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Framed transfers and motivic fundamental classes

Elden Elmanto, Marc Hoyois, Adeel A. Khan, Vladimir Sosnilo and Maria Yakerson

Abstract

We relate the recognition principle for infinite P1-loop spaces to the theory of motivic
fundamental classes of Déglise, Jin and Khan. We first compare two kinds of transfers that are
naturally defined on cohomology theories represented by motivic spectra: the framed transfers
given by the recognition principle, which arise from Voevodsky’s computation of the Nisnevish
sheaf associated with An/(An − 0), and the Gysin transfers defined via Verdier’s deformation to
the normal cone. We then introduce the category of finite R-correspondences for R a motivic ring
spectrum, generalizing Voevodsky’s category of finite correspondences and Calmès and Fasel’s
category of finite Milnor–Witt correspondences. Using the formalism of fundamental classes, we
show that the natural functor from the category of framed correspondences to the category of
R-module spectra factors through the category of finite R-correspondences.
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1. Introduction

This paper connects two recent developments in our understanding of certain cohomology
theories for schemes, namely those that are represented in the Morel–Voevodsky category of
motivic spectra [38]. On the one hand, the work of Levine [36] and Déglise, Jin and Khan [17]
develops the theory of fundamental classes in the setting of motivic homotopy theory. This
results in a vast generalization of Fulton’s operations in Chow groups [24] to these cohomology
theories. On the other hand, the work of Garkusha, Panin, Ananyevskiy and Neshitov [2,
25–27], building on some insights of Voevodsky [49], develops a theory of framed motives.
One achievement of their work is to give explicit models for motivic suspension spectra of
smooth schemes.

Recall that if E ∈ SH(S) is a motivic spectrum over a scheme S, there is an associated
bigraded cohomology theory on smooth S-schemes:

E∗,∗(−) : Smop
S −→ Ab.
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Both the theory of fundamental classes and that of framed motives imply the existence of
certain transfers, called framed transfers, in such a cohomology theory. These transfers can be
encoded by an extension of E∗,∗(−) to the category hCorrfr(SmS) of framed correspondences:

In the first part of this paper, we show that the framed transfers produced by both theories
agree. This is nontrivial as their respective constructions are based on different geometric
ideas. In the second part of this paper, we introduce the category hCorrR(SmS) of finite
R-correspondences for R a motivic ring spectrum, and we construct a further interesting
extension

when E is a module over R. The category hCorrR(SmS) recovers Voevodsky’s category of finite
correspondences when R is the motivic Eilenberg–Mac Lane spectrum HZ, and it recovers
Calmès and Fasel’s category of finite Milnor–Witt correspondences when R = HZ̃. Thus, our
construction unifies those of Voevodsky and of Calmès–Fasel, as well as their relationship with
the category of framed correspondences.

1.1. Comparison of transfers

In [20], we introduced the ∞-groupoid CorrfrS (X,Y ) of framed correspondences between smooth
S-schemes X to Y : such a correspondence is a span

where f is finite syntomic, together with an equivalence τ : Lf � 0 in K(Z). Here, Lf is
the cotangent complex of f and K(Z) is the K-theory space of Z. As X and Y vary, these
∞-groupoids form the mapping spaces of an ∞-category Corrfr(SmS).

Framed correspondences encode an essential functoriality of cohomology theories represented
by motivic spectra: if E ∈ SH(S) and α = (Z, f, g, τ) ∈ CorrfrS (X,Y ), there is an induced map

α∗ : E(Y ) → E(X)

in cohomology; here E(X) = MapsSH(S)(Σ∞
T X+, E) is the E-cohomology space of X. In fact,

there are several different ways to construct α∗ that are not obviously equivalent.

(1) Via fundamental classes. For any finite syntomic map f : Z → X between S-schemes,
its fundamental class induces a Gysin transfer f! : E(Z,Lf ) → E(X) in twisted cohomology
[17, 36]. Hence, given the framed correspondence α, we can define

α∗ : E(Y )
g∗
−→ E(Z)

τ� E(Z,Lf )
f!−→ E(X).
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(2) Via Voevodsky’s lemma. Voevodsky introduced the set CorrefrS (X,Y ) of equationally
framed correspondences from X to Y [49] and constructed a canonical map

CorrefrS (X,Y ) → MapsSH(S)(Σ
∞
T X+,Σ∞

T Y+).

One of the key results in [20] is that the presheaves CorrefrS (−, Y ) and CorrfrS (−, Y ) are
motivically equivalent. This implies that Voevodsky’s map factors through the ∞-groupoid
CorrfrS (X,Y ). In particular, α induces a map Σ∞

T X+ → Σ∞
T Y+ in SH(S), whence a map

α∗ : E(Y ) → E(X) in cohomology.
(3) Via framed motivic spectra. In [20], we constructed the ∞-category SHfr(S) of framed

motivic spectra over S, in which the functoriality with respect to framed correspondences is
hard-coded. In particular, α induces a morphism

Σ∞
T,fr(α) : Σ∞

T,frX → Σ∞
T,frY

in SHfr(S). The reconstruction theorem of [20] (generalized to arbitrary schemes in [31])
gives an equivalence of ∞-categories SHfr(S) � SH(S), under which Σ∞

T,fr(α) corresponds to
a morphism Σ∞

T X+ → Σ∞
T Y+ as in (2).

In § 3, we show that these three constructions agree.
We note that each construction has its own useful features. Construction (1) connects

framed correspondences with the powerful formalism of six operations. As we explained in the
introduction to [20], it was this hypothetical connection that led us to the correct formulation
of the recognition principle for infinite P1-loop spaces. Construction (2) is helpful to perform
explicit computations. For example, Bachmann and Yakerson employ the Voevodsky transfer
to show that for a strictly homotopy invariant Nisnevich sheaf of abelian groups M on Smk

the double contraction M−2 has an infinite Gm-delooping (at least when char k = 0) [7].
Construction (3) has the advantage that it is coherently compatible with the composition
of framed correspondences, that is, it gives a functor

Corrfr(SmS) → SH(S).

Our comparison theorems can therefore also be viewed as coherence theorems for the first two
types of transfers.

1.2. Finite correspondences for motivic ring spectra

In § 4, we introduce categories of finite correspondences that encode the functoriality of
R-cohomology for a given motivic ring spectrum R ∈ SH(S). We define for X,Y ∈ SmS

an ∞-groupoid CorrRS (X,Y ) of finite R-correspondences such that CorrRS (X,S) � R(X). We
expect that these are the mapping spaces of an ∞-category CorrR(SmS) with the following
properties.

(1) There is a functor MR : CorrR(SmS) → ModR(SH(S)) sending X to R⊗ Σ∞
T X+.

(2) There is a functor ΦR : Corrfr(SmS) → CorrR(SmS) sending X to X.
(3) The following square of ∞-categories commutes:

In this paper we restrict ourselves to constructing the homotopy category hCorrR(SmS), and
we establish the above properties at the level of homotopy categories (enriched in the homotopy
category of spaces). The functor MR exists essentially by design, and the functor ΦR is defined
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using the formalism of fundamental classes. Property (3) is an application of the main result
of § 3.

We then consider the cases R = HZ and R = HZ̃ for S essentially smooth over a Dedekind
domain and a field, respectively. In these two cases the mapping spaces CorrRS (X,Y ) are
discrete, so the ∞-category CorrR(SmS) is defined and is a 1-category. Moreover, we prove
the following comparison results.

(4) CorrHZ(SmS) is equivalent to Voevodsky’s category of finite correspondences, and the
functor ΦHZ is the functor cyc constructed in [20, § 5.3].

(5) CorrHZ̃(SmS) is equivalent to the category of finite Milnor–Witt correspondences,
constructed by Calmès and Fasel [11], and the functor ΦHZ̃ refines the one defined by Déglise
and Fasel in [16].

If k is a field and R ∈ SH(k) is an MSL-algebra, the category hCorrR(Smk) is equivalent
to that constructed by Druzhinin and Kolderup in [19]. For R = KGL (respectively, R = KO
if char k �= 2), it receives a functor from Walker’s category of finite K0-correspondences [47]
(respectively, from Druzhinin’s category of finite GW-correspondences [18]). However, a novel
feature of our category is that it is enriched in the homotopy category of spaces, hinting that it
is the homotopy category of a more fundamental ∞-category. Its mapping spaces are discrete
if and only if R is 0-truncated in the effective homotopy t-structure, a condition which implies
that R is an HZ̃-algebra. The Calmès–Fasel category CorrHZ̃(Smk) is thus in a precise sense
the most general 1-category of finite correspondences.

Assuming that the ∞-category CorrR(SmS) has been constructed, one can consider the ∞-
category DMR(S) of T-spectra in A1-invariant Nisnevich-local presheaves on CorrR(SmS).
When S is the spectrum of a field of characteristic zero and R = HZ or R = HZ̃, it is well
known that DMR(S) � ModR(SH(S)) [21, 43] and that the ‘cancellation theorem’ holds
for CorrR(SmS) [23, 51]. We will not attempt here to generalize these results. However, we
note that the conjectural properties listed above imply that SH(S) is always a retract of
DM1(S).

1.3. Conventions and notation

Our terminology and notation follows [20]. In particular:

• Spc is the ∞-category of spaces/∞-groupoids, Spt that of spectra;
• Maps(X,Y ) is the space of maps from X to Y in an ∞-category;
• if C is an ∞-category, we denote by hC its homotopy category;
• Perf(X) is the ∞-category of perfect complexes over X;
• SH(S) is the stable motivic homotopy ∞-category over S;
• DM(S) is Voevodsky’s ∞-category of motives over S;
• G, T and P denote the pointed presheaves (Gm, 1), A1/Gm and (P1,∞); ΣG, ΣT and

ΣP are the corresponding suspension functors and ΩG, ΩT and ΩP their right adjoints.
• If C is an ∞-category and M,N are two collections of morphisms in C that are stable

under composition and pullback along one another, we write Corr(C,M,N) for the ∞-category
of spans with backward maps in M and forward maps in N ; see [9, § 5] for details on the
construction of this ∞-category.

2. Preliminaries

In this section, we review some aspects of the formalism of six functors in stable motivic
homotopy theory [3, 13].
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In § 2.1, we discuss various (co)homology theories associated with a motivic spectrum and
their basic properties. In § 2.2, we review the formalism of fundamental classes for local complete
intersection morphisms.

2.1. Cohomology theories

2.1.1. For every morphism of schemes f : X → Y we have an adjunction

f∗ : SH(Y ) � SH(X) : f∗.

If f is smooth, there is a further left adjoint

f� : SH(X) � SH(Y ) : f∗.

If f is locally of finite type†, we also have an adjunction

f! : SH(X) � SH(Y ) : f !,

such that f! � f∗ if f is proper.
The basic properties of these functors are summarized by the existence of a functor

Corr(Sch, all, lft) → (∞, 1)-Cat, S �→ SH(S), (U
f←− T

p−→ S) �→ p!f
∗,

where ‘lft’ is the class of morphisms locally of finite type (see [30, § 6.2; 32, Chapter 2, § 5.2]).
We will often use this implicitly when discussing the functoriality of certain constructions.

2.1.2. Thom transformations. Let S be a scheme, E a locally free OS-module of finite rank,
and V = Spec(Sym(E)) the associated vector bundle. If p : V → S is the structure morphism
and s : S → V the zero section, then the adjoint functors

ΣE = p�s∗ : SH(S) � SH(S) : s!p∗ = Σ−E

are SH(S)-linear equivalences of ∞-categories called Thom transformations. In particular,
ΣE � ΣE1S ⊗ (−), and the object ΣE1S ∈ SH(S) is invertible with inverse Σ−E1S .

