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Untwisting 3-strand torus knots

S. Baader, I. Banfield and L. Lewark

Abstract

We prove that the signature bound for the topological 4-genus of 3-strand torus knots is sharp,
using McCoy’s twisting method. We also show that the bound is off by at most 1 for 4-strand
and 6-strand torus knots, and improve the upper bound on the asymptotic ratio between the
topological 4-genus and the Seifert genus of torus knots from 2/3 to 14/27.

1. Introduction

The braid group on 3-strand B3 is generated by two elements a, b satisfying the braid relation
aba = bab. In this note, we are interested in the natural closure of the positive braid (ab)n in
S3, known as torus link of type T (3, n). Whenever n ∈ N is a multiple of 3, the link T (3, n)
has three components; otherwise it is a knot. The topological 4-genus gt(K) of a knot K ⊂ S3

is defined to be the minimal genus among all surfaces Σ ⊂ D4, embedded in a locally flat way,
with boundary ∂Σ = K. As with the smooth version of the 4-genus invariant, the topological
4-genus of knots K is bounded below by the signature invariant [11]: gt(K) � |σ(K)|/2. The
same lower bound holds with the signature invariant replaced by the maximum value of the
Levine–Tristram signature function outside of the set of roots of the Alexander polynomial
ΔK(t) of K

σ̂(K) := max
ω∈S1\Δ−1

K (0)
|σω(K)|.

Theorem 1. Let n � 4 be a natural number not divisible by 3. Then

gt(T (3, n)) =
σ̂(T (3, n))

2
=

⌈
2n
3

⌉
.

We believe that the equality gt = σ̂/2 holds for a much larger class of torus knots, possibly
for all. This can be seen as a topological counterpart of the local Thom conjecture, which
states that the smooth 4-genus gs of torus knots coincides with their Seifert genus [6, 12, 14].
Unlike in the smooth case, where the hard part is finding suitable lower bounds, the difficulty
in the topological case is figuring out genus-minimising surfaces (see [2, 13] for first attempts
in this direction). We will not see any of these surfaces. Rather, we will find a precise upper
bound for the topological 4-genus via an operation called null-homologous twisting, which has
recently received some attention [5, 8–10]. A null-homologous twist is an operation on oriented
links that inserts a full twist into an even number 2m of parallel strands, m of which point
upwards, and m of which point downwards (see, for example, Figure 3). Throughout this paper,
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we will use the term twist for a null-homologous twist. The case of two strands corresponds
to a simple crossing change. For a knot K, we define the untwisting number t(K) to be the
minimal number of twists needed to transform K into the trivial knot, as in [5]. Relying on
Freedman’s disc theorem [3], McCoy proved that the untwisting number is an upper bound for
the topological 4-genus of knots [9]. This is the tool we use to construct the genus-minimising
surfaces in Theorem 1.

Let us take another look at the resemblance of the smooth and topological setting. Writing
s and u for the Rasmussen invariant and unknotting number, respectively, it follows from the
(smooth) local Thom conjecture that the inequalities

s(K)/2 � gs(K) � u(K),

which hold for all knots K, become equalities for all torus knots:

s(T (p, q))/2 = gs(T (p, q)) = u(T (p, q)).

We show that in the topological setting, in striking analogy, the inequalities

σ̂(K)/2 � gt(K) � t(K),

which hold for all knots K, become equalities for all 3-strand torus knots:

σ̂(T (3, n))/2 = t(T (3, n)) = gt(T (3, n)).

Thus in the topological setting, the untwisting number apparently takes the place that the
unknotting number has in the smooth setting.

Untwisting might very well lead to the equality gt = σ̂/2 = t for all torus knots. For the time
being, we show that the equality is off by at most 1 for torus knots with four and six strands.

Proposition 2. For all odd natural numbers n � 3,

n � σ̂(T (4, n))
2

� gt(T (4, n)) � t(T (4, n)) � 2
3
g(T (4, n)) + 2 = n + 1.

Moreover, for all natural numbers n � 5 coprime to 6,

3n + 1
2

� σ̂(T (6, n))
2

� gt(T (6, n)) � t(T (6, n)) � 3
5
g(T (6, n)) + 3 =

3n + 3
2

.

McCoy also developed an induction scheme that allows him to estimate the asymptotic ratio
between the topological 4-genus and the Seifert genus of torus knots [9]:

lim sup
p,q→∞

gt(T (p, q))
g(T (p, q))

� 2
3
.

Theorem 3.

lim sup
p,q→∞

gt(T (p, q))
g(T (p, q))

� 14
27

≈ 0.519.

