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Rare genetic variants affecting urine metabolite
levels link population variation to inborn errors
of metabolism
Yurong Cheng1,2, Pascal Schlosser 1, Johannes Hertel3,4, Peggy Sekula 1, Peter J. Oefner5,

Ute Spiekerkoetter6, Johanna Mielke7, Daniel F. Freitag 7, Miriam Schmidts 6, GCKD Investigators*,

Florian Kronenberg 8, Kai-Uwe Eckardt 9,10, Ines Thiele3,11,12, Yong Li 1 & Anna Köttgen 1,13✉

Metabolite levels in urine may provide insights into genetic mechanisms shaping their related

pathways. We therefore investigate the cumulative contribution of rare, exonic genetic variants

on urine levels of 1487 metabolites and 53,714 metabolite ratios among 4864 GCKD study

participants. Here we report the detection of 128 significant associations involving 30 unique

genes, 16 of which are known to underlie inborn errors of metabolism. The 30 genes are

strongly enriched for shared expression in liver and kidney (odds ratio = 65, p-FDR= 3e−7),

with hepatocytes and proximal tubule cells as driving cell types. Use of UK Biobank whole-

exome sequencing data links genes to diseases connected to the identified metabolites. In silico

constraint-based modeling of gene knockouts in a virtual whole-body, organ-resolved meta-

bolic human correctly predicts the observed direction of metabolite changes, highlighting the

potential of linking population genetics to modeling. Our study implicates candidate variants

and genes for inborn errors of metabolism.
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Metabolites are small molecules that represent precursors,
intermediates, and end-products of metabolic reactions.
Their concentrations in biospecimens, such as blood or

urine, are determined by their uptake, generation, breakdown,
and excretion influenced by the joint actions of specific enzymes
and transporters distributed across tissues and organs. Compre-
hensive databases of metabolic reactions in humans have been
established over the past decades1–4. Still, our knowledge of
ongoing metabolic reactions in humans is far from complete,
partly owing to the limited resolution of current metabolite
profiling technologies and to the limited translation of findings
from cell culture and model organisms as readouts of in vivo
processes in humans.

Generation of a comprehensive understanding of metabolic
reactions in humans is important for several reasons: first, altered
metabolite levels can cause clinical symptoms and diseases, as
exemplified by elevated serum urate levels and gout and by many
inborn errors of metabolism (IEMs)5,6. Such metabolites represent
attractive therapeutic targets to prevent and treat these diseases.
Second, emerging evidence implicates metabolites as important
second messengers in inter-organ communication and in signaling
processes7,8. Insights into metabolite handling may therefore
advance our understanding of human metabolism on a systemic
level, beyond the tissues directly involved in their absorption,
generation, metabolism, and excretion. Third, metabolites are
commonly used to diagnose, stage, and monitor disease, such as
creatinine levels for chronic kidney disease (CKD)9,10, or various
amino acids and acylcarnitines in newborn screening programs
worldwide. Such biomarkers may indicate pathways and/or cell
types that are altered in the disease state, even if the metabolites
are not causal for the disease itself11,12.

Genetic studies of metabolites are a useful tool to expand our
understanding of human metabolism: metabolite concentrations
and profiles have a strong genetic predisposition13–17. The ability
to carry out genome-wide screens allows us to identify, for each
metabolite, genetic determinants of its concentration in an
unbiased manner. Genetic studies can reveal both common
genetic variants that influence metabolite concentrations within
the physiological range, as well as rare deleterious variants that
have large effects on metabolite levels and may cause recessively
inherited IEMs when present in the homozygous state18.

Most previous studies have focused on the study of common
genetic variants and blood metabolite levels in the general
population13,15,19,20. Fewer studies have investigated common
genetic variants and urine metabolite concentrations14,16,17,21.
Only two previous studies systematically evaluated the influence
of rare genetic variants on the blood metabolome18,19, and one
previous study examined their effects on the urine metabolome in
a smaller, population-based sample22. We and others have pre-
viously shown that some metabolic pathways are only uncovered
in a specific biospecimen such as urine. In addition, urine
metabolite concentrations provide an integrative readout of
metabolic reactions across tissues and organs17. The study of
CKD patients detects genetic effects that usually generalize to
population-based samples, but has the added advantage that
metabolites normally below the level of quantification can be
studied, and that processes related to active tubular transport may
be upregulated and hence easier to detect17.

Here, we therefore perform a rare variant association study of
the concentrations of 1487 metabolites and of 53,714 metabolite
ratios in urine from up to 4864 CKD patients. We detect
128 significant associations involving 30 unique genes, 16 of
which are known to underlie IEMs. We connect the genes to cell
types in which they are highly expressed, the genetic variants to
health outcomes in a large population study, and validate our
findings via in silico modeling of gene knockouts in a virtual

whole-body, organ-resolved metabolic human. Our study high-
lights the potential of linking population genetics to modeling to
gain insights into genetic determinants of metabolite handling in
humans.

Results
The workflow in Fig. 1 provides an overview of the study design.
Details about each metabolite, such as mass and pathway mem-
bership, as well as quality control metrics are provided in Sup-
plementary Data 1. Main characteristics of the study population
are shown in Supplementary Data 2: mean age was 60 years, 60%
of participants were men, the mean estimated glomerular filtra-
tion rate (eGFR) was 49.5 ml/min/1.73 m2, and the median
urinary albumin-to-creatinine ratio (UACR) was 50.1 mg/g.

Rare variant aggregation tests identify significant associations
with the urine levels of metabolites and their ratios. We carried
out two types of rare variant aggregation tests for each of up to
11,587 genes per metabolite (ratio): a burden test, which is more
sensitive when all qualifying genetic variants influence metabolite
levels in the same direction, and a SKAT test, which is better
suited to detect associations in the presence of variants
with opposing directions (Methods). In the analyses of the indi-
vidual metabolites, we detected 43 significant (p < 1.46e−9; 0.05/
(11,552 genes*1487 metabolites*2 tests)) gene-metabolite asso-
ciations with the burden test, and 48 with the SKAT test (Table 1).
Of these, 38 significant associations between 18 unique genes
and 37 unique metabolites were detected with both tests, while
5 associations were unique to the burden test and 10 to
the SKAT test (in total: 53 associations, 26 unique genes,
51 unique metabolites; Table 1). The smallest p-value in both-
tests was detected for the association of rare variants in UPB1
with 3-ureidopropionate concentrations (p-burden= 7.3e−39,
p-SKAT= 3.1e−44). The maximum number of qualifying var-
iants was 25 for HAL (total minor allele count [MAC] of 188,
p-burden= 1.5e−11 for trans-urocanate), and the highest total
MAC was 320 for 12 variants in ALDH9A1 (p-SKAT= 7.5e−29
for X-24807, a yet unnamed metabolite) (Supplementary Data 3).
Aldehyde dehydrogenases detoxify aldehydes from different
metabolic reactions to the corresponding carboxylic acids, with
ALDH9A1 showing wide substrate specificity to amino-, aliphatic
and aromatic aldehydes23. Additional information about the
unknown molecules in Table 1 can be obtained from mzML files
available through the EMBL-EBI database Metabolights (Data
Availability). Supplementary Data 4 contains the 180 gene-
metabolite association results that meet a suggestive significance
level in one or both tests (p < 2.2e−6; 0.05/(11,552 genes*2 tests)).
Although not statistically significant after multiple testing cor-
rection, these results are likely to contain true positive findings
based on biological plausibility and previous studies, such as the
association of ALPL with phosphate-containing metabolites
(minimum p= 2.3e−9)24, DPYD and thymine (p= 3.1e−8)25,
NAT1 and NAT8 with N-acetylated metabolites (minimum p=
1.6e−9)26,27, and SLC10A2 with the bile acid conjugate gly-
cochenodeoxycholate 3-sulfate (p= 2.2e−7)28.

