
Yet Another Latency Measuring Device
Andreas Schmid

andreas.schmid@ur.de
University of Regensburg
Regensburg, Germany

Raphael Wimmer
raphael.wimmer@ur.de
University of Regensburg
Regensburg, Germany

Figure 1: Setup formeasuring end-to-end latency. Amicrocontroller (a) starts a timer and triggers a button press on amodified
input device (b) by closing a button contact with an optocoupler. The application reacts to the button press by changing its
background color from black towhite. Themicrocontrollermeasures the display’s brightness with a photo resistor (c) attached
to the monitor. Once a change in brightness is recognized, the timer is stopped. Results sent to the PC via USB.

ABSTRACT
End-to-end latency - the time a computer system needs from an
input event until output is displayed - directly influences task diffi-
culty and user experience. It is therefore an important topic in HCI
research. Different human-computer interfaces require different
ways to measure latency as it is influenced by all involved hardware
and software components. However, many approaches to measur-
ing latency rely on professional lab equipment and are therefore
hard to replicate. We propose a method for accurately measuring
the end-to-end latency of traditional setups with a button-equipped
input device and a display. To this end, a microcontroller closes the
electrical contact of a mouse button to trigger an input event, and
captures the screen response via a photo-resistor. Our approach
combines parts of different existing methods to measure latency
and only relies on cheap and off-the-shelf components to allow
for easy replication. The latency values measured by our device
are very close to those measured with a high-speed smartphone
camera (240 Hz). The maximum error is below 2.64 ms - lower than
the camera’s temporal resolution and the screen refresh periods
of high-fps computer displays. Therefore, our approach allows for
repeatedly and reliably measuring end-to-end-latency.

KEYWORDS
latency, human-computer interaction

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EHPHCI ’21, 2021, Yokohama, JP
© 2021 Copyright held by the owner/author(s).
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Andreas Schmid and Raphael Wimmer. 2021. Yet Another Latency Measur-
ing Device. In EHPHCI . ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Latency is an inherent property of human-computer interfaces.
Due to processing and transmission times between input device,
operating system, application, and display, each component in this
chain adds to the overall delay between user input and system
response. This so called end-to-end latency directly influences task
difficulty [18] and should therefore be minimized to ensure optimal
user experience. The influence of latency is especially important
for real time applications, as it can decide about virtual life and
death in video games [7, 15, 29] or influence the outcome of psycho-
logical experiments [16, 23]. Shneiderman et al. [28] recommend
a system response time of 50 to 150 milliseconds for simple tasks
like typing or pointing and Seow [27] classifies response times of
200 milliseconds and shorter as immediate. MacKenzie and Ware
have shown that the influence of latency on pointing tasks is easily
measurable at 75 milliseconds and delay times of 225 milliseconds
degrade performance severely [18]. However, users can perceive
significantly lower latencies such as 10 milliseconds for touch input
[19, 20] or 2 milliseconds for dragging on a touch screen [19].

To build and test low latency systems it is important to have a
method for measuring a system’s latency. As there are numerous
different input and output modalities for human-computer inter-
faces, there is no general one size fits all method for measuring
end-to-end latency. Therefore, measuring methods have to be tai-
lored specifically for the system under test and with regards to
further aspects such as accuracy, automation, replicability, and
access system components.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


EHPHCI ’21, 2021, Yokohama, JP Schmid et al.

In this work, we present an accurate, automatic and easily replica-
ble method for measuring end-to-end latency of traditional desktop
setups with a button-equipped input device and a visual display.

2 RELATEDWORK
A straight forward approach for measuring end-to-end latency
is to use a high speed camera to record input and output device
and calculate the delay time by either counting frames between
two events, or measuring differences in phase or distance between
physical pointer and virtual cursor.

He et al. [11] measured the latency of a virtual environment by
moving a pointing device over a grid and counting the number
of grid cells between pointing device and a displayed cursor in a
video recording. A similar approach used by Pavlovich and Stuer-
zlinger [22] is to move a computer mouse along the side of a CRT
monitor and measure the distance between mouse an cursor in a
video recording. Other methods use regular motion by for example
attaching an input device to a pendulum [17, 31, 33] or a turntable
[32], logging the points in time when either the moving input de-
vice or the corresponding cursor reach their amplitude point an
calculating the difference in phase between them. This is also often
done manually by annotating video recordings.

