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Abstract
Aims  Epicardial adipose tissue (EAT) has been linked to impaired reperfusion success after percutaneous coronary interven-
tion (PCI). Whether EAT predicts myocardial damage in the early phase after acute myocardial infarction (MI) is unclear. 
Therefore, we investigated whether EAT in patients with acute MI is associated with more microvascular obstruction (MVO), 
greater ST-deviation, larger infarct size and reduced myocardial salvage index (MSI).
Methods and results  This retrospective analysis of a prospective observational study including patients with acute MI 
(n = 54) undergoing PCI and 12 healthy matched controls. EAT, infarct size and MSI were analyzed with cardiac magnetic 
resonance imaging, conducted 3–5 days and 12 weeks after MI. Patients with acute MI showed higher EAT volume than 
healthy controls (46 [25.;75. percentile: 37;59] vs. 24 [15;29] ml, p < 0.001). The high EAT group (above median) showed 
significantly more MVO (2.22 [0.00;5.38] vs. 0.0 [0.00;2.18] %, p = 0.004), greater ST-deviation (0.38 [0.22;0.55] vs. 0.15 
[0.03;0.20] mV×10−1, p = 0.008), larger infarct size at 12 weeks (23 [17;29] vs. 10 [4;16] %, p < 0.001) and lower MSI (40 
[37;54] vs. 66 [49;88] %, p < 0.001) after PCI than the low EAT group. After accounting for demographic characteristics, 
body-mass index, heart volume, infarct location, TIMI-flow grade as well as apnea–hypopnea index, EAT was associated 
with infarct size at 12 weeks (B = 0.38 [0.11;0.64], p = 0.006), but not with MSI.
Conclusions  Patients with acute MI showed higher volume of EAT than healthy individuals. High EAT was linked to more 
MVO and greater ST-deviation. EAT was associated with infarct size, but not with MSI.
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Introduction

Besides traditional cardiovascular risk factors, body fat is 
an important factor for determining cardiometabolic risk 
[1]. The distribution rather than the absolute quantity of 
excess body fat plays a key role in the pathophysiology 
of cardiovascular disease [2]. Growing evidence suggests 
that epicardial adipose tissue (EAT) has been linked to 
impaired reperfusion success after percutaneous coronary 
intervention (PCI) [3]. Increased EAT is associated with 
incident myocardial infarction (MI) [4] and with angio-
graphic severity of an acute coronary syndrome [5]. From 
previous studies it is known that infarct size [6, 7] is an 
important predictor of major cardiovascular endpoints in 
patients after ST-elevation myocardial infarction (STEMI) 
[7–9]. Cardiac magnetic resonance imaging (CMR) is the 
gold standard for assessing infarct size [10] and EAT can 
be assessed as well. Furthermore, EAT-induced elevation 
of paracrine mediator levels may activate platelet aggrega-
tion, thereby increase microvascular obstruction (MVO) 
[11, 12] and thus may result in larger infarct size and myo-
cardial salvage index (MSI). On the other hand, Bière [13] 
and Gohbara [14], reported a protective effect of EAT on 
infarct size and MSI.

Therefore, the aim of this observational study was to 
investigate whether EAT in patients with acute MI is asso-
ciated with more MVO, greater ST-deviation, larger infarct 
size and reduced MSI.

Methods

Patients and participants

This is a retrospective analysis of a prospective observa-
tional study published previously [15]. Two hundred twenty 
consecutive patients aged between 18 and 80 years with a 
first acute MI who were treated by PCI within 24 h after 
symptom onset at the University Medical Center Regens-
burg were tested for eligibility (Fig. 1) [15]. Acute MI was 
defined as new ST elevation on the electrocardiogram or 
as native coronary artery occlusion. Key exclusion criteria 
were previous MI or previous myocardial revascularization, 
indication for surgical myocardial revascularization, cardio-
genic shock, and contraindications for CMR (e.g. previous 
cardiac device implantation), including in the final sub-anal-
ysis 54 patients with acute MI (Fig. 1). As a control group, 
12 healthy matched (age, sex, BMI) volunteers without any 
history of heart disease (potential living kidney donors) [16] 
underwent CMR (Fig. 1).