The analysis of urine metabolite ratios is interesting because
ratios can represent readouts of enzymatic reactions or substrate
exchange13,20,29. Thus, ratios were evaluated within and among the
two super-pathways amino acids and fatty acids, which contain
many metabolites actively handled along the nephron and
commonly excreted in urine. Results were filtered by the p-gain
statistic to highlight ratios that contribute information beyond their
individual components (Methods). There were 68 significant (p <
4.02e–11; 0.05/(11,587 genes*53,714 metabolite ratios*2 tests))
associations with the burden test and 67 with the SKAT test
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(Supplementary Data 5). Of the 7 unique genes, the associated
ratios with the smallest p-values and largest p-gain in the burden or
SKAT tests are displayed in Table 2. Four genes were only identified
when studying metabolite ratios (CTH, IVD, PAH, SLC7A9). The
largest information gain from modeling ratios over individual
metabolites was observed in the SKAT test for ACADM and in the
burden test for CTH. Rare variants in CTH, encoding cystathionine
gamma-lyase, were associated with multiple cystathionine-
containing ratios, reflecting its biological function. The information
gain from ratios is further exemplified by the phenylalanine/
tyrosine ratio, which was strongly associated with rare variants in
PAH but its individual components were not (p-burden = 4.2e–27
for the ratio and p > e–5 for its components). PAH encodes
phenylalanine hydroxylase, the rate-limiting step in phenylalanine

catabolism responsible for the hydroxylation of phenylalanine to
tyrosine. Rare mutations in PAH cause the IEM phenylketonuria
(MIM #261600). All 88 ratios at suggestive significance are shown
in Supplementary Data 5, and again are likely to contain multiple
true positive findings as evidenced by the fact that the associated
metabolite ratios matched the biological functions of proteins
encoded by AASS, ACADSB, and GLB1L.

To assess the potential contribution of nearby common genetic
variants on the detected associations from the aggregate analyses
of rare variants, we repeated the analyses for genes for which
common genetic variants in cis were associated with the
implicated metabolites (Methods). The effect estimates showed
little effect size changes (±20%) for 10 out of 12 such genes
(Table 3), suggesting that rare variant associations with

Fig. 1 Rare variant analysis workflow. The GCKD study enrolled 5,217 patients with moderate CKD. Non-targeted metabolite identification and
quantification were conducted from urine samples using the Metabolon HD4 platform. Genotyping was performed with the Illumina Omni2.5Exome Chip.
After quality control and data cleaning, genotypes of 226,233 exome chip variants and 1487 metabolites and 53,714 ratios of fatty acids and amino acids
were analyzed for 4864 and 4795 patients, respectively. A burden test and the sequence kernel association test (SKAT) were carried out for each gene
and each metabolite or metabolite ratio using the seqMeta R package (Methods). Carrier status of variants with minor allele frequency <1% and likely to be
functional (splicing, nonsynonymous, stop gain, and stoploss) was evaluated. We used an additive genetic model and adjusted for sex, age, eGFR, UACR,
and principal components. Statistical significance was defined using a Bonferroni correction and set at 1.46E−09 (single metabolites) and 4.02E-11 (ratios).
Ratio results were further filtered by a p-gain of >537,140 to select ratios that carry information beyond its single metabolites (Methods). The same model
was applied to obtain single variant association results for the variants included in the gene-based tests. In silico knockout models to validate findings were
generated in a Virtual Metabolic Human. Enrichment analyses of significant genes were carried out using GO terms, KEGG pathways, and gene expression
data from tissues and cell types. Conditional analyses were carried out to assess the effect of nearby common metabolite-associated variants on the
findings from this study. MAF: minor allele frequency.
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Table 1 Genes significantly associated with urine metabolite levels (p < 1.46E−9).

Metabolite Gene Burden SKAT No. of
SNPs used

Total MAC Cumulative MAF
of SNPs

Significant
testa

P-value Effect SE P-value

4-Methylhexanoylglutamine ACADM 1.1E−09 0.59 0.10 9.7E−11 6 109 1.12% Both
4-Methylhexanoylglycine ACADM 2.3E−09 0.56 0.09 1.9E−10 6 107 1.15% S
Heptanoylglutamine ACADM 1.2E−11 0.67 0.10 1.8E−13 6 104 1.24% Both
Hexanoylcarnitine (C6) ACADM 2.0E−08 0.56 0.10 2.9E−10 6 98 1.26% S
Hexanoylglutamine ACADM 8.5E−13 0.69 0.10 2.0E−14 6 109 1.12% Both
Hexanoylglycine ACADM 1.0E−12 0.66 0.09 9.4E−15 6 109 1.12% Both
Isocaproylglutamine ACADM 1.3E−14 0.75 0.10 6.7E−16 6 109 1.13% Both
Isocaproylglycine ACADM 4.3E−12 0.64 0.09 7.6E−13 6 109 1.13% Both
N-octanoylglutamine ACADM 1.6E−15 0.77 0.10 1.1E−15 6 108 1.16% Both
Octanoylcarnitine (C8) ACADM 2.0E−06 0.46 0.10 4.5E−10 6 109 1.13% S
X - 12398 ACADM 4.8E−15 0.75 0.10 1.9E−13 6 108 1.14% Both
N-acetyl-aspartyl-
glutamate (NAAG)

ACP2 2.0E−14 −0.90 0.12 5.1E−23 3 66 0.68% Both

Ethylmalonate ACSF3 3.1E−11 0.53 0.08 9.4E−09 10 144 1.48% B
Methylmalonate (MMA) ACSF3 1.4E−17 0.69 0.08 8.4E−13 10 140 1.45% Both
2-Butenoylglycine ACY1 5.7E−14 0.65 0.09 5.0E−13 8 123 1.32% Both
N-acetyl-2-aminooctanoateb ACY1 4.4E−10 0.53 0.09 4.0E−09 8 127 1.31% B
N-acetylasparagine ACY1 4.1E−11 0.56 0.08 1.3E−10 8 127 1.31% Both
N-acetylglutamate ACY1 1.5E−20 0.76 0.08 9.9E−22 8 127 1.31% Both
N-acetylglutamine ACY1 1.2E−10 0.54 0.08 7.9E−11 8 127 1.31% Both
N-acetylglycine ACY1 2.4E−19 0.80 0.09 3.1E−20 8 123 1.42% Both
N-acetylisoleucine ACY1 5.8E−17 0.70 0.08 8.8E−16 8 126 1.30% Both
N-acetylleucine ACY1 3.5E−10 0.56 0.09 1.9E−10 8 125 1.30% Both
N-acetylserine ACY1 1.4E−26 0.92 0.09 2.0E−27 8 127 1.31% Both
N-acetylthreonine ACY1 6.1E−16 0.69 0.09 2.7E−18 8 126 1.34% Both
N-acetylvaline ACY1 5.2E−20 0.74 0.08 3.2E−19 8 127 1.31% Both
N-formylanthranilic acid AFMID 1.1E−20 0.92 0.10 1.2E−14 8 103 1.07% Both
X - 24455 AFMID 1.3E−12 0.71 0.10 1.1E−09 8 102 1.08% Both
3-Hydroxyisobutyrate ALDH6A1 1.0E−09 0.66 0.11 3.2E−06 4 82 0.85% B
X - 24807 ALDH9A1 3.3E−15 0.44 0.06 7.5E−29 12 320 3.40% Both
Phosphoethanolamine ALPL 1.4E−11 1.12 0.17 4.1E−11 3 33 0.35% Both
Argininosuccinate ASL 4.8E−19 1.61 0.18 3.7E−16 6 29 0.30% Both
X - 23654 BBOX1 1.3E−06 0.57 0.12 1.7E−14 7 71 0.73% S
X - 24801 BBOX1 3.7E−08 0.64 0.12 2.1E−14 7 71 0.73% S
Acisoga CALY 2.1E−06 0.45 0.10 1.5E−10 4 103 1.07% S
Dimethylglycine DMGDH 2.4E−36 1.09 0.09 4.5E−34 10 127 1.31% Both
N-acetyl-aspartyl-
glutamate (NAAG)

