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Abstract

So far studies estimating sales response functions on the basis of store-specific
data either consider heterogeneity or functional flexibility. That is why in
this contribution a model is developed possessing both these features. It is
a multilayer perceptron with store-specific coefficients which is specified in a
hierarchical Bayesian framework. An appropriate Markov Chain Monte Carlo
estimation technique is introduced capable to satisfy theoretical constraints
(e.g. sign constraints on elasticities). The empirical study refers to a data base
consisting of weekly observations of sales and prices for nine leading brands
of a packaged consumer good category. The data were acquired in 81 stores
over a time span of at least 61 weeks. The multilayer perceptron is compared
to a strict parametric multiplicative model and approaches the maximum
value of posterior model probability. This indicates the benefits of using a
flexible model even if heterogeneity is dealt with. Estimated sales curves and
elasticities demonstrate that both models differ in their implications about

price response.!

Keywords: Sales Response; Hierarchical Bayes; Multilayer Perceptron; Neural Networks;

Marketing

1 Introduction

So far studies estimating sales response functions on the basis of store-specific
data can be divided into two groups. Studies belonging to the first group allow
heterogeneity across stores, i.e. store-specific coefficients, but assume strict
parametric forms, mostly linear, multiplicative or exponential (e.g. Blattberg
and George, 1991; Montgomery, 1997; Boatwright et al., 1999). They specify
sales response functions as hierarchical Bayesian models so that store-specific

coefficients depend on data from all stores (Carlin and Louis, 1996). Markov
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Chain Monte Carlo (MCMC) simulation techniques serve to estimate param-

eters.

These studies demonstrate the importance of the heterogeneity across stores.
Therefore models based on linearely aggregated or pooled data should be
avoided as they are known to be biased if effects are heterogeneous even
for the case of the linear function (Krishnamurhti et al., 1990). Their main
potential weakness lies in the assumed strict parametric form. Though they
deal with heterogeneity, if the assumed parametric form differs from the true

function a source of bias remains (Hastie and Tibshirani, 1995).

The second group of studies estimating sales response functions allow flexi-
bility of functional form by means of semiparametric or seminonparametric
methods, but assume homogeneity across stores. The sales response model
of Kalyanam and Shively (1998) uses cubic stochastic splines. The semipara-
metric models of van Heerde (1999) and van Heerde et al. (2001) include
multivariate kernels. Hruschka (2000) and van Heerde et al. (2001) analyze
sales response by means of a generalized additive model, whose nonpara-
metric part equals a sum of cubic smoothing splines and univariate kernels,
respectively. Lang et al. (2003) introduce a Bayesian semiparametric additive

model which consists of P-splines with smoothness priors.

Multilayer perceptrons (MLPs) constitute another flexible modeling approach.
They can be understood as series estimators approximating an unknown mul-
tivariate function by a linear combination of sigmoid (mostly logistic) func-
tions (Pagan and Ullah, 1999). As series estimators are nonparametric in
their orientation, though their modus operandi is parametric, MLPs can be
called seminonparametric following the terminology of Gallant (1987). The
literature contains some examples of determining market response functions
by MLPs. Hruschka (1993) estimates an aggregate sales response model by a
MLP. A related stream of research deals with estimation of aggregate market

share models (van Wezel and Baets, 1995; Wierenga and Kluytmans 1996;



Natter and Hruschka, 1998; Hruschka, 2001).

With the exception of Hruschka (2000) and Hruschka (2001) who analyzes
data of one store, all studies belonging to the second group linearly aggregate
data (by sums or averages across stores) or pool data across stores. Though
they tackle with bias due to functional form, bias due to heterogeneity across
stores still exists. That is why in this paper a model is developed which allows
both heterogeneity and functional flexibility. To this end sales response func-
tions are specified as MLPs with store-specific coefficients in a hierarchical
Bayesian framework. Moreover, an appropriate MCMC estimation technique

is introduced.

