

Phosphaorganische Gerüste

Zitierweise: Angew. Chem. Int. Ed. **2021**, 60, 6435–6440 Internationale Ausgabe: doi.org/10.1002/anie.202015680 Deutsche Ausgabe: doi.org/10.1002/ange.202015680

Zugang zu $(tBuCP)_n$ -Gerüsten (n = 2, 4) durch P-C-Bindungsspaltung von Di-*tert*-butyldiphosphatetrahedran

Gabriele Hierlmeier und Robert Wolf*

In memoriam François Mathey

Abstract: Die ersten gemischten Phosphatetrahedrane wurden erst vor kurzem synthetisiert, und ihre Reaktivität ist weitgehend unbekannt. Hier berichten wir über die Reaktivität von Di-tert-butyldiphosphatetrahedran (1), dem Dimer von tert-Butylphosphaalkin. Mit N-heterocyclischen Carbenkomplexen von Nickel(I) und Nickel(0) wird die selektive Aktivierung des (tBuCP)₂-Tetraeders beobachtet. Hieraus resultieren neue Verbindungen mit vielfältigen (tBuCP)_n-Gerüsten (n=2, 4). Die Umsetzung eines der Komplexe mit CO-Gas führt zum Ladderan (tBuCP)₄. Des Weiteren kann 1 durch Eliminierung von Di-tert-butylacetylen in der Koordinationssphäre von Nickel als Quelle für P₂-Einheiten genutzt werden.

etrahedrane faszinieren Chemiker schon seit langer Zeit aufgrund ihrer speziellen Struktur und typischerweise hohen Reaktivität.^[1] Obwohl das erste tetraedrische Molekül, weißer Phosphor (P₄), bereits 1669 entdeckt wurde, konnte dessen tetraedrische Struktur erst Anfang des 20. Jahrhunderts bewiesen werden.^[2] P₄ wird jährlich im Megatonnenmaßstab produziert und dient als grundlegender Baustein für die Synthese von Organophosphorverbindungen.^[3] Das schwerere Homologe As₄ und die gemischte Interpniktogenverbindung AsP₃ sind ebenfalls synthetisch zugänglich.^[4] Entsprechend der Schrägbeziehung von Kohlenstoff und Phosphor sind auch rein kohlenstoffbasierte Tetrahedrane wohlbekannt.^[5] Tatsächlich war die Synthese von (tBuC)₄ im Jahr 1978 ein Meilenstein in der organischen Synthesechemie.^[5]

Im Gegensatz dazu wurden die ersten gemischten C/P-Tetrahedrane erst letztes Jahr beschrieben. Wir konnten zeigen, dass das Di-*tert*-butyldiphosphatetrahedran (tBuCP)₂ (**1**) als "Hybrid" von (tBuC)₄ und P₄ durch eine einfache nickelkatalysierte Dimerisierungsreaktion von *tert*-Butylphosphaalkin, tBuCP, hergestellt werden kann.^[6] Kurz nach unserem Bericht wurde die Synthese des verwandten Tri-*tert*-

[*]	G. Hierlmeier, Prof. Dr. R. Wolf
	Universität Regensburg, Institut für Anorganische Chemie
	93040 Regensburg (Deutschland)
	E-Mail: robert.wolf@ur.de

Hintergrundinformationen und die Identifikationsnummer (ORCID)
 eines Autors sind unter:

https://doi.org/10.1002/ange.202015680 zu finden.

© 2021 Die Autoren. Angewandte Chemie veröffentlicht von Wiley-VCH GmbH. Dieser Open Access Beitrag steht unter den Bedingungen der Creative Commons Attribution Non-Commercial License, die eine Nutzung, Verbreitung und Vervielfältigung in allen Medien gestattet, sofern der ursprüngliche Beitrag ordnungsgemäß zitiert und nicht für kommerzielle Zwecke genutzt wird. butylphosphatetrahedrans (tBuC)₃P von Cummins und Mitarbeitern publiziert.^[7] In Anbetracht der ähnlichen Molekülstrukturen und der Isolobalanalogie zwischen 1 und P₄ erschien im Folgenden ein Vergleich der Reaktivität der beiden Moleküle vielversprechend.^[5] Einerseits ist die Aktivierung des P4-Tetraeders durch Hauptgruppen- und Übergangsmetallkomplexe ein möglicher Weg, dessen Reaktivität zu kontrollieren und auszunutzen, andererseits ermöglicht sie den Zugang zu neuen, faszinierenden Polyphosphorverbindungen.^[8] Wir haben gezeigt, dass mononuklare Cyclopentadienylnickel(I)-Komplexe [CpNi(NHC)] [NHC = N-heterocyclisches Carben IMes (1,3-Bis(2,4,6-trimethylphenyl)imidazolin-2-yliden) bzw. IPr (1,3-Bis(2,6-diisopropylphenyl)imidazolin-2-yliden)] selektiv eine P-P-Bindung in P₄ spalten, wobei μ - η^1 : η^1 -verbrückende P_4^{2-} -Liganden mit einer "Schmetterlingsstruktur" entstehen (Abbildung 1, Mitte links).^[9] Vor kurzem beobachteten wir weiterhin, dass die Aktivierung von P4 mit Nickel(0)-NHC-Komplexen zu ungewöhnlichen di- und trinuklearen Clusterverbindungen