FOLH1 2.1E−09 0.57 0.10 2.8E−10 4 96 0.99% S

Trans-urocanate HAL 1.5E−11 −0.47 0.07 3.0E−06 25 188 1.93% B
X - 12410 NAT1 1.0E−14 −0.66 0.08 9.6E−13 4 129 1.32% Both
6-oxopiperidine-2-carboxylate OPLAH 1.3E−16 0.63 0.08 3.2E−14 15 164 1.97% Both
N-acetyl-aspartyl-
glutamate (NAAG)

OR5R1 1.6E−20 −0.86 0.09 1.1E−21 8 79 0.81% Both

2’-O-methylcytidine PHYHD1 5.4E−31 1.34 0.12 1.4E−24 11 60 0.62% Both
2’-O-methyluridine PHYHD1 3.7E−26 1.43 0.14 7.7E−20 11 53 0.69% Both
N-acetyl-beta-alanine PTER 3.4E−35 1.40 0.11 4.2E−29 6 72 0.75% Both
N-acetyltaurine PTER 2.0E−26 1.24 0.12 7.6E−25 6 72 0.74% Both
N6,N6-dimethyllysine PYROXD2 2.1E−06 −0.43 0.09 1.2E−13 10 120 1.23% S
X - 21792 RIOX1 7.0E−03 −0.20 0.07 1.9E−11 8 191 1.98% S
X - 10457 RNPEP 7.4E−14 1.06 0.14 3.0E−07 8 49 0.51% B
Asparagine SLC6A19 1.3E−07 0.70 0.13 1.1E−09 15 53 0.54% S
Histidine SLC6A19 1.1E−09 0.77 0.13 5.6E−11 15 53 0.55% Both
Adipate (C6-DC) SUGCT 4.8E−12 0.63 0.09 1.2E−14 7 120 1.24% Both
X - 22162 TTC38 1.9E−22 0.76 0.08 9.5E−17 10 164 1.69% Both
3-Ureidoisobutyrate UPB1 6.1E−25 1.37 0.13 1.3E−26 5 55 0.66% Both
3-Ureidopropionate UPB1 7.3E−39 1.58 0.12 3.1E−44 6 64 0.66% Both

“Effect” denotes the cumulative impact of each copy of a rare, potentially damaging variant on metabolite levels, i.e. the average effect for each copy of a rare variant carried. Gene symbols are italicized.
The same significance threshold for the burden and SKAT tests was chosen (two-sided test).
SE standard error, MAC minor allele count, MAF minor allele frequency.
aSignificant in gene-based test: “B” means the association is significant in the burden test only, “S” means the association is significant in the SKAT test only, and “Both” means the association is
significant in both tests.
bBiochemical name: the standard for this metabolite has not been run, but Metabolon, Inc. is highly confident in its identity.
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metabolites are largely independent of common variants in the
same region. Conversely, the rare variant association signals were
abolished for PYROXD2 and RIOX1 and are therefore not
independent of common genetic variants in the region.

Properties of qualifying, metabolite-associated variants. We
next inspected the contributions of the individual qualifying
variants to each of the 30 unique genesʼ aggregate association
signals (Supplementary Data 3 for individual metabolites and
Supplementary Data 6 for ratios). Because of the low number of
carriers, most variants are not expected to show significant
association by themselves, but still contain information on their
effect direction. In general, largest effect sizes of qualifying var-
iants on metabolites were observed for variants with lower minor
allele frequency, and stop gain and splice alleles tended to have
larger effects than nonsynonymous variants (Fig. 2). Across the
30 genes, 2272 out of a maximum of 4864 studied individuals
(47%) carried at least one qualifying variant. Thus, although
individually rare, at least one allele of a qualifying variant in the
30 genes was found in almost half of the study population,
illustrating the high cumulative prevalence of their carrier status.
There were genes in which all variants showed an effect in the
same direction such as RNPEP and higher levels of the unnamed
metabolite X–10457 (Supplementary Data 3), consistent with its
detection by the burden test (p= 7.4e−14). RNPEP encodes
aminopeptidase B, an exopeptidase responsible for the selective
removal of arginine or lysine residues from certain peptides.
Based on its mass and retention time (Supplementary Data 1), we
hypothesize that the unknown metabolite X-10457 may represent
an oligopeptide substrate of aminopeptidase B, whose con-
centrations increase upon loss of the enzyme’s function. Potential
candidates are listed in Supplementary Data 7.

Boxplots showing the distribution of analyzed metabolite levels
by variant carrier status are shown in Supplementary Fig. 1 for
each of the 53 significant gene-metabolite pairs. We distinguished
qualifying variant carriers into heterozygous carriers of one
variant per gene, heterozygous carriers of more than one variant
per gene, and carriers homozygous for a rare variant. An example
is shown in Fig. 3a, displaying argininosuccinate levels among
individuals carrying and not carrying heterozygous variants in
ASL. Variants included in gene-based association tests are
aggregated based on their allele frequency and predicted
functional effects. Figure 3a illustrates, however, that some of
the aggregated variants based on these properties are likely to be
neutral: for example, five of the six carriers of the missense
variant encoded by rs143793815 (ASL p.T131M, NP_000039.2)
had argininosuccinate levels below the median, while most
carriers of the other aggregated variants showed clearly elevated
levels well beyond the 75th percentile among controls. This result
underscores that gene-based tests are powerful to detect
metabolism-associated genes, but that individual variants still
require experimental validation to establish their influence and
magnitude of effect. Figure 3b illustrates the value of ratio analysis
using PAH as an example.

Connection of metabolite-associated genes to IEMs. Some of
the included rare variants are already known to cause IEMs when
present in the homozygous state. An example is the adipate-
associated SUGCT stop-gain variant p.Arg108Ter in the encoded
succinyl-CoA:glutarate-CoA transferase (NM_024728.2), a
known cause of autosomal-recessive glutaric aciduria III30. This
enzyme catalyzes the succinyl-CoA-dependent conversion of
glutarate to glutaryl-CoA, with adipate serving as an alternative
Co-A acceptor to glutarate31. Loss of function consequently leads
to higher levels of the acceptor molecules, such as glutarate andT
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adipate, the readout in our study. Annotation of the 30 genes
identified in our study showed that in fact 16 of them (53%) are
known to underlie recessively inherited IEMs (Fig. 4, Supple-
mentary Data 8 and 9). Whenever changes in metabolites were
reported from patients with the respective IEM, the direction
matched the one identified in our study (Supplementary Data 9).
The remaining 14 genes may contain candidates for yet unre-
ported human IEMs that could be detected from sequencing of
patients presenting with extreme values of the metabolites
implicated in our study. A literature search of these 14 genes
confirmed that many connections with the implicated metabolites
are supported by known biochemistry, such as NAT1 and an N-
acetylated metabolite. In the case of the CALY gene, however, the
observed associations with polyamines may better be explained by
nearby PAOX based on existing biochemical knowledge. Two of
the 14 genes not yet implicated in IEMs have support from an
earlier study of common variant effects on the plasma metabo-
lome32, and five additional gene-metabolite pairs for the 16 genes
already known to underlie IEMs are supported by previous rare
variant association studies of the plasma or serum metabolome
(Supplementary Data 9).