We try to answer the question wether for a typical marketing data set func-
tional flexibility is advantageous if heterogeneity is considered also. If a het-
erogeneous strict parametric model performs at least quite as good as the
heterogeneous flexible model or gives roughly the same results about mar-
keting effects, most researchers would stick to the less complex parametric
model. Therefore we compare the MLP to a strict parametric model, where
both models have store-specific coefficients. Relative performance of the MLP
is measured by its posterior probability. If the MLP is better according to
this criterion, we investigate if it implies a pattern of price response different

from the parametric model.

2 Specification of Models

Originally several parametric sales response models were considered (i.e. lin-
ear, multiplicative, exponential, semi-log taking logs of prices, logistic and
asymmetric logistic) with price of the respective brand and average price
across competitors as predictors (a description of these functional forms can
be found in Hanssens et al., 2001). A heterogeneous version of each of these
models was estimated by an appropriate MCMC method. Posterior model

probabilities for the multiplicative models computed from log marginal model



densities approach the best value of one (see section 3). Because of its su-

periority this paper uses the multiplicative model as standard of comparison

for the MLP.

The heterogeneous multiplicative model (abbreviated as HMM) is expressed
by:

|Cm|
Qmit = eXp Ami0 pm?t H pg’zzjgl (1)

Qmit and p,,;; are sales and price of brand m in store i and week t. C,,, denotes
the index set of competing brands (in the following briefly called competitors)
which affect sales of brand m (this set may be empty). These are the brands
for which the 95% credible interval of the mean price coefficient for brand m
in the HMM did not include zero (see section 3). C,; is the j-th element of

this index set. |Cy,| symbolizes the number of brands contained.

Model specifications originally included coefficients for point of sales displays
as well as prices and sales both lagged by one week as possible dynamic effects.
Estimation of corresponding heterogeneous multiplicative models demon-
strated that these variables may be eliminated as 95% credible intervals of
their mean coefficients included zero. That is why these variables are ignored

here.

Estimation is based on the log-transformation of the HMM:

|Cm|
log(Qmit) = Qmio + Qmit 10g(Pmir) + Z Qmij+1 10g(pe,,;it) (2)

j=1
MLPs approximate any continuous multivariate function and its derivatives
to the desired level of precision given a sufficient number of hidden units with
S-shaped activation functions (Cybenko, 1989; Hornik et al., 1989; Ripley,
1993). In order to achieve a certain approximation rate for problems of higher
dimension, MLPs approximate unknown functions and their derivatives with

1/2

errors decreasing at rates as fast as «u~/*, with u as number of hidden units.



Rates for standard kernel, spline and Taylor series approximants are higher

and increase with the dimension of the input space (Barron, 1993; Hornik et

al. 1994).

The heterogeneous multilayer perceptron (abbreviated as HMLP) is written

as follows:
[Cin | Um

log(Qmit) = arlniO + arlnil log(pmit) + Z O[:m'jJrl IOg(pijz‘t) + Z a?niuhﬂ(f%b)
j=1 u=1

As can be seen from expression 3 compared to the HMM the HMLP has as
additional " predictors” the values of hidden units h,,,;,;, which are computed
by binomial logistic functions:

|Cm|

Pmit = 1/[1+ exp(—(lyion + Oty 108(Pmit) + > O‘iu‘jﬂu log(pc,,;it)13)
=

Note that all coefficients of the HMLP vary across stores.

Store-level elasticities €,,,m; and cross-elasticities €,c,,;; are defined by:

Olog(Qu) . Oloa(Quu)
dlog(pmie) "0 log(pc,,;it)

€mmi =

()

For the HMM store-level elasticities and cross-elasticities are simply equal to

the corresponding price coefficients:

Emmi = Omil,  €mCpji = Cmij+1 (6)

Store-level elasticities and cross-elasticities for the HMLP are:

Unm
€mmi = aim'l + Z a?m’u(l — hiniut) hmiutainlu (7)
u=1
Unm
EmComji = O‘im’jJrl + Z a?mu(l — Priut) hmiuta?m’jJrlu (8)
u=1

