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ABSTRACT

Tangibles are small, graspable objects that act as input devices or
physical representations of digital data. Oftentimes, it is desirable
to track the position of tangibles on a surface and their relation
to each other. However, outside-in tracking techniques - such as
capacitive touchscreens or cameras - require setting up elaborate
infrastructure and are prone to occlusion or interference. We
propose Dothraki, an inside-out tracking technique for tangibles
on flat surfaces. An optical mouse sensor embedded in the tangi-
ble captures a small (36x36 pixel / 1x1 mm), unique section of a
black-and-white De-Bruijn dot pattern printed on the surface. Our
system efficiently searches the pattern space in order to determine
the precise location of the tangible with sub-millimeter accuracy.
Our proof-of-concept implementation offers a recognition rate of
up to 95%, robust error detection, an update rate of 14 Hz, and a
low-latency relative tracking mode.
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1 INTRODUCTION: SPATIALLY AWARE TANGIBLES

Tangibles, also called tangible blocks, or bricks [9] are small, gras-
pable objects that can be used as input devices or as physical rep-
resentations of digital data and relations [13]. They are tools that
support interaction with intangible information by leveraging our
innate and trained ability to manipulate the physical environment.
Through physical manipulation of these tangibles, actions can be
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Figure 1: Dothraki is a reference implementation for tracking tangi-
bles on tabletop surfaces. Via an optical mouse sensor, a tangible de-
tects its position within a printed De-Bruijn-torus pattern and tracks
its own movement with low latency.

executed; information can be edited, transferred or combined. Tan-
gibles inherently support bi-manual [9], eyes-free [32], and collab-
orative [27] manipulation. Thus, they extend and augment the in-
put and output capabilities of the traditional keyboard/mouse/dis-
play troika. Due to these properties, tangibles have been used in
many different application areas so far - e.g., for playing games
[27], for programming [23], to support learning [4, 28, 34], or to
manipulate digital media [10, 15, 21, 29, 36]. Shaer and Hornecker
give a good overview of applications and properties of tangibles
[25].

For many applications, it is desirable to determine and track the lo-
cation or orientation of a tangible. Fitzmaurice [9] calls this capabil-
ity “spatial awareness”. When the position of a tangible is known,
it can be used for selecting objects in 2D or 3D space, changing
scalar parameters, or as a proxy for arranging and combining mul-
tiple pieces of information [36]. However, robust tracking of small,
handheld objects is non-trivial.

In this paper, we present Dothraki (Figure 1), an approach for track-
ing the positions of multiple active tangibles on a flat surface that
is covered with a custom dot pattern. An optical sensor from a
computer mouse is embedded into the tangible and continuously
captures a section of this pattern right under the tangible. The
captured image is then used to determine the tangible’s location
within the pattern space, and therefore within the surface area.
Dothraki is low-cost and can be integrated with common micro-
controller platforms. It requires no external infrastructure besides
a sheet of paper printed with the pattern and a computer that runs
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the position-tracking code. Relative motion can be tracked with
very low latency by the mouse sensor itself. This makes Dothraki
suitable for ad-hoc, collaborative applications, such as educational
games.

In the following, we describe how Dothraki works, document its
properties and limitations, and discuss applications that can be im-
plemented using Dothraki.

2 BACKGROUND AND RELATED WORK

Dothraki is an inside-out, occlusion-free tracking technique for
tangibles on flat surfaces. It uses a mouse sensor for image acqui-
sition. We present basic background information and previous re-
search on each of these topics.

2.1 Outside-in / Inside-out Tracking

In general, the position of objects in two or three dimensions can
be tracked in two ways:

With outside-in tracking, sensors in the environment are used to
determine the location of the object. Oftentimes, the tangible is
modified slightly in order to enable or simplify tracking. For exam-
ple, camera-based tracking approaches may require the object to
be of a certain color, to have a unique pattern on it (e.g., ARuCo
markers), or to be augmented with retroreflective markers (e.g.,
OptiTrack).

With inside-out tracking, the object itself is equipped with sensors
that capture properties of the environment in order to determine
its position. The environment may also be augmented in order to
facilitate tracking. For example, a camera in the tangible might cap-
ture a unique pattern in the environment [18], or a magnetic field
sensor might measure strength and shape of a magnetic field that
is generated by coils or permanent magnets in its proximity [19].
Outside-in tracking has the primary advantage that there are few
constraints regarding size, shape and material of the tangible. The
tangibles don’t need a battery or complex electronics which makes
it possible to use many of them in an application.