Whole-exome sequencing data from the UK Biobank allows for
linking metabolite-associated genes to diseases. We next
investigated whether the burden of mostly heterozygous rare
variants in the 30 identified genes was associated with human
diseases beyond IEMs, capitalizing on the availability of whole-
exome sequencing (WES) data from 50,000 white British parti-
cipants of the UK Biobank Study33. We first evaluated a positive
control, the association of ALPL variants (Supplementary Data 3)
and blood levels of alkaline phosphatase, its gene product
(Methods). The highly significant association (p-SKAT= 1e–24,
p-burden = 1e–29) supported the use of UK Biobank data, and
we subsequently investigated the aggregate effect of rare variants
in the UK Biobank on 791 binary disease outcomes (Methods).

Table 3 Gene-based tests for significant metabolites before (left side) and after (right side) conditioning on common
metabolite-associated variants in cis.

Gene Metabolite BURDEN SKAT top SNP
in mGWAS

BURDEN SKAT Proportion of
unconditional
effect(%)p-value Effect SE p-value p-value Effect SE p-value

ACADM Heptanoylglutamine 1.2E−11 0.67 0.10 1.8E−13 rs7513363 2.8E−09 0.58 0.10 2.3E−11 86%
Hexanoylglutamine 8.5E−13 0.69 0.10 2.0E−14 6.1E−10 0.58 0.09 7.8E−12 85%
Hexanoylglycine 1.0E−12 0.66 0.09 9.4E−15 6.1E−10 0.56 0.09 2.9E−12 85%
Isocaproylglutamine 1.3E−14 0.75 0.10 6.7E−16 2.9E−11 0.63 0.09 5.4E−13 84%
Isocaproylglycine 4.3E−12 0.64 0.09 7.6E−13 2.9E−09 0.53 0.09 2.0E−10 84%
N-octanoylglutamine 1.6E−15 0.77 0.10 1.1E−15 8.3E−13 0.68 0.10 2.8E−13 89%

AFMID N-formylanthranilic acid 1.1E−20 0.92 0.10 1.2E−14 rs72897838 4.3E−25 0.98 0.09 1.3E−17 107%
X - 24455 1.3E−12 0.71 0.10 1.1E−09 2.5E−14 0.75 0.10 6.1E−11 106%

ALPL Phosphoethanolamine 1.4E−11 1.12 0.17 4.1E−11 rs1772719 1.1E−15 1.35 0.17 4.8E−15 120%
FOLH1 N-acetyl-aspartyl-

glutamate (NAAG)
2.1E−09 0.57 0.10 2.8E−10 rs55728336 7.3E−09 0.50 0.09 2.2E−11 87%

HAL Trans-urocanate 1.5E−11 −0.47 0.07 3.0E−06 rs3213737 9.5E−11 −0.44 0.07 5.4E−05 94%
NAT1 X - 12410 1.0E−14 −0.66 0.08 9.6E−13 rs35246381 9.2E−14 −0.62 0.08 1.2E−11 95%
PHYHD1 2’-O-methylcytidine 5.4E-31 1.34 0.12 1.4E−24 rs55758160 1.1E−34 1.33 0.11 1.7E−30 99%
PYROXD2 N6,N6-dimethyllysine 2.1E−06 −0.43 0.09 1.2E−13 rs2147896 3.7E−01 0.06 0.06 2.1E−02 <1%
RIOX1 X - 21792 7.0E−03 −0.20 0.07 1.9E−11 rs11626972 9.6E−01 0.00 0.06 2.1E−02 1%
RNPEP X - 10457 7.4E−14 1.06 0.14 3.0E−07 rs56768485 3.2E−13 0.97 0.13 2.5E−07 91%
SLC7A9 Lysine/threonine 8.0E−12 0.89 0.13 5.6E−10 rs12460876 8.3E−09 0.71 0.12 1.2E−06 80%
TTC38 X - 22162 1.9E−22 0.76 0.08 9.5E−17 rs60032274 1.8E−23 0.75 0.07 4.2E−18 99%

Gene symbols are shown italicized. The same significance threshold for the burden and SKAT tests was chosen (two-sided test).
mGWAS GWAS of the respective metabolites, SE standard error.
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While there were no associations that reached statistical sig-
nificance after multiple testing correction (p < 6.3e−05; 0.05/791),
three associations showed suggestive evidence of association
(Supplementary Data 10). The association between loss-of-
function alleles in alkaline phosphatase and fractures of the pel-
vis (p= 9.6e−06) is consistent with the enzyme’s role in systemic
phosphate homeostasis, and with defective bone mineralization in
the corresponding IEM hypophosphatasia (MIM #241500). The
association between rare variants in ALDH9A1 and hypotension
has not previously been reported and is interesting insofar as the
inhibition of another aldehyde dehydrogenase, ALDH2, has been
linked to hypotension in response to ethanol in rats34, and the

locus is detected in genome-wide association studies for blood
pressure – alcohol interaction in humans35. Together, these
findings illustrate the potential of linking metabolite-associated
genes with health outcomes in large biobank studies with medical
record linkage to more broadly understand the health con-
sequences of inter-individual differences in metabolism.

Enrichment analyses nominate target tissues and cell types in
kidney and liver as well as implicated terms and pathways.
Given the quantification of metabolites from urine and the central
role of the kidney in determining final urine metabolite con-
centrations, we investigated in which tissues and kidney cell types
the 30 significant genes were highly expressed using human gene
expression data from the GTEx Project36 as well as bulk and
single-cell and single-nucleus RNA-sequencing data from human,
rat, and mouse kidney37–40. Figure 5a shows tissue-specific high
expression of 29 available genes across 39 non-brain tissues. A
strong signature of high expression in liver for many of the genes
suggests that the urinary concentration of their associated
metabolites may be mainly determined by their generation fol-
lowed by free glomerular filtration and/or tubular secretion.
There were also genes with high expression in the small intestine,
such as SLC6A19 and SLC7A9. Several genes also showed high
expression in the kidney cortex in comparison to other tissues
(Methods).

Since the number of kidney samples even in the final release of
the GTEx data is relatively small, and given the high importance
of the kidney in determining urine metabolite concentrations, we
next investigated several kidney-specific datasets. Across 14 cell
types from micro-dissected rat kidney, we found that many of the
23 genes available for evaluation were highly expressed in the
three segments of the proximal tubule both at the level of the
transcriptome40 and of the proteome39 (Fig. 5b). Epithelial cells
of the proximal tubule have high metabolic activity and are
responsible for the bulk reabsorption of many filtered solutes and
small molecules such as metabolites. The cell-type-specific
expression matched prior knowledge from experimental studies

Fig. 4 Venn diagram of the involvement of identified genes in inborn
errors of metabolism (IEMs). All of the known IEMs are recessively
inherited. Genes for which no IEMs are yet identified represent candidate
genes in individuals with extreme levels of the implicated metabolites. Gray
font is used for OR5R1 because of the extended linkage disequilibrium in the
region extending to FOLH1, which may therefore not represent an
independent signal.
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for some of the genes and can therefore be considered positive
controls, such as expression of SLC6A19 in proximal tubular cells
detected by immunohistochemistry41. Of note, many genes that
did not show high kidney expression in comparison to extra-renal
tissues showed high expression in specific kidney cell types.
Single-cell gene expression data from humans and mice

confirmed a signature of high expression in renal proximal
tubule cells, indicating conserved functions throughout evolution
(Supplementary Figs. 2 and 3). This suggests that cell type
heterogeneity in tissue from solid organs may mask cell-type-
specific signatures. We therefore tested enrichment for high
expression of the 30 genes both across and within tissues