Economic theory postulates that holding other effects constant sales decrease

if the price of a brand rises and increase if the price of any competitor rises



(e.g. Rao, 1993). Therefore store-level elasticities should not be positive and
store-level cross-elasticities should not be negative. For the HMM these re-

strictions are fullfilled by these obvious restrictions on parameters:

IN

0

Qi1

Omigy1 = 0 for j=1,---,|Cpl (9)

The desired properties of elasticities and cross-elasticities can also be achieved
by constraining coefficients of the HMLP utilizing the fact that the first
derivative of the logistic function (1 — huiue) Rmiwe Which is part of elasticity

formulas 7 and 8 is always positive. These restrictions are:

3
mzl S O Xnilu S 0
3
O‘mz]+1 > O am2]+1u Z 0 (1())
>0

mzu

These restrictions mean that coefficients for the price of a brand must not be
positive, those for prices of competitors and for values of hidden units must

not be negative.

If interest focuses on price effects across all stores, one should look at price
elasticities w.r.t. total sales. Total sales @),,; of brand m in week ¢ are equal

to the sum of store sales of this brand in week ¢ across all I stores:

1
i=1

Price elasticity w.r.t. total sales ¢,,,, is the average of store-level elasticities
emm: Weighted by the ratio of estimated store-level sales and estimated total

sales:

let szt
mmi- A mmi 12
Z ‘ th ; =1 szt ( )

This expression shows that even for the HMM total sales elasticities are no

longer constant.



Coefficients of all models considered here vary across stores. Let coefficients
of brand m and store ¢ be collected in a column vector [3,,;. For the HMM

this means:

!

Brmi = (Qmios "+, Qmi| Oy 4+1) (13)
For the HMLP (3,,; is defined as:
1 1 2 2 3 3
Brmi = Qo X | Conj |41 Xm0l """ Xmi| Coi |+ 1U s Xmio1s " " amz‘|cmj\+1£/lfgj

Store-specific coefficient vectors are assumed to be multivariate normally dis-
tributed with mean vector 3,, and covariance matrix %,,. This constitutes
a hierarchical model as the so-called hyperparameters 3,, and 3,, affect the
dependent variable through the store-specific coefficient vectors only. It is
characteristic of such models that each store-specific coefficient depends on
data from all stores (Carlin and Louis, 1996). Therefore coefficients are ex-
pected to be less noisy and unstable than those based on estimating single

store-specific regression models (Hanssens et al., 2001).

3 Estimation and Model Evaluation

There are a few papers estimating MLPs by Bayesian approaches. One of
these approaches, the evidence framework of MacKay (1992a,b), is essentially
a Laplace approximation to the posterior distribution. Baesens et al. (2002)
apply the evidence framework in a direct marketing context. Alternatively,
MLPs are estimated by MCMC techniques (Neal, 1996; Miiller and Insua,
1998; Lee, 2000; Lampinen and Vehtari, 2001). While Neal (1996) discusses
hierarchical models briefly, none of these contributions develop or apply a

method to estimate MLPs with heterogeneous coefficients.

The MCMC simulation technique used here estimates heterogenous store-

level sales models. It is based on a method developed by Train (2001, 2003),
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more details on which may be found in the appendix and the references given
in this section. After convergence to stationarity it generates random samples
of parameters from the joint posterior density. Statistics of sampled values
(e.g. means, percentiles) converge to their population values. The MCMC

technique consists of several iterations each having four substeps:

1. a Metropolis-Hastings algorithm which samples store specific coeffi-
cients (3,,; (Chib and Greenberg, 1995 and 1996; Gelman et al., 1995),
but keeps only samples which satisfy the restrictions given in expression

10 (Gelfand et al., 1992).

2. a Gibbs sampler which draws the error precision (i.e. the inverse of
the error variance) from the conditional Gamma distribution whose
parameters depend on total sum of squared errors and number of ob-

servations.

3. a Gibbs sampler which draws from the conditional multivariate normal
distribution of mean coefficients 3,, given store-specific coefficients [3,,,;

and covariance matrix >,,.

4. a Gibbs sampler which draws from the conditional inverted Wishart
distribution of the covariance matrix >, given store-specific and mean

coefficients.

