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ABSTRACT
In Cloud Computing, the cloud serves as a central data hub for
the Industrial Internet of Things’ (IIoT) data and is deployed in
diverse application fields, e.g., Smart Grid or Smart Manufacturing.
Therefore, the aggregated and contextualized data is bundled in a
central data hub, bringing tremendous cybersecurity advantages.
Given the threat landscape in IIoT systems, especially SMEs (small
and medium-sized enterprises) need to be prepared regarding their
cybersecurity, react quickly, and strengthen their overall cyber-
security. For instance, with the application of machine learning
algorithms, security-related data can be analyzed predictively in
order to be able to ward off a potential attack at an early stage.
Since modern reference architectures for IIoT systems, such as
RAMI 4.0 or IIRA, consider cybersecurity approaches on a high
level and SMEs lack financial funds and knowledge, this paper con-
ceptualizes a security analytics service used as a security add-on
to these reference architectures. Thus, this paper conceptualizes a
flexible security analytics service that implements security capabili-
ties with flexible analytical techniques that fit specific SMEs’ needs.
The security analytics service is also evaluated with a real-world
use case.

CCS CONCEPTS
• Security and privacy → Security services; Domain-specific
security and privacy architectures; • Applied computing → IT
architectures; Reference models; Service-oriented architectures; •
Information systems;
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1 INTRODUCTION
The emerging technologies around the Industrial Internet of Things
(IIoT) provide considerable advantages in many application fields.
For instance, distributed sensors can be utilized in IIoT systems
to optimize processes and escort the industry to Smart Manufac-
turing’s vision by applying machine learning algorithms. Through
the coincide of domains, new insights can be generated, such as
optimizing a machine’s production parameters. The alignment of in-
formation technology (IT) and operations technology (OT) requires
explicit knowledge in both domains and extensive cybersecurity
knowledge. While IT systems are processing tons of OT systems
data (e.g., from Industrial Control Systems) in decentralized architec-
tures, new security threats arise, e.g., Sybil attacks [27], Wormhole
attacks [10] or Distributed Denial of Service attacks [21]. Small and
medium-sized enterprises (SME) are not up to the current state of
the art regarding cybersecurity, making them vulnerable to new
attack vectors. They often exhibit outstanding knowledge around
their supply chain and production processes but cannot compete
with the steadily evolving attack vectors. This gap can be traced
back to a lack of financial, technical, or even personnel resources for
innovation [19] and the necessary knowledge about information
security and vulnerabilities [8].
Knowledge is powerful and essential to be resilient against novel
attack vectors, such as the Distributed Denial of Service attack. To
what extent data and wisdom are related is illustrated in the Data-
Information-Knowledge-Wisdom (DIKW) hierarchy by Ackoff [1].
In it, data generates information, information creates knowledge,
and knowledge makes wisdom. It might not always be necessary
to climb the hierarchy latter to the top, but a response to an inci-
dent should be triggered quickly concerning cybersecurity. Thereby,
quick reactions build upon wisdom. For example, merely collect-
ing security-related data would not benefit the industry, such as
network traffic capture. Only those who process this network data,
recognize this information’s context and make predictions can be-
come game-changers. In the best case, the systems are sealed off
at an early stage to prevent severe damage or ward off the attack
altogether. Therefore, security analytics must be established in the
industrial sector to tackle the current threat landscape.
Security analytics must necessarily be embedded in an industrial
architecture that allows OT to be linked to IT and vice versa. SMEs
represent the German industry’s backbone and do not view cyber-
security as an integral part of IIoT systems but rather as an add-on.
As most of their production systems exist over decades, security
by design considerations have changed, especially in this intercon-
nection of IT and OT. Therefore, SMEs offer a vulnerable target for
attack. Thus, system functionality is prioritized over cybersecurity
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in SMEs, which is partly because many SMEs lack the financial
resources and the necessary knowledge.
Nevertheless, SMEs can thereby implement different architectures,
e.g., Reference Architectural Model Industry 4.0 (RAMI 4.0) [24] or
Industrial Internet Reference Architecture (IIRA) [14]. Due to the
lack of standardization, SMEs run the risk of betting on the wrong
horse when selecting them or implement their versions. Nonethe-
less, all of these architectures rely on the application of the cloud.
The cloud established itself as a data hub that enables manufac-
turing enterprises of all sizes to quickly connect their OT systems
to cloud-dependent IT systems. The IIoT architectures use mid-
dleware layers in general, which can be built on service-oriented
architectures [2], enabling the communication between individual
heterogeneous systems. A system offers numerous services made
available by the cloud service provider (CSP) to the cloud service
consumer (CSC) and billed to the CSC via subscriptions. Many
SMEs align their systems in the cloud because embedded services
yield tremendous advantages of compatibility and interoperability.
Thus, integrating new services into an existing IT architecture is
made comfortable.
This paper conceptualizes a security analytics service that is com-
patible with well-known reference architectures. As those reference
architectures take the right step into standardization, they represent
a further obstacle for SMEs as they do not offer concrete recom-
mendations in terms of security analytics. Our security analytics
service follows those security principles but offers concrete security
capabilities (see DIKW) that can be instantiated as flexible analyt-
ical techniques. That means that every security capability might
encompass several analytical techniques (e.g., detective security
capability is instantiated by Complex Event Processing) that can
be bundled or standalone. This flexibility of analytical techniques
is significant because IoT architectures differ in their respective in-
dustry regarding their application, middleware, and protocols [26],
which results in different requirements. In this way, the security
analytics service is flexible and generic, which is accomplished by
providing analytical capabilities. Thus, flexibility is leading to a
straightforward application in the respective industry.