The Thom transformations ΣE are defined more generally for E a perfect complex of
OS-modules, and they assemble into a morphism of grouplike E∞-spaces

K(S) → Pic(SH(S)), ξ �→ Σξ1S , (2.1)

natural in S, called the motivic J-homomorphism (see [6, § 16.2]). In particular, for every
cofiber sequence

E ′ → E → E ′′

in Perf(S), we have canonical equivalences

ΣE � ΣE′
ΣE′′ � ΣE′′

ΣE′
. (2.2)

2.1.3. Purity equivalences. For f : X → S a smooth morphism with sheaf of relative
differentials Ωf , we have canonical equivalences

f ! � ΣΩf f∗ and f! � f�Σ−Ωf . (2.3)

Suppose that s : Z ↪→ X is a closed immersion such that the composite g = f ◦ s is smooth.
Combining (2.2) and (2.3), we obtain equivalences

s!f∗ � Σ−Nsg∗ and f�s∗ � g�ΣNs , (2.4)

†The careful reader will replace ‘locally of finite type’ by ‘separated of finite type’ since the current
literature only contains the construction of f! in the latter case; it can be constructed in the general case
using Zariski descent.
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where Ns is the conormal sheaf of s. The equivalences (2.3) and (2.4) are called the purity
equivalences. Note that we have equivalences of perfect complexes Ωf � Lf and Ns[1] � Ls,
so that we can write ΣΩf � ΣLf and Σ−Ns � ΣLs .

2.1.4. Twisted cohomology. A motivic spectrum E ∈ SH(S) gives rise to various
(co)homology theories for S-schemes, which can be twisted by K-theory classes. Let p : X → S
be a morphism† and let ξ ∈ K(X). We will consider the following mapping spaces.

(1) The ξ-twisted cohomology of X with coefficients in E is

E(X, ξ) = Maps(1S , p∗Σξp∗E).

(2) The ξ-twisted Borel–Moore homology of X with coefficients in E is

EBM(X/S, ξ) = Maps(1S , p∗Σ−ξp!E).

We omit the second parameter when ξ = 0. Moreover, it is understood that an element
ξ ∈ K(X) is allowed to twist the cohomology of any X-scheme: if f : X ′ → X is a morphism,
we will often write E(X ′, ξ) instead of E(X ′, f∗ξ), and similarly for Borel–Moore homology.
There are also twisted versions of compactly supported cohomology and of homology (see
[17, Definition 2.2.1]), but we shall not use these theories in this paper.

Remark 2.1.9. In what follows, we often fix a motivic spectrum E ∈ SH(S) and talk
about E-cohomology spaces in the interest of readability. However, E-cohomology spaces can
generally be replaced by the corresponding endofunctors of SH(S). In particular, the naturality
in E of all constructions and statements will be implicit.

2.1.5. Twisted motives. One can also define various twisted motives in SH(S): if p : X → S
is a morphism and ξ ∈ K(X), we let

MS(X, ξ) = p!Σξp!1S and MBM
S (X, ξ) = p!Σ−ξp∗1S .

For every E ∈ SH(S), we have

EBM(X/S,−ξ) � Maps(MBM
S (X, ξ), E)

by adjunction. The relationship between MS(X, ξ) and cohomology is more subtle. There is a
canonical map p∗E → Hom(p!1S , p

!E) adjoint to the composite

p!(p∗E ⊗ p!1S) � E ⊗ p!p
!1S

counit−−−−→ E ⊗ 1S � E.

Applying Maps(Σξ1X ,−), we obtain a canonical map

E(X,−ξ) → Maps(MS(X, ξ), E);

it is an equivalence when X is smooth over S by purity (2.3), whence when X is cdh-locally
smooth since motivic spectra satisfy cdh descent [12, Proposition 3.7]. However, it is not known
to be an equivalence in general.

2.1.6. Functoriality. The cohomology space E(X, ξ) is contravariant in the pair (X, ξ).
More precisely, if (SchS)/K → SchS denotes the Cartesian fibration classified by K : Schop

S →
Spc, then (X, ξ) �→ E(X, ξ) is a contravariant functor on (SchS)/K . In particular, for every
S-morphism f : Y → X, there is a pullback map

f∗ : E(X, ξ) → E(Y, f∗ξ)

induced by the unit transformation id → f∗f∗.

†Whenever the functors p! or p! are used, it is implicitly assumed that p is locally of finite type.
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On the other hand, Borel–Moore homology EBM(X/S, ξ) is covariant in (X, ξ) for proper
maps and contravariant in (X, ξ) for étale maps. This bivariance can be expressed coherently
using the ∞-category of correspondences Corr((SchS)/K ,prop, ét). In addition, Borel–Moore
homology is contravariantly functorial in the base S. In particular, for a morphism f : S′ → S,
there is a base change map

f∗ : EBM(X/S, ξ) → EBM(X ×S S′/S′, π∗
1ξ)

induced by the exchange transformations Ex∗
∗ and Ex∗!.

2.1.7. Cohomology with support. Let X be an S-scheme, i : Y ↪→ X an immersion, and
ξ ∈ K(Y ). The ξ-twisted cohomology of X with support in Y is

EY (X, ξ) = Maps(1S , p∗i!Σξi!p∗E).

Given a Cartesian square

the unit transformation id → g∗g∗ and the exchange transformations Ex∗! : g∗i! → j!f∗ and
Ex!∗ : i!g∗ → f∗j! define a transformation

i!Σξi! → f∗j!Σg∗ξj!f∗,

which induces a pullback in cohomology with support

f∗ : EY (X, ξ) → EY ′(X ′, g∗ξ). (2.5)

If k : V ↪→ Y is another immersion, we also have a ‘forgetful’ map

EV (X, k∗ξ) → EY (X, ξ) (2.6)

induced by the counit transformation k!k
! → id.

If Y is closed in X and both are smooth over a common base, we have a purity equivalence

EY (X, ξ) � E(Y, ξ −Ni) (2.7)

by (2.4).

2.1.8. Localization. Suppose that we have a diagram in SchS

Z
i
↪→ X

j←↩ U,

where i is a closed immersion and j is the complementary open immersion, and let ξ ∈ K(X).
Then the localization sequence

i!i
! → id → j∗j∗

gives the fiber sequence

EZ(X, i∗ξ) → E(X, ξ) → E(U, j∗ξ). (2.8)

Dually, the localization sequence

j!j
! → id → i∗i∗

gives the fiber sequence

EU (X, j∗ξ) → E(X, ξ) → E(Z, i∗ξ). (2.9)
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In Borel–Moore homology, we similarly obtain the fiber sequence

EBM(Z/S, i∗ξ) → EBM(X/S, ξ) → EBM(U/S, j∗ξ).

2.1.9. Descent properties. Recall that the functor

Schop
S → Fun(SH(S),SH(S)), (p : X → S) �→ p∗p∗,

is an A1-invariant cdh-sheaf on SchS [12, Proposition 3.7]. Consequently, cohomology is an A1-
invariant cdh-sheaf and Borel–Moore homology is a Nisnevich sheaf. In particular, if f : X → Y
is an A1-cdh-equivalence (that is, f induces an equivalence between the associated A1-invariant
cdh sheaves) and ξ ∈ K(Y ), then the induced map

f∗ : E(Y, ξ) → E(X, ξ)

is an equivalence.
In fact, we have the following more precise excision properties. Let Y ⊂ X be a subscheme

and f : X ′ → X a morphism such that f−1(Y ) � Y . For any ξ ∈ K(Y ), the pullback

f∗ : EY (X, ξ) → EY (X ′, ξ)

is an equivalence under either of the following conditions:

• f is smooth and Y is closed (Nisnevich excision);
• f is proper and Y is open (excision for abstract blowups).

This follows directly from the definition of f∗ given in 2.1.12.

2.1.10. Products. Suppose that E ∈ SH(S) is equipped with a multiplication
μ : E ⊗ E → E. This induces various products in cohomology and in Borel–Moore homology.

(1) For any S-scheme X, subschemes Z,Z ′ ⊂ X and K-theory classes ξ ∈ K(Z) and
ξ′ ∈ K(Z ′), we have the usual cup product

μ : EZ(X, ξ) × EZ′(X, ξ′) → EZ∩Z′(X, ξ + ξ′), (x, y) �→ x ∪ y.

(2) For any S-scheme X, subschemes T ⊂ Z ⊂ X and K-theory classes ξ ∈ K(Z) and
ζ ∈ K(T ), we have the refined cup product

μ : EZ(X, ξ) × ET (Z, ζ) → ET (X, ξ + ζ).

We refer to [15, 1.2.8] for the definition. This refines the cup product from (1) as follows: there
is a commutative square

where i : Z ↪→ X and i′ : Z ′ ↪→ X are the inclusions.
(3) Suppose Z → Y → X are S-morphisms locally of finite type and let ξ ∈ K(Z) and

ζ ∈ K(Y ). Then we have the composition product

μBM : EBM(Z/Y, ξ) × EBM(Y/X, ζ) → EBM(Z/X, ξ + ζ), (z, y) �→ z · y.
We refer to [14, 1.2.8] for the definition.

Of course, the cup product and the composition product are associative or unital (up to
homotopy) if the multiplication on E is.
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2.1.11. Borel–Moore homology as cohomology with support. Let f : Z → S be a morphism
locally of finite type. We say that f is smoothable if there exists a factorization

where i is a closed immersion and p is smooth. For example, if S has the resolution property
(that is, every finitely generated quasi-coherent sheaf is a quotient of a locally free sheaf of
finite rank), then every quasi-projective morphism f : Z → S is smoothable.

In the above situation, if E ∈ SH(S) and ξ ∈ K(Z), the purity equivalence (2.3) induces a
canonical equivalence

EBM(Z/S, ξ) � EZ(X,ΩX/S − ξ). (2.10)

We record the following compatibility properties of the equivalence (2.10), which follow easily
from the definitions. We state them without twists for simplicity.

(1) Base change. The equivalence (2.10) is contravariantly functorial in S.
(2) Pushforwards. Consider a commutative diagram

where f and g are smooth, h is proper and i and k are closed immersions. Then the following
diagram commutes:

Here, h∗ is the proper pushforward and g! is the Gysin map induced by the purity equivalence
for g (see 2.2.3 for the definition of g! in a more general context). As a special case, if t : W ↪→ Z
is a closed immersion, then the proper pushforward t∗ : EBM(W/S) → EBM(Z/S) is identified
with the forgetful map EW (X,ΩX/S) → EZ(X,ΩX/S).

(3) Products. Suppose that E is equipped with a multiplication μ : E ⊗ E → E, and consider
a commutative diagram
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where the vertical maps are smooth, the horizontal maps are closed immersions, and the square
is Cartesian. Then the following diagram commutes:

2.2. Fundamental classes

2.2.1. We briefly recall the formalism of fundamental classes from [17]. Let f : X → Y be
a smoothable lci morphism. The fundamental class of f is a canonical element

ηf ∈ π01BM(X/Y,Lf ) = π0 Maps(ΣLf 1X , f !1Y ).

The associated purity transformation

pf : ΣLf f∗ → f !

is defined as the composition

ΣLf f∗(E) � ΣLf 1X ⊗ f∗(E)
ηf⊗id−−−−→ f !(1Y ) ⊗ f∗(E) → f !(1Y ⊗ E) � f !(E),

where the last morphism is the canonical one (see, for example, [17, 2.1.10]). The following
proposition summarizes the key properties of fundamental classes:

Proposition 2.2.2. (i) Let f : X → Y and g : Y → Z be lci morphisms such that g, g ◦ f ,
and hence f are smoothable. Then the following diagram commutes:

Here, the left vertical arrow uses the equivalence Lg◦f � f∗(Lg) + Lf in K(X) induced by the
canonical cofiber sequence f∗(Lg) → Lg◦f → Lf in Perf(X).

(ii) Given a tor-independent Cartesian square

where f is lci and smoothable, the following diagrams commute:

Here, the left vertical arrows use the equivalence v∗(Lf ) � Lg in Perf(X ′).
(iii) If f : X → S is smooth, then pf : ΣLf f∗ → f ! coincides with the purity equivalence (2.3).
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Proof. For assertions (i) and (ii), see [17, Propositions 2.5.4 and 2.5.6]. Assertion (iii) holds
by construction of ηf , see [17, Theorem 3.3.2(1)]. �

As a consequence of Proposition 2.2.2(i,iii), if f : X → S is smooth and i : Z ↪→ X is a closed
immersion such that f ◦ i is smooth, the transformation

pif
∗ : ΣLii∗f∗ → i!f∗

coincides with the purity equivalence (2.4).

