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III Zusammenfassung 
 
Für die menschliche Gesundheit sowie auch für Krankheiten spielt das 

Darmmikrobiom eine wichtige Rolle. Fäkalien spiegeln dabei die mikrobielle Aktivität 

wider. Die Analyse der fäkalen Metaboliten liefert daher Einblicke in die metabolischen 

Wechselwirkungen zwischen Darmmikrobiota und Wirtsorganismus.  

 

In dieser Arbeit wird die Entwicklung einer Fließ-Injektion-Analyse beschrieben, welche 

mit einer Fourier-Transform-Massenspektrometrie-Messung (FIA-FTMS) gekoppelt 

ist, um Lipidspezies in menschlichen Fäkalien mit einem hohen Probendurchsatz zu 

identifizieren und quantifizieren. Fäkale Homogenate wurden gemäß dem Protokoll 

von Bligh und Dyer einer Lipidextraktion unterzogen und mittels FIA-FTMS analysiert. 

Die Methode wurde an einer Q Exactive hybrid Orbitrap mit einer maximalen Auflösung 

von 140,000 bei m/z 200 entwickelt. Kurze Messzeiten von weniger als vier Minuten 

und eine automatisierte Datenauswertung unter Verwendung der ALEX-Software und 

selbstprogrammierter Makros in Microsoft Excel ermöglichten einen hohen 

Probendurchsatz.  

 

Die Analyse von Fäkalien verschiedener Probanden ergab eine große Heterogenität 

der Lipidkonzentrationen. In der Mehrzahl der Proben wurden Triacylglycerin- (TG) 

und Diacylglycerin-Spezies (DG) detektiert, welche durch MS2-Spektren verifiziert 

werden konnten. Daher konzentrierte sich die Quantifizierung hauptsächlich auf diese 

beiden Lipidklassen. Die Methodenvalidierung umfasste Experimente zur 

Nachweisgrenze, Linearität, Bewertung von Matrixeffekten, Wiederfindung und 

Reproduzierbarkeit. Die durchgeführten Validierungsexperimente zeigten eine gute 

Reproduzierbarkeit, mit Ausnahme von etwa 10% der Proben, bei welchen ein CV von 

mehr als 15% beobachtet wurde. Die beeinträchtigte Reproduzierbarkeit war auf die 

Probeninhomogenität zurückzuführen und konnte auch durch zusätzliche 

Probenvorbereitungsschritte nicht verbessert werden. Zudem zeigten diese 

Experimente höhere Mengen an DG-Spezies, wenn die Proben in 2-Propanol statt in 

wässriger Lösung homogenisiert wurden, was sich vermutlich auf die Lyse von 

Bakterien und eine erhöhte TG-Lipolyse zurückführen lässt. Diese Effekte waren 

probenspezifisch und untermauerten die hohe Heterogenität der fäkalen Materialien 

sowie die Notwendigkeit einer weiteren Evaluierung der präanalytischen Bedingungen.  
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Eine Messung im negativen Ionenmodus durch Zugabe von Methylamin ergab nur 

sehr niedrige Signale für Lyso-Phospholipide und Glycerophospholipide, welche nicht 

verifiziert werden konnten. Hieraus lässt sich schließen, dass für die Analyse dieser 

Lipidklassen empfindlichere Methoden wie z.B. LC-MS benötigt werden. 

 

Zusammenfassend konnte gezeigt werden, dass FIA-FTMS ein schnelles und 

genaues Verfahren zur Quantifizierung von DG- und TG-Spezies darstellt, welches 

geeignet ist, einen Einblick in das fäkale Lipidom zu geben und dessen Rolle in 

Gesundheit und Krankheit zu entschlüsseln.  
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IV Abstract 
 
The intestinal microbiome plays an important role in human health and disease and 

fecal materials reflect the microbial activity. Thus, analysis of fecal metabolites 

provides insight into metabolic interactions between gut microbiota and host organism.  

In this work, we applied flow injection analysis coupled to Fourier transform mass 

spectrometry (FIA-FTMS) to identify and quantify lipid species in human fecal samples 

in high throughput. Fecal homogenates were subjected to lipid extraction according to 

the protocol by Bligh and Dyer, and analyzed by FIA-FTMS. The method was 

developed using a Q Exactive hybrid Orbitrap with a maximum resolution of 140,000 

at m/z 200, a short analysis time of less than four minutes and an automated data 

evaluation using the ALEX software and self-programmed macros in Microsoft Excel.  

 

The analysis of different subjects revealed a vast heterogeneity of lipid species 

abundance. The majority of samples displayed prominent signals of triacylglycerol 

(TG) and diacylglycerol (DG) species that could be verified by MS2 spectra. Therefore, 

we focused on the quantification of TG and DG. Method validation included limit of 

quantification, linearity, evaluation of matrix effects, recovery, and reproducibility. The 

validation experiments demonstrated the suitability of the method, with exception of 

approximately 10% of samples in which we observed CVs higher than 15%. Impaired 

reproducibility was related to sample inhomogeneity and could not be improved by 

additional sample preparation steps. Additionally, these experiments demonstrated 

that, compared to aqueous specimens, samples containing isopropanol showed higher 

amounts of DG, presumably due to lysis of bacteria and increased TG lipolysis. These 

effects were sample-specific and substantiate the high heterogeneity of fecal materials 

as well as the need for further evaluation of pre-analytic conditions.  

Despite optimization of ionisation by addition of methylamine FIA-FTMS of fecal lipid 

extracts in negative ion mode revealed low signals for lyso-phospholipids and 

glycerophospholipids that could not be verified. This suggests that analysis of these 

lipid classes requires more sensitive methods like LC-MS.  

 

In summary, FIA-FTMS offers a fast and accurate tool to quantify DG and TG species 

and is suitable to provide insight into the fecal lipidome and its role in health and 

disease.  
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1. Introduction 
 

Lipids are an important class of biomolecules in living organisms. Due to their 

hydrophobic nature, lipids provide the ability to separate living entities from their natural 

surroundings. They originate entirely or in part from carbocation-based condensations 

of isoprene units and/or from carbanion-based condensations of thioesters (1). The 

lipid species possess different aliphatic chains and various polar head groups which 

are differentially connected to the head groups. The aliphatic chains of lipids vary in 

the number of carbon atoms, degree of unsaturation, location of double bonds, and 

potential branches (2). Besides the important function of energy storage, lipids serve 

as building blocks in cellular and subcellular membranes, and as signaling molecules 

(3). Cellular lipids are very dynamic and highly complex. At the level of attomole to 

nanomole of lipids per mg of protein tens to hundreds of thousand possible molecular 

lipid species could be present in the cellular lipidome (4). Therefore, the reliable and 

accurate quantification of lipid species is important (5). Since lipids play a crucial role 

in many biological processes, any imbalance in sensing and signaling pathways can 

cause cardiovascular disease, neurodegenerative diseases, and type 2 diabetes 

mellitus by promoting atherosclerosis and chronic inflammation (6, 7). Additionally, 

lipids are involved in basic processes essential for tumor development, for example, 

cell growth, proliferation, differentiation, and motility (8).  

Lipids play a role in the last step of the “omic” cascade in which metabolome is 

gradually developed from genome via transcriptome and proteome (9). Lipidomics, a 

subgroup of metabolomics, is a relatively new disciplinary research field due to the 

inherent chemical complexity of the lipidome and the consequent challenges 

associated with analysing it (10). Within the last decade, the number of publications 

has increased rapidly, by a factor of 7.7 according to Web of Science, which makes it 

one of the fastest growing research fields (10). Lipidomics has recently emerged 

because of rapid advances in developing new mass spectrometric protocols and 

techniques due to its sensitivity and specificity (11). Therefore, dynamic changes of 

lipids during physiological or pathological processes can be determined by analyzing 

lipid structures, mass levels, cell functions, and interactions in a spatial and temporal 

fashion (2). Over the last decades, several mass spectrometric lipidomic methods with 

clinical and scientific application have been adapted (12-14). 
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1.1 Lipid Categories 
 
Lipids, a heterogeneous pool of compounds, contain either fatty acyl/alkyl, 

sphingosine, or isoprene moieties as their hydrophobic building block. Lipid Maps 

consortium has classified lipids into eight categories in 2005. Based on the publication 

of Fahy et al. (1), lipid species are divided into following categories: fatty acyls (FA), 

glycerolipids (GL), glycerophospholipids (GP), sphingolipids (SP), sterol lipids (ST), 

prenol lipids (PR), saccharolipids (SL), and polyketides (PK). Sterol and prenol lipids 

are derived from the condensation of isoprene subunits, whereas other lipid classes 

are synthesized from ketoacyl subunits (15). Each of the eight lipid categories 

comprises further lipid classes and subclasses.  

 

 
 

Figure 1.1: Examples of the eight lipid categories according to the International Lipids 
Classification and Nomenclature Committee. Reprinted with permission from Springer 
Nature and Creative Common Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/). Copyright Züllig, T.; Trötzmüller, M.; 
Köfeler, H.; 2020 (16).  
 
 
This chapter will briefly introduce the mammalian lipid categories FA, GL, GP, SP, and 

ST (Figure 1.1). 
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1.1.1 Fatty Acyls 
 
Fatty acyls (FA) are carboxylic acids, which consist of a hydrocarbon chain and a 

terminal carboxyl group (17). They are synthesized by chain elongation of acetyl-CoA 

with a malonyl-CoA or methylmalonyl-CoA group (1), which imparts a hydrophobic 

character to the overall structure. Whereas most saturated and monounsaturated fatty 

acyls can be synthesized by human themselves, most polyunsaturated fatty acyls need 

to be obtained through diet, e.g. n-6 linoleic acid (LA) and n-3 α-linoleic acid (ALA) 

(18). Fatty acyls serve both as energy storage and building blocks for complex lipids, 

e.g. as components of glycerophospholipids. Their biological activities influence a 

range of processes and functions in living organisms, cell and tissue metabolism, and 

responsiveness to hormonal signals. Additionally, as components of 

glycerophospholipids fatty acyls regulate membrane structure and as oxidized 

products they control intracellular signaling pathways and gene expression (19). 

Through these effects, they form a key category of metabolites and influence all 

aspects in health and disease (19, 20). Depending on their chemical structure, fatty 

acyls can be divided into different subclasses, for example fatty alcohols or fatty esters. 

Fatty acids, which include saturated and unsaturated species, represent one of the 

most common subclasses of fatty acyls. Furthermore, they can be classified according 

to their number of carbon atoms and number, position, and stereochemistry of the 

double bonds. In principle, FAs are classified according to their number of carbon 

atoms and double bonds. Short-chain fatty acids (SCFA) contain less than 6 carbons, 

medium-chain fatty acids (MCFA) possess between 6 and 12 carbons, and long-chain 

fatty acids (LCFA) consist of more than 12 carbon atoms. The degree of unsaturation 

depends on the number of double bonds. FA species are described as being 

unsaturated when they have no double bond, whereas monounsaturated FAs contain 

one double bond, and polyunsaturated FAs have multiple double bonds. In mammals 

most common fatty acids are even numbered and saturated or monounsaturated fatty 

acids with chain lengths of 16, 18, and 20 carbon atoms (21). However, species with 2 

to 36 carbon atoms, including odd-numbered species, can also be found in nature (22). 

Two examples are shown in Figure 1.2. 

 



1.1 LIPID CATEGORIES 

4 | P a g e  

 

 
Figure 1.2: Structures of FA 18:2 and 5-HETE from LIPID MAPS®. 
 
 
Catabolism of FA by β-oxidation converts long-chain fatty acids into two-carbon 

acetate which is introduced into the citric acid cycle as acetyl-coenzyme A (acetyl-CoA) 

for energy production (23). Fatty acid metabolism plays an important part in meeting 

the energy demands of the heart, for example in promoting cardiac pathologies or 

protecting the heart from cardiovascular disease (24). Besides that, dysregulation of 

the fatty acid homeostasis can lead to atherosclerosis and various types of cancer. 

This is often related to an uncontrolled endogenous palmitic acid biosynthesis (25).  

 

1.1.2 Glycerolipids 
 
Glycerolipids (GL) are a structurally heterogeneous group of lipids that can be 

categorized into different classes depending on the esterification of fatty acyls with 

glycerol. In each of these classes, several subclasses exist due to the differences in 

their ether or acyl linkage, thus leading to a very high number of molecules. All species 

have at least one hydrophobic chain which is linked to a glycerol backbone in an ether 

or ester linkage (26). Depending on the esterification of one, two or three fatty acyls 

with glycerol, the lipid classes are referred to monoacylglycerol (MG), diacylglycerol 

(DG), and triacylglycerol (TG), respectively (20). The structures of these lipid classes 

are shown in Figure 1.3. 
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Figure 1.3: Structures of mammalian glycerolipid species MG 16:0, DG 34:1 and 
TG 52:3 from LIPID MAPS®. 
 

Glycerolipids play prominent roles in physiology and human disease; they are 

associated with fat storage, metabolic disorders, and cancer survival (27). Whereas 

there is only little information available on the function of MG, DG is a neutral lipid 

involved in the synaptic vesicle cycle (28) and in the formation of membranes (29). 

Additionally, post prandial hyperlipidemia, a risk marker for cardiovascular disease, is 

known to be improved by DG species (30).  

The chemical structure of DGs is versatile. Two (different) fatty acids are esterified to 

the glycerol backbone and can occur as three different stereo- or regioisomers, either 

at sn-1/2, sn-2/3 or rac-1/3 position, respectively (31). A schematic depiction of the 

different regioisomers is shown in Figure 1.4. Depending on the fatty acid species 

esterified to sn-1 or sn-3, DGs can be achiral or chiral. They are termed as achiral 

when two identical fatty esters are bound to these positions. If two different fatty acids 

are attached to the glycerol backbone, DG is chiral (31). Due to the stereochemical 

nature of DG isomers, the species have different metabolic and nutritional 

characteristics (32). Several studies demonstrated the physiological and anti-obesity 

effects, in particular of 1,3 DG (33, 34). As such, DG has shown to reduce both body 

weight and visceral fat mass (35). Due to the ability of these lipid species to suppress 

both obesity and post prandial hyperlipidemia, DGs have been increasingly 

incorporated into food products (36, 37).  
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Figure 1.4: Schematic depiction of the different forms of regioisomers of diacylglycerol. 
Reprinted with permission from Creative Common Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/). Copyright Eichmann, T.; Lass, A.; 2015 
(31). Illustration has been modified.  
 

In adipose tissue of higher eukaryotes TGs serve as the major energy storage 

molecule (38), since they provide much more energy during oxidation than 

carbohydrates or proteins (39). In addition to storing energy, the synthesis of TGs 

protects the cell from the potentially toxic effects of excess FA. However, excessive 

accumulation of TGs is associated with human diseases, such as diabetes mellitus, 

obesity, and hepatic steatosis. Triglycerides mainly exist as triacylglycerol species in 

nature, however, there is also a small amount of ether-linked triglyceride species (40), 

which do not only differ in chain length and degree of saturation but also in chemical 

and physical properties (41). As already mentioned for the DG species, there are also 

different stereo- or regioisomers of TG. This species contain a chiral center and, 

therefore, optical activity, when two primary hydroxyl groups are esterified with different 

fatty acids (42). However, analysis of TG composition is very challenging due to the 

tremendous amount of individual species caused by the number of possible FA 

combinations on the glycerol backbone. The knowledge of the TG structure, especially 

the fatty acids linked with the glycerol backbone, is of great importance for 

understanding the lipid metabolism and e.g. the production of food products (43). 

Additionally, specific effects on health are obtained, which can be assessed by a 

deeper insight into the individual TG types. Most remarkably, there is an association 

between saturated TGs with short carbon chains and insulin resistance (44). 

Regarding TGs, many studies mainly deal with fats and oils originating from plants or 

animals. Composition and structure of TG species determine the functionality of these 

fats and oils as food ingredients and their physiological effects as part of the human 

diet (43). Vegetable oils provide 25% of the food calories in industrialized countries 

(45). Humans consume approximately 90-120 grams of fat per day. More than 95% 
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are absorbed (46). However, TG species cannot be absorbed directly by the 

gastrointestinal (GI) tract. Digestion of TG begins in the stomach. Approximately 15% 

of the fatty acids from TGs are released by preduodenal lipases, gastric lipase or 

lingual lipase (47). The absorption of dietary fats mainly takes place in the small 

intestine. Therefore, the fatty acids at position 1 and 3 of the glycerol backbone must 

be removed by pancreatic lipase. The resulting FAs and MGs can then be absorbed 

via active transport and/or diffusion processes by small intestinal enterocytes. After 

absorption FAs and MGs are then used to synthesize TGs within the enterocytes. 

Synthesized TGs are combined with cholesterol, cholesterol esters and apolipoprotein 

B48 to form chylomicrons (48, 49). Diabetes mellitus, obesity and excessive alcohol 

consumption can lead to an increase of TGs in the human blood, which is called 

hypertriglyceridemia. In rare cases hypertriglyceridemia can cause life-threating acute 

pancreatitis (50).  

 

1.1.3 Glycerophospholipids 
 
Glycerophospholipids (GPL) are amphiphilic molecules and consist of a hydrophilic 

head group. This head group is connected by a phosphate ester at one of the terminal 

positions of the glycerol backbone and one or two hydrophobic fatty acids are ether- 

or esterified at the remaining hydroxyl positions (51). In all living organisms, GPLs play 

a key role in cellular membrane and have important functional and structural properties, 

e.g. as cellular messengers or enzyme activators (42). Due to their different polar head 

groups, GPLs can be divided into different classes. The main subclasses are 

phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS), 

which are shown in Figure 1.5.  
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Figure 1.5: Structures of different glycerophospholipid species from LIPID MAPS®. 
 

Glycerophospholipids are also defined by a stereospecific numbering (sn) convention, 

which indicates the relative positions of head group and acyl chain attachment. The 

modification of glycerol leads to chirality around the central carbon (52) as it is 

described for glycerolipids. In eukaryotic cells, the fatty acyl chains are typically 

attached at the sn-1 and sn-2 positions, whereas the head group is esterified at the 

sn-3 position of the glycerol backbone. In GPLs, two different fatty acyl chains allow 

two regioisomers with alternating substitutions at the sn-1 and sn-2 positions. Various 

studies showed that unsaturated fatty acyl chains were preferably esterified at the sn-2 

position (53). However, there is increasing evidence that both sn-positional isomers 

are frequently present. Different biophysical and chemical properties of regioisomers 

were observed. Therefore, the research suggests that these isomers have different 

functions in nature (54). GPLs make up most of the lipids of cell membranes, consisting 

of a multiplicity of individual protein and lipid species. Usually, these membranes are 

composed of two layers of lipid molecules and therefore play an important role in 

determining the physicochemical properties. The GPL composition can be very 

different for diverse cell types, organelles, and inner or outer membrane leaflets, 
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respectively (55). The inner side of the outer membrane mainly contains PE, PG, and 

the respective monoacyl-glycerophospholipids lyso-PE and lyso-PG (56). The 

introduction of polyunsaturated fatty acids into the glycerophospholipids of the 

membrane is promoted by the deacylation-reacylation cycle. This process is also 

known as Lands-Cycle and includes the following enzymes: phospholipase A2, acyl-

CoA lysophospholipid acyltransferase, acyl-CoA synthetase, and acyl-CoA hydrolase 

(57).  

 

1.1.4 Sphingolipids 
 
The lipid class of sphingolipids (SP) is defined by a long chain sphingoid base which 

may be linked to a fatty acid at C2 position via an amide bond. Sphingoid base d18:1 

is the most common of these backbones in mammalian cells. It varies in chain length, 

degree of saturation (58, 59) and number of hydroxyl groups (60), e.g. sphinganine 

((2S,3R)-2-aminooctadecane-1,3-diol, which is fully saturated, and phytosphingosine 

((2S,3S,4R)-2-aminooctadecane-1,3,4-triol), which is also fully saturated and has a 

third hydroxy group (58, 59). 

The simplest class of SP are ceramides (Cer) which are formed by adding an acyl 

chain to the amino group of the sphingoid base. Sphingolipids can also be 

distinguished by the type of head group that replaces the hydroxyl group of the carbon 

in the 1-position (61). Phosphosphingolipids, for example, contain a phosphodiester 

bond at the head group and glycosphingolipids a β-glycosidically bonded sugar, 

whereas sphingomyelin (SM) is generated by the addition of a phosphocholine head 

group (62). Thus, sphingomyelins (SM), ceramides (Cer), and hexosylceramides 

(HexCer) differ by their head groups but frequently contain a dihydroxy C18 sphingosine 

base (62) (Figure 1.6).  

C16-, C18-, and C24-ceramides are most commonly found in mammals. They provide 

a variety of unique properties (61, 63, 64), e.g. they serve as precursors to form either 

phosphor- or glycosphingolipids by adding diverse head groups. Ceramides are 

hydrophobic lipids which increase the molecular order of phospholipid-containing 

membranes (65) although they are only minor components within these membranes 

(66). In the Golgi apparatus ceramides can be converted into SM or glucosylceramide 

(GlcCer) (61). Sphingolipids play an important role in cell signaling and plasma 

membrane structure. They comprise a broad spectrum of complex lipids and represent 

one of the most important lipid classes in eukaryotic cells (67).  
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Whereas sphingosine-1-phosphate (S1P), for example, plays a crucial role in cell 

survival, cell migration or inflammation (68), Cers mediate many cellular stress 

response including the regulation of apoptosis (69) and cell senescence (70). Various 

biological processes are regulated by sphingolipids, including growth, invasion, 

migration, proliferation and/or metastasis. In the latter case, signaling function can be 

controlled within the cancer cell signal transduction network (71, 72). Ceramide and 

sphingosine formation can be induced by chemotherapy, radiation and/or oxidative 

stress (73). Irregular intracellular apoptotic signal transduction can cause changes in 

the levels of individual sphingolipids and thus it can trigger such disease states (74). 

 

 
 

Figure 1.6: Examples of mammalian sphingolipids from LIPID MAPS®. 
 

1.1.5 Sterol Lipids 
 
Sterols (ST) are isoprenoid-derived amphipathic biomolecules which play important 

physical and structural roles in eukaryotic cells (75) and thus provide valuable insights 

into the evolution of life (76). All sterols have a common structure which consists of a 

tetracyclic cyclopenta(a)phenanthrene nucleus. Furthermore, some sterols are 

connected to carbon 17 via a side chain (76). Sterol synthesis involves the 

polymerization of the precursors isopentenyl diphosphate (IPP) and dimethylallyl 

pyrophosphate (DMAPP) (75).These lipids can be categorized in sterols, steroids, 

steroid conjugates, secosteroids and bile acids. The most common sterols in plants 

are phytosterols, e.g. campesterol, stigmasterol or sitosterol. In animals and yeast 

cholesterol and ergosterol are predominant (77) (Figure 1.7), respectively. With few 

exceptions (78, 79), sterols are found exclusively in eukaryotes. They are involved in 

various cell functions, e.g. in membrane fluidity and structure, developmental 

regulations or as precursors of hormone and signal molecules.  
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Figure 1.7: Exemplary species of sterol lipid species from LIPID MAPS®. 
 

Cholesterol, which is especially important in mammalian cells, consists of 27 carbon 

atoms. Modification of the side chain or the nucleus allow a variety of different 

structures (76). Cholesterol occurs mainly as cholesteryl esters (CE) which are stored 

in lipid droplets or transported in lipoprotein particles, and as non-esterified free 

cholesterol (FC) in membranes (80). Cholesterol is primarily synthesized from acetyl-

CoA by sequential enzymatic reactions in tissues, especially the liver, adrenal gland, 

brain, ovary, and testis (81). Hydrogenation of sterols leads to the formation of stanols, 

usually by microbes either in animal gastrointestinal tract or in the environment (82, 

83). Due to their low water solubility and their ability to bind to organic material, 

5β-stanols are particularly useful as direct biomarkers for animal feces (84). The so-

called stanol fingerprint, i.e. its distribution in the fecal material, identifies a certain 

mammalian species on the basis of various processes, including the basis of their diet 

(primary sterol intake), the ability to biosynthesize endogenous sterols (secondary 

sterol intake) and the way how they biohydrogenate sterols and convert them into 

stanols with the help of bacteria of the digestive tract (85). Furthermore, a distribution 

of microbial cholesterol-to-coprostanol conversion in human populations is bimodal, 

with a minority of low metabolizers and many high metabolizers, i.e. almost complete 

cholesterol conversion. The efficiency of cholesterol conversion is mainly dependent 

on the abundance of cholesterol-lowering bacteria (86). In addition, a correlation 

between cholesterol-lowering activity in the human gut and the overall structure of fecal 

microbial community has been established (87).  
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1.1.6 Nomenclature 
 
In this work, lipid nomenclature is based on a comprehensive classification system for 

lipids presented by the Nomenclature Committee and International Lipid Classification 

in 2005 (1), which was updated in 2009 (88). Practical shorthand notation of lipid 

structures derived from mass spectrometry (MS) approaches have been developed in 

2013, which enables correct and concise reporting of data and their deposition in 

several databases (89). The simplest way of describing the structure is to write the 

total number of carbons followed by the total number of double bonds. For example, 

DG 36:2 describes the lipid class (DG, diacylglycerol), whereas the total number of 

carbon atoms is 36 and the total number of double bonds is 2 in the acyl chains. This 

notation is used as a sum formula and gives no information about the exact 

composition of the fatty acyl chains. To further specify this, various acyl combinations 

are possible, for example DG 18:1_18:1 and DG 18:0_18:2 without specification of sn 

positions using “_” as previously proposed (89). If the sn positions of the fatty acyls are 

known, this would be expressed with the separator “/”, e.g. DG 0:0/18:0/18:2 or 

DG 0:0/18:2/18:0 (sn-1 / sn-2 / sn-3). By using high-resolution mass spectrometry, it is 

possible to obtain a separation between ester bonds and other bond types. An ether 

bond, for example, is indicated by an “O-” in front of the sum of C-atoms of fatty 

acyls/alkyls: DG O-36:2. The letter “P” is used for a proven O-alk-1-enyl-bond, i.e. an 

acid-sensitive ether bond in plasmalogens. More than one “non”-ester bond is 

indicated in front of the bond type as d for di, t for tri, e.g. DG dO-36:2. Positions are 

stated according to ∆-nomenclature in front of the functional groups. Double bond 

position is indicated by a number (geometry unknown) or by the number followed by 

the geometry (Z for cis, E for trans). There are also different abbreviations for functional 

groups: “Me-” for methyl branch, “O-” for keto group, and “OH-” for hydroxyl group (89).  
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1.2 Principles of Mass Spectrometry 
 
Many analytical methods have been developed for accurate identification and 

quantification of lipid species. A common analytical technique is mass spectrometry 

(MS) which has been established in lipidomics in recent years.  