The local Ethics Committee approved the study protocol 
based on the regulations stated in the Helsinki Declaration of 
Good Clinical Practice. Prior to enrolment, written informed 
consent was obtained from each participant.
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Percutaneous coronary intervention

Each patient received medication according to current guide-
lines. PCI was conducted according to standard clinical prac-
tice [15]. In addition, administration of glycoprotein IIb/IIIa 
inhibitors and thrombectomy were at the discretion of the 
interventionalist.

Assessment of outcomes

Patients with acute MI underwent CMR and polysomnog-
raphy 3–5 days and 12 weeks after PCI [15, 17, 18]. In a 
subset of STEMI patients with analyzable [19] and avail-
able routine electrocardiograms (ECG) before PCI and > 24 
h after PCI (n = 27), a non-prespecified sub-analysis of ST-
deviations was performed as described previously [20].

Cardiac magnetic resonance image analysis

The CMR study protocol has been published previously 
[15]. Additional details of the image analysis and the acqui-
sition protocol are described in the online supplement.

Cardiac adipose tissue was analyzed by means of the 
highly accurate and reproducible methods of CMR and 
the 3-dimensional slice summation technique [21] using 
short-axis slices in consecutive end-diastolic images [21]. 
A specific protocol was applied starting with the image on 

which the mitral valve annulus was first visible down to the 
apex [21]. Cardiac adipose tissue was divided into EAT and 
paracardial adipose tissue (Fig. 2). EAT was defined as adi-
pose tissue in-between the pericardium, whereas, paracardial 
adipose tissue was specified as adipose tissue outside the 
pericardium but directly adherent to the heart. The sum of 
epicardial and paracardial adipose tissue was referred to as 

Fig. 1   Flowchart of the retro-
spective analysis of a prospec-
tive observational study

Patients with first acute myocardial infarction 
and percutaneous intervention within 24 hours 

(n=220)

Patients included 
in analyses 

n = 54

   Exclusion:
   n = 44 cardiogenic shock
   n = 35 follow-up not feasible
   n = 25 indication for surgical    

revascularization
   n = 17 other severe diseases
   n = 13 contraindication for   

CMR or not analyzable
   n = 22 no informed consent
   n = 10 others

Matched 
Control group

n = 12

Fig. 2   MRI, short-axis slice. Pericardial adipose tissue (blue), epicar-
dial adipose tissue (red), heart volume (yellow)
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pericardial adipose tissue [22]. EAT and paracardial adi-
pose tissue were manually segmented with the free software 
ITK Snap (published under General Public License) [23]. 
Heart volume without cardiac adipose tissue was quantified 
by manually tracing the area in-between the visceral layer 
of the pericardium. MI was assumed, if the signal intensity 
of hyperenhanced myocardium on delayed enhancement 
imaging was > 5 standard deviations above the mean signal 
intensity of the remote region and MVO was defined as a 
hypoenhanced region within the infarcted myocardium [24, 
25]. Infarct size and MVO were expressed as a percentage of 
the total left ventricular myocardial volume [20], when not 
stated otherwise. The MSI represents the difference between 
the area at risk and the final MI size highlighting the amount 
of myocardium which can be saved [15].

Statistical analysis

Categorical data are presented as frequency with percent-
ages, and comparisons between categorical variables were 
made with the Chi-squared test. Normally distributed 
quantitative data are expressed as mean ± standard devia-
tion, non-normal as median and interquartile range (IQR). 
Comparisons between quantitative variables were done with 
either unpaired Student’s t test or Mann–Whitney U test as 
necessary. Consecutive measurements were analyzed with 
the paired t-test.