2.2.2. Gysin maps in cohomology. Consider a commutative square of S-schemes

where f is smoothable and lci, i and k are closed immersions and g is proper†. For every
ξ ∈ K(T ), we have a pushforward morphism or Gysin map

f! : EZ(X, g∗ξ + i∗Lf ) → ET (Y, ξ), (2.11)

defined by the composition

f∗i!Σg∗ξ+i∗Lf i!f∗ pf−→ f∗i!Σg∗ξi!f ! � k!g!g
!Σξk! counit−−−−→ k!Σξk!.

Let us emphasize two special cases.

(1) If i : Z ↪→ X is a regular closed immersion and ξ ∈ K(Z), we have the Gysin map
i! : E(Z, ξ) → EZ(X, ξ − Li), which generalizes the equivalence (2.7).

(2) If f : X → Y is smoothable, lci and proper, and if ξ ∈ K(Y ), we have the Gysin map
f! : E(X, f∗ξ + Lf ) → E(Y, ξ).

Properties (i) and (ii) of Proposition 2.2.2 imply obvious compatibilities of these Gysin maps
with composition and pullback.

2.2.3. Gysin maps in Borel–Moore homology. Let f : X → Y be a smoothable lci
S-morphism. For every ξ ∈ K(Y ), there is a pullback morphism or Gysin map

f ! : EBM(Y/S, ξ) → EBM(X/S, f∗ξ + Lf ),

defined by the composition

Σ−ξ unit−−→ f∗f∗Σ−ξ � f∗Σ−f∗ξf∗ pf−→ f∗Σ−f∗ξ−Lf f !.

Properties (i) and (ii) of Proposition 2.2.2 imply obvious compatibilities of these Gysin maps
with composition, proper pushforward and tor-independent base change.

Remark 2.2.6. We use the notation f! and f ! for Gysin maps, rather than f∗ and f∗, as
a visual reminder that these maps use the purity transformation pf . It does not indicate a
particular relation to the functors f! and f !.

2.2.4. Functoriality. If M is a collection of morphisms of schemes that is closed under
tor-independent base change, we let

Funcart,�
M (Δ1,Sch) ⊂ Fun(Δ1,Sch)

†More generally, it suffices to assume that i and k are immersions and that the scheme-theoretic image of Z
in X is proper over Y , so that f∗i! � f!i!. This makes (2.6) a special case of (2.11).
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be the subcategory whose objects are the morphisms in M and whose morphisms are the tor-
independent Cartesian squares. By Proposition 2.2.2(ii), the assignment f �→ ηf is a section of
the Cartesian fibration classified by the functor

Funcart,�
slci (Δ1,Sch)op → τ�0Spc, (f : X → Y ) �→ τ�01BM(X/Y,Lf ),

where ‘slci’ is the collection of smoothable lci morphisms.
We expect that the construction f �→ ηf can be refined to a section of

Funcart,�
slci (Δ1,Sch)op → Spc, (f : X → Y ) �→ 1BM(X/Y,Lf ),

but this is a nontrivial task because the construction of ηf depends on a choice of factorization of
f . For our purposes, it will suffice to know that we do have such refinements on the subcategory
of regular immersions or that of smooth morphisms. In the case of regular closed immersions,
the construction of the fundamental class in [17, § 3.2] is clearly functorial, since blowing-up
commutes with tor-independent base change. The case of regular immersions follows since an
immersion factors canonically as a closed immersion followed by an open immersion. The case
of smooth morphisms can be reduced to the case of regular immersions by expressing the purity
transformation for a smooth morphism in terms of the purity transformation for its diagonal,
as in [17, (2.3.4.a)].

The functoriality of the fundamental class f �→ ηf propagates to the purity transformation
f �→ pf and to the Gysin map f �→ f!. For example, the Gysin map for regular closed immersions
can be viewed as a natural transformation between the two functors

Funcart,�
reg.cl.imm(Δ1,SchS)op → Spc,

(i : Z ↪→ X) �→ E(Z),

(i : Z ↪→ X) �→ EZ(X,−Li).

2.2.5. We now discuss the functoriality of the commutative square of Proposition 2.2.2(i).
Let

Funcart,�
M0,M1,M2

(Δ2,Sch) ⊂ Fun(Δ2,Sch)

be the subcategory whose objects are triangles

with fi ∈ Mi and whose morphisms are natural transformations composed of tor-independent
Cartesian squares. By Proposition 2.2.2(i), if f0 and f1 are lci and smoothable, the classes ηf1

and ηf2 · ηf0 in π01BM(Z/X,Lf1) are equal, where ηf2 · ηf0 is the composite

ΣLf11Z � Σf∗
2 Lf0 ΣLf21Z

ηf2−−→ f !
2Σ

Lf01Y

ηf0−−→ f !
2f

!
01X � f !

11X .

These equalities form a section of the functor

Funcart,�
slci,slci,slci(Δ

2,Sch)op → τ�−1Spc, (f0, f1, f2) �→ τ�−1 Maps1BM(Z/X,Lf1 )(ηf1 , ηf2 · ηf0),

This can be refined to a section of the functor

Funcart,�
M0,M1,M2

(Δ2,Sch)op → Spc, (f0, f1, f2) �→ Maps1BM(Z/X,Lf1 )(ηf1 , ηf2 · ηf0),

at least if each Mi is either the class of regular immersions or that of smooth morphisms. One
can reduce as in 2.2.7 to the case of regular closed immersions, where an explicit functorial
homotopy ηf1 � ηf2 · ηf0 is given by a double deformation to the normal cone [17, 3.2.19].
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3. Comparison of transfers

In this section we show that the framed transfers in cohomology provided by the motivic
recognition principle are given by Gysin maps. In § 3.1, we define the fundamental transfer
associated with a tangentially framed correspondence using Gysin maps. We then introduce in
§ 3.2 the Voevodsky transfer associated with an equationally framed correspondence, and we
show that the Voevodsky transfer computes the fundamental transfer. Finally, in § 3.3, we show
that the transfers obtained from the recognition principle agree with the Voevodsky transfer.

Throughout this section, we fix a base scheme S and a motivic spectrum E ∈ SH(S). As
explained in Remark 2.1.9, the spectrum E is only used for readability purposes.

3.1. The fundamental transfer

3.1.1. Recall that a tangentially framed correspondence between S-schemes X and Y is the
data of a span

over S, where f is finite syntomic, together with an equivalence τ : 0 � Lf in the ∞-groupoid
K(Z). We denote by CorrfrS (X,Y ) the ∞-groupoid of tangentially framed correspondences from
X to Y , defined as

CorrfrS (X,Y ) = colim
X

f←−Z→Y

MapsK(Z)(0,Lf ),

where the colimit is taken over the groupoid of spans with f finite syntomic.

3.1.2. Note that a finite syntomic morphism f : Z → X admits a canonical factorization

which we use to define the fundamental class ηf ∈ 1BM(Z/X,Lf ).

Definition 3.1.3. Let X,Y ∈ SchS and let α = (Z, f, h, τ) be a tangentially framed
correspondence from X to Y over S. For E ∈ SH(S), the fundamental transfer trη(α) : E(Y ) →
E(X) is the composition

E(Y ) h∗
−→ E(Z)

τ� E(Z,Lf )
f!−→ E(X).

Using the functoriality of f �→ ηf described in 2.2.7, we obtain a map

trη : CorrfrS (X,Y ) → Maps(E(Y ), E(X)), α �→ trη(α),

natural in (X,Y,E) ∈ Schop
S × SchS ×SH(S). If X and Y are smooth over S, then by the

Yoneda lemma we obtain a map

CorrfrS (X,Y ) → Maps(Σ∞
T X+,Σ∞

T Y+),

which we sometimes also denote by trη.
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Remark 3.1.4. Dually, a framed correspondence α as above also induces a map

MS(X)
f !

−→ MS(Z,−Lf )
τ� MS(Z) h∗−→ MS(Y ) (3.1)

in SH(S) (see 2.1.10 for the notation MS(X, ξ)). By unpacking the definitions, it is easy to show
that the natural transformation E(−) → Maps(MS(−), E) on S-schemes is also natural with
respect to Gysin maps. In particular, if X and Y (but not necessarily Z) are cdh-locally smooth
over S, applying Maps(−, E) to (3.1) yields the fundamental transfer trη(α) : E(Y ) → E(X).

3.1.3. Example: the action of K-theory. The ∞-groupoid CorrfrS (S, S) contains ΩK(S) as
a full subgroupoid. By construction, the composite

ΩK(S) ⊂ CorrfrS (S, S)
trη−−→ End(1S)

is the action of ΩK(S) on 1S induced by the motivic J-homomorphism K(S) → SH(S).
If S is a regular semilocal scheme over a field of characteristic not 2, π01S(S) is isomorphic

to the Grothendieck–Witt group GW(S) of nondegenerate symmetric bilinear forms over S
[6, Lemma 10.12]. This isomorphism is such that the J-homomorphism

O(S)× � K1(S) → π0 End(1S) � GW(S)

sends a unit a to the class 〈a〉 of the bilinear form (x, y) �→ axy.

3.1.4. Example: finite étale transfers. There is a canonical map CorrfétS (X,Y ) →
CorrfrS (X,Y ), sending a span

with f finite étale to the same span equipped with the canonical trivialization of Lf .
If S is a regular semilocal scheme over a field of characteristic not 2 and α is the finite étale

correspondence S
f←− T

id−→ T , the transfer

trη(α) : GW(T ) → GW(S)

is the Scharlau transfer associated with the canonical trace TrT/S : O(T ) → O(S). Indeed, one
is reduced to the case of a field extension using the Gersten resolution for Grothendieck–Witt
groups [8, Theorem 100], and in that case the claim was proved in [29, § 5].

3.1.5. The oriented case. Suppose given a retraction diagram

E
ι−→ MGL ⊗ E

ρ−→ E, ρ ◦ ι � idE ,

in SH(S); such a diagram exists if E is an MGL-module in the homotopy category hSH(S),
and it is given if E is an MGL-module in SH(S). Then the fundamental transfers in
E-cohomology are independent of the tangential framings. More precisely, given X,Y ∈ SchS ,
there is a canonical factorization

This follows at once from the fact that the MGL-linearized J-homomorphism

K(S) → SH(S), ξ �→ ΣξMGL

factors through the rank map rk: K → Z [6, § 16.2].
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3.2. The Voevodsky transfer

3.2.1. Let X and Y be S-schemes and let α ∈ Correfr,nS (X,Y ) be an equationally framed
correspondence of level n from X to Y [20, Definition 2.1.2]. We display α as the diagram

(3.2)

where f is finite, u is an étale neighborhood of Z in An
X , 0 is the zero section and the right-hand

square is Cartesian.
We will denote by P×n the n-fold product (P1)×n, regarded as a compactification of An,

and by ∂P×n ⊂ P×n the complementary reduced closed subscheme that is the union of the
‘faces’ P×i−1 × {∞} × P×n−i:

Definition 3.2.3. Let X,Y ∈ SchS and let α ∈ Correfr,nS (X,Y ) be the equationally framed
correspondence (3.2). For E ∈ SH(S), the Voevodsky transfer trV (α) : E(Y ) → E(X) is the
composition

E(Y ) � EY (An
Y ,On)

(ϕ,g)∗−−−−→ EZ(U,On) � EZ(P×n
X ,On)

→ EAn
X

(P×n
X ,On) 	←− EX(P×n

X ,On) � E(X).

Here, the maps EZ(P×n
X ,On) → EAn

X
(P×n

X ,On) ← EX(P×n
X ,On) are instances of (2.6). To

see that the latter is an equivalence, first note that it fits in the diagram

where the rows are the fiber sequences (2.8) and (2.9). By 2.1.19, the claim then follows from
the following lemma:

Lemma 3.2.4. The inclusion ∂P×n ⊂ P×n − 0 is an A1-cdh-equivalence over SpecZ.

Proof. We consider the commutative square of inclusions in PSh(Sch):

The upper horizontal map is a covering sieve in the closed topology, the lower horizontal map is
a covering sieve in the open topology, and the left vertical map is the colimit of an n-dimensional
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cube of A1-homotopy equivalences. In particular, these three maps are A1-cdh-equivalences,
hence so is the right vertical map. �

Remark 3.2.5. In general, U is an algebraic space and not a scheme, but this does
not matter. Indeed, the inclusion of schemes into (Zariski-locally quasi-separated) algebraic
spaces induces an equivalence between the ∞-categories of Nisnevich sheaves, by [28, Propo-
sition 5.7.6]. As a result, we may tacitly extend any Nisnevich sheaf, such as E(−) or
SH(−), to algebraic spaces. However, we can assume that U is a scheme in many cases
[20, Lemma A.1.2(iv)].