Mass spectrometry is used to quantify known materials, to identify unknown 

compounds and to clarify the structure and chemical properties of various molecules. 

The basic principle of mass spectrometry is to separate and measure ions by their 

specific mass-to-charge ratio (m/z). These ions are detected qualitatively and 

quantitatively by their respective m/z and abundance. The instrument consists of three 

major components: (I) an ion source which produces gaseous ions from the substance, 

(II) a mass analyzer resolving the ions into their characteristic mass components 

according to their m/z, and (III) a detector system which detects the ions and records 

the relative abundance of each species. The most commonly applied methodologies 

in lipidomics involve electrospray ionization (ESI) sources and triple quadrupole 

analyzers (90). There are also other types of mass analyzers, for example, magnetic 

(B) / electric (E) sector mass analyzer, linear quadrupole ion trap (LIT), time-of-flight 

mass analyzer (TOF), ion cyclotron resonance mass analyzer (ICR), and orbitrap. All 

these mass analyzers use dynamic or static magnetic or electric fields to separate ions, 

and operate according to two fundamental physical laws, e.g. Lorentz force law and 

Newton’s second law of motion (91-93). The analyzers differ by analysis speed, mass 

accuracy, mass range, mass resolution, and sensitivity.  

Mass spectrometry allows to determine the elemental composition, molecular weight 

and, using MS2, position of branching and the type of substituents in the lipid structure. 

Due to its high accuracy, sensitivity, specificity, and throughput, MS has become a 

preferred method for lipid analysis. 

Regarding this thesis, lipid analysis was performed by flow injection Fourier transform 

mass spectrometry. A hybrid quadrupole Orbitrap mass spectrometer Q Exactive is 

coupled to a heated electrospray ionization source and a PAL autosampler. The 

following chapters will describe the applied technique in more detail.  

 

1.2.1 Electrospray Ionization 
 
In recent years, electrospray ionization (ESI) has emerged as an important “soft” 

ionization technique which produces intact ions. This technique represents a sensitive, 

robust, and reliable method for the investigation of large, non-volatile, and thermally 
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unstable molecules, such as those found in biological systems, e.g. in lipids, peptides, 

or proteins. The samples can be measured in femto-mol quantities in microliter sample 

volume. High voltage is applied to spray the sample solution into the gaseous phase 

by the ESI needle. This process comprises three steps: (I) atomization of a fine spray 

of charge droplets, (II) solvent evaporation, and (III) ejection of ions from the highly 

charged droplets (94) (Figure 1.8). The solvent slowly evaporates, often supported by 

a neutral carrier gas such as nitrogen which increases the surface charge density and 

reduces the droplet radius. These droplets are continuously dissolved by repulsion of 

similar charges (“Coulomb explosion”) into smaller droplets as they have reached the 

Rayleigh limit. Droplets are then electrically charged on the surface. Depending on 

charge polarity, this leads to the formation of positive or negative ions (95).  

 

 
 
Figure 1.8: Schematic illustration of an ESI process. Reprinted with permission from 
Thermo Fisher Scientific. Copyright 2008 Thermo Fisher Scientific. 
 

 

1.2.2 Quadrupole Mass Analyzer 
 
One of the mass analyzers used for ESI is a quadrupole mass spectrometer which was 

invented by Wolfgang Paul in the early 1950s (96). The main principle of ion separation 

in MS is based on the movement of ions through a magnetic or electric field, whereby 

the movement is influenced by their m/z ratio. The quadrupole mass analyzer consists 

of four parallel hyperbolic/circular metal rods. Opposite rods are electrically connected. 

A direct current (DC) voltage and a radio frequency (RF) of the same amplitude and 
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sign are applied to the diagonally arranged rods. The rod pairs, however, differ in their 

polarity. By means of an electric field, the ions are moved forward in the z-direction 

with an oscillating movement in the x-y-plane. The applied ratio of voltages can be 

used to control the oscillation amplitude to allow ions of a specific m/z ratio to finally 

reach the detector. Vibration amplitudes of unwanted ions can be large and unstable. 

Hitting the metal rods these ions are neutralized and do not reach the detector, see 

Figure 1.9. Quadrupole mass analyzers are robust, economical, physically small and 

can be more easily connected to a variety of inlet systems such as the magnetic sector 

(94).  

 
 

 
 
Figure 1.9: Schematic illustration of a quadrupol mass analyzer.  
 

 
1.2.3 Orbitrap Mass Analyzer 
 
The origins of the orbitrap analyzer trace back to the year 1923. Kingdon discovered 

the principle of orbital trapping by placing a charged wire on a closed cylindrical metal 

can (97). In the year 2000, Alexander Makarov published the concept of an orbital 

trapping device for the application in mass analysis. Unlike the previous attempts, the 

central electrode was not used as a thin wire but as a solid metal electrode (98). The 

orbitrap mass analyzer essentially consists of three electrodes: two cup-shaped outer 

electrodes face inwards and a spindle-shaped central electrode is aligned along the 

axis. The outer electrodes are electrically insulated by a hairline gap which in turn is 

secured by a dielectric ring. The central electrode holds the trap together and aligns it 

via the dielectric end-spacer. The applied electric field consists of a quadrupole field of 

the trap, e.g. a standard trap or a high field compact trap, and an additional logarithmic 

field of the cylindrical capacitor (99, 100). Applying voltage between the outer and 

central electrodes, stable ion trajectories induce a harmonic oscillation along the z-

axis. The radial component of the field simultaneously pulls the ions towards the central 
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electrode. Ions with the same m/z ratio oscillate in-phase along the z-axis for 

thousands of oscillations (Figure 1.10). 

 

 

 

Figure 1.10: Orbitrap mass analyzer showing a stable spiral trajectory of an ion 
between the central electrode and the split outer electrodes. Reprinted with permission 
from Thermo Fisher Scientific. Copyright 2008 Thermo Fisher Scientific. 
 

An ion trap is mounted outside the analyzer to produce stable ions. Using the principle 

of “electrodynamic squeezing” (101) the ions are captured and enter the trapping field 

by a steady increase of the electric field strength. The outer electrodes remain at a 

fixed potential, whereas the potential at the central electrode is lowered. Once the ions 

enter the field through this potential gate, they cannot escape at the point of entry, as 

the trapping potential forms a potential barrier until they return to the gate. To ensure 

the widest possible range of trapped m/z, a rise-time of the field, typically 30 – 50 µs, 

is chosen (102).  

To achieve high mass resolutions orbitrap instruments apply image current detection 

using Fourier transform Mass Spectrometry (FTMS), using two split halves of outer 

electrodes for detection and a differential amplifier for amplification. The application of 

FT determines the frequency of the harmonic oscillations and allows the calculation of 

the m/z ratios of the subjected ions (103).  

 

1.2.4 Tandem Mass Spectrometry 
 
One of the most used mass analyzers in lipidomics is the triple quadrupole mass 

analyzer (QqQ), which is commonly used in MS/MS. It consists of three quadrupoles 

connected in series (Q1 – Q3). The following arrangement is most frequently used: Q1 

filters for a specific m/z ratio (precursor ion); Q2, a collision cell, is filled with an inert 

gas like argon or nitrogen; and Q3 analyses the fragment ions induced by collision with 
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the gas molecules, shown in Figure 1.11. Both Q1 and Q3 can be used either in SIM 

or scan mode.  

 

 
 
Figure 1.11: Schematic illustration of a triple quadrupole mass spectrometer (104). 
Modified with permission of Copyright Clearance Center’s Rightslink® service. 
Copyright 2014 Elsevier Inc. 
 

The following operation modes are commonly applied: Product ion scan, precursor ion 

scan, neutral loss scan, and selected reaction monitoring (SRM) or multiple reaction 

monitoring (MRM). In a product ion scan, a precursor ion is selected in Q1, followed 

by collision induced fragmentation, whereas Q3 scans for resulting fragment ions. This 

mode provides largely substance-specific structural information. In a precursor ion 

scan, the precursor masses are scanned in Q1, a fragment ion is selected in Q3. 

Groups of substances with specific characteristic structures or fragmentation reactions 

can be identified. In a neutral loss mode, Q1 and Q3 are scanned with a fixed offset 

between both mass analyzers. It can be used to identify all precursor ions with a loss 

of a defined mass. In selected reaction monitoring, both mass analyzers are set to 

selected masses (105, 106).  

 

1.2.5 Q Exactive Hybrid Orbitrap Mass Spectrometer 
 
A Q Exactive Orbitrap mass spectrometer combines a high resolution Orbitrap mass 

analyzer and a high-performance quadrupole for precursor selection. 

The Q Exactive hybrid quadrupole Orbitrap mass spectrometer mainly consists of an 

ion source, a stacked ring ion conductor (S-lens), a bend flatapole, a quadrupole mass 

filter, a curved linear trap filled with nitrogen (C-trap), a higher energy collisional 

dissociation (HCD) cell and an orbitrap mass analyzer (Figure 1.12).  

The samples can be introduced into the ion source by various methods, while the 

injection flatapole transfers the ions from the source to the quadrupole. In the C-trap, 
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the kinetic energy of the injected ions dissipates by collision with the nitrogen 

molecules, bundles them on the trap axis and then injects them orthogonally to the z-

axis of the orbitrap mass analyzer to obtain a mass spectrum. Furthermore, the ion 

bundles can be guided through the C-trap into the HCD cell and perform MS/MS 

experiments in combination with the quadrupole mass filter.  

 

 

Figure 1.12: Schematic illustration of a Q Exactive Orbitrap mass spectrometer. 
Reprinted with permission from Thermo Fisher Scientific. Copyright 2012 Thermo 
Fisher Scientific. 
 
 
To investigate samples in high throughput, shotgun mass spectrometry of biological 

samples is routinely applied (107). A commonly used technique for all lipidomic 

approaches is a high-resolution FTMS instrument chip-based nano-ESI (108-111). In 

this thesis, a Q Exactive hybrid Orbitrap mass spectrometer was used for lipid analysis, 

using a conventional LC pumping system to infuse raw lipid extracts of feces.  

 

1.2.6 Direct Infusion Mass Spectrometry 
 
In direct infusion mass spectrometry (DIMS), the sample is pumped directly into the 

mass spectrometer without any prior separation. Therefore, the liquid sample is placed 

in a syringe. A syringe pump is used to ensure a regular flow of liquid. The injection of 

a liquid sample into a moving, non-segmented continuous carrier stream of a suitable 

liquid is called flow injection analysis (FIA) (112). FIA frequently uses an HPLC system 

that injects the analytes directly into the ionization source of the mass spectrometer 
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without prior chromatographic separation (FIA-MS) (113). Flow injection is coupled to 

an autosampler (114). 

Direct infusion is best suited for pure samples or simple mixtures and should be free 

of contaminating factors that could otherwise interfere with the measurement, such as 

high contents of non-volatile salts or detergents. Direct infusion mass spectrometers 

are often equipped with electrospray ionization. In this process, intact molecular 

masses of analytes can be detected or fragmented. This facilitates the identification of 

the so-called “fingerprint” of chemicals and relies on the accurately determined masses 

on MS level or specific fragment ions in MS/MS spectra (115, 116).  

In DIMS, which is also called “shotgun”, the lipid composition and concentration of 

analytes does not change over time, which simplifies the quantification of the species 

(6). Advantages of direct infusion are its simplicity, high reproducibility, and the 

constant electrospray conditions, e.g. matrix, solvent composition, and sample 

concentration, which could influence the ionization of the analytes without significantly 

affecting sensitivity, precision, and accuracy (117, 118). However, disadvantages of 

this technique are the ion suppression effect and the inability to distinguish many 

isobaric or isomeric species.  
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1.3 Mass Spectrometric Lipid Analysis  
 
Analysis of lipids is either based on the separation of different lipid categories by 

chromatographic separation or on so-called shotgun-Lipidomics which essentially 

analyze all lipid classes without prior chromatographic separation (119). However, a 

more detailed elucidation of structural properties of lipids requires the use of MS/MS 

analysis. This chapter describes the extraction of lipids as well as the fragmentation 

behavior of DG and TG with respect to the acyl chain and head group elements.  

 
 
1.3.1 Extraction of Lipids 
 

In Lipidomics it is important to perform an extraction of lipid species to obtain an 

accurate profile of lipidomes in a sample of interest. Each extraction method serves 

two main purposes. On the one hand, the complexity of the sample is reduced by 

eliminating unwanted non-lipid compounds such proteins. A positive side effect is the 

reduction of impurities, this leads to a less contaminated mass spectrometer and thus 

to less instrument downtime due to cleaning and maintenance. On the other hand, the 

lipids of interest accumulate during extraction, which in turn leads to an improved 

signal-to-noise ratio (16). In principle, there are two different extraction possibilities: 

liquid-liquid (LLE) or solid-phase (SPE) extraction. SPE is a very specific sample 

preparation technique and provides highly enriched samples with low contamination. 

However, as the number of analyzed lipid classes increases, this extraction protocol 

becomes very complex and challenging. If many lipid classes need to be analyzed in 

high throughput SPE is unsuitable. It can certainly be a useful method if only a few 

samples with a very high coverage of the lipid species need to be analyzed (16). In 

contrast, liquid-liquid extraction is the most commonly used sample preparation 

technique in lipidomics. Organic solvents such as chloroform/methanol (CHCl3/MeOH) 

or methyl-tert-butyl ether (MTBE) are typically used for this purpose. Two of the most 

common treatments are based on the protocols by Folch (120) and Bligh and Dyer 

(121) and consist of a ternary mixture of chloroform, methanol, and water. Other 

common LLEs are MTBE extraction, single-phase extraction, butanol/methanol 

extraction (BUME) and 3-phase extraction. Those are listed in Table 1.1. 
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Table 1.1: Comparison of different LLEs regarding the extraction solvents used, the 
phase separation, the type of detectable lipids, and the advantages and disadvantages 
of the divers extraction methods (16). 
 

  Folch 
Bligh and 

Dyer 
MTBE 

Single-
Phase 

Extraction 
BUME 

3-Phase 
Extraction 

Extraction 
Solvents 

CHCl3, 
MeOH, 

H2O 

CHCl3, 
MeOH, 

H2O 

Methyl-tert-
butyl ether, 
MeOH, H2O 

MeOH; EtOH; 
2-Propanol; 
Acetonitrile 

BuOH/ 
MeOH, 

Hep/Ethyl 
acetate, 

Acetic acid 

Hexane, 
Methyl 

acetate, 
Acetonitrile, 

H2O 

Bottom Phase organic organic aqueous 

organic 

aqueous aqueous 

Middle Phase     organic 
(PC) 

Upper Phase aqueous aqueous organic organic 
organic 

(TG) 

Detectable 
Lipids 

saturated 
fatty acids 

saturated 
fatty acids 

GPL, Cer, 
saturated fatty 

acids 
polar lipids like Folch 

neutral and 
polar lipids 

Advantages 
high 

extraction 
efficiency 

high 
extraction 
efficiency 

straightforward 
operation, 
MTBE less 

harmful 

fast and 
robust 

high 
throughput 
screening 
in 96-well 

plates 

separate 
analysis 

runs, higher 
identification 

rate 

Disadvantages 
harmful 
due to 
CHCl3 

harmful 
due to 
CHCl3 

 

higher 
instrument 

contamination 
greater ion 

suppression 
effect 

  

 

 
1.3.2 Mass Spectrometric Analysis of Lipids 
 

Over the last decades several mass spectrometric lipidomic methods with scientific 

and clinical application have been developed (12-14). A common way to reduce the 

complexity of lipid extracts for MS-based approaches is to use chromatographic 

separation, especially gas (GC) and liquid chromatography (LC) (122-124). Shotgun 

lipidomics, as described above, is a direct infusion-based approach without any 

separation prior mass spectrometric analysis. The development of high-resolution 

mass spectrometry led to an increasing interest in the application on MS level. The 

technical simplicity and rather short measurement times allow the detection of several 

lipid classes in a single analysis. Nowadays, shotgun MS analysis of biological samples 

is routinely used for high-throughput analysis of samples (107). 
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A detailed structural analysis of the lipid species requires MS/MS analysis using a 

tandem mass spectrometer. This is a very helpful and informative technique with 

respect to the acyl chain and head group elements for most lipid classes (125-127).  

 

Collision Induced Dissociation (CID) of ammonium adducts [M+NH4]+ of diacylglycerol 

and triacylglycerol in positive ion mode results in fragment ions corresponding to the 

loss of 17,0266 Da (i.e. the loss of ammonia) combined with a charge-remote loss of 

FA moieties as fatty acids (RCOOH + NH3), e.g. FA 16:1 has a neutral loss (NL) of 

m/z 271, FA 18:1 a neutral loss of m/z 299 and FA 18:0 a NL of m/z 301. These ions 

provide information about the acyl composition of both lipid classes and therefore are 

denoted as molecular lipid fragments (MLF) (128). For DG species a NL of water 

together with ammonia from an [M+NH4]+ ion is typical and denoted “-DG(35)” as lipid 

class selective fragment (LCF) (129) (Figure 1.13).  

 

 

 

Figure 1.13: Fragmentation of diacylglycerol (a) and triacylglycerol (b) regarding their 
acyl chain composition. The dotted lines indicate the most labile bonds from which 
fragmentation most frequently occurs.  
Displayed are a) DG with two acyl chains and one OH group (here 1,3 DG) and b) TG 
comprising three acyl (FA1 to 3) chains.  
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1.4 Lipid Analysis of Feces 
 
In recent years, the interest in intestinal microbiome as well as the analysis of lipids in 

feces has increased significantly. The intestinal microbiome actively influences host 

functions and therefore plays an important role in human health and disease. 

Homogenization of fecal samples is of great importance for lipid analysis, as the 

sample material is very heterogeneous and thus more difficult to analyze. In this 

chapter, microbiome, feces, and homogenization are described in detail.  

 
 
1.4.1 Microbiota and Feces 
 
The human body, including the intestine, skin and other mucosal environments, is 

colonized by an enormous number of commensal, symbiotic and pathogenic 

microorganisms, collectively referred to as microbiomes, and is estimated to consist of 

3 × 1013 eukaryotic cells and 3.9 × 1013 colonizing microorganisms (130). These 

microorganisms contain trillions of microbes with more than 700-1000 different species 

of bacteria in the intestine (131). It is estimated that 10 different phyla contribute to the 

functional role of the intestinal microbiome, with Firmicutes and Bacteroidetes being 

the most dominant phyla. The neutral pH and the weakly basic environment make the 

large intestine the most densely populated area of bacteria in the GI tract, with 

approximately 1012 bacteria/g. In the less acidic small intestine, on the other hand, only 

103 bacteria/g can be found (132). 

It is now generally accepted that the gastrointestinal system, in particular the intestinal 

microbiome, actively influences host functions including nutritional responses, 

immunity, medication, and metabolism, and thus plays an important role in human 

health and disease (133). Microbial activity is reflected in fecal materials that contain 

unabsorbed metabolites including lipid species. Consequently, analysis of fecal 

metabolites provides an estimate of metabolic interaction between gut microbiota and 

host (134). These microbe-host interactions are impaired by the intestinal microbial 

ecosystem resulting from changes in lifestyle during industrialization, including 

important shifts in dietary habits, improved hygiene, and access to medication (e.g. 

antibiotics) (135). To identify subtle metabolic variations induced by dietary alterations 

and to characterize the metabolic impact of variations of the gut microbiota, metabolic 

profiling gained increasing interest over the last decade.  

The intestinal microbiome can influence human behaviour through a bi-directional 

communication pathway between the GI tract and the central nervous system, namely 
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the intestinal-brain axis. This is achieved by a microbiome-mediated production of 

molecules, such as serotonin and γ-aminobutyric acid (GABA), which have neuroactive 

effects. Along the GI tract there are nutrient receptors and enteroendocrine cells 

(EECs) that interact with microbial metabolites. For mechanisms such as the regulation 

of appetite and insulin secretion, the interactions with EEC receptors are crucial (136). 

Recent studies show that bacterial proteins act locally in the intestine with a short-term 

effect on saturation and thus influence the appetite-regulating pathways (137).  

Feces are composed of water, proteins, bacterial biomass, fat, and indigestible food 

components, e.g. fibres. Fat contained in feces is a heterogeneous mixture of different 

lipids; it constitutes 8-16% of the dry weight of the feces (138-140) and 2-8% of the wet 

weight (141-145). Fat found within feces originates from bacteria as well as from the 

undigested remains of dietary lipids (146). Non-/esterified fatty acids represent 

approximately 60-70% of this fat, unsaponifiable material accounts for 20-30% (147).  

 

 
1.4.2 Lipid Analysis of Fecal Samples 
 

Human feces contain, depending on diet and metabolism, different amounts of 

triacylglycerol (TG) and diacylglycerol (DG). This has been frequently studied in the 

context of steatorrhoea (148) and colon cancer (149). 

Homogenization is an important step in processing tissue samples, cells or feces. 

Whereas homogenization is not a problem for bioliquids, it is currently still a challenge 

for solid sample material. Homogenization makes lipids from all parts of the sample 

material accessible to extraction solutions. Limited solvent accessibility of the samples 

can result in significantly distorted lipid profiles (16). The homogenization of feces is 

still difficult at this stage. An accepted protocol does not exist yet. Different working 

groups vortex the sample material in phosphate buffer saline (PBS) (150), whereas 

others homogenize for example with the help of bead beating (151). Homogenization 

is a prerequisite for optimal lipid extraction and is often performed manually (152). 

Lipidomic methods nowadays offer a wide range of possibilities to analyze lipid species 

profiles of biological materials (153). However, only a few methods are available to 

study the lipidome of fecal material (134, 154, 155). Most of the described approaches 

focus on the identification and quantification of selected lipid classes like fatty acids 

(156, 157), bile acids (158), and sterols (124). In this thesis we evaluate and validate 

a method for identification and quantification of DG and TG species of human fecal 
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material using flow injection analysis (FIA) coupled to Fourier transform mass 

spectrometry (FIA-FTMS). 
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1.5 Objective of this Work 
 
Main goal of this PhD thesis was to develop a method for the identification and 

quantification of lipid species of human fecal material using flow injection analysis (FIA) 

coupled to Fourier transform mass spectrometry (FIA-FTMS). Method development 

included sample homogenization, lipid extraction, instrumental method, data 

validation, and data evaluation in an untargeted approach. Various homogenization 

methods were tested. The stability of fecal material after sample collection and the 

influence of material consistency were evaluated. Fecal homogenates were subjected 

to lipid extraction according to the protocol by Bligh and Dyer. A Q Exactive hybrid 

Orbitrap high resolution mass spectrometer was used for lipid analysis, equipped with 

a conventional LC isocratic pumping system coupled to a heated electrospray 

ionization (ESI) source to infuse raw lipid extracts of feces.  

Method validation included limit of quantification, linearity, evaluation of matrix effects, 

recovery, and reproducibility. Data evaluation contained the identification of detected 

species using MS2 spectra.  

