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Abstract: Background: During negative pressure wound therapy (NPWT), open wounds are draped
with a nontransparent sponge, making daily wound evaluation impossible. Sometimes, late or unde-
tected bacterial infections and postoperative bleeding result in repetitive surgery, thus prolonging
inpatient time. With the introduction of additional fluid instillation (NPWTi), the wound surface is
rinsed, and bacteria, proteins and biomarkers are flushed into a collecting canister, which is later
discarded. Methods: The aim of this pilot study was to analyze rinsing fluid samples (0.9% sodium
chloride) from the NPWTi device in patients with acute and chronic wounds. In 31 consecutive
patients a standardized laboratory analysis was performed to evaluate cellular composition and
potassium, phosphate, lactate dehydrooxygenase, pH and total protein levels. Results: While there
was an increase in the total cellular amount and the number of polymorphonuclear cells, the number
of red blood cells (RBC) decreased after surgery. Potassium and pH showed no significant changes in
the first three postoperative days, whereas total protein showed an undulant and partially significant
course. Conclusion: We were able to quantify cellular metabolites by analyzing the rinsing fluid of
NPWTi. We propose the analysis of this material as a novel and potentially promising tool to monitor
wound status without removal of the dressing. The establishment of reference values might help to
improve the NPWTi therapy.

Keywords: negative pressure wound therapy with instillation; wound healing; cytokines

1. Introduction

Despite a steadily increasing application of negative pressure wound therapy with
instillation (NPWTi) in acute and chronic wound care, a thorough understanding of the
underlying physiology, as well as of monitoring tools during the dressing phase, is lack-
ing [1–8]. In NPWTi, the additional fluid instillation is thought to facilitate the removal of
microorganisms, dilute inflammatory and cytotoxic molecules, as well as more strongly
influence angiogenesis due to intermittent suction intervals [9–11]. This form of negative
pressure wound therapy (NPWT) has been shown to be particularly suitable for the treat-
ment of infected wounds, and also leads to improved granulation of the wound bed [11,12].
Proving and monitoring these principles is challenging, since wound healing involves a
highly orchestrated sequence of cellular and biomechanical aspects, and clinical evaluation
is possible only during dressing changes [13,14]. For decades, the detection and monitoring
of pathologies was done through laboratory analysis of human fluids, e.g., blood or urine.
In combination with a biochemical routine, new pathologies can be detected, and organ
recovery as well as the course of a disease can be mirrored. Wound monitoring has shown
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that altered levels of proteins, growth factors and systemically administered antibiotics
can be detected within the wound exudate [15,16]. The analysis of wound fluid, however,
remains controversial, since no consensus exists on the complexity and invasiveness of fluid
collection methods. Both invasive and non-invasive methods of gathering material from
wounds treated with NPWT show an altered microenvironment and promising cascades,
especially in cytokine production [17,18]. Therefore, we analyzed the rinsing fluid during
NPWTi in patients with acute and chronic wounds over several days. The aim of this pilot
study was to assess whether it was possible to detect metabolites or cytokines within the
rinsing fluid, and whether these might be linked to the clinical course.

2. Materials and Methods

This is a prospective observational pilot study investigating the rinsing fluid of NPWTi
dressings after surgical debridement in order to assess the eligibility of the rinsing fluid
to serve as a potential diagnostic and safety tool. It was conducted with ethics approval
(18-1264-101) and according to the 2010 CONSORT (Consolidated Standards of Reporting
Trials) guidelines in accordance with the Helsinki Declaration. It was registered in a
public German trial registry (DRKS00017669). All patients participating in this study
provided written informed consent. Between September 2019 and May 2020, 35 consecutive
patients with open wounds were screened at our hospital for eligibility into this trial.
Inclusion criteria were acute and chronic wounds that made NPWTi necessary to lower
the bacterial bioburden prior to reconstruction. All open wounds suitable for NPWTi
application were included regardless of their cause, except cancer. Four patients with
chronic decubital ulcers were excluded, since the NPWTi device repeatedly disconnected
due to close proximity to the anus. A commonly available vacuum system with instillation
(V.A.C. VERAFLOTM, KCI Medizinprodukte GmbH, Wiesbaden, Germany) was used in
every case, and the instillation volume was manually set in relation to the wound size
and kept constant during the entire course of treatment. The rinsing interval was set to
three hours and the instillation fluid remained for twenty minutes in contact with the
wound bed before removal. The study protocol included the evaluation and analysis
of one fluid sample every day always at the same day-time, starting on the day of the
first surgical debridement until the wound was closed. Instillation fluid was a standard
0.9% sodium chloride solution (Braun, Melsungen, Germany). Samples were taken out
of a special sampling canister provided by KCI without hygroscopic gel and using a
sterile syringe. These canisters were only used for a single rinsing interval and removed
after the above-mentioned residence time. Immediate laboratory analysis was done for
all parameters except the total protein, which was determined later from fresh frozen
fluid samples. These were simultaneously stored at −80 ◦C in commercially available
Eppendorf cups (Eppendorf AG, Hamburg, Germany). As a pilot study, the laboratory
analysis included the measurements of electrolytes and cellular components. Electrolytes
included potassium via an ion-sensitive electrode, phosphate and lactate dehydroxygenase
(LDH) via photometry (Dimension Vista 1500, Siemens Healthineers, Erlangen, Germany)
and pH via potentiometry (ABL90 flex, Radiometer, Krefeld, Germany). To determine the
number of different cells in the fluid sample, flow cytometry (XE5000, Sysmex, Kobe, Japan)
and a manual microscopic analysis were performed. The BCA Assay Protein Quantitation
Kit (Interchim, Montulocon, France) including optical density measurement (Sunrise,
Tecan Trading AG, Männedorf, Switzerland) was used at a wavelength of 562 nm. All
measurements were taken according to the manufacturer’s instructions.

