63.4) 13 (31.7) 2 (4.9) .480

Skeletal class III 10 (58.8) 5 (29.4) 2 (11.8) .100

Well-positioned maxilla 33 (73.3) 12 (26.7) 0 (0) Ref.

Maxillary retrusion 25 (69.4) 9 (25.0) 2 (5.6) .277

Maxillary protrusion 28 (58.3) 17 (35.4) 3 (6.3) .123

Well-positioned mandible 20 (54.0) 15 (40.5) 2 (5.5) Ref.

Mandibular retrognathism 36 (80.0) 8 (17.8) 1 (2.2) .042*

Mandibular prognathism 30 (63.8) 15 (31.9) 2 (4.3) .663

Normofacial 40 (62.5) 23 (35.9) 1 (1.6) Ref.

Dolichofacial 37 (74.0) 11 (22.0) 2 (4.0) .221

Brachyfacial 9 (60.0) 4 (26.7) 2 (13.3) .092

rs235768 TT TA AA

Skeletal class I 37 (51.4) 33 (45.8) 2 (2.8) Ref.

Skeletal class II 16 (39.0) 23 (56.1) 2 (4.9) .420

Skeletal class III 10 (58.8) 6 (35.3) 1 (5.9) .642

Well-positioned maxilla 21 (45.7) 23 (50.0) 2 (4.3) Ref.

Maxillary retrusion 15 (41.7) 19 (52.8) 2 (5.5) .921

Maxillary protrusion 27 (55.1) 20 (40.8) 2 (4.1) .648

Well-positioned mandible 22 (59.5) 12 (32.4) 3 (8.1) Ref.

Mandibular retrognathism 15 (32.6) 29 (63.0) 2 (4.4) .021*

Mandibular prognathism 26 (54.2) 21 (43.7) 1 (2.1) .300

Normofacial 32 (50.0) 27 (42.2) 5 (7.8) Ref.

Dolichofacial 20 (38.5) 31 (59.6) 1 (2.0) .104

Brachyfacial 11 (73.3) 4 (26.7) 0 (0) .208

BMP4 rs17563 AA AG GG

Skeletal class I 28 (40.6) 32 (46.4) 9 (13.0) Ref.

Skeletal class II 18 (43.9) 17 (41.5) 6 (14.6) .880

Skeletal class III 4 (23.5) 7 (41.2) 6 (35.3) .081

Well-positioned maxilla 17 (37.8) 22 (48.9) 6 (13.3) Ref.

Maxillary retrusion 10 (29.4) 18 (52.9) 6 (17.7) .705

Maxillary protrusion 23 (47.9) 16 (33.3) 9 (18.8) .308

Well-positioned mandible 15 (40.5) 16 (43.2) 6 (16.3) Ref.

Mandibular retrognathism 14 (32.6) 24 (55.8) 5 (11.6) .526

Mandibular prognathism 21 (44.7) 16 (34.0) 10 (21.3) .663

Normofacial 24 (38.1) 29 (46.0) 10 (15.9) Ref.

Dolichofacial 19 (38.8) 24 (49.0) 6 (12.2) .857

Brachyfacial 7 (46.7) 3 (20.0) 5 (33.3) .125

SMAD6 rs2119261 CC CT TT

Skeletal class I 23 (32.4) 43 (60.6) 5 (7.0) Ref.

Skeletal class II 14 (33.3) 22 (52.4) 6 (14.3) .419

Skeletal class III 4 (23.5) 12 (70.6) 1 (5.9) .741

Well-positioned maxilla 15 (33.3) 24 (53.3) 6 (13.4) Ref.

Maxillary retrusion 7 (18.9) 28 (75.7) 2 (5.4) .106

(Continues)
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Gene SNP Phenotypes Genotypes n (%) P-value

Maxillary protrusion 19 (39.6) 25 (52.1) 4 (8.3) .672

Well-positioned mandible 9 (24.3) 23 (62.2) 5 (13.5) Ref.