 

The developed method should be accurate and reproducible as well as fast to allow 

high throughput of samples and to be applicable to fecal samples of clinical and 

scientific studies. 
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2. Materials and Methods 
 

2.1 Chemicals 
 
Methanol, ethanol absolute (EMSURE), and acetonitrile were obtained from Merck 

(Darmstadt, Germany), chloroform, 2-propanol, and hexane from Roth (Karlsruhe, 

Germany). All solvents were HPLC grade. Ammonium formate, methylamine solution 

40 wt % in H2O, methylamine solution 33 wt % in EtOH, trimethylamine solution 

45 wt % in H2O, trimethylamine solution 31-35 wt % ~ 4.2 mol/L in EtOH, sodium 

dodecyl sulfate (SDS), acetyl chloride of the highest analytical grade available, and a 

certified fatty acid methyl ester (FAME) mix (Supelco 37 component FAME mix) were 

ordered from Sigma-Aldrich (Taufkirchen, Germany) and isooctane (2,2,4-

trimethylpentane) > 99% from Honeywell (Seelze, Germany). All chemicals and 

standards were of high purity grade for analysis (> 95%).  

Glycerolipid standards were purchased from Larodan (Solna, Sweden): Diarachidin 

(DG 20:0/20:0), Dinonadecanoin (DG 19:0/19:0), Dilinolenin (DG 18:3/18:3), Dilinolein 

(DG 18:2/18:2), 1,2-Distearin (DG 18:0/18:0), Triarachidin (TG 20:0/20:0/20:0), 

Trinonadecanoin (TG 19:0/19:0/19:0), Trilinolein (TG 18:2/18:2/18:2), Triolein 

(TG 18:1/18:1/18:1), 1,2-Olein-3-Stearin (TG 18:1/18:1/18:0), 1,2-Stearin-3-Olein 

(TG 18:0/18:0/18:1), Triheptadecanoin (TG 17:0/17:0/17:0), and Tripalmitin 

(TG 16:0/16:0/16:0).  

Furthermore, FA and MG internal standards were purchased from Larodan. All other 

internal standards used for quantification, LPA, PA, LPC, PC, LPE, PE, PG, PS, Cer, 

HexCer, and SM were ordered from Avanti (Alabaster, Alabama, USA), while PI was 

obtained from Christoph Thiele.  

Water (aqua ad iniectabilia) for sample homogenization was purchased from B. Braun 

(Melsungen, Germany). Purified water was produced by Millipore Milli Q UF-Plus water 

purification system (Molsheim, France).  

 

2.2 Stock Solutions 
 
Lipid species were quantified by addition of non-endogenous internal standards. All 

diacylglycerol and triacylglycerol standards were dissolved in isooctane/isopropanol 

(3:1 v/v) at a concentration of 1.0 mg/mL. The internal standard (IS) solution contained 

trinonadecanoin, triheptadecanoin, and diarachidin each at a concentration of 

10 μg/mL in chloroform/methanol (9:1 v/v). In previous experiments the internal 
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standard mixture included monoacylglycerol and fatty acyl standards. Both lipid 

species were adjusted to a concentration of 1.0 mg/mL. Whereas free fatty acyls were 

dissolved in pure methanol, monoacylglycerols were dissolved in isooctane/2-propanol 

(1:1 v/v). In addition to DG and TG standards mentioned above, the standard solutions 

for the initial tests included also monotridecanoin, monononadecanoin, tridecanoic acid 

and tricosanoic acid each at a concentration of 10 μg/mL. Comparison of different 

solvents used in negative ion mode was performed by adding an internal cell standard, 

which is shown in Table 2.1. The spiked volume added to all samples during extraction 

was 50 μL.  

 

Table 2.1: Internal standard used for negative ion mode experiments. 

Species MW Cell IS 

Unit [g/mol] [ng/spike] [nmol/spike] 

PC 28:0 677.50 1250 1.845 

PC 44:0 901.75 1250 1.386 

LPC 13:0 453.29 50 0.110 

LPC 19:0 537.38 50 0.093 

PE 28:0 635.45 500 0.7868 

PE 40:0 803.64 500 0.6222 

LPE 13:0 411.24 50 0.1216 

PS 28:0 679.44 750 1.1038 

PS 40:0 847.63 750 0.8848 

PG 28:0 666.45 125 0.1876 

PG 40:0 834.63 125 0.1498 

PI 34:0 838.56 250 0.2981 

Cer 32:1;2 509.48 50 0.0981 

Cer 35:1;2 551.53 50 0.0907 

HexCer 30:1;2 643.50 60 0.0932 

HexCer 35:1;2 713.58 60 0.0841 

SM 30:1;2 646.50 500 0.7734 

TG 51:0 848.78 900 1.0603 

TG 57:0 932.88 900 0.9648 

DG 28:0 512.44 250 0.4879 

DG 40:0 680.63 250 0.3673 

MG 13:0 288.23 250 0.8674 

MG 19:0 372.32 250 0.6715 

FA 13:0 214.19 250 1.1672 

FA 23:0 354.35 250 0.7055 
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2.3 Laboratory Equipment 
 
Table 2.2: Laboratory Equipment at the University Hospital Regensburg. 

Centrifuge Megafuge 1.0R Heraeus (Hanau, Germany) 

Eppendorf Tubes Eppendorf AG (Hamburg, Germany) 

Glass Centrifuge Tubes Hecht-Assistent (Sondheim, Germany) 

Feces catcher MED+ORG (Schwarzwald-Baar-Kreis, Germany) 

Filtration Milli-Q UF Plus Merck Millipore (Darmstadt, Germany) 

GCMS-QP2010 Shimadzu (Kyoto, Japan) 

GentleMACS Dissociator Miltenyi Biotec (Bergisch Gladbach, Germany 

GentleMACS 10 mL Tubes Miltenyi Biotec (Bergisch Gladbach, Germany 

PARAM Fecal analysis Tube Sarstedt AG & Co. KG (Nümbrecht, Germany) 

PAL autosampler CTC Analytics (Zwingen, Switzerland) 

Precellys homogenizer Bertin Instruments (Montigny-le-Bretonneux, 

France)  

Precellys lysing kit Bertin Instruments (Montigny-le-Bretonneux, 

France)  

Pyrex Culture Tubes SciLabware Ltd (Riverside, UK) 

Q Exactive Orbitrap Thermo Fisher Scientific (Bremen, Germany) 

Quattro Ultima MS Micromass Communications Inc (Manchester, 

UK) 

Sample Vials (1.5 mL volume) VWR (Darmstadt, Germany) 

Screw Caps (PTFE naturelle) VWR (Darmstadt, Germany) 

Screw Caps (PTFE, Sil, PTFE) VWR (Darmstadt, Germany) 

SpeedVac Christ (Osterode, Germany) 

Sarstedt 15 mL Tubes  Sarstedt AG & Co. KG (Nümbrecht, Germany) 

Thermomixer Eppendorf AG (Hamburg, Germany) 

Tecan Genesis RSP 150 Tecan Group Ltd (Männedorf, Switzerland) 

Ultimate 3000 isocratic pump Thermo Fisher Scientific (Waltham, MA, USA) 

Ultrasonic Desintegrator B.Braun Melsungen (Melsungen, Germany) 

Ultrasonic Bath Sonorex Bandelin (Berlin, Germany) 

Vortex Genie 2 Bender & Hobein (Zurich, Switzerland) 
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2.4 Samples  
 
Human fecal material was obtained from healthy volunteers for method development. 

Polypropylene tubes were used for sample collection. The material was gathered in 

the morning, immediately stored at -20°C and transported to the laboratory on ice. 

Samples were stored at -80°C until further processing. Samples used to investigate 

the influence of stool grade were collected as described by Kjølbæk et al. (159). This 

trial was registered under ClinicalTrials.gov Identifier no. NCT02215343.  

 

Human plasma samples were collected from residual patient material after clinical 

routine diagnostics.  

 

2.5 Sample Preparation 
 
2.5.1 Feces Homogenization 
 
A pea-sized, randomly selected part of the raw fecal material was homogenized in 

2.5 mL isopropanol/water (70/30, v/v) using a gentleMACSTM Dissociator (Miltenyi 

Biotec GmbH, Bergisch Gladbach, Germany) as described previously by Schött et al. 

(124). The homogenate was further diluted in 2.5 mL of 70% isopropanol and again 

homogenized. Homogenization was repeated twice. After vortexing briefly, 1.0 mL of 

this mixture was vacuum dried overnight to determine the dry weight (dw) of the raw 

fecal homogenate. The samples were diluted to a final concentration of 2.0 mg dry 

weight/mL (mg dw/mL) for further analysis. Samples were always kept on ice and 

stored at -80°C until further processing.  

To perform the pre-analytical tests the raw feces were first homogenized in 10.0 mL 

water (B. Braun). The homogenization was repeated twice and the samples were kept 

on ice between each preparation step. After homogenization 70% of an organic solvent 

(e.g. methanol, ethanol or isopropanol) or water was added to 30% homogenate in a 

15 mL Falcon tube. From this mixture, 1.0 mL each was divided into 1.5 mL Eppendorf 

tubes and stored under different conditions. The samples were kept either at room 

temperature (RT) or in the refrigerator at 4°C. Reference samples were immediately 

stored at -80°C. After defined times (1 h, 4 h, 24 h, and 4 days) the remaining samples 

were also stored at -80°C until further processing.  
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2.5.2 Lipid Extraction 
 
An amount of 50 μL of the internal standard solution (containing 0.54 nmol TG 57:0, 

0.59 nmol TG 51:0, and 0.73 nmol DG 40:0) was added to a sample volume of 100 μL 

(2 mg dw/mL) fecal homogenate in a glass centrifuge tube before lipid extraction. 

Extraction occured according to the protocol by Bligh and Dyer (121). An amount of 

700 μL H2O and 3.0 mL B&D solution (CHCl3/MeOH 1:2 v/v) were added to the sample 

material. The mixture was vortexed for 5 sec and incubated at room temperature for at 

least 60 min. Subsequently, 1.0 mL CHCl3 and 1.0 mL H2O were added. The mixture 

was vortexed for another 5 sec and centrifuged at 4000 rpm (17,860 g) for 10 min. A 

volume of 1200 μL of the separated chloroform phase was transferred into a 1.5 mL 

glass sample vial by a pipetting robot (Tecan Genesis RSP 150) and evaporated to 

dryness in a vacuum concentrator. The residues were dissolved in 1.0 mL 

chloroform/methanol/2-propanol (1:2:4 v/v/v) containing 7.5 mM ammonium formate.  

For the experiments measured in negative ion mode an internal standard solution (see 

Table 2.1) was added to a sample amount of 100 μL fecal homogenate or 10 μL 

plasma. The samples were extracted as described above. An amount of 300 μL of the 

separated chloroform phase was removed from all samples as mentioned earlier. The 

residues were dissolved in either 300 μL (feces) or 700 μL (plasma) 

chloroform/methanol/2-propanol (1:2:4 v/v/v) containing 7.5 mM ammonium formate 

and MeOH/CHCl3 (5:1 v/v) containing 0.005% methylamine, respectively.  

Experiments in negative ion mode involved also different solvents and methylamine 

concentrations, which are listed in Table 2.3. 
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Table 2.3: Comparison of different solvents, additives, and concentrations for 
measurements in negative ion mode. Solvents containing methylamine were either 
prepared from aqueous (a) or EtOH-containing (b) solutions. Experiments using LM2 
(MeOH/CHCl3 (5:1 v/v)) were performed in different concentrations of methylamine 
solution.  
 

 Solvent Additive Concentration 

LM1 2-propanol/MeOH/H2O  

(8:5:1 v/v/v) 

ammonium formate 

 

7.5 mM 

LM2 a/b 2-propanol/MeOH/H2O  

(8:5:1 v/v/v) 

methylamine solution 

a) H2O 

b) EtOH 

0.005 % 

 

LM3 a/b MeOH/CHCl3  

(5:1 v/v) 

methylamine solution 

a) H2O 

b) EtOH 

0.005 % 

0.01 % 

0.05 % 

0.1 % 

LM4 EtOH/CHCl3  

(4:1 v/v) 

trimethylamine solution 

EtOH 

0.1 % 

 

LM5 a/b EtOH/CHCl3  

(4:1 v/v) 

methylamine solution 

a) H2O 

b) EtOH 

0.005 % 

LM6 2-propanol/MeOH/CHCl3 

(4:2:1 v/v/v) 

ammonium formate 7.5 mM 

LM7 a/b 2-propanol/MeOH/CHCl3 

(4:2:1 v/v/v) 

methylamine solution 

a) H2O 

b) EtOH 

0.005 % 

 

 

 

2.6 Flow Injection Fourier Transform Mass Spectrometry 
 
Mass spectrometric analysis of the reconstituted lipid extracts was performed by direct 

flow injection analysis using Fourier transform mass spectrometry (FIA-FTMS). A 

hybrid quadrupole Orbitrap mass spectrometer Q Exactive (Thermo Fisher Scientific, 

Bremen, Germany) equipped with a heated electrospray ionization source was coupled 

to a PAL autosampler (CTC Analytics, Zwingen, Switzerland) and an UltiMate 3000 

isocratic pump (Thermo Fisher Scientific, Waltham, MA, USA). The injection volume 

was 50 μL and a solvent mixture of chloroform/methanol/2-propanol (1:2:4 v/v/v) was 

delivered at an initial flow rate of 100 μL/min until 0.25 min, followed by 10 μL/min for 

2.5 min and a wash out with 300 μL/min for 0.5 min. The ion-source was operated in 

positive ion mode using the following parameters: spray voltage 3.5 kV, capillary 
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temperature of 281°C, S-lens RF level 55, aux gas heater temperature of 250°C and 

flow rates of 58 for sheath gas and 16 for aux gas. FTMS data were recorded in positive 

ion mode with a maximum injection time (IT) of 200 ms, an automated gain control 

(AGC) of 1∙106, three microscans and a target resolution of 140,000 (at m/z 200). 

Diacylglycerol was measured in a mass rage m/z 450 – 800 and triacylglycerol in a 

range of m/z 750 – 1200. MS2 spectra were acquired for 3 min in mass range 

m/z 450 – 1200 with a step size of 1.0008 Da and an isolation window of 1 Da with a 

normalized collision energy of 20%, an IT of 64 ms, AGC of 1∙105, and a target 

resolution of 17,500.  

In negative ion mode spray voltage was set to 2.5 kV. Data were acquired in three scan 

events. Free fatty acyls and monoacylglycerol were measured in a mass range 

m/z 150 - 450, lyso-glycerophospholipids and ceramides in a range of m/z 400 – 650, 

and glycerophospholipids in a range of m/z 520 – 960. The lower mass range was 

analyzed for 0.5 min (21 averaged scans), the middle mass range was analyzed for 

0.55 min (22 averaged scans), and the higher mass range for 0.6 min (25 averaged 

scans).  

 

2.7 Microscopy 
 
Fecal homogenates were documented using phase contrast microscopy with 10 x 

magnification (Zeiss Primovert, Jena, Germany) and the ZEN 2.6 lite imaging software.  

 

2.8 Lipid Identification and Data Processing 
 
ALEX software (160) was used for peak assignment and offset correction of data 

acquired by FTMS and MS/FTMS (MS2) using a m/z-tolerance of ± 0.0045 Da. Peaks 

with mass deviation of more than 3 ppm were not considered. ALEX software operates 

in several steps. In the first step, the output (.raw) files were converted into txt-files. 

Subsequently, the peak information in the txt-files was screened for possible lipids in 

a non-targeted approach. This step includes information about the isotope peaks. 

Emass was used for the calculation of accurate masses and probabilities of isotopic 

peaks as described earlier (161). Adapted to the International Union of Pure and 

Applied Chemistry atomic isotope probabilities were applied (162).  

The offset correction of the FTMS experiments was performed by averaging the mass 

deviation of internal standards in positive ion mode of DG 40:0, TG 51:0, and TG 57:0 

and in the negative ion mode of the lipid species listed in Table 2.4 for each mass 
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range, see 2.6 Flow Injection Fourier Transform Mass Spectrometry. A tolerance of 

∆m/z 0.01 was selected. Regardless of the selected m/z tolerance, the area for the 

assigned peaks was determined from baseline to baseline.  

 

Table 2.4: Internal standards used for offset correction in the ALEX software.  

 Species Adduct m/z 

positive ion mode DG 40:0 [M + NH4]+ 698.6657 

 TG 51:0 [M + NH4]+ 866.8171 

 TG 57:0 [M + NH4]+ 950.9110 

negative ion mode LPC 13:0 [M + HCOO]- 498.2837 

 PC 28:0 [M + HCOO]- 722.4978 

 LPE 13:0 [M - H]- 410.2313 

 PE 28:0 [M - H]- 634.4453 

 PI 34:0 [M - H]- 837.5499 

 PG 28:0 [M - H]- 665.4399 

 PS 28:0 [M - H]- 678.4352 

 Cer 32:1;2 [M + HCOO]- 554.4790 

 HexCer 30:1;2 [M + HCOO]- 688.5005 

 SM 30:1;2 [M + HCOO]- 691.5032 

 FA 13:0 [M - H]- 213.1860 

 MG 13:0 [M - H]- 287.2228 

 

Species assignment included evaluation of product ion spectra (see Figure 3.3). The 

assigned data were exported to Microsoft Excel 2010 and processed using self-

programmed macros. For accurate quantification intensities were corrected for Type I 

isotope effects (relative isotope abundance, (163)). Type II corrections (overlap mainly 

resulting from 13C-atoms) were not required at the selected mass resolution due to 

peak interference (Hoering et al. Manuscript in revision). The background correction 

was performed with an internal standard blank, dependent on the solvent used for 

feces homogenization (H2O or 2-propanol) analyzed within the same batch. The 

concentration of lipid species detected in the IS blanks were subtracted from the 

corresponding sample. Quantification was performed by normalization of analyte to 

internal standard intensities multiplied with the spiked amount of the internal standard 
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as described recently (164). Lipids were annotated as sum composition of acyl chains 

or without specification of sn-positions using “_” as previously proposed (89).  

 

2.9 Method Validation 
 
Method validation of FIA-FTMS included the determination of limit of quantifiaction 

(LoQ), intra-day and inter-day precision, linearity of quantification, and dilution integrity.  

 

LoQ of DG and TG species was determined from serial dilutions of different human 

fecal samples. Non-endogenous internal standard species DG 38:0, DG 36:6, 

DG 36:0, TG 54:2, TG 54:1 and TG 60:0 were analyzed in fivefold. The coefficient of 

variation (CV) and the absolute value of trueness – 100% were determined and plotted 

against the concentrations. The results were fitted by a power function. LoQ was 

calculated representing a CV of ≤ 20% and absolute value of trueness – 100% ≤ 20%, 

respectively. The higher concentration of both calculations was defined as LoQ. The 

concentrations of the titrated species are indicated in the corresponding figures (for 

details see 3.1.2 Limit of Quantification). 

 

Intra-day precision was assessed for five different human fecal samples which were 

extracted five times and quantified. For inter-day precision the experiment was 

repeated and the same samples were extracted and measured on five different days, 

within 20 days between first and last measurement.  

 

Linearity of quantification was determined using spiked samples of the synthetic 

standards DG 36:6, DG 38:0, TG 54:2, and TG 54:1 at six concentration levels. Each 

level was extracted in fivefold. The spiked concentration was plotted against the 

measured concentration and the results were fitted by a linear function. The experiment 

was performed using human fecal samples. The highest spike concentration was 

8.16 pmol/mg dw for DG 36:6, 7.66 pmol/mg dw for DG 38:0, 5.64 pmol/mg dw for 

TG 54:2, and 5.63 pmol/mg dw for TG 54:1. 

 

Dilution integrity of DG and TG species was determined by analysis of stool samples 

at different concentrations (from 1.6 mg dw/mL to 0.02 mg dw/mL). Samples were 

measured in triplicates. The measured quantity was compared to the target quantity 

determined at the highest sample concentration.  
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3. Results and Discussion 
 

3.1 Lipid Species Profile of Human Fecal Samples in Positive Ion Mode 
 

Our initial aim was to develop an accurate and fast method for the identification and 

quantification of lipid species in human fecal material using FIA-FTMS with a 

quadrupole Orbitrap hybrid mass spectrometer Q Exactive. Crude lipid extracts 

prepared by chloroform extraction according to the protocol by Bligh and Dyer (121) 

were analyzed in positive ion mode. Upon initial evaluation, spectra revealed a high 

heterogeneity (Figure 3.1) and numerous peaks could be assigned to [M+NH4]+ ions 

of DG and TG species. Other lipid classes were not detected in significant amounts. 

Therefore, we decided to focus on the quantification of DG and TG species.  

 

 

A 
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Figure 3.1: Mass spectra of three individual human fecal samples analyzed in positive 
ion mode are displayed. Panel A shows the mass range of DG species (m/z 500 – 720) 
and panel B of TG species (m/z 810 - 980). The internal standards are indicated in 
blue. 
 

Quantification of lipid species was performed by adding internal standards to the 

sample before extraction. Ideally two lipid species which are not present in the sample 

material are used per lipid class. 

In a first step, 20 different fecal samples were screened for their DG and TG species. 

None of the analyzed samples contained signals representing a relevant interference 

with the selected internal standards (IS) DG 40:0, TG 51:0 and TG 57:0 (Figure 3.2). 

DG 28:0 which is typically used for DG quantification in plasma or tissue was 

detectable in some fecal samples and thus could not be used as internal standard.  

B 
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Figure 3.2: Mass spectra of four individual human fecal samples analyzed in positive 
ion mode are displayed. Panel A shows the mass range of DG 40:0 (m/z 698.6657), 
panel B of TG 51:0 (m/z 866.8171) and panel C of TG 57:0 (m/z 950.9110) for samples 
without (upper three spectra) and with internal standards (bottom spectrum). 
 

 

To prove the identity of detected species, MS2 spectra were evaluated and product 

ions were assigned according to the annotation system proposed recently (128) 

(exemplified in Figure 3.3).  

 

High resolution FTMS analysis detected ammoniated DG 34:2 at m/z 610.5405 

(2.8 ppm mass accuracy). MS2 analysis of m/z 610.5 detected a LCF at m/z 575.5042, 

corresponding to the neutral loss of H2O and ammonia, which is annotated as 

“-DG(35)”. The MLFs derived from DG 34:2 contained the fragments "-FA 16:0" at 

m/z 337.2736 and “-FA 18:2” at m/z 313.2736 derived from neutral losses. In addition, 

fragments specific to lipid species were observed for TG, for example, TG 52:4 at 

m/z 872.8, showed NL fragments: “-FA 16:0” at m/z 599.5028 and “-FA 18:2” at 

m/z 575.5040.  

In some cases, a strong sample dependence could be observed. Whereas DG 36:2, 

for example, consisted of two FA 18:1 in some samples, in others following 
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combination could be found: DG 18:0_18:2. Especially for TG it could be observed that 

several fatty acyl combinations occur in one sample. For example, TG 54:6 at 

m/z 896.8 revealed a NL of “-FA 18:0” at m/z 595.4703, “-FA 18:1” at m/z 597.4846, 

“-FA 18:2” at m/z 599.5009 and “-FA 18:3” at m/z 601.5158, with a mass accuracy 

better than 5.5 ppm. Thus different combinations were possible: TG 18:0_18:3_18:3, 

TG 18:1_18:2_18:3, and TG 18:2_18:2_18:2. Whereas “-FA 18:2” and “-FA 18:3” 

showed high intensities in the spectrum, these were significantly lower for “-FA 18:1” 

and “-FA 18:0”.  

The detected NL fragments comprised mainly acyl chains with 16 and 18 carbons and 

up to three double bonds. For DG, also species containing FA 12:0 and 14:0 were 

detected precluding application of DG 28:0 as IS. 
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DG 34:2  DG 16:0_18:2 

 
DG 36:4  DG 18:2_18:2 

 
DG 36:3  DG 18:1_18:2 

 
DG 36:2  DG 18:0_18:2 ; DG 18:1_18:1 
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DG 30:0  DG 12:0_18:0 

 
TG 50:0  TG 16:0_16:0_18:0 

 
TG 52:4  TG 16:0_18:2_18:2 

 
TG 54:6  TG 18:0_18:3_18:3 ; TG 18:1_18:2_18:3 ; TG 18:2_18:2_18:2 
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TG 54:5  TG 18:1_18:2_18:2 

 
TG 54:4  TG 18:1_18:1_18:2 

 
TG 54:3  TG 18:1_18:1_18:1 

 
 
Figure 3.3: MS2 spectra of DG and TG species and acyl combinations derived from 
the spectra. 
 

 

The concentrations of DG and TG species detected in these samples span a range up 

to or more than three orders of magnitude (Table 3.1). Highest mean concentrations 

were detected for polyunsaturated species with more than two double bonds: DG 36:3, 

DG 36:4, TG 54:3, TG 54:4 and TG 54:5.  
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Table 3.1: Concentrations and acyl combinations of DG and TG species in human 
feces from 20 different samples. Data based on a single measurement of the individual 
samples and acyl combinations were derived from MS2 spectra. 
 