MVO was classified as present, if > 0% of left ventricu-
lar volume were affected. Associations between EAT, ST-
deviation and infarct size or MSI were described using linear 
regression analysis. EAT was included as continuous vari-
able. Multivariate linear regression analyses were conducted 
to identify predictors of infarct size at baseline and after 12 
weeks as well as MSI, including known possible predictors 
such as infarct location, TIMI flow grade before and after 
percutaneous coronary intervention and sleep-disordered 
breathing as previously published [15, 26]. All models were 
corrected for baseline characteristics such as age, sex, body-
mass index and heart volume. A two-sided p-value of < 0.05 
was considered statistically significant. Data entry and cal-
culations were made with the software package SPSS 25.0 
(Chicago, EUA) and R (version 2.14.2).

Results

Study population

54 patients fulfilled the inclusion criteria and were 
enrolled in the study (Fig. 1). The baseline characteris-
tics such as age, sex, body weight, blood pressure were 

similarly distributed between patients with acute MI (MI 
group) and the control group, except for heart rate that was 
lower in the latter group (Table 1).

Cardiac adipose tissue

Patients with acute MI had a significantly higher EAT vol-
ume (46 [25./75. percentile: 37; 59] vs. 24 [15; 29] ml, 
p < 0.001; Fig. 3) and total cardiac adipose tissue (163 
[132; 201] vs. 117 [84; 159] ml, p < 0.001) than the con-
trol group. The amount of paracardial adipose tissue did 
not significantly differ between the MI and the control 
group (113 [90; 146] vs. 99 [69; 124] ml, p = 0.126). Same 
results were seen for EAT, total cardiac adipose tissue and 
paracardial adipose tissue divided by body-mass index (1.6 
[1.3; 2.1] vs. 0.9 [0.6; 1.1] ml/kg/m2, p < 0.001; 5.7 [5.0; 
6.7] vs. 4.5 [3.4; 5.9] ml/kg/m2, p = 0.029; 4.0 [3.3; 4.7] 
vs. 3.7 [2.7; 4.7] ml/kg/m2, p = 0.435, respectively).

Table 1   Demographics and baseline characteristics: healthy controls 
and patients with acute myocardial infarction

Data are expressed as n (%) or mean ± standard deviation, BMI body 
mass index, Control group matched for age, sex and BMI,  significant 
p values (p < 0.05) marked in bold

Control group
(n = 12)

MI 
group
(n = 54)

p-value

Age, years 52 ± 10 55 ± 10 0.406
Men, n (%) 9 (75) 46 (85) 0.392
BMI, kg/m2 26.6 ± 2.4 28.4 ± 3.6 0.107
Body surface area, m2 1.9 ± 0.2 2.0 ± 0.2 0.079
Systolic blood pressure, mmHg 131 ± 14 131 ± 21 0.903
Diastolic blood pressure, 

mmHg
83 ± 8 80 ± 12 0.362

Heart rate, min−1 63 ± 7 75 ± 17 0.001

Fig. 3   Box plot of epicardial adipose tissue in patients with myo-
cardial infarction (MI group) versus healthy control group. Data are 
expressed as median, minimum, maximum, 25. percentile, and 75. 
percentile
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Patients with acute myocardial infarction

The baseline characteristics of the two groups of patients 
stratified according to the median EAT volume at baseline 
are depicted in Table 2. The two groups did not differ 
with respect to age, height, heart rate, systolic or diastolic 
blood pressure and total sleep time. The high EAT group 
showed significantly higher body mass index, AHI, heart 
volume, maximum creatine-kinase and proportion of men 
than the low EAT group. The two groups did not differ 
with regard to cardiovascular risk factors, such as choles-
terol, low density lipoprotein (LDL), high density lipo-
protein (HDL), triglycerides, CRP levels, smoking status, 
or the prevalence of diabetes mellitus. Both groups were 
similar with respect to infarct type, infarct location, or in 
TIMI flow rate before and after PCI.