Inside-out tracking has the primary advantage that little external
infrastructure is needed. Tracking data is available directly in the
device and it is easier to add additional tracked objects to the envi-
ronment without degrading overall tracking performance.

Mutual awareness - i.e., the ability of tangibles to know about the
relative position of other tangibles - can be implemented via inside-
out or outside-in tracking. In this case, the tangibles themselves
can set up the tracking environment so that no external infrastruc-
ture is needed. For example, Sifteo Cubes’ are not spatially aware
in general but contain electromagnetic transceivers on four sides
that allow them to detect and identify other Cubes directly next
to them. Krohn et al. demonstrate a prototype that employs multi-
ple infrared transmitters and receivers per device which allow the
devices to track each other’s relative position [16].

2.2 Occlusion and Line of Sight

Both inside-out and outside-in tracking techniques may suf-
fer from occlusion. Optical 6DOF tracking systems which are
suitable for tangible interaction (e.g., Valve’s Lighthouse [35],
OptiTrack) require a line of sight between the tracked object and

*https://web.archive.org/web/20131109052319/https://www.sifteo.com/cubes
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the sender/receiver hardware that is installed in the environment.
This poses a problem for collaborative use cases and small objects,
as users’ hands and bodies will constantly occlude the objects. The
occlusion problem also affects systems using cameras mounted
above a table [33].

Furthermore, these systems are not well suited for ad-hoc use be-
cause they require infrastructure to be set up and calibrated before
use. In addition, camera-based systems may also pose privacy con-
cerns. This may hinder their use in sensitive environments such as
schools.

Overall, such general-purpose tracking systems may be less suited
for ad-hoc, collaborative tangible interaction.

2.3 Surface-based Tracking Approaches

A surface - e.g., a tabletop - may include sensors or markers for
tracking. This avoids most occlusion issues as long as the tangibles
are in contact with the surface. While there are novel approaches
using e.g. magnetic field sensing [19] or near-field communica-
tion [30], the three most commonly employed tracking approaches
on tabletops are outside-in optical tracking, outside-in capacitive
tracking and inside-out optical tracking.

Outside-in optical tracking uses a camera mounted beneath the sur-
face - or light sensors embedded into a display - to detect and track
objects. The surface needs to be transparent or translucent. This
appproach is used widely [15, 17] because it requires only off-the-
shelf cameras and a simple lighting setup. Many different objects
can be tracked reliably and with reasonable speed. Objects can be
identified via unique optical codes (fiducials). However, a custom
tabletop is required and the approach is susceptible to changes in
lighting conditions. Therefore, outside-in optical tracking is not
well suited for ad-hoc interaction or for applications where each
user should have their own private surface/table - e.g., in class-
rooms.

Outside-in capacitive tracking uses raw data from a capacitive
touch screen to detect and distinguish tangibles placed on it. These
need to be equipped with conductive traces that capacitively cou-
ple the touch screen’s antennas to each other or to electrical
ground. Voelker et al. [31] give a good overview of the principle
and related work. An advantage of this approach is that it also
works with tablets or smartphones as tracking surfaces. This
makes it suitable for ad-hoc use. However, the interaction space
is limited by the size of the capacitive touch screen. Furthermore,
only active tangibles with embedded electronics can be reliably
detected.

Inside-out optical tracking uses an optical sensor - usually a cam-
era - to capture an image of the surface below the tangible. Based
on features in this image, the tangible may determine its absolute
location or relative movement. For example, the sensor of an op-
tical mouse contains a tiny camera and calculates relative move-
ment based on movement observed in the sensor image. There are
two approaches to determine the absolute location of a tangible via
inside-out optical tracking. The system may generate a fingerprint
of the surface seen by the camera and compare it to a database
of known fingerprints or classify it using a set of heuristics [24].
While this approach works in certain cases, where the fingerprints
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are distinct and robust enough, it does not allow for precise or re-
liable tracking. The more common approach is to embed a digital
code into the surface that can be captured and extracted by the
sensor. This approach is discussed in more detail in the following
paragraphs.