Compound 
[M+NH4]+ mean ± standard deviation 

[nmol/mg dw] 
median min max acyl combinations 

m/z 

DG 26:0 502.447 0.139 ± 0.348 0.004 n.d. 1.401 DG 12:0_14:0 

DG 28:0 530.478 0.08 ± 0.214 0.002 n.d. 0.919 DG 12:0_16:0 

 
   

 
   DG 14:0_14:0 

DG 30:0 558.509 0.106 ± 0.322 0.008 n.d. 1.454 DG 12:0_18:0 

 
   

 
   DG 14:0_16:0 

DG 34:3 608.525 0.428 ± 0.66 0.24 n.d. 2.808 DG 16:0_18:3 

DG 34:2 610.541 1.865 ± 1.856 0.994 0.045 6.198 DG 16:0_18:2 

DG 34:1 612.556 0.776 ± 0.711 0.503 0.068 2.417 DG 16:0_18:1 

DG 36:5 632.525 1.254 ± 1.922 0.726 0.002 8.481 DG 18:2_18:3 

DG 36:4 634.541 7.305 ± 8.349 4.302 0.053 32.355 DG 18:2_18:2 

 
   

 
   DG 18:1_18:3 

DG 36:3 636.556 4.371 ± 4.513 2.452 0.042 14.508 DG 18:1_18:2 

DG 36:2 638.572 3.632 ± 4.283 2.564 0.074 17.947 DG 18:1_18:1 

 
   

 
   DG 18:0_18:2 

TG 48:0 824.77 0.042 ± 0.104 0.01 n.d. 0.491 TG 16:0_16:0_16:0 

TG 50:3 846.755 0.475 ± 0.465 0.445 0.018 1.008 TG 16:0_16:1_18:2 

TG 50:2 848.77 0.141 ± 0.253 0.072 0.003 1.15 TG 16:0_16:0_18:2 

 
 

 
 

    TG 16:0_16:1_18:1 

TG 50:1 850.786 0.083 ± 0.116 0.032 0.006 0.43 TG 16:0_16:0_18:1 

TG 50:0 852.801 0.164 ± 0.466 0.031 n.d. 2.088 TG 16:0_16:0_18:0 

TG 52:5 870.755 0.105 ± 0.143 0.045 n.d. 0.566 TG 16:1_18:2_18:2 

 
 

 
 

    TG 16:0_18:2_18:3 

TG 52:4 872.77 0.841 ± 1.284 0.494 n.d. 5.869 TG 16:0_18:2_18:2 

 
 

 
 

    TG 16:1_18:1_18:1 

TG 52:3 874.786 0.487 ± 0.901 0.174 n.d. 3.666 TG 16:0_18:1_18:2 

TG 52:2 876.801 0.459 ± 0.892 0.127 0.009 3.465 TG 16:0_18:1_18:1 

 
 

 
 

    TG 16:0_18:0_18:2 

TG 53:4 886.786 0.269 ± 0.27 0.234 0.005 0.624 TG 17:1_18:1_18:2 

TG 54:9 890.723 0.078 ± 0.16 0.003 n.d. 0.641 TG 18:3_18:3_18:3 

TG 54:7 894.755 0.409 ± 0.528 0.08 n.d. 1.895 TG 18:2_18:2_18:3 

TG 54:6 896.77 1.238 ± 1.721 0.684 n.d. 7.388 TG 18:0_18:3_18:3 

 
 

 
 

  
 

 TG 18:1_18:2_18:3 

 
 

 
 

    TG 18:2_18:2_18:2 

TG 54:5 898.786 1.174 ± 1.886 0.599 0.003 7.875 TG 18:1_18:2_18:2 

TG 54:4 900.801 1.175 ± 2.25 0.422 0.003 8.988 TG 18:1_18:1_18:2 

 
 

 
 

    TG 18:0_18:1_18:3 

TG 54:3 902.817 1.523 ± 3.239 0.294 0.008 11.56 TG 18:1_18:1_18:1 

         TG 18:0_18:1_18:2 
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3.1.1 Reproducibility 
 
In an important next step within method development (165, 166) we evaluated the 

performance of the FIA-FTMS method. Due to sample heterogeneity intra- and inter-

day precisions were evaluated in five different samples (Table 3.2 and Table 3.3). The 

coefficients of variation (CV) were below 15% or even below 10% for most DG species. 

For sample 5 significantly higher variations were observed especially for TG species 

concentrations (see also 3.1.4 Evaluation of Reproducibility Issues). Moreover, we 

observed a decrease in the concentrations of most of the TG species from day to day. 

Despite storage of the samples in 70% isopropanol at -80°C, this decline may be 

related to lipase activity since enzymatic activity has also been reported in organic 

solvents (167, 168).  
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Table 3.2: Coefficient of variation (CV) of intra- and interday precision of DG species 
determined in five different human fecal samples by FIA-FTMS/MS analyzed in 
fivefold. 
 

Diacylglycerol 

  Intraday 

CV [%] 

Interday 

CV [%] sample Mean (n=5) Mean (n=5) 

  [nmol/ mg dw] [nmol/ mg dw] 

DG 34:3 sample 1 0.13 7.2 0.13 11.6 
 sample 2 0.36 16 0.38 13.7 

 sample 3 0.61 6.4 0.63 8.1 
 sample 4 0.59 3.7 0.53 4.3 
 sample 5 0.12 24.1 0.12 15.3 
 

 
 

   
DG 34:2 sample 1 1.45 2.7 1.48 6.4 
 sample 2 3.37 16.2 3.53 13.4 
 sample 3 4.32 6.3 4.43 7 
 sample 4 7.55 1.6 4.79 4.5 
 sample 5 1.81 2.6 1.75 6.4 
 

 
 

   
DG 34:1 sample 1 1.87 3.6 1.92 7.2 
 sample 2 0.67 15.1 0.69 14.8 

 sample 3 1.85 7.2 1.89 7.7 
 sample 4 5.66 1.9 5.16 2.1 
 sample 5 0.36 30.5 0.33 13.9 
 

 
 

   
DG 36:5 sample 1 0.29 6.6 0.29 10.3 
 sample 2 1.09 16.4 1.14 13.2 

 sample 3 1.69 5.7 1.74 8.2 

 sample 4 n.d.  n.d.  

 sample 5 0.4 4.5 0.38 7.2 

  
 

   
DG 36:4 sample 1 4.32 3.2 4.38 7.5 

 sample 2 10.99 16.2 11.5 13.2 

 sample 3 14.31 6.3 14.68 7.3 

 sample 4 13.2 2.3 11.92 4 

 sample 5 5.95 9.6 5.9 9.3 

  
 

   
DG 36:3 sample 1 5.89 2.3 5.98 6.1 

 sample 2 5.82 14 6.04 11.6 

 sample 3 11.29 6.9 11.61 8.1 

 sample 4 43.5 2 39.27 3.9 

 sample 5 2.89 4.6 2.75 5.6 

  
 

   
DG 36:2 sample 1 10.27 2.2 10.43 6.2 

 sample 2 2.38 14.4 2.48 11.7 

 sample 3 6.5 7.7 6.65 7.9 

 sample 4 53.49 2.2 48.53 3.2 

  sample 5 1.9 3.2 1.83 5.5 
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Table 3.3: Coefficient of variation (CV) of intra- and interday precision of TG species 
determined in five different human fecal samples by FIA-FTMS/MS analyzed in 
fivefold. 
 

Triacylglycerol 

 Intraday 
CV [%] 

Interday 
CV [%] sample Mean (n=5) Mean (n=5) 

 [nmol/ mg dw] [nmol/ mg dw] 

TG 50:2 sample 1 n.d.  n.d.  
 sample 2 0.13 10.5 0.14 15.7 
 sample 3 4.15 7.1 4.15 7.4 

 sample 4 3.5 10.4 3.17 9.9 

 sample 5 0.19 97.3 0.11 118.3 

      
TG 50:1 sample 1 0.17 1.9 0.18 12.1 
 sample 2 n.d.  n.d.  

 sample 3 1.26 5.8 1.26 5.9 

 sample 4 1.01 10.5 0.92 9.9 

 sample 5 n.d.  n.d.  

      
TG 50:0 sample 1 0.22 10.5 0.24 20.1 

 sample 2 n.d.  n.d.  
 sample 3 n.d.  n.d.  

 sample 4 n.d.  n.d.  

 sample 5 0.1 7.4 0.1 9.9 

      
TG 52:5 sample 1 n.d.  n.d.  

 sample 2 0.11 7.3 0.11 10.7 

 sample 3 3.41 7.8 3.49 11.9 

 sample 4 2.1 8.9 1.91 8.5 

 sample 5 n.d.  n.d.  

      
TG 52:4 sample 1 0.32 5.9 0.32 14.2 

 sample 2 0.82 7.6 0.84 11.6 

 sample 3 27.9 6.9 27.76 7.8 

 sample 4 20.26 9.4 18.36 9 

 sample 5 1.25 87.4 0.66 116.8 

      
TG 52:3 sample 1 0.39 9 0.41 16.2 

 sample 2 0.44 13.5 0.46 13.4 

 sample 3 18.36 5.1 18.3 5.9 

 sample 4 65.61 10.4 59.35 10.1 

 sample 5 0.35 23.6 0.37 140.5 

      
TG 52:2 sample 1 1.04 11.1 1.09 14.8 

 sample 2 0.21 10.5 0.22 13.5 

 sample 3 9.74 4.9 9.77 6 

 sample 4 45.75 10.8 41.29 10.5 

 sample 5 0.35 92.8 0.18 129.3 

      
TG 54:7 sample 1 n.d.  n.d.  

 sample 2 0.24 7.1 0.24 9.8 

 sample 3 14.67 8.6 15.1 14.7 

 sample 4 0.21 13.9 0.19 13.4 
  sample 5 n.d.  n.d.  
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Triacylglycerol 

  Intraday 

CV [%] 

Interday 

CV [%] sample Mean (n=5) Mean (n=5) 

  [nmol/ mg dw] [nmol/ mg dw] 

TG 54:6 sample 1 0.35 6 0.38 28.8 

 sample 2 1.24 9.7 1.27 11 

 sample 3 51.78 5.6 51.45 6.7 

 sample 4 20.86 9.2 18.89 8.9 

 sample 5 1.4 74.4 0.77 104.8 

 
     

TG 54:5 sample 1 0.82 9.5 0.85 18.9 

 sample 2 1.41 10.9 1.45 10.9 

 sample 3 52.48 4.1 52.47 5.6 

 sample 4 106.95 10.4 96.83 10 

 sample 5 1.85 102.5 0.92 146 

      
TG 54:4 sample 1 1.83 11.6 1.89 15.3 

 sample 2 0.93 11 0.96 11.6 

 sample 3 37.41 4.1 37.39 5.7 

 sample 4 175.39 10.5 146.61 26.1 

 sample 5 0.65 28.9 0.66 147.5 

      
TG 54:3 sample 1 4.78 11.3 4.91 14.2 

 sample 2 0.44 12 0.46 12.8 

 sample 3 18.69 4.2 18.72 5.8 

 sample 4 248.23 12.4 225.33 11.5 
  sample 5 0.6 88.8 0.29 131 
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3.1.2 Limit of Quantification 
 

Higher CV values were most likely related to concentrations close to limit of detection. 

Therefore, limit of quantification (LoQ) was determined functionally as described 

previously (124, 169). The LoQ was defined as concentration at which either the CV 

reached 20% or accuracy left the range of 80-120%. Non-endogenous DG and TG 

species were spiked at various concentrations and analyzed in fivefold. CV and 

accuracy were fitted as shown in Figure 3.4. The calculated LoQs were in the range of 

0.01-0.2 nmol/mg dw for DG species and 0.01-0.3 nmol/mg dw for TG species. LoQs 

determined at CV of 20% were significantly lower compared to those determined by 

accuracy. Most of the LoQs derived from CVs were in the range of 0.01 to 

0.02 nmol/mg dw which also matched the inter- and intra-day CVs listed in Table 3.2 

and Table 3.3. This demonstrates a reproducible analysis below 0.1 nmol/mg dw. 

LoQs derived from accuracy analysis depend on accurate addition of low amounts of 

DG/TG species, which may be compromised by different factors including analyte 

absorption or inhomogeneity issues (see 3.1.4 Evaluation of Reproducibility Issues). 

Except a poor curve fit as a factor, we could not find an explanation for the order of 

magnitude difference between the LoQs determined for different species. There seems 

to be neither a relation to species chain length nor to number of double bonds. LoQs 

for DG and TG appear to be similar. Based on these considerations, we applied 

0.02 nmol/mg dw as LoD and 0.1 nmol/mg dw as LoQ for practical reasons (this is also 

substantiated by data from dilution integrity testing shown under 3.1.3 Recovery, 

Linearity and Dilution Integrity).  

Validation of this method demonstrated its suitability for large scale studies including 

extraction, FIA-FTMS analysis, and data evaluation despite the higher variations 

observed for some samples. 
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Figure 3.4: Calculation of LoQ for DG 38:0, DG 36:6, DG 36:0, TG 54:2, TG 54:1 and 
TG 60:0 from serial dilutions of different human fecal samples each analyzed in 
fivefold. Left panels illustrate the measured CVs plotted against the concentration of 
undiluted samples, respectively. Right panels show the absolute values of trueness-
100 plotted against the concentration of undiluted samples, respectively. The results 
were fitted by a power function and concentrations were calculated at CV = 20% or at 
absolute values of trueness-100 = 20%. 
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3.1.3 Recovery, Linearity and Dilution Integrity 
 
Recovery of DG and TG species was determined at two spike levels (Table 3.4). Most 

of the determined recoveries were within the expected range of 85 to 115%. However, 

considering the high complexity of fecal material as matrix, we think that recoveries 

between 75% and 135% are acceptable.  

 
Table 3.4: Recovery data of DG and TG species in human feces. Concentrations were 
determined in triplicates. 
 

Compound 

  

Spiked 
concentration 
[nmol/mg dw] 

Concentration ± standard 
deviation 

[nmol/mg dw] 

Recovery 
[%] 

DG 36:6 
unspiked  n.d. ± n.d.  
Spike low 3.27 4.33 ± 0.21 132.6 

Spike high 16.3 17.3 ± 0.95 105.9 
 

      

DG 36:4 
unspiked  0.99 ± n.d.  
Spike low 3.24 3.93 ± 0.13 121.1 

Spike high 16.2 16.2 ± 0.86 99.8 
 

      

DG 36:0 
unspiked  n.d. ± n.d.  
Spike low 3.20 2.72 ± 0.09 84.8 

Spike high 16.0 12.1 ± 0.42 75.3 
 

      

DG 38:0 
unspiked  n.d. ± n.d.  
Spike low 3.07 3.13 ± n.d. 102.0 

Spike high 15.3 14.8 ± 0.47 96.8 
 

      

TG 48:0 
unspiked  0.13 ± n.d.  
Spike low 2.48 2.04 ± 0.12 82.1 

Spike high 12.4 10.4 ± 0.44 84.3 
 

      

TG 54:6 
unspiked  n.d. ± n.d.  
Spike low 2.28 2.52 ± 0.10 110.9 

Spike high 11.4 12.7 ± 0.89 111.6 

       

TG 54:3 
unspiked  n.d. ± n.d.  
Spike low 2.26 2.04 ± n.d. 90.2 

Spike high 11.3 10.2 ± 0.65 90.5 
 

      

TG 54:1 
unspiked  n.d. ± n.d.  
Spike low 2.25 2.32 ± n.d. 103.3 

Spike high 11.3 11.8 ± 0.54 104.7 
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A major goal of high-resolution shotgun lipidomics approaches is an accurate 

quantification of lipid species. To further evaluate the dynamic range of the method the 

linearity of quantification was tested for several species not present in fecal samples. 

DG 36:6, DG 38:0, TG 54:2, and TG 54:1 were spiked at six different concentrations 

(Figure 3.5). All species revealed a good correlation of spiked and detected 

concentrations. A linear increase was observed with similar slopes for pure standards 

and matrix containing samples, which excludes significant effects of the matrix. 

However, species response seems to depend on structural features, as described for 

cholesteryl ester (164), and should be examined in detail in further studies. A linear 

range covering most of the tested samples was demonstrated up to 120 mg dw/mL 

and 90 mg dw/mL for DG and TG, respectively.  

 

Moreover, dilution integrity was tested by quantification of gradually diluted stool 

samples (1.6 mg dw/mL to 0.02 mg dw/mL). Low (DG 32:0, TG 48:0), medium 

(DG 34:2, TG 52:2) and high (DG 36:3, TG 54:4) abundant species showed good 

correlation of expected and measured concentrations (Figure 3.6). The assay was 

linear at low (DG 32:0 and TG 48:0) and high concentrations (DG 36:3, TG 54:4) and 

matched the above described LoQ and LoD and linear range (up to 250 mg DG dw/mL 

and 150 mg TG dw/mL), respectively.  

The concentration range of each synthetic standard tested lies within the concentration 

range of the fecal samples. Based on this result, we conclude that the FIA-FTMS 

method using shotgun lipidomics is applicable for quantitative analysis of fecal lipids.  
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Figure 3.5: Linearity of DG and TG standards. Means (n=5) of the measured were 
plotted against the spiked concentrations. 
 



3.1 LIPID SPECIES PROFILE OF HUMAN FECAL SAMPLES IN POSITIVE ION MODE 

55 | P a g e  

 
 
 
Figure 3.6: Dilution integrity of DG and TG species with low, medium, and high 
concentrations, respectively. Samples were analyzed in triplicates. The mean 
measured concentrations were plotted against the target concentrations. 
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3.1.4 Evaluation of Reproducibility Issues 
 
As described above, very high variations were observed for some samples (about 10% 

of tested fecal samples). Therefore, various experiments were performed to evaluate 

the origin of irreproducibility. Despite thorough mechanical homogenization fecal 

samples are suspensions and a lack of homogeneity may cause variations. 

 
3.1.4.1 Effect of Centrifugation 
 
First, we tested whether centrifugation affected DG and TG concentrations. Five 

samples showing high variations were analyzed without centrifugation as well as after 

centrifugation (Table 3.5 and Table 3.6).  

 

Table 3.5: Five different samples were analyzed without centrifugation as well as their 
supernatant and pellet after centrifugation. Each sample was analyzed in triplicates. 
Mean DG species concentrations and the fraction found in supernatant and pellet are 
displayed. 
 

Diacylglycerol sample 
without centrifugation 

[nmol/mg dw] 
supernatant 

[%] 
pellet 
[%] 

DG 34:3 sample 1 0.19 46.5 53.5 
 sample 2 0.13 53.0 47.0 
 sample 3 n.d. 53.1 46.9 
 sample 4 0.13 57.9 42.1 
 sample 5 0.06 41.7 58.3 
     
DG 34:2 sample 1 2.97 47.9 52.1 
 sample 2 1.62 48.3 51.7 
 sample 3 0.56 46.4 53.6 
 sample 4 1.15 53.4 46.6 
 sample 5 1.16 44.2 55.8 
     
DG 34:1 sample 1 0.78 48.0 52.0 
 sample 2 6.73 48.3 51.7 
 sample 3 2.07 45.6 54.4 
 sample 4 1.48 53.4 46.6 
 sample 5 0.20 46.6 53.4 
     
DG 36:5 sample 1 0.20 47.8 52.2 
 sample 2 0.10 50.3 49.7 
 sample 3 n.d. 59.7 40.3 
 sample 4 0.24 55.0 45.0 
 sample 5 0.25 45.2 54.8 
     
DG 36:4 sample 1 13.35 47.9 52.1 
 sample 2 3.15 50.0 50.0 
 sample 3 1.19 51.4 48.6 
 sample 4 3.66 55.4 44.6 
 sample 5 3.81 45.1 54.9 
     
DG 36:3 sample 1 5.85 48.1 51.9 
 sample 2 12.21 48.5 51.5 
 sample 3 3.42 47.2 52.8 
 sample 4 4.43 53.8 46.2 
 sample 5 1.88 45.6 54.4 
     
DG 36:2 sample 1 2.79 47.6 52.4 
 sample 2 47.41 48.0 52.0 
 sample 3 13.67 45.7 54.3 
 sample 4 7.25 53.1 46.9 
 sample 5 1.25 46.1 53.9 
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Table 3.6: Five different samples were analyzed without centrifugation as well as their 
supernatant and pellet after centrifugation. Each sample was analyzed in triplicates. 
Mean TG species concentrations and the fraction found in supernatant and pellet are 
displayed.  
 

Triacylglycerol  sample 
without centrifugation 

[nmol/mg dw] 
supernatant 

[%] 
pellet 
[%] 

TG 52:4 sample 1 0.26 47.8 52.2 

 sample 2 0.24 22.0 78.0 

 sample 3 0.18 20.7 79.3 

 sample 4 0.13 44.0 56.0 

 sample 5 0.13 11.2 88.8 

 
    

TG 52:3 sample 1 n.d. 45.8 54.2 

 sample 2 0.75 27.1 72.9 

 sample 3 0.73 11.7 88.3 

 sample 4 0.22 38.4 61.6 

 sample 5 n.d. 8.3 91.7 

 
    

TG 52:2 sample 1 n.d. 40.5 59.5 

 sample 2 2.65 25.7 74.3 

 sample 3 2.68 9.7 90.3 

 sample 4 0.63 37.2 62.8 

 sample 5 n.d. 8.4 91.6 

 
    

TG 54:7 sample 1 n.d. 44.1 55.9 

 sample 2 n.d. 17.2 82.8 

 sample 3 n.d. 15.4 84.6 

 sample 4 n.d. 48.2 51.8 

 sample 5 n.d. 11.8 88.2 

 
    

TG 54:6 sample 1 0.46 47.8 52.2 

 sample 2 0.39 17.1 82.9 

 sample 3 0.21 21.9 78.1 

 sample 4 0.17 44.3 55.7 

 sample 5 0.15 8.7 91.3 

 
    

TG 54:5 sample 1 0.31 47.8 52.2 

 sample 2 1.12 30.2 69.8 

 sample 3 0.92 14.2 85.8 

 sample 4 0.42 38.7 61.3 

 sample 5 n.d. 9.1 90.9 

 
    

TG 54:4 sample 1 0.20 47.3 52.7 

 sample 2 4.29 27.7 72.3 

 sample 3 3.73 10.6 89.4 

 sample 4 1.06 35.7 64.3 

 sample 5 n.d. 9.1 90.9 

 
    

TG 54:3 sample 1 n.d. 47.6 52.4 

 sample 2 14.66 27.5 72.5 

 sample 3 13.59 8.7 91.3 

 sample 4 2.99 38.2 61.8 

  sample 5 n.d. 12.3 87.7 
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Whereas DG species were detected in both pellet and supernatant, TG species were 

found in three of the samples enriched in the pellet (Figure 3.7). However, the DG/TG 

species profiles of supernatant and pellet closely resembled each other (Table 3.7 and 

Table 3.8), suggesting that centrifugation does not separate a specific pool of these 

lipid classes. However, due to the substantial amount of DG and TG in sample pellets, 

analysis of sample supernatants does not permit accurate quantification.  

 

 
 
Figure 3.7: Five different samples were analyzed without centrifugation as well as their 
supernatant and pellet after centrifugation. Each sample was analyzed in triplicates. 
Fractions found of either DG or TG species in supernatant and pellet are displayed, 
respectively. The panels show the values of only one sample which is characteristic 
for all measured samples. 
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Table 3.7: Species profile in % total DG of the data listed in Table 3.5. 
 

Species 

sample 1 sample 2 sample 3 sample 4 sample 5 
without 

centrifug 
[%] 

supernatant       
[%] 

 pellet          
[%] 

without 
centrifug 

[%] 

supernatant         
[%] 

 pellet          
[%] 

without 
centrifug 

[%] 

supernatant         
[%] 

 pellet          
[%] 

without 
centrifug 

[%] 

supernatant         
[%] 

 pellet          
[%] 

without 
centrifug 

[%] 

supernatant         
[%] 

 pellet          
[%] 

DG 34:3 0.7 0.4 0.5 0.2 0.2 0.1 0.3 0.3 0.2 0.7 0.6 0.5 0.7 0.6 0.7 

DG 34:2 11.2 11.5 11.6 2.2 2.2 2.2 2.5 2.6 2.6 5.9 6.0 6.0 12.7 12.5 13.1 

DG 34:1 2.9 2.0 2.0 9.1 9.2 9.2 9.3 9.3 9.5 7.6 7.3 7.5 2.2 2.2 2.1 

DG 36:5 0.7 0.6 0.6 0.1 0.1 0.1 0.2 0.2 0.1 1.2 1.2 1.1 2.7 2.7 2.7 

DG 36:4 50.1 49.0 49.6 4.3 4.2 3.9 5.4 5.3 4.3 18.8 18.3 17.2 41.5 41.5 42.0 

DG 36:3 22.0 23.2 23.3 16.6 16.6 16.4 15.5 16.0 15.4 22.8 22.9 23.0 20.5 20.2 20.1 

DG 36:2 10.5 10.7 11.0 64.4 64.6 65.0 61.8 61.5 62.8 37.3 38.1 39.2 13.7 13.8 13.5 
 
 
Table 3.8: Species profile in % total TG of the data listed in Table 3.6. 
 