Bérard and Blanch [3] argue that a system’s latency can vary and
instead of reporting a single latency value, a latency distribution
should be measured. Therefore, repeated measurements are nec-
essary, which makes the camera-based approach even more time
consuming [10]. They propose two methods for measuring latency
of touch screen systems. For their camera-based high-accuracy ap-
proach, the distance between a human operator’s finger and the
cursor position is measured to determine latency. For their low-
overhead approach, a operator follows the circular motion of a
displayed object with their finger and the distance between touch
point and the theoretical object position is calculated. This method
is prone to errors because of the human in the loop. Cattan et al. [6]
extend Bérard and Blanche’s method by attaching a visual marker
to the operator’s finger so its position in a video recording can be
automatically determined with computer vision algorithms.

Because of the cumbersome process ofmanually analyzing videos
and the limited temporal resolution of high speed cameras (1 ms
for 1000 fps, 4 ms for 240 fps), fully automatic and highly accurate
methods based on electrical components have been proposed.

With HammerTime!, Deber et al. [8] present a non-invasive
method for measuring end-to-end latency of any system with a
capacitive touch screen. A touch event is triggered by connecting
a contact placed on the screen to electrical ground. A photo diode
attached to the screen detects the system’s response to the touch
event. The time between input event and system response is re-
ported as a latency measurement. This process can be automated
to conduct a measurement series and report latency distributions.
The method has been validated using an oscilloscope and a high
speed camera and it is accurate with a resolution of at least 1 ms.

Kämäräinen et al. [14] extend Deber et al.’s method by adding
the capability to simulate external input devices with a microcon-
troller, using other sensors besides the touch screen and measuring
network latency. Furthermore, they collect timestamps for various
steps of the processing pipeline to report partial latencies.

Casiez et al. [5] present a different approach for measuring end-
to-end latency of a touch screen device. The time of the input
event is determined with a vibration sensor attached to a user’s
finger. Therefore, this method can also be used for button-equipped
input devices without a touch screen. Similar to other methods, a
photo diode is used to detect the system’s response via a change in
brightness on the display. Casiez et al. also report partial latencies
gathered with software and hardware probes included in the system.

Other approaches focus on measuring the latency contributed by
individual components of the processing pipeline. This allows for
finding and counteracting performance bottlenecks in the system.
Stadler et al. [30] present a device for measuring the response time
of displays. Similar to methods discussed earlier, this approach uses
a photo diode to detect brightness changes on a screen.

Casiez et al. [4] measured the latency of computer mice by posi-
tioning the mouse sensor on the computer screen which displayed
a moving texture. The time between moving this texture and the
reception of the input event was considered as a latency measure-
ment. Measuring the latency of button-equipped input devices often
requires inserting hardware probes into the device. Burke [2] mea-
sured the latency of computer mice by detecting the point in time
when a button contact is closed and measuring the delay until a USB
event is received by a logic analyzer. Wimmer et al. [1, 34] extend
this approach by replacing the professional grade lab equipment
with a Raspberry Pi and automatically triggering buttons so mea-
surement series’ can be conducted automatically. For this method,
it is required to attach wires to a button of the device under test by
either soldering or using clamps.

In 2020, NVIDIA revealed several measuring devices they use for
evaluating hardware during their internal evaluation process. The
Latency Display Analysis Tool (LDAT) [25] senses button presses
on a mouse electrically and detects changes on a display with a
photo sensor. However, the LDAT has only been sent to a selection
of hardware reviewers and its internal workings have not been
published. Therefore, this device can not be obtained, replicated
or validated by researchers or interested laypersons. NVIDIA also
released the Reflex Latency Analyzer [24], which adds the capabil-
ity to measure latency to new commercial monitors of different
manufacturers. A computer mouse is connected to a dedicated USB
port of a monitor supporting the technology. Timestamps of input
events are logged an time is measured until pixels on the display are
update. Even though this method is convenient in many scenarios,
it has several disadvantages. First of all, the technology does not
really measure end-to-end latency as the measurement starts when
an input event arrives at the system. Therefore, the input device’s
internal latency is not taken into consideration. Furthermore, Reflex
can only be used with monitors supporting the technology so it
can not be applied to existing systems.

