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1
Introduction

In December 1959 Richard Feynman gave a speech, which will prove path-breaking in
retrospect, at the California Institute of Technology with the title "There's plenty of room
at the bottom"[1]. In his speech, Richard Feynman described the abundant possibilities for
researchers if they pursue the path to nanoscale physics. Even if he did not use the term
nanotechnology, the transcript of his speech is now one of the most well-known articles
in the history of this area. Among other things, he mentioned the vision to write the
many volume encyclopedia Britannica on the head of a pin. For this goal, one would need
to compress one unit of information to a point of 80 Å in diameter. This dream now
became reality and the world record size for a semiconductor transistor is now 30 Å (see
Figure 1.1): Just 10 atoms in a row �t the width of this transistor. In the light of these
magnitudes, it is impossible to describe the processes there purely with classical physics.
The quantum world with its intriguing phenomena starts inevitably to play an important
role in this regime. Whereas the classical transistor operations get unstable at the atomic

Figure 1.1 Cross-section of 3 nm semiconductor transistor [2].

level, quantum mechanics is not detrimental to information technology. On the contrary,
quantum information has shown how mastering quantum bit (Q-bit) operations will allow
us to tackle problems of enormous complexity, otherwise inaccessible to classical computers
[3]. The major challenge is to improve the reliability and scalability of the Q-bits which
are the quantum version of classical transistors with the ultimate goal to make quantum
computing feasible. A quantum computer which consists of those Q-bits could lead to huge
changes in certain areas like cryptography, database search or molecule simulations. These
areas may seem unimportant at �rst glance, but they do a�ect us to some extent in our
everyday life: Cryptography is the fundamental tool to protect secure Web pages and other
sensitive types of data like emails and an e�cient way to search databases could save a lot
of energy especially in the context that the amount of data which is produced every second
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1. Introduction

in the world is steadily increasing. Furthermore, more elaborate molecule simulations with
the help of quantum computing could be used for the search of new materials in areas like
drug or battery research. It is important to state that we are still at the very beginning
of the road to a functioning quantum computer and it is not even clear if a quantum
computer with su�cient computational power will ever be realized so that it can deliver
on its far-reaching promises. Nevertheless, it should be recognized that despite these
concerns prestigious companies like Intel, Google, Microsoft and IBM put a huge research
e�ort and investment into this technology [4]. Maybe we are right now at the beginning
of another step like the one Feynman proposed in his pioneering speech from 1959. It
was, at these times, de�nitely not easy to believe in a fast realization of this enormous
miniaturization and so is it now with quantum computing. Despite many obstacles and
its enormous complexity, it is at least conceivable that another generation could bene�t
from quantum computers like we are bene�ting now from the classical miniaturization of
transistors. A fundamental step towards the realization of Q-bits and therefore quantum
computing - of course not the only one in the light of the many technical di�culties - is
the basic understanding and control of quantum mechanical phenomena at the nanoscale.
One of those phenomena, namely quantum interference, is at the very heart of quantum

Figure 1.2 Visualization of a one-electron tunnelling process and correlated two-
electron processes: The leftmost setup shows an exemplary one-electron or sequential tunnelling
process where one electron (green solid line) tunnels from the source to energy levels of the central
system which are depicted in orange. The three rightmost setups show instead two-electron pro-
cesses where the correlation between them is indicated by dashed green lines. These three di�erent
types of tunnelling events extend the transport regime to the cotunnelling one. Taken from Figure
2 of [5].

mechanics. It is a direct consequence of the superposition principle which allows quantum
systems to be at the same time in two di�erent states. Due to quantum interference - in
close analogy to water waves - two coherent states or wave packets form a resultant wave
in a constructive or destructive way. The most prominent experiment in this context is
de�nitely the original double-slit experiment by Young where one can see single-particle
interference [6]. Furthermore, single-particle interference has been observed with electrons
in vacuum [7, 8] and even with the more massive C60 molecules [9].

Nowadays, it is possible to study quantum interference in a wide range of systems as a result
of ever-progressing experimental techniques. For a complete description of interference
e�ects in experimental setups, it is necessary to account for the interaction of a system
with its environment. Generally, decoherence originating from this interaction by e.g. the
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coupling to the leads will obstruct interference. In recent years, huge attention was directed
to the research of systems which bear such a coupling. Transport measurements, in which
a microscopic, coherent system is coupled to macroscopic leads, are well-suited probes to
investigate such phenomena. Intra-molecular interference has been recently discussed in
molecular junctions for the case of strong [10�16] and weak [17�19] molecule-lead coupling.
What uni�es these realizations of quantum interference is that the travelling particle has
two (or more) spatially equivalent paths at disposal to go from one point to another in the
interferometer. Generally, for junctions in the strong coupling regime decoherence can be
neglected due to the short time of �ight of the particle within the interferometer. In the
weak coupling case, instead, the dwelling time is long. It is the regime of the single electron
tunnelling in which, usually, the decoherence introduced by the leads dominates the picture
and the dynamics are governed by sequential tunnelling events. Though, well inside the
Coulomb blockade region, tunnelling processes involving two electrons can become the
dominant part by providing possible tunnelling paths that go beyond sequential tunnelling
which is there limited by a tiny thermal excitation. This regime where one-electron and
two-electron tunnelling events are considered is the so-called cotunnelling transport regime
(see Figure 1.2). Cotunnelling events represent the second order term in the perturbation
in the coupling strength which will be assumed to be small with respect to the temperature.
This regime will be the main focus of this work especially in the context of interference
e�ects.

Figure 1.3 Schematic transport setup with two quasi-degenerate tunnelling paths:
Throughout this thesis, we will deal with transport systems where electrons can tunnel from
two reservoirs ("L" and "R") in and out to a central system. Here, we consider explicitly two
energy levels which are quasi-degenerate. The energy di�erence between them, namely ∆E, is
smaller than the energy Etun which can be associated with the strength of the tunnel coupling. If
we consider coherent coupling from the reservoirs to the energy levels, a current can �ow via two
equivalent paths through the system. In analogy to the double slit experiment by Young, one can
see then interference e�ects arising.

Whenever two energetically equivalent paths involving degenerate states contribute to the
dynamics, interference e�ects can occur (compare Figure 1.3). The associated �ngerprints
in the transport characteristics can be then strong negative di�erential conductance and
eventually an interference blockade of the current in the case of fully destructive interfer-
ence [20]. Another recent work showed such a current blocking also in a carbon nanotube
quantum dot, due to the formation of a so-called all-electronic dark state which is de-
coupled from one of the leads (see Figure 1.4 g) [21]. The name for this state is chosen
in close analogy to optical dark states. In this publication, theoretical and experimental
data is provided and the interference blockade is clearly visible in both data sets through
the disappearance of transition lines in the stability diagram (see Figure 1.4 a-f). This
publication once again could provide strong experimental evidence of interference e�ects
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1. Introduction

in transport and therefore be a manifest of the underlying theory.

Figure 1.4 Interference blockade in a carbon nanotube quantum dot: a,b Experimental
stability diagrams: Di�erential conductance G is plotted in a gate voltage-bias voltage-landscape.
The red lines indicate transitions from speci�c leads to di�erent occupation numbers of the quan-
tum dot. It is clearly visible that negative di�erential conductance (blue) arises and that it is
accompanied by suppression - indicated by the red arrows - of transition lines. In case of (a), an
electron transition to the drain and in case of (b), a hole transition to the drain which is exactly ex-
pected under a reversed bias polarity and a mirrored gate voltage are suppressed. c,d Theoretical
stability diagrams: Experimental data is reproduced except for an up to now unknown horizontal
transition line. e,f Comparison of experimental (data points) and theoretical (solid lines) current-
gate traces for Vb = ±3.045 mV. g Quantum dot setup: For the chosen bias polarity, an electron
can enter a dark state, which is formed by the two degenerate energy states, from the left lead but
it cannot leave to the right lead. Precession ωL/R allows for population transfer from a dark state
to a coupled state. Taken from Figure 1 and 3 of [21].