Species 

sample 1 sample 2  sample 3 sample 4 sample 5  
without 

centrifug 
[%] 

supernatant         
[%] 

 pellet          
[%] 

without 
centrifug 

[%] 

supernatant         
[%] 

 pellet          
[%] 

without 
centrifug 

[%] 

supernatant         
[%] 

 pellet          
[%] 

without 
centrifug 

[%] 

supernatant         
[%] 

 pellet          
[%] 

without 
centrifug 

[%] 

supernatant         
[%] 

 pellet          
[%] 

TG 52:4 18.0 19.3 19.0 1.0 1.0 1.3 0.8 1.6 0.7 2.3 3.0 2.4 24.0 24.5 20.4 

TG 52:3 5.7 5.3 5.7 3.1 3.2 3.2 3.3 3.8 3.0 4.0 4.3 4.2 6.9 7.0 8.1 

TG 52:2 3.0 2.3 3.0 11.0 10.7 11.5 12.2 12.0 11.9 11.2 11.4 11.8 4.0 3.1 3.6 

TG 54:7 0.9 0.9 1.0 0.1 0.1 0.1 0.0 0.1 0.0 0.3 0.4 0.3 3.8 3.9 3.1 

TG 54:6 31.7 32.3 31.7 1.6 1.5 2.8 0.9 1.7 0.7 3.0 3.7 2.8 28.1 26.9 29.7 

TG 54:5 21.8 21.6 21.2 4.7 4.9 4.2 4.2 5.5 3.5 7.5 8.3 8.1 17.2 17.8 18.9 

TG 54:4 14.1 13.8 13.8 17.8 18.2 17.6 16.9 18.1 16.3 18.7 17.9 19.8 10.9 11.3 12.0 

TG 54:3 4.9 4.5 4.5 60.8 60.5 59.4 61.6 57.3 63.9 53.0 51.0 50.6 5.1 5.5 4.1 
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3.1.4.2 Effect of Bead Beating 
 
In order to improve the homogeneity of the fecal samples, a number of different 

experiments were carried out. After homogenization using the gentleMACSTM 

dissociator (as described under 2.5.1 Feces Homogenization) different samples were 

tested with an additional homogenization step using the Precellys® homogenizer (data 

shown in Table 3.9 and Table 3.10). For this experiment, a sample showing high 

variation in preliminary tests was homogenized again and then divided into four 

different Precellys ® tubes and measured in fivefold.  

 
Table 3.9: One sample was divided into four tubes and analyzed either with or without 
Precellys® after homogenization. Each sample was analyzed in fivefold. Mean DG 
species concentrations and the coefficient of variation (CV) are displayed. 
 

    without Precellys® Precellys® 

Diacylglycerol sample 
Mean (n=5)  

[nmol/mg dw] 
CV [%] 

Mean (n=5)  
[nmol/mg dw] 

CV [%] 

DG 34:2 sample I 0.48 12.9 0.51 7.8 

 sample II   0.53 11.3 

 sample III   0.48 8.0 

 sample IV   0.53 7.8 

DG 34:1 sample I 0.19 9.8 0.17 6.1 

 sample II   0.22 9.9 

 sample III   0.19 9.4 

 sample IV   0.19 8.8 

DG 36:4 sample I 2.30 7.1 2.46 5.2 

 sample II   2.49 10.9 

 sample III   2.30 5.7 

 sample IV   2.50 8.4 

DG 36:3 sample I 2.02 11.2 2.17 8.5 

 sample II   2.30 11.8 

 sample III   2.16 5.3 

 sample IV   2.31 8.0 

DG 36:2 sample I 0.69 9.6 0.73 5.9 

 sample II   0.80 10.4 

 sample III   0.73 7.7 

  sample IV   0.78 4.4 
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Table 3.10: One sample was divided into four tubes and analyzed either with or without 
Precellys® after homogenization. Each sample was analyzed in fivefold. Mean TG 
species concentrations and the coefficient of variation (CV) are displayed. 
 
    without Precellys® Precellys® 

Triacylglycerol sample 
Mean (n=5) 

CV [%] 
Mean (n=5) 

CV [%] 
[nmol/mg dw] [nmol/mg dw] 

TG 50:2 sample I 0.34 16.3 0.26 10.4 

 sample II   0.3 11.4 

 sample III   0.24 10.5 

 sample IV   0.27 9.7 

TG 52:4 sample I 3.37 14 2.76 9.9 

 sample II   3.06 11.6 

 sample III   2.61 11.3 

 sample IV   2.81 10.9 

TG 52:3 sample I 2.19 12.2 1.74 12.2 

 sample II   1.84 12.2 

 sample III   1.64 9.7 

 sample IV   1.64 11.9 

TG 52:2 sample I 0.79 15.2 0.58 13 

 sample II   0.7 11.2 

 sample III   0.56 8.9 

 sample IV   0.59 6.4 

TG 54:6 sample I 9.69 8.2 8.06 9 

 sample II   8.86 13 

 sample III   7.79 11.1 

 sample IV   7.83 13.6 

TG 54:5 sample I 12.62 5.9 10.64 9.4 

 sample II   11.64 13.6 

 sample III   10.24 10.5 

 sample IV   10.21 12.9 

TG 54:4 sample I 6.39 8.6 5.25 11.5 

 sample II   5.9 13.2 

 sample III   4.99 9.2 

 sample IV   5.14 9.5 

TG 54:3 sample I 2.25 8.3 1.85 13.3 

 sample II   2.04 13 

 sample III   1.74 8.3 

  sample IV   1.76 10.3 
 
 
Samples showed CVs < 17% for all DG and TG species. Whereas CVs for TG 

decreased, similar CVs were observed for DG species. In summary, bead-beating did 

not result in significantly higher reproducibility.  

Furthermore, a decrease of TG species was observed which may be related to 

adsorption to the beads or lipolysis during this homogenization step. 
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3.1.4.3 Effect of Sample Concentration and Volume 
 
In a next step, we asked whether the amount of fecal material used for homogenization 

could improve reproducibility. Therefore, two approaches were followed. In the first 

step, fecal homogenates were adjusted to different concentrations: 0.5 mg dw/mL, 

1.0 mg dw/mL, and 2.0 mg dw/mL. An amount corresponding to 200 µg dry weight, i.e. 

100 µL, 200 µL, or 400 µL was used for extraction, thus sample amount was equal in 

all cases. For this experiment, two different raw fecal samples were homogenized and 

analyzed in fivefold. The data are shown in Table 3.11 and Table 3.12. Samples with 

a lower concentration and higher sample volume did not exhibit lower CVs. On the 

contrary, the CVs of triacylglycerol species were significantly higher (CV > 15%) in 

some cases compared to 2.0 mg dw/mL, with up to 52% for sample 1 and a dry weight 

of 0.5 mg dw/mL (TG 54:6).  

Both samples showed an increase in concentration of TG species using a higher 

sample concentration which could be related to particle aggregation at higher sample 

concentration. Aggregates (containing high amounts of TG) may result in an increased 

proportion of TG.  
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Table 3.11: Different sample concentrations (0.5 mg dw/mL, 1.0 mg dw/mL, and 2.0 mg dw/mL) of raw human fecal material were used 
for analysis of two different samples. An amount of either 100 µL, 200 µL or 400 µL was used for extraction. Each sample was analyzed 
in fivefold. Mean DG species concentrations and the coefficient of variation (CV) are displayed. 
 

Sample concentration 

    0.5 mg dw/mL 1.0 mg dw/mL 2.0 mg dw/mL 

Diacylglycerol sample 
Mean (n=5) 

[nmol/mg dw] 
CV [%] 

Mean (n=5) 
[nmol/mg dw] 

CV [%] 
Mean (n=5) 

[nmol/mg dw] 
CV [%] 

DG 34:3 sample I 0.20 13.0 0.20 6.9 0.20 8.7 
 sample II 0.42 2.0 0.60 9.5 0.42 8.3 

DG 34:2 sample I 3.63 2.3 3.59 7.0 3.65 7.9 

 sample II 5.04 2.6 7.35 9.9 5.42 8.1 

DG 34:1 sample I 1.87 6.4 1.88 7.2 1.92 10.2 

 sample II 3.87 5.8 5.52 10.1 4.39 7.3 

DG 36:5 sample I 0.48 7.1 0.48 6.0 0.46 7.4 

 sample II n.d.  n.d.  n.d.  
DG 36:4 sample I 10.77 6.0 10.82 7.0 10.70 7.4 

 sample II 9.03 2.5 13.33 10.3 9.64 7.2 

DG 36:3 sample I 10.03 6.0 10.08 6.0 10.12 7.6 

 sample II 29.81 3.6 43.55 10.5 31.88 6.3 

DG 36:2 sample I 5.38 5.2 5.44 7.01 5.62 9.6 

  sample II 37.04 4.5 52.92 10.5 39.46 5.6 
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Table 3.12: Different sample concentrations (0.5 mg dw/mL, 1.0 mg dw/mL, and 2.0 mg dw/mL) of raw human fecal material were used 
for analysis of two different samples. An amount of either 100 µL, 200 µL or 400 µL was used for extraction. Each sample was analyzed 
in fivefold. Mean TG species concentrations and the coefficient of variation (CV) are displayed. 
 

Sample concentration 

    0.5 mg dw/mL 1.0 mg dw/mL 2.0 mg dw/mL 

Triacylglycerol sample 
Mean (n=5)  

[nmol/mg dw] 
CV [%] 

Mean (n=5)  
[nmol/mg dw] 

CV [%] 
Mean (n=5)  

[nmol/mg dw] 
CV [%] 

TG 50:2 sample I n.d.  n.d.  n.d.  
 sample II 1.54 9.4 2.13 11.7 2.61 7.8 

TG 50:1 sample I n.d.  n.d.  n.d.  

 sample II 0.45 9.5 0.59 11.8 0.73 9.9 

TG 52:5 sample I n.d.  n.d.  n.d.  

 sample II 0.87 7.5 1.21 11.9 1.47 7.5 

TG 52:4 sample I 0.43 49.6 0.36 17.3 0.52 6.0 

 sample II 9.03 9.2 12.51 10.0 15.38 8.8 

TG 52:3 sample I 0.27 27.8 0.33 35.3 0.46 2.2 

 sample II 29.28 9.6 39.88 9.8 47.99 7.8 

TG 52:2 sample I 0.18 33.8 0.20 42.2 0.27 7.0 

 sample II 20.65 9.6 27.55 10.0 32.99 7.4 

TG 54:6 sample I 0.49 51.8 0.47 23.8 0.70 13.6 

 sample II 9.14 9.2 12.68 9.6 15.55 9.0 

TG 54:5 sample I 0.62 49.8 0.69 35.3 0.97 6.1 

 sample II 48.01 8.9 66.36 9.8 80.12 8.0 

TG 54:4 sample I 0.56 47.8 0.69 45.5 0.92 6.4 

 sample II 81.43 9.8 111.71 9.9 135.24 8.6 

TG 54:3 sample I 0.36 43.3 0.50 6.9 0.67 24.3 

  sample II 114.93 10.0 158.09 9.8 192.43 9.0 
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In the second approach, different volumes (100 µL and 400 µL) of the homogenized 

fecal samples were subjected to lipid extraction (Table 3.13 and Table 3.14). Mass 

spectrometric analysis was performed at the same concentration. In this experiment 

samples with 2.0 mg dw/mL from the previous tests were used. The application of 

higher sample volumes showed some decrease of CV, especially for TG species and 

samples with a high fraction of TG in the pellet. Considering that variation is mainly 

due to sample inhomogeneity, using a higher sample volume could explain lower 

variations.  

 
Table 3.13: Two different volumes of homogenized fecal material (2.0 mg dw/mL) were 
used for analysis of two different samples. Each sample was analyzed in fivefold. Mean 
DG species concentrations and the coefficient of variation (CV) are displayed. 
 

Volume 

    100 µL 400 µL 

Diacylglycerol sample 
Mean (n=5) 

[nmol/mg dw] 
CV [%] 

Mean (n=5) 
[nmol/mg dw] 

CV [%] 

DG 34:3 sample I 0.18 6.8 0.20 6.7 
 sample II 0.43 5.8 0.41 2.8 
DG 34:2 sample I 3.34 6.3 3.49 3.8 

 sample II 5.50 3.5 5.25 3.4 
DG 34:1 sample I 1.83 6.5 1.79 4.3 

 sample II 4.32 4.8 4.19 1.3 
DG 36:5 sample I 0.42 5.7 0.42 5.6 

 sample II n.d.  n.d.  
DG 36:4 sample I 9.63 5.4 10.04 5.2 

 sample II 9.89 4.1 9.24 4.9 
DG 36:3 sample I 9.33 9.5 9.56 4.6 

 sample II 33.06 4.3 30.84 4.3 
DG 36:2 sample I 5.44 11.2 5.14 4.2 
  sample II 40.56 4.7 38.29 2.7 
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Table 3.14: Two different volumes of homogenized fecal material (2.0 mg dw/mL) were 
used for analysis of two different samples. Each sample was analyzed in fivefold. Mean 
TG species concentrations and the coefficient of variation (CV) are displayed. 
 

Volume 

    100 µL 400 µL 

Triacylglycerol sample 
Mean (n=5) 

[nmol/mg dw] 
CV [%] 

Mean (n=5) 
[nmol/mg dw] 

CV [%] 

TG 50:2 sample I n.d.  n.d.  
 sample II 2.13 7.7 2.05 3.4 

TG 50:1 sample I n.d.  n.d.  

 sample II 0.60 6.0 0.55 7.6 

TG 52:5 sample I n.d.  n.d.  

 sample II 1.17 6.5 1.10 4.3 

TG 52:4 sample I 0.39 8.9 0.41 5.0 

 sample II 12.21 7.4 11.68 2.8 

TG 52:3 sample I 0.29 13.2 0.30 8.0 

 sample II 37.98 7.8 36.07 3.4 

TG 52:2 sample I 0.17 21.8 0.17 6.2 

 sample II 26.57 7.8 24.97 3.4 

TG 54:6 sample I 0.48 7.9 0.53 10.0 

 sample II 12.02 7.3 11.61 3.3 

TG 54:5 sample I 0.61 10.0 0.67 9.7 

 sample II 63.32 8.0 60.25 3.1 

TG 54:4 sample I 0.55 16.0 0.60 8.2 

 sample II 107.72 7.6 102.29 2.7 

TG 54:3 sample I 0.35 26.9 0.37 10.0 

  sample II 156.97 7.1 148.47 2.4 
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3.1.4.4 Effect of Lipid Extraction 
 
Besides sample homogeneity, the effect of lipid extraction on DG and TG 

concentrations was also tested. One of these experiments involved variation of 

incubation time after addition of both internal standard and Bligh and Dyer mixture to 

the homogenized fecal sample. The results are shown in Table 3.15 - Table 3.17. For 

both DG and TG species, incubation time seemed to play a minor role with a plateau 

observed after 10 min incubation time. The detected concentrations varied only slightly 

after 10 min, except for sample 2 for TG species. Species profiles showed no variation 

between the different incubation times, except for TG species profile for sample 2. An 

incubation time of 60 min, as regularly used, seemed to be sufficient, and is therefore 

still used in the following experiments. Combination of different incubation times with 

additional sonication up to 3 h during extraction is shown in Table 3.18. Both incubation 

times and simultaneous treatment with sonication did not result in significant 

improvement in variation.  
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 Table 3.15: Four different samples were analyzed. Incubation time before phase separation varied from 0 minutes to 24 hours. Each 

sample was analyzed only once. Sum concentrations of DG and TG species for each sample are displayed.  
 
  Diacylglycerol Triacylglycerol 

incubation 
time 

sample 1 
[nmol/mg dw] 

sample 2 
[nmol/mg dw] 

sample 3 
[nmol/mg dw] 

sample 4 
[nmol/mg dw] 

sample 1 
[nmol/mg dw] 

sample 2 
[nmol/mg dw] 

sample 3 
[nmol/mg dw] 

sample 4 
[nmol/mg dw] 

0 minutes 34.13 28.13 37.08 14.63 7.62 8.35 11.64 49.38 

         
10 minutes 32.53 31.8 31.90 19.35 8.72 3.30 8.67 55.63 

         
20 minutes 32.62 32.71 32.67 18.74 9.87 12.22 8.83 47.26 

         
30 minutes 33.16 32.99 30.20 19.47 7.33 3.81 7.92 52.98 

         
60 minutes 32.32 32.88 29.90 19.22 7.54 5.19 7.21 48.04 

         
180 minutes 30.95 29.98 28.40 19.35 7.48 3.68 6.68 49.76 

         
24 hours 30.19 30.27 27.01 18.05 7.58 5.09 6.75 49.11 
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 Table 3.16: Species profile in % total DG of the data listed in Table 3.15. 
  sample 1 sample 2 

Species 
0  

minutes 
[%] 

10 
minutes 

[%] 

20 
minutes 

[%] 

30 
minutes 

[%] 

60 
minutes 

[%] 

180 
minutes 

[%] 

24  
hours 
[%] 

0  
minutes 

[%] 

10 
minutes 

[%] 

20 
minutes 

[%] 

30 
minutes 

[%] 

60 
minutes 

[%] 

180 
minutes 

[%] 

24  
hours  
[%] 

DG 34:3 0.6 0.6 0.6 0.6 0.5 0.6 0.6 1.3 1.4 1.3 1.3 1.3 1.3 1.4 

DG 34:2 10.4 10.1 10.1 10.1 9.9 10.1 10.3 4.9 5.0 4.9 4.9 4.9 4.9 4.9 

DG 34:1 6.5 6.1 6.2 6.3 6.3 6.1 5.9 2.9 2.9 3.0 3.0 3.0 2.9 3.2 

DG 36:5 0.9 1.0 1.1 1.0 1.0 1.1 1.2 30.0 29.6 30.0 30.4 30.3 30.1 29.3 

DG 36:4 27.0 28.3 28.4 28.3 28.1 28.5 28.3 42.6 42.7 42.4 41.8 42.0 42.3 42.7 

DG 36:3 33.4 33.8 33.2 32.6 32.8 32.9 33.2 11.3 11.5 11.6 11.8 11.7 11.7 11.5 

DG 36:2 21.2 20.1 20.6 21.2 21.3 20.8 20.5 7.0 6.9 6.8 6.9 6.9 6.8 7.0 
 

  sample 3 sample 4 

Species 
0  

minutes 
[%] 

10 
minutes 

[%] 

20 
minutes 

[%] 

30 
minutes 

[%] 

60 
minutes 

[%] 

180 
minutes 

[%] 

24  
hours  
[%] 

0  
minutes 

[%] 

10 
minutes 

[%] 

20 
minutes 

[%] 

30 
minutes 

[%] 

60 
minutes 

[%] 

180 
minutes 

[%] 

24 
 hours 

[%] 

DG 34:3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.2 1.1 1.0 1.0 1.0 1.0 1.1 

DG 34:2 10.0 10.1 10.2 9.9 10.2 10.1 10.0 14.1 14.3 13.8 13.8 13.6 14.2 14.0 

DG 34:1 6.2 6.0 6.1 6.4 6.3 5.8 6.4 8.0 8.0 8.4 8.4 8.5 8.1 8.2 

DG 36:5 1.1 1.1 1.1 1.0 1.0 1.2 1.1 1.7 1.7 1.7 1.8 1.8 1.8 1.8 

DG 36:4 28.0 28.2 28.2 28.0 28.2 28.6 27.8 30.1 29.4 28.0 27.9 28.3 29.6 29.3 

DG 36:3 33.3 34.0 33.1 32.8 32.6 33.4 32.9 25.7 25.6 26.9 27.2 27.0 25.5 25.9 

DG 36:2 20.8 20.0 20.7 21.4 21.2 20.3 21.1 19.3 19.9 20.1 20.0 19.9 19.7 19.7 
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Table 3.17: Species profile in % total TG of the data listed inTable 3.15.  
  sample 1 sample 2 

Species 
0  

minutes 
[%] 

10  
minutes 

[%] 

20  
minutes 

[%] 

30  
minutes 

[%] 

60  
minutes 

[%] 

180 
minutes 

[%] 

24  
hours  
[%] 

0  
minutes 

[%] 

10  
minutes 

[%] 

20  
minutes 

[%] 

30  
minutes 

[%] 

60  
minutes 

[%] 

180 
minutes 

[%] 

24  
hours 
[%] 

TG 50:2 1.9 1.8 1.7 1.8 1.8 1.8 1.7 0.4 0.8 0.3 0.7 0.6 0.8 0.9 

TG 50:1 1.2 1.2 1.2 1.1 1.2 1.2 1.2 0.3 0.9 0.3 0.8 0.6 0.9 0.7 

TG 52:5 0.3 0.4 0.4 0.4 0.4 0.4 0.4 3.7 3.9 3.7 4.0 4.5 2.8 3.5 

TG 52:4 8.8 8.0 7.9 8.4 8.5 8.1 8.2 5.7 6.6 5.2 6.3 6.0 5.6 7.2 

TG 52:3 10.7 10.7 10.9 10.5 10.4 10.3 10.6 1.3 2.0 1.3 2.1 1.5 4.4 3.6 

TG 52:2 7.2 7.1 7.3 6.8 6.6 6.9 6.9 0.7 1.8 0.7 1.6 1.1 3.1 2.4 

TG 54:7 0.9 0.9 0.8 1.0 1.0 1.0 1.0 33.3 31.6 35.0 30.9 35.8 22.9 22.1 

TG 54:6 12.0 11.6 11.7 12.8 12.7 12.1 12.4 36.7 31.8 35.8 32.0 32.0 24.8 28.8 

TG 54:5 20.8 21.2 21.4 21.7 21.7 21.2 21.4 12.3 11.4 12.0 11.8 11.0 13.2 14.1 

TG 54:4 22.1 22.9 22.9 22.0 22.2 22.5 22.3 3.9 5.2 4.2 5.8 3.9 10.6 8.5 

TG 54:3 14.0 14.3 14.1 13.5 13.5 14.6 13.8 1.8 4.1 1.6 3.9 2.9 10.9 8.0 

 

  sample 3 sample 4 

Species 
0  

minutes 
[%] 

10  
minutes 

[%] 

20  
minutes 

[%] 

30  
minutes 

[%] 

60  
minutes 

[%] 

180 
minutes 

[%] 

24  
hours 
[%] 

0  
minutes 

[%] 

10  
minutes 

[%] 

20  
minutes 

[%] 

30  
minutes 

[%] 

60  
minutes 

[%] 

180 
minutes 

[%] 

24  
hours 
[%] 

TG 50:2 1.5 1.7 1.8 2.0 1.7 1.7 1.8 2.6 2.5 2.6 2.6 2.6 2.6 2.7 

TG 50:1 1.0 1.0 1.2 1.2 1.1 1.2 1.2 1.1 1.0 1.1 1.1 1.1 1.1 1.1 

TG 52:5 0.3 0.4 0.4 0.4 0.4 0.4 0.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

TG 52:4 7.8 8.2 8.5 8.6 8.3 8.3 8.2 12.0 12.2 12.0 12.1 12.1 12.1 12.1 

TG 52:3 10.2 10.2 10.7 11.0 10.3 10.4 10.3 9.3 9.2 9.4 9.5 9.3 9.2 9.1 

TG 52:2 6.3 6.0 6.7 6.7 6.6 6.9 6.7 5.4 5.2 5.6 5.6 5.6 5.5 5.9 

TG 54:7 0.8 1.0 0.9 0.9 1.0 1.0 1.0 1.5 1.6 1.5 1.5 1.5 1.5 1.6 

TG 54:6 12.8 13.2 12.7 12.4 12.5 12.4 12.4 18.0 18.4 17.7 17.7 17.7 17.7 17.4 

TG 54:5 22.7 22.4 21.9 21.6 21.6 21.6 21.5 20.3 20.4 20.2 20.1 20.1 20.4 19.7 

TG 54:4 23.0 22.8 22.0 21.9 22.7 22.2 22.6 17.5 17.2 17.4 17.4 17.4 17.4 17.4 

TG 54:3 13.6 13.0 13.2 13.2 13.8 13.9 14.0 11.4 11.1 11.3 11.3 11.5 11.5 12.0 
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Table 3.18: Calculation of CV for DG and TG species either with or without ultrasonication during extraction. Incubation times varied 
from 10 to 180 minutes. Each sample (2.0 mg dw/mL) was analyzed in three replicates. 
 

    without ultrasonication ultrasonication 

  Diacylglycerol Triacylglycerol Diacylglycerol Triacylglycerol 

 sample 
Mean (n=3) 

[nmol/mg dw] 
CV [%] 

Mean (n=3) 
[nmol/mg dw] 

CV [%] 
Mean (n=3) 

[nmol/mg dw] 
CV [%] 

Mean (n=3) 
[nmol/mg dw] 

CV [%] 

10 minutes sample I 4.08 8.3 0.13 11.7 4.14 9.9 0.22 89.4 
 sample II 48.69 10.6 4.74 15.7 46.91 2.3 4.87 13.1 
 sample III 9.08 6.9 1.33 19.8 8.86 4.2 1.25 11 
 

 
   

 
   

 
30 minutes sample I 4.22 4.6 0.13 10.2 4.52 1.1 0.2 51.8 
 sample II 50.73 6.8 4.99 2.1 46.93 4.3 5.06 0.6 
 sample III 9.29 5.7 1.33 10.5 9.76 4.1 1.35 13.8 
 

 
   

 
   

 
60 minutes sample I 4.35 1.9 0.12 5.2 4.39 6.3 0.12 1.8 
 sample II 48.85 4.2 5.04 16.3 50.15 3.6 5 3 
 sample III 8.89 3.2 1.2 5.2 9.88 3.1 1.53 33 
 

 
   

 
   

 
120 minutes sample I 4.39 2.6 0.18 55.9 4.34 3.2 0.12 3.8 

 sample II 49.79 10.8 4.67 7.1 47.36 7.2 4.65 7.6 
 sample III 8.89 1.5 1.16 2.9 9.42 4 1.18 2.8 

  
   

 
   

 
180 minutes sample I 4.19 1.7 0.12 5 6.97 64 0.59 136 

 sample II 48.89 3.6 6.18 34.6 49.91 5.7 4.55 4.7 

  sample III 9.15 8.7 1.11 5.2 10.59 6.4 1.29 17.2 
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3.1.4.5 Effect of Stool Grade 
 

In a next step, we asked whether these inhomogeneity issues could be related to the 

consistency of the fecal material. Therefore, we selected, if available, three samples 

for each stool grade (according to Bristol Stool Chart (170); with grade 1 representing 

hard and grade 7 watery consistency) from a study on fibers and polyunsaturated fatty 

acids intervention (171). The samples were measured in five replicates (Table 3.19). 