Mandibular retrognathism 14 (30.4) 28 (60.9) 4 (8.7) .697

Mandibular prognathism 18 (38.3) 26 (55.3) 3 (6.4) .282

Normofacial 18 (28.1) 39 (60.9) 7 (11.0) Ref

Dolichofacial 19 (37.2) 28 (54.9) 4 (7.9) .549

Brachyfacial 4 (26.7) 10 (66.7) 1 (6.6) .864

rs3934908 CC CT TT

Skeletal class I 22 (30.1) 36 (49.3) 15 (20.6) Ref.

Skeletal class II 10 (24.4) 21 (51.2) 10 (24.4) .777

Skeletal class III 5 (29.4) 9 (52.9) 3 (17.7) .952

Well-positioned maxilla 9 (19.6) 26 (56.5) 11 (23.9) Ref.

Maxillary retrusion 9 (25.0) 18 (50.0) 9 (25.0) .801

Maxillary protrusion 19 (38.8) 22 (44.9) 8 (16.3) .117

Well-positioned mandible 11 (29.7) 14 (37.8) 12 (32.5) Ref.

Mandibular retrognathism 10 (21.7) 26 (56.6) 10 (21.7) .236

Mandibular prognathism 16 (33.3) 26 (54.2) 6 (12.5) .074

Normofacial 16 (25.0) 36 (56.2) 12 (18.8) Ref.

Dolichofacial 14 (26.9) 26 (50.0) 12 (23.1) .774

Brachyfacial 7 (38.9) 7 (38.9) 4 (22.2) .394

RUNX2 rs59983488 GG GT TT

Skeletal class I 52 (74.3) 17 (24.3) 1 (1.4) Ref.

Skeletal class II 30 (73.2) 9 (21.9) 2 (4.9) .548

Skeletal class III 13 (76.5) 4 (23.5) 0 (0) .880

Well-positioned maxilla 28 (62.2) 14 (31.1) 3 (6.7) Ref.

Maxillary retrusion 28 (77.8) 8 (22.2) 0 (0) .158

Maxillary protrusion 39 (83.0) 8 (17.0) 0 (0) .040*

Well-positioned mandible 27 (73.0) 9 (24.3) 1 (2.7) Ref.

Mandibular retrognathism 33 (73.3) 10 (22.2) 2 (4.5) .901

Mandibular prognathism 35 (76.1) 11 (23.9) 0 (0) .529

Normofacial 44 (69.8) 18 (28.6) 1 (1.6) Ref.

Dolichofacial 39 (78.0) 9 (18.0) 2 (4.0) .338

Brachyfacial 12 (80.0) 3 (20.0) 0 (0) .689

rs1200425 GG GA AA

Skeletal class I 29 (40.8) 29 (40.8) 13 (18.4) Ref.

Skeletal class II 13 (32.5) 20 (50.0) 7 (17.5) .966

Skeletal class III 7 (46.7) 7 (46.7) 1 (6.6) .540

Well-positioned maxilla 15 (34.1) 22 (50.0) 7 (15.9) Ref.

Maxillary retrusion 17 (48.6) 14 (40.0) 4 (11.4) .423

Maxillary protrusion 17 (36.2) 20 (42.5) 10 (21.3) .722

Well-positioned mandible 15 (41.7) 16 (44.4) 5 (13.9) Ref.

Mandibular retrognathism 17 (38.6) 20 (45.4) 7 (16.0) .949

Mandibular prognathism 17 (37.0) 20 (43.5) 9 (19.5) .778

Normofacial 25 (40.3) 25 (40.3) 12 (19.4) Ref.

Dolichofacial 20 (40.0) 25 (50.0) 5 (10.0) .336

Brachyfacial 4 (28.6) 6 (42.8) 4 (28.6) .640

TA B L E  2  (Continued)

(Continues)
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Gene SNP Phenotypes Genotypes n (%) P-value

WNT3A rs708111 AA AG GG

Skeletal class I 17 (23.6) 34 (47.2) 21 (29.2) Ref.