2.4 Optical Pattern Tracking

Augmenting a surface with a printed pattern that encodes absolute
positions allows objects with embedded cameras to precisely and
robustly detect and track their own position. This approach has
been employed by manufacturers of digital pens. Anoto pens con-
tain a small camera that captures a dot pattern printed on the sur-
face (usually a sheet of paper) [22]. The dot patterns encodes a po-
sition by slightly shifting the dots relative to a common grid. Move-
ment trajectories are stored on the pen or streamed to a host com-
puter via a wireless connection. Smart pens by other manufactur-
ers, such as the Neo Smartpen or the Ravensburger TipToi, employ
their own, similar, encodings®. While some of these encodings have
been reverse engineered, all of them are under-documented, pro-
tected by patents, and require custom sensor/lens combinations.
Hostettler et al. [12] developed an optical position tracking ap-
proach for robots/tangibles based on the Anoto pattern. It requires
a custom camera/lens combinaton in order to read the pattern. The
software, libdots has been published under an open-source license®.
However, the authors mention that the Anoto technology is still
protected by patents in multiple countries. This might make it dif-
ficult to use libdots in commercial products.

The Sony toio micro-robots* also use an embedded camera to track
their position on a mat on which a special pattern has been printed.
No further information on the implementation is available, how-
ever.

2.5 Using Mouse Sensors for Tracking

Mouse sensors have been used for precisely tracking a variety of
objects. Jackson et al. [14] suggest using them to track a vehicle’s
movement along the road. Domburg [7] implemented a simple
handheld scanner by reading out the raw image from the sensor
and stitching multiple images together. Borsato and Morimoto [3]
explored whether a mouse sensor could be used for eye-tracking.
Schiisselbauer et al. [24] built a tangible with an embedded mouse
sensor that allowed it to distinguish different textures printed on
a piece of paper and activate a corresponding mode. They also
used the mouse sensor to track X/Y movement of the tangible.

In summary: while there are several methods for tracking tangibles
on surfaces, all of them either require complex or expensive setups,
are susceptible to occlusion, or are protected by patents.

3 HARDWARE

As the basis for our tangible blocks, we use M5Stack blocks® (Fig-
ure 2). While M5Stack is a commercial platform, the danger of it
becoming unavailable or unusable is rather small for several rea-
sons. Hardware is based on the wide-spread ESP32 microcontroller

*https://github.com/entropia/tip-toi-reveng/wiki/PEN-Optical-ID-and-codes
*https://www.epfl.ch/labs/chili/dissemination/software/libdots/
*http://www.sony.net/SonyInfo/design/stories/toio/

*https://m5stack.com/
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Figure 2: Dothraki hardware consisting of an M5Stack Fire module, a
battery module, the PMW3360 mouse sensor, and a 3D-printed case
part.

and commonly available components. For mechanical parts, CAD
files are available. Software is open-source and built upon the Ar-
duino ecosystem. Furthermore, the company has been expanding
its portfolio for several years, and devices are available through
multiple retailers. While the M5Stack blocks contain different sen-
sors, such as an IMU, they are not able to sense their own position
or their relation to other devices.

For determining the location of the tangible on the surface, we
use a PixArt PMW3360 mouse sensor® which contains an optical
sensor and a laser diode for illumination of the surface. The sensor

‘Datasheet: http://www.pixart.com/products-detail/10/PMW3360DM-
T2QU.  Arduino code for this sensor can be found at
https://github.com/SunjunKim/PMW3360_Arduino. Our code is based on the
manufacturer’s datasheet, however.
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is attached to the ESP32 via SPL Only a few passive components
need to be added as shown in the datasheet.

Using a mouse sensor instead of a small camera results in three
major advantages and two major limitations.

Major advantages are:

o The lens system is optimized for capturing sharp images of the
surface with a high update rate.

e Mouse sensors are fast. X-Y-movement is decoded in hard-
ware within the sensor. This results in an update rate of
more than 1000 Hz and low resource consumption on the
microcontroller. Accessing the raw image captured by the
sensor is much slower, however, taking about 30 ms.

e Mouse sensors offer a good combination of low price and high
availability. The PMW3360 has been on the market for several
years and is still the best sensor available. It is available in small
quantities for $10 and requires little external hardware.

Major limitations are:

e Due to consolidations on the market, only few manufacturers
of mouse sensors exist anymore. Therefore, it could be difficult
to find a replacement if PixArt ceased production of this sen-
sor series. However, the large market for computer mice might
ensure availability of such sensors.

o The sensor has a rather low resolution of 36x36 grayscale pix-
els and captures an area of only 1.0 x 1.0 mm (Figure 1). This
means that traditional location patterns - such as the Anoto
pattern - cannot be used. We address this limitation with a
novel image processing pipeline based on De-Bruijn tori de-
scribed in the following section.

We decided to offload the image processing pipeline to a computer
connected to the M5Stack via wifi. While the M5Stack has just suf-
ficient hardware ressources to run the complete image processing
pipeline, doing so would require highly optimized code that would
be difficult to modify. Moving image processing to a host computer
makes the whole setup more flexible. A similar approach was cho-
sen for the Sifteo Cubes’.