Another work highlighted a di�erent form of interference, namely the appearance of a
so-called canyon of conductance [22]. In an InSb nanowire quantum dot, they could mea-
sure suppression of conductance due to the interplay of interference and correlation of the
electrons through their Coulomb repulsion. The location of this canyon coincides with the
point in the gate voltage-magnetic �eld-landscape where two energy levels become degener-
ate (see Figure 1.5 (i) (c)). They supplemented this work with numerical calculations done
with the second order von Neumann (2vN) approach [23]. This numerical expensive ap-
proach is non-perturbative in the coupling to the leads. On the one side, it bridges the gap
between non-interacting Green's-function approaches and the interacting rate equations for
the sequential tunnelling regime but on the other side, it is limited to small systems due
to its numerical expensiveness. In a following up publication, they claim that this canyon
appears when considering the 2vN approach and thus non-perturbative contributions [24].
They explicitly do not make a statement for the cotunnelling regime. One part of the
motivation of this thesis is to enter exactly in this realm. Does this current suppression
in the Coulomb blockade region already appear in the cotunnelling regime? If yes, then it
would shift the picture from the necessity to include all orders of tunnelling events to just
include cotunnelling events as the leading order in this region and therefore as su�cient
to describe the phenomena there. Furthermore, one could ask what is the connection to
other interference e�ects like interference blockade encountered in Figure 1.4. What do
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Figure 1.5 Correlation-induced conductance suppression at level degeneracy in an
InSb quantum dot: (i) (a) SEM image of a fabricated InSb nanowire quantum dot device. (b)
Conductance in greyscale measured at a bias voltage of 0.5 mV. (c) Schematic for the evolution
of the single-particle levels 4 and 5 with magnetic �eld due to the large level dependent g factors
of InSb. The letters A, B and C mark three level degenerate points. (d) Conventional spin-1/2
Kondo peak at B = 0 T. (e) Integer-spin Kondo-like conductance enhancement at B ≈ 1.5 T. (ii)
(a) Enlarged section of (i) (b) with a clearly visible canyon of conductance. (b)-(f) Conductance
plots along the line cuts C1-C5 of (a). Taken from Figure 1 and 2 of [22].

they have in common and how do they di�er? Even if it is one of the fundamental phe-
nomena of quantum physics, interference is not yet fully understood and therefore worth
to investigate.

In this spirit, we will analyze in the following thesis interference e�ects in the cotunnelling
transport regime. In the next part, we will introduce the theory which leads �nally to the
implementation of a transport code which is capable to treat cotunnelling transport. In
the proceeding part, this transport code will be then applied to various model systems so
that the asked questions can be addressed.
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2
Hamiltonian of a quantum dot system

In this chapter, we will introduce the physical system of this thesis. Throughout this work,
we consider a generic quantum dot system tunnel-coupled to a bath which in our case
is represented by two leads (see Figure 2.1). We can write for this system the following
general Hamiltonian Ĥtot:

Ĥtot = ĤS + ĤB + ĤT (2.1)

with the quantum dot system Hamiltonian ĤS, the bath Hamiltonian ĤB and the tun-
nelling Hamiltonian ĤT. The bath Hamiltonian is de�ned as

ĤB =
∑
lσk

εlσkĉ
†
lσkĉlσk =

∑
b

εbĉ
†
bĉb (2.2)

with l as the lead index (l = L is the left lead and l = R is the right lead), σ = {↑, ↓} as the
spin index of the lead and ε as the energy of an electron with the momentum k. We have
introduced the second quantization fermionic annihilation operator ĉlσk of an electron in
the l-lead with spin σ and momentum k. Furthermore, in the last step we introduced a
collective bath index b = {l, σ,k}. The system Hamiltonian,

ĤS = Ĥ0 + eVgN̂ , (2.3)

depends on the gate voltage Vg, the speci�c form of the isolated quantum dot system
Hamiltonian Ĥ0 and the number operator N̂ =

∑
n d̂
†
nd̂n. The number n labels the single-

particle quantum states of the system and thus the di�erent fermionic creation operators
d̂†n. In our thesis, we consider systems with a generic number of i quantum dots. A single
dot (i = 1) has, for example, two creation operators (n = 2), d̂†↑ for spin-up and d̂†↓ for spin
down, so that its many-particle Fock space consists of four di�erent states {|0〉 , |↑〉 , |↓〉 , |2〉}
with the corresponding energies. In the case (i = 1), in the literature better known as the
single dot Anderson impurity model, Ĥ0 takes the form

Ĥ0 =
∑

ζ={↑,↓}

(ε0 − Eζ) d̂†ζ d̂ζ + Ud̂†↑d̂↑d̂
†
↓d̂↓. (2.4)

with ε0 as the on-site energy, U as the on-site Coulomb interaction and Eζ as a spin-
dependent energy which can be understood e.g. as a Zeeman splitting through a magnetic
�eld. The index ζ is throughout this work reserved for the spin degree of freedom of the
system. The tunnelling Hamiltonian connects the bath and the system in the following
way:

ĤT =
∑
l

ĤT,l =
∑
bn

(
t∗b,nd̂

†
nĉb + tb,nĉ

†
bd̂n

)
=
∑
pb

p ĉpbD̂
p̄
b (2.5)
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2. Hamiltonian of a quantum dot system

Figure 2.1 Schematic setup of a quantum dot system coupled to two leads: A generic
quantum dot system is depicted as energy levels (black lines) tunnel-coupled to a left lead (L) and
a right lead (R). The tunnelling rate matrices ΓL and ΓR incorporate the coupling strength to the
respective energy levels as well as the geometrical setup. With a gate voltage Vg, it is possible to
shift the energy levels of the central system. In case of a single dot, there are two energy levels
which are connected to the leads: one for spin up (compare red arrow) and one for spin down.

where tb,n are the tunnelling amplitudes with the collective bath index b = {l, σ,k} coupling
an electron of the l-lead of spin σ and momentum k to the energy level n of the dot where in
principle, the spin quantization axis can point in another direction as the one of the leads.
In the last step, we combined the tunnelling amplitudes and the dot creation/annihilation
operators to D̂p

b :=
∑

n t
p
b,nd̂

p
n with superscript p = + indicates the conjugate transpose

of the matrix, d̂+
n := d̂†n, or in the case of the tunnelling amplitudes, the complex of it,

t+b,n := t∗b,n. The superscript p = − indicates an annihilation operator, d̂−n := d̂n, or a bare
tunnelling amplitude t−b,n := tb,n with the property of the p-index: p̄ := −p.

12



3
Introduction to the density matrix

formalism

In this chapter, we will introduce the density matrix formalism which represents an elegant
way to describe the state of a physical system. It goes beyond the usual state vector
representation of quantum mechanics with taking into account the statistics of a system
in a concise form. We work throughout this thesis with density matrices and hence this
chapter provides the foundation of the following work. The sections of this chapter will
mainly follow [25�27].

