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Abstract: The highly complex life cycle of the human malaria parasite, Plasmodium falciparum, is
based on an orchestrated and tightly regulated gene expression program. In general, eukaryotic
transcription regulation is determined by a combination of sequence-specific transcription factors
binding to regulatory DNA elements and the packaging of DNA into chromatin as an additional layer.
The accessibility of regulatory DNA elements is controlled by the nucleosome occupancy and changes
of their positions by an active process called nucleosome remodeling. These epigenetic mechanisms
are poorly explored in P. falciparum. The parasite genome is characterized by an extraordinarily
high AT-content and the distinct architecture of functional elements, and chromatin-related proteins
also exhibit high sequence divergence compared to other eukaryotes. Together with the distinct
biochemical properties of nucleosomes, these features suggest substantial differences in chromatin-
dependent regulation. Here, we highlight the peculiarities of epigenetic mechanisms in P. falciparum,
addressing chromatin structure and dynamics with respect to their impact on transcriptional control.
We focus on the specialized chromatin remodeling enzymes and discuss their essential function in P.
falciparum gene regulation.

Keywords: chromatin; epigenetics; Plasmodium falciparum; nucleosome; nucleosome remodeling;
transcription regulation; chromatin structure

1. Introduction

Plasmodium falciparum, a unicellular eukaryotic parasite, causes the most severe and
deadly form of the human disease malaria. In 2019, 229 million cases of malaria infection
with about 409,000 deaths were reported, mainly affecting children under the age of five [1].
Malaria is still a major threat for humans and the situation may become worse as parasites
increasingly develop resistance to the frontline choice of treatment, artimisinin-based
combinational therapy, just as resistance to other effective drugs has emerged [2]. There is
an urgent need for new antimalarial drugs, but this requires better understanding of the
physiological, biochemical and pathological mechanisms of the parasite. In particular,
the chromatin landscape and the epigenetic mechanisms are exceptionally different in
Plasmodium, representing a potential drug target. Here, we review the specific features of
Plasmodium falciparum chromatin structure.

Plasmodium spp.—together with other parasites such as Toxoplasma—belong to the
phylum of Apicomplexa, which evolutionarily separated from the human line about 800–
1000 million years ago [3]. The Plasmodium life cycle is complex, including two different
hosts, with an asexual reproduction phase in humans and sexual reproduction in mosquitos
of the genus Anopheles [4]. In humans, Plasmodium exists in intra- and extracellular forms
and is capable of invading various cell types, including hepatocytes and erythrocytes.
The parasite undergoes asexual reproduction and sexual commitment in the human host,
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leading to the differentiation of male and female gametocytes, which are taken up by a
mosquito bite for the completion of sexual reproduction. This versatile multistage life cycle
is tightly regulated with defined sets of proteins being concertedly expressed in specific
phases of the life cycle. The underlying regulatory mechanisms of this highly orchestrated
gene expression program in Plasmodium falciparum are poorly understood.

As a common principle, gene regulation in eukaryotes involves regulation on many
levels, starting with controlling DNA accessibility within chromatin, followed by tran-
scriptional control, post-transcriptional regulation, translational control, protein stability
and activity, and additional mechanisms [5]. In this review, we will focus on Plasmodium
falciparum chromatin structure and dynamics, reviewing its contribution to the regulation
of gene expression and comparing it to other eukaryotes.

2. DNA-Based Features
2.1. Genome and Gene Architecture

The complete Plasmodium falciparum (Pf ) genome sequence was determined in the year
2002 [6] and consists of 23.3 million base pairs, organized in 14 chromosomes plus 6 kb mi-
tochondrial and 34 kb apicoplast DNA located in the respective cytoplasmic organelles [7].
The parasite genome features one of the most AT-rich eukaryotic genomes with an overall
AT-content of 80.7% and within intergenic regions and introns of up to 95% [8]. Due to the
high AT-content, the genome contains numerous low-complexity regions, simple sequence
repeats and a skewed codon usage bias. It comprises a total number of 5280 protein-coding
genes as well as 158 pseudogenes and 103 annotated noncoding RNAs [9]. At least 4557 of
the 5280 genes are transcribed and expressed in a complex pattern depending on the life
cycle stage [10], requiring a complex regulatory network.

In general, the Pf genome exhibits typical eukaryotic features, with genes consisting
of exons and introns separated by intergenic regions. But gene architecture clearly differs
from other unicellular eukaryotes by an increased mean gene length of 2300 bp (vs. 1400
bp in Saccharomyces), an increased mean exon length of 949 bp (typically 200–300 bp in all
eukaryotes) and a markedly large proportion of genes larger than 4000 bp. The sizes of
introns and intergenic region usually correlate linearly with the genome size [11]. With re-
gard to genome size, Pf displays unusually large intergenic regions (mean of 1700 bp) and
introns with an average length of 180 bp, which is rather long for protists but very short in
comparison to higher eukaryotes [6].

2.2. Regulatory DNA Elements

Like other eukaryotes, Pf genes exhibit the characteristic bipartite structures of cis-
regulatory regions with enhancer elements and basal promotors required for the recruit-
ment of RNA polymerase II to the transcription start site (TSS) (reviewed in [12,13]).
Most TSSs are relatively distant to the first exon, resulting in mRNAs with exceptionally
long 5′ untranslated regions, with an average of 346 nt [14], when compared to human
mRNA (~150 nt) [15]. The presence of antisense transcripts indicates the existence of
bidirectional promotors with multiple shared or separate regulatory elements including the
presence of multiple clusters of TSSs within a single gene locus [16]. Thus, genome-wide
mapping of TSSs revealed highly diverse sets of start sites that are far more variable than
those of human genes. Core promotors exhibit sequence motifs directing TSS selection and
promotor strength, such as local changes in GC-content and homopolymeric nucleotide
stretches (reviewed in [13]). Early on it was shown that the packaging of the promotor
DNA into nucleosomes and alterations in nucleosome positioning and histone composition
also influence gene activity [17–19], as will be described below.

Applying in silico approaches and algorithms, numerous putative cis-regulatory mo-
tifs could be predicted [20–22], and a few of them were experimentally validated [23].
These elements act as enhancers or silencers, as known for other eukaryotes, but Pf pos-
sesses an extraordinarily high number of such elements (4–5 per gene) sharing no sequence
similarity with those of other eukaryotic organisms. Recent studies showed that the major-
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ity of the plasmodial genome is organized in regulatory units containing multiple genes
and multiple regulatory elements with coordinated activity, rather than a one-on-one
allocation of cis-regulator elements to their neighboring genes [24].

2.3. Trans–Acting Factors

The principle of gene expression regulation is based on the binding of specific tran-
scription factors (TF) to cis-regulatory motifs. Surprisingly, only 73 TFs were identified in
Pf having more than 5000 genes. This is far below the numbers in yeast (~170 TFs for 5400
genes) and human cells (>1500 TFs for 20,000 genes) [25–27]. In addition, most of the major
families of eukaryotic TFs, such as homeodomains, basic leucine zipper, GATA fingers,
nuclear hormone receptor and FKH domains, could not be identified through a homology
search [28]. The Pf transcription factors can be grouped into eight helix-turn-helix proteins,
37 C2H2-type zinc fingers and one β-scaffold factor, but all exhibit only low conservation
across different Plasmodium species [13,25]. Moreover, Apicomplexa possess a novel cate-
gory of TFs, the ApiAP2 family, which are presumably the main regulators of transcription
in the parasite life cycle [29,30].

Most of the 27 members of the ApiAP2 family were shown to exhibit sequence-specific
DNA-binding [31,32]. Some of the Pf ApiAP2s or orthologs were shown to be essential
and to drive transcriptional regulation at different stages of the life cycle [13], [33]: For ex-
ample, AP2-L plays a critical role in liver-stage development [34]; AP2-G was identified
to be the master regulator of gametocytogenesis [35]; AP2-I is relevant for invasion gene
activation [36]; AP2-O activates gene expression in ookinetes [37], while gene expression
in liver-infecting sporozoites is regulated by AP2-Sp [38]. Still the question remains, how
such a low number of factors is sufficient to coordinate the complex gene expression profile
of more than 5000 genes. It was suggested that TFs act in a combinatorial fashion and
may exhibit pleiotropic functionality [33,39,40]. Alternatively, they might interact with
additional regulatory proteins [36,41], or undergo post-transcriptional modification like
other epigenetic regulators [42–44].