Model performance is evaluated by posterior model probabilities in accor-
dance with the dominant approach in Bayesian statistics. Posterior model
probabilities penalize models for complexity, i.e. all else being equal the more
complex model receives a lower value. In accordance with a proposal made by
Raftery (1996) the HMLP is judged to perform better if its posterior model
probability is greater than 0.75.

Assuming equal a priori model probabilities the posterior model probability of

the HMLP model is computed from marginal model densities p(y|Mj) of the



HMM and p(y|M;) of the HMLP. Marginal model densities are determined
by the harmonic mean estimator of Gelfand and Dey (1994). The posterior
probability of the HMLP model is given by:

p(y|M1)
p(y|Mo) + p(y| M)

(15)

Price elasticities are sampled by applying the store-specific coefficients ob-
tained by the MCMC technique to expressions 2(3), 6(7), 11 and 12. This
procedure is based on the fact that the posterior of any function of model
parameters can be computed by simply plugging sampled parameters into

the relevant expressions (Geweke, 1989).

95 % credible intervals for individual coefficients and elasticities are estimated
by 2.5 and 97.5 percentiles of their sampled values. The probability that a
coeflicient (an elasticity) lies in the 95 % credible interval given the observed

data is at least 95 % (Carlin and Louis, 1996).

4 Empirical Study

The store-level data analyzed refer to the nine leading brands of a certain
category of packaged consumer goods. Data were acquired in 81 stores. Be-
tween 61 and 88 weeks per store lead to a total of 62878 observations. Table
1 contains descriptive statistics (means and standard deviations) of sales and

prices for these nine brands.

Trace plots and autocorrelations with a maximum lag of 50 iterations for
mean coefficients serve to assess wether the MCMC technique does not con-

verge (Kass et al., 1998). 100,000 iterations are used for each model, the last
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10,000 of which provide the sampled coefficients used to compute estimates.
Trace plots show that for all HMMs and most HMLPs mean coefficients
become stable for less than 50,000 iterations. Autocorrelations also do not

indicate nonconvergence.

Table 2 contains log marginal densities for both the HMM and the best
HMLP (i.e. those with highest log marginal density among HMLPs with
between one and four hidden units). None of these MLLPs has more than three
hidden units, for three brands even one hidden unit is sufficient. Posterior
model probabilities given in the last column of table 2 show that HMLPs
clearly outperform their multiplicative counterpart. The HMLPs approach
the best value of 1.00 for each of the nine brands. These results indicate the
superiority of a more flexible compared to a strict parametric model even if

heterogeneity is dealt with in both models.

Results are interpreted by means of values of hidden units and sales response
curves in the following. Three competitive scenarios are considered called
low, medium and high prices of competitors. In these scenarios the price of
each competitor is set to its arithmetic mean minus 1.3 times its standard
deviation, to its arithmetic mean and to its arithmetic mean plus 1.3 times

its standard deviation, respectively.

Interpretation of hidden units is demonstrated for brands 2 and 7. Table
3 gives the output values of hidden units of the best MLP model for each
competive scenario and different values of the price of the respective brand
on the basis of mean coefficients (3,,,. Hidden unit 1 can be seen as indicator
of a very favorable price of brand 1 compared to the prices of competitors.

It attains the maximum value 1.00 at very low prices of competitors and a

10



somewhat lower own price. Hidden unit 2 indicates a favorable price of brand
1. It attains the maximum value at medium prices of competitors and low
own price. Proceeding the same way for brand 7, hidden units 1, 2 and 3
may be interpreted as indicators of extremely favorable, very faborable and

favorable prices of this brand.

We arrive at quite similar interpretations of hidden units for the other brands.
Results for brand 9 are somewhat different as prices of competitors do not
have a significant effect on its sales. Hidden units attain the maximum value
if the price of brand 9 is low or medium. Values of hidden units decrease if

the price becomes very high.

Estimated sales are plotted as function of the price of a brand using the mean
coefficients 3, (figures 1 and 2) and the competitive scenarios introduced
above to investigate wether implied price effects differ between the HMM
and the best HMLP. Curves for brand 5 are not shown as they are almost

equal for the two models.