1.1 Contribution
As this paper is addressing cross-domain knowledge to accomplish
knowledge gaps of SMEs in cybersecurity, the contribution of our
paper is threefold:

• We are introducing a novel and flexible security analytics
service, which fits the needs of industries and their use cases.
The security analytics service exhibits security capabilities,
which can yield a set of analytical techniques.

• We disclose how to generate wisdom from data to bridge
the knowledge gap. Thereby, the security analytics service
assists in complying with all capabilities in the DIKW hier-
archy.

• We are providing multi-disciplinary research that transfers
knowledge in different domains and knits cybersecurity to
IIoT.

1.2 Structure
This paper is structured as follows. Section 2 provides the neces-
sary background knowledge in reference architectures, Security as
a Service (SECaaS), and security analytics. Section 3 determines
the preliminaries towards a conceptual service model. Section 4
provides the conceptual model for the security analytics service
and defined relevant service characteristics. Section 5 shows the
architectural module, which knit the security analytics service to
the IoT architecture (IoT system) and vice versa. Section 6 evaluates
the architectural module with a real-world use case, and Section 7
provides the conclusion, limitations, and further research.

2 BACKGROUND AND RELATEDWORK
This section presents well-known reference architectures for the
IIoT and describes SECaaS and security analytics. Besides, the re-
lated work section provides knowledge to which this paper links.
These fundamentals are essential as a flexible security analytics
service for IIoT systems is being developed that operates according
to the principles of SECaaS.

2.1 IIoT Reference Architectures
Reference architectures are utilized in the IIoT to provide an ar-
chitectural construct that builds on existing standards and norms.
Therefore, they are the first step towards standardization, as these
reference architectures explicitly refer to gaps or problems in cur-
rent standards. In the industrial context, these include RAMI 4.0
[24] and IIRA [14].
Although those architectures appear different at first glance, both
contain similar views of an IIoT architecture. RAMI 4.0 registers
six different layers (business, functional, information, communica-
tion, integration, and asset) designed to fulfil various architectural
tasks. Each layer in this architecture is viewed from a life-cycle and
value stream perspective (cf. IEC 62890) and from the hierarchical
level s(cf. IEC 62264/IEC 61512). Unlike RAMI 4.0, IIRA defines four
viewpoints (implementation, functional, usage, and business) for
different stakeholders, which can be seen in terms of the industrial
sector and the product’s life cycles. Both reference architectures’
advantage is their interoperability (see Fig. 1) since the functional
domains (cf. functional view) of IIRA can be mapped with the ref-
erence architecture RAMI 4.0 [15].
In the following, the layers and their functionalities are explained.
According to RAMI 4.0, physical assets (1) involve all physical actors,
such as documents, software, and human actors. Besides, the indi-
vidual components of a cyber-physical system can also be counted
as physical assets. The integration layer (2) enriches the aforemen-
tioned physical assets with data transmitted in the communication
layer (3), e.g., with the ISO/OSI model. In the information layer
(4), the transmitted data is getting contextualized and semantically
categorized. The function layer (5) contains relevant processes that
support the business process layer (6).
As almost every industrial reference architectures is based onmiddle-
wares or service-oriented architectures (SOA) [2], the relevant layer
for this paper’s consideration is the information layer. This layer
also defines relevant services and ensures the technical functional-
ity of an IIoT architecture. Additionally, the information layer also
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Figure 1: Mapping of functional aspects in both reference
architectures.

provides reactions to specific events, such as an actionable to an
empty machine magazine.

