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Abstract: This review discusses molecular adducts, whose composition allows a symmetric structure.
Such adducts are popular model systems, as they are useful for analyzing the effect of structure
on the property selected for study since they allow one to reduce the number of parameters. The
main objectives of this discussion are to evaluate the influence of the surroundings on the symmetry
of these adducts, steric hindrances within the adducts, competition between different noncovalent
interactions responsible for stabilizing the adducts, and experimental methods that can be used to
study the symmetry at different time scales. This review considers the following central binding
units: hydrogen (proton), halogen (anion), metal (cation), water (hydrogen peroxide).

Keywords: hydrogen bonding; noncovalent interactions; isotope effect; cooperativity; water; organ-
ometallic complexes; NMR; DFT

1. Introduction

If something is perfectly symmetric, it can be boring, but it cannot be wrong. If
something is asymmetric, it has potential to be questioned. Note, for example, the symmetry
of time in physics [1,2]. Symmetry also plays an important role in chemistry. Whether
it is stereochemistry [3], soft matter self-assembly [4,5], solids [6,7], or diffusion [8], the
dependence of the physical and chemical properties of a molecular system on its symmetry
is often a key issue. Symmetric molecular adducts are popular model systems; they are
used to analyze the effect of structure on the property chosen for research since they allow
one to reduce the number of parameters [9–12]. On the other hand, symmetry in chemistry
is a matter of the size and time scale in question [13]. The same molecular system can be
symmetric for one experimental method and asymmetric for another. It is important to
understand what processes are hidden behind this discrepancy in each specific case.

The problem of the size scale already begins at the level of the model adducts composi-
tion. What structure has the simplest model adduct with which it is possible to investigate
the property under consideration? The Zundel cation (H5O2

+) and the Eigen cation (H9O4
+)

seem to be the most illustrative example [14,15]. Which of these two structures is the best
for simulating a hydrated proton? It seems that neither experiment nor theory can answer
this question regardless of the property being discussed [16–20]. The same is valid for the
hydration of the hydroxide ion [21–24]. Of course, bulk water is one of the most complex
solvents in this content. The time scale problem has to do with tautomerism. For some
methods, its rate is slow. In this case, experimental parameters can be observed for each of
the structures presented. For other methods, this rate is fast and only average experimental
parameters can be observed.

This short review discusses molecular adducts whose composition allows a symmetric
structure. These adducts should be stable in organic solvents at least on the millisecond
time scale. It should be possible to model the effect of the surroundings on their structure
by considering the environment as a polarizable continuum. It is not limited only to
the polarizable continuum model (PCM) and solvation model based on density (SMD)
approximations [25–29]. It is important that the solute–solvent interactions do not have to
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be considered explicitly. Some examples of the molecular dynamics (MD) studies will be
included as well [30–32]. If known, the symmetry of the selected adducts in the gas phase
and solids is also discussed.

The main objectives of this review are to discuss (i) the influence of the environment
on the symmetry of these adducts, (ii) steric hindrances caused by interactions within
the adducts, (iii) competition between different noncovalent interactions responsible for
stabilizing the adducts, and (iv) what experimental methods can be used to study their
symmetry at different time scales. Therefore, this review is not structured according to the
type of interaction that is responsible for the stabilization of the adducts, but according
to the central binding unit: hydrogen (proton), halogen (anion), metal (cation), water
(hydrogen peroxide).

2. Hydrogen (Proton) as the Binding Unit

Hydrogen bonding (H-bond) is one of the most important tools for controlling molecu-
lar conformation and intermolecular aggregation. A large number of potentially symmetric
structures of (AHA)- and (BHB)+ types is known. Here, a few of the more typical ones
are discussed.

2.1. Intramolecular H-Bonds

Figure 1 shows selected molecules with an intramolecular H-bond. The lowest energy
geometry of 3-carboxypropanoate (the maleate anion, Figure 1a) in the gas phase has an
asymmetric H-bond. The OH and H···O distances are 1.33 and 1.10 Å [33]. However, the
zero-point energy is above the energy barrier for proton transfer. Consequently, due to the
motion of the mobile proton in the ground vibrational state, the H-bond is symmetric [34].
As a result, this molecule yielded a broad and featureless photoelectron spectrum [33].
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Figure 1. Potentially symmetric structures with intramolecular H-bonding. 3-carboxypropanoate (a),
2-carboxybenzoate (b), 1,8-bis(di-R-amino)-naphthalene-H+ (c), 1,8-naphthyridine-H+ (d).