3.2.2. By Voevodsky’s lemma [20, Corollary A.1.7], the equationally framed correspondence
α is equivalently a morphism of pointed presheaves Σn

PX+ → LnisΣn
TY+. Explicitly, it is given

by the following zig-zag in PSh(SchS)∗:

Σn
PX+ =

P×n
X

∂̃P×n
X

→ P×n
X

P×n
X − Z

u←− U

U − Z

(ϕ,g)−−−→ An
Y

An
Y − 0

← Σn
TY+. (3.3)

Here, ∂̃P×n ⊂ P×n is the subpresheaf defined as the union

∂̃P×n =
n⋃

i=1

(
P×i−1 × {∞} × P×n−i

)
,

the first map is the collapse map, and the wrong-way maps are Nisnevich-local equivalences.
The Voevodsky transfer trV (α) : E(Y ) → E(X) is then equivalent to applying (the right Kan
extension of) the functor E(−,On) to the composite (3.3).

In particular, if X and Y are smooth over S, then (3.3) induces a morphism Σ∞
T X+ → Σ∞

T Y+

in SH(S), which gives the Voevodsky transfer upon applying Maps(−, E).

3.2.3. For every n � 0, Definition 3.2.3 gives a map

trV : Correfr,nS (X,Y ) → Maps(E(Y ), E(X)).

Using for instance (3.3), it is clear that this map is natural in (X,Y ) ∈ Schop
S × SchS . Moreover,

by [20, Remark 2.1.6], the triangles

naturally commute (here σ is the suspension morphism [20, 2.1.4]). Passing to the colimit gives
a natural map

trV : CorrefrS (X,Y ) → Maps(E(Y ), E(X)).

If we let X vary, note that Maps(E(Y ), E(−)) : Schop
S → Spc is an A1-invariant cdh-sheaf.

If Y is smooth over S, the forgetful map CorrefrS (−, Y ) → CorrfrS (−, Y ) is a motivic equivalence
[20, Corollary 2.3.27]. In that case, therefore, the Voevodsky transfer factors through the
∞-groupoid of tangentially framed correspondences, inducing a morphism

trV : CorrfrS (X,Y ) → Maps(E(Y ), E(X)). (3.4)

3.2.4. We now prove that the Voevodsky transfer agrees with the fundamental transfer of
Definition 3.1.3.
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Theorem 3.2.11. Let X,Y ∈ SchS and E ∈ SH(S). Then the triangle

commutes, naturally in E, X and Y . In particular, if Y is smooth over S, then the Voevodsky
transfer (3.4) coincides with the fundamental transfer.

Proof. Let α be an equationally framed correspondence as in (3.2), and let τ : 0 � Lf be
the induced trivialization in K(Z). We must show that the following diagram commutes:

To do so, we subdivide this diagram as follows:

(3.5)

The rectangle (1) commutes by the base change property of Gysin maps (Proposition 2.2.2(ii))
applied to the Cartesian square

which is tor-independent since i is a regular immersion of codimension n. Thus, the unnamed
equivalence in (1) is induced by the isomorphism Ni � h∗(N0) � On. This isomorphism also
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induces the trivialization τ , whence the commutativity of the square (2). The triangles (3),
(4) and (5) all commute by the compatibility of Gysin maps with composition (Proposi-
tion 2.2.2(i)), where the commutativity of (5) means that going around starting from the
lower left corner gives the identity.

To conclude the proof, we must show that the diagram (3.5) can be promoted to a functor of
the triple (X,Y, α). This follows from the functoriality properties of Gysin maps discussed in
2.2.7 and 2.2.8. For the triangle (4), we must recall that the fundamental class ηf was defined
using the canonical factorization Z ↪→ V(f∗OZ) → X. The commutativity of (4) can be made
functorial using the triangles

in which the upper three maps are regular closed immersions and the other five are smooth.
This concludes the proof of the theorem. �

3.3. The transfer from the recognition principle

3.3.1. Recall that there is an ∞-category Corrfr(SmS) whose objects are smooth
S-schemes and whose mapping spaces are the ∞-groupoids CorrfrS (X,Y ), which gives rise to
the ∞-category SHfr(S) of framed motivic spectra [20, § 3]. The ‘graph’ functor

γ : SmS+ → Corrfr(SmS), (f : X+ → Y+) �→ (X ←↩ f−1(Y )
f−→ Y ),

induces an adjunction

γ∗ : SH(S) � SHfr(S) : γ∗

such that the following square commutes:

By the reconstruction theorem [31, Theorem 16], the functor γ∗ : SH(S) → SHfr(S) is
an equivalence of ∞-categories. It follows that E-cohomology of smooth S-schemes acquires
canonical framed transfers:

The goal of this section is to show that these transfers coincide with the Voevodsky transfers,
hence with the fundamental transfers.

3.3.2. We need a technical preliminary result, which we formulate in a more general context.
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Let C be a presentably symmetric monoidal ∞-category and let T ∈ C be an object. For
any presentable C-module M , we have an adjunction

ΣT : M � M : ΩT,

where ΣT = T ⊗ (−). We can then form the diagram

N × N → Fun(M,M), (m,n) �→ Ωn
TΩm

TΣm
TΣn

T,

where the transition maps use the unit transformation id → ΩTΣT and (in one direction) the
cyclic permutations ΣTΣm

T � Σm
TΣT and Ωm

TΩT � ΩTΩm
T .

We denote by SptT(M) the ∞-category of T-spectra in M , defined as the limit

SptT(M) = lim
(
· · · → M

ΩT−−→ M
ΩT−−→ M

)
.

We have an adjunction

Σ∞
T : M � SptT(M) : Ω∞

T ,

where Ω∞
T is the projection to the last copy of M . If ΩT preserves sequential colimits, then

Ω∞
T Σ∞

T � colim
n

Ωn
TΣn

T.

Lemma 3.3.3. With the above notation, suppose that ΩT : M → M preserves sequential
colimits and that the cyclic permutation of T⊗n is homotopic to the identity for some n � 2.
Then the natural transformations

Ω∞
T Σ∞

T � colim
p

Ωp
TΣp

T → colim
p,q

Ωp
TΩq

TΣq
TΣp

T

Ω∞
T Σ∞

T � colim
q

Ωq
TΣq

T → colim
p,q

Ωp
TΩq

TΣq
TΣp

T,

between endofunctors of M are homotopic equivalences.

Proof. We have a commutative diagram

where F0 = Σ∞
T and F1 = SptT(Σ∞

T ). Let Gi be the right adjoint to Fi and ui : id → GiFi the
unit transformation. Then the given natural transformations are Ω∞

T uiΣ∞
T for i = 0, 1.

By the assumption on T, the functor SptT(−) is a left localization of the ∞-category of
presentable C-modules [42, Corollary 2.22]. This implies that F0 and F1 are equivalences and
moreover that there is a natural equivalence α : F0 � F1 such that αΣ∞

T is the identity. In
particular, the unit transformations ui are equivalences, and α and its mate G0 � G1 give the
desired homotopy. �

3.3.3. We now prove that the Voevodsky transfer coincides with the transfer coming from
the reconstruction theorem. For X,Y ∈ SmS , we can regard the Voevodsky transfer as a map

trV : CorrefrS (X,Y ) → MapsSH(S)(Σ
∞
T X+,Σ∞

T Y+), (3.6)

sending the equationally framed correspondence (3.2) to the composite (3.3). Since Y is smooth,
this map factors through the ∞-groupoid CorrfrS (X,Y ).
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Theorem 3.3.6. For X,Y ∈ SmS , the following diagram commutes, naturally in X and Y :

Proof. Recall the endofunctors hefr,n
S and hefr

S of PShΣ(SmS)∗ defined in [20, 2.1.10]. By
Voevodsky’s lemma, there is a canonical transformation

hefr,n
S → Ωn

PLnisΣn
T : PShΣ(SmS)∗ → PShΣ(SmS)∗,

extending an equivalence on representables. Composing with Lnis → Lmot and taking the
colimit over n, we obtain a transformation

hefr
S → Ω∞

T Σ∞
T Lmot,

which extends (3.6) to pointed presheaves. We will prove more generally that the following
diagram of endofunctors of PShΣ(SmS)∗ commutes:

(3.7)

Since hefr
S is by definition the left Kan extension of its restriction to SmS+, it suffices to show

that the diagram commutes on SmS+. Recall that the unit map id → γ∗γ∗ � hfr
S factors as

id → hefr
S → hfr

S ,

where the second map is a motivic equivalence [20, Corollary 2.3.27].
Consider the two commuting squares

where the vertical maps are induced by (3.6). The two upper horizontal maps can be identified
with the two composites in the diagram (3.7). On the other hand, the two lower horizontal
maps are equivalent by Lemma 3.3.3. It therefore suffices to show that the right vertical map
is an equivalence.

We have a commuting triangle

The diagonal map is an equivalence by Lemma 3.3.3. The vertical map is the unit map
Ω∞

T Σ∞
T → Ω∞

T γ∗γ∗Σ∞
T , which is an equivalence since γ∗ : SH(S) → SHfr(S) is fully faithful.

Hence, the bottom horizontal map is an equivalence, as desired. �
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Corollary 3.3.8. Let k be a perfect field and let F ∈ PShΣ(Smk)∗. Then the map (3.6)
induces an equivalence

Lzar(LA1hefr
k (F))gp � Ω∞

T Σ∞
T F : Smop

k → CMongp(Spc).

Note that we already have such an equivalence by [20, Corollary 3.5.16]. The point of this
corollary is that this equivalence is induced by Voevodsky’s lemma, as one would expect.

Proof. If we plug F in the diagram (3.7), we obtain a commutative square of
Fin∗-objects, all of which are E∞-objects except the top left corner. The upper left vertical
map is a motivic equivalence by [20, Corollary 2.3.27], and so is the lower left vertical map
since γ∗γ∗ preserves motivic equivalences [20, Proposition 3.2.14]. The right vertical map is
an equivalence by [20, Theorem 3.5.12], and the lower horizontal map is group completion
by [20, Corollary 3.5.10]. The commutativity of the diagram shows that (3.6) induces an
equivalence

(Lmothefr
k (F))gp � MapsSH(k)(Σ

∞
T (−)+,Σ∞

T F).

On the other hand, the canonical map

Lzar(LA1hefr
k (F))gp → (Lmothefr

k (F))gp

is an equivalence since the left-hand side is already Nisnevich-local and A1-invariant
[20, Corollary 3.5.16]. �

3.3.4. Combining Theorems 3.2.11 and 3.3.6 we obtain:

Theorem 3.3.10. For X,Y ∈ SmS , the following diagram commutes, naturally in X and
Y :

Corollary 3.3.11. Let X be a smooth S-scheme. Then the motivic J-homomorphism
ΩK(X) → End(Σ∞

T X+) coincides with the composition

ΩK(X) ⊂ CorrfrS (X,X)
Σ∞

T,fr−−−→ End(Σ∞
T,frX) � End(Σ∞

T X+).

Proof. This follows immediately from Theorem 3.3.10. �

4. Finite correspondences for motivic ring spectra

In this section we introduce finite R-correspondences for a motivic ring spectrum R, generalizing
the finite correspondences of Voevodsky and the finite Milnor–Witt correspondences of
Calmès and Fasel. In § 4.1, we construct the homotopy category hCorrR(SmS) of finite
R-correspondences between smooth S-schemes, together with a functor to the homotopy
category of R-modules. In § 4.2, we construct a functor from the category of (tangentially)
framed correspondences to that of finite R-correspondences and compare it with the free R-
module functor. Finally, in § 4.3, we compare our constructions with those of Voevodsky and
of Calmès–Fasel.

Throughout this section, S is a fixed base scheme. All S-schemes are assumed to be separated.
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4.1. The category of finite R-correspondences

Given an associative ring spectrum R ∈ SH(S), we will construct an hSpc-enriched category
hCorrR(SmS) of finite R-correspondences between smooth S-schemes.