Skeletal class II 9 (22.0) 21 (51.2) 11 (26.8) .919

Skeletal class III 9 (50.0) 7 (38.9) 2 (11.1) .063

Well-positioned maxilla 10 (20.8) 25 (52.1) 13 (27.1) Ref.

Maxillary retrusion 15 (40.6) 16 (42.2) 6 (16.2) .122

Maxillary protrusion 10 (21.7) 21 (45.7) 15 (32.6) .799

Well-positioned mandible 12 (29.3) 22 (53.6) 7 (17.1) Ref.

Mandibular retrognathism 13 (28.9) 20 (44.4) 12 (26.7) .530

Mandibular prognathism 10 (22.2) 20 (44.5) 15 (33.3) .222

Normofacial 18 (26.5) 28 (41.2) 22 (32.3) Ref.

Dolichofacial 12 (25.0) 26 (54.2) 10 (20.8) .301

Brachyfacial 5 (33.3) 8 (53.3) 2 (13.4) .338

WNT11 rs1533767 GG GA AA

Skeletal class I 28 (51.9) 22 (40.7) 4 (7.4) Ref.

Skeletal class II 19 (59.4) 13 (40.6) 0 (0) .275

Skeletal class III 4 (36.4) 7 (63.6) 0 (0) .311

Well-positioned maxilla 17 (50.0) 15 (44.1) 2 (5.9) Ref.

Maxillary retrusion 15 (55.6) 11 (40.7) 1 (3.7) .871

Maxillary protrusion 19 (52.8) 16 (44.4) 1 (2.8) .810

Well-positioned mandible 12 (46.1) 12 (46.1) 2 (7.8) Ref.

Mandibular retrognathism 23 (60.6) 14 (36.8) 1 (2.6) .415

Mandibular prognathism 16 (48.5) 16 (48.5) 1 (3.0) .720

Normofacial 20 (41.7) 24 (50.0) 4 (8.3) Ref.

Dolichofacial 24 (58.5) 17 (41.5) 0 (0) .080

Brachyfacial 7 (87.5) 1 (12.5) 0 (0) .054

Note: Chi-squared test was performed for this analysis.
*Means P < .05. 

TA B L E  2  (Continued)

TA B L E  3   Multiple logistic regression analysis with SNPs and phenotypes associated in genotype distribution

Phenotype Genes SNPs Reference Genotype Odds Ratio (CIa  95%) P-value

Mandibular 
retrognathism

BMP2 rs1005464 GG GA 0.30 (0.10-0.85) .024*

AA 0.30 (0.02-3.66) .346

rs235768 TT TA 3.98 (1.47-10.77) .006*

AA 1.06 (0.13-8.45) .949

Mandibular 
prognathism

SMAD6 rs3934908 CC CT 1.44 (0.50-4.11) .487

TT 0.36 (0.10-1.30) .122

Maxillary protrusion RUNX2 rs59983488 GG GT 0.38 (0.14-1.07) .068

Skeletal class III WNT3A rs708111 AA AG 0.37 (0.11-1.20) .100

GG 0.17 (0.03-0.94) .042*

Brachyfacial WNT11 rs1533767 GG GA 0.11 (0.01-1.04) .055

Note: The analysis was performed with each genotype individually and adjusted by age and gender.
aC.I. means confidence interval. 
*Means P < .05. 
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To explore high-order SNP-SNP interactions for each phenotype, 
we performed MDR analyses (Supplementary Table S2).

Table 4 summarizes the MDR analysis and demonstrates the best 
MDR-predicted interaction models for the phenotypes that present 
significant models. Entropy measures among SNPs were calculated 
to obtain epistatic effects. Figure 1 shows the interactions between 
SNPs (dendrogram and interaction map) for phenotypes with inter-

action models.