The symmetry of the maleate anion in solution was studied using a primary H/D
isotope effect on the NMR chemical shift, p∆(H/D)≡ δ(ADB)− δ(AHB). The motion of the
binding hydron within a H-bond should always be treated as quantum [35]. Consequently,
when the mobile proton is substituted for deuteron, the geometry of the H-bond changes.
For a symmetric H-bond this substitution results in a contraction of the heavy nuclei
distance, that is, the strengthening of the H-bond; for an asymmetric H-bond it causes a
lengthening of this distance, that is, the weakening of the H-bond [36]. These geometric
changes lead to chemical shift changes. It is expected that p∆(H/D) > 0 for symmetric
H-bonds and negative for asymmetric ones (note, that other authors may define the
isotope effects as δ(AHB) − δ(ADB)) [37]. For the maleate anion p∆(H/D) = 0.08 ppm
at 150 K [38] in an aprotic, highly polar CDF3/CDF2Cl mixture [39] and 0.03 ppm at
218 K in CD2Cl2 [40]. These results suggested that under these conditions this H-bond
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is symmetric. This conclusion was challenged by an 18O-induced isotope shift [41]. This
study claims that such H-bonds in solution are asymmetric due to the anisotropy of the
local solvation environment [42]. This claim seems to be correct [43,44]. Chemical shift is
a tensor. The discussed experiments in solution operate with the average values of the
corresponding tensors. The dependence of the tensors on the H-bond geometry can be
complex [45]. Although the positive sign of p∆(H/D) indicates a very strong H-bond, it
does not necessarily mean that the bond is symmetric [46,47]. It would be interesting to
see a detailed analysis of this effect for maleate anion. Moreover, this anion is present in
solution together with a cation [48]. Their interaction can only be neglected in water due to
the dissociation of the ion pair. On the other hand, the solvation of the two C=O moieties
of the maleate anion by water is symmetric only on average due to a rapid change in the
structure of the solvation shell caused by the thermal motion of solvent molecules. In
organic solvents the anion–cation interaction cannot be neglected. It is reasonable that, with
the exception of very bulky cations, it is this interaction that will determine the symmetry of
the H-bond. For the bulky cations, the solute–solvent interactions become critical again. The
effect of such interactions on the geometry of H-bonds should not be underestimated [49].
It is likely that at any given moment of time the H-bond in the maleate anion is asymmetric
in any solvent and that its C=O moieties play an important role in this. Note that the
intramolecular H-bonds of hydrogen succinate, meso-/rac-2,3-dimethylsuccinate, and
(R)-(+)-methylsuccinate are asymmetric in CDF3/CDF2Cl [50].

Reference [51] reviews the symmetry of the H-bond of the maleate anion with different
cations in the crystalline phase. Using the position of the mobile proton available from low-
temperature neutron-diffraction studies on nine different hydrogen maleate salts [52–57],
the authors established a correlation that allows determination of this position from X-ray
diffraction (XRD) data [51,58]. There are three groups of crystals in which the deviation
of the proton position from the H-bond center is below 0.06 Å, about 0.2 Å, and about
0.3 Å [51]. The symmetry of these H-bonds changes under pressure [59].

Similar results have been obtained for hydrogen phthalate, Figure 1b. Its intramolecu-
lar H-bond is symmetric in the gas phase [60]. In solution it becomes asymmetric due to
solute–solvent and anion–cation interactions [60–63]. Note that the strength of this H-bond
suffers from significant steric stress [64]. The energy of this bond in crystalline phthalic
acid is only 9.5 kJ/mol [65] while it can be more than 100 kJ/mol for strong intermolec-
ular H-bonds [66]. In the crystalline phase, the position of the mobile proton within the
intramolecular H-bond of lithium hydrogen phthalate depends on the environment and
can be both very close to the center and very asymmetric [67]. However, there does not
appear to be a crystalline hydrogen phthalate with a perfectly symmetric intramolecular
H-bond [68].

The symmetry of the intramolecular H-bond in 1,8-bis(dimethylamino)naphthalene-
H+ (Figure 1c) has been recently discussed in detail [69]. This molecule is the simplest
representative of proton sponges, which are a certain type of aromatic diamines with
unusually high basicity [70,71]. It is also the most studied molecule of this type. The
intramolecular H-bond in 1,8-bis(dimethylamino)naphthalene-H+ is strongly asymmetric
in the gas phase [72] and remains asymmetric in solution [73]. The symmetry and the
proton-transfer rate depend on the solvent and the anion. The more polar the solvent
and the bulkier the anion, the closer the mobile proton is to the center of this H-bond [74].
The estimated residence time of the proton at a given nitrogen is about 1 picosecond [69].
In the solid state the geometry of the H-bond is asymmetric and depends on the local
environment [75–77]. In general, it appears that the intramolecular H-bond in all known
protonated proton sponges is asymmetric both in solution and in the solid state [78,79]. Due
to the strength of the intramolecular H-bond and a slow intermolecular proton exchange
in solution, proton sponges are very popular model systems for benchmark studies of
spectral manifestations of H-bonding [80–86]. Alternatively, the H-bond symmetry can be
purposefully lowered to investigate competing interactions [87–90].
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The distance between the nitrogen atoms of 1,8-naphthyridine (2,2′-bipyridine) is too
large to form a strong intramolecular H-bond, Figure 1d. In the gas phase [91], on silica
surfaces [92], and in many crystals it occurs in the trans-configuration [93,94]. Coordination
to a metal [95,96] or protonation [97] are required to stabilize the cis-configuration shown
in Figure 1d. This cis-configuration of 1,8-naphthyridine-H+ has been used to study in
detail the counterion effect on intramolecular H-bonds and proton transfer using 1H and
15N NMR at 150-115 K in CDF3/CDClF2 [98]. Figure 2 shows the main results of this study.
Dichloroacetic acid forms a strong intermolecular H-bond with one of the nitrogen atoms
of 1,8-naphthyridine. At low temperature in the aprotic solvent this complex is stable on
the millisecond time scale. The configuration of the base is unknown, but it is probably
fluctuating between the trans- and cis-configurations. The position of the mobile proton
depends on the current polarity of the solvent. The lower the temperature, the higher the
polarity, the closer the proton is to the nitrogen atom [39]. At 115 K the geometry of this
H-bond is (N-H+)···O-. However, the local polarity fluctuates and causes the proton to
move in the intermediate temperature range at around 120 K with a large amplitude within
the H-bond. The moment the proton is at the oxygen atom, it can change the nitrogen
atom with which it will be bound. Consequently, at 120 K there is an intramolecular proton
exchange in the absence of the intramolecular H-bond, Figure 2a. The tetrafluoroborate
anion is a weak base and it does not break the intramolecular H-bond in 1,8-naphthyridine-
H+. However, there is still a specific interaction in this anion–cation pair that makes the
intramolecular proton transfer slow on the millisecond time scale, Figure 2b. Only a very
bulky anion, tetrakis[3,5-bis- (trifluoromethyl)phenyl] borate, does not exhibit a preferential
interaction with one of the pyridine rings. A very fast degenerate intramolecular proton
transfer was detected in this case, Figure 2c. The geometry of this intramolecular H-bond
was estimated to be: N-H = 1.1 Å and H···N = 1.7 Å [98].
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Figure 2. Anion–cation interactions, H-bonds and proton transfer in 1,8-naphthyridine-H+ anion
complexes in an aprotic polar solvent [98]. Anions: dichloroacetate (a), tetrafluoroborate (b), and
tetrakis[3,5-bis- (trifluoromethyl)phenyl] borate (c).