The proof of Theorem 1 uses a calculus for positive 3-braids introduced in [1], which we
present in the next section. Sections 3 and 4 contain the proofs of Theorems 1 and 2. The
latter follows from the former by untwisting torus knots on four and six strands via torus
knots on three strands. Theorem 3 follows from McCoy’s induction scheme, which we briefly
review in the last section.
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2. A calculus for positive 3-braids

Let k1, k2, . . . , kn be strictly positive integers. The positive braid

[k1, k2, . . . , kn] := ak1bak2b · · · aknb ∈ B3

defines a link L[k1, k2, . . . , kn], via its closure. For example, the torus link of type T (3, n) can
be written as L[1, 1, . . . , 1], where the number 1 appears n times. This notation is far from
unique. The full twist on three strands can be written as

[1, 1, 1] = ababab = aabaab = [2, 2].

The double full twist can be written as

aab(abaaba)aab = aaabaaabaaab = [3, 3, 3].

In the first equality, we used the fact that the full twist abaaba ∈ B3 commutes with all 3-
braids. Adding another full twist to this, we obtain the following representative for the triple
full twist:

aaabaaab(abaaba)aaab = aaabaaaabaaabaaaab = [3, 4, 3, 4].

From here, we see that the operation

[. . . , x, y, . . .] → [. . . , x + 1, 3, y + 1, . . .]

corresponds to adding a full twist to a given positive braid on three strands. With this
combinatorial calculus, we obtain the following family of positive braid presentations for
iterated full twists on three strands.

Lemma 4. For all k ∈ N:

(1) T (3, 6k + 9) = L[3, 5k, 4, 3, 5k, 4],
(2) T (3, 6k + 12) = L[3, 5k+1, 3, 4, 5k, 4],

where 5k stands for a sequence 5, . . . , 5 of length k.

The proof is by induction on k, starting at zero. A repeated application of the above move
yields the desired sequence of presentations for increasing powers of the full twist:

[3, 5, 3, 4, 4], [3, 5, 4, 3, 5, 4], [3, 5, 5, 3, 4, 5, 4], [3, 5, 5, 4, 3, 5, 5, 4], . . .

3. Untwisting torus knots with three strands

Lemma 5. For all k ∈ N:

(1) t(T (3, 3k + 4)) � 2k + 3,
(2) t(T (3, 3k + 5)) � 2k + 4.

Proof. The two statements are obviously true for k = 0, since the knots T (3, 4) and T (3, 5)
can be unknotted by three and four crossing changes, respectively. Moreover, for all k ∈ N, the
two knots T (3, 3k + 4) and T (3k + 5) are related by a single crossing change, so we only need
to prove (1). We will do so by considering the three special cases T (3, 7), T (3, 10), T (3, 13)
separately, and then the two families T (3, 6k + 16), T (3, 6k + 19).

The key observation is that the 2-braids abbaabba and bb are related by a sequence of two
twists, as shown in Figure 1. Here the first arrow stands for a twist on four strands, while the
second arrow is a simple crossing change.
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= → →

Figure 1 (colour online). Sequence of two twists. The first twist is on four strands, marked in
red. The second twist is a crossing changes, untying the trefoil summand in the third drawing.

As a consequence, the double full twist on three strands,

(ab)6 = abbaabbabbbb,

is related to the braid b6 (and also to a6) by a sequence of two twists. For the first knot, T (3, 7),
we turn the braid (ab)7 into a7b by two twists, and into ab by another three crossing changes,
thus showing t(T (3, 7)) � 5. In order to deal with the other two knots, we use the notation
A = a−1, B = b−1. We write

(ab)10 = (ab)12BABA = (ab)12ABAA = AB(ab)12AA,

which transforms into ABb6a6AA = Ab5a4 by a sequence of four twists, and into Aba2 by
another three twists. The closure of the last braid is the trivial knot; this shows t(T (3, 10)) � 7.
For the knot T (3, 13), we observe that the braid

(AB)5 = (AB)6ba = A3BA3BA3Bba = A3BA3BA2

represents the torus knot T (3,−5). Therefore, we can write

(ab)13 = (ab)18A3BA3BA2 = A3(ab)12BA3(ab)6BA2,

which transforms into A3a6b6BA3a6BA2 = a3b5a3BA2 by a sequence of six twists, and into
a3baBA2 = a2bA by another three twists. This shows t(T (3, 13)) � 9.

We now turn to the family of torus knots T (3, 6k + 16). Using again A = a−1, B = b−1, we
write

T (3, 6k + 16) = L[ab(ab)6(2k+4)(BA)6k+9].

By Lemma 4, we have

(BA)6k+9 = A3B(A5B)kA4BA3B(A5B)kA4B,

which contains precisely 2k + 4 pure powers of A. We slide one double full twist (ab)6 to the
right of each power of A and transform it into a6 by a sequence of 2(2k + 4) twists, in total.
This leaves us with the braid

aba3B(aB)ka2Ba3B(aB)ka2B.

Sliding the half-twist aba from the left to the middle yields

b2A(bA)kb2abaBa3B(aB)ka2B.