Samples with grades 3 to 5 showed CVs ≤ 10%. However, in samples with lower 

grades (1 to 2) we could not see a clear trend for higher CVs, which may have been 

expected for more solid consistency.  

 
Table 3.19: DG and TG concentrations and their coefficient of variation (n=5) related 
to stool grading. 
 
    Diacylglycerol Triacylglycerol 

  sample 
Mean (n=5) 

[nmol/mg dw] 
CV [%] 

Mean (n=5) 
[nmol/mg dw] 

CV [%] 

Grade 1 sample a 46.11 6.6 2.31 11.6 
 sample b 15.71 7.6 14.25 6.1 
 sample c 54.27 6.4 8.55 10.7 
 

 
   

 
Grade 2 sample d 78.73 7.1 10.69 10.9 
 sample e 38.65 26.3 82.10 27.6 
 sample f 11.62 2.1 1.11 20.8 
 

 
   

 
Grade 3 sample g 93.86 9.2 38.27 10.2 
 sample h 27.30 6.0 2.65 7.5 
 sample i 29.44 6.5 39.34 5.1 
 

 
   

 
Grade 4 sample j 52.35 3.0 5.15 7.9 

 sample k 14.30 5.8 1.87 6.5 
 sample l 21.41 2.7 2.15 2.5 

  
   

 
Grade 5 sample m 66.36 6.4 15.67 6.0 

 sample n 25.91 8.9 19.96 8.0 

 sample o 94.64 4.2 11.83 5.5 

  
   

 
Grade 6 sample p 65.84 4.8 10.28 5.6 

 sample q 44.92 3.8 21.40 5.2 

 sample r 49.10 17.0 39.42 15.2 

  
   

 
Grade 7 sample s 46.94 22.2 1.74 18.6 
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3.1.4.6 Stability of Sample Extracts 
 

In addition to homogenization and extraction experiments, the stability of samples after 

the extraction procedure was examined. Therefore, samples were subjected to lipid 

extraction and immediately measured on the Q Exactive Orbitrap. Subsequently, the 

samples were stored at different temperatures (-80°C, -20°C, 4°C, and RT) for one 

week and measured again. For both DG and TG species the analyzed concentrations 

hardly changed. The samples therefore showed good stability and could be stored at 

different temperatures for at least one week. Data are shown in Table 3.20. 

 
Table 3.20: Concentrations of DG and TG species depending on storage at different 
temperatures for one week. Five different samples were measured. Each sample was 
analyzed only once. Samples were measured directly after lipid extraction (Reference) 
and again after one week of storage under different conditions. Sum concentrations of 
DG and TG species for each sample are displayed. 
 

sample temperatures 
DG sum  

[nmol/mg dw] 
TG sum 

[nmol/mg dw] 

sample I Reference 20.23 22.15 

 -80°C 20.95 25.72 

 -20°C 20.07 23.92 

 4°C 19.03 21.92 

 RT 19.18 21.00 
    
sample II Reference 3.34 1.13 

 -80°C 3.07 1.19 

 -20°C 3.19 1.10 

 4°C 3.25 1.10 

 RT 3.31 1.12 
    
sample III Reference 3.37 0.66 

 -80°C 2.97 0.56 

 -20°C 3.32 1.34 

 4°C 3.27 0.34 

 RT 3.49 0.36 
    
sample IV Reference 7.58 1.42 

 -80°C 6.78 1.38 

 -20°C 7.47 1.54 

 4°C 7.18 1.27 

 RT 9.19 1.58 
    
sample V Reference 0.75 0.22 

 -80°C 0.78 0.23 

 -20°C 0.74 0.22 

 4°C 0.72 0.21 
  RT 0.73 0.30 
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3.1.4.7 Summary – Homogenization and Extraction 
 

Validation of this method demonstrated its suitability for large scale studies including 

extraction, FIA-FTMS analysis, and data evaluation although a high variation was 

observed for some samples. 

 

Despite thorough mechanical homogenization, fecal samples are suspensions, and a 

lack of homogeneity can lead to deviations. Therefore, various experiments were 

performed to evaluate the underlying factors including centrifugation, bead beating, 

variation of sample concentration and volume, time of lipid extraction, ultrasonication, 

stool grade, and storage of extracted samples.  

Centrifugation of samples showed that DG species were present in similar 

concentrations in the supernatant as well as in the pellet, whereas TG species were 

detected predominantly in the pellet. Additional homogenization using Precellys® 

homogenizer resulted in a slight decrease in CV for TG species, whereas the CV for 

DG species remained constant or even slightly increased. Variation of sample 

concentration did not reduce variations. Furthermore, no improvement in 

reproducibility could be achieved by changing the incubation time during extraction or 

by ultrasonication. Analysis of the consistency of fecal material provided no clear 

evidence for correlation of CVs and stool grade. 

Only extraction of a higher sample volume resulted in lower CVs for both DG and TG 

species. After extraction samples could be stored until measurement for about one 

week. Storage temperature seemed to have little influence on the concentrations. 

However, it is recommended to store the samples at least at -20°C to avoid possible 

changes due to lipolysis.  

 

In summary, these data clearly demonstrate that homogenization is very important for 

reproducibility and accuracy of lipid quantification of human fecal material. Despite 

extensive testing, variation of concentrations for some samples was substantial. Of 

note, lipid species profiles seem to be largely unaffected by homogenization and 

extraction conditions.   
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3.1.5 Pre-Analytics 
 
Suitable pre-analytics is an important prerequisite for meaningful medical laboratory 

diagnostic. Many factors before, during and after sampling can have an influence on 

the test results. Storage of the samples and their transport to the laboratory are also 

important factors influencing the laboratory analysis. In practice, it is often the case 

that the raw fecal material collected from patients is not directly subjected to analysis 

but stored and transported for substantial times. In many cases the material is not 

sufficiently cooled (2 - 8°C). Hence, it is important to find a suitable additive as a 

stabiliser to prevent changing of analyte concentrations, e.g. by enzymatic reactions.  

 

3.1.5.1 Effect of Solvents 
 
In order to ensure the stability of the fecal material, we checked whether the solvent 

used for sample preparation may affect DG/TG concentrations. In several studies 

homogenization of fecal material was performed in water (172) or aqueous buffer (173, 

174) but also in diluted organic solvents (175, 176). In our laboratory, diluted 

isopropanol was used to stabilize fecal concentrations of short chain fatty acids (177), 

thus the effect of isopropanol was investigated for DG/TG concentrations. Therefore, 

fecal raw material was homogenized in water and subsequently diluted 3- to 7-fold (by 

volume) with either water or isopropanol (Figure 3.8) and immediately stored at -80°C. 

Unexpectedly, addition of isopropanol tremendously increased DG concentrations in 

almost all samples. Moreover, in two of the six samples, we observed a drop of TG 

concentrations. However, the increase of DG could not be explained by TG 

degradation in these samples because the increase of DG exceeded the decreased 

amount of TG. 
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Figure 3.8: Effect of isopropanol addition on DG (A) and TG (B) quantification. Six 
individual samples homogenized in water and supplemented with the same volume of 
either H2O (brown) or isopropanol (green) (70% related to volume) are displayed. 
 
 
Comparison of spectra of samples stabilized in water or isopropanol showed clear 

differences in all DG species profiles and in the TG profiles of three of the six samples 

(Table 3.21 and Table 3.22). We could not observe additional species upon 

isopropanol addition and no common pattern in the increased DG species for the 

individual samples.  
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 Table 3.21: Species profile in % total DG for aqueous and isopropanol-containing samples (Figure 3.8). 
 

Species 
sample A sample B sample C sample D sample E sample F 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

DG 34:3 0.6 0.6 0.0 0.4 1.0 0.9 1.3 0.9 2.1 1.6 8.7 5.3 

DG 34:2 7.1 5.9 19.2 12.8 10.8 8.6 6.1 7.2 8.4 8.2 10.0 10.7 

DG 34:1 8.6 7.0 9.5 5.7 13.5 11.8 4.5 1.9 8.1 7.8 19.1 15.0 

DG 36:5 1.3 1.4 1.1 1.7 2.5 2.3 3.7 2.1 3.9 7.9 9.1 4.5 

DG 36:4 13.3 13.0 23.5 27.1 18.3 16.3 24.4 43.6 26.5 20.9 16.2 22.9 

DG 36:3 26.3 24.6 21.8 25.6 16.3 15.5 29.4 33.0 26.4 20.7 14.4 18.5 

DG 36:2 42.8 47.5 24.9 26.7 37.5 44.6 30.6 11.3 24.7 33.0 22.4 23.1 
 
 
Table 3.22: Species profile in % total TG for aqueous and isopropanol-containing samples (Figure 3.8). 
 

Species 
sample A sample B sample C sample D sample E sample F 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

H2O 
[%] 

Isopropanol 
[%] 

TG 52:4 3.5 3.8 14.1 14.4 5.0 4.9 5.2 8.4 6.2 9.3 4.5 7.5 

TG 52:3 4.8 5.1 8.7 8.4 3.8 3.8 5.0 5.1 3.4 6.3 6.0 5.9 

TG 52:2 9.8 10.0 7.2 7.2 12.1 12.2 4.3 2.1 10.2 6.9 15.4 11.9 

TG 54:7 0.6 0.8 1.5 1.6 1.4 1.6 4.2 5.7 9.0 7.6 1.5 1.5 

TG 54:6 5.0 5.1 17.1 16.7 7.1 7.4 11.8 22.0 7.5 14.0 8.3 13.8 

TG 54:5 9.9 9.3 16.4 15.8 5.4 5.6 23.3 32.5 8.3 14.5 7.3 11.0 

TG 54:4 23.0 22.5 14.0 13.6 13.0 12.9 23.4 18.0 11.8 14.6 14.2 14.0 

TG 54:3 43.5 43.4 20.9 22.4 52.1 51.6 22.7 6.3 43.6 26.8 42.9 34.3 
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To get more insight, we examined both aqueous and isopropanol containing sample 

homogenates by light microscopy (Figure 3.9). Clearly, aqueous samples seemed to 

be more homogeneous compared to isopropanol containing samples. However, in 

aqueous samples a massive presence of bacteria could be observed. To inhibit 

metabolic activity and to reduce health risks, fecal samples are frequently treated with 

alcohols.  

 

 
 

 
 
 
Figure 3.9: Comparison of human fecal sample D diluted either in water (A) or 
isopropanol (B) at a dry weight of 2.0 mg dw/mL using phase contrast microscopy with 
10 x magnification. 
 
 

A 

B 
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In a next step, we checked whether there is a trend regarding the alcohols used 

(methanol < ethanol < isopropanol) for stabilization. Therefore, the raw fecal material 

of sample C was thawed and a part of it was homogenized and additionally dissolved 

in either MeOH or EtOH. Results are shown in Table 3.23.  

 

Table 3.23: Species profile in % total of DG and TG for sample C either in H2O, 
methanol, ethanol, or isopropanol. Samples were measured in triplicates. 
 

  
Species 

H2O methanol ethanol isopropanol 

  
Mean (n=3)  

[%] 
Mean (n=3)  

[%] 
Mean (n=3)  

[%] 
Mean (n=3)  

[%] 

Diacylglyerol DG 34:3 0.9 0.6 0.6 0.6 

 DG 34:2 8.9 9.0 8.8 8.6 

 DG 34:1 4.1 3.5 3.7 3.6 

 DG 36:5 0.4 0.4 0.3 0.4 

 DG 36:4 38.0 42.2 42.1 42.6 

 DG 36:3 34.7 32.4 32.8 32.6 

 DG 36:2 13.0 11.9 11.7 11.6 

      
Triacylglycerol TG 50:2 0.8 0.8 0.8 0.8 

 TG 50:1 0.2 0.2 0.2 0.2 

 TG 50:0 0.2 0.1 0.1 0.2 

 TG 52:5 0.4 0.3 0.3 0.4 

 TG 52:4 8.8 8.9 8.9 8.9 

 TG 52:3 5.5 5.4 5.4 5.5 

 TG 52:2 1.9 1.8 1.8 1.9 

 TG 54:7 0.4 0.4 0.4 0.4 

 TG 54:6 26.1 26.4 26.7 26.6 

 TG 54:5 34.2 34.3 34.3 33.9 

 TG 54:4 16.1 16.0 15.7 16.0 

  TG 54:3 5.6 5.4 5.3 5.4 

 

 

For this sample, the data did not show any trend regarding the series of alcohol. Here, 

species profiles showed only small changes between the solvents, for both DG and 

TG species. This could be already demonstrated for sample C in Figure 3.8. DG 

species with 36 carbon atoms differed slightly in H2O compared to the alcohols used. 

This trend could not be observed for TG species with 54 carbon atoms. In case of 

species profiles, the choice of solvent seemed to be independent of the detected 

concentration.  
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For further solvent comparison, a fresh native sample was homogenized in H2O as 

described above and dried under vacuum overnight. Samples were dissolved in either 

100 µL H2O, MeOH, EtOH, or isopropanol and a standard mix was spiked to the 

different solvents’ prior extraction. The results are shown in Table 3.24. Concentration 

of DG and TG could be detected at similar levels for all solvents. For both lipid classes, 

CV showed less than 10% for all solvents, being highest for H2O. The different 

concentrations of lipids contained in samples from previous experiments could not be 

explained and therefore may already occur during homogenization of the raw fecal 

material.  

 
 
Table 3.24: Calculated CV of DG and TG sum concentrations of a sample dried for 
extraction overnight prior addition of different solvents. Reconstituted samples were 
measured in triplicates.  
 

  Diacylglycerol Triacylglycerol 

solvents 
Mean (n=3)  

[nmol/mg dw] 
CV [%] 

Mean (n=3)  
[nmol/mg dw] 

CV [%] 

H2O  1.85 9.2 6.00 10.8 
methanol 2.11 4.1 6.63 7.2 
ethanol 2.06 3.4 6.71 7.8 
isopropanol 2.01 3.5 6.01 5.1 
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3.1.5.2 Effect of Storage Temperature 
 
Next, we asked whether there is a suitable solvent for stabilizing the fecal material 

before and after homogenization. For this experiment the same samples were used as 

described for the previous tests. The raw fecal material was collected in the morning 

and immediately brought to the laboratory including sufficient cooling, where it was 

instantly homogenized. Homogenization was carried out using the pre-analytics 

protocol described under 2.5.1 Feces Homogenization. Homogenized samples were 

then dissolved in various solvents: H2O, methanol, ethanol, or isopropanol. Some 

samples were immediately stored at -80°C while the remaining samples were stored 

at either 4°C or at RT for 30 minutes to 4 days until freezing at -80°C.  

 

In a first preliminary test feces of two different donors were dissolved in H2O, methanol, 

or isopropanol, respectively. DG species have been found to be relatively stable up to 

four days, with only minor variation that did not follow a clear trend. Concentration of 

TG species decreased rapidly after 3 h. The CVs were mostly below 15%. Some 

outliers were observed. Species profiles in %, shown in Table 3.25 - Table 3.28, 

represent the most common DG and TG species in fecal material for each sample. The 

differences between the respective times and temperatures were much less, the 

percentages fluctuated only slightly in some cases. However, there were several 

exceptions, especially when samples were stored at 4°C or RT for more than one day. 

Methanol seemed to be less stable than H2O or isopropanol.  

From this it could be concluded that the total concentrations of the two lipid classes 

changed over time, whereas the proportions of the respective species only slightly 

changed. 
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 Table 3.25: Species profile in % total DG. Data of sample A for either H2O, methanol or isopropanol are displayed.  
 
  Sample A 
  H2O 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360  

minutes 
1  

day 
3  

days 
30 

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

DG 34:3 0.3 0.3 0.1 0.4 0.2 0.6 8.9 0.4 0.4 0.3 0.5 0.7 0.3 
DG 34:2 10.5 10.1 10.5 10.2 10.5 12.1 15.4 10.8 9.4 10.5 10.7 10.7 10.5 
DG 34:1 3.9 4.3 4.2 3.4 3.3 2.9 31.2 2.8 2.5 2.7 2.4 2.7 2.2 
DG 36:5 0.5 0.8 0.7 0.5 0.4 1.5 n.d. 0.9 1.1 1.1 1.2 1.4 1.1 
DG 36:4 46.7 44.7 45.2 47.3 46.7 47.2 10.2 47.0 46.6 47.5 47.5 47.3 49.3 
DG 36:3 28.1 29.4 28.8 28.9 29.0 26.7 16.0 28.4 30.0 27.7 27.9 27.3 26.8 
DG 36:2 9.9 10.4 10.4 9.4 10.0 8.9 18.3 9.6 10.0 10.3 9.9 9.9 9.8 
 
 
  Sample A 
  Methanol 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360  

minutes 
1  

day 
3  

days 
30 

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

DG 34:3 0.8 0.9 1.8 2.2 2.0 2.3 8.7 1.3 1.8 1.3 2.0 2.6 6.1 
DG 34:2 11.4 11.2 11.0 10.8 11.0 12.0 5.0 10.8 10.5 10.1 10.6 10.2 11.5 
DG 34:1 2.0 2.1 1.6 1.6 1.4 1.5 19.4 0.7 1.5 1.8 1.9 3.0 1.8 
DG 36:5 1.6 1.5 3.9 4.8 5.7 7.3 6.1 4.6 4.2 4.1 4.1 4.7 6.9 
DG 36:4 45.3 44.7 45.8 40.2 35.9 21.1 53.1 45.1 44.3 43.1 37.7 27.0 13.7 
DG 36:3 29.4 30.0 30.1 34.3 36.0 45.9 2.4 31.9 31.8 32.0 34.0 41.7 48.5 
DG 36:2 9.5 9.8 5.9 6.1 8.1 9.9 5.4 5.7 6.0 7.7 9.7 10.8 11.6 
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 Sample A 
 Isopropanol 

 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360  

minutes 
1  

day 
3  

days 
30 

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

DG 34:3 0.6 0.6 0.6 0.6 0.7 0.7 1.6 0.6 0.6 0.6 0.6 0.7 0.7 
DG 34:2 10.3 10.1 10.1 10.5 10.5 10.9 19.8 10.6 10.3 10.6 10.2 10.5 10.4 
DG 34:1 1.6 1.4 1.5 1.5 1.4 1.3 38.4 1.6 1.5 1.6 1.6 1.4 1.4 
DG 36:5 1.1 1.1 1.2 1.2 1.3 1.3 1.1 1.2 1.1 1.1 1.2 1.3 1.3 
DG 36:4 49.5 50.7 50.2 50.2 49.9 50.6 11.1 49.7 50.4 50.1 50.4 50.8 51.2 
DG 36:3 28.4 28.4 28.3 28.4 28.1 26.8 14.6 27.8 28.1 27.4 27.7 27.1 27.2 
DG 36:2 8.5 7.6 8.1 7.5 8.2 8.3 13.4 8.5 7.9 8.5 8.3 8.2 7.8 
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Table 3.26: Species profile in % total DG. Data of sample B for either H2O, methanol or isopropanol are displayed. 
 
  Sample B 
  H2O 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
30  

minutes 
60 

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

DG 34:3 0.8 0.8 0.8 0.6 0.7 0.5 0.6 0.8 0.8 1.0 1.1 1.0 1.0 
DG 34:2 7.0 5.7 6.2 7.9 7.9 7.2 8.4 5.9 5.1 7.6 7.9 9.2 9.0 
DG 34:1 2.8 2.5 2.5 2.7 2.7 2.7 2.7 2.4 2.4 2.7 2.8 3.1 3.1 
DG 36:5 4.7 6.4 5.3 3.5 3.9 3.9 3.1 7.0 8.2 4.9 5.2 3.9 3.6 
DG 36:4 37.2 36.9 37.7 37.5 39.3 37.6 38.7 37.5 36.6 38.2 38.7 39.4 40.2 
DG 36:3 32.6 33.6 33.0 32.1 30.3 32.0 31.1 33.1 33.6 30.9 30.0 27.9 28.2 
DG 36:2 14.8 14.1 14.5 15.6 15.2 16.1 15.4 13.2 13.4 14.6 14.3 15.5 15.0 
 
 
  Sample B 
  Methanol 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
30  

minutes 
60 

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

DG 34:3 2.4 2.5 2.3 2.4 2.3 2.1 1.5 2.5 2.4 2.2 2.0 1.6 2.0 
DG 34:2 9.1 8.9 8.5 8.7 8.6 10.3 13.3 8.6 8.8 8.9 8.6 8.8 9.9 
DG 34:1 1.9 2.0 2.0 2.0 2.5 5.6 11.4 1.6 1.8 2.0 1.7 2.1 3.5 
DG 36:5 7.2 7.4 7.6 7.8 7.4 5.2 1.2 7.9 7.2 6.7 7.3 6.2 4.6 
DG 36:4 49.7 51.0 51.1 50.2 48.6 40.2 39.9 51.6 51.6 50.0 53.4 52.9 43.5 
DG 36:3 22.1 21.1 21.5 21.8 22.6 25.0 24.3 21.2 21.4 22.2 20.8 21.6 26.4 
DG 36:2 7.6 7.2 6.9 7.0 7.9 11.6 8.5 6.5 6.9 7.9 6.2 6.7 10.1 
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  Sample B 
  Isopropanol 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
30  

minutes 
60 

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

DG 34:3 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 
DG 34:2 8.6 8.6 8.5 8.4 8.4 8.6 9.1 8.6 8.6 8.5 8.4 8.3 8.3 
DG 34:1 2.3 2.3 2.2 2.3 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.1 2.1 
DG 36:5 3.4 3.3 3.2 3.3 3.4 3.3 3.6 3.3 3.2 3.3 3.1 3.3 3.3 
DG 36:4 44.8 44.8 44.8 44.8 44.7 43.5 42.3 45.1 44.9 45.2 44.3 45.1 45.3 
DG 36:3 26.5 26.5 26.8 26.7 27.3 27.9 27.8 26.4 26.7 26.5 26.9 26.7 26.9 
DG 36:2 13.2 13.4 13.2 13.4 13.0 13.2 13.4 13.3 13.1 13.2 13.8 13.3 12.9 
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 Table 3.27: Species profile in % total TG. Data of sample A for either H2O, methanol or isopropanol are displayed. 
 