The interplay between cis-acting elements and trans-acting factors is strongly influ-
enced by the packaging of the genomic DNA into chromatin. Nucleosome positioning
and dynamics control the accessibility of the regulatory DNA elements for the trans-acting
factors, as histones would mask the binding sites and inhibit DNA sequence recognition.
Therefore, nucleosome-positioning plays an essential role, and well-defined chromatin
architectures can be observed at regulatory regions. At gene promoters, positioned nu-
cleosomes (+1) just downstream of the TSS can be observed, and the promoter region
directly upstream is generally depleted of nucleosomes [18]. Such a structure is compat-
ible with the binding of transcription factors, and changes to this chromatin structure
would substantially affect gene activity. Genome-wide profiling using ATAC-seq identi-
fied such accessible DNA regions, mainly located in 5′-intergenic regions, overlapping
with annotated and predicted cis-regulatory elements. These accessible regulatory regions
correlate overall with high mRNA levels of the associated genes [45,46], revealing the
binding of trans-activating factors to these sites. The direct effect of transcription-factor
binding to transcriptional regulation was proven, but it is unclear how chromatin structure
and nucleosome dynamics additionally affect and regulate the access of the trans-acting
factors to their binding sites. Chromatin dynamics and nucleosome positioning may be a
consequence of transcription-factor binding or represent a preceding event regulated by
chromatin-remodeling enzymes that determine DNA accessibility.

3. Chromatin features
3.1. Pf Nucleosomes and Their Special Properties

Nucleosomes are the basic packaging unit of chromatin, consisting of a histone oc-
tamer associated with 147 base pairs of DNA wrapped around the proteins in 1.65 turns.
The octamer consists typically of the four canonical histones H2A, H2B, H3 and H4,
which are—due to their central function in DNA packaging—highly conserved in sequence
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throughout eukaryotic evolution [47]. For example, Arabidopsis thaliana H3 and human H3
differ in only two amino acids [48]. However, Pf histones show an extraordinarily high
divergence with sequence identities of only 64%, 68%, 93% and 92% between human and
Pf H2A, H2B, H3 and H4 respectively. The fifth histone H1, usually linking nucleosomes
and promoting higher order structure, is not present in Pf [6].

In accordance with the diverging sequence of histones, plasmodial nucleosomes exhibit
distinct biochemical properties when compared to human nucleosomes (see Figure 1). The Pf
nucleosome exhibits reduced stability, weaker binding of H2A and H2B and has intriguingly
lost the capability of DNA sequence-dependent nucleosome positioning [49].

Reduced Stability Close Spacing No Sequence Dependent
Nucleosome Positioning

Flanking Sequences as 
Positioning Signals

ATATATATATATATAT

H2A

H2B

Figure 1. Schematic representation of distinct nucleosome properties in P. falciparum. In comparison
with human nucleosomes, Pf nucleosomes exhibit reduced stability and short spacing between
nucleosomes, and positioning is rather independent of internal DNA sequence but is determined by
flanking sequence motifs.

Since DNA is not a flexible polymer but a rather rigid molecule with a persistence
length of 150 bp, a deviation from this defined DNA structure would require bending
energy [50]. In the context of a nucleosome, the DNA molecule has to be highly bent
in order to enable wrapping around the histone octamer. The required bending energy
is compensated by establishing about 400 direct and indirect ionic interactions and H-
bridges between the DNA and the histones [51]. As GC and AT base pairs do not have
exactly the same size and geometry, sequence composition does affect DNA structure by
inducing bents and kinks with specific sequence motifs. Repetition of such motifs every
10 bp would induce directed DNA curvature that mimics the folding around the histone
octamer, requiring less bending energy for nucleosome formation and thus, representing
the preferential binding sites of nucleosomes [52]. It is a general eukaryotic principle
that the genome sequence codes for a basic chromatin architecture with the base-pair
sequence favoring nucleosome positioning and occupancy at specific sites [53–55]. In vitro
and in vivo studies showed that nucleosome positions are in part determined by intrinsic
DNA features [54]. The GC-content and the frequency of polyA-stretches and certain
dinucleotide repeats turned out to be critical determinants for nucleosome positioning and
occupancy and, therefore, impact the overall regulation of gene expression [56].

However, the AT-rich plasmodial genome sequence deviates substantially from other
eukaryotes with respect to sequence motifs, and likewise Pf nucleosomes do not obey
the classical sequence-dependent positioning rules [49]. The typical 10 bp periodicity
of anti-phased A/T and G/C dinucleotides in nucleosomal DNA [57] is only weakly
detectable in P. falciparum [18], [58]. The shifted nucleotide-ratio in the Pf genome creates
a very different basis for chromatin structure, and Pf histones show deviating affinities
when forming nucleosomes. Nucleosome positioning analysis in Pf revealed a significant
number of positioned nucleosomes in vivo, mainly located at or in the vicinity of regulatory
regions, as expected for their regulatory role in determining DNA accessibility. This raises
the question of the mechanisms being responsible for nucleosome positioning in vivo,
even though the Pf histone octamer does not recognize the underlying sequence code.
There are numerous mechanisms that can still contribute to nucleosome positioning in Pf,
including DNA binding factors, statistical positioning of neighboring nucleosomes by a
constant DNA linker length and chromatin-remodeling factors that move and position
nucleosomes [59]. For Pf nucleosomes it was shown that AT-repeat sequences in the DNA
linker regions are sufficient to position nucleosomes. This presents a novel signal and
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mechanism for nucleosome positioning and suggests that histone linkers may interact with
the linker DNA, thereby contributing to nucleosome positioning. Crystal structures of Pf
nucleosomes are not available so far, but in silico modeling based on human nucleosomes
suggests an overall similar nucleosome core structure with only a few divergent amino
acids in the histone–DNA interacting regions [49]. The majority of sequence variation
is located in the flexible histone tail regions, whose likely contribution to nucleosome
positioning has not been proven yet. The fact is that Pf nucleosomes show decreased
nucleosome stability overall, with weaker binding of H2A/H2B-dimer within the octamer,
and an attenuated histone–DNA interaction increases the mobility of nucleosomes on DNA.
The hypothesis that altered nucleosome properties evolved as an adaptation to the AT-rich
plasmodial genome could be rejected. In vitro and in vivo data show that Pf histones like
other eukaryotic histones bind preferentially to GC-rich over AT-rich DNA [49].

Besides the differences in nucleosomal properties, the nucleosome repeat length is
highly divergent as well when compared to other eukaryotes. With a repeat length of
155 bp, the spacing of the nucleosome cores is maintained by DNA linkers with only 8 bp.
Short nucleosome spacing is an intrinsic biochemical property of the Pf nucleosome, which
can be observed in vitro and is maintained also in vivo [49,60]. The mean linker length
in eukaryotes is significantly longer, varying from 20 to 75 bp depending on species and
cell type [61]. Such short linker lengths, as found in Plasmodium, were shown to inhibit
the folding of the nucleosome array into compact higher order structures of chromatin.
The absence of higher-order chromatin structure correlates well with the assumption that
Pf chromatin exhibits high accessibility [49,62–64]. The extremely short linker length and
unusual chromatin compaction are putative consequences of the exceptional nature of
DNA composition and histone properties in Pf.

3.2. Histone Variation

In addition to canonical histones, eukaryotes express histone variants throughout
the cell cycle, which differ in amino acid sequence. Sequence variation occurs predom-
inantly in the (N-)terminal histone tails and leads to novel and different sites of post-
translational modifications, potentially impacting their function and interaction with
chromatin-modifying enzymes [65]. Among eukaryotic species, different sets of vari-
ant histones are prevalent, with some ubiquitous variants having specialized functions
in DNA repair (H2A.X), transcription activation (H2A.Z), kinetochore formation (CenH3)
and transcription in general (H3.3) [66].