4 POSITIONING AND TRACKING

Dothraki is able to determine the location of the tangible by in-
structing the mouse sensor to capture an image of the surface be-
neath the object, extract the printed dot pattern from the sensor
image, and then find the location of the captured section within
the whole dot pattern. In the following, we first describe the core
principle and then add further implementation details.

4.1 Positioning Based on De-Bruijn Patterns

Our approach is based on finding a unique binary dot pattern
within a large pattern that covers the whole surface. De-Bruijn
sequences [6] are sequences of k different symbols where each
sub-sequence of length n only occurs once within the whole
sequence. A special property of a De-Bruijn sequence is that it
wraps around, i.e. that a sub-sequence constructed by appending
x symbols from the start to n-x symbols from the end is also
unique. In the following we focus on binary De-Bruijn sequences,

"https://blog.adafruit.com/2012/12/05/how-we-built-a-super-nintendo-out-of-a-
wireless-keyboard-sifteo-sifteo/
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Figure 3: A binary {4, 4, 2, 2} De-Bruijn torus. Each unique 2x2 win-
dow occurs exactly once.

i.e. sequences where a symbol is either 0 or 1. For example, the
De-Bruijn sequence 0011 contains each of the two-bit patterns
00, 01, 11, 10 (wrap-around) exactly once.

Extending this concept to two dimensions results in a De-Bruijn
torus (DBT). A {r,s,m,n} DBT is an array of rxs binary values
where each possible mxn window occurs exactly once. As indicated
by its name, a De-Bruijn torus also wraps around. Figure 3 shows
an example of a binary {4,4, 2,2} DBT.

An obvious implication is that each mxn window encodes a unique
position within the DBT. If a DBT is printed onto a surface, a tan-
gible could determine its location on the surface by capturing an
image of the mxn window below it and finding its position within
the DBT. In principle, this works for arbitrary sizes of the DBT, as
long as the tangible can reliably capture at least one whole mxn
window.

For the sake of clarity, in the following we use the term DBT pixel
for a single binary value within the DBT which is represented as
a black or white region on the surface. A DBT pixel consists of
multiple printer dots. A printer dot is the smallest printable unit
produced by the printer. A sensor pixel is a pixel captured by a
single photosensitive cell in the mouse sensor.

Figure 4 shows an excerpt of a DBT printed on paper and the area
seen by the mouse sensor.

To support as many different applications as possible, the DBT
pattern should cover a large area. To achieve high resolution,
rather small DBT pixels are desirable. This requires generating a
large DBT and efficiently finding the position of a distinct window
within the DBT.
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Figure 4: Section of an {8192,4096,5,5} De-Bruijn torus (DBT)
printed at 150 DBT pixels per inch. A red square indicates the region
captured by the mouse sensor. The measuring tape has a millimeter
scale.

Fan et al. [8] describe an algorithm for iteratively generating larger
DBTs from smaller ones®. Starting with an {r, s, m, n} DBT, the al-
gorithm produces an {r,2" X s,m + 1,n} DBT. As a DBT can be
transposed (i.e. mirrored along its diagonal) and still maintain its
De-Bruijn properties, the algorithm by Fan et al. allows for extend-
ing the DBT in both directions.

For our prototypical implementation, we used this algorithm, as
implemented by An’, to generate an {8192,4096, 5,5} DBT, i.e. a
binary pattern of 8192x4096 pixels where each of the distinct 225
5x5-patterns occurs exactly once. The reasons for choosing exactly
this DBT are explained in the next section.

Re-finding a distinct DBT window within the DBT can naively be
done via a linear brute-force search. As this would not be practical
for large DBTs, we implemented Shiu’s algorithm [26]. This algo-
rithm specifically works for the DBTs generated iteratively by the
Fan et al. algorithm. It requires that the source DBT and all interme-
diate transformations are known. Therefore, we store this informa-
tion when generating our DBT. Shiu’s algorithm works by generat-
ing a linear mapping D(M) of the DBT window that is to be found,
brute-force locating it in the source DBT, and then transforming
these coordinates based on the transformations used when gener-
ating the large DBT. While alternatives to Shiu’s algorithm exist
[11, 20], we were satisfied with its practical performance (see sec-
tion Properties).