Fig. 5 Enrichment analyses highlight specific tissues and cell types in which the identified genes are highly expressed. Human tissues (a) as well as rat
micro-dissected kidney tubule cell types (b) were evaluated. Tissues are based on GTEx Project data V8, transcriptome data of kidney tubule cell types on the
publication by Lee et al.40 and proteome data of same cell types on the publication by Limbutara et al.39. a Gene expression levels are from 39 non-brain tissues
from GTEx V8. Presented values are the mean of log10-transformed Transcript Per Million (TPM) of samples in each tissue. Only 29 genes are displayed
because OR5R1 is not included in GTEx V8. b S1, first segment of proximal tubule; S2, second segment of proximal tubule; S3, third segment of proximal tubule;
DTL1, descending thin limb type 1 (short-looped nephron); DTL2, descending thin limb type 2 (long-looped nephron); DTL3, descending thin limb type 3 (long-
looped nephron); ATL, ascending thin limb; mTAL, medullary thick ascending limb; cTAL, cortical thick ascending limb; DCT, distal convoluted tubule; CNT,
connecting tubule; CCD, cortical collecting duct; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct. Presented values are the mean
of log10-transformed TPM of samples in each cell type. There was no rat homolog for SUGCT; NAT1 has two homologues (NAT1 and NAT2). ACSF3, ACY1,
BBOX1, CALY, HAL, OR5R1, and RIOX1 were not included in the transcriptome dataset. Source data are provided as a Source Data file.
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(Methods). Across tissues, we found significant enrichment in
liver (odds ratio [OR]= 18.5) and kidney (OR= 11.6) (Fig. 6).
Within tissues, enrichment was identified in hepatocytes in the
liver (OR= 12.5) and in proximal tubule cells in several scRNA-
seq datasets from the kidney (OR range 8.4–29.6). Since kidney
and liver are known to share important transcriptional pro-
grams42, it may however be more interesting to test for
enrichment of co-expressed genes rather than of genes that show
high enrichment in either liver or kidney cell types. Indeed, the 30
genes showed the greatest enrichment when testing for enrich-
ment among all genes highly expressed in both liver and kidney
(OR= 64.9, Fig. 6, Methods), underscoring the coordinated role
of these two organs in human metabolism.

While associations with individual metabolites and metabolite
ratios were largely biologically plausible and agreed with clinical
findings from patients with the corresponding IEMs, they do not
answer questions about potential shared pathways. We thus
performed enrichment testing of the 30 genes based on terms in
the Gene Ontology (GO) and the KEGG database (Methods). We
identified 33 terms significantly enriched for the identified genes
(Supplementary Data 11), with the greatest enrichment (OR=
386) observed for the GO biological process “amino-acid betaine

biosynthetic process”, with “amino-acid betaine metabolic
process” and “carnitine metabolic process” being other highly
enriched biological terms (both OR= 145). The greatest number
of genes, 25 out of 30, mapped into the enriched molecular
function pathway “catalytic activity”, consistent with their
functions as enzymes. The strong representation of terms,
pathways, functions and processes related to amino-acid
metabolism is in agreement with the important role of the
kidney in determining their urine concentrations and with the
modeling of amino acid ratios, facilitating the detection of
enzymes and transporters for amino acid handling.

Use of a virtual metabolic human to validate significant gene-
metabolite associations. Lastly, while genome- and exome-wide
association studies are powerful tools to reveal statistical asso-
ciations between metabolite levels and genetic variation, it can be
challenging to derive mechanistic hypotheses underlying these
associations. We therefore used constraint-based modeling and
reconstruction analyses (COBRA) for mechanistic network
modeling to generate in silico knockouts of the implicated genes
in a whole-body, organ-resolved model of human metabolism
integrating physiological traits43 (Methods) based on the virtual
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metabolic human database4. Indeed, we found that association
results from the GCKD study population could be successfully
recapitulated for DMGDH, ALPL, ALDH6A1, HAL, ACY1, UPB1,
and ASL, of which the associated metabolites were included into
the whole-body metabolic reconstruction and hence modeling
was possible. As shown in Table 4, the direction of effect on urine
metabolite concentrations was correctly predicted by the in silico
knockout models for eight of the nine metabolites, which was
significantly better than chance (binomial test: p= 8.9e−4). An
exception was phosphoethanolamine, for which the in silico
knockout of ALPL in humans was predicted to result in
unchanged levels of the metabolite in urine, but higher levels were
observed. A potential explanation for this finding is that three
tissue-specific isoforms of the encoded enzyme are known to exist
in the liver, kidney, and bone. Urine concentrations may be
influenced especially by the kidney-specific isoform that may
differ in non-modeled properties from other isoforms of the
enzyme. In any case, the integration of genetic association studies
in populations with mechanistic network modeling in the envir-
onment of genome-scale whole-body models supports that the
rare variants in the modeled genes that were associated with the
corresponding metabolites in the GCKD study are indeed loss of
function mutations. The predicted direction of effects on blood
metabolite concentrations (Table 4) are consistent with reports of
the observed changes among patients affected by the corre-
sponding IEM in all instances. Together, these findings can be
regarded as proof of principle that COBRA modeling can be
applied as a further layer of validation for results from association
studies in human population studies, specifically when experi-
mental validation may not be possible or ethical. Note that the
utilized whole body model was never trained to predict meta-
bolite rare variant associations or the effects of IEMs.

Discussion
In this study of genetic determinants of the urine concentrations
of 1487 metabolites and 53,714 metabolite ratios, we identified
128 significant associations between levels of metabolites or
metabolite ratios and the cumulative effect of rare, potentially
functional variants in 30 genes that were almost exclusively
present in the heterozygous state and cumulatively identified in
47% of studied individuals. The fact that more than half of the
implicated genes have been identified as causes of recessively
inherited IEMs underscores the potential of our approach to
reveal variants and genes not yet known to cause metabolic dis-
eases. Our well-powered study of the aggregate effect of rare
variants on urine metabolite concentrations reveals genes known

to affect their concentrations in blood, but also detects effects on
urine metabolite concentrations likely to represent their kidney-
specific handling and only detectable when studying urine. In
silico validation of knockouts of implicated genes in a virtual
metabolic human correctly predicted the direction of observed
changes in metabolite levels.

Previous studies reporting on the association of rare genetic
variants and metabolite concentrations have mainly quantified
metabolites from blood18,19. An exome array study of 217 plasma
metabolites from 2,076 population-based individuals identified
associations between rare variants in HAL and histidine, PAH
and phenylalanine, and UPB1 and ureidopropionate18. Our study
extends the latter finding in the same direction to urine. Rare
variants in HAL were associated with trans-urocanate rather than
histidine levels in our study. The encoded histidase catalyzes the
deamination of L-histidine to trans-urocanic acid44. Histidine was
quantified in our study but not associated with HAL. A potential
explanation for this finding is the differential handling of histi-
dine and trans-urocanate along the nephron, which contains
specific transport proteins to reabsorb essential amino acids such
as histidine, thereby altering their urine concentrations after fil-
tration from blood. The association of urine histidine levels with
rare variants in SLC6A19 in our study highlights the encoded
amino acid transporter as the relevant transport protein. This is
in agreement with findings from patients with Hartnup disease,
where bi-allelic loss-of-function mutations in SLC6A19 lead to a
reabsorption defect of histidine in renal tubular cells45. Associa-
tions between rare variants and lipid metabolites on the other
hand may be better detected in blood, such as for APOA5 and
diacylglycerol18, consistent with extra-renal handling and/or
excretion. The study of different biospecimens therefore provides
complementary insights into different aspects of human meta-
bolism. While we found that seven gene-metabolite associations
identified in our study of urine specimens matched earlier find-
ings from studies of serum or plasma, a systematic assessment of
overlap is complicated because of differences in metabolite plat-
forms, genotyping and sample size.