In P. falciparum, a homologue of the universally present H2A.Z was identified, but no
H2A.X. Surprisingly, Apicomplexa additionally express an unusual H2B variant histone,
called H2B.Z, whose function is still unclear. Genome-wide profiling revealed similar
binding sites of Pf H2A.Z and Pf H2B.Z and coimmunoprecipitation experiments confirmed
the existence of nucleosomes containing both H2A.Z and H2B.Z in the same octamer [67,68].
This observation is shared with studies in other Apicomplexa, including Toxoplasma gondii,
indicating a role in the regulation of gene expression (reviewed in [69]).

Histones H3.3 and CenH3, the two universal variants replacing histone H3, are present
in P. falciparum, although they have not been characterized in detail. Histone H3.3 has
eight amino acids substitutions compared to canonical H3 (one amino acid exchanged in
human H3.3) and is believed to preferentially bind GC-rich repetitive regions, independent
of transcriptional activity, potentially contributing to the regulation of var gene expression
and immune evasion [70]. The second H3 variant, CenH3, is enriched at AT-rich sequences
of the centromere and is implicated in chromosome segregation [70,71].

Histones are the target for post-translational modifications (PTMs), mainly comprising
acetylation, methylation and phosphorylation of the histone amino termini, which alter
histone properties and their interactions with DNA and chromatin proteins, affecting
the functionality of the underlying DNA. The combinatorial nature and functional im-
pact of these epigenetic modifications are defined as the “histones code” amplifying the
information content and plasticity of chromatin with respect to the regulation of all DNA-
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dependent processes [72,73]. Here too, P. falciparum exhibits striking differences to other
eukaryotes with an unusually large proportion of constitutively acetylated histones and
a high number (500) of identified PTMs, including several novel modifications specific
to Plasmodium or Apicomplexa [72,74,75]. A recent study showed, that a few universally
eukaryotic PTMs, initially proposed to be absent in P. falciparum, are tightly regulated,
and their presence is limited to specific life cycle stages [76]. The presence of some dynamic
PTMs peaking in particular stages, such as H3K4 and H3K27 modifications, emphasize
their contribution to gene-expression regulation throughout stage development [72,76,77].

3.3. Nucleosome Occupancy and Dynamics In Vivo

Nucleosomal distribution on DNA is described by the terms “nucleosome occupancy”
and “nucleosome positioning”: Occupancy describes the probability with which a certain
base pair is covered by a nucleosome, while nucleosome positioning is a measure of the
probability of a given base pair to serve as start, dyad or end position of a nucleosome [78].

The reduced stability and loss of sequence-dependent positioning of plasmodial nu-
cleosomes in vitro is reflected by the genome-wide analysis of chromatin structure in vivo.
In Pf, large genomic regions lack positioned nucleosomes or even appear to lack histone
octamers on DNA at all. Several studies have addressed the nucleosomal landscape in P.
falciparum, using Sonication-ChIP, MNase-ChIP, MNase-Seq and other methods, such as
ATAC-seq and FAIRE, to detect nucleosome-free regions [18,45,46,58,79–81]. In summary,
these studies show higher nucleosome density in heterochromatin, but contradicting ex-
perimental results were obtained regarding nucleosome occupancy in genic or intergenic
regions. This review focuses on describing the nucleosomal landscape. For this, we largely
exclude the description of FAIRE- and ATAC-seq experiments, as these methods monitor
accessible DNA regions, not nucleosomal architecture. Recent studies addressing human
and Drosophila chromatin have revealed the existence of nucleosomes with different sta-
bility [64,82] and, in order to assess all nucleosomes on DNA, appropriate protocols have
been established. It was shown that partial MNase digestion of chromatin with still intact
di- and tri-nucleosome fragments improves the overall sequencing coverage of nucleo-
somal DNA and avoids the loss of MNase-sensitive nucleosomes that are preferentially
located at regulatory regions [64,82]. Taking into account these recent insights, we focus on
experimental data that omit MNase digestion bias, in order to provide a clearer overview
of Plasmodium falciparum chromatin structure. The only study so far using limited MNase
digestion conditions was performed by Kensche and colleagues [18].

Intriguingly, the transcriptional unit of a typical gene in P. falciparum is framed by
positioned nucleosomes upstream and downstream of the coding region (see Figure 2),
resulting in the covering of regulatory regions and functional elements in the genome by
positioned nucleosomes. A positioned +1 nucleosome can be mapped right at the TSS
next to an upstream nucleosome-depleted region (NDR) of variable size and a detectable
-1 nucleosome upstream of the NDR. This is a common pattern in eukaryotes, albeit the
clarity and effectiveness of nucleosome positioning at these sites appear to be relaxed.
The width of the NDR varies between individual Pf core promotors with a tendency of
larger NDRs being associated with higher transcription levels. Positioned nucleosomes can
also be detected at start and stop codons, as well as at splicing sites, which are relatively
static throughout the life cycle. Nucleosomes positioned at start/stop codons may occur
solely because of the increased GC-content of coding sequences, whereas those at exon–
intron boundaries might be actively positioned to allow recruitment of post-transcriptional
machineries. Overall, these observations suggest that nucleosome positions somehow
highlight transcriptionally relevant landmarks, but positioning is less stringent and more
fuzzy when compared to other eukaryotes. The MNase-seq data also indicated the typical
10 bp periodicity signal for AA/TT-dinucleotide driven nucleosome positioning in genic
and intergenic regions, suggesting it is an additional, albeit less pronounced, feature
of nucleosome positioning in Plasmodium. Kensche and colleagues suggest this much
fuzzier pattern to be a global effect originating in the merging of multiple genes displaying
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different nucleosome patterns. Alternatively, the fuzziness could be a local consequence
of the divergent stability and positioning properties of Pf nucleosomes within individual
genes and thus, point to a distinct chromatin organization [49].

Exon Exon
Intron 3’UTR5’UTR

TSS

start codon stop codon

TTS

promotor

Marking exon-intron boundaries

One well positioned 
nucleosome

One well positioned 
nucleosome

Enrichment of well 
positioned 

nucleosomesNDR of variable size
/ +1 nucluesome

nu
c 

oc
c

Figure 2. Schematic illustration of a typical gene with transcriptional landmark sites and correspond-
ing plasmodial nucleosome positioning. The nucleosome profiles show the average MNase-seq
occupancy normalized by gDNA aligned to the respective gene element combining eight time-points
throughout the erythrocytic cycle according to [18]. Functional gene elements are designated, tran-
scription start/stop is indicated arrow-/circle-tipped above the gene, translation start/stop codons
are marked by arrows below the gene.

Comparative analysis of nucleosome-positioning dynamics at different life cycle stages
shows that most nucleosomes in the transcriptional unit are static and nondynamic, indi-
cating no gross changes of chromatin structure with variable gene expression. However,
upstream promotor regions show significant changes in nucleosome occupancy levels dur-
ing the life cycle, correlating with changes in gene transcription. With increasing transcrip-
tional activity, nucleosome-depleted regions appear, which may be related to the formation
of the RNA polymerase II initiation complexes. Accordingly, gene repression correlates
with dynamic increases in nucleosome levels inhibiting transcription initiation [18,58,80].
The data suggest local changes in nucleosome occupancy around specific DNA motifs
within these 5′ intergenic region being indicative of transcription factor binding, whereas
global chromatin structure stays unaltered throughout the life cycle [18].