Abbildung 1. (Gemischte) Gruppe-14/15-Tetrahedrane und Reaktivität von P_4 mit NHC-stabilisierten Ni^L-Metalloradikalen und Ni⁰-Komplexen.^[9,10]

Angew. Chem. 2021, 133, 6507-6512

O 2021 Die Autoren. Angewandte Chemie veröffentlicht von Wiley-VCH GmbH

führt, wie z. B. dem *closo*-Cluster $[(IPr)_3Ni_3P_8]$ in Abbildung 1 (unten links).^[10]

Hier berichten wir über die Reaktivität des Diphosphatetrahedrans **1** mit den gleichen NHC-Nickel(I)- und NHC-Nickel(0)-Komplexen. Dies führte zur Synthese oligonuklearer Nickelkomplexe mit einer Vielzahl an $(tBuCP)_n$ -Liganden (n = 2, 4) in ungewöhnlichen Koordinationsmodi, welche bisher auf anderem Weg nicht zugänglich sind. Weiterhin diskutieren wir die Folgechemie einer dieser Verbindungen. Die Ergebnisse liefern einen wertvollen ersten Einblick in die Reaktivität von **1** gegenüber Übergangsmetallverbindungen und zeigen, dass sich das Reaktionsverhalten sowohl deutlich von P₄ als auch vom Monomer *t*BuCP unterscheidet.

Unsere Untersuchung begann mit der Umsetzung von 1 mit dem Nickel(I)-Radikal [CpNi(IPr)], von dem bereits bekannt war, dass es eine P-P-Bindung von P₄ spaltet (siehe Abbildung 1).^[9] Die Reaktion von zwei Äquivalenten [CpNi-(IPr)] mit 1 in THF führte zu einer sofortigen Rotfärbung der Lösung bei Raumtemperatur (Schema 1). Das ¹H-NMR-Spektrum der Reaktionslösung zeigte den vollständigen Verbrauch des paramagnetischen Startmaterials und Freisetzung von IPr an. Im ³¹P{¹H}-NMR-Spektrum wurde eine Singulett-Resonanz bei 93.0 ppm beobachtet. Kristallisation der Verbindung aus Toluol ermöglichte die Durchführung einer Einkristallröntgenstrukturanalyse. Diese offenbarte die Bildung des tetranuklearen Komplexes $[(CpNi)_2(tBu_2C_2P_2)]_2$ (2, Abbildung 2, links) mit zwei 1,2-Diphosphacyclobuten-1,2-diid-Liganden, welche von vier (CpNi)-Einheiten in einer dem Realgar ähnlichen Struktur koordiniert werden. Bemerkenswerterweise führt die Reaktion mit [CpNi(IPr)] unter P-C-Bindungsspaltung zu einem metallierten 1,2-Diphosphacyclobuten anstatt durch P-P-Bindungsspaltung zum isomeren (bisher hypothetischen) "Schmetterlingskomplex" [{CpNi(IPr)}₂(μ - $\kappa^2 P$ - $tBu_2C_2P_2$)], wie er mit dem isoelektronischen P4-Molekül gebildet wird (siehe Abbildung 1).^[9] Im Einklang damit zeigen DFT-Rechnungen der hypothetischen Reaktion von 1 mit zwei Äquivalenten eines Radikals (Methyl-Radikal oder [CpNi(IPh)], IPh=1,3-Di-

Schema 1. Reaktionen von $[Cp^RNi(IPr)]$ (R=H; Me, 4-Et-C₆H₄) mit (tBuCP)₂ (1).

phenylimidazolin-2-yliden), dass die Cyclobutenstruktur gegenüber der "Schmetterlingsverbindung" thermodynamisch bevorzugt ist (siehe Abbildung S50 und S51 in den Hintergrundinformationen).