2.2 Security as a Service (SECaaS)
In Cloud Computing, there exist four main deployment models (pub-
lic, private, hybrid, community) and three service delivery models
(Infrastructure as a service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS)) [18].
In general, security can be delivered in three alternate models,
so-called security service delivery models. These security service
delivery models involve 1) on-premises security, 2) managed secu-
rity, and 3) SECaaS [25]. While on-premise security is deployed on
the client-side, managed security involves a CSP via service level
agreements and is set up for the enterprise. Both models cannot
be aligned with typical Cloud Computing advantages [25], such as
elasticity, broad network access, or pay-as-you-go subscriptions
[18].
Besides the service delivery models, there exist plenty of different
services. In the SECaaS, the overarching goal is to provide con-
sumers with security services. Security services are wide-ranged
and can be categorized as identity and access management, data
loss prevention, web security, email security, security assessment,
intrusion management, security information and event manage-
ment (SIEM), encryption, network security and business continuity,
disaster recovery, and continuous monitoring [5].
SECaaS benefits from the broad application of Cloud Computing
and thus receives extraordinary encouragement from the scientific
community [25]. A meta-model is also proposed by Furfaro et al.
[9] to support the modelling of SECaaS in cloud environments. In
this meta-model, a distinction is made about whether a service
acts in support of another service’s security or whether it offers
security features. This methodological approach is detailed and
allows different perspectives to SECaaS. We will come back to the

meta-model when discussing our flexible security analytics service
in Section 3 of this paper.

2.3 Security Analytics
As the amount of structured and unstructured security-related data
is grown, traditional SIEM systems reach their limits [4]. In the era
of Big Data, new technologies arise which can support efficient
real-time data processing and analysis, leading to the paradigm of
Big Data analytics [31]. Big data processing technologies are noth-
ing new in the IoT because of the vast amount of data generated by
heterogeneous IoT devices. The application of Big Data processing
technologies, e.g., Apache Spark [33], is therefore not far distant
to support security. In this context, (Big Data) security analytics is
used to analyze contextual data in cybersecurity [16]. In general,
analytical techniques exist that fulfil single steps of the DIKW hi-
erarchy by Ackoff [1] in the context of IoT [28]. Therefore, these
analytical techniques can be classified as descriptive, diagnostic,
detective, predictive, and prescriptive. In this paper, we refer to
those categories as security capabilities. While descriptive and di-
agnostic capabilities are strictly retrospective, a detective capability
reflects interactions in real-time, and predictive and prescriptive
capabilities are prospective.

2.4 Related Work
The provisioning of security services in on-premise solutions (SE-
CaaS) was already carefully elaborated in past research, e.g. Zarca
et al. [20] focuses on appropriate methods for enhancing security in
IIoT by centrally orchestrating security mechanisms and controllers.
Therein, modules interact with each other to satisfy a quick reaction
and ease of control in the IoT landscape. However, these approaches
omit an integral component of cybersecurity: the generation and ex-
change of knowledge. Ackoff [1] defined the first approach to gather
wisdom from data by providing the DIKW-hierarchy. Decades later,
the IoT evolves, and authors rethink the existing DIKW by defining
new layers appropriate for the IoT [11]. With the rise of Big Data,
new opportunities regarding data analytics appeared, and analytical
methods are categorized along with their outcome, e.g. predictive
analytics [28]. Based on those methods, the cybersecurity state of a
system or architecture can be evaluated, e.g., cybersecurity dynam-
ics provides a metric-based approach used to compare several secu-
rity states of a system [32]. Furthermore, cybersecurity dynamics’
objectives provide valuable insights into the interaction between
descriptive, predictive and prescriptive capabilities. Necessarily,
assessing the current cybersecurity state requires the judgment of
a security expert. Likewise, also for the implementation of security
solutions. Thus, the exchange of knowledge between experts and
novices os crucial. The creation and exchange of knowledge result
from collaborations between security experts and novices and must
be necessarily supported by novel technological approaches. [3].
Past research focused on the assessment of security analytics meth-
ods, the exchange and creation of knowledge in security analytics
and concrete instances of security analytics components, e.g. inci-
dent response. This research is knitting past research together by
meaningfully aggregating and assembling their findings.
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3 PRELIMINARIES
This paper approaches a flexible security analytics service concern-
ing the meta-model described by Furfaro et al. [9]. This meta-model
involves three phases, which are namely security services identifi-
cation (SSI), design solutions definition (DSD), and design solutions
analysis (DSA). The SSI-phase needs a definition of the security de-
livery model and the security requirements, which leads to security
service conceptual models (SSCMs). With the exploitation of those
SSCM, security service design solutions (SSDSs) are approached in
the DSD-phase, evaluated, and selected in the DSA-phase, leading
to an evaluated selected design solution (SDS).
As this security analytics service offers security capabilities with
flexible analytical techniques, the delivery scenario is considered
a standalone service, which does not provide security services to
existing services. The next step towards SSCMs is to define appro-
priate security requirements. Those requirements are described in
the following few paragraphs by determining the involved entities
and defining the threat model. Afterwards, the necessary security
requirements are derived.