Studies mapping the genomic localization of nucleosomes containing the histone vari-
ants H2A.Z and H2B.Z identified them in the intergenic regions of euchromatin domains,
particularly enriched at gene promotors [19,67–69]. The variant nucleosome levels do not
change during the life cycle, suggesting that they permanently mark promotors and regula-
tory regions. The transcriptional activation of the heterochromatic var genes represents an
exception to this rule, as the H2A.Z/B.Z levels at these promoters correlate with increased
transcription level [68]. Moreover, the histone variant Pf H3.3 is preferentially located
at euchromatic coding and subtelomeric repetitive sequences unrelated to transcription,
whereas in other eukaryotes H3.3 is incorporated at sites of active transcription [83]. Inter-
estingly, Pf H3.3 incorporation was also found at promotors of poised and active (but not
inactive) var genes pointing to its putative contribution to epigenetic memory in var gene
expression [70].

Not only the histone variant distribution, but also the occupancy and positioning of
Pf nucleosomes in general do not quite follow known eukaryotic principles. The highly
divergent underlying determinants—DNA and histone properties—seem to shape a very
different chromatin landscape in Plasmodium falciparum, and potential novel mechanisms
may have evolved to allow for the tightly regulated gene expression program in the para-
site.
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3.4. Chromatin Density and Nuclear Organization

Progressing through the erythrocytic life cycle, major changes in nucleosome occu-
pancy were reported, obtained via high MNase digestion and Hi-C techniques [58,79,84]:
the ring stages exhibit high nucleosome occupancy, whereas a depletion of nucleosomes
was observed in the trophozoite stage, potentially opening chromatin for transcription
and DNA replication. In the following schizont stage, nucleosome occupancy increases
again, correlating with chromatin compaction for merozoite differentiation and egress.
The chromatin structure in gametocytes was found to be relatively open. These global
changes in chromatin accessibility within the life cycle are specific to P. falciparum and have
not been reported to a comparable extent in any other eukaryote.

Nuclear organization is proposed to be another epigenetic layer contributing to gene
expression regulation using mechanisms such as rearrangement of chromosomes, locus
repositioning and heterochromatic silencing [85]. Various studies have attempted to unveil
the three-dimensional nuclear organization of Plasmodium falciparum using chromosome
conformation capture techniques (reviewed in [85,86]). One characteristic of P. falciparum is
the absence of chromosome territories supporting the presence of a relatively accessible
chromatin structure. Although clustering for certain genomic domains, such as heterochro-
matin foci, telomeres and ribosomal DNA, could be shown, no pronounced chromosome
condensation comparable to other eukaryotes was observed [87].

4. Epigenetic Regulation of Transcriptional Activity

As described in the previous sections, gene transcription is impacted by a combination
of epigenetic features shaping the chromatin landscape: the main determinants are the
variations of nucleosome occupancy and nucleosome positioning at specific DNA elements
and histone variants, in addition to the dynamic histone PTMs as well as higher-order
chromatin structures. Furthermore, long noncoding RNAs [88,89] have been suggested to
contribute to gene regulation by serving as modular scaffolds and targeting modules that
recruit chromatin-modifying enzymes to specific loci [90,91]. Finally, the driving force is
the accessibility of promotors and enhancers within chromatin—implemented by correct
nucleosome positioning—for transcription-factor binding and the initiation of complex
formation [92].

Genome-wide MNase-seq [18] and ATAC-seq data [46] confirm this principle in P. falci-
parum: Kensche and colleagues identified 4821 dynamic nucleosomes with 80 percent being
located in euchromatic intergenic regions, mainly at promotors. The dynamics of these
nucleosomes clearly correlate with temporal transcriptional activity of the downstream
gene. Toenhake and colleagues identified 4035 accessible regions, whereof 90 percent
are located in intergenic regions. The majority was found to be associated with one or
more putative promotors and to correlate in accessibility score with abundance of the
downstream gene product.

For some genes with high transcriptional variation, the epigenetic mechanisms were
investigated in more detail (reviewed in [85]): the group of invasion genes was found to
exist in an activated state caused by an interplay of the transcription factor AP2-I with
the bromodomain-binding protein BDP1 binding to H3K9ac [93]. A repressed state in
contrast—extensively studied on the example of var genes—is maintained by heterochro-
matin protein HP1, histone deacetylase HDA2 and the histone lysine methyltransferase
SET2 and marked by H3K9me3 rendering these genes heterochromatic [94–97]. Further-
more, a chromatin-remodeling enzyme [PF3D7_0624600] and sirtuin proteins influence
chromatin condensation [98,99], and the incorporation of noncoding RNAs complement
the var gene-switching mechanism by silencing the gene locus via its sense—activating via
its antisense—lncRNA [90,100]. Sexual commitment is known to be regulated by the epi-
genetic cascade starting with Ap2-G expression being repressed by HP1, which is evicted
upon gametocyte development 1 (GDV1) association to heterochromatin, and GDV1 itself
is controlled by the gdv1 antisense RNA [35,97,101,102].
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These examples illustrate the multilayered nature of epigenetic regulation, but con-
comitant nucleosome occupancy and positioning were hardly taken into consideration.
However, in all of the described processes, nucleosome occupancy determines any interac-
tions with the underlying DNA locus and certainly contributes to the unveiled regulatory
mechanism. The importance of nucleosome occupancy was highlighted in a machine-
learning model, wherein the relevance of individual epigenetic features in relation to the
entirety of transcription regulation was assessed [77]: a collection of genomic and epige-
nomic data sets including information about transcription factor binding motifs, patterns of
covalent histone modifications, nucleosome occupancy, GC content and global 3D genome
architecture were analyzed for their prevalence in high-/low-expression genes. This kind
of comparative analysis emphasizes the relevance of histone modifications, nucleosome
occupancy and 3D chromatin architecture and suggests transcription-factor binding to be
less important for transcription regulation.

5. Chromatin Remodeling Enzymes

All DNA-dependent processes require dynamic changes in chromatin organization
to exert their DNA specific activities. For this, eukaryotic cells have developed numerous
enzymes that change the organization of DNA packaging [103]. Chromatin-remodeling
enzymes alter chromatin structure by moving nucleosomes, while chromatin modifiers
leave their chemical marks on chromatin to change the physicochemical properties of the
chromatin fiber or to target protein/RNA complexes to specific genomic loci. The high
variability of global and local chromatin packaging states and the numerous chromatin
modifications associated with different functional processes, demonstrate the superordinate
role of chromatin proteins in eukaryotic cells. On that account, it is important to study this
emerging field in Plasmodium falciparum, as the fundamental differences between chromatin
proteins in humans and Plasmodium will provide new insights into the evolution and
mechanisms of chromatin dynamics and may reveal new therapeutic options.

In a comparative genomics study, the evolution of transcription factors, chromatin-
modifying and -remodeling enzymes in parasitic protists was reconstructed [104]: In-
triguingly, chromatin proteins evolved over millions of years in independent eukaryotic
lineages through the proliferation of paralogous families and acquisition of novel do-
main architectures, leading to an enormous variety and to highly diverse sets of enzymes.
Some chromatin-modifying enzymes have been identified in Plasmodium falciparum (de-
tailed review in [105]). In this review we will focus on the evolution and mechanisms of
chromatin-remodeling enzymes.

Remodeling enzymes and the large multiprotein complexes they form exert a direct
ATP-dependent effect on nucleosomes. The enzymes alter histone–DNA interactions,
resulting in the eviction, exchange and assembly of individual histones or histone octamers,
changing the structure and stability of nucleosomes or the movement of histone octamers
on DNA to reposition nucleosomes (reviewed in [43,106]). In order to disrupt the very
stable interaction between histones and DNA, these enzymes couple their activity to
ATP hydrolysis. A highly conserved ATPase module is conserved within all chromatin-
remodeling enzymes, which is split into a Snf2_N and a helicase C domain, separated by a
P-loop. The enzymes generally exhibit several additional protein domains, determining
their specificity in substrate recognition and interaction with other proteins or RNA to
form a variety of protein complexes [107].