Strukturell charakterisierte 1,2-Diphosphacyclobutadien-Übergangsmetallkomplexe sind selten, und in den bekannten Beispielen koordiniert der Ligand üblicherweise über das π -System.^[11] Die P1-P2-Bindungslänge in **2** (2.2244(7) Å) liegt im Bereich einer P-P-Einfachbindung, während die C-C-Bindungslänge von 1.360(3) Å für eine C=C-Doppelbindung spricht.^[12] Die Strukturparameter sind im Einklang mit einem dianionischen ($tBu_2C_2P_2$)²⁻-Liganden, welcher in einem $\mu^4, \eta^2: \eta^2$ -Modus durch die freien Elektronenpaare der P-Atome koordiniert. Dieser Koordinationmodus war bisher für diesen Liganden unbekannt.

Die Verbindung **2** lässt sich als dunkelroter, kristalliner Feststoff in 56 % Ausbeute isolieren. Das ¹H-NMR-Spektrum zeigt ein Signal für die *t*Bu-Gruppen ($\delta = 1.32$ ppm) und eine

Abbildung 2. Molekülstrukturen von 2 (links), 3a (Mitte) und 3b (rechts) im Festkörper.^[19] Die Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit von 50%. Bei 2 ist nur ein Molekül der asymmetrischen Einheit gezeigt. Wasserstoffatome, Lösungsmittelmoleküle, Fehlordnung in den Arylringen und die *p*-Et-Substituenten von 3b sind nicht gezeigt.

6508 www.angewandte.de

O 2021 Die Autoren. Angewandte Chemie veröffentlicht von Wiley-VCH GmbH

Resonanz für den Cyclopentadienylliganden ($\delta = 5.17$ ppm). Im ¹³C{¹H}-NMR-Spektrum wurden vier Resonanzen beobachtet, was im Einklang mit dem Vorliegen eines Cp- und eines ($tBu_2C_2P_2$)²⁻-Liganden steht. Das UV/Vis-Absorptionsspektrum von **2** zeigt zwei Banden bei 400 und 520 nm, wobei Letztere für die rote Farbe der Verbindung verantwortlich ist.

Im Anschluss wurde die Reaktivität von Nickelradikalen mit sterisch anspruchsvolleren Pentamethylcyclopentadienyl-(Cp*) und Pentaarylcyclopentadienylliganden (Cp^{BIG}) untersucht (Schema 1).^[13] Ähnlich wie bei der vorherigen Reaktion wurden bei der 1:2-Stöchiometrie tiefrote Lösungen erhalten. Allerdings zeigten die ¹H-NMR-Spektren der Reaktionslösungen die breiten Resonanzen des nicht-umgesetzten Startmaterials. Diese Resonanzen verschwanden nach Zugabe eines weiteren Äquivalents **1**.

Eine Einkristallröntgenstrukturanalyse bestätigte, dass bei den Reaktionen dinukleare Verbindungen [(Cp^RNi)₂- $(tBu_4C_4P_4)$] [Cp^R = Cp^{*} (**3a**), Cp^{BIG} (**3b**)] gebildet werden, in denen zwei Moleküle 1 formal durch radikalische Kupplung eine tBu₄C₄P₄-Einheit bilden (Schema 1, unten). Bemerkenswerterweise bilden sich die Verbindungen 2 und 3 nicht durch Reaktion der Nickelkomplexe mit dem bekannten Ladderan-artigen Phosphaalkintetramer (6), welches das bekannte Dimerisierungsprodukt von 1 ist.^[6,14] Diese Tatsache verdeutlicht den Wert von 1 als Synthesebaustein für neue P/C-Ligandgerüste. Die Verbindungen 3a und 3b wurden in 33% (3a) und 44% (3b) Ausbeute als dunkelrote, kristalline Feststoffe isoliert. Die Molekülstruktur besteht in beiden Fällen aus einer dreistufigen Leiter aus zwei Nickel- und vier Phosphoratomen, welche mit zwei viergliedrigen P₂C₂-Heterocyclen verbunden ist. Die P-P-Bindungslängen liegen im Bereich von 2.1717(9) bis 2.2252(5) Å, wobei die P2-P3-Bindung, welche die beiden P2C2-Ringe verknüpft, den kleinsten P-P-Abstand aufweist.