2.2. Proton-Bound Homodimers

The question “What factors determine whether a proton-bound homodimer has a
symmetric or an asymmetric hydrogen bond?” was answered for homodimers of the
[XHX]+ type in [99,100]. It was shown that the symmetry of such homodimers depends
on the electronegativity of the atom X. “A more electronegative X atom tends to produce
a more positively charged shared proton, which in turn facilitates the closer approach
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of the two X atoms and the formation of a symmetric hydrogen bond” [99]. In the gas
phase, the symmetric [X···H···X]+ homodimers are expected for X = F and, with some
exceptions, O and sp-hybridized N. For X = sp2- and sp3-hybridized N such homodimers
will be asymmetric, although proton transfer within such H-bonds can be fast. Proton-
bound homodimers involving second-row atoms were studied as well [101]. Note that
the calculation result can critically depend on the level of approximation [102]. High level
calculations can show very good agreement with experimentally observed values [103–105].

The binding energies of such homodimers depend on the electronic properties of X.
For example, there is a quadratic correlation between the binding energy and the proton
affinity of X within a given set of X-R, where R is a substituent. The energy reaches its
maximum at a certain value of the proton affinity [100]. This relationship is the result of
a compromise between the penalty for partially deprotonating [XH]+ and the benefit of
partially protonating X.

In condensed matter, various noncovalent interactions compete with each other. Very
specific conditions are required to observe centrosymmetric [X···H···X]+ complexes. For
example, it can be noble-gas (Ng) matrices, X = Ng [106,107]. The only complex for
which the presence of a centrosymmetric structure was experimentally proved in various
solvents and solids is [F···H···F]- [108–111]. The bond dissociation energy of [FHF]- is about
190 kJ/mol [112]. This energy is twice that of the next candidate, [ClHCl]-, 100 kJ/mol [113].
It is not yet clear whether [ClHCl]-, can be centrosymmetric in condensed matter [114,115].
The presence of a competing H-bond can completely break the symmetry of [FHF]- as it
happens in pyridine-H+···F-···H-F [116].

Figure 3 shows 1H, 2H, and 19F NMR spectra of a solution containing the [FHF]- and
[FDF]- anions and the tetrabutylammonium cation in CDF3/CDF2Cl at 130 K [38]. For
this complex p∆(H/D) ≡ δ(FDF) − δ(FHF) = 0.32 ppm and 2∆19F(D) ≡ δ(FDF) − δ(FHF)
= −0.37 ppm. These values were quantitatively reproduced in MP2 calculations, which
confirms the centrosymmetric structure of these anions [47]. The geometry of [FHF]- in
solution depends on specific interactions with solvent molecules. Molecular dynamics
simulations show that in CH2Cl2 the main interaction is F···H-CHCl2 H-bonding, while in
CCl4 it is a weaker F···Cl-CCl3 halogen–halogen bonding [117]. Symmetric solvation should
lead to a contraction of [FHF]- [118]. Asymmetric solvation will perturb the symmetry of
[FHF]-. Surprisingly, the effect can be stronger due to the halogen–halogen interactions
in CCl4 than due to the H-bonding in CH2Cl2 [117]. These geometric changes cannot be
measured using either 1H or 19F NMR, because these chemical shifts are independent of
the F . . . F distance at 2.3 Å [118].
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[FHF]- can be centrosymmetric in solids when the environment of the fluorine atoms
is symmetric [108]. The supposed examples can be found elsewhere [108,110]. Structural,
energetic, and spectral properties of [FHF]- were considered in a very large number of
publications. Here are just a few of the newest [119–123].

Nitrogen-containing heterocycles are probably the most experimentally studied proton-
bound homodimers of the [X···H···X]+ type. More specifically, these are symmetrically
substituted pyridine derivatives. There are several reasons for this. The basicity of such
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derivatives can be varied over a wide range in small steps. Ortho-substituents can be
used to protect the mobile proton from competing interactions, that extends the lifetime of
such homodimers. It is easy to switch from homo- to heterodimers to study asymmetric
H-bonds. The last, but not least, reason is that H-bonded complexes of pyridines are
ideally suited for their NMR study, since one is not limited to 1H NMR. The isotropic
15N NMR chemical shift, δiso(15N), of such pyridine derivatives characteristically depends
on the N . . . H distance [124–126]. For all of them, if δiso(15N) ≡ 0 in the absence of H-
bonding, δiso(15N) ≈ 125 ppm for the protonated base [127]. Due to this, for H-bonds of
medium strength, the δiso(15N) values can be converted to N . . . H distances with high
accuracy, Figure 4 [128]. This correlation has been successfully applied to measure H-bond
geometries in solution [129,130], interfaces [131,132], enzyme environments [133,134], and
solids [135,136].
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In the gas phase, the proton-bound homodimer of pyridine has an asymmetric
[N···H-N]+ H-bond [99]. The N . . . N distance is about 2.69 Å [137] and the bond dissoci-
ation energy is 105 [138] or 109 kJ/mol [139]. In solution, the N . . . N distance shortens
to 2.62 Å [140] and the bond dissociation energy in CD2Cl2 is about 15 kJ/mol [139]. The
geometry of this H-bond is temperature dependent. Cooling leads to an increase in the
polarity of the solvent, which causes an increase in the H-N distance and a reduction of the
N···H and N...N distances.