3.1 Involved Entities
The security analytics service should be applied within IIoT systems.
Therefore, we define a standard technological setup. According to
IIRA or RAMI 4.0, we instantiate an architecture based on a middle-
ware, which yields machines and their edge nodes in an Industrial
Control System (ICS) and a cloud to process and analyze the gath-
ered data. Therefore, we derive the following entities that are in-
volved within the architecture, i.e., life cycle parties of machines [7]
and Cloud Computing entities: CSP, CSC, network service provider
(NSP), internal IT department, manufacturer, distributor, owner,
and maintainer.

3.2 Threat Model
Threat modelling methods like Octave, Coras, Mehari, or attack
trees lack a holistic methodology as detailed threat lists tend to be
incomplete or subjective. In contrast, STRIDE (Spoofing, Tampering,
repudiation, information disclosure, denial of service, and eleva-
tion of privileges) modelling by Microsoft leads to a classification
of threats given constant attack patterns. In contrast, LINDDUN
is another threat modelling language that attempts privacy mod-
elling. Since we address a service that is not designed to incorporate
privacy-sensitive data, we do not consider privacy leakage and ex-
clude, therefore, LINDDUN. STRIDE ensures a mapping of elements
(external entity, processing node, data store, and data flow) to a
particular category [22]. Depending on those categories, threats
can be identified. For the STRIDE model, a context diagram and a
data flow model are required, shown in Fig. 2.
Level-0 defines the context diagram for our threat model, in which
all previously described entities are included. These entities interact
with a so-called IIoT system, which represents the combination of
IT and OT. If we complement this IIoT system with a data flow
model (level-1), three central components of the generic IIoT sys-
tem are defined: machine, edge, and cloud. This data flow diagram
could now be abstracted into further levels, e.g., the cloud may
contain various information systems in level-2 that communicate
with each other.

We assume that the internal IT department of an SME is using
resources of a CSP and is therefore partly considered as CSC. Con-
sequently, we assume that the internal IT department is developing
somewhat cloud applications for the IIoT system. We consider the
cloud instance trustworthy as the cloud provides robust authentica-
tion mechanisms for the edge nodes and the internal IT department.
Furthermore, we assume the data, which is transferred from the
edge node to the cloud, to be encrypted.
Given the assumption, we derive the following threat landscape:

• Spoofing attacks are realistic at the edge node and the ma-
chine, as unauthorized entities might have physical access
to interact with them.

• Tampering attacks are changing the integrity of data or ma-
chine commands. Every entity in the IIoT system can manip-
ulate data flows independent of physical or virtual access.

• Non-repudiation is reached by a false logging-mechanism
or missing signature of data streams.

• The elevation of privileges is possible at the machine, the
edge node, or the cloud.

• Furthermore, all data streams need to be encrypted and au-
thorized to not reveal sensitive data to possible attackers
(entities) and therefore, disclosure sensitive information.

• Denial of Service (DoS) attacks are assumed to be located at
the edge node as the cloud provides mechanisms to balance
immense loads, e.g., load balancing or horizontal or vertical
scalability.

3.3 Security Requirements
In ISO/IEC-27000, there exist several security requirements for an
architecture: confidentiality, integrity, and availability, which other
requirements like non-repudiation or authenticity can complement.
In the threat model mentioned above, various threats are apparent
to an IIoT system. This variety of threats can be traced back to the
amount of participating entities.
As the operational technology aims instead at a high availability
than confidentiality, we consider the availability as the security
requirement with the highest priority. The availability must be
reached for the OT (e.g., ICS) and the IT, as both components are
interconnected. Second, data need to be encrypted regarding confi-
dentiality as the machine’s data is classified as confidential. Last,
considering the data quality of machines’ data, data need to exhibit
integrity.When data feature integrity, this also leads to a better qual-
ity of security analytics. Security analytics in IIoT systems should
aim to preserve a high availability, integrity in its data streams
and encrypt the data efficiently. In order to achieve these security
requirements, we include the security capabilities mentioned above.
In this paper, these capabilities are used for security analytics and
referenced as security capabilities. We consider these security ca-
pabilities to cover three temporal dimensions (hindsight, insight,
and foresight) and allow a holistic view of data. While descriptive
and diagnostic capabilities are aimed at hindsight, detective capa-
bilities are for insight and predictive plus prescriptive capabilities
for foresight.
Thus, the security capabilities are follows: (i) descriptive, (ii) diag-
nostic, (iii) detective, (iv) predictive, and (v) prescriptive. We refer
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Figure 2: context diagram on level-0 (a) and data flow model on level-1 (b).

to them as service requirements in the service context and security
capabilities in security analytics.