3 METHOD
Whereas for capacitive touch screens, input events can be easily
triggered by grounding a probe on the screen [8, 14], it is not trivial
to accurately measure the exact time of a physical button being
pressed [13, 21, 34]. Therefore, we present a method to measure
end-to-end latency of traditional desktop setups (button-equipped
input device, computer, display) which combines parts of multiple



Yet Another Latency Measuring Device EHPHCI ’21, 2021, Yokohama, JP

approaches from related work. By automatically triggering the
buttons of modified input devices, as proposed by Wimmer et al.
[1, 34], we can precisely control the moment when an input event
is triggered. A photo sensor attached to a screen is used to detect a
change in brightness corresponding to the system’s response. This
method is considered as reliable and has been used in numerous
latency measuring setups [5, 8, 9, 14, 26, 30]. Our method is similar
to Schubert et al.’s response box [26], but it is compatible with all
kinds of button-equipped input devices and all measurements are
made on a microcontroller, so no dedicated software is needed.

As both, triggering the input event and measuring the screen’s
brightness, can be done with a microcontroller, our measuring pro-
cess is fully automated. This allows for repeated measurements
so not only a single value but also a distribution of latencies can
be measured. Furthermore, the tedious frame-by-frame analysis of
slow motion videos, as needed for other methods, is not required
for our approach. As all used components operate at least on a mi-
crosecond time scale, the accuracy of our method is only limited by
the used microcontroller. As for example Arduino’s micros() func-
tion resolves in 4 µs steps1, the device is more than accurate enough
for measuring end-to-end latency of human-computer interfaces.

3.1 Components
For a sample implementation of out measuring device, we use an
Arduino Micro2 because of its small size and breadboard-friendly
design. But, as only simple components are used and many current
microcontroller platforms support Arduino code, the device can be
easily built based on other microcontrollers.

The input device of the system under test has to be modified
slightly so button presses can be triggered automatically. Just like
Wimmer et al. [1, 34], wires are attached to the button’s contacts by
soldering or with clamps. Those wires are connected to the transis-
tor side of an optocoupler3 which connects the wires and therefore
closes the device’s button when triggered by the microcontroller.

For the photo sensor detecting the system’s response, we use
a cheap photo resistor4. The sensor is simply attached to the sys-
tem’s monitor with electric tape (dark colors are recommended to
shield from ambient light) and connected to an ACD pin of the
microcontroller via a voltage divider circuit.

Additionally, we connected a physical switch to the Arduino
which allows for starting and stopping the measuring process man-
ually so the device does not trigger input events when it is not
supposed to. We also added two LEDs to the device which indi-
cate the moments when the button is closed and when a change
in brightness is detected. Those were only used to evaluate our
device’s accuracy with a high speed camera and are therefore not
required.

We soldered all components on a perfboard for higher robustness,
but the components can also be connected using jumper wires on
a breadboard. The complete device can be seen in Fig. 2. The total
cost of this implementation was under 25€ (excluding the modified
input device.)

1https://www.arduino.cc/reference/en/language/functions/time/micros/
2https://store.arduino.cc/arduino-micro
3LTV-817
4Luna Optoelectronics PDV-P8104

Figure 2: Close up view of the measuring device. The button
contacts of the modified input device are connected to the
transistor side of an optocoupler (a). The photo resistor is
connected to an ADC pin of the microcontroller via a volt-
age divider circuit (b). Two LEDs indicate the time when a
button press is triggered (c, left) andwhen a change in bright-
ness is detected (c, right). A pyhsical switch (d) can be used
to manually start and stop the measurement.

3.2 Measuring Process
The system under test runs an application which displays a black
region on the spot where the photo sensor is attached. When an
input event occurs, the region’s color is switched to white until
the button is released. Therefore, the measuring process can be
included into existing applications by adding a region with this
behavior. As the display refreshes from top to bottom due to vertical
synchronization (Fig. 3), the vertical position of the photo sensor
on the monitor influences the measured latency significantly. This
means that for a 60 Hz monitor, the difference in latency between
the top and the bottom of the display is 16.67 milliseconds. There-
fore, the correct position of the sensor depends on the application:
placing it at the bottom right corner leads to a pessimistic mea-
surement, whereas placing it at the top left corner leads to a best
case measurement. Chapter 10.3 of the Information Display Mea-
surement Standard [12] the center of the screen is recommended
for standardized measurements of display response time.

When the measuring device is turned on, it goes through a quick
calibration step by measuring the brightness of the display (black
value), triggering an input event and measuring the brightness
again (white value). The average of those two values is used as
a brightness threshold for the measuring process. The monitor’s
brightness should always be set to the maximum value as the pulse
width modulated backlight can confound brightness measurements
with the photo sensor.