4.2 Rationale for an {8192,4096,5,5} De-Bruijn Torus

While we explored different DBT types and sizes, we selected an
{8192,4096, 5,5} DBT for Dothraki as it is the largest and most
robust one that can be used in practice with the PMW3360 sensor.
A first constraint is that the DBT needs to be printable using com-
mon laser or inkjet printers. These typically have a print resolution
of 600 or 1200 dpi. In order to avoid aliasing artifacts, the size of
a DBT pixel should be an integer multiple of the size of a printer
dot. Therefore, the effective DBT resolution should be 400, 300, 200,
150, or 100 ppi.

®Fan et al. actually describe two ways for constructing larger DBTs: Type 1 and Type
2. We implemented generation and decoding of Type 1 DBTs.
°https://github.com/man4/debruijn-torus
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AP

DBT . . . . .
resolution 100 ppi 150 ppi 200 ppi 300 ppi 400 ppi
# DBT 4x4  6x6  8x8  13x13  17x17
pixels

size of

DBT pixel 81px 54px 40px 27px 2.0px

Figure 5: DBT printed at different resolutions as viewed by the
PMW3360 sensor. At more than 200 ppi, dust and toner defects make
it difficult to reconstruct the DBT pixels. At 100 ppi, the limited num-
ber of DBT pixels visible limits the number of positions that can be
encoded to 32768. DBT resolutions of 150 and 200 ppi offer a good
trade-off between robustness and positioning area. All patterns were
printed on a Lexmark MS510dn laser printer at 1200 dpi.

The optical sensor in the PMW3360 captures a surface area of 1.0 x
1.0 mm. As shown in Figure 5, a DBT resolution of 100 ppi would
result in only 4x4 full DBT pixels to be visible in the camera image.
That would mean that the DBT may only have a window size of
4x4, resulting in 2'6 = 32768 unique positions that could be en-
coded - or 256 in each axis. While this may be sufficient for some
applications, the {256, 265, 4, 4} DBT would only cover a size of
65x65 mm. On the other hand, a DBT resolution of 300 ppi would
mean that each DBT pixel only covers 2.7x2.7 sensor pixels. With
so few sensor pixels per DBT pixel, a dirty lens, dust, or defects
in the print can easily result in one or more DBT pixels to be
“flipped”, i.e. interpreted as black although they are white or vice
versa. Therefore, in practice only 150 ppi and 200 ppi are viable res-
olutions for the DBT. Experiments with different printers showed
that a pattern printed at a resolution of 150 ppi could be more ro-
bustly reconstructed than at 200 ppi. At 150 ppi, the PMW3360 is
able to see a section of about 6.5x6.5 DBT pixels. One might there-
fore choose a DBT with a window size of 6x6 - allowing for 236
positions to be encoded. However, this solution would not be ro-
bust enough for most use cases because DBTs have no built-in error
detection. The Hamming distance between distinct windows is 1,
i.e. if any DBT pixel flips, we get another valid DBT window that
is located somewhere else in the DBT. This means that the tangi-
ble’s reported position would jump all over the place whenever the
pattern on the surface was captured or interpreted incorrectly.
We therefore opted for a more robust approach using a DBT with a
5x5 window size. This allows for detecting and partially correcting
recognition errors. As the mouse sensor captures a section of 6x6
DBT pixels, we can extract four overlapping 5x5 DBT windows
and calculate their individual locations within the DBT. If at least
three of these four patterns are located next to each other in the
DBT, we can assume that we decoded them correctly. If however,
the decoded locations are distributed across the DBT, we can as-
sume that a pixel flip occured and that the actual location cannot
be reliably determined. In this case, the system does not output any
position and waits for a new raw image from the mouse sensor.
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Printing the {8192, 4096, 5,5} DBT at a resolution of 150 ppi (and
1200 dpi) covers a surface area of 1370x685 mm - approximately
the size of a school desk. Alternatively, the DBT can also be sliced
into multiple smaller surfaces. By placing each of the DBT slices
on a different table, it is possible to find out on which table the
tangible is. We consider a position resolution of 0.16 mm sufficient
for most HCI applications.