3.4 Framing the Problem
The threat model has shown the threat landscape in IIoT systems
on level-0 and level 1. The threat landscape’s complexity rises by
abstracting more detailed threat model levels (e.g., level-2 or level-
3). The higher the threat model’s level, the more detailed the threat
landscape is described, i.e., the more knowledge is required to de-
scribe the relationships and dependencies between systems. Based
on the arising complexity, extensive cybersecurity knowledge is
required to set up even more detailed threat models. Concerning
SMEs, they need to accomplish this threat landscape with appropri-
ate knowledge. As knowledge is generated from data and informa-
tion, SMEs need appropriate security analytics methods to generate
wisdom from data.
Common reference architectures like IIRA or RAMI 4.0 provide
dedicated security frameworks, e.g., the Industrial Internet Secu-
rity framework [17]. As can be inferred from frameworks, those
security frameworks provide generically functional breakdowns
for security components in IIoT systems. For instance, the security
component "security monitoring and analysis" is described as three
constituents: monitor, analyze, and react. Those components are
described with their shared attributes but are not specified in depth
nor within the context of a cloud.
This research paper builds upon this gap and describes a security
analytics service that follows those security framework proposals
and offers relevant security capabilities to provide SMEs with the
necessary knowledge. Moreover, these security capabilities may
yield different analytical techniques that can be applied flexibly,
which means SMEs can swap or bundle them depending on their
desired outcome (e.g., proactive reaction or forensics). In summary,
the security analytics service offers five security capabilities, and
each of them can flexibly yield different analytical techniques, e.g.,
SMEs can implement Complex Event Processing as one instance
of a detective security capability. Thus, this service is generically
applicable to different industries. Regarding a particular industry,

analytical techniques lead to wisdom, i.e., a better comprehension
of potential threats in the IIoT system and, therefore, to a more
efficient incident response.

4 SERVICE MODELING
After specifying the service requirements and the security analytics
service delivery model, this section approaches the SSCM, possible
design solutions, and the selection of an appropriate conceptual
model.

4.1 Conceptual Model
First, the meta-model’s main attributes are specified, including the
description, security concerns, security level, the category, and rele-
vant service attributes. These entries are shown in Tab. 1.To satisfy
the security requirements, we have defined security capabilities as
service requirements. Thus, all dimensions of security analytics are
addressed and included in the security analytics service.
Although the security analytics service addresses all security capa-
bilities, the efficacy depends heavily on the implemented analytical
techniques as humans need to implement analytical techniques
first. Additionally, the security analytics service faces a broad threat
landscape and thus, we conclude the efficacy of detecting possible
threats as a possible security concern. Furthermore, the abuse of
the rights of a user is another security concern.
SIEM and intrusion management are considered the main cate-
gories for the security analytics service because security analytics
is a combination of both categories [30]. The security analytics
service is applied as an IaaS to simplify analytical techniques to a
user or group. Thus, the deployment is straightforward and can be
conducted without much effort since most SMEs have outsourced
their computing resources to the cloud. Furthermore, the service
should be independent of any service providers and is targeting a
minimum of service costs.

4.2 Design Solution
The considered SSCM provides five distinct service requirements,
which need to be involved within the design solution, i.e., SSDS. A
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Table 1: Conceptual model of the security analytics service.

Meta model concept Description

SE
C
aa

S

Service requirements

SR1: descriptive security capability
SR2: diagnostic security capability
SR3: detective security capability
SR4: predictive security capability
SR5: prescriptive security capability

Security service This paper is facing a flexible secu-
rity analytics service for IIoT sys-
tems by satisfying the service re-
quirements SR1-SR5.

Security concern Efficacy, misuse of rights
Security level This service’s primary focus is the

generic application to instantiate
analytical techniques dependent on
the desired outcome.

C
at
eg

or
y The security analytics service is cat-

egorized as Security Information
and EventManagement & Intrusion
Management.

Se
rv
ic
e

Delivery modality Infrastructure as a Service
Deployment modality Public, private
Service provider Any
Cost of service Target: minimal/ zero additional in-