Then we transform the middle part b2abaBa3B = b3a4B into the empty braid by three crossing
changes. What remains is the braid b2Aa2B, whose closure is the trivial knot. Therefore
t(T (3, 6k + 16)) � 2(2k + 4) + 3 = 4k + 11, in accordance with statement (1).
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The second family, T (3, 6k + 19), works in complete analogy, using the expression

T (3, 6k + 19) = L[ab(ab)6(2k+5)(BA)6k+12]

and

(BA)6k+12 = A3B(A5B)k+1A3BA4B(A5B)kA4B.

The resulting intermediate braid, after a sequence of 2(2k + 5) twists, is

aba3B(aB)k+1a3Ba2B(aB)ka2B = b2A(bA)k+1b3Ab2abaB(aB)ka2B.

Again, the middle part b3Ab2ab transform into the empty braid by three crossing changes.
The remaining braid is b2aB, whose closure is the trivial knot. This shows t(T (3, 6k + 19)) �
2(2k + 5) + 3 = 4k + 13, in accordance with statement (1). �

As mentioned before, the inequalities

σ̂(K)/2 � gt(K) � t(K)

hold for all knots K. To complete the proof of Theorem 1, we estimate the maximal Levine–
Tristram signature σ̂ for the 3-strand torus knots. Let K be a knot and consider the jump
function

δK(x) = lim
s→x+

σe2πis(K) − lim
s→x−

σe2πis(K).

Litherland (see the comments after [7, Proposition 1]) notes that the discontinuities of the
Levine–Tristram signature of the T (p, q) torus knot occur precisely at the x ∈ (0, 1) satisfying
pqx ∈ Z but px /∈ Z and qx /∈ Z. For x a discontinuity, let pqx = pa + qb with 0 < a < q.
Litherland also shows that δ(x) = +2 if b < 0 and δ(x) = −2 if b > 0. If x is the minimal
discontinuity satisfying x � 1

2 , then σ̂(K) � σ(K) + δK(x). We distinguish the following cases.

T (3, 3k + 4) for k even: The periodicity of the ordinary signature, see [4, Theorem 5.2], implies
that σ̂(T (3, 3k + 4)) � σ(T (3, 3k + 4)) = σ(T (3, 4)) + 4k = 6 + 4k.

T (3, 3k + 5) for k even: Similarly to the previous case, σ̂(T (3, 3k + 5)) � 8 + 4k.
T (3, 3k + 4) = T (3, 6l + 7) for k = 2l + 1 odd: The minimal x � 1

2 satisfying pqx ∈ Z, px /∈
Z, qx /∈ Z is x = (9l + 11)/(3(6l + 7)) . Note that pqx = 9l + 11 = 3(5l + 6) + (6l + 7)(−1),
which implies that δ(x) = +2. The estimate σ̂ � σ + δ(x) and the periodicity of the ordi-
nary signature imply σ̂(T (3, 3k + 4)) � σ(T (3, 3k + 4) + 2 = σ(T (3, 3(k + 1) + 1) = 4(k +
1) + 2 = 4k + 6.

T (3, 3k + 5) = T (3, 6l + 8) for k = 2l + 1 odd: Similar to the previous case, the minimal dis-
continuity x � 1

2 is x = (9l + 13)/(3(6l + 8)). From pqx = 9l + 13 = 3(5l + 7) + (6l + 8)(−1)
it follows that δ(x) = 2 and then σ̂(T (3, 3k + 4) � 4k + 8.

Therefore, for all k ∈ N,

σ̂(T (3, 3k + 4)) � 4k + 6, σ̂(T (3, 3k + 5)) � 4k + 8,

and Theorem 1 now follows.

4. Untwisting torus knots with four and six strands

To prove Proposition 2, we essentially untwist torus knots with four and six strands to torus
knots on three strands, and conclude using Theorem 1.

By a similar calculation as was presented at the end of the previous section for 3-strand
torus knots, one may prove that σ̂(T (4, n)) � 2n and σ̂(T (6, n)) � 3n + 1. For this, consider
the signature (for T (4, 4k + 3) and T (6, k + 5)), or the Levine–Tristram signature after the
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= → →

Figure 2 (colour online). Sequence of four twists. The first twist is on six strands,
marked in red. The other three twists are crossing changes, untying the T (3, 4)

summand in the third drawing.

+1

+1
→

+2

+2

Figure 3 (colour online). Untwisting a full twist on four strands, marked in red.
The numbers +1(+2) stand for a (double) positive full twist.

first jump after 1/2 (for T (4, 4k + 1)), or after the second jump (for T (6, 6k + 1)). We note
(without proof) that the stated inequalities for σ̂ are in fact equalities.