3.1. Density matrix operator

The density matrix is a way to describe a quantum mechanical system. The latter is
determined by a series of measurements. Due to the very nature of quantum mechanics,
it is only possible to simultaneously measure two physical variables if their associated
operators commute so that it is possible to �nd a common eigenbasis |Ψ〉:[

Q̂1, Q̂2

]
= 0 =⇒ ∃ |Ψ〉 : Q̂1 |Ψ〉 = q1 |Ψ〉 ∧ Q̂2 |Ψ〉 = q2 |Ψ〉 . (3.1)

A pure state is de�ned by U. Fano in 1957 as a state of "maximum knowledge" whereas
we do not have full information of the system when considering a mixed state [28]. In
general, the maximum information of a system consists of the eigenvalues q1, ..., qN of the
largest set of mutually commuting independent observables Q1, ..., QN . The system is then
completely speci�ed as the following pure state vector:

|Ψ〉 = |q1, ..., qN 〉 . (3.2)

If |Ψ〉 is an eigenstate of the observable Q, each measurement gives exactly the same
eigenvalue. Assuming the pure state |Ψ〉 is not an eigenstate of an observable Q then
each measurement gives a di�erent result. The average is then given by the expectation
value 〈Q̂〉pure = 〈Ψ| Q̂ |Ψ〉. On the contrary, a mixed state, also known as a statistical
mixture, cannot be characterized by a single state vector. Since we do not have full
information of the system, there is an additional probability in this state which goes beyond
the expectation value of a pure state. A mixed state is a statistical mixture of di�erent
pure states and can be written in terms of the probabilitiesW1, ...,WN of being in the pure
state |Ψ1〉 , ..., |ΨN 〉: ∑

n

Wn = 1, 0 ≤Wn ≤ 1. (3.3)
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3. Introduction to the density matrix formalism

It should be explicitly noted that a mixed state is not a quantum superposition of pure
states. The expectation value of statistical mixture is for that reason de�ned as:〈

Q̂
〉
mixed

=
∑
n

Wn 〈Ψn| Q̂ |Ψn〉 . (3.4)

Mixed states commonly arise from a statistical mixture of the starting state like in a thermal
equilibrium or from looking at a subsystem entangled with another not measurable system.
For example in thermal equilibrium, it is very likely that we are in the state which is the
most probable and has the biggest entropy so that we have the least information about
the state. The concept of a density matrix stems from the fact that there exist pure and
mixed states. In general, the density matrix operator is then de�ned as:

ρ̂ :=
∑
n

Wn |Ψn〉 〈Ψn| . (3.5)

Note that if our system is in a pure state, then the density matrix operator has the form
ρ̂ = |Ψ〉 〈Ψ|. In an explicit matrix representation, the density matrix operator acquires the
following form:

ρ̂ =
∑
n

∑
mm′

Wn a
(n)
m a

(n)∗
m′ |φm〉 〈φm′ | (3.6)

with |Ψn〉 =
∑

n a
(n)
m |φm〉. The elements of the density matrix in the basis {φ1, ..., φn} are

then de�ned as:

ρij = 〈φi| ρ̂ |φj〉 =
∑
n

Wn a
(n)
i a

(n)∗
j . (3.7)

In this thesis, we will use the term density matrix and density matrix operator equivalently
with the knowledge that we can go from one particular density matrix operator in di�erent
bases. No matter in which basis we are, the density matrix operator always contains all
meaningful information about our physical system. It can be easily shown that the density
matrix ρ̂ is hermitian and its trace is always 1. If Eq. (3.4) is extended, we will realize that
the expectation value of an operator Q̂ can be also seen as the trace of the product of the
density matrix with the operator:〈

Q̂
〉

(3.4)
=
∑
n

Wn 〈Ψn| Q̂ |Ψn〉 =
∑
n

∑
mm′

Wn a
(n)
m a

(n)∗
m′ 〈φm′ | Q̂ |φm〉

(3.7)
=
∑
mm′

〈φm| ρ̂ |φm′〉 〈φm′ | Ô |φm〉 = Tr
{
ρ̂ Q̂
}
. (3.8)

Eq. (3.8) can be seen as an alternative way to de�ne the density matrix (compare Eq. (3.5)).
Out of this de�nition of the density matrix, it is clear that any expectation value of an
operator can be derived from ρ and thus it contains all physical information, namely the
populations and the coherences. The populations are the diagonal elements of the density
matrix ρ̂ii and they tell us the probability of �nding the system in the basis state |φi〉.
The o�-diagonal elements ρ̂ij are identi�ed as the coherences between the states |φi〉 and
|φj〉. It can be seen as a certain phase relation between these states which e.g. enables
interference. Therefore a completely diagonal density describes a completely incoherent
statistical mixture with no phase relation between the basis states.
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3.2. Time evolution of the density matrix

3.2. Time evolution of the density matrix

The time evolution of quantum mechanical states is described by the Schrödinger equa-
tion

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 . (3.9)

The time evolution operator Û(t, t0) is de�ned as

|Ψ(t)〉 := Û(t, t0) |Ψ(t0)〉 (3.10)

with Û(t) := Û(t, 0). Plugging the time evolution operator into the Schrödinger equation
will lead to

i~
∂

∂t
Û(t) = Ĥ(t)Û(t) (3.11)

where we can deduce that Û(t) is a unitary operator with initial condition Û(0) = 1.
Applying then the well-de�ned time evolution operator on an initial density matrix ρ̂(0) =∑

nWn |Ψn(0)〉 〈Ψn(0)| will get its time evolution:

ρ̂(t) =
∑
n

WnÛ(t) |Ψn(0)〉 〈Ψn(0)| Û †(t) (3.12)

= Û(t)ρ̂(0)Û †(t). (3.13)

Di�erentiating Eq. (3.12) will lead to the famous Liouville-von Neumann equation (LVNE)
which - as we just demonstrated - directly stems from the Schrödinger equation:

i~
∂

∂t
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
. (3.14)

It is convenient to write the LVNE in terms of the Liouville superoperator L(t):

L(t)X̂ := − i
~

[
Ĥ(t), X̂

]
=⇒ ˙̂ρ(t) = L(t)ρ̂(t) (3.15)

where we denoted the time derivative with a dot. It is important to note the Liouville
superoperator acts on a generic matrix X̂ in analogy to a matrix which acts on a vector.
This concept is captured in the Liouville space (compare Table 4.1). In the case of the
time-independent Hamiltonian Ĥtot which we consider in this thesis (compare chapter 2),
the Liouvillian can be written as L(t) := L = LB + LS + LT.

3.3. Reduced density matrix

As we already mentioned in chapter 2, our total system is formed by the leads and the dot
system with their respective Hilbert spaces HB = {|φα〉}, for the leads, and HS = {|φβ〉},
for the dot system part. As an assumption, our total state vector at an initial time could
be written as the Kronecker product of two pure state vectors of the respective Hilbert
spaces:

|Ψ(0)α,β〉 = |φα〉 ⊗ |φβ〉 . (3.16)
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3. Introduction to the density matrix formalism

Turning on the interaction will change the picture drastically. The total system gets
entangled so that it is not possible anymore to factorize the state vector into the two
subsystems. Nonetheless, if the two subsystems were in a pure state at the initial time,
their entangled state vector stays in a pure state. We can de�ne the density matrix of such
an entangled state as

|Ψα,β(t)〉 =
∑
ij

a(i, j, α, β, t) |φi,α〉 ⊗ |φj,β〉 (3.17)

with a(i, j, α, β, t) the coe�cient yielding the probability of �nding the bath in |φα〉 and
simultaneously the dot system in |φβ〉. Since we are only interested in the time evolution
of the dot system, we can construct the so-called reduced density matrix (RDM):

ρred :=
∑
i

〈φi,α| ρ̂(t) |φi,α〉 = TrB {ρ̂(t)} . (3.18)

TrB {} denotes the trace over the lead degrees of freedom. From there, we can rewrite
the expectation value of an operator which acts only on the dot system in terms of the
RDM: 〈

Q̂
〉

= Tr
{
ρ̂ Q̂
}

=
∑
i j

∑
i′j′

〈φi,αφj,β| ρ̂
∣∣φi′,αφj′,β〉 〈φi′,α∣∣φi,α〉 〈φj′,β∣∣ Q̂ |φj,β〉

= TrS
{
ρ̂red Q̂

}
(3.19)

If we are only interested in observables of the quantum dot system, the RDM is the tool
to reduce the complexity of the LVNE. It is possible to reformulate LVNE in one equation
for the RDM by inserting Eq. (3.18) in Eq. (3.15):

˙̂ρred(t) = TrB
{
L̂tot ρ̂(t)

}
, (3.20a)