Microvascular obstruction and ST‑deviation

12 weeks after PCI, the high EAT group showed signifi-
cantly more MVO than the low EAT group (2.22 [0.00; 
5.38] vs. 0.0 [0.00; 2.18] %, p = 0.004; Fig. 4a). The best 
predictive EAT volume for MVO was 40.8 ml (sensitivity 
77.4%, specificity 60.9%). MVO > 0% was present in 31 of 
54 patients (57%) and the extent of MVO was significantly 
associated with the extent of EAT (B = 0.324 [0.024; 0.234], 
p = 0.017) in univariate analysis, but not after accounting for 
potential confounders.

In a subset of STEMI patients with analyzable routine 
ECG (n = 27), the high and the low EAT groups had similar 
ST-deviations before PCI (1.13 [0.73; 1.87] vs. 1.00 [0.39; 
1.19] mVx10−1, p = 0.294). However, > 24 h after PCI, 
patients from the high EAT group had significantly greater 
ST-deviations compared to the low EAT group (0.38 [0.22; 
0.55] vs. 0.15 [0.03; 0.20] mVx10−1, p = 0.008; Fig. 4b). ST-
deviation > 24 h after PCI was significantly associated with 

Table 2   Demographics 
and baseline characteristics 
according to epicardial adipose 
tissue of patients with acute 
myocardial infarction

Data are expressed as n (%) or mean ± standard deviation unless otherwise stated, BMI body mass index, 
AHI apnea–hypopnea-index, LDL low density lipoprotein, HDL high density lipoprotein, NSTEMI non-ST 
segment elevation myocardial infarction, TIMI Thrombolysis in Myocardial Infarction, CRP C reactive pro-
tein
a Data are expressed as median (25. percentile; 75. percentile), significant p values (p < 0.05) marked in 
bold

EAT < 46 ml (n = 27) EAT ≥ 46 ml (n = 27) p-value

Age, years 53 ± 11 57 ± 9 0.139
Men, n (%) 20 (74) 26 (96) 0.022
BMI, kg/m2 27 ± 3 30 ± 3 0.010
Systolic blood pressure, mmHg 131 ± 21 131 ± 23 0.985
Diastolic blood pressure, mmHg 80 ± 11 79 ± 13 0.867
Heart rate, min−1 73 ± 15 76 ± 20 0.533
AHI, h−1 11 ± 13 28 ± 21 0.001
Diabetes mellitus, n (%) 4 (15) 5 (19) 0.715
Positive smoking status, n (%) 22 (82) 17 (63) 0.129
Maximum creatine-kinase, U/la 1089 [712; 1794] 2687 [1147; 4021] 0.004
LDL, mg/dl 127 ± 40 119 ± 25 0.404
HDL, mg/dl 43 ± 15 43 ± 12 0.857
Cholesterol, mg/dl 193 ± 46 185 ± 27 0.480
Triglycerides, mg/dl 164 ± 92 159 ± 88 0.838
CRP, mg/la 5 [2; 11] 7 [3; 25] 0.256
Symptom-to-balloon time, h 8 ± 8 7 ± 7 0.420
NSTEMI, n (%) 7 (26) 3 (11) 0.161
TIMI flow grade before PCI, n (%) 0.444
Grade 0 22 (81) 24 (89)
Grade 1 5 (19) 3 (11)
TIMI flow grade after PCI, n (%) 0.299
Grade 2 1 (4) 3 (11)
Grade 3 26 (96) 24 (89)
Heart volume, mla 483 [425; 558] 532 [468; 683] 0.014
Epicardial adipose tissue, mla 37 [29; 41] 59 [52; 69]  < 0.001
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infarct size 12 weeks after PCI (B = 29.26 [17.86; 40.66] 
p < 0.001, Fig. S1).