For brand 9 we only have one curve per model as prices of other brands do
not have a significant effect on sales. The HMLP implies higher sales except

at very own high prices at which sales decreases are stronger.

For the seven remaining brands curves show large (for some brands very

large) differences between the two models at high prices of competitors. As a
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rule, the HMLP expects higher sales. The HMLP expects stronger responses

to price changes for brands 6 and 7.

For medium prices of competitors the HMLP implies higher sales for brands
2, 3,4, 7 and 8 if own price is not too high. For brands 2 and 5 price response
in this range is stronger compared to the HMM. At low prices of competitors

the HMLP implies smaller sales for brands 2, 3, 4 and 8.

Price elasticities discussed in the following refer to total sales (i.e. sales
summed across all 81 stores). They are averaged across all observed prices
of competitors. Curves in figures 3 and 4 give the 95 % credible interval of
elasticities. Curves are not shown for brand 5 as they are indistinguishable

for both models.

According to the HMM elasticities decrease very slightly for increasing prices.
Except for brand 9 elasticities implied by the HMLP differ from those for
the HMM over most of the observed price range. According to the HMLP
elasticities tend to follow a bell-shaped curve. This is obvious for brands 3, 7
and 8. The bell shape is incomplete for brands 2, 4 and 6 because observations
do not include lower prices. The incomplete bell shape for brand 9 may be

explained by the lack of observations at higher prices.

5 Conclusions

This paper focuses on the comparison of two sales response models, a strict
parametric and a flexible model (a multilayer perceptron). As effects of mar-

keting instruments are as a rule heterogeneous across stores, both models

12



are specified in a hierarchical Bayesian framework which allows estimation
of store-specific coefficients by Markov Chain Monte Carlo techniques. The
data base consists of weekly observations of sales and prices for nine brands

of a packaged consumer good acquired in 81 stores.

From a statistical point of view the heterogeneous multilayer perceptron turns
out to be superior. For all brands its posterior probability approaches the
maximum possible value. Moreover, price effects implied by the multilayer
perceptron differ for eight out of nine brands, especially at high prices of

competitors.

We obtain similar results for elasticities aggregated across stores. 95 % cred-
ible intervals of elasticities differ over most of the price range. Elasticities
estimated on the basis of the multilayer perceptron follow a (sometimes in-
complete) bell-shape for increasing prices for eight brands. Quite contrary,
the multiplicative model implies elasticities which decrease very slightly if

prices rise.

These results give evidence that considering both functional flexibility and
heterogeneity can be beneficial. Hopefully they will motivate researchers to

consider more flexible heterogeneous models when analyzing marketing data.

This contribution deals with price response. Given the potential advantages
of more flexible models which simultaneously are able to fulfill well founded
theoretical constraints, future sales response modelling efforts including other
marketing instruments (e.g. sales promotion, sales force, advertising) should

be of interest.

Appendix: Markov Chain Monte Carlo Technique

The likelihood value L,,; of brand m and store i depends on the number

of weekly observations T;, the sum of squared errors SSF,,; and the error
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precision hy,:
Ti/2
hon

(27T)Ti/2

h
Ly = exp [—TMSSEM] (16)

The sum of squared errors of brand m and store i is defined by:

T;

SSEpmi = [109(Quit) — 10g(Qumir)]? (17)

t=1

log(Qmi) and log(@mit) are observed and estimated log sales for brand m,

store i and period t, respectively.

Both total sum of squared errors SSE,, and total number of observations
are obtained by summing over stores:
I
SSE, = Y SSEy,, T=>T, (18)
i=1 i=1
The MCMC procedure is based on the following priors. The prior of the
vector of mean coefficients f3,, is K-variate normal with parameters 5% and

30 . The prior of K x K covariance matrix ¥, is inverse Wishart with K

degrees of freedom and the K x K identity matrix E as scale matrix .