ρ̂(t0) = ρ̂red(t0)⊗ ρ̂B(t0). (3.20b)

For Eq. (3.20b) we took as an initial condition an uncorrelated total system hence there is
no interaction at t0 between the dot system and the leads. The bath density matrix can
be �nally written as

ρ̂B = ρ̂L ⊗ ρ̂R. (3.21)

Furthermore, we assume that the two leads are in thermal equilibrium so that we can
construct the density operator of the l-lead (l = L/R) as a grand-canonical ensemble

ρ̂l =
e−β(Ĥl−µlN̂l)

Zl
(3.22)

where µl is the chemical potential of the respective lead and Zl = Trl{e−β(Ĥl−µlN̂l)}
is the partition function of the respective lead. In the latter, we use β = 1

kBT
with

temperature T and Boltzmann constant kB. The number operator of the l-lead is de�ned
as N̂l =

∑
σk ĉ

†
lσkĉlσk. The chemical potential of the leads constitute of the bias voltage Vb,

the elementary charge e, the Fermi level of the system µ0 and the asymmetry parameter
for the bias voltage drop αb (0 ≤ αb ≤ 1) in the following form:

µL = µ0 − eαbVb, (3.23a)

µR = µ0 + e(1− αb)Vb. (3.23b)
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4
Transport theory

In this chapter, we want to introduce the transport theory which is used in this thesis.
With the help of a generalized master equation (GME), we can accurately describe the
time evolution of our systems. The goal of this thesis is to rigorously take into account
not only the populations of the underlying density matrix but also all its coherences. Only
then it is possible to capture interference e�ects in full glory. The method of choice to
derive a GME is the Nakajima-Zwanzig projection operator technique. In comparison
with other techniques which are summarized in [5, 27], it is here easier to go to single-time
diagrammatics in the Liouville space and the equations get more compact. This chapter
will mainly follow [26, 29].

4.1. Nakajima-Zwanzig equation

The Nakajima-Zwanzig projection operator technique is a powerful tool to derive a GME
which is needed to describe the explicit time evolution of quantum dot systems described
in chapter 2. The main idea of Nakajima and Zwanzig is to split the total density into
two parts: one where the quantum dot system and the leads are separated (P ρ̂tot) and one
where the entanglement of the quantum dot system and the leads is captured (Qρ̂tot) [30,
31]. This is done by the two projectors

PX̂ := TrB
{
X̂
}
⊗ ρ̂B, (4.1)

QX̂ := (1− P)X̂ (4.2)

with X̂ an arbitrary density matrix. There are some important properties of these pro-
jectors namely: P2 = P, Q2 = Q, PQ = QP = 0, PLB = LBP = 0, PLS = LSP,
PL2n+1

T P = 0 for n ∈ N. Applying these projectors to the LVNE result in:

P ˙̂ρ(t) = PLQρ̂(t) + PLP ρ̂(t), (4.3)

Q ˙̂ρ(t) = QLQρ̂(t) +QLP ρ̂(t). (4.4)

It is possible to solve Eq. (4.4) with the help of the propagator GQ(t) = eQLt, by multiplying
it with GQ(−t) from the left:

d

dt
[GQ(−t)Qρ̂(t)] = GQ(−t)QLP ρ̂(t). (4.5)
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4. Transport theory

Integrating this equation and then multiplying the equation from the left with GQ(t)
yields

Qρ̂(t) = GQ(t)Qρ̂(0) +

∫ t

0
ds GQ(t− s)QLP ρ̂(s). (4.6)

Reinserting this equation of the entangled part into Eq. (4.3) and keeping in mind Qρ̂(0) =
0 will lead to

P ˙̂ρ(t) = PLP ρ̂(t) +

∫ t

0
ds PLGQ(t− s)QLP ρ̂(s). (4.7)

Simplifying this expression with PLP = LSP, PLQ = PLT and QLP = LTP gives the
Nakajima-Zwanzig equation

P ˙̂ρ(t) = LSP ρ̂(t) +

∫ t

0
ds K(t− s)P ρ̂(s). (4.8)

with the Kernel superoperator K(t) = PLTḠQ(t)LTP. We have used here another slightly
di�erent de�nition of the propagator for the entangled part ḠQ(t) = e(LS+LB+QLTQ)t which
can be substituted in the following equation with the formerly de�ned GQ(t):

PLGQ(t)QLP = PLeQLtQLP = PLTe(LS+LB+QLTQ)tLTP
= PLTḠQ(t)LTP. (4.9)

The Nakajima-Zwanzig equation (Eq. (4.8)) is so far exact to all orders in the tunnelling
Hamiltonian ĤT and the Markovian approximation is not performed so that the time
evolution, not only the steady-state, is captured exactly via the propagator ḠQ(t). In
this thesis, however, only the steady-state is of interest. The steady-state of the RDM
is reached at an in�nite time and is per de�nition ρ̂red(t → ∞) := ρ̂∞. In this limit the
Laplace transformation (L.t.) can help us to simplify Eq. (4.8). In general, a Laplace
transformation is de�ned as

L.t. {f(t)} = f̃(λ) =

∫ ∞
0

dtf(t)e−λt. (4.10)

Our aim is now to perform this transformation on

ĝ(t) :=

∫ t

0
ds K(t− s)P ρ̂(s) (4.11)

which yields, due to the convolution theorem,

L.t. {ĝ(t)} = ĝ(λ) = K̃(λ)P ˜̂ρ(λ). (4.12)

According to the �nal value theorem (limt→∞ f(t) = limλ→0+ λf̃(λ)), Eq. (4.8) turns into

0 = LSρ̂∞ + lim
λ→0+

λK̃(λ)P ˜̂ρ(λ) = (LS +K) ρ̂∞. (4.13)

Hereby, we used the fact that a limit of a product is the product of the limits if they exist,
so that we can write limλ→0+ λP ˜̂ρ(λ) back into ρ̂∞. From now on, we will denote with K
the Laplace-transformed Kernel which is de�ned as

Kρ̂∞ = lim
λ→0+

TrB
{
LTG̃Q(λ)LTρ̂∞ ⊗ ρ̂B

}
(4.14)
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4.2. Sequential tunnelling

with G̃Q(λ) the Laplace transformation of the propagator ḠQ(t) which can be therefore
written as G̃Q(λ) = [λ− LS − LB −QLTQ]−1. It is possible to rewrite the Kernel K as a
series of LT. Using the relation for a geometrical series

1

x− y
=

1

x
(
1− y

x

) =
∞∑
n=0

(y
x

)n 1

x
(4.15)

with x−1 = G̃0 and y = QLTQ. G̃0 = limλ→0+ G̃0(λ) = limλ→0+ [λ− LS − LB]−1 is the
propagator of the system and the bath in Laplace space. We obtain

Kρ̂∞ = TrB

{
LT

∞∑
n=0

(
G̃0QLTQ

)2n
G̃0LTρ̂∞ ⊗ ρ̂B

}
. (4.16)

Since PL2n+1
T P = 0 for n ∈ N, only an even number of LT survives in the trace of the

bath. It should be noted that the limit limλ→0+ should be performed at the very end of the
calculation and not in the free propagator alone. In the following, this fact that the limit
still has to be performed is marked with 0+ in the propagators. This procedure of writing
the propagator G̃Q(λ) in a geometrical series is only valid if the series converges. This
condition is ful�lled in the so-called weak coupling limit where the tunnelling rate is small
compared to the temperature (~Γ� kBT ). Rewriting the Nakajima-Zwanzig equation
(Eq. (4.8)) in the steady-state limit results in

˙̂ρ∞ = 0 = Lρ̂∞ = (LS +K) ρ̂∞. (4.17)

4.2. Sequential tunnelling

Considering the full Kernel from Eq. (4.16) to the lowest non-vanishing order, K = K(2) +
O(Ĥ4