frastructure
Period of validity Not specified

possible design solution needs to integrate these service require-
ments and thus, needs an opportunity to allow multiple analytical
techniques as instances of one security capability. As these service
requirements are holistically addressed, the security requirements
are satisfied. Based on these findings, we instantiate one design
solution. The design solution is represented by policies and security
mechanisms (SM) that fulfil the SSCM (see Tab. 2).
The SSCM under design faces strong security concerns regarding
its efficacy as SMEs lack knowledge in analytical techniques, and
the given threat landscape is increasing. Security novices cannot
implement an analytical technique without any knowledge about
the desired outcome. Thus the efficacy of the analytical technique
is questionable.
This problem can be minimized with the usage of a peer-reviewed
repository. Repositories have established themselves in many ar-
eas as they offer peer-reviewed functional patterns, which can be
adapted by the community and tailored to one’s needs. Thus, we con-
sider, similar to [13], a repository that yields analytical techniques.
Of course, repositories can also be managed internally (private), but
we explicitly refer to public repositories. Public repositories’ usage
fills the knowledge gap between SMEs and larger companies and
leads to high-quality analytical techniques. Moreover, this fosters
the exchange of knowledge and enables a thorough elaboration of
a system’s current cybersecurity state.
The security analytics service is secured by a username and pass-
word authentication schema. A user or the user group needs to sign
in to configure and adapt the analytical techniques stored within a

public repository.
As we have only derived one design solution, this design solution is
also our selected solution for further considerations. In the next sec-
tion, we are sketching this solution with appropriate architectural
modules.

Table 2: Design solution of the security analytics service.

Meta model concept Description

Po
li
cy

Identifier Id-01
Description The security analytics service

binds a public repository, i.e.
security analytics repository,
which yields descriptive infor-
mation about specific analytical
techniques to satisfy a security
requirement.

Statement Action The user can select or define ana-
lytical techniques, which are de-
pendent on the desired security
capability. These analytical tech-
niques are stored in a public repos-
itory and can be accessed by other
SMEs.

Effect The selected analytical technique
can quickly be adopted and ad-
justed to fit the security require-
ments of the IIoT system.

User Group/ single

SM

Authentication time Disable
Authentication location Disable
Credential based Username and strong password

5 ARCHITECTURAL MODULES
A design solution is selected in the previous section that addresses
the service requirements for security analytics service. Based on
this design, the anchoring in IIoT systems and the relevant modules
are presented in this section. In general, security analytics should
be included in OT and IT concerning reference architectures. Zarca
et al. [20] provide, therefore, a security orchestration plane that
enables a holistic orchestration of security task over the IIoT system.
This conception is also underlining that security analytics is often
perceived as a monitor in such architectures [29]. Thus, we align
our security analytics service holistically over the IIoT system and
expand the monitoring functionality to respective security modules
and analytical techniques. The result is presented by Fig. 3 and the
modules are described in the following beginning at the bottom.

5.1 IIoT System
The IIoT system in Fig. 3 reflects all IT and OT domains and their in-
terplays. Based on the IIRA, we derived the five functional domains
and their interplays. The control domain is located at the edge, the
information and operation domain in the cloud, and the in-house
server’s business and application domain. We explain the single
domains shortly as they have been described in the background
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section.
The control domain is aggregating sensor and machine data and
sends the data to the information domain. The information domain
is transforming and cleaning the data and accelerates the informa-
tion based on the lambda architecture by Kiran et al. [12] in a speed
layer. The business domain visualizes the data and connects it to
various databases, e.g., Manufacturing Executive System (MES) or
Enterprise Resource Planning (ERP). Depending on the business
logic, the application domain is providing feedback to the control
domain. The operation domain is responsible for the monitoring,
optimization, and forecasting of machines’ states. The operation

domain also provides feedback to the control domain to adjust the
machines’ parameter. Data and information are fed into the infor-
mation domain to log the communication between domains and
analyze their behaviour.