The actual measuring process begins with the microcontroller
storing the current timestamp in a variable and then closing the
input device’s button by triggering the optocoupler. The micro-
controller then repeatedly measures the brightness of the display
by reading the ADC value of the photo diode. Once the bright-
ness exceeds the threshold determined during calibration, a second
timestamp is saved and the time difference is sent to a PC via USB.
Then, the optocoupler is turned off (thus releasing the button) and

https://www.arduino.cc/reference/en/language/functions/time/micros/
https://store.arduino.cc/arduino-micro


EHPHCI ’21, 2021, Yokohama, JP Schmid et al.

the device waits until the display turns black again. An additional
random delay between 100 and 1000 milliseconds (uniform distri-
bution) ensures that the device does not accidentally sync up with
the system under test. Afterwards, a new measurement is started.

4 VALIDATION

Figure 3: Step by step visualization of themeasuring process.
(1) The measurement starts. (2) The mouse button is trig-
gered and the green LED is turned on. (3) The input event is
recognized by the PC and the screen changes its color from
black to white. (4) Once the photo sensor attached to the dis-
play measures a change in brightness, the blue LED turns
on. This way, the results of our device can be compared to
footage from a high speed camera.

To validate the accuracy of our measuring device, we conducted
an evaluation in two steps. First, we measured the internal latency
added by themeasuring device itself by connecting the photo sensor
directly to an LED in parallel to the optocoupler. This way, the LED
lights up at exactly the same time the optocoupler would trigger the
input device. The photo sensor then detects a change in brightness
and the measuring process is stopped. In an ideal world, the time
measured this way should approach zero.

All measurements were conducted on an HP EliteBook 850 G4
with a Logitech G5 mouse and a Dell U2417h monitor. The test
application which reacts to a click and changes the background
color was written in C using SDL2.

We conducted ameasuring series of 200 individualmeasurements
this way and measured a mean latency of 116.5 µs (min: 112, max:
124)5. As latency of human-computer interfaces is normally in a
millisecond time scale, we consider this error negligible.

In a second evaluation step, we captured a series of 99 individual
measurements with our device and recorded the process with a
high speed camera6. Two LEDs on the device indicate the points
in time when (a) the optocoupler is triggered and (b) the bright-
ness threshold is reached. In the video, it was clearly visible that
the second LED lights up exactly at the point in time the display
underneath the sensor is updated (Fig. 3). By counting the video
frames between the LEDs lighting up, we could approximate the
actual latency with a resolution limited to 4 milliseconds due to the
video’s frame rate.

5As we use the Arduino’s micros() function to measure time, those values are only
accurate with a resolution of 4 µs.
6Google Pixel 3a with 240 fps

Figure 4) shows the latencies captured simultaneously via both
methods. For this series of 99 measurements, the mean difference
between our device’s measurements and the latencies determined
by calculating frames is 2.64 milliseconds, which is below the used
camera’s temporal resolution.

0 20 40 60 80 100
Iteration

40

60

80

La
te

nc
y 

in
 M

illi
se

co
nd

s

Annotation
Measurement

Figure 4: Comparison of latency measurements of our de-
vice and latencies determined bymanually analyzing a high
speed video of the same measurement series.

5 LIMITATIONS AND CONCLUSION
The biggest limitation of our measuring method is the fact that
input devices need to be opened and modified so our measuring
device can automatically trigger button presses. We know that this
might be a deal-breaker in some scenarios, especially for regular
gamers who want to know the latency of their own system. We
accept this limitation as - in our experience - electrically triggering
button presses is the only replicable method to accurately and
automatically trigger input events for button-equipped devices.

One limitation that most methods for measuring end-to-end
latency have in common is the fact that even though they can mea-
sure latency, they can not give an explanation on partial latencies
contributing to the total delay. Therefore, if the goal is to effectively
improve a system’s latency, more detailed timestamps from the
whole processing pipeline have to be collected [4].

Even though our measuring method only works for systems with
button-equipped input devices, we do not regard this as a limitation.
As stated in the introduction, latency measuring methods have to
be built with the tested system in mind and there are no one size fits
all solutions. Furthermore, there is plenty of work on measuring
the latency of touchscreen devices [5, 8, 14].