Figure 5 shows NMR spectra of the proton-bound homodimer of pyridine in solution
down to 120 K [141]. For this complex, p∆(H/D) = −0.95 ppm, which unambiguously
indicates the asymmetry of the H-bond, while the multiplicity of the 1H and 15N NMR
spectra indicates a fast, reversible proton transfer within this H-bond. The observed
contraction of the N . . . N distance in solution is not confirmed by calculations using
the polarizable continuum model (PCM [25,26]) and solvation model based on density
(SMD [28]) approaches. On the contrary, these calculations predict that this distance must
be about 2.75–2.77 Å [34,142]. This discrepancy was explained using the Adduct under
Field (AuF) approach [143–145]. The driving force of this reversible proton transfer is
a fluctuating solvation environment. The potential energy curve of this mobile proton
changes from a symmetric double-well to an asymmetric single-well one. This proton
tautomerism is fast on the NMR time scale that is its rate is faster than 103 s−1. This proton
transfer occurs through transition states in which the N . . . N distances are shorter than in
the initial [N···H-N]+ and the final [N-H···N]+ structures. As a result, the mean N . . . N
distance measured in NMR experiments is shorter than that of the most energetically
favorable structures obtained in static calculations [146]. This proton tautomerism is
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slow on the electronic absorption and IR time scales [147,148]. The frequencies of the
symmetric and antisymmetric CN vibrations are affected by H-bonding strong enough to
discriminate between the spectral pattern of the H-bonded and protonated pyridines [148].
Consequently, the rate of this proton tautomerism is slower than 1011 s−1.
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The geometry of the proton-bound homodimer of pyridine in the solid state depends
on the counterion. In most cases, the [N···H-N]+ H-bond is not linear while the sum of
the N-H and H···N distances is greater than the N . . . N distance of the linear H-bond
in the gas phase. Generally, this sum is above 2.73 Å [149–153] while the N···H and H-N
distances are 1.658 Å and 1.086 Å [154]. However, in the case of the bulky tetrakis[3,5-bis-
(trifluoromethyl)phenyl] borate anion (Figure 2c), the N···H and H-N distances are 1.532 Å
and 1.123 Å, thus the length of the [N···H-N]+ H-bond is 2.655 Å [141]. This length is
shorter than in the gas phase.

How short can be the N . . . N distance in the proton-bound homodimers of pyridines?
The binding energy of such homodimers will reach a maximum at a certain value of the
proton affinity of the involved pyridine derivative [100]. Figure 6 shows experimental
N . . . N distances in the proton-bound dimers of ortho-unsubstituted and ortho-methyl
substituted pyridines in CDF3/CDF2 at 120K as a function of calculated gas-phase proton
affinities [137,140]. The N . . . N distance clearly correlates with the gas-phase proton
affinity. The shortest distance of 2.613 Å was observed for pyridine [140]. Steric interaction
between the ortho-methyl groups becomes operative at the N . . . N distance of ∼2.7 Å and
limits the closest approach to 2.665 Å. However, this interaction is not a pure repulsion. Lon-
don dispersion contributes to the binding energy of ortho-substituted homodimers [139,155].
As a result, the homodimers of ortho-substituted pyridines can be more stable than that of
ortho-unsubstituted ones at low temperatures as long as the entropic costs are not too high.
The thermodynamic parameters of a large number of the proton-bound homodimers of
pyridines are available in the Supporting Information to [139].

In solution, effective proton affinities depend on solvation [156]. For example, consider
derivatives of pyridine and acridine with the same gas phase proton affinity. In solution, the
effective proton affinity of this acridine will be smaller than that of the pyridine derivative
and the N···N distance in the proton-bound homodimer of acridine will be shorter [140].
This effect was attributed to the local ordering of the solvent molecules, which increases
with the size of the solute and causes an increase in the local reaction field. The deviation
from the general trend observed for halogen-substituted pyridines, 5 in Figure 6, is also
probably caused by the peculiarities of the mean local surroundings. The influence of
halogen–halogen interactions on molecular systems can be quite large [157,158].

Within the framework of this review, it is impossible to summarize even the main
properties of carboxylic acid dimers and carboxylate-carboxylic acid dimers. These systems
and their importance in practice require a special review. Cyclic dimers of carboxylic
acid exhibit a rapid degenerate double proton transfer in the gas-phase [159–162], solu-
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tion [163,164], and solids [165]. The binding energies of such cyclic dimers in the gas phase
are about 50–70 kJ/mol [166]. In the presence of other proton acceptors, these cycles are
easily opened [66,167–169]. A rapid degenerate [O-H···O]- 
 [O···H-O]- proton transfer
also occurs in carboxylate-carboxylic acid dimers [170].
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3. Halogen (Anion) as the Binding Unit

The symmetry of halogen bound homodimers of the [NXN]+ type has recently been
addressed [171–173]. DFT calculations predict an asymmetric and symmetric geometries
for [N-F···N]+ and [N···Cl···N]+. These complexes are highly reactive, which prevents their
detailed experimental study. Symmetric [N···Br···N]+ and [N···I···N]+ have been observed
in solution [174].