The K x K diagonal matrix A,, denotes the lower Cholesky factor of co-
variance matrix X,,, 7 the so-called tuning constant. Indicator function Iz,

equals one if all restrictions on coefficients given in expression 10 are satisfied,

2

-, 1s a crude initial guess of total error variance.

otherwise it equals zero. s

The steps of the MCMC procedure may be described as follows:

1. Sampling of store-specific coefficients for each store i = 1,1

(a) Generate a trial vector of coefficient values
fm' = 6mz + 7-Amv
where

v is a K-dimensional vector of independent draws from the

standard normal distribution

14



(b) Update coefficients and likelihood
if (U< RIg,) Bmi= 0B Lmi= L,

where
U is a draw from the uniform distribution U(0, 1)
R = (Ly; ¢(Brnil Bms Bn))/ (Lii (Bl B Zon))

Lt . Likelihood value for trial coefficient vector

(Bmi| Bm, Xm) k-variate normal density

2. Sampling of error precision h,,

Draws from the Gamma distribution with 7"+ 10 degrees of freedom

and mean (T + 10)/(SSE,, + 10s2))

15



3. Sampling of mean coefficients 3,
where

v is a K-dimensional vector of independent draws from the

standard normal distribution

4. Sampling of covariance matrix >,

Draws from the inverted Wishart distribution with K+I degrees of free-
dom and scale matrix (KE + IV,,)/(K + I) and computes its lower
Cholesky factor A,,

where

Vm = (1/[) Zz(ﬁmz - Bm)(ﬁmz - Bm)/

Ripley (1987) and Train (2003) give details on sampling from probability

distributions.

References

Baesens, B., Viaene, S., Van den Poel, D., Vanthienen, J. and G. Dedene
(2002): Bayesian Neural Network Learning for Repeat Purchase Mod-
elling in Direkt Marketing, Furopean Journal of Operational Research
134, 191-211.

Barron, A.R. (1993): Universal Approximation Bounds for Superpositions
of a Sigmoidal Function, IEEE Transactions on Information Theory
39, 930-945.

Blattberg, R.C. and E.I. George (1991): Shrinkage Estimation of Price and
Promotion Elasticities: Seemingly Unrelated Equations, Journal of the
American Statistical Association 86, 304-315.

Boatwright, P., McCulloch, R. and P. Rossi (1999): Account-Level Model-
ing for Trade Promotion: An Application of a Constrained Parameter
Hierarchical Model, Journal of the American Statistiscal Association
94, 1063-1073.

Carlin, B.P. and Th.A. Louis (1996), Bayes and Empirical Bayes Methods
for Data Analysis, Chapman and Hall, London.

16



Chib, S. and E. Greenberg (1995): Understanding the Metropolis-Hastings
Algorithm, The American Statistician 49, 327-335.

Chib, S. and E. Greenberg (1996): Markov Chain Monte Carlo Simulation
Methods in Econometrics, Econometric Theory 12, 409-431.

Cybenko, G. (1989): Continuous Value Neural Networks with Two Hidden
Layers are Sufficient, Mathematics of Control, Signal and Systems 2,
303-314.

Gallant, A.R. (1987), " Identification and Consistency in Seminonparametric
Regression,” in T.F. Bewley (ed.), Advances in Econometrics Vol 1.,
Cambridge University Press, Cambridge UK, 145-170.

Gelfand, A.E. and D.K. Dey (1994): Bayesian Model Choice: Asymptotics
and Exact Calculations, Journal of the Royal Statistical Society Series
B, 56, 101-514.

Gelfand, A.E., Smith, A.F.M. and T.-M. Lee (1992): Bayesian Analysis
of Constrained Parameter and Truncated Data Problems Using Gibbs
Sampling, Journal of the American Statistical Association 87, 523-531.

Gelman, A., Carlin, J.B., Stern, H.S. and D.B. Rubin (1995), Bayesian Data
Analysis, Chapman and Hall, London.

Geweke, J. (1989): Bayesian Inference in Econometric Models using Monte
Carlo Integration, Econometrica 57, 1317-1339.