The only previous study investigating the effects of common
and rare genetic variants on urine metabolite concentrations was
based on 193 individuals who developed CKD and 193 controls22.
This previous study quantified only 154 metabolites using a dif-
ferent mass spectrometry-based platform, as compared to our
study of 4864 persons and 1487 metabolites and their ratios.
While the previous study reported some associations between
individual rare variants and urine metabolites, it was under-
powered to detect any significant associations at the gene-level.

Table 4 Comparison of in silico knockout whole-body metabolic models versus healthy whole-body metabolic models using
COBRA modeling with GWAS results.

Gene Metabolite VMH ID In silico maximal flux of
urine metabolite excretion

Observed effect on urine
metabolite concentrations

In silico maximal flux in the
blood compartment

HAL Trans-urocanate urcan ↓ ↓ ↓
ALPL Phosphoethanolamine ethamp = ↑ ↑
ASLa Argininosuccinate argsuc ↑ ↑ ↑
ALDH6A1 3-Hydroxyisobutyrate 3hmp ↑ ↑ ↑
DMGDH Dimethylglycine dmgly ↑ ↑ ↑
ACY1 N-acetylglycine acgly ↑ ↑ ↑

N-acetylglutamate acglu ↑ ↑ ↑
UPB1 3-Ureidoisobutyrate 3uib ↑ ↑ ↑

3-Ureidopropionate cala ↑ ↑ ↑

“↓” denotes decreased maximal flux in knockout model, “↑” denotes increased maximal flux in knockout model, “=” denotes unchanged flux in knockout model. VMH – virtual metabolic human database,
www.vmh.life.
aThis knockout model and the corresponding flux simulation were already reported in Thiele et al.43. Gene symbols are shown italicized.
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Thus, the identified 128 associations between the aggregate effects
of rare genetic variants and the concentrations of urine meta-
bolites have not been reported previously.

The great majority of individuals examined in this study had
reduced eGFR, indicating impaired renal filtration function46,
raising the question whether the findings likely also apply to
population-based samples. Indeed, we recently showed very good
agreement of genetic effects on urine metabolite concentrations
between the GCKD patients and individuals from the general
population17. In addition, genes detected in this study were also
identified in association studies of blood metabolite concentra-
tions in population-based samples19. Lastly, 16 of the 30 genes
identified in this study are known to cause recessively inherited
IEMs with corresponding metabolic abnormalities, further sup-
porting that findings from this study extend beyond individuals
with reduced eGFR. The study of individuals with impaired
kidney function, however, may additionally allow for the detec-
tion of genes linked to the metabolism of uremic toxins. The
suggestive associations of several genes with different acet-
ylspermidine metabolites in our study may suggest such a finding,
but requires confirmation and testing in population-based sam-
ples that are currently unavailable.

There are several insights of potential clinical relevance. First,
several of the rare variants identified in the heterozygous state in
our study are known causes of IEMs when present in the
homozygous state, such as the adipate-associated SUGCT stop-
gain variant encoding p.Arg108Ter (NM_024728.2), a known
cause of autosomal-recessive glutaric aciduria III30. In general,
heterozygous carriers of causative mutations for IEMs are not
clinically affected, suggesting that the residual function of the
encoded proteins is sufficient to perform their physiological
functions. However, the resulting changes in metabolite levels
were still sufficient to identify the respective genes in our study.
Thus, genes identified in our study that are not yet known to
cause IEMs represent candidates for targeted assessment in
patients with a suspected IEM who feature abnormal levels of the
implicated metabolite. Second, genes identified in this screen may
also contain common variants associated in GWAS with more
common diseases, in which the implicated metabolite(s) may be
involved. This is exemplified by a reported association of com-
mon variants in the SUGCT locus in a GWAS of migraine47,
where identification of the causal gene within the locus is a
classical challenge. Our study directly connects SUGCT to glu-
tarate and adipate levels and to monogenic glutaric aciduria III. A
previous report of a patient with glutaric aciduria III presenting
with migraine48 now supports the hypothesis that SUGCT may be
the underlying causal gene for the GWAS signal, with a potential
role as a mediator or biomarker of migraine that deserves further
study. Along the same lines, our study implicates glycocheno-
deoxycholate 3-sulfate-associated SLC10A2 as the causal gene in a
locus identified in GWAS of gallstone disease49 by detecting rare,
metabolite-associated variants in this gene.

As a conceptual add-on, we successfully integrated our results
with COBRA modeling and demonstrated that rare variant
association results and in silico knockout models of human
metabolism showed very close agreement. This opens up new
research routes, as methods based on mechanistic modeling, in
the case of COBRA via the analyses of steady state solution spaces
of biochemical reaction networks, are well suited for individua-
lized phenotype predictions. This is because COBRA modeling
does not rely on population statistical frameworks, such as
association studies or machine learning, and is therefore applic-
able when small sample size complicates statistical inferences,
while COBRA models still allow personalized parametrization of
models via Omics measurements43. However, COBRA models are
still missing metabolites or genes, and are continuously updated

and expanded by the systems biology community, as it is the case
for human50–52, yeast53,54, and well-studied microbes such as
Escherichia coli55,56. Missing information may limit their
applicability; the integration of genetic association results helps
with identifying such missing information and can lead to their
refinement. This is exemplified in our study, where the observed
genetic association indicated that the COBRA model did not
produce correct results in the case of ALPL knockout. A potential
explanation for this finding is the lack of incorporation of the
known presence of organ-specific ALPL isozymes into the model.
In conclusion, COBRA modeling and genetic association studies
complement each other, and this study is a step towards bridging
the worlds of population statistics and mechanistic modeling.

Some aspects of our study warrant mention: because of the
array-based design, not all rare or private genetic variants of
potentially large effect are likely to be captured, and not all genes
are equally well represented. These limitations can be addressed
by future whole-exome or whole-genome sequencing studies. The
study population was restricted to individuals of European
ancestry, and studies of persons of non-European ancestry are
likely to reveal additional findings. The special study sample, with
the quantification of almost 1500 metabolites from urine of
almost 5,000 individuals, currently precludes external validation
of detected associations. However, the biological plausibility, good
agreement with findings from blood-based studies and with genes
implicated in corresponding IEMs, as well as the conservative
correction for multiple testing bolsters confidence that at least the
great majority of reported associations represent true positive
findings. Lastly, the identity of some of the associated metabolites
is yet unknown. We believe that unsupervised clustering of
known and not yet identified molecules, combined with knowl-
edge about the unknown molecule’s mass spectrometry infor-
mation and the implicated gene’s function, offers a promising
way forward to reveal their identity. In fact, we previously used
this approach to reduce the search space and were able to suc-
cessfully de-orphanize a formerly unidentified molecule17.

In summary, our study extends the map of genes influencing
urine metabolite concentrations, illuminates ongoing metabolic
processes at the systemic and organ level, implicates candidate
variants for known IEMs and genes for yet unknown IEMs, and
highlights the potential of linking population genetics to whole-
body, organ-resolved models of human metabolism.