5.2 Security Analytics Service
As also can be inferred from Fig. 3, the security analytics service is
connected to the information domain and thus, connected to the
databases and the streaming data. This security analytics service
needs strong authentication regarding the streaming data and the
databases. We omitted the interconnections between the security
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analytics service and the control domain, as this is not the main
focus of this paper. The previously defined service requirements
SR1-SR5 are applied as security modules (with security capabili-
ties) in the security analytics service. Those security modules are
arranged according to the DIKW hierarchy, i.e., they are nearly
ordered from the data (right) to the wisdom (left). In the following,
the single parts of the security analytics service are described.
Security orchestrator. The security orchestrator is the bridge to
the IIoT system and orchestrates and automates the response to a
possible threat. The data is partly forwarded to the monitor (not
depicted), but it should also be achievable to control networks from
the control domain with the aid of higher-level software-defined
network controllers. The security orchestrator logically receives
feedback from the predictive, detective, and prescriptive security
modules to derive actions. We provided only one connection (pre-
scriptive module to security orchestrator) to enhance clarity.
Monitor. The monitor is also proposed in the recommendations for
improving cybersecurity in the Industrial Internet Security Frame-
work, among others. The monitor aggregates data from all sources
and captures incoming data in real-time. The amount of data makes
it possible to monitor systems and pass them to the individual se-
curity modules. The data sources are not limited to the information
domain; e.g., databases from the business domain can also be con-
nected to gather information about ERP or MES.
Descriptive module. The descriptive analytics module provides
possibilities for finding out what happened in a system, thereby
providing hindsight. Mostly data is summarized or presented in raw
data format. Common techniques are visual analytics or business
analytics, where the data or information is presented graphically.
Diagnostic module. The diagnostic module also creates hindsight
but goes beyond descriptive analysis and investigates the cause of
a particular discrepancy or anomaly. For instance, within digital
forensics, security experts can investigate data sources and causali-
ties.
Detective module. The detective module provides a statement
about what is currently going on in the systems, and thus, it pro-
vides insights. Therefore, the analyses are only related to the current
systems state and are performed based on the monitor’s data. De-
tection mechanisms are rule-based, time-based, or anomaly-based
to detect incidents in real-time and support decision-making. How-
ever, correlations or clustering of information can also be utilized
to detect inconsistencies.
Predictive module. In the predictive module, future system states
are predicted based on the real-time data received. If irregularities
are discovered in the data, potential incidents might be averted at
an early stage. This module includes analytical techniques such as
regressions or fuzzy logic.
Prescriptive module. The prescriptive module, in comparison to
the predictive module, also predicts states of a system. Nevertheless,
the prescriptive module goes one step further and, unlike pure fore-
casting, also derives recommendations for actions. Thus, possible
actions can be determined for the incident response process, such
as the systems’ encapsulation. Furthermore, recommender systems
or Monte Carlo simulations are considered analytical techniques.
Analytical technique. An analytical technique is understood as
an instance of a particular security module (security capability). As
mentioned in the individual security modules, concrete algorithms

or techniques are applied that are loose or coupled. Moreover, an-
alytical pipelines can be created by bundling multiple analytical
techniques together. The analytical techniques are considered se-
curity modules and are originally located in the security analytics
repository.
Security policy repository. Various policies can be defined in the
security policy repository, classified according to different security
levels (e.g., low, medium, or high). The security policy repository
offers two interfaces: one to the user and another to the detective,
predictive and prescriptive modules. By applying these security
policies, decisions are derived for the incident response.
Security analytics repository. One main part of the security an-
alytics service is the security analytics repository. Instances of se-
curity modules (analytical techniques) are stored in this repository
and shared within and across a companies’ borders. This informa-
tion sharing enables a knowledge transfer and peer review of the
instantiated analytical techniques.

5.3 Security Expert
As described in the last section, a user needs to communicate with
the security analytics service. As this interaction dives deep into the
subject, the user needs to exhibit outstanding domain knowledge.
Therefore, we are considering the user as a security expert. We
manifest a user interface that enables interaction with the security
analytics repository and the security policy repository (see Fig.
3). A security expert first needs to sign in via a password-based
authentication schema. In the next steps, the security expert can
define or edit security policies for the IIoT system or create new
analytical techniques for a particular security module.
The definition of security policies presents itself as a manageable
task for a security expert. However, the implementation and applica-
tion of analytical techniques in terms of cybersecurity is amammoth
task. Here, the security expert must have in-depth knowledge from
various domains, namely cybersecurity, software development, and
statistics.

6 EVALUATION
As this paper does not implement the concept, technical experi-
ments can be excluded. However, this paper is dedicated to SMEs,
and we will evaluate the concept with a real-world use case. We
refer to SISSeC1, an ongoing German research project.
SISSeC aims to securely link a printed circuit board (PCB) manufac-
turer’s machine and sensor data via an edge gateway to a so-called
sensor cloud. Within the edge gateway, intrusion detection mech-
anisms are applied, and access controls mechanisms authenticate
machines and sensors. The sensor cloud collects and aggregates this
data to determine the potential security state with security analytics
(e.g., via a digital twin). The PCB manufacturer’s overall objective is
to collect relevant data and identify likely future states. In addition
to the cybersecurity focus, such events are also production-related,
e.g., the potential wear of a drill bit on the drilling and milling
machine and the time remaining until its change.
Since the project itself is attempting a particular architecture, no
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reference architectures are utilized. The main architectural build-
ing blocks of SISSeC (machine, edge, and cloud) can nevertheless
be categorically classified in the architectural modules identified
above. The control domain thus represents the machines, sensors,
and the edge gateway. The sensor cloud in SISSeC is perceived as
the operations domain and the information domain. The traditional
IT systems (e.g., ERP) of the PCB manufacturer are understood as
the business and application domains. In summary, the IIoT system
is fully covered by the architectural modules.
The information domain is realized using various Big Data tech-
nologies (e.g., Apache Kafka) and equipped with two data pipelines
(batch and stream). This bidirectional data processing enables the
connection to the security orchestrator and the monitor, which
create the link between these Big Data technologies and the secu-
rity analytics service. All the relevant prerequisites for the security
analytics service are given.
As one of the SISSeC goals is to conduct security analytics with a
digital twin, we evaluate if our architectural module permits this
instance of security analytics. Dietz & Pernul [6] state that digital
twins can run in three different operation modes that benefit cy-
bersecurity: simulations, replications, and analytics. The latter is
relevant for generating foresight by applying statistical analyses
or machine learning. Concerning the security analytics service’s
security modules, a digital twin represents the link from real-time
data to feasible simulation or forecast scenarios. In this context, the
digital twin is, therefore, regarded as a foresight security module.
Since the digital twin can also derive recommendations for actions
and forecasts, the digital twin is considered the prescriptive module.
Our security analytics service stores digital twin models (e.g., Au-
tomationML [23]) for the PCB manufacturer in the security ana-
lytics repository. Concerning this digital twin model, a security
expert instantiates it as an analytical technique for the prescrip-
tive module, enabling future system states’ simulations. The PCB
manufacturer must not necessarily create the digital twin itself but
can also purchase it under certain circumstances from a machine’s
manufacturer.
This use case addresses only the prescriptive module but can be
extended vertically regarding the remaining security modules. This
use case demonstrates the general applicability of the security ana-
lytics service and the potential benefits for SMEs and research.