The most studied type of halogen bound homodimers are (FH)nF- complexes. These
anionic clusters are ideal objects for theoretical, structural, and spectroscopic studies of
H-bonding, since on the one hand they are small, and on the other hand, their geometry
changes noticeably due to small external interactions or H/D isotopic substitution. There
are experimental evidences that complexes (FH)nF-, where n = 2–5, can present in solution
and solid state [109,175–180]. These and similar complexes have been used in theoretical
studies of H-bonding binding energies [181], H-bonding with fluorine [182], vibrations of
H-bonds [183,184], and NMR spin–spin coupling across H-bonds [185–192]. Of particular
importance is the cooperativity (anticooperativity) of the H-bonds in these and similar com-
plexes [193–196]. The cooperativity of H-bonds plays a very important role in biochemical
reactions [197,198], molecular self-assembly [199,200], and the structure of water solvation
clusters [201,202]. Only this topic will be discussed here.

Figure 7 shows 1H, 2H and 19F NMR spectra of solutions containing FH···F-···HF,
FH···F-···DF and FD···F-···DF anions in CDF3/CDF2Cl at 130 K [203]. The protons of
FH···F-···HF are located at the outer fluorine atoms. The corresponding spin–spin scalar
coupling 1JHF = 354 Hz. The protons also couple to the central fluorine atom across the
H-bonds, hJH···F = −24 Hz. Therefore, these protons give rise to a doublet of doublet signal,
Figure 7a. The outer and central fluorine atoms couple to each other, 2hJF . . . F = 147 Hz, and
give rise to a doublet of doublet signal, Figure 7f, and a triplet of triplet signal, Figure 7d.
The rate constant for proton and H-bond exchange is less than 103 s−1. This complex is
not linear, the FFF angle is about 130◦ [191]. There is an anti-cooperative coupling of these
two H-bonds. As a result, the FH···F-···DF anion is asymmetric. The 1H NMR chemical
shift of the FH···F- proton is larger than the 2H NMR chemical shift of the F-···DF deuteron.
The former is also larger, and the latter is less than the 1H NMR chemical shift of the
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protons in FH···F-···HF (see the arrows in Figure 7b,c). Consequently, the FH···F- H-bond
is shorter and the F-···DF one longer than the bonds in FH···F-···HF. This conclusion is
confirmed by changes of the coupling constants and 19F NMR chemical shifts. For example,
in FH···F-···DF, for the FH···F- H-bond 1JHF = 348 Hz, hJH···F = −22 Hz and 2hJF . . . F =
151 Hz, while for the F-···DF H-bond 2hJF . . . F = 140 Hz.
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Figure 7. Experimental NMR spectra of solutions containing the FH···F-···HF, FH···F-···DF and FD···F-···DF anions
in CDF3/CDF2Cl at 130 K [203]. (a,b) 1H NMR, (c) 2H NMR, (d–g) 19F NMR. Arrows indicate the 1H and 2H NMR
chemical shifts.

A detailed analysis of the experimentally obtained NMR parameters made it possible
to measure the geometry of these H-bonds, Figure 8. Surprisingly, the resulting effect of
the double deuteration corresponds approximately to the algebraic sum of the direct and
the vicinal isotope effects [203]. These sum rules are valid for NMR parameters as well as
for the F . . . F distances. For example, the midpoints of the sums of the F- . . . F distances
in the F-H···F-···D-F anion, RHD = (F- . . . F(H) + F- . . . F(D))/2, and in the F-H···F-···H-F
and F-D···F-···D-F anions, RHHDD = (F- . . . F(H) + F- . . . F(D))/2, are shown by arrows in
Figure 8. It is obvious that RHD and RHHDD are almost equal. The same rules are valid for
the (FH)3F- anion. There is hardly any other molecular system for which such a detailed
analysis of such small effects would be possible.
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4. Metal (Cation) as the Binding Unit

Symmetric transition metal organometallics are not necessarily the most effective cata-
lysts. However, the elucidation of their structure in solution can be greatly facilitated if they
are or can be symmetric. Although 1H and 13C NMR are not always sufficient to determine
the structure of organometallic species, 31P NMR can be very useful when phosphorous is
coordinated to the metal center. Only 1,3,5-triaza7-phosphaadamantane (PTA, Figure 9)
complexes will be considered here. The rationale for this choice is explained as follows.
The 31P isotope is the only stable isotope of phosphorus. It has a spin quantum number of
1/2 and a wide chemical shift range of about 400 ppm. This nucleus is a very convenient
NMR probe for studying molecular complexes [99,204–206], organometallics [207–210],
and mobility at interfaces [211–213]. For example, 31P NMR has been used to study the
effect of temperature and hydration on the mobility of small to bulky molecules loaded
onto mesoporous silica [214]. However, 31P NMR shielding can depend on the conforma-
tion of the molecule [215], the crystalline electric field [216], while various noncovalent
interactions can cause similar changes [217]. These disadvantages are completely absent in
the case of PTA. PTA is a rigid and relatively chemically inert molecule. In acidic solution,
PTA would be protonated at one of its nitrogen atoms. This protonation results in a 6 ppm
change in δiso(31P) [218]. In contrast, when PTA is coordinated to transition metals, its
chemical shift varies in a wide range [219]. Moreover, the value of its δiso(31P) in transition
metal organometallics depends on the trans-ligand [220,221]. Therefore, 31P NMR of PTA
can be used to study whether the symmetry of its complexes is the same in the solid and
solution phases.
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Figure 9 shows three types of transition metal complexes of PTA: M(PTA)4 (where
M = Ni, Pd, Pt, Cu+), cis-Cl2M(PTA)2 (where M = Ni, Pd, Pt) and trans-Cl2M(PTA)2
(where M = Ni, Pd, Pt). δiso(31P) of PTA in these complexes were calculated under the
wB97XD/Def2QZVP approximation [222–224] and compared to the experimental δiso(31P)
in solution [9], Table 1. For Ni(0)(PTA)4, Pd(0)(PTA)4 and Cu+(I)(PTA)4, the calculated val-
ues are very close to the experimental ones. A small spread in the calculated values reflects
the fact that the optimized structures used in these calculations were slightly asymmetric.
This flaw is not important because of the flexibility of such complexes in solution. On
the contrary, the reported experimental δiso(31P) for Pt(0)(PTA)4 cannot correspond to this
symmetric structure. The symmetry of the Cl2M(II)(PTA)2 complexes in solution depends
on the metal. For Ni, the configuration in the crystalline state was not reported. For Pd,
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the configuration in the crystalline state is cis-Cl2Pd(PTA)2 [225]. Both the cis-Cl2Pt(PTA)2
and the trans-Cl2Pt(PTA)2 configurations are possible in the crystalline state [226,227].
According to the calculations [9], the reported experimental δiso(31P) in solution correspond
to the cis-Cl2Ni(PTA)2, cis-Cl2Pd(PTA)2, and trans-Cl2Pt(PTA)2 configurations, Table 1.