Methods
Study design and participants. The German Chronic Kidney Disease (GCKD)
study is an ongoing multi-center prospective cohort study of patients with CKD
under regular care of a nephrologist. It was registered in the national registry for
clinical studies (DRKS 00003971) and approved by the local ethics committees of
the participating institutions (Supplementary Note 1). Between 2010 and 2012,
5217 patients aged 18–74 years provided written informed consent and were
enrolled into the study57. Eligible patients had a glomerular filtration rate estimated
from serum creatinine (eGFR) between 30 and 60 ml/min/1.73 m2, or an eGFR
>60 ml/min/1.73 m2 in combination with a urinary albumin-to-creatinine ratio
(UACR) of ≥300 mg/g or albuminuria of ≥500 mg/d or the corresponding values of
protein in urine57. Clinical data, medical and family history, medications, socio-
demographic factors were collected by trained study personnel using standardized
instruments. At the baseline visit, blood was drawn to obtain serum and plasma,
and a spot urine sample was collected. Biomaterials were immediately processed
following a standardized protocol and shipped frozen to and stored at −80 degrees
Celsius in a central biobank for future analyses58. More detailed information about
the design of the study and the recruited study population can be found in previous
publications46,57.

Genotyping and imputation. A detailed description of genotyping and the sub-
sequent data cleaning in the GCKD study has been published previously29. In brief,
genomic DNA was extracted from whole blood and was available for 5123 GCKD
participants. Genotyping was carried out using Omni2.5Exome BeadChip arrays
(Illumina, GenomeStudio, GenotypingModule Version 1.9.4). Quality control of
genotypes was performed for individuals and SNPs for the ExomeChip content of
the array, including checks specific to exome chip data as published previously59.
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Briefly, based on the quality control steps, 96 individuals and 3,818 SNPs were
removed, the latter of which did not pass the filters of call rate >95% and
Hardy–Weinberg equilibrium P-value ≥1E−5. The cleaned Exome Chip dataset
contained genotypes of 226,233 variants from 5,027 individuals and was post-
processed by zCall60 with a z-score threshold of six and then used in the Exome
Chip association analyses.

Metabolite measurements. Metabolites were quantified from urine specimens
collected from 5096 GCKD study participants at the baseline visit at Metabolon,
Inc. (Research Triangle Park, NC) with ultra-high performance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS) non-targeted meth-
ods including compound identification and relative quantification. Sample pre-
paration and mass detection were carried out with the technical proposal published
previously61. In short, the platforms used a Waters ACQUITY UPLC and a
Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer with an
electrospray ionization (ESI) source and Orbitrap mass analyzer at 35,000 mass
resolution. The UPLC methods were optimized for hydrophilic and hydrophobic
molecules and the mass analyzer applied in positive and negative modes for a total
of four UPLC-MS/MS methods per sample. The scan range was 70 to 1000m/z.

Software developed by Metabolon facilitated the identification of metabolites
based on a comparison of ion features in the GCKD samples to a reference library
that contained entries on molecular weight (m/z), retention time, preferred
adducts, in-source fragments and associated MS spectra of chemical standards. The
area under the curve was used for peak quantification, and raw area counts were
normalized, for each metabolite in each sample, in order to account for inter-day
instrument variation. More details can be found in the Supplementary Note 2.

Quality control and data cleaning of metabolomics data. Quality control of the
urine metabolite data in the GCKD study has been published in detail previously17.
In brief, samples and metabolites were evaluated for missing and outlying values as
well as metabolite variance. Outlying values (>5 SD) for each metabolite were set to
missing. To account for inter-individual differences in urine dilution, metabolite
concentrations were normalized using the probabilistic quotient62, which was
derived from endogenous metabolites with <1% missing values. In order to avoid
false positive associations due to the small sample size, only metabolites or
metabolite ratios quantified in at least 300 individuals were analyzed. Data were
inverse normal transformed prior to analysis. After removal of samples without
genotypes, metabolites, or covariates, the final dataset for the evaluation of 1487
individual metabolites (Supplementary Data 1) consisted of up to 4864 individuals.
Pairwise metabolite ratios were computed across 265 amino acids, 32 peptides and
32 lipid-fatty acid metabolites, resulting in 53,714 ratios metabolite ratios with at
least 300 measurements available in up to 4795 individuals.

Additional variables. Serum creatinine used for the estimation of GFR was
measured by an IDMS traceable enzymatic assay (Creatinine plus, Roche). The
four-variable Chronic Kidney Disease Epidemiology Collaboration (CKDEpi)
equation was used to estimate GFR63. The UACR was calculated from urinary
albumin and creatinine measurements, with creatinine measured using the same
assay as in serum, and albumin with the ALBU-XS assay (Roche/Hitachi Diag-
nostics GmbH, Mannheim, Germany).

Rare variants association studies based on exome chip. Two types of rare
variant aggregation tests were conducted, the burden test64 and the sequence kernel
association test (SKAT)65 as implemented in the R package seqMeta (v1.6.7)66 and
adjusting for age, sex, eGFR, UACR, and the first three principal components.
Potentially deleterious variants that were aggregated within each gene were defined
as those with MAF < 1% and presumably having a major effect on the gene product
(nonsynonymous, stop gain/loss, splicing; “qualifying variants”) as annotated using
dbNSFP v.2.067,68. Results were filtered to retain genes with cumulative minor allele
count ≥10 and with ≥2 contributing variants per gene. In the analysis of individual
metabolites, up to 11,552 genes passed the filtering criteria. To account for multiple
testing, the overall type I error of 0.05 was adjusted for the number of metabolites
(n= 1487), the number of genes (n= 11,552), and the number of performed
aggregation tests (n= 2) using a Bonferroni correction. Statistical significance was
thus defined as p < 1.46E−09. In the analysis of the 53,714 metabolite ratios, up to
11,587 genes passed the filtering criteria; therefore, the corresponding significance
threshold adjusted for multiple testing was set at p < 4.02E−11. Suggestive sig-
nificance for both metabolites and their ratios was defined as p < 2.2E−06, corre-
sponding to the testing of one metabolite. The association between metabolites and
metabolite ratios and individual genetic variants that contributed to the significant
associations identified in gene-based tests was evaluated using linear regression and
an additive genetic model adjusting for the same covariables as implemented in the
R package seqMeta (v1.6.7)66. The p-gain statistic as a measure of information gain
of a metabolite ratio in comparison to its individual components was computed as
the minimum of the two p-values of the individual metabolites divided by the
p-value of the ratio69. Only metabolite ratios with a p-gain of at least 10 times the
number of evaluated ratios69, i.e. 537,140, were retained.

The potential influence of common variants on the detected gene-metabolite
association signals was evaluated. For each significant metabolite or metabolite

ratio identified in this study, we assessed whether there was a genome-wide
significant common variant association signal in GWAS of the implicated
metabolites, which we published previously17. When the corresponding gene
implicated in this study mapped within ±500 kb of a GWAS index SNP for the
respective metabolite, we repeated both rare variant aggregation analyses
conditional on the genotype of the corresponding index SNP. Change in effect size
from the burden test before and after conditional analysis was also assessed.

Connection of implicated genes to health outcomes. The aggregated effect of the
rare variants on health outcomes were investigated in the UK Biobank WES dataset
(application no. 28807)70. The analysis for the positive control gene, ALPL, was
conducted in the European subpopulation (N= 41,045), excluding subjects with
missing values, using the same rare variants, same transformation, and the burden
and SKAT test as described before with a similar covariate set as in the GCKD
study: age, sex, and the first three principal components. Second, the association
between the aggregated effects of rare variants in the genes of interest were eval-
uated in the whole-exome sequencing dataset of the UK Biobank with 791 medical
outcomes using gene-based linear mixed models as implemented in the SAIGE-
GENE software and detailed in71.