To motivate our construction, recall that a morphism from X to Y in Voevodsky’s category of
finite correspondences over a regular scheme S is an element of the free abelian group generated
by integral closed subschemes Z ⊂ X ×S Y that are finite and surjective over a component of
X. Alternatively, we can think of a morphism in this category as a reduced closed subscheme
Z ⊂ X ×S Y , each of whose irreducible components is finite and surjective over a component
of X and labeled by an integer. The category hCorrR(SmS) will admit a similar description,
but with integers replaced by Borel–Moore R-homology classes of Z over X.

4.1.1. Let S be a scheme and R ∈ SH(S). For separated S-schemes X,Y ∈ SchS , define

CorrRS (X,Y ) = colim
Z⊂X×SY

RBM(Z/X),

where the colimit is taken over the filtered poset of reduced subschemes Z ⊂ X ×S Y that are
finite and universally open† over X. To form this colimit, we use the covariant functoriality of
Borel–Moore homology with respect to proper morphisms (see 2.1.11).

4.1.2. Suppose now that R ∈ SH(S) is a homotopy associative ring spectrum, that is, R is
an associative algebra in the homotopy category hSH(S). There is a map

ΓR : MapsS(X,Y ) → CorrRS (X,Y )

sending an S-morphism f : X → Y to its graph Γf ⊂ X ×S Y labeled by the unit element
1 ∈ RBM(Γf/X) � Maps(1X , RX).

4.1.3. For X,Y, T ∈ SchS , we define a composition law

◦ : CorrRS (X,Y ) × CorrRS (Y, T ) → CorrRS (X,T ) (4.1)

as follows. For any closed subschemes Z ⊂ X ×S Y and Z ′ ⊂ Y ×S T , finite and universally
open over X and Y , respectively, we consider the 2-span

Let p : Z ′′ → X ×S T be the induced map and let Z ′ ◦ Z ⊂ X ×S T be its reduced image. It is
clear that Z ′ ◦ Z is finite and universally open over X. We define the pairing

θBM : RBM(Z/X) ×RBM(Z ′/Y ) → RBM(Z ′ ◦ Z/X)

as the composition

RBM(Z/X) ×RBM(Z ′/Y )
id×g∗
−−−−→ RBM(Z/X) ×RBM(Z ′′/Z)

μBM

−−−→ RBM(Z ′′/X)
p∗−→ RBM(Z ′ ◦ Z/X).

†Equivalently, when X is Noetherian, universally equidimensional [48, Proposition 2.1.7].
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Here, μBM is the composition product (which uses the ring structure on R, see 2.1.20(3)), and
p∗ is the proper pushforward in Borel–Moore homology. More succinctly,

θBM(x, y) = p∗(g∗(y) · x).

The map (4.1) is then the filtered colimit over Z and Z ′ of the maps θBM.

Lemma 4.1.5. The composition law (4.1) is unital and associative up to homotopy, with
identity ΓR(idS) ∈ CorrRS (X,X).

Proof. Let X1, X2, X3 and X4 be smooth S-schemes, and let Zi,i+1 ⊂ Xi ×S Xi+1 be
reduced subschemes, finite and universally open over Xi. Let xi ∈ RBM(Zi,i+1/Xi) for each
1 � i � 3. Consider the diagram

where the squares are Cartesian. It suffices to note that the two possible ways of composing
the elements xi are both equal to

p∗(h∗(x3) · g∗(x2) · x1),

where g : Z12 → X2, h : Z123 → X3 and p : Z1234 → Z34 ◦ Z23 ◦ Z12. This follows directly from
the properties of the composition product listed in [14, 1.2.8]. The fact that ΓR(idX) is the
identity is trivial. �

4.1.4. The category of finite R-correspondences. In view of Lemma 4.1.5, we can define a
category hCorrR(SchS) as follows.

• The objects of hCorrR(SchS) are separated S-schemes.
• The set of morphisms from X to Y is π0CorrRS (X,Y ).
• The identity morphism at X is [ΓR(idX)] ∈ π0CorrRS (X,X).
• The composition law is given by π0 of the composition law (4.1).

It is moreover easy to show that the morphisms ΓR defined in 4.1.2 assemble into a functor

ΓR : SchS → hCorrR(SchS).

For any full subcategory C ⊂ SchS , we denote by hCorrR(C) the corresponding full
subcategory of hCorrR(SchS).

Remark 4.1.7. By construction, hCorrR(C) is enriched in the homotopy category hSpc. If
R is an A∞-ring spectrum, we expect that with more effort one can construct an ∞-category
CorrR(C) with mapping spaces CorrRS (X,Y ), whose homotopy category is hCorrR(C); this
explains our notation for the latter category. In our two main examples, when C is the category
of smooth schemes over a field and R = HZ or R = HZ̃, we will see that the spaces CorrRS (X,Y )
are always discrete, so that CorrR(C) = hCorrR(C).
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4.1.5. We note that the category hCorrR(SchS) is semiadditive, with the sum given by the
disjoint union of schemes. In fact, we have canonical equivalences of spaces

CorrRS (X, ∅) � ∗ � CorrRS (∅, Y ),

CorrRS (X,Y1 � Y2) � CorrRS (X,Y1) × CorrRS (X,Y2),

CorrRS (X1 �X2, Y ) � CorrRS (X1, Y ) × CorrRS (X2, Y ).

Remark 4.1.9. In general, CorrRS (−, Y ) is not a Nisnevich sheaf. Indeed, Calmès and Fasel
show in [11, Example 5.12] that CorrHZ̃

k (−,A1
k − {0, 1}) is not a Nisnevich sheaf.

4.1.6. The functor to R-modules. For R ∈ SH(S) a homotopy associative ring spectrum,
we define a functor

MR : hCorrR(SmS) → ModR(hSH(S)), X �→ R⊗ Σ∞
T X+.

We shall use the fact that the four functors f∗, f∗, f!, and f ! preserve R-modules, in the sense
that they lift canonically from hSH(−) to ModR(hSH(−)).

Let Z ⊂ X ×S Y and α ∈ RBM(Z/X) define a finite R-correspondence from X to Y . Consider
the diagram

As in 2.2.1, α gives rise to a natural transformation

α : f∗ → f ! : ModR(hSH(X)) → ModR(hSH(Z)).

The functor MR then sends (Z,α) to the composition

R⊗ Σ∞
T X+ � p!p

!R
unit−−→ p!f∗f∗p!R

α−→ p!f!f
!p!R � q!g!g

!q!R
counit−−−−→ q!q

!R � R⊗ Σ∞
T Y+.

Compatibility with composition is a straightforward verification.

Remark 4.1.11. If R is an A∞-ring spectrum, then the four functors f∗, f∗, f! and f ! lift
canonically from SH(−) to ModR(SH(−)), and the above construction actually defines an
hSpc-enriched functor

MR : hCorrR(SmS) → hModR(SH(S)).

Following Remark 4.1.7, we expect that it can be refined to a functor of ∞-categories

MR : CorrR(SmS) → ModR(SH(S)).

4.1.7. The symmetric monoidal structure. Let R ∈ SH(S) be a homotopy commutative
ring spectrum. Then the category hCorrR(SchS) acquires a symmetric monoidal structure
given on objects by X ⊗ Y = X ×S Y . On morphisms, one uses the external pairing

RBM(Z/X) ×RBM(Z ′/X ′) → RBM(Z ×S Z ′/X ×S X ′).

The compatibility between this pairing and composition of finite R-correspondences uses the
commutativity of R. Furthermore, the functor MR : hCorrR(SmS) → ModR(hSH(S)) admits
a canonical symmetric monoidal structure. We omit the somewhat tedious details.
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Remark 4.1.13. If R is an En+1-ring spectrum (1 � n � ∞), we expect an En-
monoidal structure on the ∞-category CorrR(SmS) and on the functor MR : CorrR(SmS) →
ModR(SH(S)) (see Remark 4.1.11).

4.1.8. We can express finite R-correspondences in terms of twisted cohomology with
support. Let Z ⊂ X ×S Y be a reduced subscheme that is finite and universally open over X,
and assume that Y is smooth over S. As explained in 2.1.21, there is a canonical equivalence

RBM(Z/X) � RZ(X ×S Y, π∗
Y ΩY/S), (4.2)

where πY : X ×S Y → Y is the projection. This equivalence is moreover natural in Z by
2.1.21(2), so that

CorrRS (X,Y ) � colim
Z⊂X×SY

RZ(X ×S Y, π∗
Y ΩY/S).

Example 4.1.16. Suppose that S is regular Noetherian and let X,Y ∈ SmS . Then
KGLBM(Z/X) is the G-theory space G(Z), and hence

CorrKGL
S (X,Y ) = colim

Z⊂X×SY
G(Z).

Alternatively, by (4.2) and the continuity of K-theory, CorrKGL
S (X,Y ) is the K-theory space

of the stable ∞-category of perfect complexes on X ×S Y supported on a subscheme finite and
equidimensional over X.

4.1.9. We observe that the notion of finite R-correspondence between smooth S-schemes
depends only on the very effective cover of R (in the sense of Spitzweck–Østvær [45]).

Proposition 4.1.18. Let S0 be a Noetherian scheme of finite Krull dimension with
perfect residue fields and let R ∈ SH(S0). Then the very effective cover f̃0R → R induces
an equivalence

Corrf̃0R
S (X,Y ) � CorrRS (X,Y )

for every essentially smooth S0-scheme S and every X,Y ∈ SmS .

Proof. It will suffice to show that the map

(f̃0R)BM(Z/X) → RBM(Z/X)

is an equivalence for every X ∈ SmS and every finite smoothable morphism Z → X. By
standard limit arguments, we can reduce to the case S = S0. By (2.10), it is enough to show
that the map (f̃0R)Z(V, ξ) → RZ(V, ξ) is an equivalence for every V ∈ SmS , ξ ∈ K(V ) of rank
r, and Z ⊂ V fiberwise of codimension � r. Since the question is local on V , we can assume
that ξ is pulled back from S, so that

RZ(V, ξ) = MapsSH(S)(Σ
∞
T (V/V − Z),ΣξR)

and similarly for f̃0R. Since f̃rΣξR � Σξ f̃0R, it remains to show that Σ∞
T (V/V − Z) is very

r-effective. By [6, Proposition B.3] and the assumptions on S, we may assume that S is the
spectrum of a perfect field. In this case, Z admits a finite stratification by smooth schemes and
the result is easily proved by induction using the purity isomorphism. �

4.1.10. In case k is a field and R = HZ or R = HZ̃, the hypothetical ∞-category
CorrR(Smk) happens to be a 1-category, that is, it is equivalent to its homotopy category
hCorrR(Smk). This is a special case of the following proposition. We refer to [4, § 3] for the
definition of the effective homotopy t-structure.
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Proposition 4.1.20. Let k be a perfect field and let R ∈ SH(k) be a motivic spectrum in
the heart of the effective homotopy t-structure. For any essentially smooth k-scheme S and
X,Y ∈ SmS , the ∞-groupoid CorrRS (X,Y ) is discrete.

Proof. Using the description of CorrRS (X,Y ) given in 4.1.14, it suffices to show that the
∞-groupoid

RZ(X ×S Y, π∗
Y ΩY/S)

is discrete for any Z ⊂ X ×S Y finite over X. By a standard limit argument, we can assume
that S is smooth over k. The result then follows from Lemma 4.1.21. �

Lemma 4.1.21. Let k be a perfect field, V a smooth k-scheme, ξ ∈ K(V ), and Z ⊂ V a
closed subscheme of codimension � rk ξ. Let R ∈ SH(k) be a motivic spectrum in the heart of
the effective homotopy t-structure. Then the ∞-groupoid RZ(V, ξ) is discrete.

Proof. Suppose first that Z is smooth. We then have the purity equivalence (2.7)

RZ(V, ξ) � R(Z, ξ −NZ/X).

Let ζ = ξ −NZ/X . By the assumption on ξ, we have rk ζ � 0. The assumption on R means
that R is right orthogonal to SHeff

�1(k). Since Z is smooth, RZ ∈ SH(Z) is right orthogonal
to SHeff

�1(Z), hence so is ΣζRZ , because Σ−ζ is a right t-exact endomorphism of SHeff(Z). It
follows at once that R(Z, ζ) = MapsSH(Z)(1Z ,ΣζRZ) is discrete.