Table 1. Experimental and calculated 31P NMR isotropic chemical shifts of selected transition metal
complexes of PTA.

Complex Experimental δiso(31P), ppm Calculated δiso(31P), ppm 1

PTA −104.3 [228] −104
Ni(PTA)4 −44.8 [229],−45.7 [230] −46; −46; −47; −47
Pd(PTA)4 −56.5 [229], −58.7 [230] −53; −56; −57; −57
Pt(PTA)4 −74.5 [230] −34; −39; −39; −39

[NO3]-Cu+(PTA)4 −78.2 [231] −84; −84; −84; −85
Cl2Ni(PTA)2 −1.2 [232] −

cis-Cl2Ni(PTA)2 − −13; −21
trans-Cl2Ni(PTA)2 − −36; −36

Cl2Pd(PTA)2 −21 [230], −18 [232] −
cis-Cl2Pd(PTA)2 − −13; −14

trans-Cl2Pd(PTA)2 − −37; −37
Cl2Pt(PTA)2 −51 [230], −47.5 [232] −

cis-Cl2Pt(PTA)2 − −17; −18
trans-Cl2Pt(PTA)2 − −46; −46

1 Calculated under the wB97XD/Def2QZVP approximation, σref = 308 ppm [9].

5. Water (Hydrogen Peroxide) as the Binding Unit

Water molecules like each other. Being adsorbed on a silica surface, water tends to
self-aggregate even at concentrations below the monolayer, when many other molecules
are still uniformly distributed on the surface [233–235]. In aprotic organic solvents at low
concentrations, water molecules can be in a monomeric state. In this state, the 1H NMR
chemical shift of water is less than 2 ppm [236]. At higher concentrations, water molecules
form clusters. In this state, their 1H NMR chemical shift is about 4.8 ppm. The concentration
at which water changes the state depend on the solvent and temperature [236]. The stronger
H-bonding with the solvent and the higher the temperature, the higher the concentration
at which water prefers homoclusters. At room temperature, it occurs when the water
concentration is above 10–50 mM [236]. In dimethyl sulfoxide, water presents in the
monomeric state at much higher concentrations. In this solvent, the 1H NMR chemical shift
of water is 3.3 ppm. Therefore, it is obvious that water is strongly H-bonded to solvent
molecules. These are most likely symmetric complexes in which two solvent molecules
share one water molecule. This type of complex has been observed experimentally in
organic solutions at low temperatures in the presence of an excess of pyridine [237] and in
frozen pyridine–water mixtures in porous materials [201]. Figure 10 shows the structure
of 2:1 pyridine:water and collidine:water complexes, where collidine stands for 2,4,6-
trimethylpyridine. In these complexes, the experimentally measured N···H distances are
1.82 Å for pyridine and 1.92 Å for collidine [237]. The basicity of collidine is higher than
that of pyridine. Consequently, the greater distance is the result of steric interactions
of the ortho-methyl groups in the 2:1 collidine:water complex. Indeed, in 1:n base:water
complexes, where n >> 1, the experimentally measured N···H distances are 1.69 Å for
pyridine and 1.64 Å for collidine. The strong shortening of the distances in both cases is
the result of the anticooperative interaction of H-bonds in the 2:1 base:water complex and
the cooperative interaction of H-bonds in water clusters.

Similar symmetric complexes can often be found in crystals. For example, Figure 11a
shows the structure of triphenylphosphine oxide hemihydrate. In this symmetric complex
the O . . . O distance is 2.91 Å [238]. There is another modification of triphenylphosphine
oxide hemihydrate with two different P=O··H-O-H····O=P H-bonds with the O . . . O
distances of 2.84 and 2.87 Å [239]. 31P NMR study of the crystalline triphenylphosphine
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oxide hemihydrate demonstrated that this water is mobile at least within the borders of one
structural unit [240]. Presumably, this mobility reflects a specific property of the P=O group.
This group can simultaneously form two equally strong H-bonds [241]. For example,
Figure 11b shows the structure of tricyclohexylphosphine oxide monohydrate [213]. These
two water molecules are already immobile [217]. This H-bond network is asymmetric,
with two O . . . O distances of 2.844 and two of 2.897 Å [213]. Surprisingly, water can be
replaced with hydrogen peroxide. Figure 11c shows the structure of hydrogen peroxide
tricyclohexylphosphine oxide [242]. This H-bond network is asymmetric as well, with two
O . . . O distances of 2.743 and two of 2.771 Å. In hydrogen peroxide triphenylphosphine
oxide these distances are 2.677 and 2.718 Å [243]. The decreasing distances indicate that
the total energy of hydrogen peroxide H-bond networks is higher than in the case of water.
This may be the reason that there are several other complexes of hydrogen peroxide with
phosphine oxides of the same structure. For example, in tBu3-phosphine oxide hydrogen
peroxide the O . . . O distances are 2.728 and 2.737 Å [243]. In hydrogen peroxide tris(4-
methylphenyl)(oxo)-phosphine they are 2.765 and 2.774 Å [244].
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Figure 11. H-bond network structures of triphenylphosphine oxide hemihydrate (a), tricyclo-
hexylphosphine oxide monohydrate (b), and hydrogen peroxide tricyclohexylphosphine oxide (c).