  Sample A 
  H2O 
 -80°C 4°C RT 

Species  
30  

minutes 
60 

 minutes 
180 

minutes 
360  

minutes 
1  

day 
3 

days 
30 

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

TG 50:2 1.4 1.3 1.3 1.2 1.1 2.9 4.4 1.2 1.1 1.2 1.1 1.2 1.2 
TG 50:1 0.9 0.5 0.6 0.5 0.5 0.1 6.4 0.4 0.3 0.4 0.3 0.2 0.2 
TG 52:5 0.5 0.5 0.5 0.5 0.5 1.3 71.4 0.5 0.5 0.5 0.6 0.6 0.5 
TG 52:4 27.5 21.8 26.0 24.9 22.5 19.7 n.d. 18.9 15.1 16.6 16.3 13.6 16.0 
TG 52:3 2.3 3.2 2.5 2.6 2.9 3.8 2.4 3.7 4.5 4.3 4.1 4.8 4.6 
TG 52:2 2.3 2.0 2.2 1.9 1.8 1.4 4.0 1.6 1.5 1.5 1.5 1.6 1.5 
TG 54:7 0.6 1.0 0.7 0.5 0.6 1.7 2.0 0.7 0.7 0.9 0.8 0.9 0.9 
TG 54:6 26.5 28.3 26.8 28.2 29.3 31.0 2.6 30.7 30.4 31.4 31.6 30.7 31.1 
TG 54:5 24.8 26.6 25.4 26.6 27.3 25.5 3.3 28.5 30.8 29.6 29.8 29.7 29.1 
TG 54:4 10.2 11.2 10.5 10.3 10.6 10.1 1.7 11.1 12.3 11.2 11.2 12.6 11.7 
TG 54:3 2.9 3.7 3.6 2.7 2.9 2.4 1.8 2.8 2.9 2.6 2.7 4.0 3.2 
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  Sample A 
  Methanol 
 -80°C 4°C RT 

Species  
30 

 minutes 
60  

minutes 
180 

minutes 
360  

minutes 
1  

day 
3  

days 
30 

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

TG 50:2 1.6 1.4 2.1 2.8 2.7 3.6 5.9 2.0 1.8 1.6 1.7 2.1 3.0 
TG 50:1 0.2 0.1 1.1 1.9 2.0 3.4 7.8 0.8 0.8 0.6 0.5 0.7 3.5 
TG 52:5 0.8 0.7 0.8 0.7 0.7 0.5 n.d. 0.6 0.6 0.5 0.5 0.7 0.2 
TG 52:4 12.8 12.1 19.1 26.7 29.6 50.5 30.2 19.0 16.8 13.3 13.5 14.2 53.1 
TG 52:3 5.9 5.9 5.4 4.1 3.7 0.2 2.9 4.9 5.5 6.0 6.4 7.4 n.d. 
TG 52:2 2.3 2.0 3.3 4.7 5.1 6.6 33.1 3.1 3.0 2.7 3.0 3.2 5.7 
TG 54:7 1.2 1.7 1.2 1.0 1.0 0.1 0.9 0.8 0.8 0.7 0.8 1.2 1.5 
TG 54:6 28.9 28.6 24.8 19.7 16.8 9.9 3.7 25.7 25.7 25.5 23.2 21.6 7.0 
TG 54:5 29.3 30.9 25.5 22.3 20.5 12.1 4.7 26.3 27.6 30.0 29.5 27.6 11.1 
TG 54:4 12.8 12.8 12.2 11.1 12.1 8.0 5.8 12.5 13.3 14.5 15.6 15.7 8.9 
TG 54:3 4.3 3.7 4.4 5.0 5.9 5.3 5.0 4.2 4.2 4.7 5.1 5.6 6.0 
 
  Sample A 
  Isopropanol 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360  

minutes 
1  

day 
3  

days 
30 

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

TG 50:2 1.4 1.3 1.4 1.4 1.3 1.6 0.0 1.4 1.3 1.4 1.4 1.3 1.6 
TG 50:1 0.1 0.1 0.1 0.1 0.1 0.4 25.6 n.d. n.d. n.d. 0.1 0.1 0.6 
TG 52:5 0.8 0.9 0.9 0.9 0.9 1.1 n.d. 0.9 0.9 1.0 1.1 1.2 1.3 
TG 52:4 13.1 13.2 13.3 13.4 13.3 13.6 n.d. 13.4 13.3 13.7 13.6 13.8 13.7 
TG 52:3 4.9 4.4 4.6 5.2 4.4 5.1 8.4 4.6 4.4 4.4 4.7 4.2 4.7 
TG 52:2 1.3 1.2 1.3 1.3 1.3 1.6 12.2 1.1 1.1 1.2 1.1 1.1 1.5 
TG 54:7 1.4 1.5 1.5 1.4 1.6 1.8 4.5 1.6 1.7 1.7 1.7 2.2 2.1 
TG 54:6 34.0 36.3 34.5 33.2 35.1 34.7 15.5 34.9 35.8 36.0 35.2 37.8 36.1 
TG 54:5 30.4 29.6 29.9 29.8 29.4 27.4 19.1 30.0 30.0 28.9 29.6 26.2 24.6 
TG 54:4 9.8 9.0 10.0 10.7 9.9 9.1 7.3 9.6 9.0 9.1 9.3 8.8 8.8 
TG 54:3 2.8 2.6 2.7 2.6 2.7 3.5 7.4 2.5 2.5 2.5 2.3 3.3 5.1 
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Table 3.28: Species profile in % total TG. Data of sample B for either H2O, methanol or isopropanol are displayed. 
 
  Sample B 
  H2O 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
30  

minutes 
60 

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

TG 50:2 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 0.8 0.9 1.0 1.3 1.0 
TG 50:1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 
TG 52:5 0.5 0.7 0.6 0.4 0.4 0.4 0.5 0.6 0.9 0.6 0.5 0.8 0.5 
TG 52:4 9.2 9.2 9.3 10.1 10.1 8.5 10.2 10.5 8.5 9.2 10.0 11.1 10.2 
TG 52:3 5.7 5.5 5.6 5.5 5.0 5.0 5.7 5.1 5.6 5.5 5.8 5.2 5.5 
TG 52:2 2.9 2.8 2.6 2.6 2.4 3.8 2.9 2.2 2.4 3.5 2.6 3.0 2.7 
TG 54:7 1.3 3.4 2.0 0.7 0.7 1.0 0.9 1.5 3.9 1.6 1.5 2.2 1.1 
TG 54:6 25.1 24.1 24.5 26.0 28.4 22.9 24.9 29.3 23.9 24.0 24.8 24.7 26.6 
TG 54:5 28.9 28.1 28.9 29.3 29.3 24.9 28.0 29.0 29.5 26.9 29.6 26.9 28.4 
TG 54:4 16.0 16.0 16.6 15.2 15.4 13.8 15.6 13.9 16.8 15.3 15.4 14.6 15.2 
TG 54:3 9.4 9.0 8.7 9.1 7.2 18.7 10.1 7.0 7.4 12.1 8.6 10.0 8.7 
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  Sample B 
  Methanol 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
30  

minutes 
60 

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

TG 50:2 5.5 9.5 2.9 10.4 5.3 1.8 6.8 14.2 1.6 1.7 9.0 5.5 1.2 
TG 50:1 0.5 0.6 0.4 0.6 0.8 0.4 1.0 0.8 0.2 0.2 1.4 0.9 0.3 
TG 52:5 1.4 1.9 0.8 1.4 1.3 0.9 0.3 2.3 1.2 1.0 1.7 0.9 0.5 
TG 52:4 12.5 15.8 9.3 14.1 14.1 10.4 30.9 17.7 10.4 10.1 14.8 13.5 10.3 
TG 52:3 6.5 6.8 6.2 6.3 6.3 5.6 2.5 7.0 6.3 6.5 6.4 6.8 6.8 
TG 52:2 2.9 3.3 4.0 3.3 3.9 4.6 3.7 3.8 2.6 2.6 4.1 3.5 3.1 
TG 54:7 3.5 n.d. 1.7 11.2 n.d. 0.9 14.5 n.d. 5.5 2.5 n.d. n.d. 0.9 
TG 54:6 25.1 24.3 21.5 17.5 22.6 22.9 10.1 19.8 23.4 24.3 20.3 19.6 22.4 
TG 54:5 22.9 19.5 26.2 17.2 21.7 21.5 14.3 16.1 25.7 28.3 19.6 22.8 28.4 
TG 54:4 11.8 10.8 14.9 9.1 12.6 13.0 9.2 10.2 13.9 15.2 12.6 14.7 16.8 
TG 54:3 7.5 7.4 12.1 8.9 11.5 18.1 6.6 8.2 9.1 7.6 9.9 11.8 9.3 
 
  Sample B 
  Isopropanol 
 -80°C 4°C RT 

Species  
30  

minutes 
60  

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
30  

minutes 
60 

minutes 
180 

minutes 
360 

minutes 
1  

day 
3  

days 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

TG 50:2 1.1 1.0 1.0 1.0 1.1 1.1 3.0 1.0 1.0 1.1 1.0 1.0 1.0 
TG 50:1 0.2 0.2 0.1 0.2 0.2 0.4 5.7 0.1 0.1 0.1 0.1 0.2 0.4 
TG 52:5 0.8 0.8 0.8 0.9 0.9 1.0 4.4 0.9 0.9 0.9 0.9 1.1 1.3 
TG 52:4 10.9 10.6 10.7 10.8 11.3 10.9 10.3 10.8 10.8 10.8 10.7 11.2 11.3 
TG 52:3 5.2 5.1 5.1 5.1 5.3 5.2 5.8 5.1 4.9 4.7 4.5 4.0 4.1 
TG 52:2 2.5 2.5 2.4 2.4 2.4 2.4 3.4 2.4 2.3 2.3 2.1 1.9 1.5 
TG 54:7 3.4 3.4 3.4 3.6 3.9 4.3 7.3 3.5 3.5 3.7 4.1 5.1 5.8 
TG 54:6 26.8 26.5 27.1 27.9 28.4 28.4 20.3 27.6 27.5 27.9 29.2 31.9 34.3 
TG 54:5 28.0 28.1 27.7 27.0 26.8 26.1 20.7 27.7 28.1 28.2 28.1 26.8 25.0 
TG 54:4 13.3 13.6 13.5 13.0 12.3 12.1 11.1 13.2 13.1 12.7 12.2 10.7 10.0 
TG 54:3 7.9 8.2 8.1 8.0 7.5 7.9 7.9 7.7 7.7 7.6 7.1 6.2 5.4 
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Figure 3.10: Schematic illustration of DG and TG concentrations in H2O (left) and 
isopropanol (right) at either 4°C (above) or at room temperature (RT, below) between 
60 minutes and 4 days. Mean values of three different samples are shown. 
 
 
As the data in Table 3.21, Table 3.22 and Figure 3.8 already showed, the addition of 

isopropanol significantly increased DG concentrations in almost all samples. Whereas 

DG species seemed to be stable in water, the concentrations in isopropanol changed 

tremendously; in four of six samples the concentration even increased during the day. 

Each sample behaved differently. The storage temperature seemed to have a minor 

influence on the concentration, although no clear trend was apparent.  

Concentration between the two solvents differed for TG species. All samples in 

isopropanol showed a considerable drop of TG concentration after 24 hours after 

homogenization. However, the concentration in water seemed to be stable for most 

samples (Data shown in Table 3.29, Table 3.30, and Figure 3.10). Again, the increase 

of DG could not be explained by TG degradation in these samples because the 

increase of DG exceeded the decreased amount of TG. 
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Table 3.29: DG concentrations of six different samples in either H2O or isopropanol are displayed. The samples were stored at three 
different temperatures in a period from 60 minutes to 4 days, and immediately stored at -80°C. 
 

  
Diacylglycerol 
[nmol/mg dw] 

  sample A sample B sample C sample D sample E sample F 

temperature time H2O Isopropanol H2O Isopropanol H2O Isopropanol H2O Isopropanol H2O Isopropanol H2O Isopropanol 

 -80°C  1.37 3.99 1.60 8.08 2.84 4.06 6.49 50.83 0.23 28.86 1.84 352.75 

              
4°C 60 minutes 1.18 5.79 1.55 8.65 2.92 5.22 6.42 61.15 0.16 35.09 5.83 594.29 

 240 minutes 1.62 10.49 1.51 8.35 2.98 7.21 6.46 67.23 0.18 32.41 1.49 644.35 

 1 day 1.02 9.31 1.25 8.76 2.69 14.22 5.85 38.82 0.29 27.68 2.16 337.44 

 4 days 0.91 8.97 1.05 7.63 2.23 15.33 5.04 28.34 0.22 2.34 1.19 108.01 

              
RT 60 minutes 1.50 5.46 1.42 8.93 3.05 4.87 5.69 62.40 0.30 36.13 11.30 686.68 

 240 minutes 1.27 8.49 1.39 8.62 2.89 6.65 5.11 67.09 0.17 34.08 4.54 536.52 

 1 day 1.12 11.79 1.16 8.67 2.86 13.05 5.10 71.33 0.40 40.32 4.34 653.77 

  4 days 1.13 13.68 1.10 8.78 2.38 18.53 5.34 50.90 0.16 38.37 4.15 676.08 
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Table 3.30: TG concentrations of six different samples in either H2O or isopropanol are displayed. The samples were stored at three 
different temperatures in a period from 60 minutes to 4 days, and immediately stored at -80°C. 
 

  
Triacylglycerol 
[nmol/mg dw] 

  sample A sample B sample C sample D sample E sample F 

temperature time H2O Isopropanol H2O Isopropanol H2O Isopropanol H2O Isopropanol H2O Isopropanol H2O Isopropanol 

-80°C  12.84 12.39 9.40 6.13 17.37 17.99 78.34 52.01 0.17 8.48 5.06 70.35 

              
4°C 60 minutes 11.11 10.22 8.79 5.07 15.99 17.91 80.78 21.35 0.19 5.56 13.35 43.65 

 240 minutes 12.10 2.81 8.12 4.60 17.01 15.12 77.57 13.15 0.20 3.69 7.15 23.37 

 1 day 9.00 7.78 5.65 3.35 14.81 6.25 80.14 8.24 0.38 0.44 7.33 2.74 

 4 days 10.23 1.79 5.14 1.64 14.27 2.32 73.86 6.85 1.63 1.51 5.38 0.36 

              
RT 60 minutes 12.85 11.13 6.58 5.73 16.37 16.31 71.57 27.34 0.41 7.61 10.65 68.08 

 240 minutes 10.20 7.90 5.62 4.43 15.68 17.72 77.79 21.28 0.38 6.76 9.83 73.32 

 1 day 10.79 4.28 3.92 4.18 15.90 9.35 71.03 22.18 0.72 1.79 15.74 24.94 

 4 days 9.79 2.77 3.04 1.76 14.81 3.90 71.22 9.25 0.45 0.36 15.36 5.00 
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3.1.5.3 Effect of Freeze/Thaw Cycle 
 
To investigate the reason for the increase of DG concentrations in isopropanol, a new 

specimen was freshly homogenized and stored again at different conditions. This time 

the samples were extracted immediately afterwards and the remaining sample material 

was stored at -80°C (except the reference samples, Table 3.31). A significant 

difference in concentration could already be observed in the fresh sample material and 

changed tremendously after freezing. Whereas the samples in H2O, for both DG and 

TG species, showed an increased concentration after freezing, TG concentrations 

again decreased in isopropanol. Again, the aqueous samples seemed to be more 

stable before and after freezing.  

The increase of DG upon H2O and isopropanol addition seemed to be related to both 

disruption of bacteria resulting in improved extractability of DG and lipolysis of TG. The 

latter seemed to be triggered by addition of isopropanol in some samples and matched 

lipolytic activities observed in organic solvents (167, 168). These data clearly 

demonstrate that further studies are warranted to evaluate optimal pre-analytic 

conditions for fecal samples as well as the origin of these differences.  
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Table 3.31: Sum concentrations are listed for DG and TG species of sample C. The sample was homogenized and stored at different 
temperatures between 60 minutes and 4 days. Samples were extracted and measured directly after homogenization (fresh sample) as 
well as after freezing (sample after freezing).  
 

   sample C 

    Diacylglycerol Triacylglycerol 

temperature time 
fresh sample sample after freezing fresh sample sample after freezing 

H2O  
[nmol/mg dw] 

Isopropanol 
[nmol/mg dw] 

H2O  
[nmol/mg dw] 

Isopropanol 
[nmol/mg dw] 

H2O  
[nmol/mg dw] 

Isopropanol 
[nmol/mg dw] 

H2O  
[nmol/mg dw] 

Isopropanol 
[nmol/mg dw] 

 -80°C  6.49 50.8 14.57 24.58 78.34 52.01 102.14 35.46 

          
4°C 60 minutes 6.42 61.15 13.30 35.03 80.78 21.35 95.84 21.23 

 240 minutes 6.46 67.23 12.09 35.32 77.57 13.15 90.48 19.03 

 1 day 5.85 38.82 9.83 24.45 80.14 8.24 87.06 7.18 

 4 days 5.04 28.34 9.74 24.69 73.86 6.85 74.71 4.68 

          
RT 60 minutes 5.69 62.40 11.56 37.96 71.57 27.34 95.57 23.34 

 240 minutes 5.11 67.09 11.21 34.74 77.79 21.28 83.50 17.63 

 1 day 5.10 71.33 10.55 27.48 71.03 22.18 86.75 14.38 

  4 days 5.34 50.90 10.40 26.80 71.22 9.25 78.46 12.90 
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3.1.5.4 Effect of Sample Preparation 
 
Finally, we checked whether there is a possibility to stabilize DG and TG 

concentrations over several days by addition of SDS (0.1%, 1.0%, 2.0%, and 3.0%) as 

shown in Table 3.32. The samples were stored at different conditions again as 

described before. Concentrations for DG and TG decreased despite the addition of 

SDS; hence this detergent is not suitable as a stabilizer. Deviation of the double values 

of DG species was below 12% for all samples, whereas it was below 21% for TG 

species, indicating at least an acceptable technical reproducibility.  

 

Table 3.32: An isopropanol containing sample was analyzed without SDS as well as 
after addition of four different SDS concentrations. The sample was measured twice. 
Mean DG and TG species concentrations and the coefficient of variation are displayed.  
 

    Diacylglycerol Triacylglycerol 

SDS time 
Mean (n=2)  

[nmol/mg dw] 
Mean (n=2)  

[nmol/mg dw] 
without SDS 0 minutes 84.03 19.72 
 60 minutes 88.37 14.40 
 240 minutes 75.03 12.84 

 1 day 60.33 9.54 

 4 days 40.77 6.35 

    
0.1% 0 minutes 88.90 15.53 
 60 minutes 79.04 12.24 
 240 minutes 87.84 13.32 

 1 day 68.95 10.45 

 4 days 51.23 5.01 

    
1.0% 0 minutes 91.41 15.78 
 60 minutes 92.38 12.38 
 240 minutes 84.98 12.80 

 1 day 45.69 6.99 

 4 days 56.71 5.00 

    
2.0% 0 minutes 64.82 10.31 
 60 minutes 104.79 13.47 
 240 minutes 92.00 24.95 

 1 day 70.11 10.31 

 4 days 61.03 4.94 

    
3.0% 0 minutes 86.14 16.83 
 60 minutes 94.41 14.00 
 240 minutes 103.50 14.36 

 1 day 69.86 9.82 
  4 days 49.65 4.32 
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3.1.5.5 Effect of Intra-Individual Variance 
 
As mentioned above, 20 different samples were measured in a first step and analyzed. 

A high heterogeneity of the samples could be observed. DG and TG species were 

strongly sample-dependent in the number and type of species detected. Therefore, we 

asked whether DG and TG species profile possibly changed for one individual person, 

whose raw fecal material was collected on different days (intra-individual variance). 

 
 
Table 3.33: DG and TG sum concentrations of homogenized fecal material from three 
different, healthy voluntary donors are displayed. The raw feces were collected on five 
different days. Each sample was analyzed only once.  
 

   

Volunteer A Volunteer B Volunteer C 

DG sum TG sum DG sum TG sum DG sum TG sum 

[nmol/mg dw] [nmol/mg dw] [nmol/mg dw] [nmol/mg dw] [nmol/mg dw] [nmol/mg dw] 

day 1 4.53 0.22 1.34 0.48 2.71 0.32 

day 2 1.06 0.12 9.35 1.51 2.09 0.59 

day 3 18.99 3.81 0.97 0.41 5.88 3.20 

day 4 5.48 4.43 0.77 0.16 6.24 2.53 

day 5 4.30 1.35 0.95 0.97 4.30 0.42 

 
 

For this experiment samples were collected and analyzed from three voluntary donors 

on five different days. The sum concentrations for DG and TG of the respective donors 

are shown in Table 3.33. For volunteer A, for example, the DG concentration on day 3 

was three times higher in comparison to the other days. This could also be seen for 

volunteer B and C. Even the species profile in % (Table 3.34 and Table 3.35) showed 

significant variations for both DG and TG species. Since this experiment did not provide 

any information regarding diet, medication, or stool grades, it is difficult to determine 

the exact cause of these deviations. For subsequent experiments dealing with this 

topic, potential influence factors should be recorded in order to draw exact conclusions 

about the intra-individual fecal lipidome.  
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Table 3.34: Species profile in % total DG of the data listed in Table 3.33. 

Species 
Volunteer A Volunteer B Volunteer C 

day 1 day 2 day 3 day 4 day 5 day 1 day 2 day 3 day 4 day 5 day 1 day 2 day 3 day 4 day 5 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

DG 34:3 0.6 2.0 0.1 0.2 0.6 1.3 0.5 2.0 3.2 2.3 1.8 2.3 1.9 1.6 1.4 
DG 34:2 11.7 12.0 2.2 2.6 6.3 9.4 7.0 9.2 5.8 7.9 11.4 11.9 8.9 6.4 13.7 
DG 34:1 2.2 22.4 9.0 9.5 7.6 7.2 4.9 8.1 12.7 8.9 5.3 4.9 3.7 6.2 2.8 
DG 36:5 0.7 1.8 0.1 0.2 1.2 1.7 1.1 3.7 5.0 4.0 8.8 8.7 5.7 4.0 4.4 
DG 36:4 52.0 27.6 4.3 4.9 18.7 30.9 26.9 29.2 46.2 34.7 38.5 40.7 40.2 31.1 43.9 
DG 36:3 22.3 13.7 17.3 16.5 24.4 28.8 27.4 18.6 10.3 19.3 22.7 20.2 25.5 21.2 23.8 
DG 36:2 10.5 20.6 66.9 66.1 41.3 20.7 32.2 29.1 16.8 22.9 11.6 11.4 14.1 29.5 10.0 
 
 
Table 3.35: Species profile in % total TG of the data listed in Table 3.33. 

Species 
Volunteer A Volunteer B Volunteer C 

day 1 day 2 day 3 day 4 day 5 day 1 day 2 day 3 day 4 day 5 day 1 day 2 day 3 day 4 day 5 
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

TG 50:2 2.3 6.7 0.4 0.5 0.8 1.2 1.2 2.7 2.2 5.3 2.5 2.3 1.4 1.2 2.6 
TG 50:1 2.6 15.5 1.0 1.3 1.6 5.9 0.9 5.3 7.7 27.3 2.1 1.8 0.5 1.8 1.2 
TG 50:0 6.8 29.9 0.0 0.5 1.6 56.0 0.2 35.1 51.6 31.9 2.5 2.1 n.d. n.d. 0.8 
TG 52:3 5.6 2.6 3.3 3.4 4.0 3.0 5.8 4.8 0.0 1.9 8.0 6.7 6.9 4.5 8.3 
TG 52:2 3.4 14.9 11.4 11.9 11.4 6.4 8.3 8.8 7.4 5.2 5.8 4.7 4.1 14.1 4.4 
TG 54:7 0.9 n.d. 0.1 0.0 0.3 0.1 0.5 0.7 0.2 0.7 8.7 10.0 4.4 2.2 4.5 
TG 54:6 30.2 7.7 1.5 1.0 3.1 3.4 10.7 3.4 2.3 4.7 21.1 20.1 27.6 6.8 23.5 
TG 54:5 23.5 7.7 4.9 4.4 7.7 6.8 18.1 6.2 3.4 5.7 22.5 16.4 26.3 8.3 27.1 
TG 54:4 17.7 6.9 18.0 16.9 18.9 8.5 16.8 7.8 7.4 6.6 14.9 17.1 17.3 12.1 18.4 
TG 54:3 7.0 8.1 59.4 60.1 50.6 8.7 37.5 25.2 17.8 10.7 11.9 18.8 11.5 49.0 9.2 
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3.1.5.6 Evaluation of Background 
 

Finally, the influence of different tubes used during homogenization (gentleMACSTM 

tubes, Sarstedt tubes, and Eppendorf tubes) was investigated for different solvents. 

None of the materials contained larger amounts of DG and TG species and therefore 

could be further used for homogenization (data not shown). Internal standard blanks 

were used for background correction. The solvents used for analysis (H2O, MeOH, 

EtOH, and isopropanol) were spiked with a defined amount of IS and subjected to the 

described extraction without matrix. None of the solvents used showed significant 

concentrations for lipid species found in fecal material (data not shown). Therefore, an 

influence of the background for all solvents could be excluded.  

 

3.1.5.7 Summary – Pre-Analytics 
 
Currently, we cannot explain the aggregation induced by addition of isopropanol, as 

mentioned before. The increase of DG upon isopropanol addition seemed to be related 

to both lipolysis of TG species and disruption of bacteria resulting in improved 

extractability of DG species.  

Concentrations of DG and TG species in fecal material were stable in H2O for at least 

one day at RT, whereas in isopropanol the concentration already changed after one to 

three hours.  

Besides that, preliminary data showed that already one freeze-thaw cycle seemed to 

influence the concentrations of both lipid classes. Homogenization in H2O showed 

higher concentrations after freezing, possibly due to increased extractability.  

Using SDS as stabilizer did not stabilize concentrations substantially. 

Together, these data suggest that for DG/TG quantification fecal samples should be 

collected natively and homogenized in water but not in isopropanol. Clearly, further 

experiments are needed to evaluate pre-analytics in more detail.  

Preliminary data suggest a high intra-individual variance of both DG and TG 

concentrations and species profiles. This may be related to diet but clearly needs 

further evaluation.  