Predictors of infarct size and myocardial salvage 
index

The relative infarct size in relation to the left ventricular vol-
ume at baseline and after 12 weeks was significantly higher 
in the high EAT group than in the low EAT group (24 [16; 
34] vs. 15 [7; 22] %, p = 0.003; 23 [17; 29] vs. 10 [4; 16] 
%, p < 0.001; Fig. 4c, respectively). EAT and infarct size 
were significantly correlated at baseline and at 12 weeks 
(R2 linear = 0.220, p < 0.001, R2 linear = 0.302, p < 0.001; 
Fig. S2a, b). EAT was an independent predictor of infarct 
size at baseline and at 12 weeks size after accounting for 
potential confounders such as infarct location, TIMI flow 
grade before and after PCI and sleep-disordered breathing, 
respectively (B = 0.49 [0.0; 0.90], p = 0.017; B = 0.38 [0.11; 
0.64] p = 0.006; Table 3, respectively). When including only 
those with high EAT and low PAT (n = 8) and those with low 
EAT combined with high PAT (n = 7), univariate analysis 
revealed no association with baseline and 12 weeks follow-
up infarct size.

The MSI was significantly lower in the high EAT 
group compared to the low EAT group (40 [37; 54] vs. 
66 [49; 88] %, p < 0.001; Fig. 4d). In univariate linear 
regression analysis EAT was significantly associated with 

MSI (B =  – 0.005 [ – 0.007;  – 0.002], p = 0.002), how-
ever, this association was no longer significant either after 
adjustment for AHI only (B =  – 0.001 [ – 0.004; 0.001], 
p = 0.262) or in the fully adjusted model (Table 3).

Discussion

The current retrospective analysis of a prospective obser-
vational study on the association between EAT and MI size 
yielded several novel findings. First, patients with acute 
MI had significantly more EAT than healthy individuals.

Second, patients with acute MI and high EAT had more 
MVO than patients with low EAT. Before PCI, ST-devia-
tion was similar between groups. However, after PCI, the 
high EAT group had more residual ST-deviation compared 
to the low EAT group. ST-deviation after PCI was associ-
ated with infarct size.

Third, patients with acute MI and high EAT had larger 
infarct size at baseline and 12 weeks after MI than those 
with low EAT. EAT was significantly associated with 
infarct size at baseline and 12 weeks after MI, indepen-
dently of demographic characteristics, infarct location, 
efficacy of PCI as well as sleep-disordered breathing. The 
high EAT group had a significantly lower MSI.

Fig. 4   Box plots of microvascular obstruction a, mean ST-devia-
tion > 24 h after percutaneous coronary intervention (PCI) b, infarct 
size after 12 weeks c and myocardial salvage index d according to 

the low and high epicardial adipose tissue (EAT) volume group. Data 
are expressed as median, minimum, maximum, 25. percentile, and 75. 
percentile
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EAT in patients with acute myocardial infarction 
and healthy controls

Patients with acute MI had 50% more EAT in comparison to 
healthy controls. Similarly, Mahabadi et al. [4] (Table S1) 
observed in a cohort study of 4093 participants, that 
patients with incident coronary events had 21% more EAT 
compared to patients without coronary events. In addition, 
hypertensive men without MI had less EAT in comparison 
to those with MI [27]. Conflicting data from Bière et al. 
[13] (Table S1) showed no differences in epicardial adipose 
tissue volumes between STEMI patients (primary PCI and 
rescue PCI within 12 h) and healthy controls with a very 
broad spectrum of EAT values (0–105 ml), resulting in 16% 
patients with MI and less than 10 ml EAT. According to 
previous results [4], the results from the present analysis and 
pathophysiology, these findings seem to be disputable. It is 
uncertain whether such conflicting results are a consequence 
of differences in the studied patient population or differences 
in methodology of assessment of EAT (e.g. technique of 
MRI or interval between MI and MRI) [13]. The effect of 
EAT on cardiovascular events is thought to result from the 
endocrine, pro-inflammatory activity of EAT [22].