Die ¹H-NMR-Spektren von **3a** und **3b** zeigten die erwarteten Signalsets für die Cyclopentadienylliganden und zwei Singuletts für *t*Bu-Gruppen. Die ³¹P{¹H}-NMR-Spektren beider Verbindungen zeigen jeweils zwei pseudo-Triplettresonanzen. Im Fall von **3a** treten diese Signale bei –61.4 und 31.3 ppm auf (mit einer Kopplungskonstante von 44.2 Hz im Fall von **3a**, ähnliche Werte wurden für **3b** erhalten, siehe Hintergrundinformationen). Die Signalform erklärt sich vermutlich aus dem Vorliegen eines AA'BB'-Spinsystems mit zwei ähnlichen ¹J_{PP}-Kopplungskonstanten und kleinen ²J_P-Kopplungen. In der Tat reproduzieren DFT-Rechnungen für **3a** auf dem TPSS-pcSseg-2-Niveau das Vorliegen von zwei kleinen Kopplungskonstanten in der Größenordnung von 28 und 47 Hz. Die Absorptionsspektren von **3a** und **3b** zeigen Banden bei 420 (**3a**) und 520 nm (**3b**).

In Anbetracht dieser Erkenntnisse über die Reaktivität von 1 mit Metalloradikalen folgerten wir, dass **3a** und **3b** Intermediate in der Bildung von Realgar-artigen Verbindungen wie **2** sein könnten. Um diese Hypothese zu überprüfen, wurde die Reaktion von **1** mit nur 1.5 Äquivalenten [CpNi(IPr)] untersucht. Im ³¹P{¹H}-NMR-Spektrum wurden zwei pseudo-Triplettresonanzen bei -72.5 und 22.1 ppm mit einer Kopplungskonstante von 45.5 Hz beobachtet (siehe Abbildung S25 in den Hintergrundinformationen). Außerdem wurden die Signale von 2 detektiert. Diese Daten stimmen gut mit den spektroskopischen Daten von 3a und 3b überein, was somit auf die Bildung von $[(CpNi)_2(tBu_4C_4P_4)_2]$ (3c) hindeutet. Nichtsdestotrotz scheiterten alle Versuche, diese Verbindung zu kristallisieren, stattdessen wurden Kristalle von 2 erhalten. Auch beim Erhitzen auf 70°C konnten wir keine Reaktion zwischen 3a und einem weiteren Äquivalent von [CpNi(IPr)] beobachten. Dies ist vermutlich auf die starke sterische Abschirmung der zentralen P-P-Bindung durch den Cp*-Liganden zurückzuführen.

Als nächstes untersuchten wir die Reaktionen von 1 mit den Ni⁰-Komplexen [(IMes)₂Ni] und [(IPr)Ni(η^{6} -Toluol)] mit dem Ziel, weitere oligonukleare Nickelkomplexe herzustellen.^[15] Analoge Reaktionen dieser Komplexe mit weißem Phoshor führen zu Wade-Clustern.^[10] Die Reaktion von 1 mit [(IMes)₂Ni] bei -80°C ergibt eine braune Reaktionslösung. Eine Analyse mittels ³¹P{¹H}-NMR-Spektroskopie zeigt eine selektive Reaktion und zwei pseudo-Triplettresonanzen bei -9.9 ppm und 299.1 ppm (J = 40.3 Hz), welche denen des $(tBu_4C_4P_4)$ -Gerüsts in **3a/b** ähneln. Eine Einkristallröntgenstrukturanalyse bestätigte die Bildung von [{(IMes)Ni}2-(tBu₄C₄P₄)] (4), einem dinuklearen Komplex mit einer Ni-Ni-Bindung und einer ($tBu_4C_4P_4$)-Einheit (Abbildung 3). Die P-P-Bindungen innerhalb des Diphosphacyclobutenrings [P1-P2A 2.6304(7) und P3A-P4 2.6702(7) Å] sind länger als bei 3a/b, während die exocyclische P2A-P3A-Bindungslänge (2.2445(7) Å) der in **3a/b** ähnelt. Der Ni1-Ni2-Abstand von 2.4293(4) Å ist vergleichbar mit den Werten anderer Nickel-(I)-Dimere, z. B. für [{(IPr)Ni}₂(μ -Cp)(μ -Cl)] (2.4015(3) Å).^[16]

Die Bindungssituation des vereinfachten Modellkomplexes **4'** [{(IPh)Ni}₂($P_4C_4tBu_4$)] wurde mithilfe von intrinsischen Bindungsorbitalen (IBO) auf dem BP86/def2-TZVP-Niveau

Abbildung 3. Dimerisierung von 1 in der Koordinationssphäre von [(IMes)₂Ni] (oben) und Molekülstruktur von 4 im Festkörper (unten).^[19] Die Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit von 50%. Wasserstoffatome und Lösungsmittelmoleküle und eine fehlgeordnete Komponente (P2B und P3B) sind nicht gezeigt.