In this work, we presented a simple measuring method for end-
to-end latency of human-computer interfaces with button-equipped
input devices. As the process is fully automated, no manual analysis
of video footage or similar is needed, there is no error introduced
by human operators and latency distributions can be measured by
conducting a measurement series. We have shown that the device
is accurate within a resolution of less than one millisecond, which
is enough for the evaluation of human-computer interfaces. As
the device is based on cheap and off-the-shelf components and
the circuit is fairly simple, the device can easily be replicated for
a price of under 25€. Further information on the project, as well
as circuit diagrams and source code of the device are available at
https://hci.ur.de/projects/end-to-end-latency.

This project is funded by the Bavarian State Ministry of Science
and the Arts and coordinated by the Bavarian Research Institute
for Digital Transformation (bidt).

https://hci.ur.de/projects/end-to-end-latency


Yet Another Latency Measuring Device EHPHCI ’21, 2021, Yokohama, JP

REFERENCES
[1] Florian Bockes, Raphael Wimmer, and Andreas Schmid. 2018. LagBox – Mea-

suring the Latency of USB-Connected Input Devices. In Extended Abstracts of
the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18. ACM
Press, Montreal QC, Canada, 1–6. https://doi.org/10.1145/3170427.3188632

[2] Steve Burke. 2016. Wireless Mouse Click Latency Analysis Using Breadboard &
USB Analyzers. https://www.gamersnexus.net/guides/2594-wireless-mouse-
click-latency-analysis-vs-wired 00000.

[3] François Bérard and Renaud Blanch. 2013. Two Touch System Latency Estimators:
High Accuracy and Low Overhead. In Proceedings of the 2013 ACM International
Conference on Interactive Tabletops and Surfaces (ITS ’13). ACM, New York, NY,
USA, 241–250. https://doi.org/10.1145/2512349.2512796 event-place: St. Andrews,
Scotland, United Kingdom.

[4] Géry Casiez, Stéphane Conversy, Matthieu Falce, Stéphane Huot, and Nicolas
Roussel. 2015. Looking Through the Eye of the Mouse: A Simple Method for
Measuring End-to-end Latency Using an Optical Mouse. In Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology (UIST ’15).
ACM, New York, NY, USA, 629–636. https://doi.org/10.1145/2807442.2807454
event-place: Charlotte, NC, USA.

[5] Géry Casiez, Thomas Pietrzak, Damien Marchal, Sébastien Poulmane, Matthieu
Falce, and Nicolas Roussel. 2017. Characterizing Latency in Touch and Button-
Equipped Interactive Systems. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology (UIST ’17). ACM, New York, NY, USA,
29–39. https://doi.org/10.1145/3126594.3126606

[6] Elie Cattan, Amélie Rochet-Capellan, and François Bérard. 2015. A Predictive
Approach for an End-to-End Touch-Latency Measurement. In Proceedings of
the 2015 International Conference on Interactive Tabletops & Surfaces - ITS ’15.
ACM Press, Madeira, Portugal, 215–218. https://doi.org/10.1145/2817721.2817747
00012.

[7] Mark Claypool and Kajal Claypool. 2006. Latency and player actions in online
games. Commun. ACM 49, 11 (Nov. 2006), 40–45. https://doi.org/10.1145/1167838.
1167860 00000.

[8] Jonathan Deber, Bruno Araujo, Ricardo Jota, Clifton Forlines, Darren Leigh,
Steven Sanders, and Daniel Wigdor. 2016. Hammer Time!: A Low-Cost, High
Precision, High Accuracy Tool to Measure the Latency of Touchscreen Devices.
ACM Press, 2857–2868. https://doi.org/10.1145/2858036.2858394

[9] Massimiliano Di Luca. 2010. New Method to Measure End-to-End Delay of
Virtual Reality. Presence: Teleoperators and Virtual Environments 19, 6 (Dec. 2010),
569–584. https://doi.org/10.1162/pres_a_00023

[10] Sebastian Friston and Anthony Steed. 2014. Measuring Latency in Virtual Envi-
ronments. IEEE Transactions on Visualization and Computer Graphics 20, 4 (April
2014), 616–625. https://doi.org/10.1109/TVCG.2014.30 00063.

[11] Ding He, Fuhu Liu, Dave Pape, Greg Dawe, and Dan Sandin. 2000. Video-Based
Measurement of System Latency. International Immersive Projection Technology
Workshop 111 (July 2000), 6. https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.34.1123&rep=rep1&type=pdf 00059.