EAT, MVO and ST‑deviation in patients 
with myocardial infarction

MVO, assessed by CMR, is regarded as a better predictor for 
mortality than ejection fraction and different clinical scores 
[25, 28, 29] and the extent of MVO is associated with short-
term and long-term mortality [29, 30]. MVO occurred in 
57.4% in the MI cohort reflecting the largest pooled data 

analysis with 1688 patients on MVO and STEMI with 56.9% 
[29]. Alam et al. [31] reported an association of EAT and 
impaired myocardial flow reserve as surrogate parameter for 
microvascular dysfunction in patients with non-obstructive 
coronary artery disease. Classifying patients with acute MI 
in a high and low EAT volume group, we could show that 
within 12 weeks after PCI high EAT volume was associated 
with more MVO. But this association was not robust in mul-
tivariate analysis. Contrary, Gohbara et al. [14] (Table S1) 
reported very low amounts of MVO (1%) in patients with 
low (16 ml) and high (48 ml) EAT volumes. However, in 
the study of Gohbara et al. [14] BMI was 25 kg/m2 and 22% 
patients had TIMI flow > 1 reflecting a healthier population 
than in the current cohort. Another study [13] with similar 
subepicardial adipose tissue volumes in STEMI and healthy 
controls, reported MVO less frequent in STEMI patients 
with high EAT (> 34 ml) compared to low EAT (< 34 ml). 
The current analysis showed that ST deviation was simi-
lar before PCI and deviation was greater after PCI in the 
high EAT group than in the low EAT group. Findings are 
in line with Zencirci et al. [3] (Table S1), who showed that 
patients with acute MI with resolution of ST segment devia-
tion ≥ 70% had a lower thickness of EAT compared to those 
with a poor resolution of ST segment deviation (< 70%).

EAT, infarct size and MSI in patients with acute 
myocardial infarction

Keeping in mind that infarct size, measured by CMR, is 
a strong predictor for all-cause mortality after MI [7], 
our study shows that EAT is an independent predictor of 
infarct size, both at baseline as well as after 12 weeks. EAT 

Table 3   Multivariate linear regression analysis: EAT and infarct size at baseline, 12 weeks and myocardial salvage index

AHI apnea–hypopnea-index, EAT epicardial adipose tissue, B regression coefficient, CI confidence interval, TIMI Thrombolysis in Myocardial 
Infarction
*TIMI grade 0 vs TIMI grade 1
**TIMI grade 2 vs TIMI grade 3, PCI percutaneous coronary intervention
***AHI, stratified in ≥ 15/h and < 15/h
****Diabetes mellitus yes and no
*****All models controlled for age, sex, BMI and heart volume, significant p values (p < 0.05) marked in bold

Predictors of endpoint Infarct size (baseline), g 
B (95% CI)

p-value Infarct size, g (12 
weeks) B (95% CI)

p-value Myocardial salvage 
index, g B (95% CI)

p-value

Anterior infarction 7.17 ( – 5.18; 19.52) 0.248 1.49 ( – 6.70; 9.68) 0.715 0.02 ( – 0.08, 0.12) 0.645
TIMI-flow pre PCI* 11.71 ( – 3.85; 27.26) 0.136 6.69 ( – 3.63; 17.01) 0.198  – 0.02 ( – 0.14, 0.11) 0.761
TIMI-flow post PCI**  – 2.24 ( – 23.63; 19.15) 0.834 3.25 ( – 10.94; 17.43) 0.646  – 0.11 ( – 0.28,  – 0.06) 0.214
AHI*** 3.07 ( – 9.13; 15.26) 0.614 9.39 (1.20; 17.38) 0.025  – 0.20 ( – 0.30,  – 0.10)   0.001
Epicardial adipose tissue, ml 0.49 (0.09; 0.90) 0.017 0.38 (0.11; 0.64) 0.006 0.00 (0.00, 0.00) 0.420
Time to balloon, min 0.11 ( – 0.61; 0.84) 0.751 0.17 ( – 0.31; 0.65) 0.477 0.00 ( – 0.01; 0.01) 0.771
Diabetes mellitus**** 4.78 ( – 9.60; 19.16) 0.506 4.86 ( – 4.68; 14.40) 0.310  – 0.06 ( – 0.17; 0.06) 0.313
Model summary***** R2 = 0.478, F = 3.503 R2 = 0.604, F = 5.828 R2 = 0.524, F = 4.195
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remained an independent predictor of infarct size even after 
adjustment for traditional risk factors. EAT was associated 
with greater infarct size assessed with CMR and with higher 
creatine kinase as a surrogate for greater infarct size. These 
findings are supported by the association of EAT with MVO 
and ST-deviation. Both parameters mirroring disturbed 
microcirculation [32], correlate with infarct size [30, 33].