berechnet. Zwei dieser Orbitale weisen einen Mehrzentrencharakter auf (Ni1/P1/P2a und Ni2/P3A/P4; siehe Abbildung S52 in den Hintergrundinformationen für eine Abbildung der IBOs), welcher an die trinuklearen Wade-Cluster aus den analogen Reaktionen mit P4 erinnert.^[10] Darüber hinaus wurden sehr geringe Mayer-Bindungsindizes für die P-P-Bindungen berechnet (< 0.1 für P1-P2A und 0.11 für P3A-P4), was auf eine schwache Wechselwirkung hindeutet. Der niedrige Mayer-Bindungsindex von 0.31 für die Ni1-Ni2-Bindung spricht ebenfalls gegen das Vorliegen einer starken Interaktion. Verbindung 4 konnte in 28% Ausbeute als kristalline Verbindung isoliert werden. Die ¹H- und ¹³C[¹H]-NMR-Spektren stimmen mit der kristallographisch bestimmten Molekülstruktur überein und zeigen die erwarteten Signalsets für den IMes-Liganden und die (*t*Bu₄C₄P₄)-Einheit. Das Auftreten von nur zwei Signalen im 31P{1H}-NMR-Spektrum steht im Gegensatz zur asymmetrischen Festkörperstruktur von 4. Die höhere Symmetrie im NMR-Spektrum ist vermutlich auf einen fluxionalen Prozess zurückzuführen, der zu einer Mittelung der Signale von P1/P4 und P2/P3 führt. Eine Dekoaleszenz der Signale wurde allerdings auch beim Abkühlen auf 193 K nicht beobachtet. Dies lässt vermuten, dass der postulierte fluktionale Prozess eine niedrigere Aktivierungsbarriere besitzt (siehe Hintergrundinformationen).

Bewahrt man Lösungen von **4** in C_6D_6 über Nacht bei Raumtemperatur auf, so lässt sich in den ¹H- und ³¹P{¹H}-NMR-Spektren eine partielle Umwandlung von **4** in eine neue Verbindung beobachten (Schema 2, oben). Diese neue Spezies bildet sich selektiv beim Erwärmen einer Reaktionsmischung von **1** und [(IMes)₂Ni] für drei Stunden bei 60 °C. Das ³¹P{¹H}-NMR-Spektrum zeigt zwei Multiplettresonanzen bei chemischen Verschiebungen von 115.8 und 209.8 ppm (siehe Hintergrundinformationen für eine Simulation). Aus gesättigter *n*-Hexanlösung wurden Einkristalle erhalten, die röntgenographisch untersucht wurden. Die hierbei erhaltene Molekülstruktur zeigt die Bildung von [(IMesNi)₂(P₂)-(tBu₂C₂P₂)]-IMes (**5**·IMes). Diese erfolgt unter Eliminierung von Di-*tert*-butylacetylen, welches anhand seines ¹³C{¹H}-

Schema 2. Reaktivität von **4** beim Erwärmen und bei Zugabe von CO und Hexachlorethan.

6510 www.angewandte.de

NMR-Signals bei einer chemischen Verschiebung von 87.5 ppm identifiziert wurde. Ein ähnliches Beispiel für die Eliminierung von tBuC=CtBu aus einem Metallkomplex wurde kürzlich von unserer Gruppe mit einem Ruthenium-komplex beschrieben.^[17] Allerdings und im Gegensatz zu diesem Beispiel, in dem das Alkin als Ligand in der Koordinationssphäre des Rutheniums verbleibt, wird Di*-tert-*butylacetylen im hier beschriebenen Fall vollständig freigesetzt. Diese Tatsache veranschaulicht das Potential von **1** und dessen Koordinationsverbindungen als Quelle für P₂-Einheiten.

Dunkelbraune Kristalle von 5 wurden in 50% Ausbeute ausgehend von [(IMes)₂Ni] und 1 isoliert. Die Verbindung cokristallisiert zunächst mit einem Äquivalent IMes (als 5-IMes), das anschließend durch Umkristallisation aus Toluol/ n-Hexan entfernt werden kann. Die Molekülstruktur von 5 im Festkörper zeigt eine hantelförmige P2-Einheit, die als Brückenligand im μ - η^2 : η^2 -Modus an die Nickelatome koordiniert ist, und einen auf ähnliche Weise μ - η^2 : η^2 -koordinierten $(tBu_2C_2P_2)^{2-}$ -Liganden. Die P1-P2-Bindung dieses Liganden (2.4514(4) Å) ist wesentlich länger als die in der Struktur von 2 (2.2244(7) Å). Die P3-P4-Bindungslänge im P₂-Liganden (2.0294(5) Å) ist vergleichbar mit der in anderen Komplexen mit einem Ni₂P₂-Gerüst, wie z.B. [{(IMes)Ni(CO)}₂(μ - η^2 : η^2 - P_2] (2.076(2) Å).^[18] Das ³¹P{¹H}-NMR-Spektrum der isolierten Verbindung 5 ist identisch zu dem oben beschriebenen Komplex, der durch Thermolyse von **4** erhalten wird. Die ¹H-NMR- und ¹³C¹H}-NMR-Spektren sind im Einklang mit der kristallographisch bestimmten Molekülstruktur von 5.