4  | DISCUSSION

Studies in different models point out that the proper postnatal 
growth and development of craniofacial structures (including bone, 
muscles and teeth) requires the coordination of many mechanisms. 
The growth and development of craniofacial structures involves the 
precise timing of migration of different cell types, coordinated dis-
plays of differentiation development and growth of tissues and also 
the interaction of different molecules.21,26-28

Results provided by twin studies have been increasing our 
knowledge on hereditability and genetically determined variables 
of maxilla and mandible position, shape, size and their relationship 
with the cranial base.3,4 In the past decades, many genetic studies 
have been evaluating the association between different genes and 
maxillary/mandibular discrepancies as well as face morphology15-22 
These molecular genetic studies have mainly focused on skeletal 
class III and prognathism phenotypes.17 More recently, some stud-
ies expanded the craniofacial phenotypes evaluated, including other 
sagittal and vertical patterns16,18-22 Therefore, in the present study, 
we decided to evaluate sagittal and vertical craniofacial phenotypes 
and each dental arch separately, in order to evaluate whether any 

gene/SNP acts in the maxilla, mandible or both jaws discrepancies. 
Here, we also decided to perform MDR analysis to evaluate SNP-
SNP interactions. This approach has proven to be a powerful tool for 
a variety of medical genetic studies.29-31 In our study, MDR analysis 
allowed us to identify some interactions potentially involved in dif-
ferent craniofacial phenotypes.

Although non-syndromic mandibular retrognathism is a rela-
tively common type of malocclusion, which refers to an abnormal 
posterior position of the mandible as a result of a developmental 
alteration, few studies explored the genetic aetiology of this con-
dition.32,33 Muscles are known to have extensive mutual effects on 
bones, and associated genes are candidate genes for skeletal mal-
occlusions. Arun et al (2016)32 identified a SNP in the myosin 1H 
(MYO1H) gene associated with retrognathism. More recently, in 
the same population, Balkhande et al (2018)33 showed that SNPs 
in MATN1, a gene that encodes the matrilin-1 cartilage extracellular 
matrix protein, were associated with mandibular retrognathism. Our 
results suggest that BMP2 is involved in mandibular retrognathism. 
Interestingly, both clinical34 and animal35 studies have provided ev-
idence that BMP2 is involved in abnormal mandibular development.

BMP2 haploinsufficiency results in severe craniofacial defects 
including mandibular retrognathism (micrognathism). In an animal 
investigation, Bmp2 mutation caused the Pierre Robin sequence, 
which is a condition that includes mandibular retrognathism (microg-
nathism).35 Thus, it is plausible to assume that both SNPs in BMP2 
studied here, the intronic and the missense (Arginine > Serine) 
variants, are involved in non-syndromic mandibular retrognathism. 
The MDR analysis also suggested an interaction between rs235768 
(BMP2) and rs1200425 (RUNX2). Interestingly, Runx2 was identified 
to be an important mediator of Bmp2 expression during cranial bone 
development36. Furthermore, an association between rs59983488 
in RUNX2 and maxillary protrusion was suggested in the genotypic 

Phenotype Best Combination model CVCa  TBAb  P-valuec 

Skeletal class II rs708111-WNT3A, rs1533767-
WNT11, rs235768-BMP2, 
rs1005464-BMP2, rs17563-
BMP4, rs59983488-RUNX2, 
rs1200425-RUNX2, rs3934908-
SMAD6, rs2119261-SMAD6

10/10 0.7091 .003*

Mandibular retrusion rs235768-BMP2, 
rs1200425-RUNX2

9/10 0.7056 .029*

Dolichofacial rs708111-WNT3A, rs1533767-
WNT11, rs1005464-
BMP2, rs1200425-RUNX2, 
rs3934908-SMAD6

9/10 0.6774 .014*

Brachyfacial rs708111-WNT3A, rs1533767-
WNT11, rs3934908-SMAD6

10/10 0.7718 .007*

aCross-validation consistency. 
bTesting balanced accuracy. 
cP-values were based on 1000 permutations test. Adjusted by age and gender. Best combinations 
models were selected based on highest TBA and highest CVC. 
*Means statistical significance difference (P < .05). 

TA B L E  4   Summary results of the best 
combination models of MDR analysis
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distribution. Mandibular retrognathism and maxillary protrusion are 
traits of the skeletal class II phenotype.