Hanssens, D.M., Parsons, L.J. and R.L. Schultz, (2001), Market Response
Models. Econometric and Time Series Analysis, 2nd Edition, Kluwer
Academic Publishers, Boston, MA.

Hastie, T.J. and R.J. Tibshirani (1995), Generalized Additive Models, Chap-
man and Hall, London.

van Heerde, H. (1999), Models for Sales Promotion Effects Based on Store-
Level Scanner Data, Labyrint Publication, Capelle a/d Ijssel, Nether-
lands.

van Heerde, H., Leeflang, P.S.H. and D.R. Wittink (2001): Semiparamet-
ric Analysis to Estimate the Deal Effect Curve, Journal of Marketing
Research 38, 197-216.

Hornik, K., Stinchcombe, M. and H. White (1989): Multilayer Feedforward
Networks are Universal Approximators, Neural Networks 3, 359-366.

Hornik, K., Stinchcombe, M., White, H. and P. Auer (1994): Degrees of
Approximation Results for Feedforward Networks Approximating Un-

known Mapping and Their Derivatives, Neural Computation 6, 1262—
1275.

17



Hruschka, H. (1993): Determining Market Response Functions by Neural
Network Modeling. A Comparison to Econometric Techniques, Euro-
pean Journal of Operational Research 66, 27-35.

Hruschka, H. (2000), ”Specification, Estimation and Empirical Corrobora-
tion of Gutenberg’s Kinked Demand Curve”, in Albach, H., Brockhoff,
K., Eymann, E., Jungen, P., Steven, M. and A. Luhmer (eds.), Theory
of the Firm. Erich Gutenberg’s Foundations and Further Developments,
Springer, Berlin, 153-168.

Hruschka, H. (2001): An Artificial Neural Net Attraction Model (ANNAM)
to Analyze Market Share Effects of Marketing Instruments, Schmalen-
bach Business Review-zfbf 53, 27-40.

Kalyanam, K. and Th.S. Shively (1998): Estimating Irregular Pricing Ef-
fects: A Stochastic Spline Regression Approach, Journal of Marketing
Research 35, 16—29.

Kass, R.E., Carlin, B.P., Gelman, A. and R.M. Neal (1998): Markov Chain
Monte Carlo in Practice: A Roundtable Discussion, The American
Statistician 52(2), 93-100.

Krishnamurthi, L., Raj, S.P. and R. Selvam (1990): Statistical and Man-
agerial Issues in Cross-Sectional Aggregation. Working Paper, North-
western University.

Lampinen, J. and A. Vehtari (2001): Bayesian Approach for Neural Net-
works - Review and Case Studies, Neural Networks 14, 257-274.

Lang, St., Adebayo, S.B., Fahrmeir, L. and W.J. Steiner (2003), Bayesian
Geoaditive Seemingly Unrelated Regression, Computational Statistics
18, 263-292.

Lee, H.K.H. (2000). A Noninformative Prior for Neural Networks. Working
Paper, ISDS, Duke University, Durham NC.

MacKay, D.J.C. (1992a): Bayesian Interpolation, Neural Computation 4,
415-447.

MacKay, D.J.C. (1992b): A Practical Bayesian Framework for Backpropa-
gation Networks, Neural Computation 4, 448-472.

Montgomery, A.L. (1997): Creating Micro-Marketing Pricing Strategies Us-
ing Supermarket Scanner Data, Marketing Science, 16, 315-337.

Miiller, P. and D.R. Insua (1998): Issues in Bayesian Analysis of Neural
Network Models, Neural Computation 10, 571-592.

18



Natter, M. and H. Hruschka (1998), ” Using Artificial Neural Nets to Specify
and Estimate Aggregate Reference Price Models”, in Aurifeille, J.-M.
and Ch. Deissenberg (eds.), Bio-Mimetic Approaches in Management
Science, Kluwer Academic Publishers, Dordrecht, Netherlands, 101—
118.

Neal, R.M. (1996), Bayesian Learning for Neural Networks, Springer, New
York.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge
University Press, Cambridge UK.