Um eine mögliche Funktionalisierung und Freisetzung des (tBuCP)₄-Gerüsts zu untersuchen, wurden weitere Reaktivitätsstudien mit dem Komplex 4 durchgeführt. Die Reaktion von 4 mit Kohlenmonoxid (1 bar) in C₆D₆ führt zu einem sofortigen Farbumschlag der Lösung von Braun nach Blassbeige. Die Bildung von [(IMes)Ni(CO)₃] und dem literaturbekannten Phosphaalkintetramer $(tBuCP)_4$ (6, Schema 2) wurde durch ¹H- und ³¹P{¹H}-NMR-Spektroskopie bestätigt (die Spektren sind in den Hintergrundinformationen abgebildet).^[14] Weiterhin führt die Reaktion von 4 mit Hexachlorethan zu 6 und dem chlorierten inversen Sandwichkomplex [{(IMes)NiCl}₂(μ -tBu₂C₂P₂)] (7), der durch eine Einkristallröntgenstrukturanalyse charakterisiert wurde (Abbildung 4). Die Molekülstruktur von 7 weist einen 1,2-Diphosphacyclobutadienliganden in einem ungewöhnlichen $\mu,\eta^4:\eta^4$ -Koordinationsmodus auf (P1-P2 2.2768(6) Å und C1-C2 1.437(3) Å). Leider konnte 7 nicht vom Nebenprodukt $[(IMes)NiCl(\mu-Cl)]_2$ abgetrennt werden, da beide Verbindungen sehr ähnliche Löslichkeiten aufweisen. Nichtsdestotrotz konnten wir [(IMes)NiCl(µ-Cl)]₂ aus der Reaktionsmischung in Form von violetten Blöcken kristallisieren (siehe Hintergrundinformationen).

Um den Einfluss des sterischen Anspruchs des NHC-Liganden zu untersuchen, wurde der Komplex [(IPr)₂Ni] des sterisch anspruchsvollen Carbens IPr mit einem Äquivalent 1 umgesetzt (Abbildung 5). Allerdings zeigten die ³¹P{¹H}-NMR-Spektren, dass sich im Gegensatz zur Reaktion von [(IMes)₂Ni] ein anderes Produkt, das mehrere Multiplettresonanzen aufweist, bildete (siehe unten). Ein ähnliches Spektrum wurde bei der Reaktion von [(IPr)Ni(η^6 -Toluol)]

Abbildung 4. Molekülstrukturen von 5 und 7 im Festkörper.^[19] Die Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit von 50%. Wasserstoffatome und ein cokristallisiertes IMes-Molekül in der Struktur von 5 sind nicht gezeigt.

Abbildung 5. Bildung des Ladderankomplexes **8** (oben) und Molekülstruktur von **8** im Festkörper (unten).^[19] Die Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit von 50%. Wasserstoffatome und eine fehlgeordnete Komponente (P1B-4B, C1B-4B) sind nicht gezeigt.

mit **1** erhalten (siehe Hintergrundinformationen). Die Einkristallröntgenstrukturanalyse an einem aus Toluol erhaltenen Kristall ergab die Molekülstruktur von [(IPr)Ni-($tBu_4C_4P_4$)] (**8**), einem mononuklearen Komplex des Phosphaalkintetramers **6** (Abbildung 5).^[14] Die Chemie des Ladderan-artigen Phosphaalkintetramers **6** ist kaum erforscht, und unseres Wissens nach ist **8** das erste Beispiel einer Koordinationsverbindung dieses Tetraphosphaladderans. Die Verbindung **8** bildet sich auch bei der direkten Reaktion von [(IPr)Ni(η^6 -Toluol)] mit **6** und lässt sich auf diesem Weg als dunkelroter Feststoff in 35% Ausbeute isolieren. Da die Bildung von **8** aus [(IPr)₂Ni] und **1** in Lösungen (< 5 Minuten) wesentlich schneller abläuft als die als Hintergrundreaktion ablaufende Dimerisierung von **1**, wird das koordinierte $(tBuCP)_4$ vermutlich hauptsächlich durch Dimerisierung von 1 am Nickelatom gebildet und nicht durch die Dimerisierung von freiem 1.