Skeletal class II and skeletal class III are both anteroposterior 
discrepancies between the maxilla and mandible. In our study, the 
rs708111 in WNT3A was suggested as a protective factor for skeletal 
class III phenotype, which was previously associated with the pala-
tal rugae pattern.37 The rs708111 in WNT3A was also involved with 
skeletal class II, when SNP-SNP interaction was analysed via MDR 
analysis. The Wnt signalling pathways interact in an extensive net-
work during bone formation regulated by a variety of molecules.38 
Our MDR results of skeletal class II phenotype reflect this complex 
interaction. A recent study identified SNPs associated with skele-
tal class II and skeletal class III phenotypes, two of these contained 
binding sites of RUNX2; however, the association was observed for 
skeletal class III.18 Although we were not able to observe SNP-SNP 
interactions for skeletal class III, it is important to mention that 
the sample size of this group could be a limitation to identify such 
interactions.

In fact, the sample size is an important limitation of our study, 
which used a convenience sample to explore the genetic back-
ground of maxillary and mandibular discrepancies. Although this 
convenience sample allowed us to perform an exploratory study, 
the association of some SNPs with uncommon phenotypes may not 
be observed due to sample size limitations. This is particularly true 
in low penetrance SNPs. After performing a Bonferroni correction, 
many SNP associations became statistically insignificant. Although 
a correction for multiple variables reduces the chance of a type I 
error, it also increases type II error in a small sample and SNPs with 
small effects. For these reasons, our results should be interpreted 
with caution, but warrant and should prompt future investigations. 
However, the 1.000 permutation test performed in MDR analysis 
is also an approach to adjust multiple tests, like Bonferroni correc-
tion, estimating type error I and power at 0.05 significance level.39 
Another limitation that should be highlighted is the fact that the 
population stratification correction was not performed to analyse 
the genetic association of our self-reported Caucasian population. In 
admixed populations, this could lead to associations with SNPs un-
linked to the condition. Therefore, independent replication studies 
in different populations should be performed.

The twin-method study performed by Šidlauskas et al 2016,3 
suggested that the shape and sagittal position of the dental arches 
are under stronger genetic control. However, heritability is also 
involved in vertical morphology of the face3,.4 In our study, the 
vertical morphology of the face was also evaluated here and some 
interesting interactions were suggested for both dolichofacial 

and brachyfacial phenotypes. MDR analysis is a data approach 
that aims to identify multi-locus combinations of genotypes that 
are associated with either high-risk or low-risk combinations. 
Therefore, it is also possible that the same SNPs/ genes may be 
involved in both dolichofacial and brachyfacial phenotypes, how-
ever, with different risk genotypes. This was observed in the MDR 
analysis, which elected the same SNPs in WNT11 and WNT3A and 
also in SMAD6 for both dolichofacial and brachyfacial phenotypes. 
SMAD6 is essential to regulate BMPs during cartilage develop-
ment.8 BMP signalling is complex, and there are multiple potential 
cross-talks, including Smad signalling8 and Wnt signalling,38 differ-
ent BMPs either enhance or antagonize Wnt-induced osteogenic 
differentiation.40 The RUNX2 rs1200425 was also included in the 
MDR model for the dolichofacial phenotype. Haploinsufficiency 
of RUNX2 causes cleidocranial dysplasia in humans, which is 
characterized by vertical morphology alteration and heterozy-
gous Runx2-deficient mice present a similar phenotype, suggest-
ing that the expression level of Runx2 influences skeletal facial 
phenotype.41

A more detailed understanding of the cross-talk between the sig-
nalling important for postnatal craniofacial growth and development 
will help to elucidate the SNP-SNP interactions involved in the facial 
phenotypes, and further studies are necessary in order to investi-
gate whether these SNPs are involved in the aetiology of sagittal and 
vertical skeletal malocclusions in humans.

5  | CONCLUSION

Our results suggest that SNPs in BMP2, BMP4, SMAD6, RUNX2, 
WNT3A and WNT11 genes and their interaction could be involved 
in the aetiology of both sagittal and vertical skeletal malocclusions.
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