The essential molecular function of this enzyme family is the movement of nucle-
osomes in order to provide accessibility to certain DNA regions. However, the exact
regulatory mechanisms of this process—with respect to which nucleosomes are recog-
nized to be moved and what is the target position—have not been completely uncovered.
There is some evidence of “high affinity” and “low affinity” nucleosomes representing a
putative mechanism or at least one aspect of defining reaction educts and products [108].
Therefore, multiple factors, such as the recognition of DNA sequences and structures, nu-
cleosome composition and histone PTMs, play a crucial role. The specificity of remodeling
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machines depends furthermore on the central motor protein as well as the composition of
all the associated complex subunits dramatically changing the responsiveness to various
substrates and recruiting mechanisms. [43,106]. In human and mouse cells, it was estimated
that over 1000 different chromatin-remodeling complexes with distinct functions may exist.
Their cell-type-specific combination and dosage probably determines the cell-type-specific
chromatin architecture, the gene-expression network and the responsiveness to specific
signaling pathways in the cell [43,106,108–110]. To name an example, Snf2H—one of the 53
remodeling enzymes in humans—was biochemically purified in 18 different multiprotein
complexes emphasizing the complexity of the “remodeling code” [111].

The functionally different subfamilies of SWI/SNF ATPases are grouped by the homology
of the helicase region according to Flaus et al. (indicated by coloring in Figure 3) [112]:
Starting with the Snf2-like group, the ISWI subfamily is mainly responsible for nucleosome
repositioning, playing a role in nucleosome stabilization and higher-order structure [113,114].
In contrast, Snf2 enzymes have a more disruptive effect on nucleosomes, and Lsh proteins
are associated with transcription silencing, cooperating with methyltransferases [115–117].
Chd proteins, comprising the Chd1, Mi-2 and Chd7 subfamilies, possess specific nucleosome
remodeling activities and are characterized by their additional chromodomain. They are
involved in processes like chromatin assembly nucleosome spacing [118,119] or function
as regulators of gene expression in functionally distinct complexes [120,121]. The principal
functions of the Swr1-like group—identifiable by the divided helicase domain and HSA
domain—include histone eviction and the exchange of variants [122]. Rad54-like proteins seem
to change DNA topology and alter nucleosomal accessibility [123], while Rad5/16 is involved
in DNA repair pathways using its characteristic RING finger domain [124]. The SSO1652-
like family does not directly alter nucleosome structure but is proposed to interact with
transcription factors and is recruited to DNA lesions [115–117,125]. Last, a function for the
distant group has not yet been determined. This selective overview indicates the functional
diversity between the subfamilies of enzymes that depend on the highly conserved ATPase
domain in combination with the additional complex subunits. The interplay of all these
complexes in the cell organizes the nucleosomal landscape in a complex manner and, with
this, the accessibility of regulatory DNA elements. Regulation of nucleosome positioning,
keeping nucleosomes over regulatory sites—OFF state—or moving them next to the binding
sites of regulatory factor—ON state configuration—likely determines local gene activity states.
This mechanism can be paraphrased as “barcoding” the nucleosome landscape and highlights
the essential role of remodeling enzymes in regulation and cellular differentiation [126].

Hidden Markov model (HMM) profile studies in P. falciparum revealed 10 genes
encoding putative SWI2/SNF2 ATPases [12] and sharing similarities within the several
subgroups, but with particularly low conservation when compared to other eukaryotes.
According to evolutionary studies of Iyer and colleagues, remodeling enzymes had their
origins in the bacteriophage replication system, and thereafter, a set of six enzymes with
conserved domain architecture was suggested to be present in the last eukaryotic common
ancestor (LECA) (Figure 3, left panel) [104]. During evolution, prior to the origin of
kinetoplasts and then chromalveolates, new families of remodeling enzymes evolved
with precursors of the Rad5/16 group, distant group, ALC1, Lsh and Etl1. Early on, the
apicomplexan line evolved ten chromatin remodelers, whereof eight proteins could be
allocated in the evolutionary model of Iyer and colleagues, based on homology search
and domain architecture (Figure 3, mid panel). Higher eukaryotes developed a huge
variety of SWI2/SNF2 ATPases starting from a few ancient types, e.g. leading to more than
50 in human cells (Figure 3, right panel) [112]. In comparison, P. falciparum possesses a
limited set of 10 enzymes, only one per family, and therefore lacks the typical redundancy
seen in higher eukaryotes, suggesting that these enzymes perform essential tasks in the
cell. This fundamental difference in numbers between human cells and P. falciparum is
accompanied in highly divergent domain architectures. Some domains such as PhD,
Chromo and SANT domains, could be identified at very low stringency in sequence
comparison but with no indication of their specific functions in Pf.
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Figure 3. Evolutionary and phylogenetic development of SW2I/SNF2 ATPases. The evolution
of SWI2/SNF2 starting from last eukaryotic common ancestor (LECA), according to [104], with
triangles grouping together multiple subfamilies and their conserved domain architecture illus-
trated (left panel). Grouping of subfamilies and their names, according to [112], are indicated by
coloring. SWI2-/SNF2-encoding genes in P. falciparum—wherever possible—were allocated to the
categorization. Numbers of prevalent proteins for P. falciparum and H. sapiens, as well as names
of further evolved subfamilies, are provided. Domain names: Ch = Chromo, R = RING, HAS =
helicase/SANT-associated.

The individual remodeling enzymes in P. falciparum, and Apicomplexa in general,
remain poorly characterized so far. In a pioneering study, Ji and Arnot identified and clas-
sified the first SWI2/SNF2 enzyme (Snf2L) with approximately 60% sequence homology to
the ATPase domain of the yeast ISWI remodeler [127]. Since then, only a few studies ad-
dressed apicomplexan remodelers [98,128]. A genome-wide mutagenesis screen proposed
one of the plasmodial remodelers to be essential and another two as putatively essential
in asexual blood stages [9]. The authors suggest that the rest are not crucial for parasite
fitness, not precluding the possibility of significant roles in chromatin organization.

In general, perhaps with the exception of Chd1, all chromatin-remodeling enzymes
are part of large multiprotein complexes with characteristic binding partners that link the
enzymes to chromatin modifiers, chromatin and DNA binding motifs and alter the func-
tionality of the complexes [109]. Interestingly, homology searches did not retrieve a single
homologue of these proteins in P. falciparum. This astonishing lack of known interactors in
combination with the reduced number and high divergence in sequence indicates that the
chromatin-remodeling system in Plasmodium differs from known mechanisms in higher
eukaryotes.

6. Potential Regulatory Network

As elaborated in the previous sections, Plasmodium falciparum chromatin is unusual
in many respects, from the reduced number of transcription factors to high nucleosome
dynamics and the divergent chromatin-remodeling enzymes/complexes. Therefore, we hy-
pothesize that P. falciparum possesses a highly regulated but distinct chromatin system
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when compared to other eukaryotes. Here we address how these differences may affect
the regulatory network and the transcriptional program throughout the parasite life cycle
(Figure 4).
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Figure 4. Schematic representation of the regulatory network of gene expression, with peculiar
features in P. falciparum that affect the common principles.

One crucial parameter for transcription regulation is the nucleosome landscape, which
was investigated in several studies within the last few years. Conclusively, these studies
point out a highly dynamic chromatin structure and atypical nucleosome features in P.
falciparum [18,49,79]. The overall Pf chromatin was found to have a more open structure;
the spacing of nucleosomes is surprisingly short; it is not organized in defined higher-order
structures, and the nucleosomes themselves show reduced stability and lost capacity for
sequence-dependent positioning (see Sections 3.1 and 3.4). It is not known what exactly
causes these altered nucleosome properties, but the extraordinary AT-rich genome and the
extraordinarily high sequence divergence of Pf histones might interoperate to form this
particular chromatin structure.

However, the applied methodology of chromatin analysis in Plasmodium parasites and
the interpretation of the results is still a matter of discussion. On one hand, the AT-rich
nature of the DNA is known to bias sequencing techniques [129]. On the other hand,
the parasite rapidly moving through its highly different life cycle stages also blur the clarity
of the observations. The fuzziness of Pf nucleosomal landscapes might be the consequence
of highly unstable nucleosomes but could also represent the dynamic nature of chromatin
in this organism. A strictly regulated but rapidly changing nucleosomal landscape is hard
to capture precisely with the available techniques so far.