Data is presented as the arithmetic median or mean with standard deviation (SD). The
Kolmogorov–Smirnov test was used to test variables for normality. Variables that did not
exhibit normal distribution were compared using the Wilcoxon test. Variables with normal
distribution were not present in our investigation. The Friedman test was not used due
to dissimilar sample numbers. A p-value < 0.05 was considered significant. The software
used to perform the statistical analysis was the “Statistical Package for the Social Sciences”
(SPSS Inc., Chicago, IL, USA) Version 26.0.
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3. Results
3.1. Patients

Of the 31 participants in the study, 20 (64.5%) were male and 11 (35.5%) were female.
The overall mean age was 63 (SD 16.9). Every participant received a mean of 2 (SD 0.8)
debridements prior to reconstruction. The NPWTi device was applied for a mean of 5.4
(SD 2) days on the wound.

Wound volume was estimated during each debridement with a metric ruler and
categorized as small (<10 cm3) n = 5, middle (10–100 cm3) n = 21 and large (>100 cm3) n = 5
wounds. The mean wound volume was 59 cm3 (SD 84).

The cause of the wound was chronic in 23 patients (ischemic n = 2, post-traumatic/post-
infection n = 12, decubital ulceration n = 6 and post-cancer n = 3) and acute in eight patients
(traumatic n = 4, burns n = 1 and ischemic/compartment n = 3) (Table 1).

Table 1. Patient and wound characteristics.

Gender Wound Size Chronic Cause Acute Cause

Male n = 20
Female n = 11

Small (<10 cm3) n = 5 n = 23 n = 8
burns n = 1

Medium (10–100 cm3) n = 21
Large (>100 cm3) n = 5

ischemic n = 2
post-traumatic/

post-infection n = 12
decubital ulceration n = 6

carcinoma n = 3

ischemic/compartment
n = 3

traumatic n = 4

3.2. Laboratory Analysis

The standardized laboratory analysis included a cell determination via flow cytometry
and manual microscopy, as well as the measurement of potassium, phosphate, LDH, pH
levels and the total protein amount. LDH and phosphate remained constant and thus are
not shown in our results. After the initial operation, the first four samples were chosen for
comparison, as they were available in most of the patients. The total cellular amount as
well as the number of polymorphonuclear cells (PMN) increased from the first to the fourth
measurement from a median of 39/µL and 32/µL to 229/µL and 150/µL, respectively
(p = 0.02 and p = 0.03) (Figure 1A,B). A long-term course of the PMNs showed a grad-
ual increase after the initial operation, peaking around the sixth day (p = 0.42). After a
drop around day eight, another steady increase was noted, again peaking around day 14
(p = 0.66). Both peaks occurred within the interval of the second and third operation
(Figure 1D). The red blood cell count showed a decrease from a median of 26 to 4/µL when
measured on day three (p = 0.02) (Figure 1C).

The pH value showed a non-significant decrease from a median of 7.02 in the first
measurement to 6.99 three days postoperatively (p = 0.67) (Figure 2A). The median potas-
sium level remained nearly constant at around 0.99 mmol/L (p = 0.46) (Figure 2C). Protein
levels showed an undulant course with an initial increase in the median to 2.549 µg/mL
(p = 0.19) on day one, followed by a decrease in the median to 1.139 µg/mL (p = 0.02) and
1.596 µg/mL (p = 0.15) on days two and three, respectively (Figure 2B).
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Figure 1. Boxplots of the total cellular amount (n/µL) (A), polymorphonuclear cells (PMNs) (n/µL) (B) and red blood cell 
count (n × 103) (C) on the day of the operation (0) and first to third postoperative day. (D) Entire postoperative course of 
the PMNs (n/µL) after the first operation. Encircled areas with a ring or triangle on the top mark intervals of second and 
third operation, respectively. Vertical bars indicate the 95% confidence interval. The asterisk (*) indicates significance. 
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4. Discussion

Vacuum therapy is undoubtedly an effective tool in the treatment of acute and chronic
wound conditioning [19,20]. However, the underlying mechanisms are not conclusively
understood and clinical monitoring between dressing changes is limited.