In der Molekülstruktur von **8** koordiniert der (*t*BuCP)₄-Ligand mit zwei freien Elektronenpaaren benachbarter P-Atome an ein (IPr)Ni-Fragment. Dadurch ist die P1A-P2A-Bindung im Vergleich zur P3A-P4A-Bindung (2.2020(8) Å, vgl. freies **6** 2.219(1) und 2.236(1) Å) deutlich elongiert (2.5821(7) Å).^[14] Das ³¹P{¹H}-NMR-Spektrum von **8** weist ein AA'XX'-Spinsystem mit chemischen Verschiebungen von -42.4 ppm und 102.1 ppm auf. Das hochfeldverschobene Signal ist bei Raumtemperatur verbreitert und konnte in temperaturabhängigen ³¹P{¹H}-NMR-Spektren bei -20 °C aufgelöst werden (siehe Hintergrundinformationen). Die ¹Hund ¹³C{¹H}-NMR-Spektren von **8** sind im Einklang mit der Molekülstruktur im Festkörper.

Zusammenfassend führen Reaktionen von Di-tert-butyldiphosphatetrahedran (1) mit Ni¹- und Ni⁰-NHC-Komplexen zu Koordinationsverbindungen mit ungewöhnlichen $(tBuCP)_n$ -Gerüsten (n = 2, 4). Ein Merkmal dieser Reaktionen ist die mehrfach beobachtete Dimerisierung von 1 am Nickelatom. Die Eliminierung von Di-tert-butylacetylen unter Bildung von Komplex 5 stimuliert weitere Untersuchungen zur Verwendung von 1 als Quelle für P₂-Fragmente. Interessanterweise können die Verbindungen 2-4 und 8 nicht aus den Reaktionen der Nickelkomplexe mit tBuCP erhalten werden. Außerdem zeigt der Vergleich mit den Reaktionen derselben Komplexe mit P4 einen deutlichen Unterschied der Reaktivität von 1 zu P4. Diese Beobachtungen eröffnen vielversprechende Perspektiven für die Verwendung von 1 und verwandten Phosphatetrahedranen als Quellen für bisher unzugängliche metallorganische Phosphorverbindungen. Weitere Reaktivitätsstudien von 1 sind aktuell im Gang.

Danksagung

Wir danken dem Fonds der Chemischen Industrie (Kekulé-Stipendium für G.H.) und dem Europäischem Forschungsrat (CoG 772299) für finanzielle Unterstützung. Weiterhin danken wir Daniel Scott und Sebastian Bestgen für hilfreiche Kommentare zum Manuskript. Open Access Veröffentlichung ermöglicht und organisiert durch Projekt DEAL.

Interessenkonflikt

Die Autoren erklären, dass keine Interessenkonflikte vorliegen.

Stichwörter: Bindungsaktivierung · Nickel · Phosphaalkinoligomere · Phosphatetrahedrane · Phosphor

- G. Maier, Angew. Chem. Int. Ed. Engl. 1988, 27, 309–332; Angew. Chem. 1988, 100, 317–341.
- [2] O. Reinmuth, J. Chem. Educ. 1928, 5, 1473.
- [3] D. E. C. Corbridge, *Phosphorus 2000. Chemistry, Biochemistry and Technology*, Elvesier, Amsterdam, 2000.