The NH2 group of anilines is another example of the binding units that can initiate
the formation of symmetric H-bonded molecular adducts [245–247].

6. Conclusions

The possibility of being something does not guarantee the ability to actually become
that. Molecular adducts, whose composition allows a symmetric structure, can actually be
symmetric, symmetric on a certain time scale, or asymmetric. Analysis of this symmetry in
a given system can be used to assess its properties and interactions with the environment.
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Only a few types of such molecular systems are considered in this review. These examples
reflect the most important aspects of symmetric molecular adducts:

(i) Steric hindrance and structural rigidity are not the only reasons why complexes can
be asymmetric in the gas phase.

(ii) At any given moment of time, the solvation shell is somewhat asymmetric.
(iii) Dynamic processes in crystalline solids can be facilitated if the initial and final states

are equivalent.
(iv) The motion of the proton in a H-bond should always be treated as quantum.

The reader may find it useful to refer to other recent publications on the interactions
of tetrahedral pnicogen and tetrel centres with Lewis bases [248], the coordination of triel
centers [249], tetraphosphido complexes [250], dinuclear metal hydride complexes [251],
crystalline peroxosolvates [252], the self-association of phosphonic acids [253], intramolec-
ular H-bond dynamics [254], and a consistent description of noncovalent interactions [255].
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231. Kirillov, A.M.; Smoleński, P.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. The First Copper Complexes Bearing the 1,3,5-Triaza-7-
phosphaadamantane (PTA) Ligand. Eur. J. Inorg. Chem. 2007, 2007, 2686–2692. [CrossRef]

232. Alyea, E.C.; Ferguson, G.; Kannan, S. Some water-soluble organometallic complexes of group 10 transition metal(II) ions with
1,3,5-triaza-7-phosphaadamantane (TPA). Syntheses, characterization and reactivity. The crystal and molecular structure of
[Ni(CN)2(TPA)3]·4.3H2O. Polyhedron 1998, 17, 2727–2732. [CrossRef]

233. Grünberg, B.; Emmler, T.; Gedat, E.; Shenderovich, I.; Findenegg, G.H.; Limbach, H.-H.; Buntkowsky, G. Hydrogen Bonding of
Water Confined in Mesoporous Silica MCM-41 and SBA-15 Studied by 1H Solid-State NMR. Chem. Eur. J. 2004, 10, 5689–5696.
[CrossRef]

234. Buntkowsky, G.; Breitzke, H.; Adamczyk, A.; Roelofs, F.; Emmler, T.; Gedat, E.; Grünberg, B.; Xu, Y.; Limbach, H.-H.;
Shenderovich, I.; et al. Structural and Dynamical Properties of Guest Molecules Confined in Mesoporous Silica Materials
Revealed by NMR. Phys. Chem. Chem. Phys. 2007, 9, 4843–4853. [CrossRef]

235. Gedat, E.; Schreiber, A.; Findenegg, G.H.; Shenderovich, I.; Limbach, H.-H.; Buntkowsky, G. Stray Field Gradient NMR Reveals
Effects of Hydrogen Bonding on Diffusion Coefficients of Pyridine in Mesoporous Silica. Magn. Reson. Chem. 2001, 39, S149–S157.
[CrossRef]

236. Masaru, N.; Chihiro, W. Monomeric and Cluster States of Water Molecules in Organic Solvent. Chem. Lett. 1992, 21, 809–812.
[CrossRef]

237. Sharif, S.; Shenderovich, I.G.; González, L.; Denisov, G.S.; Silverman, D.N.; Limbach, H.-H. NMR and Ab initio Studies of Small
Complexes Formed between Water and Pyridine Derivatives in Solid and Liquid Phase. J. Phys. Chem. A 2007, 111, 6084–6093.
[CrossRef]

238. Baures, P.W. Monoclinic Triphenylphosphine Oxide Hemihydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1991, 47,
2715–2716. [CrossRef]

239. Ng, S.W. A Second Monoclinic Modification of Triphenylphosphine Oxide Hemihydrate. Acta Crystallogr. Sect. E Struct. Rep.
Online 2009, 65, o1431. [CrossRef]

240. Begimova, G.U.; Tupikina, E.Y.; Yu, V.K.; Denisov, G.S.; Bodensteiner, M.; Shenderovich, I.G. Effect of Hydrogen Bonding to Water
on the 31P Chemical Shift Tensor of Phenyl- and Trialkylphosphine Oxides and a-Amino Phosphonates. J. Phys. Chem. C 2016,
120, 8717–8729. [CrossRef]

241. Tupikina, E.Y.; Bodensteiner, M.; Tolstoy, P.M.; Denisov, G.S.; Shenderovich, I.G. P=O Moiety as an Ambidextrous Hydrogen
Bond Acceptor. J. Phys. Chem. C 2018, 122, 1711–1720. [CrossRef]