In an attempt to further contribute to the understanding of NPWT(i) and establish a
monitoring tool for the clinical routine during the NPWT treatment phase, we analyzed
the rinsing fluid of NPWTi devices in a pilot study. We were able to quantify significant
levels of potassium, phosphate, lactate dehydroxygenase (LDH), pH and the amount of
protein as well as identify different cells in the disposed rinsing fluid. As locally produced
biomarkers, these parameters might provide additional information on the wound status
without changing the dressing.

Previous studies have suggested that wound fluid is a systemic mirror containing
important information about the inflammatory response. Polykandriotis et al. analyzed the
wound exudate in NPWT draining lines and measured the levels of systemically adminis-
tered antibiotics. They were able to detect almost two thirds of the plasma concentration in
the draining fluid one hour after intravenous administration [15]. Moues et al. investigated
the influence of NPWT on the extracellular collagenous matrix components and used a
polyvinylidene fluoride filter to collect the wound fluid. Significant levels of albumin,
matrixmetalloproteinases and tissue inhibitors were found as an expression of biochemical
markers reflecting parts of the intracellular response [21]. It is not yet clear how precisely
the diluted wound exudate mirrors the healing cascade, and, in contrast to invasive punch
biopsies, a complete genomic and proteomic evaluation remains challenging.

However, we were able to quantify significant levels of various electrolytes and cell
components in the rinsing fluid of NPWTi devices. Several interesting observations are
possible, since there was a significant decline in the RBC count on the days following the
first operation. This aligns the initial surgical debridement with careful blood coagulation
afterwards. The appearance of increased PMNs and the total cellular amount might
resemble the beginning of the inflammatory tissue response. Granulocytes are usually not
observed within the normal skin, but since their primary goal is to defend the skin from
infections, they are the first circulating cells to move to the incisional wound, probably
following chemotaxis and extensive local cytokine production [22]. The measured pH
value was rather high and comparable to acute split-thickness skin graft donor sites [23]
or chronic wounds after radiotherapy [24]. Especially in cutaneous wounds, many parts
of the healing cascade (e.g., enzymes like matrixmetalloproteinase and collagenase) are
pH-dependent and the pH gradient in the wound bed alters the cellular function [25,26]. A
skin surface pH (ss-pH) ranges between 5.4 and 5.9 and gradually increases with depth [27].
With respect to the wounds investigated in our study, the skin integrity was destroyed in
the vast majority of cases, and regardless of the wound genesis, the surgical debridement
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induced an acute wound status. This might explain the rather high pH value in the
physiological pH of the rinsing fluid itself. Additionally, a unification of the wound pH by
the rinsing fluid should be discussed as a possible mechanism of action. Continuous pH
monitoring might serve as a tool for assessing the status of skin granulation. Regarding
the electrolytes, the median potassium level showed a non-significant increase on the
first day after the initial debridement. As a predominantly intracellular electrolyte, the
surgical removal of infected and inflamed tissue inevitably destroys cells and releases
potassium, again serving as a potential monitoring asset. Another metabolite that possibly
discloses information on the cellular barrier function is the total amount of protein. The
interpretation is challenging, since individual amounts of up to 1 g/mL were found.
When compared to renal function, protein levels as high as 1 g/mL over 24 h would
depict proteinuria in severe nephrotic syndrome, indicating damage to the glomerular
barrier. With a missing epidermal barrier, however, such high protein levels might indicate
the beginning of the inflammatory healing phase. Finally, to show the sensitivity of the
fluid evaluation, we provided a 17-day, long-term profile of the PMNs. By analyzing the
spikes alone, one can assume a preceding debridement, since 95% of the second and third
surgeries were conducted just before the two peaks. This study has several strengths and
limitations. As a pilot study, only preliminary data is presented, and reference values
are lacking. Therefore, the comparability to other studies is limited, plus the decreasing
and heterogeneous number of fluid samples limits the statistical power in the long-term
analysis. Additionally, the overall cohort size is rather small and lacks a control group.
However, as a hypothesis-generating pilot study with different endpoints, the chosen case
number seems sufficient to reliably estimate the statistics with missing reference values.
Since the exact composition of the rinsing liquid (0.9% sodium chloride) is known, the
absence of a distinct control group should be of minor importance. Another strength is the
immediate processing of the fluid samples and the use of already established laboratory
tools limiting methodological bias. As a next step, further evaluation of cytokines and
extracellular metabolites might allow additional insight into the healing cascade and
validate fluid analysis as a beneficial monitoring tool. The monitoring aspects may also
be implemented into the clinical routine, e.g., continuous RBC measurement to detect
rebleeding to increase patient safety. Additionally, the wound status may be monitored in
terms of superinfections by increasing PMNs.

5. Conclusions

We were able to detect and quantify cells as well as biochemical markers in the rinsing
fluid of NPWTi devices. We propose the analysis of this material as a novel and very
promising tool to monitor wounds and to investigate the inflammatory tissue response
without removal of the dressing. Future investigations should address larger patient
cohorts and other cytokines to potentially establish individualized NPWT(i) settings.
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