If Z is an arbitrary closed subscheme, we can assume that it is reduced since cohomology
with support only depends on Zred. We will prove the claim by induction on the dimension of
Z. If Z is empty, then RZ(V, ξ) is contractible. Otherwise, since k is perfect, Z is generically
smooth, so there is a reduced closed subscheme Z1 ⊂ Z of strictly smaller dimension such that
Z − Z1 is smooth. By (2.8), we have a fiber sequence (of grouplike E∞-spaces)

RZ1(V, ξ) → RZ(V, ξ) → RZ−Z1(V − Z1, ξ).

By the induction hypothesis, RZ1(V, ξ) is discrete since rk ξ � codim(Z, V ) � codim(Z1, V ).
Since Z − Z1 is smooth, we have already proven that RZ−Z1(V − Z1, ξ) is discrete. It follows
that RZ(V, ξ) is also discrete. �

Remark 4.1.22. The converse of Proposition 4.1.20 also holds trivially: if CorrRk (X,Y )
is discrete for all X,Y ∈ Smk, then in particular R(X) � CorrRk (X,Spec k) is discrete for all
X ∈ Smk, that is, f̃0R belongs to the heart of the effective homotopy t-structure. Thus, the
hypothetical ∞-category CorrR(Smk) is a 1-category if and only if f̃0R ∈ SHeff(k)♥, in which
case R is necessarily an algebra over πeff

0 (1) � HZ̃. In particular, for more general R, there is
no hope to recover R-modules from the 1-category hCorrR(Smk).

4.1.11. It will be useful to have a description of the composition in hCorrR(SmS) in terms
of cohomology with support. Suppose that X,Y, T are smooth S-schemes and Z ⊂ X ×S Y
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and Z ′ ⊂ Y ×S T are reduced subschemes that are finite and universally open over X and Y ,
respectively. We will refer to the diagram

Recall from 4.1.3 that Z ′ ◦ Z ⊂ X ×S T is the reduced subscheme pXT (Z ′′) ⊂ X ×S T where
Z ′′ = Z ×Y Z ′ ⊂ X ×S Y ×S T . We define the pairing

θ : RZ(X ×S Y, r∗Y ΩY/S) ×RZ′(Y ×S T, s∗TΩT/S) → RZ′◦Z(X ×S T, q∗TΩT/S)

as the composition

where μ is the cup product and pXT ! is the Gysin map (2.11). More succinctly,

θ(x, y) = pXT !(p∗XY x ∪ p∗Y T y).

We have the following comparison with the pairing θBM defined in 4.1.3.

Lemma 4.1.24. The following diagram commutes, where the horizontal equivalences are
instances of (4.2):

Proof. Recall from 2.1.21 that we can factor the cup product as follows:
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where i : Z × T ↪→ X × Y × T . In the following diagram, the left column is θ and the right
column is θBM:

The three rectangles commute by 2.1.21 (1), (3) and (2), respectively. �

4.2. From framed correspondences to finite R-correspondences

Let R be a homotopy associative ring spectrum. We will construct a canonical functor

ΦR : hCorrfr(SchS) −→ hCorrR(SchS),

where Corrfr(SchS) is the ∞-category of framed correspondences constructed in [20].

4.2.1. For S-schemes X and Y , we define a map

ΦR : CorrfrS (X,Y ) → CorrRS (X,Y ) (4.3)

as follows. A framed correspondence from X to Y is given by a span

where f is finite syntomic, together with a trivialization τ ∈ MapsK(Z)(0,Lf ).
Since the morphism f is finite syntomic, it has a fundamental class

ηf ∈ 1BM(Z/X,Lf )

(defined using the canonical factorization Z ↪→ V(f∗OZ) → X, see 3.1.2). We will also denote
by

ηf ∈ RBM(Z/X,Lf )

its image by the map 1BM(Z/X,Lf ) → RBM(Z/X,Lf ) induced by the unit 1S → R. Applying
the trivialization τ , we get an element τ∗(ηf ) ∈ RBM(Z/X).

The map (f, g) : Z → X ×S Y is finite; we denote by V ⊂ X ×S Y its reduced image. Note
that V is finite and universally open over X. Using the proper pushforward in Borel–Moore
homology, we obtain (f, g)∗(τ∗(ηf )) ∈ RBM(V/X). This construction defines a map

MapsK(Z)(0,Lf ) → RBM(V/X), τ �→ (f, g)∗(τ∗(ηf )).

Taking the colimit over the groupoid of finite syntomic spans from X to Y , we obtain the
desired map (4.3).
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Proposition 4.2.3. The maps (4.3) define an hSpc-enriched functor

ΦR : hCorrfr(SchS) −→ hCorrR(SchS)

such that the following triangle commutes:

Proof. It is clear that ΦR(γ(f)) = ΓR(f) for any S-morphism f , and in
particular ΦR preserves identity morphisms. Let α = (Z, f, g, τ) ∈ CorrfrS (X,Y ) and
β = (Z ′, h, s, τ ′) ∈ CorrfrS (Y, T ) be framed correspondences, where τ ∈ MapsK(Z)(0,Lf ) and
τ ′ ∈ MapsK(Z′)(0,Lh), and form the composite 2-span

The composition β ◦ α is then given by

β ◦ α = (Z ′′, f ◦ h′, k ◦ g′, σ) ∈ CorrfrS (X,T ),

where σ ∈ MapsK(Z′′)(0,Lf◦h′) is the composite

0 τ⊕τ ′
−−−→ h′∗Lf ⊕ g′∗Lh � Lf◦h′ .

We want to compare ΦR(β) ◦ ΦR(α) and ΦR(β ◦ α). We first note the following equations
between fundamental classes:

g∗(τ ′∗ηh) · τ∗ηf = g′∗(τ ′)∗ηh′ · τ∗ηf = σ∗(ηh′ · ηf ) = σ∗ηf◦h′ .

Here the first equality is the stability of fundamental classes under tor-independent base change,
the second holds by definition of σ, and the last is the associativity of fundamental classes
[17, Definition 2.3.6]. Let V ⊂ X ×S Y be the image of Z and V ′ ⊂ Y ×S T the image of Z ′.
We now consider the following diagram in which all parallelograms are Cartesian:

For any z ∈ RBM(Z/X) and z′ ∈ RBM(Z ′/Y ), we have the following equivalences in
RBM(V ′′/X), where the parenthetical justifications refer to [14, 1.2.8]:

v∗p′∗(z
′) · p∗(z) = q∗(p∗v∗p′∗(z

′) · z) (projection formula)

= q∗(g∗p′∗(z
′) · z) (composition)
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= q∗(r∗g∗(z′) · z) (base change)

= q∗r∗(g∗(z′) · z) (compatibility with pushforwards)

= (q ◦ r)∗(g∗(z′) · z) (composition).

Plugging in z = τ∗ηf and z′ = τ ′∗ηh and pushing forward the result to RBM(V ′ ◦ V/X) gives
the desired equivalence

ΦR(β) ◦ ΦR(α) � ΦR(β ◦ α).

To see that ΦR is indeed an hSpc-enriched functor, we must show that this equivalence is
natural in the pair (α, β) ∈ CorrfrS (X,Y ) × CorrfrS (Y, Z). This is essentially obvious from the
construction, using the functoriality of fundamental classes discussed in 2.2.7 and 2.2.8. �

The following corollary is a variant of [19, Theorem 10.1].

Corollary 4.2.4. Let k be a perfect field and R ∈ SH(k) a homotopy associative ring
spectrum. Let F be an A1-invariant presheaf of abelian groups on hCorrR(Smk) that preserves
finite products. Then the Nisnevich sheaf LnisF on Smk is strictly A1-invariant and the
canonical map Hi

zar(−, LzarF) → Hi
nis(−, LnisF) is an isomorphism for all i � 0.

Proof. This follows from the existence of the functor ΦR : Corrfr(Smk) → hCorrR(Smk)
and [20, Theorem 3.4.11]. �

4.2.2. Suppose that R is homotopy commutative. As explained in 4.1.12, hCorrR(SmS) is
then a symmetric monoidal category. Recall that Corrfr(SmS) is also a symmetric monoidal
∞-category. One can easily check that the functor

ΦR : hCorrfr(SmS) → hCorrR(SmS)

can be uniquely promoted to a symmetric monoidal functor in such a way that the natural
equivalence ΦR ◦ γ � ΓR is monoidal.

4.2.3. We now relate the functor ΦR to the free R-module functor.

Proposition 4.2.7. Let R ∈ SH(S) be a homotopy associative ring spectrum. Then the
following diagram of hSpc-enriched categories commutes:

Furthermore, if R is homotopy commutative, this square commutes in the 2-category of
symmetric monoidal hSpc-enriched categories.

Proof. By definition of these functors, we have given isomorphisms MRΦR(X) � R⊗
Σ∞

T X+ � R⊗ γ∗Σ∞
T,frX for every X ∈ SmS . Moreover, when R is homotopy commutative,
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these isomorphisms trivially intertwine the monoidal structures of these functors. It thus
remains to show that the following square commutes for every X,Y ∈ SmS :

(4.4)

By Theorem 3.3.10, the top horizontal map in (4.4) is the fundamental transfer trη. Let
ϕ = (Z, f, g, τ) be a framed correspondence from X to Y , and let V ⊂ X ×S Y be the reduced
image of Z:

Then ΦR(ϕ) = (V, α) for some α ∈ RBM(V/X), inducing a natural transformation
α : u∗ → u! in R-modules. In the following diagram, the top row is trη(ϕ) (in the form described
in Remark 3.1.4), while the bottom row is MRΦR(ϕ):

The square involving α commutes by definition of α. The commutativity of the boundary of
this diagram witnesses the commutativity of the square (4.4). �

Remark 4.2.9. If R is A∞, we can replace the lower right corner in Proposition 4.2.7
by hModR(SH(S)). Continuing Remarks 4.1.7, 4.1.11 and 4.1.13, we moreover expect that
this square can be promoted to a commuting square of ∞-categories, and of En-monoidal
∞-categories if R is En+1.

4.3. Voevodsky correspondences and Milnor–Witt correspondences

We show that the ∞-category of finite HZ-correspondences (respectively, of finite HZ̃-
correspondences) recovers Voevodsky’s category of finite correspondences [37, Lecture 1]
(respectively, Calmès and Fasel’s category of finite Milnor–Witt correspondences [11]). We
then show that the functor ΦHZ (respectively, ΦHZ̃) recovers the functor cyc constructed in
[20, § 5.3] (respectively, the functor of Déglise and Fasel [16, Proposition 2.1.12]).

4.3.1. Reminders on motivic cohomology. Over a Dedekind domain D, we will consider the
motivic cohomology spectrum HZ ∈ SH(D) constructed by Spitzweck [44, Definition 4.27].
It is an oriented E∞-ring spectrum that represents Bloch–Levine motivic cohomology. In
particular, for an essentially smooth D-scheme X and ξ ∈ K(X) of rank r, we have

HZ(X, ξ) � zrzar(X, ∗), (4.5)
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where zrzar(X, ∗) denotes the sheafification of Bloch’s cycle complex zr(X, ∗) with respect to
the Zariski topology on SpecD. This identification is natural in X, where the functoriality of
Bloch’s cycle complex comes from Levine’s moving lemma [34]. If Z ⊂ X is a closed subscheme
of codimension c, the localization theorem [33, Theorem 1.7] implies that

HZZ(X, ξ) � zr−c
zar (Z, ∗). (4.6)

Recall that HZ belongs to the heart of the effective homotopy t-structure on SH(D)
[6, Lemma 13.6]. Being the zeroth slice of the sphere spectrum [6, Theorem B.4], the spectrum
HZ admits in fact a unique E∞-ring structure with given unit.

When D is a field, HZ coincides with Voevodsky’s motivic cohomology spectrum, but this
is not known in general. In this case, Bloch’s cycle complex admits an E∞-ring structure
compatible with the intersection of cycles [10, § 5], and the equivalence (4.5) is multiplicative.

4.3.2. HZ-correspondences versus Voevodsky correspondences. We let CorS denote
Voevodsky’s category of finite correspondences between smooth separated S-schemes, as
defined in [37, Appendix 1A].