Raftery, A.E. (1996), "Hypothesis Testing and Model Selection,” in Gilks,
R., Richardson, S. and D.J. Spiegelhalter (eds), Markov Chain Monte
Carlo in Practice, Chapman and Hall, Boca Raton, 163-187.

Rao, V. (1993), ”Pricing Models in Marketing”, in Eliashberg, J. and G.L.
Lilien (eds.), Marketing, North-Holland, Amsterdam, 517-552.

Ripley, B.D. (1987), Stochastic Simulation, Wiley, New York.

Ripley, B.D. (1993), ”Statistical Aspects of Neural Networks,” in Barndorff-
Nielsen, O.E., Jensen, J.L. and W.S. Kendall (eds.), Networks and
Chaos — Statistical and Probabilistic Aspects, Chapman and Hall, Lon-
don, 40-123.

Train, K.E. (2001), A Comparison of Hierarchical Bayes and Maximum
Simulated Likelihood for Mixed Logit. Working Paper, Department of
Economics, University of California, Berkeley,

Train, K.E. (2003), Discrete Choice Methods with Simulation, Cambridge
University Press, Cambridge UK.

van Wezel, M.C. and W.R.J Baets (1995): Predicting Market Responses
with a Neural Network, Marketing Intelligence €& Planning, 13(7), 23—
30.

Wierenga, B. and J. Kluytmans (1996): Prediction with Neural Nets in
Marketing Time Series Data. Working Paper, School of Management,
Erasmus Universiteit Rotterdam.

19



Table 1: Descriptive Statistics

Sales Prices

Standard Standard

Brands Mean Deviation Mean Deviation
1 55.12 100.76 285.41 33.01
2 195.85 251.50 293.96 57.21
3 264.78 392.411 218.18 38.45
4 290.55 497.38  220.86 42.07
5 99.62 264.19 229.61 35.66
6 48.67 95.08 214.26 31.16
7 56.61 271.32 214.82 41.60
8 307.85 517.74 174.39 41.51
9 53.05 54.79 149.08 8.85




Table 2: Model Evaluation Results

Brand HMM Best HMLP
Log of Marginal | Number of  Log of Marginal  Posterior
Density Hidden Units Density Probability
1 -23611.33 3 -23348.29 1.00
2 -21763.64 2 -20975.99 1.00
3 -25380.88 2 -25126.25 1.00
4 -24286.86 1 -23774.01 1.00
5 -23617.84 1 -23585.38 1.00
6 -21932.54 1 -21294.56 1.00
7 -27328.39 3 -26833.91 1.00
8 -26790.00 2 -26762.76 1.00
9 -23419.23 3 -23302.14 1.00
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Table 3: Values of Hidden Units of HMLPs

1 2 3
Brand 2
Low Prices of Competitors
224: 0.00  224: 0.00 -
370: 0.00  370: 0.00 -

Medium Prices of Competitors
224: 0.84  224:0.99 -
272: 0.10 332: 0.10 -
High Prices of Competitors
224:1.00 224:1.00 -
370: 0.31 370: 1.00 -

Brand 7
Low Prices of Competitors
165: 0.00  165: 0.00  165: 0.00
269: 0.00  269: 0.00  269: 0.00

Medium Prices of Competitors
165: 0.00  165: 1.00  165: 1.00
269: 0.00 261: 0.10  239: 0.10
High Prices of Competitors

165: 1.00  165: 1.00  165: 1.00
227:0.10  269: 0.10  269: 1.00

price of brand: value of hidden unit
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Figure 1: Sales Response Curves (Part A)

Top, middle and bottom curves for high, medium and low prices of competitors,
respectively.
HMLP (solid curves), HMM (dotted curves).
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Figure 2: Sales Response Curves (Part B)

Top, middle and bottom curves for high, medium and low prices of competitors,
respectively.
HMLP (solid curves), HMM (dotted curves).
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Figure 3: Elasticity Curves (Part A)

95 % credible intervals
HMLP (solid curves), HMM (dotted curves).
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Figure 4: Elasticity Curves (Part B)

95 % credible intervals
HMLP (solid curves), HMM (dotted curves).
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