T), we get the following sequential tunnelling Kernel

K(2)ρ̂∞ = TrB

{
LT

1

0+ − LS − LB
LTρ̂∞ ⊗ ρ̂B

}
. (4.18)

This Kernel will be also called second order Kernel due to the appearance of two Louvil-
lians LT and therefore denoted by the superscript ”(2)”. To simplify the notation of a
superoperator X, let us introduce the parameter α which is de�ned by

[X, ρ̂] = Xρ̂− ρ̂X := X+ρ̂−X−ρ̂ =
∑
α

αXαρ̂. (4.19)

Using this notation for LT yields

LTX̂ = − i
~

(
ĤTX̂ − ĤTX̂

)
= − i

~
∑
pb

p
(
ĉpbD̂

p̄
b X̂ − X̂ĉ

p
bD̂

p̄
b

)
:= − i

~
∑
pb

p
(
cp,+b Dp̄,+

b − cp,−b Dp̄,−
b

)
X̂ = − i

~
∑
pb α

p cp,αb Dp̄,α
b X̂. (4.20)

Hereby should be noted that the minus sign arising from the commutator of the Hamilto-
nian is cancelled by the relation: (XY )α = αXαY α if {X,Y } = 0. The required condition
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4. Transport theory

of anticommutating operators are provided in our case by the fermionic anticommutation
relation of {ĉpb , D̂

p̄
b} = 0. The operators transform to Liouville space superoperators like

ĉpb → cp,αb where α indicates an operator which acts from the left or right side. Applying
Eq. (4.20) on the second order Kernel of Eq. (4.18), we obtain

K(2)ρ̂∞ = − i
~
∑
bαp
b′α′p′

pp′TrB

{
cp,αb Dp̄,α

b

1

i0+ − i~LS − p′ξb′
cp

′,α′

b′ Dp̄′,α′

b′ ρ̂∞ ⊗ ρ̂B
}

(4.21)

with the energy ξb′ which is associated with the rightmost bath operator which can destroy
(p′ = −) or create (p′ = +) an electron. The next step is to separate the bath part
from the system part. In order to achieve that we have to use the commutation rule for
superoperators which reads XαY α′

= −αα′Y α′
Xα in case of anticommuting operators.

The result is

K(2)ρ̂∞ =
i

~
∑
bαp
b′α′p′

pp′αα′Dp̄,α
b

1

i0+ − i~LS − p′ξb′
Dp̄′,α′

b′ ρ̂∞TrB
{
cp,αb cp

′,α′

b′ ρ̂B

}
. (4.22)

The trace over the bath can be performed using the bath correlators of the Fermi-Dirac
statistics

TrB
{
cp,αb cp

′,α′

b′ ρB

}
=
〈
cp,αlσkc

p′,α′

l′σ′k′

〉
= δll′δσσ′δkk′δpp̄′f

(pα′)
l (ξlσk) (4.23)

with the Fermi-function fpl (ε) = 1/
(
epβ(ε−µl)+1

)
together with β = 1/

(
kBT

)
and its coun-

terpart with no units fp (x) = 1/
(
epx + 1

)
. It should be emphasized that the superscript

of the Fermi-function is (pα′) which can be deduced starting from the general expression
Tr{ĉ†lσkĉlσkρ̂} = 〈n̂〉 = f+

l (ξlσk), using the cyclic property of the trace and respecting the
di�erent cases for left operators α = + and right operators α = − in our notation. Setting
ε := ξlσk yields

K(2)ρ̂∞ = − i
~
∑
lσp

∑
αα′

∞∫
−∞

dε αα′Dp̄,α
lσ

f
(pα′)
l (ε) glσ(ε)

i0+ − i~LS + pε
Dp,α′

lσ ρ̂∞ (4.24)

with the replacement
∑

b =
∑

lσk =
∑

lσ

∫
dε
∑

k
δ (ε− εlσk) =

∑
lσ

∫
dε glσ(ε) with glσ(ε)

the density of states for the spin σ of the l-lead. It should be noted that throughout this
thesis the D-operators are not dependent on k and thus are not dependent on ε as well.
Therefore, we will drop the index k of the D-operators after the energy integration. It
will be important for the energy integration to have a Lorentzian cut-o� function L(W̃ , ε)
which ensures the convergence of the integral. The physical argument for this is that we
assume the so-called wide band limit. In a wide band of energies, the density of states is
constant (at ḡlσ) with a cut-o� at very high energies. According to this requirement, the
density of states could be written as glσ(ε) = ḡlσL(W̃ , ε− µl) = ḡlσ W̃

2/((ε− µl)2 + W̃ 2)
with the high energy band limit W̃ . To proceed further, we separate the D-superoperators
again in the tunnelling amplitudes and the d-superoperators to be able to de�ne the entries
of the tunnelling rate matrix as

Γpl,nm :=
∑
σ

Γpσl,nm =
∑
σ

2π

~
ḡlσt

p̄
lσk,nt

p
lσk,m. (4.25)

As it can be deduced from its name, it has the dimension of one over time. The explicit
form of these matrices will be at the very heart of the interference e�ects which will be
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4.2. Sequential tunnelling

discussed to a greater extent in chapter 7. Their size is in general n× n where n is the
number of single-particle states of our quantum dot system. Expressing Eq. (4.24) with
the tunnelling rate matrix leads to

K(2)ρ̂∞ = − i

2π

∑
nm

∑
pl

∑
αα′

∞∫
−∞

dε αα′Γpl,nmd
p̄,α
n

f
(pα′)
l (ε)L(W̃ , ε− µl)
i0+ − i~LS + pε

dp,α
′

m ρ̂∞. (4.26)

where dp̄,αn is the d̂pn-operator in the Liouville space. To perform the energy integral in this
Kernel, we have to go from the operatorial level with the Liouvillian LS acting on the whole
density matrix containing many di�erent energy di�erences to one speci�c energy di�erence
∆E. This projection is explicitly shown in [29]. The part of the energy integration can be
then substituted by Y α′

+ (β(∆E − pµl)) with

Y n
m (µ) := − i

2π

∫
dx

f (n)(x)L(W,x)

m(x− µ) + i0+
. (4.27)

with the renormalized energy band limit W so that W is dimensionless. This integral
is explicitly performed in Appendix A in close analogy to [27], but with the important
di�erence that the splitting of the real and the imaginary part is not executed. This
splitting is closely related to the Sokhotski-Plemelj theorem with its imaginary part with a
δ-function and its real part with a principle part integration. With our approach, though,
we rely only on the residuum theorem to obtain the result. This approach will be the
method of choice also for the more complicated integrals later in this thesis. Finally, we
get for Y n

+ (µ),

Y n
+ (µ) = −1

2
fn(µ)− in

2π

[
ReΨ(0)

(
1

2
+
iµ

2π

)
− C

]
= −1

4
− in

2π

[
Ψ(0)

(
1

2
+
iµ

2π

)
− C

]
(4.28)

with the constant C = Ψ(0)(1
2 + W

2π ) de�ned by the renormalized wide band constant W .
We furthermore introduced the digamma function

Ψ(0) (z) := −
∞∑
n=0

1

n+ z
+

∞∑
n=1

log

(
1 +

1

n

)
= −

∞∑
n=0

1

n+ z
+ C ′, z ∈ C. (4.29)

The last step of Eq. (4.28) is the result of our residuum-only approach and the �rst equal-
ity sign is reached through the aforementioned Sokhotski-Plemelj theorem. The relation
to transform the Fermi-function into the imaginary part of a digamma function is the
following

ImΨ(0)

(
1

2
+
ix

2π

)
=
π

p

(
1

2
− fp(x)

)
, x ∈ R, p ∈ {±1} . (4.30)

The constant C always disappears when summing over the α-indices. Therefore, we can
drop C from the sequential tunnelling Kernel calculation. The proof can be found in
Appendix B. The �nal expression for the second order Kernel K(2) is obtained by inserting
the energy integral function Y into Eq. (4.26)