[12] International Committee for Display Metrology. 2012. Information display mea-
surements standard. Society for Information Display (SID) 135 (2012).

[13] Topi Kaaresoja and Stephen Brewster. 2010. Feedback is... late: measuring
multimodal delays in mobile device touchscreen interaction. ACM Press, 1.
https://doi.org/10.1145/1891903.1891907

[14] Teemu Kämäräinen, Matti Siekkinen, Antti Ylä-Jääski, Wenxiao Zhang, and Pan
Hui. 2017. Dissecting the End-to-end Latency of Interactive Mobile Video Appli-
cations. In Proceedings of the 18th International Workshop on Mobile Computing
Systems and Applications. ACM, Sonoma CA USA, 61–66. https://doi.org/10.
1145/3032970.3032985 00019.

[15] Ulrich Lampe, Qiong Wu, Hans Ronny, André Miede, and Ralf Steinmetz. 2013.
To Frag or to Be Fragged - An Empirical Assessment of Latency in Cloud Gaming.
SciTePress - Science and and Technology Publications, 5–12. https://doi.org/10.
5220/0004345900050012

[16] Xiangrui Li, Zhen Liang, Mario Kleiner, and Zhong-Lin Lu. 2010. RTbox: A device
for highly accurate response time measurements. Behavior Research Methods 42,
1 (Feb. 2010), 212–225. https://doi.org/10.3758/BRM.42.1.212

[17] Jiandong Liang, Chris Shaw, andMarkGreen. 1991. On temporal-spatial realism in
the virtual reality environment. In Proceedings of the 4th annual ACM symposium
on User interface software and technology (UIST ’91). Association for Computing
Machinery, New York, NY, USA, 19–25. https://doi.org/10.1145/120782.120784
00248.

[18] I. Scott MacKenzie and Colin Ware. 1993. Lag As a Determinant of Human
Performance in Interactive Systems. In Proceedings of the SIGCHI conference
on Human factors in computing systems - CHI ’93 (CHI ’93). ACM, Amsterdam,
The Netherlands, 488–493. https://doi.org/10.1145/169059.169431 event-place:
Amsterdam, The Netherlands.

[19] Albert Ng, Michelle Annett, Paul Dietz, Anoop Gupta, andWalter F. Bischof. 2014.
In the Blink of an Eye: Investigating Latency Perception During Stylus Interaction.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 1103–1112. https://doi.org/10.1145/2556288.

2557037 event-place: Toronto, Ontario, Canada.
[20] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven Sanders, and Paul Dietz. 2012.

Designing for low-latency direct-touch input. ACM Press, 453. https://doi.org/
10.1145/2380116.2380174

[21] Antti Oulasvirta, Sunjun Kim, and Byungjoo Lee. 2018. Neuromechanics of a
Button Press. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 13. https://doi.org/10.1145/3173574.3174082

[22] Andriy Pavlovych and Wolfgang Stuerzlinger. 2009. The tradeoff between spatial
jitter and latency in pointing tasks. ACM Press, 187. https://doi.org/10.1145/
1570433.1570469

[23] Richard R. Plant, Nick Hammond, and Tom Whitehouse. 2003. How choice of
mouse may affect response timing in psychological studies. Behavior Research
Methods, Instruments, & Computers 35, 2 (May 2003), 276–284. https://doi.org/
10.3758/BF03202553

[24] Schneider, Seth. 2020. Introducing NVIDIA Reflex: Optimize andMeasure Latency
in Competitive Games. https://www.nvidia.com/en-us/geforce/news/reflex-
low-latency-platform/ 00000.

[25] Schneider, Seth. 2020. NVIDIA Reviewer Toolkit for Graphics Performance.
https://www.nvidia.com/en-us/geforce/news/nvidia-reviewer-toolkit/

[26] Thomas W. Schubert, Alessandro D’Ausilio, and Rosario Canto. 2013. Using
Arduino microcontroller boards to measure response latencies. Behavior Research
Methods 45, 4 (Dec. 2013), 1332–1346. https://doi.org/10.3758/s13428-013-0336-z

[27] Seow, Steven C. 2008. Designing and Engineering Time: The Psychology of Time
Perception in Software. Addison-Wesley Professional. Google-Books-ID: jy-
hezugDiNQC.