4.3 Image Preprocessing

In order to extract the DBT pixels from the raw image captured
by the mouse sensor, we apply a rather straightforward computer-
vision pipeline implemented using OpenCV*. We provide default
parameters that we found to work well for plain paper. For differ-
ent types of paper, parameters need to be tuned to get optimal re-
sults. The pipeline encompasses the following steps, as illustrated
in Figure 6:

o Sharpen image via an edge-enhancement convolution matrix
(3x3, center: +9, all other values: -1) and remove noise via
a bilateral filter (BilateralFilter (d=13, sigmaColor
=50, sigmaSpace=50))

e Remove speckles and close holes via a combination of erode (
kernel=3x3, iterations=1) anddilate (kernel=5x5,

iterations=1).The larger dilate kernel also ‘sharpens’ the
corners of DBT pixels.

o Binarize brightness values (adaptiveThreshold (maxValue
=255, adaptiveMethod=ADAPTIVE_MEAN_THRESH_C,
blockSize=19, C=2))

o Find grid offset: put a virtual 6x6 grid over the image where
each cell has the size of a DBT pixel. As the DBT pixels are not
aligned with the origin of the sensor image, the correct offset
of the virtual grid needs to be found first. To this end, for each
possible X/Y offset, the area covered by the grid is extracted
from the raw image and scaled to a size of 6x6 pixels. We se-
lect the offset where the contrast of this scaled-down image is
highest - i.e., where the image contains the highest amount of
completely white or black pixels.

o Extract DBT pixels: As the 6x6 array resulting from the pre-
vious step might still contain grey pixels, the values of those
grid cells are determined with a two-stage threshold procedure.
First, each grid cell with an average brightness of less than 60
respectively more than 195 is considered black/white. For the
remaining cells, we compare their average brightness to the
average of the average brightness of all adjacent cells. If it is
higher, the cell is considered white - otherwise it is considered
black. This approach mitigates uneven lighting and the slight
differences in width between black and white lines that is com-
mon in laser printers.

o Find position: the extracted DBT pattern of size 6x6 is sliced
into four 5x5 DBT windows. For each of the windows, its po-
sition within the DBT is determined by Shiu’s algorithm and
error correction is performed as described above.

e Determine orientation (see next section)

e Convert DBT position into physical location via a linear equa-
tion

®https://opencv.org/
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Figure 6: Image processing pipeline: the raw image captured by the
PMW3360 is sharpened first. Afterwards, a dilate/erode filter combi-
nation removes noise and speckles. An adaptive threshold filter con-
verts the image into a binary black/white image. The most probable
offset of the DBT pixels within the sensor image is determined iter-
atively and all four distinct 5x5 DBT windows are extracted. As the
tangible can be oriented in one of four directions, each DBT window
is searched for in all four 90-degree rotations. For each rotation: if all
four DBT windows point to the same location within the DBT, this
location is converted into a physical location and returned to the tan-
gible.

Extract DBT pixels: As the 6x6 array resulting from the previous
step might still contain grey pixels, the values of those grid cells
are determined with a two-stage threshold procedure. First, each
grid cell with an average brightness of less than 60 respectively
more than 195 is considered black/white. For the remaining cells
[..]

Minor implementation details were left out and can be found in the
source code.

4.4 Determining Orientation

In general, tangibles can not only be moved but also be rotated
implicitly or explicitly. The user might want to orient the tangible


https://opencv.org/
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Figure 7: When rotating the tangible, fewer DBT windows are cap-
tured by the sensor. In our implementation, four 5x5 DBT windows
can be extracted from the 6x6 DBT pixel raw wide image. When ro-
tated by 45 degrees, only one 5x5 DBT window can be extracted at
best. Therefore, error detection would no longer be possible.

in a more ergonomic way while interacting with it. Rotating the
tangible may also be used as an input technique for changing an
associated digital value.

Dothraki currently only works for the four orientations of the tan-
gible where the axes of sensor grid and DBT grid align (0, 90, 180,
270 degree). This is caused by two limitations: First, extracting the
DBT windows from the sensor image is only possible if the orien-
tation of the sensor relative to the pattern is known. However, due
to the low sensor resolution, we could not find an efficient way to
reliably determine arbitrary rotations of the tangible. Applying a
Hough transform does not work because continuous lines are rare
in the DBT. A brute-force approach - rotating the image by mul-
tiples of one or five degree before trying to extract DBT windows
was deemed too computationally expensive. Second, a non-axis-
aligned raw image contains fewer DBT windows (Figure 7). Even
if one could reliably determine orientation, not enough informa-
tion remains for reliably determining the tangible’s position.
Therefore, our implementation expects that the tangible is oriented
so that the axes of the mouse sensor are aligned relatively well with
the axes of the DBT pattern. Rotating the tangible by exactly 90,
180 or 270 degree keeps the sensor aligned with the pattern and
allows for extracting the DBT windows. Dothraki detects these
rotations by rotating the captured image by 90/180/270 degrees
and checking for which of the orientations the extracted DBT win-
dows agree on a location. We discuss options for implementing
true orientation-independent position dectection in the final sec-
tion.