K(2)ρ̂∞ =
∑
nmp
l αα′

αα′ Γpl,nmd
p̄,α
n dp,α

′
m Y α

+

(
β(∆Empα′ − pµl)

)
ρ̂∞. (4.31)

It should be noted that the energy di�erence ∆Empα′ depends on the dp,α
′

m -superoperator.
This superoperator will change the density matrix on which then the system Liouvillian
LS is acting on to retrieve an energy di�erence ∆E.
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4. Transport theory

4.3. Cotunnelling and pair tunnelling

If we include the next leading order in the expansion of the Kernel, we get a Kernel which
is valid up to the fourth order: K = K(2) + K(4) + O

(
Ĥ6

T

)
. This regime of tunnelling

events up to fourth order in LT is better known as the cotunnelling transport regime.
In this regime two new processes are included, namely the cotunnelling ones and pair
tunnelling ones (depicted in Figure 1.2). For the fourth order Kernel, we obtain according
to Eq. (4.16):

K(4) = PLTG̃0QLTQG̃0QLTQG̃0LTP (4.32)

Applying PL2n+1
T P = 0 for n ∈ N yields:

K(4) = PLTG̃0LTG̃0QLTG̃0LTP
= PLTG̃0LTG̃0LTG̃0LTP − PLTG̃0LTPG̃0PLTG̃0LTP. (4.33)

We used hereby also that G̃0 commutes with Q respective P and Q2 = Q so that the
outermost Q-operators vanish and the innermost square to Q. If we let K(4) act on a
density matrix, we get

K(4)ρ̂∞ =
1

~4

∑
{αi}{bi}
{pi}

(∏
i

pi

)
TrB

{
cp4,α4

b4
Dp̄4,α4

b4

1

0+ − LS − LB
cp3,α3

b3
Dp̄3,α3

b3

1

0+ − LS − LB
cp2,α2

b2
Dp̄2,α2

b2

1

0+ − LS − LB
cp1,α1

b1
Dp̄1,α1

b1
ρ̂∞ ⊗ ρ̂B

}

− 1

~4

∑
{αi}{bi}
{pi}

(∏
i

pi

)
TrB

{
cp4,α4

b4
Dp̄4,α4

b4

1

0+ − LS − LB
cp3,α3

b3
Dp̄3,α3

b3

P 1

0+ − LS
Pcp2,α2

b2
Dp̄2,α2

b2

1

0+ − LS − LB
cp1,α1

b1
Dp̄1,α1

b1
ρ̂∞ ⊗ ρ̂B

}
. (4.34)

Bringing the bath operators together with the help of the commutator relation for superop-
erators and performing the trace on them results in an expectation value of four respective
two creation operators. The leftmost bath Louvillian is picking up the energies from the
three Louvillians to the right so that a sum of energies is arising:

K(4)ρ̂∞ =− i

~
∑
{αi}{bi}
{pi}

(∏
i

piαi

)[〈
cp4,α4

b4
cp3,α3

b3
cp2,α2

b2
cp1,α1

b1

〉
Dp̄4,α4

b4

1

i0+ − i~LS −
∑3

j=1 pjξbj
Dp̄3,α3

b3

1

i0+ − i~LS −
∑2

j=1 pjξbj
Dp̄2,α2

b2

1

i0+ − i~LS − p1ξb1
Dp̄1,α1

b1
ρ̂∞

−
〈
cp4,α4

b4
cp3,α3

b3

〉〈
cp2,α2

b2
cp1,α1

b1

〉
Dp̄4,α4

b4

1

i0+ − i~LS − p3ξb3
Dp̄3,α3

b3

1

i0+ − i~LS

Dp̄2,α2

b2

1

i0+ − i~LS − p1ξb1
Dp̄1,α1

b1
ρ̂∞

]
(4.35)
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4.3. Cotunnelling and pair tunnelling

where i ∈ {1, 2, 3, 4}. Wick's theorem for superoperators states (compare appendix A1 of
[29]):

〈cα4
4 cα3

3 cα2
2 cα1

1 〉 = 〈cα4
4 cα3

3 〉 〈c
α2
2 cα1

1 〉
− α2α3 〈cα4

4 cα2
2 〉 〈c

α3
3 cα1

1 〉
+ α2α3 〈cα4

4 cα1
1 〉 〈c

α3
3 cα2

2 〉 (4.36)

With the help of this relation, it is possible to simplify our fourth-order Kernel. The �rst
term of the three terms in the result of Wick's theorem is exactly canceling the second term
of Eq. (4.35). The two remaining contributions of the relation can be split up in K(4,D)

K(4,D)ρ̂∞ =− i~
4π2

∑
{αi}{bi}
{n}{m}
{p}

α1α4

∞∫
−∞

dε

∞∫
−∞

dε′ Γpl,nmΓp
′

l′,n′m′L(W̃ , ε− µl)L(W̃ , ε′ − µl′)dp̄,α4
n

f
(pα1)
l (ε)

i0+ − i~LS + pε
dp̄

′,α3

n′
1

i0+ − i~LS + pε+ p′ε′
dp

′,α2

m′
f

(p′α2)
l′ (ε′)

i0+ − i~LS + pε
dp,α1
m ρ̂∞

(4.37)

and K(4,X)

K(4,X)ρ̂∞ =
i~

4π2

∑
{αi}{bi}
{n}{m}
{p}

α1α4

∞∫
−∞

dε

∞∫
−∞

dε′ Γpl,nmΓp
′

l′,n′m′L(W̃ , ε− µl)L(W̃ , ε′ − µl′)dp̄,α4
n

f
(pα1)
l (ε)

i0+ − i~LS + pε
dp̄

′,α3

n′
1

i0+ − i~LS + pε+ p′ε′
dp,α2
m

f
(p′α2)
l′ (ε′)

i0+ − i~LS + p′ε′
dp

′,α1

m′ ρ̂∞.

(4.38)

The constant part of the density of states is disappearing into the two tunnelling rate
matrices Γpl,nm and Γp

′

l′,n′m′ . It can be shown that this superoperator formalism is equivalent
to the ansatz in the dissertation of S. Koller [5]. The di�erence between these approaches
is that the superoperator formalism is treating the problem in the Liouville space and
therefore can be mapped into single-path diagrammatics. Koller's approach is performed in
the Hilbert space and can by nicely mapped into double-path diagrammatics. Furthermore,
she explicitly calculates in her dissertation the real part of these energy integrals of the
fourth order Kernel which she calls D- and X-functions (compare Table 4.1). The next
step is to perform the energy integrals of the two fourth order Kernels. The D-function is
de�ned by

Dnn′
pp′ (µ, µ′,∆) =

− i~
4π2

∞∫
−∞

dx

∞∫
−∞

dx′
f (n) (x)

i0+ + p (x− µ)

1

i0+ + px+ p′x′ −∆

f (n′) (x′)

i0+ + p (x− µ′)
(4.39)

and the X-function reads

Xnn′
pp′ (µ, µ′,∆) =

− i~
4π2

∞∫
−∞

dx

∞∫
−∞

dx′
f (n) (x)

i0+ + p (x− µ)

1

i0+ + px+ p′x′ −∆

f (n′) (x′)

i0+ + p′ (x′ − µ′)
. (4.40)
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The analytic expression of the two integrals can be found in Appendix C. Using these two
de�nitions K(4) will simplify to

K(4)ρ̂∞ =
[
K(4,D) +K(4,X)

]
ρ̂∞

=
∑
{αi}{bi}
{n}{m}
{p}

α1α4β Γpl,nmΓp
′

l′,n′m′

[
Dα1α2

++ (�,�, •)dp̄,α4
n dp̄

′,α3

n′ dp
′,α2

m′ dp,α1
m

+Xα1α2
++ (�, ?, •)dp̄,α4

n dp̄
′,α3

n′ dp,α2
m dp

′,α1

m′

]
ρ̂∞ (4.41)

with � = β(µj3 − pµl), � = β(µ′j1 − pµl), • = β(∆j2 − pµl − p′µl′) and ? = β(µ′j1 −
p′µl′) where the inverse of the temperature enters via β and the chemical potential of the
respective leads via µl (compare Appendix C). The subscripts {j1, j2, j3} of the energy
di�erences µ′,∆ and µ indicate that these energies depend on the variables of the �rst
(α1, p,m), two �rst respective three �rst d-superoperators.