- [4] a) B. M. Cossairt, M.-C. Diawara, C. C. Cummins, *Science* 2009, 323, 602; b) M. Seidl, G. Balázs, M. Scheer, *Chem. Rev.* 2019, 119, 8406–8434.
- [5] A. R. Jupp, J. C. Slootweg, Angew. Chem. Int. Ed. 2020, 59, 10698–10700; Angew. Chem. 2020, 132, 10786–10788.
- [6] G. Hierlmeier, P. Coburger, M. Bodensteiner, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 16918–16922; Angew. Chem. 2019, 131, 17074–17078.
- [7] M.-L. Y. Riu, R. L. Jones, W. J. Transue, P. Müller, C. C. Cummins, *Sci. Adv.* **2020**, *6*, eaaz3168.
- [8] a) B. M. Cossairt, N. A. Piro, C. C. Cummins, *Chem. Rev.* 2010, *110*, 4164–4177; b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, *Chem. Rev.* 2010, *110*, 4178–4235; c) M. Scheer, G. Balázs, A. Seitz, *Chem. Rev.* 2010, *110*, 4236–4256.
- [9] S. Pelties, D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, *Chem. Commun.* 2014, 50, 7014–7016.
- [10] G. Hierlmeier, P. Coburger, N. P. van Leest, B. de Bruin, R. Wolf, Angew. Chem. Int. Ed. 2020, 59, 14148–14153; Angew. Chem. 2020, 132, 14252–14257.
- [11] a) A. Chirila, R. Wolf, J. C. Slootweg, K. Lammertsma, *Coord. Chem. Rev.* 2014, 270–271, 57–74; b) C. Jones, J. A. Platts, A. F. Richards, *Chem. Commun.* 2001, 663–664; c) S. Deng, C. Schwarzmaier, M. Zabel, J. F. Nixon, M. Bodensteiner, E. V. Peresypkina, G. Balázs, M. Scheer, *Eur. J. Inorg. Chem.* 2011, 2991–3001; d) A. D. Burrows, A. Dransfeld, M. Green, J. C. Jeffery, C. Jones, J. M. Lynam, M. T. Nguyen, *Angew. Chem. Int. Ed.* 2001, 40, 3221–3224; *Angew. Chem.* 2001, 113, 3321–3324; e) F. W. Heinemann, S. Kummer, U. Seiss-Brundl, U. Zenneck, *Organometallics* 1999, 18, 2021–2029; f) C. Jones, C. Schulten, A. Stasch, *Dalton Trans.* 2006, 3733–3735; g) P. Binger, G. Glaser, S. Albus, C. Krüger, *Chem. Ber.* 1995, 128, 1261–1265; h) E.-M. Rummel, G. Balázs, V. Heinl, M. Scheer, *Angew. Chem. Int. Ed.* 2017, 56, 9592–9596; *Angew. Chem.* 2017, 129, 9720–9725.
- [12] a) B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, *Dalton Trans.*

2008, 2832–2838; b) P. Pyykkö, M. Atsumi, *Chem. Eur. J.* **2009**, *15*, 186–197; c) P. Pyykkö, *J. Phys. Chem. A* **2015**, *119*, 2326–2337.

- [13] U. Chakraborty, F. Urban, B. Mühldorf, C. Rebreyend, B. de Bruin, N. van Velzen, S. Harder, R. Wolf, *Organometallics* 2016, 35, 1624–1631.
- [14] B. Geissler, S. Barth, U. Bergsträsser, M. Slany, J. Durkin, P. B. Hitchcock, M. Hofmann, P. Binger, J. F. Nixon, P. von Ragué Schleyer, M. Regitz, Angew. Chem. Int. Ed. Engl. 1995, 34, 484–487; Angew. Chem. 1995, 107, 485–488.
- [15] a) Y. Hoshimoto, Y. Hayashi, H. Suzuki, M. Ohashi, S. Ogoshi, *Organometallics* 2014, 33, 1276–1282; b) A. J. Arduengo III, S. F. Gamper, J. C. Calabrese, F. Davidson, J. Am. Chem. Soc. 1994, 116, 4391–4394.
- [16] a) J. Wu, A. Nova, D. Balcells, G. W. Brudvig, W. Dai, L. M. Guard, N. Hazari, P.-H. Lin, R. Pokhrel, M. K. Takase, *Chem. Eur. J.* 2014, *20*, 5327 5337; b) C.-Y. Lin, P. P. Power, *Chem. Soc. Rev.* 2017, *46*, 5347 5399.
- [17] C. Rödl, R. Wolf, Chem. Eur. J. 2019, 25, 8332-8343.
- [18] G. Hierlmeier, A. Hinz, R. Wolf, J. M. Goicoechea, Angew. Chem. Int. Ed. 2018, 57, 431–436; Angew. Chem. 2018, 130, 439– 444.
- [19] Die Hinterlegungsnummern 2043979 (2), 2043974 (3a), 2043977
 (3b), 2043978 (4), 2043975 (5), 2043976 (7), 2043980 (8) und 2043981 ([(IMes)Ni(Cl)(μ-Cl)]₂) erlauben Zugriff auf die ausführlichen kristallographischen Daten zu dieser Veröffentlichung. Die Daten sind kostenlos beim Access-Structures-Service des Cambridge Crystallographic Data Centre und des Fachinformationszentrums Karlsruhe erhältlich: www.ccdc.cam.ac.uk/ structures.

Manuskript erhalten: 24. November 2020 Akzeptierte Fassung online: 5. Januar 2021 Endgültige Fassung online: 9. Februar 2021