7 CONCLUSION
As the threat landscape continues to grow and the gap between
larger companies and SMEs in terms of cybersecurity knowledge
widens, this paper takes a step towards improving knowledge trans-
fer. The knowledge transfer is provisioned by a conceptualization
of a general-purpose flexible security analytics service for the IIoT
suited for SME environments. Although this knowledge transfer
has been tailored to SMEs, larger companies can also benefit from
a shared knowledge base. In general, the shared knowledge ba-
sis is necessary because companies are also encountering non-
standardized reference architectures in the IIoT and encounter ad-
vantages regarding their financial and personnel resources.
We presented a security analytics service that enables security ca-
pabilities through security modules. These security modules can be
instantiated by diverse analytical techniques to address a particular

industry’s needs flexibly. Furthermore, we disclosed how to gener-
ate data to wisdom and included this knowledge into our security
analytics service. Thus, we bridge the knowledge gap within SMEs
and contribute to the multi-disciplinary research area concerning
the IIoT. Moreover, we presented the security analytics repository,
which transfers knowledge between SMEs and established peer-
reviewed implementations of analytical techniques.
Besides the contribution, this paper exhibits two limitations. First,
we do not specify any access control roles to our security analytics
service, as we have only covered a single entity (security expert).
Second, we excluded parts of the incident response. As the response
opportunities to a detected or predicted threat increase with the
complexity of IIoT systems, e.g., with software-defined networks
for the ICS, a holistic sketch of interconnections within the archi-
tectural module is almost impossible.
In the future, we will work on implementing a prototype of this
security analytics service. The design of a specific implementation
can be structured in several ways. We recommend a design based on
virtual machines, dockerized applications, and specific connectors
for a straightforward adoption and application of the capability
modules. As we admit in the introduction, data is vital to generate
wisdom. By bundling the data sources and types of data (stream
vs batch) required to fulfil a particular capability module (e.g., the
descriptive module takes batch data), analytical techniques can be
instantiated. Thus, each capability module should be represented by
one virtual machine. The virtual machines can be interconnected
with dedicated bridges to accomplish the dependencies between
the capability modules. Each of the virtual machines is running
on Docker to establish containerized and modular applications.
There are many open-source software and tools for security ana-
lytics applications that need to be categorized depending on their
functionality, e.g., Suricata is an intrusion detection tool and is,
therefore, available in the detective module. In this context, the
security analytics repository is considered a collection of docker-
ized applications. Besides provisioning dockerized applications, the
security analytics repositories need to yield connectors for each
application to bind multiple applications’ sinks and sources. Addi-
tionally, machine learning models can be shared across the security
analytics repository and integrated into the desired capability mod-
ule. Those machine learning models might be integrated into the
predictive module (stream data) and the descriptive module (batch
data). The different analytical techniques can be tagged inside the
security analytics repository (e.g. for detective module) and ranked
by other users. These mechanisms are resulting in transparency as
to which methods are successfully contributing to the cybersecu-
rity.
Based on this prototype, an evaluation is planned, which measures
the effectiveness and efficiency of the service. Quasi-experiments
evaluate latter for each of the modules, e.g. the descriptive mod-
ule is used by one group, which is working out an incident with
security analytics service, while the other group does not have the
security analytics service available.
In summary, we expect that this paper will contribute to the current
state of research, as security capabilities have not been included in
security analytics so far. Furthermore, this paper will also transfer
knowledge to industry and, in the case of a successful prototype,
will also contribute to the exchange and creation of knowledge.
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