Statistical power. The statistical power to detect associations between metabolites
and rare genetic variants in our study of 4864 unrelated individuals across a range
of MAFs and effect sizes was calculated using Quanto (v1.2.4) and shown in
Supplementary Data 12.

Gene expression data sources and analyses. GTEx RNA-seq V8 data36 was
downloaded from GTEx Portal Datasets page (Data Availability). The TPM matrix
was filtered according to criteria used in Finucane et al.72, resulting in expression
levels of 33,507 genes for 17,382 samples spanning 54 tissues. RNA-seq as well as
protein mass spectrometry data from micro-dissected rat tubules was downloaded
from Kidney Tubules Expression Atlas data table page (Data Availability)39,40.
Kidney single-cell RNA-seq data from human38 and mouse37 were downloaded
from GEO (Data Availability), and processed in R package Seurat73 based on the
methods in the respective original publications37,38. The human kidney dataset
contained 4524 cells in 17 cell clusters, and the mouse kidney dataset contained
43,745 cells in 16 clusters. The normalized count matrix from the published
Human Liver Cell Atlas74 included 10,372 cells and was also processed in Seurat.
Cells in 39 clusters were merged into 10 major liver cell types. The intestine single-
cell data from Wang et al.75 was provided as a Seurat file by the authors. The
dataset included 14,537 epithelial cells from human ileum, colon and rectum in 7
clusters. For each expression dataset, a list of specifically expressed genes was
generated for each tissue or cell type by taking the top 10% of genes ranked by
t-statistics extracted from linear models72. For visualization of the expression of
metabolite-associated genes as a heatmap, the mean expression values in each
tissue or cell type were z-score transformed.

GO, KEGG, tissue and cell-type enrichment analyses. We generated a database
of Entrez gene identifiers using the Bioconductor R database org.Hs.eg.db v3.10.0 and
KEGG.db v3.2.3 that contained, for each gene, Gene Ontology (GO) terms, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, and the top 10% highly
expressed genes in each GTEx V8 tissue, the kidney- and liver-enriched as well as
group-enriched genes downloaded from the Human Protein Atlas (HPA, Data
Availability) and human kidney, liver, and intestine as well as murine kidney cell
types37,38,74–76. The database was filtered for terms with at least five genes. For
enrichment testing, the observed number of the 30 identified genes in the GO terms,
KEGG pathways, as well as in the top 10% highly expressed genes in each GTEx tissue
and kidney, liver and intestine cell type was compared to the number obtained from
lists of 30 randomly drawn genes (GO and KEGG: 1e7 draws; others: 1e8 draws).
Multiple testing correction was performed using the Bonferroni method77 for GTEx
tissues (0.05/51) and subsequently tested organ-specific cell types, and the Benjamini-
Hochberg procedure78 for GO and KEGG terms (FDR < 0.05).

Constraint-based modeling and reconstruction analyses (COBRA). Aiming at
narrowing the gap between genetic association studies and mechanistic insights, we
integrated findings from the exome-wide association studies of rare variants with
the frameworks of COBRA, complimenting thereby statistical association analyses
with mechanistic network modeling. In COBRA, an in silico model of an organism
is assembled based on genomic, biochemical, and physiological data79,80, basically
deriving the space of possible thermodynamically feasible steady-state solutions for
the organism’s metabolism. The mathematical and computational framework
allows then for investigating perturbations of the system in silico, such as gene
knockout models. This computational modeling approach allows for in silico
prediction of metabolic alterations in IEMs51,81,82. Here, we used a male whole-
body, organ-resolved model of human metabolism (male WBM)43, which consisted
of 81,094 reactions, 56,452 metabolites, and 1681 genes across 22 organs, 6 blood
cells, and 13 biofluid compartments, including urine. The WBM reconstruction has
been built using the most recent version of the generic genome-scale reconstruction
of human metabolism, Recon 3D52. The WBM model was constrained using the
constraints for the reference man, as described previously43. Briefly, the constraints
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included maximal excretion rates for the considered 920 urine metabolites, based
on reported urine concentrations83 and a urine production rate of 2 l/day. The diet
was constrained to an average European diet. To model the gene knockouts, we
first identified all reactions carried out by the corresponding encoded enzymes,
using the virtual metabolic human database4 (www.vmh.life). We only considered
genes that were present in the WBM reconstruction and had no isozymes in the
model and metabolites where urine excretion reactions were defined in the WBM
reconstruction. To determine whether the urine excretion of the metabolite would
be altered in silico in the knockout, we first set the flux bounds, or constraints, of
the identified corresponding reaction(s) in all organs that contained the reaction(s)
to zero. We then set the lower and upper bounds of urine excretion reactions to
zero and infinity, respectively, for each metabolite found to be significantly asso-
ciated with a gene in this study (e.g., EX_ dmgly[u] for dimethylglycine). We
subsequently maximized the flux through the urine excretion reaction individually.
The maximal possible flux value was recorded and compared to that of the healthy
model. The healthy case was simulated by first maximizing the flux through all
organ-specific reactions associated with one of the genes of interest, followed by
setting this maximal flux value as constraint on these reactions. We maximized flux
through each of the urine metabolite excretion reactions after setting the corre-
sponding reaction constraints to zero and infinity, respectively, as described above.
To simulate changes in the blood compartment, we added for each of the meta-
bolites a so-called demand reaction, which allows for their accumulation in the
blood compartment, in the form of, e.g., DM_ dmgly[bc] for dimethylglycine. We
repeated the aforementioned simulations but this time we maximized the flux
through each of the demand reactions for each corresponding healthy and
knockout model. All simulations were carried out using Matlab v2018b (Math-
works, Inc.) as simulation environment and Ilog Cplex v10.12 (IBM, Inc.) as linear
programming solver, the COBRA Toolbox v3.084, and the physiologically and
stoichiometrically constrained modeling (PSCM) toolbox v1.043.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
In accordance with the informed consent, individual-level data of the GCKD study can
be shared with the scientific community for dedicated research projects upon application.
The study website (https://www.gckd.de) contains information about the application and
publication processes. mzML files representing examples of the unknown molecules in
Table 1 are available through the EMBL-EBI database Metabolights under study ID
MTBLS284. GTEx RNA-seq V8 data were downloaded from GTEx Portal Datasets page
(https://www.gtexportal.org/home/datasets/). Count matrices of kidney single-cell RNA-
seq data from human and mouse were downloaded from GEO under accession numbers
GSE118184 and GSE107585. RNA-seq as well as protein mass spectrometry data from
micro-dissected rat tubules were downloaded from Kidney Tubules Expression Atlas data
table page (https://esbl.nhlbi.nih.gov/KTEA/). Kidney- and liver-enriched as well as
group enriched genes were downloaded from the Human Protein Atlas (HPA, https://
www.proteinatlas.org/humanproteome/tissue). The male WBM reconstruction can be
downloaded from the virtual metabolic human database (https://www.vmh.life/
#downloadview). Source data are provided with this paper.

Code availability
Each use of software programs has been clearly indicated, and information on the
options is provided in the Methods section. Source code to call on the listed software
programs is available upon request. Both the COBRA toolbox and the PSCM toolbox can
be obtained from github: https://opencobra.github.io/. The code for the simulations can
be found at https://github.com/ThieleLab/CodeBase/tree/master/
Cheng_et_al_IEM_simulations.
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