The second pillar of transcriptional regulation is formed by transcription factors
and their interaction with cis-acting regulatory elements. The set of TFs that exist in P.
falciparum was identified and characterized to some extent within the last few years, and
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the binding motifs and binding sites for many of them were identified. For the binding
of certain transcription factors, such as Api2-G or Api2-O, defined downstream effects
on the transcriptome were observed [32]. Since only a reduced number of TFs, primarily
members of the ApiAP2 family were found, their relevance in gene-expression control is
questionable. In any case, the mechanism of trans-regulatory factors is closely linked to the
nucleosome landscape, since the accessibility of binding regions is an essential prerequisite
for factor binding [92,130]. Therefore, promotor regions need to be nucleosome-depleted
to enable TF binding. A detailed analysis of nucleosome positioning relative to TF binding
regions would give us important information about the hierarchy of coaction between
those two levels of regulation. Is the DNA region around the binding motif permanently
nucleosome-depleted and thus accessible for TF-binding? If not, which mechanisms are
responsible for uncovering these regions? Are some of the transcription factors pioneer
factors that are capable of recognizing nucleosome-occupied motifs and subsequently
recruiting chromatin-remodeling activities? These questions about specificity, recruitment
and the order of events are important open issues in the field.

We propose that, for transcription regulation in Plasmodium falciparum, the chromatin-
remodeling machinery is a third crucial determinant, strongly interlinked with the binding
of transcription factors to DNA. As DNA properties explain the nucleosomal landscape
only in part, active movement and positioning by remodelers has a high impact on nu-
cleosome positioning and thus, on gene expression regulation [43,106,131]: remodeling
complexes are recruited to target genes by transcription factors, RNA polymerases and
elongation factors to promote or block transcription initiation and elongation by rearrang-
ing nucleosomes. They are the engines that both block (repression) or enable (activation)
access to a gene through movement, positioning and the eviction/insertion of nucleo-
somes, depending on the specific type of remodeling enzyme at this locus. Remodeling
complexes may barcode the genome in each stage of the life cycle, meaning that they
establish a nucleosome-positioning landscape that allows the binding of certain factors
and, conversely, restricts accessibility for other factors. Current investigations attempt
to decipher this “remodeling code” and address the questions of how genomic loci are
specifically recognized and how these enzymes are regulated. Which features determine
the affinity to individual nucleosomes, serving as parameter for locus-specific nucleosome
positioning? Another question is what is within the scope of function of the motor pro-
tein itself and what features are mediated by complex subunits? Looking at one level
above, the regulation of remodeling enzymes themselves need to be investigated; it is
presumed to occur in three different ways: control takes place (a) via recruiting to the
correct target site by sensing the histone code or other factors [43]; (b) via adjustment of
enzyme activity, e.g., by post-transcriptional protein-modification or ncRNAs [91]; or (c)
by changing associated subunits and thus, conferring different activities to the complex
(reviewed in [106]).

How remodeling enzymes pave the way for transcription-factor and polymerase
binding and how they are regulated is completely unexplored in P. falciparum. Based on
the reduced number of identified Pf enzymes with high sequence divergence and the
absence of any known interacting subunits, as there are in higher eukaryotes, we expect
functional divergence. We propose that Pf remodeling complexes—closely linked with
the nucleosome landscape and transcription-factor binding—build a complex regulatory
network exhibiting major differences in comparison to other eukaryotes. The decryption of
this system is indispensable to understanding the mechanism of transcription regulation in
the parasite and will provide new insights and novel approaches for fighting malaria.

Author Contributions: Writing—original draft preparation, M.T.W. and G.L.; writing—review and
editing, M.T.W., S.D., M.M. and G.L.; funding acquisition, G.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Deutsche Forschungsgemeinschaft (SFB960).

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2021, 22, 5168 14 of 18

References
1. World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges; WHO: Geneva, Switzerland,

2020.
2. Haldar, K.; Bhattacharjee, S.; Safeukui, I. Drug resistance in Plasmodium. Nat. Rev. Genet. 2018, 16, 156–170. [CrossRef] [PubMed]
3. Douzery, E.J.P.; Snell, E.A.; Bapteste, E.; Delsuc, F.; Philippe, H. The timing of eukaryotic evolution: Does a relaxed molecular

clock reconcile proteins and fossils? Proc. Natl. Acad. Sci. USA 2004, 101, 15386–15391. [CrossRef] [PubMed]
4. Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil,

A.P.; Temperley, W.H.; et al. A global map of dominant malaria vectors. Parasites Vectors 2012, 5, 69. [CrossRef]
5. Reece, J.B.; Campbell, N.A. Campbell Biology; Benjamin Cummings/Pearson: Boston, MA, USA, 2011.
6. Gardner, M.J.; Hall, N.; Fung, E.; White, O.; Berriman, M.; Hyman, R.W.; Carlton, J.M.; Pain, A.; Nelson, K.E.; Bowman, S.; et al.

Genome sequence of the human malaria parasite Plasmodium falciparum. Nat. Cell Biol. 2002, 419, 498–511. [CrossRef] [PubMed]
7. Böhme, U.; Otto, T.D.; Sanders, M.; Newbold, C.I.; Berriman, M. Progression of the canonical reference malaria parasite genome

from 2002–2019. Wellcome Open Res. 2019, 4, 58. [CrossRef]
8. Su, X.-Z.; Lane, K.D.; Xia, L.; Sá, J.M.; Wellems, T.E. PlasmodiumGenomics and Genetics: New Insights into Malaria Pathogenesis,

Drug Resistance, Epidemiology, and Evolution. Clin. Microbiol. Rev. 2019, 32. [CrossRef] [PubMed]
9. Zhang, M.; Wang, C.; Otto, T.D.; Oberstaller, J.; Liao, X.; Adapa, S.R.; Udenze, K.; Bronner, I.F.; Casandra, D.; Mayho, M.; et al.

Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 2018, 360,
eaap7847. [CrossRef]

10. Le Roch, K.G.; Zhou, Y.; Blair, P.L.; Grainger, M.; Moch, J.K.; Haynes, J.D.; De La Vega, P.; Holder, A.A.; Batalov, S.; Carucci,
D.J.; et al. Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle. Science 2003, 301, 1503–1508.
[CrossRef]

11. Francis, W.R.; Wörheide, G. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes. Genome Biol. Evol. 2017, 9,
1582–1598. [CrossRef]

12. Horrocks, P.; Wong, E.; Russell, K.; Emes, R.D. Control of gene expression in Plasmodium falciparum—Ten years on. Mol. Biochem.
Parasitol. 2009, 164, 9–25. [CrossRef]

13. Toenhake, C.G.; Bártfai, R. What functional genomics has taught us about transcriptional regulation in malaria parasites. Brief.
Funct. Genom. 2019, 18, 290–301. [CrossRef] [PubMed]

14. Watanabe, J.; Sasaki, M.; Suzuki, Y.; Sugano, S. Analysis of transcriptomes of human malaria parasite Plasmodium falci-parum
using full-length enriched library: Identification of novel genes and diverse transcription start sites of messenger RNAs. Gene
2002, 291, 105–113. [CrossRef]

15. Pesole, G. UTRdb and UTRsite: Specialized databases of sequences and functional elements of 5’ and 3’ untranslated regions of
eukaryotic mRNAs. Update 2002. Nucleic Acids Res. 2002, 30, 335–340. [CrossRef]

16. Adjalley, S.H.; Chabbert, C.D.; Klaus, B.; Pelechano, V.; Steinmetz, L.M. Landscape and Dynamics of Transcription Initiation in
the Malaria Parasite Plasmodium falciparum. Cell Rep. 2016, 14, 2463–2475. [CrossRef] [PubMed]

17. Horrocks, P.; Lanzer, M. Differences in nucleosome organization over episomally located plasmids coincides with aber-rant
promoter activity in P. falciparum. Parasitol. Int. 1999, 48, 55–61. [CrossRef]