4.5 Absolute and Relative Tracking

To improve responsiveness, Dothraki combines this abolute posi-
tioning approach with relative tracking and dead reckoning. After
sending the captured sensor image to the host computer, Dothraki
switches the sensor into relative tracking mode and reads move-
ment data directly from the PMW3360 until an answer from the
host computer arrives. In this mode, the sensor outputs position
updates at 1000+ Hz, resulting in very low tracking latency. Once
the tangible receives a new (certain) absolute position from the
host computer, Dothraki uses this position anew as the starting
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point for further relative tracking. This behavior may be tuned to
specific needs of an application. For example, Dothraki could also
just determine an absolute position once and then switch to rela-
tive tracking until the device is lifted off the surface. However, a
small sensor drift is inherent, so that large movements would re-
sult in large positional errors over time. A Kalman filter might also
be used to combine absolute and relative position information.

5 PERFORMANCE AND LIMITATIONS

We conducted both automated and manual measurements on
recognition performance and speed of our current implementa-
tion.

For the automated tests, a robotic arm (AxiDraw 3) moved the tan-
gible between known positions on an A4 sheet of paper printed
with a DBT pattern. For each position, an image was captured, ro-
tated in four different orientations, and analysed using the pro-
cessing pipeline. Due to occasional mechanical failures, datasets
have different numbers of samples. However, each automatically
generated dataset contains at least 1000 samples. Our image pro-
cessing pipeline was then applied to each image from the dataset.
Processing of single raw image took 70 ms on average on a current
workstation with an Intel i7 processor. Due to our conservative al-
gorithm, there were no false positives. However, we found major
differences between recognition rates for different types of paper.

5.1 Paper Types

We tested our approach with the same DBT pattern printed on
four different materials: common printer paper, coated glossy pa-
per (ColorCopy 135g Coated Glossy), photo paper for laser printers
(Avery Zweckform 120g Glossy), and clear acrylic (Figure 9). All
sheets were printed by a Lexmark MS510dn laser printer at 1200
dpi at default settings.

The clear acrylic can be used as an overlay on other surfaces.
As long as the lower surface reflects the IR light of the mouse
sensor, Dothraki can reliably distinguish the IR-absorbing black
dots printed by the laser printer. This allows for reversibly adding
the tracking pattern to existing printed documents, such as maps.
However, as shown in Figure 8, the black pattern makes it hard
to see fine details of the image below, which must be considered
when implementing concrete use cases. We tested recognition
rate both for clear acrylic on an empty sheet of paper and on a
sheet of paper containing an inkjet-printed image.

As shown in Figure 9, plain printer paper only offers a relatively
low recognition rate of 70.9% whereas glossy paper (93.6%) and
photo paper (95.6%) offer recognition rates sufficient for many in-
teractive applications. Clear acrylic lies in the middle with 85.5%
(overlay on paper) respectively 86.6% (overlay on inkjet-printed
paper).

In summary, smoother paper surfaces result in higher recognition
rates. For most practical purposes, photo paper seems to be the
best choice.

5.2 Manual Placement and Movement

In order to determine whether manually placing the tangible on
the surface or moving it around would result in worse recognition,
we conducted two further small tests.
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Figure 8: A sheet of clear acrylic printed with the DBT pattern can
be layed over other surfaces, such as printed maps and photos. This
allows for tracking tangibles atop arbitrary documents. While the im-
age is darkened and partially obscured by the DBT pattern, salient
details can still be distinguished.

micro-
scope

recognition
rate (%)

plain
printer 5296 70.9
" ' s baper

glossy
coated 1372 93.6

paper

sensor material # samples

inkjet
photo 1598 95.6
paper

clear
acrylic
over
paper

2521 85.5

clear
acrylic
over
print

2200 86.6

Figure 9: The type of paper on which the DBT pattern is printed
greatly affects recognition rates. Common printer paper performs
worst at about 70% recognition rate. Glossy and photo paper offer
a high recognition rate of 93-95%. Clear acrylic offers a recognition
rate of only 85%. However, the acrylic can be layed over other sheets
of paper that contain inkjet-printed images. This allows for adding a
removable tracking pattern to arbitrary documents on the fly.

Schisselbauer et al.

In the first test, a user was asked to repeatedly pick up and place
the tangible on different locations within a sheet of photo paper
printed with a DBT pattern. They were asked to keep the tangible
in parallel to the edges of the sheet without trying too hard. We
captured and processed raw images from 100 placements. In 92
cases, position and orientation were identified correctly.

In the second test, a user dragged the tangible across the sheet in
different directions for a short time. 204 raw images were captured.
In 180 cases (88%), the location was determined correctly.