4.4. Diagrammatics

In this section, we will discuss the diagrammatic representation of the Kernel of Eq. (4.16)
which was introduced by Gerd Schön, Herbert Schoeller and Jürgen König [32, 33]. This
helps us to identify and visualize the underlying tunnelling processes. At �rst, we want to
introduce a double-path diagrammatics with its two time lines which represent a forward
and backward propagation on a Keldysh contour [5, 27]. At the end, we want to draw a
comparison between the latter and a single-time line diagrammatics which is more compact
and which represents the Liouville space in a more straightforward way [29].

Starting with the two-time line diagrams, we notice the general structure of the GME of
Eq. (4.17). Every �nal state (|Ψb〉 〈Ψb′ |) is obtained from initial states (|Ψa〉 〈Ψa′ |) which
will be transformed via tunnelling events contained in the Kernel.

〈Ψb| ˙̂ρ∞ |Ψb′〉 = ˙̂ρ∞bb′ = 0 = − i
~
∑
a′a

δabδa′b′
(
Ea − E′a

)
ρaa′ +

∑
a′a

Kaa′
bb′ ρ̂

∞
aa′

:= δabδa′b′


〈Ψb′ | 〈Ψa′ |

|Ψb〉 |Ψa〉

ρ̂∞aa′



+
∑
a′a


〈Ψb′ | 〈Ψa′ |

|Ψb〉 |Ψa〉

ρ̂∞aa′

 . (4.42)

The �rst part of the equation is the coherent part which directly stems from the system
Liouvillian LS and can be seen as a free propagation of one speci�c state. The second
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4.4. Diagrammatics

part with the grey block in the middle represents all tunnelling events arising from the
perturbation expansion of the tunnelling Hamiltonian. Approximating the Kernel up to
sequential tunnelling will lead to the following eight diagrams:

K(2) = lσ + lσ

+ lσ + lσ + lσ

+ lσ + lσ + lσ

:=
lσp

α1α2

(4.43)

The two black vertices represent the two Dp,α
n -operators of the Kernel. They are connected

via a dotted line which stands for a Wick contraction. The Wick contraction will result in
a Fermi-function (compare Eq. (4.23)) and thus the dotted line connecting two dots can
be further speci�ed with the lead index l, the lead spin σ and the p index which governs
the direction of this fermionic line. As an example, one could take the �rst diagram
of Eq. 4.43 where we see that the rightmost and therefore time-wise the �rst tunnelling
vertex is connected to an out-tunnelling event. It can be seen as an electron with spin
σ which is annihilated in the system and transferred to the l-lead. The tunnelling rate
matrix Γpl,nm is incorporated in the two Dp,α

n -operators and can set a speci�c diagram a
priori to zero. It should be emphasized that the lead spin in the two connected tunnelling
events is always preserved but it is not in general true that a spin up injected electron
will create a spin up electron with respect of the dot system. To each diagram a certain
Y -function is associated which will weigh a speci�c tunnelling event similar to the entry
of the tunnelling rate matrix. Dp,α

n -operators on the upper/lower contour have an index
α = ±1 and act from the left/right on the density matrix. The last diagram of Eq. (4.43) is
a single-time line diagram. By summing up the variables p, α1 and α2, the eight sequential
tunnelling diagrams of the two-time line diagrammatics are recovered. In Table 4.1, we
�nd a comparison of these two concepts.

Furthermore, we want to direct the interested reader for the transformation of the dia-
grams into the analytic form and vice versa to the appendix A1 of the dissertation of M.
Niklas [34]. With these so-called diagrammatic rules, it is possible to rephrase the lengthy
tunnelling contributions into compact diagrams and visualize them. At this point, we
will give an example of a cotunnelling diagram of the D-type in both diagrammatics. To
highlight the physical interpretation of the diagrams, we opted to project these diagrams
already on the exemplary initial density matrix |0〉 〈0| of an single quantum dot with the
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4. Transport theory

four available states {|0〉 , |↑〉 , |↓〉 , |2〉}:

|2〉 〈2| |0〉 〈0|
|2〉 〈0| |↓〉 〈0||2〉 〈↑|

p'=+,σ′ =↑,l'=L

p=+,σ =↓,l=L

- +- +

=

〈2| 〈0|

|2〉 |0〉+

-

+

-

(4.44)

The depicted diagrams can be classi�ed as pair tunnelling events where to electrons - in
this case from the left lead - enter into the system (compare Figure 1.2). The p/p′-indices
together with the α-indices which are depicted below the tunnelling vertices, indicate that
two electrons are created in the system part. The σ/σ′-indices tell us that the created
electrons have opposite spin. Fixing all the indices will lead to three di�erent virtual inter-
mediate states during the tunnelling event and their energies will be then the parameters
of the respective D-function.

Hilbert space Liouville space

Equation of
motion

˙|Ψ〉 = − i
~Ĥ |Ψ〉 ˙̂ρ = Lρ̂

Evolutors Û(t, 0) = e−i/~ Ĥt G(t, 0) = eLt

Free evolution Û0(t, 0) |Ψa〉 〈Ψa′ | Û †0(t, 0) G0(t, 0) ρ̂aa′

Diagrammatics
of a free evolu-
tion 〈Ψb′ | 〈Ψa′ |

|Ψb〉 |Ψa〉
|Ψb〉 〈Ψb′ | |Ψa〉 〈Ψa′ |

D-type
diagrams 〈Ψb′ | 〈Ψa′ |

|Ψb〉 |Ψa〉

|Ψb〉 〈Ψb′ | |Ψa〉 〈Ψa′ |

X-type
diagrams 〈Ψb′ | 〈Ψa′ |

|Ψb〉 |Ψa〉
|Ψb〉 〈Ψb′ | |Ψa〉 〈Ψa′ |

Table 4.1 Comparison of the Hilbert space and the Liouville space

4.5. Current Kernel

In close analogy to the Liouvillian L = LS + K with its (time evolution) Kernel K =
K(2) + K(4) which was derived in the previous sections, we can �nd the so-called current
Kernel. The reasoning starts with Eq. (3.19) where we know that the expectation value
of every operator can be deduced from the density matrix. The current is de�ned as the
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4.5. Current Kernel

derivative of the particle number up to a prefactor with the elementary charge e:

Il = −e
d
dt

〈
N̂l

〉
= −e

d
dt
Tr
{
N̂lρ̂(t)

}
= −eTr

{
−N̂l

i

~

[
Ĥtot, ρ̂(t)

]}
= e

i

~
Tr
{
N̂lĤtotρ̂(t)

}
− e

i

~
Tr
{
N̂lρ̂(t)Ĥtot

}
= Tr

{
e
i

~

[
N̂l, Ĥtot

]
ρ̂(t)

}
= Tr

{
e
i

~

[
N̂l, ĤT

]
ρ̂(t)

}
= Tr

{
Îlρ̂(t)

}
= Tr

{
ÎlQρ̂(t)

}
. (4.45)

Due to the cyclic property of the trace, we can combine the particle number operator of
the l-lead N̂l =

∑
σk ĉ

†
lσkĉlσk again with the total Hamiltonian Ĥtot. In the second last

step, we obtain the de�nition of the current operator Îl of the l-lead. In the last step,
we use the fact that one can concentrate itself only on the entangled part Qρ̂(t) of the
density operator. The part P ρ̂(t) is always diagonal in the bath basis and does therefore
not contribute to the current due to the odd number of lead operators in the current
operator. The procedure is now very similar to the one of the time evolution Kernel. We
plug Eq. (4.6) into Eq. (4.45) and obtain