242. Hilliard, C.R.; Bhuvanesh, N.; Gladysz, J.A.; Blümel, J. Synthesis, purification, and characterization of phosphine oxides and their
hydrogen peroxide adducts. Dalton Trans. 2012, 41, 1742–1754. [CrossRef]

243. Ahn, S.H.; Cluff, K.J.; Bhuvanesh, N.; Blümel, J. Hydrogen Peroxide and Di(hydroperoxy)propane Adducts of Phosphine Oxides
as Stoichiometric and Soluble Oxidizing Agents. Angew. Chem. Int. Ed. 2015, 54, 13341–13345. [CrossRef]

244. Arp, F.F.; Bhuvanesh, N.; Blümel, J. Hydrogen peroxide adducts of triarylphosphine oxides. Dalton Trans. 2019, 48, 14312–14325.
[CrossRef]

245. Forlani, L. Hydrogen bonds of anilines. In The Chemistry Anilines; Rappoport, Z., Ed.; The Atrium, Southern Gate, West Sussex
PO19 8SQ, Part 1; John Wiley & Sons Ltd.: Chichester, UK, 2007; pp. 407–454.

246. Szatyłowicz, H.; Krygowski, T.M.; Hobza, P. How the Shape of the NH2 Group Depends on the Substituent Effect and H-Bond
Formation in Derivatives of Aniline. J. Phys. Chem. A 2007, 111, 170–175. [CrossRef]

247. Borisenko, V.E.; Filarovski, A.I. The electrooptical parameters of aniline and its halogen derivatives in hydrogen bonded
complexes. J. Mol. Struct. 1989, 196, 353–370. [CrossRef]

248. Grabowski, S.J. Pnicogen and tetrel bonds—tetrahedral Lewis acid centres. Struct. Chem. 2019, 30, 1141–1152. [CrossRef]
249. Grabowski, S.J. Triel bond and coordination of triel centres—Comparison with hydrogen bond interaction. Coord. Chem. Rev.

2020, 407, 213171. [CrossRef]
250. Pelties, S.; Maier, T.; Herrmann, D.; de Bruin, B.; Rebreyend, C.; Gärtner, S.; Shenderovich, I.G.; Wolf, R. Selective P4 Activation by

a Highly Reduced Cobaltate: Synthesis of Dicobalt Tetraphosphido Complexes. Chem. Eur. J. 2017, 23, 6094–6102. [CrossRef]
251. Maier, T.M.; Sandl, S.; Shenderovich, I.G.; von Wangelin, A.J.; Weigand, J.J.; Wolf, R. Amine-Borane Dehydrogenation and Transfer

Hydrogenation Catalyzed by alpha-Diimine Cobaltates. Chem. Eur. J. 2019, 25, 238–245. [CrossRef]
252. Medvedev, A.G.; Churakov, A.V.; Prikhodchenko, P.V.; Lev, O.; Vener, M.V. Crystalline Peroxosolvates: Nature of the Coformer,

Hydrogen-Bonded Networks and Clusters, Intermolecular Interactions. Molecules 2021, 26, 26. [CrossRef] [PubMed]
253. Giba, I.S.; Tolstoy, P.M. Self-Assembly of Hydrogen-Bonded Cage Tetramers of Phosphonic Acid. Symmetry 2021, 13, 258.

[CrossRef]

http://doi.org/10.1021/ic981243j
http://doi.org/10.1021/ic970238x
http://doi.org/10.1002/ejic.200601152
http://doi.org/10.1016/S0277-5387(98)00055-2
http://doi.org/10.1002/chem.200400351
http://doi.org/10.1039/b707322d
http://doi.org/10.1002/mrc.932
http://doi.org/10.1246/cl.1992.809
http://doi.org/10.1021/jp071725t
http://doi.org/10.1107/S0108270191004018
http://doi.org/10.1107/S1600536809019254
http://doi.org/10.1021/acs.jpcc.6b01140
http://doi.org/10.1021/acs.jpcc.7b11299
http://doi.org/10.1039/C1DT11863C
http://doi.org/10.1002/anie.201505291
http://doi.org/10.1039/C9DT03070K
http://doi.org/10.1021/jp065336v
http://doi.org/10.1016/0022-2860(89)85031-8
http://doi.org/10.1007/s11224-019-01358-1
http://doi.org/10.1016/j.ccr.2019.213171
http://doi.org/10.1002/chem.201603296
http://doi.org/10.1002/chem.201804811
http://doi.org/10.3390/molecules26010026
http://www.ncbi.nlm.nih.gov/pubmed/33374602
http://doi.org/10.3390/sym13020258


Symmetry 2021, 13, 756 23 of 23

254. Kizior, B.; Panek, J.J.; Szyja, B.M.; Jezierska, A. Structure-Property Relationship in Selected Naphtho- and Anthra-Quinone
Derivatives on the Basis of Density Functional Theory and Car–Parrinello Molecular Dynamics. Symmetry 2021, 13, 564. [CrossRef]

255. Alkorta, I.; Elguero, J.; Frontera, A. Not Only Hydrogen Bonds: Other Noncovalent Interactions. Crystals 2020, 10, 180. [CrossRef]

http://doi.org/10.3390/sym13040564
http://doi.org/10.3390/cryst10030180

	Introduction 
	Hydrogen (Proton) as the Binding Unit 
	Intramolecular H-Bonds 
	Proton-Bound Homodimers 

	Halogen (Anion) as the Binding Unit 
	Metal (Cation) as the Binding Unit 
	Water (Hydrogen Peroxide) as the Binding Unit 
	Conclusions 
	References