Now, let us show that t(T (4, n)) � n + 1. Denote the standard Artin generators of the braid
groups B4 by a, b, c. The crucial move is to transform three full twists on four strands, (abc)12,
into four full twists on three strands, (bc)12 (or (ab)12), by four twist operations. This can be
seen by composing the braids in Figure 2 with (bc)9.

Hence, for n = 12k + ε, with ε ∈ {±1,±3,±5}, one may change T (4, n) = L[(abc)n] by 4k
twists into L[(ab)12k(abc)ε] =: Kε. We now consider the possible values of ε one by one, showing
t(T (4, n)) � n + 1 in each case, thus completing the proof of the first part of Proposition 2.

• K1 is in fact T (3, 12k + 1), which may be untwisted by 8k + 1 twists, as established
previously. In total, t(T (4, n)) = n.
• Similarly K−1 = T (3, 12k − 1), which may be untwisted by 8k twists, resulting in

t(T (4, n)) � n + 1.
• K3 = L[(ab)12k(abc)3] = L[(ab)12kaba2b2ab] = T (3, 12k + 4), which may be untwisted by

8k + 3 twists. In total t(T (4, n)) = n.
• Similarly, K−3 = T (3, 12k − 4), which may be untwisted by 8k − 2 twists, giving a total

of t(T (4, n)) � n + 1.
• K5 can be transformed into K1 by a twist on two strands and four crossing changes

(cf. Figure 3), in total t(T (4, n)) � n + 1.
• Similarly, K−5 can be transformed into T (3, 12(k − 1) + 1) by five twists, resulting in

t(T (4, n)) � n + 1.

This concludes the proof of the first half of Proposition 2.
To show t(T (6, n)) � (3n + 3)/2, denote the standard Artin generators of B6 by a, b, c, d, e,

respectively. The full twist (abcde)6 on six strands may be transformed by a single twist into
(ab)6(de)6, see Figure 3 for the analogous operation on four instead of six strands. Applying
this k times to T (6, 6k ± 1) yields the connected sum of two copies of T (3, 6k ± 1), which is
finished off using Theorem 1. Summing up, the second half of Proposition 2 follows.
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5. Asymptotic genus ratio

The key point in McCoy’s induction scheme is that a positive full twist in a braid with 2n
strands can be transformed into two parallel copies of positive double full twists in n strands,
with a single twist operation (see [9, Lemma 13]). This is shown in Figure 3, for n = 2, and was
used in the previous section for n = 2 and n = 3. Similarly, a single twist operation transforms
the torus knot T (2n, 2n + 1) into the connected sum of two copies of the torus knot T (n, 2n +
1). This is seen by adding the word σ1σ2 . . . σ2n−1 to both braids in the same figure.

When iterating this operation on successive powers of two, one gets 2/3 as an upper bound
for the asymptotic ratio gt/g for torus knots with increasing parameters. We will apply the
same procedure, starting from braids with three strands, successively multiplying the strand
number by 2:

(1) T (6, 7) transforms into the disjoint union of two copies of T (3, 7) by one twist;
(2) T (12, 13) transforms into the disjoint union of two copies of T (6, 13) by one twist, then

into the disjoint union of four copies of T (3, 13) by 4 more twists;
(3) T (24, 25) transforms into the disjoint union of two copies of T (12, 25) by one twist, then

into the disjoint union of eight copies of T (3, 25) by 4(1 + 4) = 20 more twists,
(4) T (3 · 2k, 3 · 2k + 1) transforms into the disjoint union of 2k copies of T (3, 3 · 2k + 1) by

a total number of 1 + 4 + 16 + · · · + 4k−1 = 1/3 · (4k − 1) twists.

By Theorem 1, the untwisting number of T (3, 3 · 2k + 1) is of the order

2/3 · (3 · 2k) = 2k+1.

We conclude that the untwisting number of T (3 · 2k, 3 · 2k + 1) is bounded above by an
expression of the order

1/3 · (4k − 1) + 2k · 2k+1 ≈ (1/3 + 2) · 4k,
while its Seifert genus is of the order

1/2 · (3 · 2k)2 = 9/2 · 4k,
by the well-known genus formula g(T (p, q)) = 1/2 · (p− 1)(q − 1). In summary,

lim sup
k→∞

gt(T (3 · 2k, 3 · 2k + 1))
g(T (3 · 2k, 3 · 2k + 1))

� 1/3 + 2
9/2

=
14
27

.

The existence of the more general upper bound,

lim sup
p,q→∞

gt(T (p, q))
g(T (p, q))

� 14
27

,

follows from a general principle on subadditive functions, see the proof of [9, Theorem 5], or
the paragraph preceding [2, Theorem 2]. We are left with the strong belief that the ratio tends
to 1/2, in accordance with the asymptotic behaviour of the signature invariant:

lim
p,q→∞

σ(T (p, q))
2g(T (p, q))

=
1
2
.
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