18. Kensche, P.R.; Hoeijmakers, W.A.M.; Toenhake, C.G.; Bras, M.; Chappell, L.; Berriman, M.; Bártfai, R. The nucleosome landscape
of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences. Nucleic Acids Res. 2016, 44,
2110–2124. [CrossRef] [PubMed]

19. Bártfai, R.; Hoeijmakers, W.A.M.; Salcedo-Amaya, A.M.; Smits, A.H.; Janssen-Megens, E.; Kaan, A.; Treeck, M.; Gilberger, T.-W.;
Françoijs, K.-J.; Stunnenberg, H.G. H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are
Dynamically Marked by H3K9ac and H3K4me3. PLoS Pathog. 2010, 6, e1001223. [CrossRef] [PubMed]

20. Iengar, P.; Joshi, N. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes
in Plasmodium falciparum. BMC Genom. 2009, 10, 18. [CrossRef]

21. Wu, J.; Sieglaff, D.H.; Gervin, J.; Xie, X.S. Discovering regulatory motifs in the Plasmodium genome using comparative genomics.
Bioinformatics 2008, 24, 1843–1849. [CrossRef]

22. Young, J.A.; Johnson, J.R.; Benner, C.; Yan, S.F.; Chen, K.; Le Roch, K.G.; Zhou, Y.; Winzeler, E.A. In silico discovery of transcription
regulatory elements in Plasmodium falciparum. BMC Genom. 2008, 9, 1–21. [CrossRef]

23. Ubhe, S.; Rawat, M.; Verma, S.; Anamika, K.; Karmodiya, K. Genome-wide identification of novel intergenic enhancer-like
elements: Implications in the regulation of transcription in Plasmodium falciparum. BMC Genom. 2017, 18, 1–16. [CrossRef]

24. Wang, C.; Gibbons, J.; Adapa, S.R.; Oberstaller, J.; Liao, X.; Zhang, M.; Adams, J.H.; Jiang, R.H. The human malaria parasite
genome is configured into thousands of coexpressed linear regulatory units. J. Genet. Genom. 2020, 47, 513–521. [CrossRef]
[PubMed]

25. Bischoff, E.; Vaquero, C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional
machinery during the erythrocytic development of Plasmodium falciparum. BMC Genom. 2010, 11, 34. [CrossRef] [PubMed]

26. Hahn, S.; Young, E.T. Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function,
Mechanisms of Initiation, and Roles of Activators and Coactivators. Genetics 2011, 189, 705–736. [CrossRef] [PubMed]

27. Zhang, H.-M.; Chen, H.; Liu, W.; Liu, H.; Gong, J.; Wang, H.; Guo, A.-Y. AnimalTFDB: A comprehensive animal transcription
factor database. Nucleic Acids Res. 2011, 40, D144–D149. [CrossRef] [PubMed]

http://doi.org/10.1038/nrmicro.2017.161
http://www.ncbi.nlm.nih.gov/pubmed/29355852
http://doi.org/10.1073/pnas.0403984101
http://www.ncbi.nlm.nih.gov/pubmed/15494441
http://doi.org/10.1186/1756-3305-5-69
http://doi.org/10.1038/nature01097
http://www.ncbi.nlm.nih.gov/pubmed/12368864
http://doi.org/10.12688/wellcomeopenres.15194.1
http://doi.org/10.1128/CMR.00019-19
http://www.ncbi.nlm.nih.gov/pubmed/31366610
http://doi.org/10.1126/science.aap7847
http://doi.org/10.1126/science.1087025
http://doi.org/10.1093/gbe/evx103
http://doi.org/10.1016/j.molbiopara.2008.11.010
http://doi.org/10.1093/bfgp/elz004
http://www.ncbi.nlm.nih.gov/pubmed/31220867
http://doi.org/10.1016/S0378-1119(02)00552-8
http://doi.org/10.1093/nar/30.1.335
http://doi.org/10.1016/j.celrep.2016.02.025
http://www.ncbi.nlm.nih.gov/pubmed/26947071
http://doi.org/10.1016/S1383-5769(99)00002-1
http://doi.org/10.1093/nar/gkv1214
http://www.ncbi.nlm.nih.gov/pubmed/26578577
http://doi.org/10.1371/journal.ppat.1001223
http://www.ncbi.nlm.nih.gov/pubmed/21187892
http://doi.org/10.1186/1471-2164-10-18
http://doi.org/10.1093/bioinformatics/btn348
http://doi.org/10.1186/1471-2164-9-70
http://doi.org/10.1186/s12864-017-4052-4
http://doi.org/10.1016/j.jgg.2020.08.005
http://www.ncbi.nlm.nih.gov/pubmed/33272860
http://doi.org/10.1186/1471-2164-11-34
http://www.ncbi.nlm.nih.gov/pubmed/20078850
http://doi.org/10.1534/genetics.111.127019
http://www.ncbi.nlm.nih.gov/pubmed/22084422
http://doi.org/10.1093/nar/gkr965
http://www.ncbi.nlm.nih.gov/pubmed/22080564


Int. J. Mol. Sci. 2021, 22, 5168 15 of 18

28. Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The
Human Transcription Factors. Cell 2018, 172, 650–665. [CrossRef] [PubMed]

29. Balaji, S. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the
AP2-integrase DNA binding domains. Nucleic Acids Res. 2005, 33, 3994–4006. [CrossRef] [PubMed]

30. Coulson, R.M.; Hall, N.; Ouzounis, C.A. Comparative Genomics of Transcriptional Control in the Human Malaria Parasite
Plasmodium falciparum. Genome Res. 2004, 14, 1548–1554. [CrossRef]

31. Campbell, T.L.; De Silva, E.K.; Olszewski, K.L.; Elemento, O.; Llinás, M. Identification and Genome-Wide Prediction of DNA
Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite. PLoS Pathog. 2010, 6, e1001165. [CrossRef]

32. Jeninga, M.D.; Quinn, J.E.; Petter, M. ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019, 8, 47. [CrossRef]
33. Modrzynska, K.; Pfander, C.; Chappell, L.; Yu, L.; Suarez, C.; Dundas, K.; Gomes, A.R.; Goulding, D.; Rayner, J.C.; Choudhary,

J.; et al. A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the
Plasmodium Life Cycle. Cell Host Microbe 2017, 21, 11–22. [CrossRef]

34. Iwanaga, S.; Kaneko, I.; Kato, T.; Yuda, M. Identification of an AP2-family Protein That Is Critical for Malaria Liver Stage
Development. PLoS ONE 2012, 7, e47557. [CrossRef]

35. Kafsack, B.F.C.; Rovira-Graells, N.; Clark, T.G.; Bancells, C.; Crowley, V.M.; Campino, S.G.; Williams, A.E.; Drought, L.G.;
Kwiatkowski, D.P.; Baker, D.A.; et al. A transcriptional switch underlies commitment to sexual development in malaria parasites.
Nat. Cell Biol. 2014, 507, 248–252. [CrossRef] [PubMed]

36. Santos, J.M.; Josling, G.; Ross, P.; Joshi, P.; Orchard, L.; Campbell, T.; Schieler, A.; Cristea, I.M.; Llinás, M. Red Blood Cell Invasion
by the Malaria Parasite Is Coordinated by the PfAP2-I Transcription Factor. Cell Host Microbe 2017, 21, 731–741.e10. [CrossRef]
[PubMed]

37. Yuda, M.; Iwanaga, S.; Shigenobu, S.; Mair, G.R.; Janse, C.J.; Waters, A.P.; Kato, T.; Kaneko, I. Identification of a transcription
factor in the mosquito-invasive stage of malaria parasites. Mol. Microbiol. 2009, 71, 1402–1414. [CrossRef]

38. Yuda, M.; Iwanaga, S.; Shigenobu, S.; Kato, T.; Kaneko, I. Transcription factor AP2-Sp and its target genes in malarial sporozoites.
Mol. Microbiol. 2010, 75, 854–863. [CrossRef] [PubMed]

39. Russell, K.; Cheng, C.-H.; Bizzaro, J.W.; Ponts, N.; Emes, R.D.; Le Roch, K.G.; Marx, K.A.; Horrocks, P. Homopolymer tract
organization in the human malarial parasite Plasmodium falciparum and related Apicomplexan parasites. BMC Genom. 2014, 15,
1–17. [CrossRef]

40. Van Noort, V.; Huynen, M. Combinatorial gene regulation in Plasmodium falciparum. Trends Genet. 2006, 22, 73–78. [CrossRef]
41. Levo, M.; Segal, E. In pursuit of design principles of regulatory sequences. Nat. Rev. Genet. 2014, 15, 453–468. [CrossRef]
42. Cobbold, S.A.; Santos, J.M.; Ochoa, A.; Perlman, D.H.; Llinas, M. Proteome-wide analysis reveals widespread lysine acetylation

of major protein complexes in the malaria parasite. Sci. Rep. 2016, 6, 19722. [CrossRef]
43. Becker, P.B.; Workman, J.L. Nucleosome Remodeling and Epigenetics. Cold Spring Harb. Perspect. Biol. 2013, 5, a017905. [CrossRef]
44. Sales-Gil, R.; Vagnarelli, P. How HP1 Post-Translational Modifications Regulate Heterochromatin Formation and Maintenance.