In summary, these data clearly demonstrate that pre-analytics is very important for 

stability, homogenization, and analysis of human fecal material and that further studies 

are warranted to changes in DG/TG concentrations. 
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3.2. Lipid Species Profile of Human Fecal Samples in Negative Ion Mode 
 

In order to obtain better results for lyso-phospholipids and glycerophospholipids, 

further tests were carried out to enhance ionisation in negative ion mode. Extraction of 

the samples was again performed according to the protocol by Bligh and Dyer. 

Samples were resuspended using different solvents and additives before 

measurement on the Q Exactive Orbitrap. Table 3.36 lists the solvent combinations 

used with the corresponding additives and additive concentrations. In a first step, an 

internal standard mix (see Table 3.37) was analyzed using different solvents: LM1 

(178), LM3 a/b (179), LM4 (180), and LM6 (124). Instead of ammonium acetate as 

described in (178), LM1 was spiked with ammonium formate.  

 
 
Table 3.36: Comparison of different solvents, additives, and concentrations for 
measurements in negative ion mode. Solvents containing methylamine were either 
prepared from aqueous (a) or EtOH-containing (b) solutions. Experiments using LM2 
(MeOH/CHCl3 (5:1 v/v)) were performed in different concentration of methylamine 
solution. 
 
 
 

Solvent Additive Concentration 

LM1 2-propanol/MeOH/H2O  
(8:5:1 v/v/v) 

 

ammonium formate 
 

7.5 mM 

LM2 a/b 2-propanol/MeOH/H2O  
(8:5:1 v/v/v) 

methylamine solution 
a) H2O 

b) EtOH 
 

0.005 % 
 

LM3 a/b MeOH/CHCl3 
(5:1 v/v) 

methylamine solution 
a) H2O 

b) EtOH 
 
 

0.005 % 
0.01 % 
0.05 % 
0.1 % 

LM4 EtOH/CHCl3 
(4:1 v/v) 

trimethylamine solution 
EtOH 

 

0.1 % 
 

LM5 a/b EtOH/CHCl3 
(4:1 v/v) 

methylamine solution 
a) H2O 

b) EtOH 
 

0.005 % 

LM6 2-propanol/MeOH/CHCl3 
(4:2:1 v/v/v) 

 

ammonium formate 7.5 mM 

LM7 a/b 2-propanol/MeOH/CHCl3 
(4:2:1 v/v/v) 

methylamine solution 
a) H2O 

b) EtOH 

0.005 % 
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Table 3.37: Internal Standard (IS) including respective m/z values for [M-H]- ions 
applied in negative ion mode analysis, as well as the intensities obtained from different 
solvents (LM1, LM3 a, LM3 b, LM4, and LM6) are displayed. Methylamine 
concentration was set to 0.005% for LM3 a and LM3 b.  
 

Species m/z [M-H]- LM1 LM3 a LM3 b LM4 LM6 

FA 13:0 213.1860 1.64E+05 1.20E+06 2.94E+07 3.73E+05 5.17E+04 

FA 18:0 283.2643 4.96E+06 1.34E+08 1.75E+08 1.98E+07 1.01E+07 

FA 18:2 279.2330 1.82E+07 2.41E+08 3.18E+08 3.19E+07 2.41E+07 

FA 20:4 303.2330 8.50E+07 2.65E+08 3.48E+08 4.23E+07 8.43E+07 

FA 23:0 353.3425 7.14E+05 2.49E+06 6.61E+07 8.30E+05 2.51E+04 

MG 13:0 287.2227 6.26E+05 7.97E+06 1.94E+06 6.46E+05 4.67E+04 

MG 19:0 371.3167 5.19E+06 2.57E+07 5.87E+06 1.51E+06 1.25E+06 

DG 28:0 511.4368 8.10E+05 8.73E+06 2.16E+06 2.88E+05 1.67E+05 

DG 40:0 679.6246 2.54E+06 6.68E+06 1.25E+06 1.55E+05 1.78E+06 

LPE 13:0 410.2313 2.14E+06 6.76E+06 7.16E+06 8.42E+06 4.38E+06 

PE 28:0 634.4453 1.39E+07 3.24E+07 3.38E+07 3.66E+06 2.22E+07 

PE 40:0 802.6331 8.21E+06 1.97E+07 1.97E+07 1.64E+06 9.07E+06 

PG 28:0 665.4399 7.78E+06 3.33E+07 3.41E+07 4.89E+07 1.75E+07 

PG 40:0 833.6277 7.66E+06 3.01E+07 3.06E+07 3.54E+07 1.16E+07 

PI 34:0 837.5499 5.37E+06 1.70E+07 1.58E+07 1.40E+07 7.85E+06 

PS 28:0 678.4352 9.11E+06 6.98E+07 5.31E+07 2.28E+07 7.38E+06 

PS 40:0 846.6230 8.43E+06 5.23E+07 4.45E+07 2.06E+07 6.96E+06 

HexCer 30:1;2 642.4950 1.76E+06 7.41E+05 9.00E+04 2.32E+04 2.31E+06 

HexCer 35:1;2 712.5733 1.60E+06 5.90E+05 7.85E+04 1.66E+04 2.06E+06 

Cer 32:1;2 508.4735 4.11E+06 3.00E+06 5.51E+05 2.44E+05 4.03E+06 

Cer 35:1;2 550.5205 5.12E+06 4.09E+06 7.56E+05 3.17E+05 4.82E+06 
 
Highest intensities could be found for PC, LPC, Cer, and HexCer internal standards 

while using LM1 or LM6, respectively (data not shown). This could be explained by the 

addition of ammonium formate, which favours the formation of formate adduct ions of 

these lipid species in negative ion mode. For other phospholipid classes and especially 

for free fatty acyls, the data in Table 3.37 showed a significant increase in intensity for 

LM3 a/b (0.005% MA). This in turn could be associated with the addition of 

methylamine (MA) since it supports deprotonation of these lipid classes. In this case, 

the addition of trimethylamine did not result in significant improvement compared to 

methylamine (see also Figure 3.11). In addition, several methylamine concentrations 

were tested using LM3 a/b (MeOH/CHCl3 (5:1 v/v)): 0.005%, 0.01%, 0.05%, and 0.1%), 

showing highest intensities for 0.005% MA (data not shown). For this reason, 0.005% 

MA was added to all previously described solvent combinations for following 

experiments. LM6 which is used as standard solvent in our laboratory served as a 

reference for each test. 
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Figure 3.11: Bar charts of [M-H]- ions of lyso-phospholipid species, phospholipids, and 
FA species analyzed in negative ion mode are displayed. Samples were measured 
once each in different solvents, see Table 3.36. The corresponding adducts are listed 
in Table 3.37.  
 

3.2.1 Evaluation of Lipid Species in Plasma 
 
In order to evaluate the addition of bases, tests were carried out using plasma samples 

instead of fecal material. Numerous studies have already been published dealing with 

plasma, showing lipid species typically present in this sample material (181). For feces, 

only a few studies have been published to date (154) and it is still unclear, whether 

glycerophospholipids are present in sufficient amounts. 

Three different aspects were considered regarding this experiment. First, different 

solvents were compared (LM2 a, LM3 a, LM5 a, LM7 a, and LM6, see Table 3.36). 

Second, a comparison between methylamines in each stock solution (H2O and EtOH) 

was made, and finally the different methylamine concentrations in aqueous and 

ethanol-containing solutions were compared (0.005%, 0.01%, 0.5%, and 0.1%), see 

Table 3.38.  

Data of this measurement reflected the results explained at the beginning. LM3 b 

(MeOH/CHCl3 (5:1 v/v) with 0.005% methylamine) showed best results for lipid classes 

FA, PE, LPE, and PI, and therefore could be advantageously applied for the analysis 

of these lipid classes.  

In a further experiment the stability of the two solvents LM3 b and LM6 was tested. For 

this purpose, the samples were measured and analyzed again after one week under 
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the same conditions. Data are shown in Figure 3.12. These data reflect the previous 

results. Lipid species of FA, PE, and PI were more stable in the methylamine-

containing solvent.  

For this reason, we would currently recommend dissolving the samples after extraction 

in both methylamine and formate containing solvents before measurement on the Q 

Exactive Orbitrap in order to obtain an optimal identification and quantification of all 

lipid classes.  

 

 
 
Figure 3.12: Panels show concentrations of A) [M-H]- ions of FA species, B) [M-H]- ions 
of PE species, and C) [M-H]- ions of PI species in a plasma sample containing either 
0.005% methylamine (LM3 b, left) or formate (LM6, right). Samples were analyzed on 
two different days (run 1 and run 2) within one week. 

A 

B 

C 

LM3 b LM6 
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Table 3.38: Intensities for FA, PE, and PI species in plasma samples obtained from different methylamine concentrations (0.005%, 
0.01%, 0.05%, and 0.1%) in either LM3 a or LM3 b are displayed. 
 
  Methylamine Concentration 

  LM3 a LM3 b 
    0.005% 0.01% 0.05% 0.1% 0.005% 0.01% 0.05% 0.1% 
FA FA 16:2 2.91E+05 2.34E+05 2.58E+05 2.28E+05 3.29E+05 2.44E+05 2.42E+05 2.32E+05 

 FA 16:1 1.28E+07 9.62E+06 1.08E+07 9.86E+06 1.33E+07 1.04E+07 1.07E+07 1.01E+07 

 FA 16:0 1.32E+08 1.36E+08 1.30E+08 9.49E+07 1.29E+08 1.21E+08 1.14E+08 9.69E+07 

 FA 18:3 7.63E+06 6.90E+06 5.51E+06 4.54E+06 9.55E+06 7.82E+06 4.80E+06 4.46E+06 

 FA 18:2 4.90E+07 3.89E+07 3.97E+07 3.75E+07 5.75E+07 4.12E+07 3.92E+07 3.77E+07 

 FA 18:1 1.70E+08 1.29E+08 1.47E+08 1.36E+08 1.90E+08 1.34E+08 1.44E+08 1.37E+08 

 FA 18:0 5.11E+07 6.12E+07 5.04E+07 3.54E+07 4.47E+07 4.67E+07 4.33E+07 4.21E+07 

 FA 20:4 3.68E+06 2.89E+06 3.58E+06 3.18E+06 3.92E+06 3.02E+06 3.41E+06 3.19E+06 

 FA 22:6 1.00E+06 7.60E+05 9.24E+05 8.51E+05 1.07E+06 8.14E+05 9.11E+05 8.18E+05 
          
PE PE 34:2 4.30E+04 2.93E+04 2.06E+04 1.00E+04 3.12E+04 2.72E+04 2.50E+04 7.07E+03 

 PE 34:1 3.16E+04 2.24E+04 1.84E+04 9.52E+03 2.39E+04 2.10E+04 2.33E+04 6.53E+03 

 PE 36:4 8.87E+04 6.41E+04 5.93E+04 3.49E+04 9.95E+04 6.43E+04 5.83E+04 2.57E+04 

 PE 36:3 1.44E+04 4.86E+03 5.89E+03 3.55E+03 1.58E+04 1.42E+04 1.18E+04 6.62E+03 

 PE 36:2 2.39E+05 1.66E+05 1.56E+05 1.24E+05 2.26E+05 1.57E+05 1.68E+05 1.13E+05 

 PE 36:1 5.25E+04 1.79E+04 2.41E+04 1.61E+04 3.90E+04 1.76E+04 3.55E+04 2.23E+04 

 PE 38:6 8.58E+04 6.64E+04 7.46E+04 3.62E+04 9.56E+04 6.10E+04 6.51E+04 4.02E+04 

 PE 38:5 7.53E+04 4.52E+04 3.53E+04 1.32E+04 4.99E+04 5.10E+04 3.77E+04 1.56E+04 

 PE 38:4 3.15E+05 2.54E+05 2.12E+05 1.61E+05 3.19E+05 2.28E+05 2.35E+05 1.69E+05 

 PE 40:6 7.95E+04 5.14E+04 4.92E+04 1.57E+04 7.00E+04 5.74E+04 5.64E+04 2.47E+04 
          
PI PI 34:2 1.71E+04 2.97E+03 3.55E+03 1.56E+04 3.37E+04 2.36E+04 2.94E+03 2.41E+04 

 PI 34:1 1.43E+05 9.91E+04 8.99E+04 6.61E+04 1.32E+05 1.12E+05 1.28E+05 8.60E+04 

 PI 36:4 5.59E+04 3.64E+04 3.32E+04 1.79E+04 6.16E+04 4.48E+04 3.75E+04 1.64E+04 

 PI 36:3 2.70E+04 2.30E+04 3.26E+04 1.48E+04 3.43E+04 2.45E+04 3.34E+04 1.39E+04 

 PI 36:2 1.56E+05 9.80E+04 7.51E+04 3.98E+04 1.57E+05 1.05E+05 9.19E+04 4.53E+04 

 PI 36:1 8.11E+04 5.91E+04 5.23E+04 2.70E+04 9.01E+04 5.88E+04 5.95E+04 3.23E+04 

 PI 38:6 6.22E+03 3.66E+03 7.74E+03 1.28E+04 5.51E+03 2.90E+03 1.03E+04 1.48E+04 

 PI 38:4 8.04E+05 5.41E+05 4.41E+05 2.41E+05 8.36E+05 5.72E+05 5.12E+05 2.59E+05 

 PI 38:3 1.18E+05 8.26E+04 6.10E+04 3.26E+04 1.29E+05 8.93E+04 7.62E+04 3.69E+04 
  PI 40:6 2.73E+04 1.83E+04 1.58E+04 4.56E+03 2.84E+04 2.01E+04 1.76E+04 6.46E+03 
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3.2.2 Evaluation of Lipid Species in Feces 
 
Finally, LM3 b and LM6 were compared for the identification and quantification of lipids 

contained in feces in negative ion mode. For this experiment, samples from three 

different voluntary donors, whose raw fecal materials were collected on four different 

days, were measured in triplicates. This experiment is independent of the intra-

individual variance described in 3.1.4 Evaluation of Reproducibility Issues. Figure 3.13 

displays mass spectra from one human fecal sample analyzed in negative ion mode. 

Three different mass ranges used for analysing the two solvents (LM3 b and LM6) 

were compared. Spectra differed substantially between the solvents. While the 

intensities of the free fatty acyls were significantly higher in the methylamine-containing 

sample, internal standards of phospholipids were dominant in the mass range of m/z 

500 – 960 in ammonium formate. Lysolipids could not be detected in either solvent. 

Mass range of phospholipid species showed, despite high intensity for the internal 

standards, no peaks that matched lipid species with sufficient intensities. Most species 

were detected at low intensities close or below the detection limit.  
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Figure 3.13: Mass spectra from one individual human fecal sample analyzed in 
negative ion mode are displayed. Panel A shows the mass range of FA species 
(m/z 150 – 450) and panel B of phospholipid species (m/z 500 – 960). The upper 
spectrum shows the sample with a 0.005 % methylamine containing solvent, whereas 
the lower spectrum displays the same sample dissolved in a formate containing 
solvent. Intensities of the detected species are shown. The corresponding adducts are 
listed in Table 3.37. 

A 

B 

LM3 b 

LM6 

LM3 b 

LM6 
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Table 3.39: Concentration of FA species analyzed with [M-H]- ions from three different 
donors, whose raw fecal materials were collected on four different days are displayed. 
Samples were dissolved in MeOH/CHCl3 (5:1 v/v) containing 0.005% methylamine in 
ethanol (LM3 b). Each sample was analyzed in triplicates.  
 

 FA Sum 

 Mean (n=3) 
[nmol/mg dw] 

CV  
[%] 

donor A1 426.41 5.4 

donor A2 408.30 7.6 

donor A3 381.71 3.5 

donor A4 377.54 4.2 

donor B1 430.33 3.0 

donor B2 401.82 6.2 

donor B3 411.60 2.6 

donor B4 351.44 4.0 

donor C1 444.69 1.2 

donor C2 405.94 4.7 

donor C3 401.05 4.9 

donor C4 398.74 4.4 

 

Table 3.39 shows that analysis of free fatty acyls in methylamine containing solvent 

LM3 b revealed a wide range of species. Most common species were listed in Table 

3.40 and in the corresponding species profile in % of total FA in Table 3.41. 

Concentrations of free fatty acids were corrected for background.  

Since these species were also detected at high intensities in the background and all 

samples showed almost an identical profile, these data should be validated similarly 

as shown for DG and TG.  
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Table 3.40: Calculation of CV for free fatty acyl species from three different donors, whose raw fecal materials were collected on four 
different days. Samples were dissolved in MeOH/CHCl3 (5:1 v/v) containing 0.005% methylamine in ethanol (LM3 b). Each sample was 
analyzed in triplicates. Evaluation of [M-H]- ions of FA species. Data were corrected for the background detected in the internal standard 
blanks. 
 

  FA 16:1 FA 16:0 FA 18:3 FA 18:2 FA 18:1 FA 18:0 FA 20:1 FA 20:0 

sample 

Mean 
(n=3) 
[nmol/ 
mg dw] 

CV [%] 

Mean 
(n=3) 
[nmol/ 
mg dw] 

CV [%] 

Mean 
(n=3) 
[nmol/ 
mg dw] 

CV [%] 

Mean 
(n=3) 
[nmol/ 
mg dw] 

CV [%] 

Mean 
(n=3) 
[nmol/ 
mg dw] 

CV [%] 

Mean 
(n=3) 
[nmol/ 
mg dw] 

CV [%] 

Mean 
(n=3) 
[nmol/ 
mg dw] 

CV [%] 

Mean 
(n=3) 
[nmol/ 
mg dw] 

CV [%] 

donor A1 1.11 5.8 121.70 5.5 6.22 4.9 37.51 4.6 80.91 6.0 104.66 6.1 1.63 4.1 2.96 6.5 

donor A2 1.10 7.5 115.52 7.8 6.66 7.9 37.20 8.2 74.76 8.1 100.69 8.0 1.52 8.3 2.82 7.0 

donor A3 1.03 3.6 106.92 3.6 6.55 3.8 36.47 3.5 69.19 3.6 91.13 4.1 1.34 4.0 2.54 2.7 

donor A4 1.03 3.3 105.10 3.8 6.71 4.1 37.28 4.4 67.98 4.8 90.15 4.7 1.28 5.5 2.48 4.8 

donor B1 1.14 3.2 125.42 3.0 6.78 3.3 37.56 2.9 78.14 3.1 105.56 3.6 1.61 3.4 3.10 4.5 

donor B2 1.04 5.6 114.52 7.8 7.14 9.5 36.32 5.0 72.91 5.3 98.77 4.8 1.47 5.7 2.86 6.6 

donor B3 1.09 2.8 117.39 2.4 8.34 4.0 37.96 3.1 74.68 3.1 98.77 2.9 1.43 1.8 2.93 0.9 

donor B4 0.93 4.1 95.26 3.8 7.79 4.5 33.99 4.4 63.00 4.3 85.05 4.2 1.18 4.1 2.33 3.4 

donor C1 1.17 0.6 129.08 1.8 7.41 4.9 39.49 0.7 82.54 1.8 108.94 0.9 1.68 0.4 3.18 1.5 

donor C2 1.06 5.7 114.68 5.5 7.75 3.2 37.97 5.4 75.84 3.3 97.22 4.5 1.49 5.1 2.83 6.0 

donor C3 1.05 4.7 113.94 5.0 8.37 4.0 38.33 4.1 73.73 5.0 94.76 5.6 1.42 5.7 2.78 6.0 

donor C4 1.04 5.8 113.22 5.7 8.40 4.1 38.01 5.6 72.55 3.1 95.03 3.4 1.40 3.8 2.87 6.1 
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 Table 3.41: Species profile in % total FA of the data listed in Table 3.40. 
 

Species 
donor A1 

[%] 
donor A2 

[%] 
donor A3 

[%] 
donor A4 

[%] 
donor B1 

[%] 
donor B2 

[%] 
donor B3 

[%] 
donor B4 

[%] 
donor C1 

[%] 
donor C2 

[%] 
donor C3 

[%] 
donor C4 

[%] 

FA 16:1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

FA 16:0 34.5 34.4 34.4 34.2 35.3 34.6 34.7 33.5 34.9 34.3 34.5 34.5 

FA 18:3 1.7 1.9 2.0 2.1 1.9 2.1 2.4 2.6 2.0 2.2 2.4 2.5 

FA 18:2 10.3 10.7 11.3 11.7 10.3 10.6 10.9 11.4 10.4 11.0 11.2 11.2 

FA 18:1 22.3 21.6 21.5 21.4 21.4 21.4 21.4 21.3 21.7 22.0 21.7 21.4 

FA 18:0 29.4 29.7 29.0 29.0 29.5 29.6 28.9 29.5 29.3 28.8 28.5 28.7 

FA 20:1 0.5 0.5 0.4 0.4 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.4 

FA 20:0 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9 0.9 0.9 0.9 1.0 
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3.2.3 Summary 
 
These data showed that a direct measurement of (lyso)glycerophospholipids is not 

possible for feces despite enhanced intensities in negative ion mode upon MA addition. 

For other samples, such as plasma or tissue, methylamine provided higher intensities 

for lipid classes which are preferably deprotonated in negative ion mode. Therefore, it 

could be useful to analyze samples with both methylamine and formate containing 

solvents in order to cover more lipid classes.  

Currently, there are hardly any studies regarding the human fecal lipidome. The 

literature in this respect is not uniform and a quantification of phospholipids is not 

sufficiently described either (154, 155, 182). According to a study published in 1970 by 

Erb et al. (183), the daily fecal lipid extraction was found between 0.55 and 1.93 g/day. 

The largest proportion was accounted by esterified and free neutral sterols, 25% was 

free fatty acyls, whereas phospholipids could only be detected in small amounts. 

Analysis of free fatty acyls in methylamine provided good signals, but data should be 

interpreted with caution due to high amounts of FA in the background. It seems that 

there are only small amounts of other lipid classes, especially phospholipids, present 

in feces, hence a direct measurement is not possible. “Shotgun” methods seem to be 

too insensitive. Therefore, chromatographic techniques, such as LC-MS, should be 

used to increase the sensitivity for polar lipids (184-186).  

Another possibility to detect phospholipids might be to separate polar from non-polar 

lipids, as described for example by Vale et al. (187). The three-phase lipid extraction 

(3PLE) technique uses a single step liquid-liquid extraction and allows both extraction 

and fractionation of lipids by their polarity as it consists of an aqueous and two organic 

phases. The neutral lipids such as DG and TG are primarily extracted in the more non-

polar upper organic phase, whereas the middle organic phase contains mainly 

glycerophospholipids. Thus, suppression of TG species could be reduced.  

The reason for low phospholipid concentrations might be that bacterial lipids are not 

accessible due to insufficient homogenization of the fecal material. As already 

described in detail for DG and TG species, a sufficient homogenization of this sample 

material is challenging. Phospholipids could perhaps be made accessible through an 

additional homogenization step, e.g. by using the Precellys® homogenizer or by 

adding a detergent. Another reason may be their low concentration in feces. To answer 

this question, further tests are needed.  
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4. Conclusion 
 

This thesis describes the development of a mass spectrometric method for the 

identification and quantification of lipid species in human fecal material using flow 

injection analysis (FIA) coupled to a high-resolution FTMS instrument. This is, to our 

knowledge, the first method using a conventional LC pumping system to infuse crude 

lipid extracts and to analyze DG and TG in human feces. Up to now, only a few studies 

on the fecal lipidome exist which is most likely related to the difficulties faced with this 

sample material (134, 154).  

 

The proposed method has a short run time of four minutes per sample, including MS2 

measurements, facilitating a high sample throughput necessary for clinical studies. 

Validation of the novel method demonstrated its suitability for large scale studies 

despite the higher variations observed for some samples. These variations are related 

to inhomogeneity of samples and lipolytic activity that requires further investigations 

considering pre-analytical issues as an essential part of lipidomic workflows and their 

standardization (165, 166, 188). Therefore, we recommend performing measurements 

in triplicates when high accuracy is needed. In this regard, sampling is very important 

since metabolites are distributed in a highly heterogeneous way in feces and 

homogenization of larger quantities is recommended (189). For determination of the 

concentrations of DG and TG species, native samples are preferred due to better 

stability over several days at RT. Species profiles showed stable values and could 

therefore be used for studies to evaluate a more precise statement about DG and TG 

species.  

 

Evaluation of the data also showed that using direct injection mass spectrometry is not 

suitable for identification and quantification of other lipid classes besides DG and TG. 

Despite optimization of the negative ion mode by addition of a base to enhance signals 

of phospholipids, this method could not detect substantial amounts of phospholipids in 

fecal samples.  

For this reason, the sensitivity of the method should be increased for subsequent 

experiments in order to be able to detect polar lipids, for example by using a LC-MS in 

hydrophilic interaction liquid chromatography (HILIC) mode. 
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In summary, the presented method provides a valuable tool to quantify DG and TG 

species as major lipid classes in human fecal samples. These data could be a first step 

to unravel the fecal lipidome and get more insight into its role for health and disease. 
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