These results indicate that Dothraki is generally suitable for in-
teractive applications where instantaneous localization is not of
major importance. Given that Dothraki continuously determines
its position and does not suffer from false positives, latency and
recognition errors are even less perceptible during active use.

5.3 General Properties

In summary, Dothraki offers the following features and limitations:
Low price (< $20 including assembly)

Long-term availability of sensor

Robust and simple hardware design

Dot pattern can be printed with a standard laser printer

No external hardware setup required

Trackable area of 1370x685 mm that can be sliced into multiple
smaller areas

e Can be combined with arbitrary microcontroller platforms as
computation is offloaded to a host computer

o Sub-millimeter resolution

e Latency of 30 ms for reading sensor image and 70 ms for im-
age processing results in a delay of 100 ms until a tangible’s
position is determined

e While the device is dragged around, absolute position is up-
dated at 14 Hz, relative movement is updated at 1000+ Hz, de-
pending on the microcontroller

e Recognition rate only between 70% and 95% depending on the
type of paper used

e Error detection eliminates false positives

e Not covered by patents to the best of our knowledge™*

This positions Dothraki as a scalable, low-cost alternative to ca-
pacitive or optical interactive tabletops. Dothraki can be deployed
within minutes and takes up little space when not in use. There-
fore, it is uniquely suited for use in classrooms, boardgames, or as
an addition to traditional physical desktops. Unlike capacitive and
optical tabletops, Dothraki cannot track arbitrary rotation, how-
ever. This limits the interaction space of gestures.

6 APPLICATIONS

While we see Dothraki as a generic sensing technique that can be
embedded in a multitude of applications, we envision a few con-
crete use cases for it. In the following we describe two generic in-
teraction techniques supported by Dothraki and present example
applications that demonstrate these interaction techniques. Exam-
ples are partially based on demo applications we developed for an
earlier prototype that did not yet have DBT tracking integrated
[24].

a recently submitted patent application [1] touches on some of the ideas behind
Dothraki. However, we see no direct impact.
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Figure 10: Example applications: a) Magic Lens that allows for
scrolling through a virtual image by moving the tangible, b) Googly
Eyes which always look at each other even if the tangibles are picked
up and placed elsewhere.

Magic Lens (Figure 10a) allows the user to place the tangible any-
where on the surface and see a section of a larger image on the tan-
gible’s screen. By moving the tangible around the surface, the user
can move the section of the image that is shown on the screen. As
these relative movements are directly tracked by the mouse sensor,
latency is low. Such a magic lens could be used for adding digital
content to a printed map or image, hiding digital hints on the pages
of a physical books, or using the tangible as a cursor for selecting
objects projected onto a tabletop.

Mutual Awareness allows multiple tangibles to interact with each
other (Figure 10b). In this application, the host computer not only
calculates each tangible’s position but also transmits the position
to all connected tangibles, allowing them to react to each other.
In our example, each of the two tangibles displays a stylized eye-
ball on its screen. The eyeballs always look at each other even if
the tangibles are moved around the surface, lifted and put some-
where else, or rotated by multiples of 90 degrees. Mutually aware
tangibles can be used as avatars in board games, bimanual input
devices, or as building blocks in educational applications where
students e.g., have to arrange tangibles in a certain order.

7 CONCLUSION AND FUTURE WORK

With Dothraki we demonstrate that it is feasible for tangibles to de-
termine and track their position on a surface using a mouse sensor.
We also highlight limitations of our approach and show examples
of applications that can be supported by Dothraki. While Dothraki
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is ready to be used in new applications, we also see it as a baseline
implementation for further improvements, such as:

e more robust position detection by implementing other
approaches from the literature [2, 5], by improving image
processing, or by using alternative patterns.

e orientation detection by improving image processing, by

adding additional information to the printed pattern, or

by choosing a DBT-like encoding which contains more
continuous lines.

invisible DBT patterns printed with IR-absorbing ink.

local implementation on the microcontroller by porting the

processing pipeline to C and optimizing code performance and

storage of the DBT.

e high-speed rotation tracking by modifying the mouse sen-
sor’s firmware or by adding a second mouse sensor to the
device. Modifying the firmware would require major reverse-
engineering efforts or collaboration with the manufacturer,
however.

e conducting a study with user groups in order to evaluate and
improve practical performance for concrete use cases

In order to facilitate further development, source code and
schematics are available under open-source licenses at
https://github.com/PDA-UR/DotTrack  and  https://hci.ur.de/
projects/dottrack.
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