Cells 2020, 9, 1460. [CrossRef] [PubMed]
45. Ruiz, J.L.; Tena, J.J.; Bancells, C.; Cortés, A.; Gómez-Skarmeta, J.L.; Gómez-Díaz, E. Characterization of the accessible genome in

the human malaria parasite Plasmodium falciparum. Nucleic Acids Res. 2018, 46, 9414–9431. [CrossRef] [PubMed]
46. Toenhake, C.G.; Fraschka, S.A.-K.; Vijayabaskar, M.S.; Westhead, D.R.; van Heeringen, S.J.; Bártfai, R. Chromatin Accessibility-

Based Characterization of the Gene Regulatory Network Underlying Plasmodium falciparum Blood-Stage Development. Cell Host
Microbe 2018, 23, 557–569.e9. [CrossRef] [PubMed]

47. Baxevanis, A. Histone Sequence Database: New histone fold family members. Nucleic Acids Res. 1998, 26, 372–375. [CrossRef]
[PubMed]

48. Marinov, G.K.; Lynch, M. Conservation and divergence of the histone code in nucleomorphs. Biol. Direct 2016, 11, 18. [CrossRef]
49. Silberhorn, E.; Schwartz, U.; Löffler, P.; Schmitz, S.; Symelka, A.; De Koning-Ward, T.; Merkl, R.; Längst, G. Plasmodium falciparum

Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning. PLoS Pathog. 2016, 12, e1006080.
[CrossRef]

50. Hagerman, P.J. Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 265–286. [CrossRef]
51. Richmond, T.J.; Davey, C.A. The structure of DNA in the nucleosome core. Nat. Cell Biol. 2003, 423, 145–150. [CrossRef]
52. Widom, J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 2001, 34, 269–324. [CrossRef]
53. Linzweiler, W.; Hörz, W. Reconstitution experiments show that sequence-specific histone-DNA interactions are the basis for

nucleosome phasing on mouse satellite DNA. Cell 1985, 42, 281–290. [CrossRef]
54. Segal, E.; Fondufe-Mittendorf, Y.; Chen, L.; Thåström, A.; Field, Y.; Moore, I.K.; Wang, J.-P.Z.; Widom, J. A genomic code for

nucleosome positioning. Nat. Cell Biol. 2006, 442, 772–778. [CrossRef] [PubMed]
55. Mengeritsky, G.; Trifonov, E.N. Nucleotide sequence-directed mapping of the nucleosomes. Nucleic Acids Res. 1983, 11, 3833–3851.

[CrossRef] [PubMed]
56. Tillo, D.; Hughes, T.R. G+C content dominates intrinsic nucleosome occupancy. BMC Bioinform. 2009, 10, 442. [CrossRef]

[PubMed]
57. Cui, F.; Zhurkin, V.B. Structure-based Analysis of DNA Sequence Patterns Guiding Nucleosome Positioningin vitro. J. Biomol.

Struct. Dyn. 2010, 27, 821–841. [CrossRef] [PubMed]

http://doi.org/10.1016/j.cell.2018.01.029
http://www.ncbi.nlm.nih.gov/pubmed/29425488
http://doi.org/10.1093/nar/gki709
http://www.ncbi.nlm.nih.gov/pubmed/16040597
http://doi.org/10.1101/gr.2218604
http://doi.org/10.1371/journal.ppat.1001165
http://doi.org/10.3390/pathogens8020047
http://doi.org/10.1016/j.chom.2016.12.003
http://doi.org/10.1371/journal.pone.0047557
http://doi.org/10.1038/nature12920
http://www.ncbi.nlm.nih.gov/pubmed/24572369
http://doi.org/10.1016/j.chom.2017.05.006
http://www.ncbi.nlm.nih.gov/pubmed/28618269
http://doi.org/10.1111/j.1365-2958.2009.06609.x
http://doi.org/10.1111/j.1365-2958.2009.07005.x
http://www.ncbi.nlm.nih.gov/pubmed/20025671
http://doi.org/10.1186/1471-2164-15-848
http://doi.org/10.1016/j.tig.2005.12.002
http://doi.org/10.1038/nrg3684
http://doi.org/10.1038/srep19722
http://doi.org/10.1101/cshperspect.a017905
http://doi.org/10.3390/cells9061460
http://www.ncbi.nlm.nih.gov/pubmed/32545538
http://doi.org/10.1093/nar/gky643
http://www.ncbi.nlm.nih.gov/pubmed/30016465
http://doi.org/10.1016/j.chom.2018.03.007
http://www.ncbi.nlm.nih.gov/pubmed/29649445
http://doi.org/10.1093/nar/26.1.372
http://www.ncbi.nlm.nih.gov/pubmed/9399877
http://doi.org/10.1186/s13062-016-0119-4
http://doi.org/10.1371/journal.ppat.1006080
http://doi.org/10.1146/annurev.bb.17.060188.001405
http://doi.org/10.1038/nature01595
http://doi.org/10.1017/S0033583501003699
http://doi.org/10.1016/S0092-8674(85)80123-9
http://doi.org/10.1038/nature04979
http://www.ncbi.nlm.nih.gov/pubmed/16862119
http://doi.org/10.1093/nar/11.11.3833
http://www.ncbi.nlm.nih.gov/pubmed/6856466
http://doi.org/10.1186/1471-2105-10-442
http://www.ncbi.nlm.nih.gov/pubmed/20028554
http://doi.org/10.1080/073911010010524947
http://www.ncbi.nlm.nih.gov/pubmed/20232936


Int. J. Mol. Sci. 2021, 22, 5168 16 of 18

58. Bunnik, E.M.; Polishko, A.; Prudhomme, J.; Ponts, N.; Gill, S.S.; Lonardi, S.; Le Roch, K.G. DNA-encoded nucleosome occupancy is
associated with transcription levels in the human malaria parasite Plasmodium falciparum. BMC Genom. 2014, 15, 1–15. [CrossRef]

59. Lieleg, C.; Krietenstein, N.; Walker, M.; Korber, P. Nucleosome positioning in yeasts: Methods, maps, and mechanisms.
Chromosoma 2015, 124, 131–151. [CrossRef]

60. Lanzer, M.; Wertheimer, S.P.; De Bruin, D.; Ravetch, J.V. Chromatin structure determines the sites of chromosome breakages in
Plasmodium falciparum. Nucleic Acids Res. 1994, 22, 3099–3103. [CrossRef]

61. Woodcock, C.L.; Ghosh, R.P. Chromatin Higher-order Structure and Dynamics. Cold Spring Harb. Perspect. Biol. 2010, 2, a000596.
[CrossRef]

62. Correll, S.J.; Schubert, M.H.; Grigoryev, S.A. Short nucleosome repeats impose rotational modulations on chromatin fibre folding.
EMBO J. 2012, 31, 2416–2426. [CrossRef]
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