Lemma 4.3.5. Let S be the spectrum of a Dedekind domain, f : X → Y a morphism between
essentially smooth S-schemes, Z ⊂ X a closed subscheme flat over S such that the restriction
of f to Z is finite, and ξ ∈ K(Y ) of rank codim(f(Z), Y ). Then the Gysin map

f! : HZZ(X, f∗ξ + Lf ) → HZf(Z)(Y, ξ)

agrees with the pushforward of codimension 0 cycles f∗ : z0(Z) → z0(f(Z)) under the
identification (4.6).

Proof. Let η ∈ S be the generic point. Since f(Z) is flat over S, the pullback z0(f(Z)) →
z0(f(Z) ×S η) is an isomorphism, so we may assume that S is the spectrum of a field k. By limit
arguments, we can assume k perfect and Y smooth over k. Replacing Y by an open subscheme,
we can further assume that Z and f(Z) are smooth over k. Since the Gysin map is compatible
with purity isomorphisms, we are reduced to the following claim: if L/K is a finite extension
of finitely generated fields over k, the Gysin map Z � HZ(SpecL,LL/K) → HZ(SpecK) � Z
is multiplication by [L : K]. This is a special case of [15, Example 3.2.9(1)]. �

Proposition 4.3.6. Let S be essentially smooth over a Dedekind domain. Then the
symmetric monoidal ∞-category CorrHZ(SmS) is a 1-category and is equivalent to CorS .

Proof. For smooth S-schemes X and Y , we have

CorrHZ
S (X,Y ) � colim

Z⊂X×SY
HZZ(X ×S Y, π∗

Y ΩY/S),

by 4.1.14. It follows from (4.6) that

HZZ(X ×S Y, π∗
Y ΩY/S) � z0(Z, ∗) �

⊕
Z(0)

Z.

Hence,

CorrHZ
S (X,Y ) �

⊕
Z⊂X×SY

Z,

where the sum is taken over all integral closed subschemes of X ×S Y that are finite and
surjective over a component of X. In particular, CorrHZ(SmS) is a 1-category, and its mapping
spaces are the same as in Voevodsky’s category.
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To compare the composition laws, we use the description of the composition in CorrHZ(SmS)
via the pairing θ (Lemma 4.1.24). The composition in CorS is defined in exactly the same
way, except that it uses the intersection product and the pushforward of cycles instead of
the cup product and the Gysin map in HZ-cohomology. We must therefore show that these
constructions yield cycles with the same multiplicities. Since the generic points of the cycles
involved lie over generic points of S, we can replace S by its generic points and hence assume
that S is a field. In this case, the intersection product and the cup product agree because
the isomorphism (4.5) is compatible with the multiplicative structures. The fact that the
pushforwards agree is a special case of Lemma 4.3.5. Finally, the fact that the symmetric
monoidal structures agree also follows from the multiplicativity of the isomorphism (4.5). �

4.3.3. In [20, § 5.3], we defined a symmetric monoidal functor

cyc : Corrfr(SmS) → CorS

sending a framed correspondence

to the cycle (f, g)∗[Z] on X ×S Y , where [Z] ∈ z0(Z) is the fundamental cycle of Z. By
Proposition 4.3.6, we also have the symmetric monoidal functor

ΦHZ : Corrfr(SmS) → CorrHZ(SmS) � CorS

defined in § 4.2.

Proposition 4.3.8. For S essentially smooth over a Dedekind domain, there is an
isomorphism of symmetric monoidal functors

ΦHZ � cyc: Corrfr(SmS) → CorS .

Proof. Note that ΦHZ and cyc send a framed correspondence to finite correspondences
with the same support, so it suffices to compare their multiplicities. Since the generic points of
their support lie over generic points of S and both functors are natural in S, this can be done
assuming that S = Spec k for some field k, which can moreover be assumed perfect by passing
to its perfection. In this situation, we prove the following more general uniqueness statement:
if

ϕ1, ϕ2 : Corrfr(Smk) → CorrHZ(Smk)

are symmetric monoidal functors that satisfy ϕ1|Smk � ΓHZ � ϕ2|Smk and send every framed
correspondence (Z, f, g, τ) to a finite correspondence with support (f, g)(Z), then ϕ1 � ϕ2. We
have induced symmetric monoidal functors

ϕ∗
1, ϕ

∗
2 : SHfr(k) → DM(k)

such that ϕ∗
1|SH(k) � ϕ∗

2|SH(k). By the reconstruction theorem [20, Theorem 3.5.12] it
follows that ϕ∗

1 � ϕ∗
2. To check that ϕ1 � ϕ2, it suffices to compare their effect on a framed

correspondence α ∈ Corrfrk (η, Y ) with connected support, where η is the generic point of a
smooth k-scheme. Since ϕ1(α) and ϕ2(α) are supported on a single point, their equality can
be checked modulo rational equivalence, that is, in hDM(k), so we are done. �
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4.3.4. Reminders on Milnor–Witt motivic cohomology. Over a field k, we will consider the
Milnor–Witt motivic cohomology spectrum HZ̃ ∈ SH(k). We adopt the definition

HZ̃ = πeff
0 (1),

where πeff
∗ are the homotopy groups in the effective homotopy t-structure. This definition is

due to Bachmann [4], and it is known to be equivalent to that of Calmès and Fasel when
k is infinite perfect of characteristic not 2 [5]. By definition, HZ̃ is an E∞-ring spectrum in
the heart of the effective homotopy t-structure. Moreover, since the unit map 1 → MSL is a
πeff

0 -isomorphism [6, Example 16.34], HZ̃ is uniquely SL-oriented. In particular, we have Thom
isomorphisms

ΣξHZ̃X � Σrk ξ
T Σdet ξ−OHZ̃X

for any X ∈ SmX and ξ ∈ K(X) (apply [6, Example 16.29] to ξ − det ξ).
Since the effective cover functor f0 : SH(k) → SHeff(k) is t-exact for the respective homotopy

t-structures [4, Proposition 4(3)], we have

HZ̃ � f0π0(1)∗.

Recall Morel’s computation π0(1)∗ � KMW
∗ [39]. More generally, for X a smooth k-scheme

and L an invertible sheaf on X, we have an equivalence in SH(X)♥

ΣL−Oπ0(1X)∗ � KMW
∗ (L) = KMW

∗ ⊗Z[O×] Z[L×]

by [1, Lemma 2.9]. Therefore the canonical map HZ̃ → KMW
∗ and the SL-orientation of HZ̃

induce maps of abelian groups

πiHZ̃(X, ξ) → Hn−i
nis (X,KMW

n (det ξ)), (4.7)

natural in X ∈ Smk and ξ ∈ K(X), where n = rk ξ. If k is perfect, we can analyze the Postnikov
filtration of f0K

MW
∗ using Rost–Schmid complexes (see 4.3.12), and we easily deduce that (4.7)

is an isomorphism for i = 0, 1. In particular, if Z ⊂ X is a closed subset, then

π0HZ̃Z(X, ξ) � C̃Hn
Z(X,det ξ) = Hn

nis,Z(X,KMW
n (det ξ)). (4.8)

By continuity, these computations remain valid over arbitrary fields. Moreover, the isomor-
phism (4.8) is compatible with the multiplicative structures, since the product in Milnor–Witt
K-theory (which induces the intersection product on Chow–Witt groups) is induced by the
ring structure of the sphere spectrum.

4.3.5. Rost–Schmid complexes. Let k be a perfect field, X a smooth k-scheme, L an
invertible sheaf on X, and Z ⊂ X a closed subset. The Nisnevich cohomology of X with
coefficients in the sheaf KMW

n (L) and with support in Z can be computed using the
Rost–Schmid complex C∗

Z(X,KMW
n (L)), given in degree i by

Ci
Z(X,KMW

n (L)) =
⊕

x∈X(i)∩Z

KMW
n−i (κ(x),L ⊗ ωx),

where ωx = ωκ(x)/OX,x
[40, Chapter 5]. In particular,

C̃Hn
Z(X,L) � Hn(C∗

Z(X,KMW
n (L))). (4.9)

The Rost–Schmid complex is functorial for flat morphisms in Smk: if f : Y → X is flat, there
is an induced map of complexes

f∗ : C∗
Z(X,KMW

n (L)) → C∗
f−1(Z)(Y,K

MW
n (f∗L)),
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defined in [22, Corollaire 10.4.3]. On the other hand, for any f , there is a sheaf-theoretic
pullback

f∗ : C̃Hn
Z(X,L) → C̃Hn

f−1(Z)(Y, f
∗L),

which agrees with the pullback in HZ̃-cohomology (by the naturality of (4.8)).

Lemma 4.3.14. The isomorphism (4.9) is natural with respect to flat morphisms in Smk.

Proof. It suffices to show that the canonical inclusion

KMW
n (X,L) ↪→ C0(X,KMW

n (L)) =
⊕

x∈X(0)

KMW
n (κ(x),L)

is natural with respect to flat morphisms. This is obvious because the flat pullback on C0 is
by definition the sum of the pullbacks in Milnor–Witt K-theory. �

If Z ⊂ X is smooth of codimension c, comparing Rost–Schmid complexes yields an
isomorphism

Π: C̃Hn
Z(X,L) � C̃Hn−c(Z,L ⊗ det(NZ/X)−1),

called the purity isomorphism.

Lemma 4.3.15. Under the identification (4.8), the purity isomorphism Π coincides with the
Morel–Voevodsky purity isomorphism (2.7).

Proof. We can reduce to the case of the zero section of a vector bundle using the functoriality
of the Rost–Schmid complex for smooth morphisms (Lemma 4.3.14), Jouanolou devices, and
étale neighborhoods (cf. [30, Lemma 3.22]). Thus let V = V(E) be a vector bundle over
X ∈ Smk. We must show that the following square commutes:

The top horizontal map is now the identity map by [50, Lemma 2.2]. Each vertical map is the
composition of the Thom isomorphism for HZ̃ and the canonical map HZ̃ → KMW

∗ . Levine
shows in [35, Proposition 3.7] that the purity isomorphism Π above is the Thom isomorphism
of an SL-orientation on the cohomology theory represented by the motivic spectrum KMW

∗ .
By [41, Theorem 5.9], such an orientation is classified by a unital morphism of spectra
MSL → KMW

∗ . But since the unit map 1 → MSL is a π0-isomorphism, there is a unique such
morphism. Therefore the map HZ̃ → KMW

∗ intertwines the respective Thom isomorphisms,
which implies the commutativity of the above square. �

4.3.6. Comparison of pushforwards in Chow–Witt theory. Let k be a perfect field,
f : X → Y a morphism between smooth k-schemes, Z ⊂ X a closed subscheme such that the
restriction of f to Z is finite, and L an invertible sheaf on Y . We recall the definition of the
Calmès–Fasel pushforward

f∗ : C̃Hn+d
Z (X, f∗L ⊗ ωf ) → C̃Hn

f(Z)(Y,L),

where d = rk(Lf ) [11, p. 10]. It is induced by the morphism of Rost–Schmid complexes

f∗ : C∗+d
Z (X,KMW

n+d (f∗L ⊗ ωf )) → C∗
f(Z)(Y,K

MW
n (L)),
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which in degree i is the sum of the absolute transfers [40, Definition 5.4]⊕
x∈X(i+d)∩Z

KMW
n−i (κ(x), f∗L ⊗ ωf ⊗ ωx) →

⊕
y∈Y (i)∩f(Z)

KMW
n−i (κ(y),L ⊗ ωy).

Proposition 4.3.17. Let f : X → Y be a morphism between smooth k-schemes, let Z ⊂ X
be a closed subscheme such that the restriction of f to Z is finite, and let ξ ∈ K(Y ) be of rank
c = codim(f(Z), Y ). Then, under the identification (4.8), the Gysin map

f! : HZ̃Z(X, f∗ξ + Lf ) → HZ̃f(Z)(Y, ξ)

(see 2.2.3) agrees with the Calmès–Fasel pushforward

f∗ : C̃Hc+d
Z (X,det(f∗ξ) ⊗ ωf ) → C̃Hc

f(Z)(Y,det(ξ)), d = rk(Lf ).