In contrast to our analyses, others [13, 14] (Table S1) 
reported conflictive results in STEMI patients with less 
infarct size in the high EAT group. These findings were 
stated to be associated with obesity paradox [13, 14]. Bière 
et al. [13] could not reproduce the established finding that 
patients with MI have higher EAT volume compared to 
healthy controls (Table S1) [4, 27].

While EAT was significantly associated with infarct size 
in this analysis, independently of several other risk factors 
for infarct size, this was not the case for the association with 
MSI. Sleep-disordered breathing was one of the strongest 
confounders for the association between EAT and MSI, 
confirming previous findings identifying sleep-disordered 
breathing as a strong predictor for MSI with a high patho-
physiologic plausibility to contribute to cardiac damage [15]. 
Therefore, the pathophysiological effect of sleep-disordered 
breathing [34] might be stronger than the endocrine effects 
of EAT. Similar to the results with respect to infarct size, 
Gohbara et al. [14] reported an opposite association of EAT 
and MSI than the current analysis.

However, further evidence for the potentially harmful 
impact of EAT derive from animal studies, showing that 
resection of EAT decreases progression of cardiovascular 
disease in coronary arteries [35, 36]. Therefore, future stud-
ies in humans with acute MI are necessary to confirm and 
clarify the potentially protective effect of decreasing EAT 
volume on cardiovascular disease.

Pathophysiological considerations

Evidence indicates that the effect of EAT on cardiovascu-
lar disease may mainly result from its release of endocrine 
proinflammatory mediators such as interleukin-6 (IL-6) and 
TNF-α [37]. EAT produced pro-inflammatory markers could 
lead to platelet aggregation and increased leucocyte activa-
tion followed by intravascular plugging resulting in MVO 
[38, 39] and impaired coronary flow reserve [40].

A further explanation could be the more pronounced arte-
riosclerosis and the higher rates of coronary events due to 
the inherent pro-inflammatory activity of EAT [4, 41, 42]. 
On the one side high EAT volume has been shown to be 
associated with the vulnerability of coronary artery plaques 
[43] and on the other side severe coronary artery disease 
may stimulate the expression of pro-inflammatory param-
eters in the EAT [37].

Taken together, these pathomechanisms may result in 
a vicious circle of high EAT volume, inflammation and 
arteriosclerosis which may lead to a more pronounced 
myocardial damage as seen in the current analysis.

Limitations

This study is limited by its sample size and its design that 
does not allow to build causal relations. Therefore, further 
experimental studies and randomized clinical trials are 
required. The control group was a small group of healthy 
volunteers [16]. Therefore, a potential selection bias can-
not be excluded in total. However, controls and patients 
were matched for age, sex and BMI. Despite correcting for 
BMI and AHI [44], we cannot exclude whether the effect 
of EAT is independent of body fat distribution. Waist-to-
hip ratio and visceral obesity were not assessed. Lesion 
geometry and location of lesion (proximal vs. distal) was 
not taken into account in the multivariate analysis.

Conclusion

Patients with acute MI showed higher volume of EAT than 
healthy individuals. High EAT was linked to more MVO 
and less ST-deviation. EAT was significantly associated 
with infarct size, independently of demographic charac-
teristics, BMI, heart volume, infarct location, efficacy of 
PCI as well as sleep-disordered breathing. EAT was not 
independently associated with MSI. Further clinical and 
mechanistic studies are needed to evaluate whether EAT 
may contribute to myocardial damage in the early phase 
after myocardial infarction.
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