[28] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas
Elmqvist, and Nicholas Diakopoulos. 2016. Designing the User Interface: Strategies
for Effective Human-Computer Interaction (6th ed.). Pearson.

[29] Josef Spjut, Ben Boudaoud, Kamran Binaee, Jonghyun Kim, Alexander Majercik,
Morgan McGuire, David Luebke, and Joohwan Kim. 2019. Latency of 30 ms
Benefits First Person Targeting Tasks More Than Refresh Rate Above 60 Hz. In
SIGGRAPH Asia 2019 Technical Briefs on - SA ’19 (SA ’19). ACM Press, New York,
NY, USA, 110–113. https://doi.org/10.1145/3355088.3365170 00003.

[30] Patrick Stadler, Andreas Schmid, and Raphael Wimmer. 2020. DispLagBox: simple
and replicable high-precision measurements of display latency. In Proceedings of
the Conference onMensch und Computer (MuC ’20). Association for ComputingMa-
chinery, New York, NY, USA, 105–108. https://doi.org/10.1145/3404983.3410015
00000.

[31] Anthony Steed. 2008. A simple method for estimating the latency of interactive,
real-time graphics simulations. In Proceedings of the 2008 ACM symposium on
Virtual reality software and technology (VRST ’08). Association for Computing Ma-
chinery, New York, NY, USA, 123–129. https://doi.org/10.1145/1450579.1450606
00114.

[32] Colin Swindells, John C. Dill, and Kellogg S. Booth. 2000. System lag tests for
augmented and virtual environments. In Proceedings of the 13th annual ACM
symposium on User interface software and technology (UIST ’00). Association for
Computing Machinery, New York, NY, USA, 161–170. https://doi.org/10.1145/
354401.354444 00052.

[33] Robert J. Teather, Andriy Pavlovych, Wolfgang Stuerzlinger, and I. Scott MacKen-
zie. 2009. Effects of tracking technology, latency, and spatial jitter on object
movement. IEEE, 43–50. https://doi.org/10.1109/3DUI.2009.4811204

[34] Raphael Wimmer, Andreas Schmid, and Florian Bockes. 2019. On the Latency
of USB-Connected Input Devices. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems - CHI ’19 (CHI ’19). ACM Press, Glasgow,
Scotland Uk, 1–12. https://doi.org/10.1145/3290605.3300650

https://doi.org/10.1145/3170427.3188632
https://www.gamersnexus.net/guides/2594-wireless-mouse-click-latency-analysis-vs-wired
https://www.gamersnexus.net/guides/2594-wireless-mouse-click-latency-analysis-vs-wired
https://doi.org/10.1145/2512349.2512796
https://doi.org/10.1145/2807442.2807454
https://doi.org/10.1145/3126594.3126606
https://doi.org/10.1145/2817721.2817747
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/2858036.2858394
https://doi.org/10.1162/pres_a_00023
https://doi.org/10.1109/TVCG.2014.30
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.1123&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.1123&rep=rep1&type=pdf
https://doi.org/10.1145/1891903.1891907
https://doi.org/10.1145/3032970.3032985
https://doi.org/10.1145/3032970.3032985
https://doi.org/10.5220/0004345900050012
https://doi.org/10.5220/0004345900050012
https://doi.org/10.3758/BRM.42.1.212
https://doi.org/10.1145/120782.120784
https://doi.org/10.1145/169059.169431
https://doi.org/10.1145/2556288.2557037
https://doi.org/10.1145/2556288.2557037
https://doi.org/10.1145/2380116.2380174
https://doi.org/10.1145/2380116.2380174
https://doi.org/10.1145/3173574.3174082
https://doi.org/10.1145/1570433.1570469
https://doi.org/10.1145/1570433.1570469
https://doi.org/10.3758/BF03202553
https://doi.org/10.3758/BF03202553
https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-platform/
https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-platform/
https://www.nvidia.com/en-us/geforce/news/nvidia-reviewer-toolkit/
https://doi.org/10.3758/s13428-013-0336-z
https://doi.org/10.1145/3355088.3365170
https://doi.org/10.1145/3404983.3410015
https://doi.org/10.1145/1450579.1450606
https://doi.org/10.1145/354401.354444
https://doi.org/10.1145/354401.354444
https://doi.org/10.1109/3DUI.2009.4811204
https://doi.org/10.1145/3290605.3300650

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Components
	3.2 Measuring Process

	4 Validation
	5 Limitations and Conclusion
	References