Proof. Since c + d is the codimension of Z in X, we have an exact sequence

0 → C̃Hc+d
Z (X,L) →

⊕
x∈X(c+d)∩Z

GW (κ(x),L ⊗ ωx) ∂−→
⊕

x∈X(c+d+1)∩Z

W (κ(x),L ⊗ ωx),

where ωx = ωκ(x)/OX,x
. For x ∈ X(c+d) ∩ Z, the map

C̃Hc+d
Z (X,L) → GW (κ(x),L ⊗ ωx)

is the filtered colimit of the restriction maps

C̃Hc+d
Z (X,L) → C̃Hc+d

Z∩U (U,L)
Π� C̃H0(Z ∩ U,L ⊗ ωZ∩U/U ),

where U ranges over the open subschemes of X containing x and such that U ∩ Z is smooth, and
Π is the purity isomorphism. By Lemma 4.3.15 and the fact that Gysin maps are compatible
with base change and with the purity isomorphism, we are reduced to the following claim: for
L/K a finite extension of finitely generated fields over k, the Gysin map HZ̃(SpecL,LL/K) →
HZ̃(SpecK) coincides with the absolute transfer GW(L, ωL/K) → GW(K). Without loss of
generality, we can assume that L = K(a) for some a ∈ L. Both transfers can then be computed
in terms of the factorization

SpecL
a
↪→ P1

K
p−→ SpecK.

More precisely, we use the geometric description of the absolute transfer from [40, p. 99]. It is
the lower composition in the following diagram:

where s : SpecK ↪→ P1
K is the zero section. The commutativity of each square is an instance

of 2.2.3(1). Since p!s! = id, it follows that the absolute transfer coincides with the Gysin map
p!a!. �

4.3.7. HZ̃-correspondences versus Milnor–Witt correspondences. Let S be essentially
smooth over a field. By C̃orS we denote Calmès and Fasel’s category of finite Milnor–Witt
correspondences between smooth separated S-schemes, as defined in [11].

Proposition 4.3.19. Let S be essentially smooth over a field. Then the symmetric monoidal

∞-category CorrHZ̃(SmS) is a 1-category and is equivalent to C̃orS .
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Proof. Since HZ̃ is in the heart of the effective homotopy t-structure, CorrHZ̃(SmS) is a
1-category by Proposition 4.1.20. For smooth S-schemes X and Y , we have

CorrHZ̃
S (X,Y ) � colim

Z⊂X×SY
HZ̃Z(X ×S Y, π∗

Y ΩY/S)

by 4.1.14. It follows from (4.8) that

π0HZ̃Z(X ×S Y, π∗
Y ΩY/S) � C̃Hd

Z(X ×S Y, π∗
Y ωY/S).

In particular, the mapping spaces in CorrHZ̃(SmS) are the same as in C̃orS .
To compare the composition laws, we use the description of the composition in CorrHZ̃(SmS)

via the pairing θ (Lemma 4.1.24). The composition in C̃orS is defined in the same way, except
that it uses the Calmès–Fasel pushforward instead of the Gysin map, but these are the same
by Proposition 4.3.17. Finally, the symmetric monoidal structures agree by the multiplicativity
of the isomorphisms (4.8). �

4.3.8. Compatibility with the functor of Déglise–Fasel. Let k be a perfect field. In
[16, Proposition 2.1.12], Déglise and Fasel define a functor

α : Correfr
∗ (Smk) → C̃ork,

where Correfr
∗ (Smk) is the category whose objects are smooth k-schemes (separated and of

finite type) and whose mapping spaces are the sets∨
n�0

Correfr,nk (X,Y )

(see [20, 3.4.7]). The rest of this section will be devoted to the proof of the following comparison
theorem.

Theorem 4.3.21. Let λ : Correfr
∗ (Smk) → hCorrfr(Smk) be the functor defined

in [20, 3.4.7]. Then the following diagram commutes:

4.3.9. We briefly recall the construction of the functor α. On objects one has α(X) = X.
Given an equationally framed correspondence c = (Z,U, ϕ, g) ∈ Correfr,nk (X,Y ), we construct
a finite MW-correspondence α(c) ∈ C̃ork(X,Y ) as follows.

Write ϕ = (ϕ1, . . . , ϕn) and denote by |ϕi| the vanishing locus of ϕi : U → A1, so that
Z = |ϕ1| ∩ · · · ∩ |ϕn|. Since Z ⊂ U is everywhere of codimension n, |ϕi| does not contain any
generic point of U . Each ϕi can thus be seen as an element of

⊕
u∈U(0) κ(u)× and hence defines

an element [ϕi] ∈
⊕

u∈U(0) KMW
1 (κ(u)). Applying the residue map

∂ :
⊕

u∈U(0)

KMW
1 (κ(u)) −→

⊕
x∈U(1)

KMW
0 (κ(x), ωx)

we obtain an element ∂[ϕi] supported on |ϕi|, which defines a cohomology class

Z(ϕi) ∈ H1
|ϕi|(U,K

MW
1 ).

Using the product in Milnor–Witt K-theory, we get an element

Z(ϕ) = Z(ϕ1) · . . . · Z(ϕn) ∈ Hn
Z(U,KMW

n ) = C̃Hn
Z(U).
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The étale morphism u : U → An
X induces a trivialization ωU/X � u∗ωAn

X/X � OU . Denote
by π : An

X → X the projection. Since Z is finite and equidimensional over X, the morphism
(πu, g) : U → X × Y sends Z to a closed subscheme T , which is finite and equidimensional
over X. The finite MW-correspondence α(c) ∈ C̃ork(X,Y ) is then the image of Z(ϕ) by the
Calmès–Fasel pushforward

(πu, g)∗ : C̃Hn
Z(U) � C̃Hn

Z(U, ωU/X) −→ C̃Hd
T (X × Y, ωX×Y/X), d = dim(Y ).

4.3.10. The first step in the proof of Theorem 4.3.21 is to recast the construction of Z(ϕ)
as a Thom class.

We recall that for E a motivic ring spectrum, the Thom class of a locally free sheaf E on X
is the image of 1 by the purity equivalence E(X) � EX(V(E), E). By Lemma 4.3.15, the Thom
class of E in Chow–Witt theory has an explicit representative in the Rost–Schmid complex,
namely

1 ∈
⊕

x∈X(0)

GW(κ(x)) � Cn
X(V(E),KMW

n (det E)), n = rk E .

Lemma 4.3.24. Let X,Y ∈ Smk and let c = (Z,U, ϕ, g) ∈ Correfr,nk (X,Y ). Assume that the

morphism ϕ : U → An
k is flat. Let tn ∈ C̃Hn

0 (An
k ) be the Thom class of the trivial vector bundle

An
k → Spec k. Then Z(ϕ) = ϕ∗(tn) in C̃Hn

Z(U).

Proof. It is enough to show that Z(ϕi) = ϕ∗
i (t1), because Z(ϕ) = Z(ϕ1) · . . . · Z(ϕn) and

the Thom class is multiplicative with respect to direct sum of vector bundles. By Lemma 4.3.14,
since ϕi : U → A1

k is flat, the pullback ϕ∗
i on Chow–Witt groups can be computed using Rost–

Schmid complexes. The commutative square

shows that ∂[ϕi] = ϕ∗
i (∂[idA1 ]) in C1

|ϕi|(U,K
MW
1 ), hence that Z(ϕi) = ϕ∗

i (Z(idA1)) in

C̃H1
|ϕi|(U). It remains to observe that Z(idA1) = t1, since the residue map ∂t : KMW

1 (k(t)) →
GW (k) takes [t] to 1. �

4.3.11. The following lemma shows that the flatness assumption in Lemma 4.3.24 is
essentially vacuous.

Lemma 4.3.26. Let S be a regular Noetherian scheme and X,Y ∈ SchS . Suppose that X is
flat over S. Then, for every (Z,U, ϕ, g) ∈ Correfr,nS (X,Y ), the morphism ϕ : U → An

S is flat in
an open neighborhood of Z.

Proof. It suffices to show that ϕ : U → An
S is flat at every point z ∈ Z. Let s = ϕ(z) and let

(x1, . . . , xd) ∈ OS,s be a regular system of parameters. By [20, Proposition 2.1.18], Z is flat over
S and (ϕ1, . . . , ϕn) is regular sequence in OU,z with quotient OZ,z. The flatness of Z implies
that the image of (x1, . . . , xd) in OZ,z is a regular sequence. Thus, the local homomorphism
ϕ∗ : OAn

S ,s → OU,z sends the regular system of parameters (t1, . . . , tn, x1, . . . , xd) to a regular
sequence. The criterion of [46, Tag 07DY] now shows that ϕ is flat. �
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Proof of Theorem 4.3.21. Let X,Y ∈ Smk and let c = (Z,U, ϕ, g) ∈ Correfr,nk (X,Y ) be an
equationally framed correspondence:

Let τ ∈ MapsK(Z)(0,Lf ) be the induced trivialization of the cotangent complex and let
T = (f, h)(Z) ⊂ X × Y . By Lemma 4.3.26 we can assume that ϕ : U → An

k is flat. Combining
2.1.21(2) and Proposition 4.3.17, we have a commutative square

It is thus enough to show that Z(ϕ) ∈ C̃Hn
Z(U) corresponds to τ∗(ηf ) ∈ HZ̃BM(Z/X) under

the left-hand isomorphism. We have

Z(ϕ) = ϕ∗(tn) (Lemma 4.3.24)

= ϕ∗0!(1) (definition of the Thom class)

= τ∗i!(1) (base change),

where 0! and i! are the Gysin maps defined in 2.2.3. To conclude, note that the isomorphism

HZ̃Z(U,Ni) � HZ̃BM(Z/X,Lf )

sends i!(1) to ηf , by definition of i!.
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motivique, I’, Astérisque 315 (2008) vi+364.

4. T. Bachmann, ‘The generalized slices of Hermitian K-theory’, J. Topol. 10 (2017) 1124–1144.
5. T. Bachmann and J. Fasel, ‘On the effectivity of spectra representing motivic cohomology theories’,

Preprint, 2018, arXiv:1710.00594v3.
6. T. Bachmann and M. Hoyois, ‘Norms in motivic homotopy theory’, Preprint, 2018, arXiv:1711.03061v4.
7. T. Bachmann and M. Yakerson, ‘Towards conservativity of Gm-stabilization’, Preprint, 2018,

arXiv:1811.01541.
8. P. Balmer, ‘Witt groups’, Handbook of K-theory (eds E. M. Friedlander and D. R. Grayson; Springer,

Berlin, 2005) 539–576.



FRAMED TRANSFERS AND MOTIVIC FUNDAMENTAL CLASSES 499

9. C. Barwick, ‘Spectral Mackey functors and equivariant algebraic K-theory (I)’, Adv. Math. 304 (2017)
646–727.

10. S. Bloch, ‘Algebraic cycles and higher K-theory’, Adv. Math. 61 (1986) 267–304.
11. B. Calmès and J. Fasel, ‘The category of finite Milnor–Witt correspondences’, Preprint, 2017,

arXiv:1412.2989v2.
12. D.-C. Cisinski, ‘Descente par éclatements en K-théorie invariante par homotopie’, Ann. of Math. 177

(2013) 425–448.
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43. O. Röndigs and P. A. Østvær, ‘Modules over motivic cohomology’, Adv. Math. 219 (2008) 689–727.
44. M. Spitzweck, A commutative P1-spectrum representing motivic cohomology over Dedekind domains,
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Universitätsstr. 31
93040 Regensburg
Germany

marc.hoyois@ur.de
adeel.khan@ur.de
maria.yakerson@ur.de

Vladimir Sosnilo
Laboratory ‘Modern Algebra and

Applications’
St. Petersburg State University
14th line, 29B
199178 St. Petersburg
Russia

vsosnilo@gmail.com

The Journal of Topology is wholly owned and managed by the London Mathematical Society, a not-for-profit
Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used
to support mathematicians and mathematics research in the form of research grants, conference grants, prizes,
initiatives for early career researchers and the promotion of mathematics.

mailto:elmanto@math.harvard.edu
mailto:marc.hoyois@ur.de
mailto:adeel.khan@ur.de
mailto:maria.yakerson@ur.de
mailto:vsosnilo@gmail.com

	1. Introduction
	2. Preliminaries
	3. Comparison of transfers
	4. Finite correspondences for motivic ring spectra
	References