Il = Tr
{
Îl

∫ t

0
ds GQ(t− s)QLP ρ̂(s)

}
= Tr

{∫ t

0
ds KIl (t− s)LP ρ̂(s)

}
(4.46)

with the current Kernel KIl (t) de�ned as KIl (t) = P ÎlḠQ(t)LTP and KIl = limλ→0+ K̃Il (λ).
The stationary current is then given by

I∞l = TrB

{
Îl

∞∑
n=0

(
G̃0QLTQ

)2n
G̃0LTρ̂∞ ⊗ ρ̂B

}
(4.47)

if the same steps are taken as in section 4.1 in respect with the Laplace transformation. In
comparison with the time evolution Kernel (Eq. (4.16)) just the �rst LT is substituted by
the current operator. Therefore the calculation of the current kernel is very similar. There
are three modi�cations with respect to the diagrams of time evolution Kernel:

• Lead index: The lead index l of the current operator Îl �xes the l-index of the last
(leftmost) vertex. No summation over the fermionic line connected to the last vertex
is therefore needed.

• Position of last vertex: The current operator Îl is a left superoperator. For this
reason, the last vertex is �xed on the upper contour (two-time line diagrammatics)
or generally, this α-index is �xed to +1.

• Direction of last fermion line: The sign of the diagrams where the fermionic line
points away from the last so leftmost vertex has to be inverted. This di�erence stems
from a sign di�erence in ĤT in respect with Îl (compare Eq. (2.5) with Eq. (4.46)).
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4. Transport theory

Figure 4.1 Current and di�erential conductance of a single quantum dot with exited
states due to Zeeman splitting: a) Fourth order current of an Anderson impurity model with
the Hamiltonian of Eq. (2.4) which is additionally made particle-hole symmetric. The green areas
represent the Coulomb diamonds (e.g. the one with particle number N = 1) where the current is
strongly suppressed. The parameters are the following and all measured in units of the Coulomb
interaction U = 1: T = 0.033, Ez = 0.5, W = 1050 and a diagonal Γ with a coupling strength of
0.006. The gate and the bias voltage are both as well measured in units of U so that the particle
number rises from the right to the left. b) Di�erential conductance dI4/dV in a so-called stability
diagram. The excited transition lines due to Zeeman splitting can be seen clearly. In the Coulomb
blockade region, there is enhanced current through cotunnelling events in comparison with only
sequential tunnelling.

4.6. Transport code implementation

In this section, we will shortly address the topic of the transport code implementation of
the just-introduced theory. The main goal of this implementation is to rigorously include
coherences within the cotunnelling transport regime. Furthermore, we want to be as generic
as possible in terms of the speci�cation of the treated systems, e.g. we want to easily change
the leads by giving them a spin polarization or change the size of the central system. We
are aware that there are already other codes (e.g. [35]) which are capable of treating the
cotunnelling transport regime with coherences but they are not as easily applicable to more
sophisticated systems due to their numerical expensiveness.

In the past, we used, among others, the program called KinEq which was written by M.
Leijnse, M. R. Wegewijs and S. Koller [5, 36]. This transport code is well optimized in
terms of calculation time but there is a problem in the way how it treats coherences. It
fully incorporates the second order coherences via the principal part of the Y -function but
not fourth order coherences where one would need the imaginary part of the cotunnelling
integrals D and X. The line of argumentation which justi�es their procedure of still having
a consistent fourth order Kernel is based on a splitting of the Kernel in a secular part of only
populations and a general non-secular part [5]. However, if one has to deal with coherences
which are quasi-degenerate, this ansatz cannot justify anymore a proper treatment of the
problem. By contrast, we can con�dently claim that with our newly implemented code,
we can treat also the dynamics of all coherences up to fourth order. On the other side, we
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4.6. Transport code implementation

Figure 4.2 Double quantum dot reduced density matrix of the steady state: The diago-
nal elements are the populations and the o�-diagonal elements are the coherences. In general, the
size of the reduced density matrix of a double quantum dot is of size 16 × 16 due to its 16 states
{|0, 0〉 , |↑, 0〉 , |0, ↑〉 , |↓, 0〉 , ..., |2, 2〉} which are depicted in a number representation. The general
Kernel would be then of size 256 × 256. Due to the conservation of total particle number, the
entries, which have to be considered, are reducing drastically (blue blocks). It is obvious that with
increasing system size the exact treatment of all states soon becomes unfeasible - even just in the
blue blocks of de�ned particle number.

enter into a way more complicated realm due to the sheer number of coherences when we
consider bigger systems with many degenerate or quasi-degenerate states.

In the previous sentences, we justi�ed the way, namely to include all coherences up to fourth
order, how we are setting up the code and now we will come to the actual description of it.
It should be emphasized that this description is to no point complete but rather will focus
on the overall picture. The numerical computing environment for this project was chosen
to be MATLAB. Usually, we want to calculate the current in a gate voltage-bias voltage-
map (see Figure 4.1 a)). At every point in this voltage landscape, we set up time the
evolution Kernel - if desired up to fourth order. According to the modi�cations explained
in section 4.5, we easily can deduce from the time evolution Kernel K also the current
Kernel KIl which is just a subset of it. The steady-state density matrix ρ̂∞ can be then
calculated (compare Eq. (4.17)) by

0 =
(
LS +K(2) +K(4)

)
ρ̂∞ (4.48)

with keeping in mind the de�nition of the system Liouvillian LSX̂ = − i
~

[
ĤS, X̂

]
. Fortu-

nately, we can reduce the number of non-zero entries of the steady-state density matrix
due to the conservation law of total particle number (see Figure 4.2). With additional con-
servation laws, we can further reduce the acquired block-diagonal structure of the density
matrix. For example, we can exclude coherences between states of di�erent total spin num-
ber (conservation of total spin). Solving Eq. (4.48) can be a tough mathematical problem
in its own. During this work, we faced at several occasions numerical instabilities due to
an inadequate solution of this task where the result can be then highly inaccurate. We use
the built-in eigs-function of MATLAB to solve the equation and �nd then the eigenvector
of the eigenvalue which is closest to zero. The eigs-function of MATLAB uses an Arnoldi
algorithm to �nd the eigenvectors respective the eigenvalues [37]. If there are many eigen-
values which ful�ll this condition of being close to the value of zero, then it can happen
that we do not �nd the correct eigenvector. It should be emphasized that we are aware
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4. Transport theory

of more sophisticated ways, namely using a preconditioner (compare [38]), to tackle this
problem but at this stage we do not focus on this. The focus of the implementation is more
on the crucial step to calculate the time evolution Kernel via the diagrammatic technique
as accurately as possible while at the same time not using too much computational power.
The time-consuming part is the one of the calculation of the D- and X-functions. The
reason for that is the fact that the analytical expressions of them (compare Appendix C)
include sums which in principle go up to in�nity. To speed up the calculations, we �rst
of all choose to split them up into di�erent cases where the involved energy di�erences
share certain properties like e.g. µ = µ′ and ∆ = 0 in the case of D.i . There, the sum of
a digamma function with two denominators of the general case disappears and therefore
speeds up the evaluation. In the general cases, we truncate the sums in the following way,
here exemplary shown for a part of the D-function:

inn′

2π

∞∑
k=0

Ψ(0)
(
1 + k + i∆

2π

)(
k + 1

2 + iµ
2π

)(
k + 1

2 + iµ′

2π

)
≈ inn′

2π

N−1∑
k=0

Ψ(0)
(
1 + k + i∆

2π

)(
k + 1

2 + iµ
2π

)(
k + 1

2 + iµ′

2π

)
+
∞∑
k=0

Ψ(0) (1 + k +N)(
k + 1

2 +N
)2 +O(∆) +O(µ) +O(µ′)

]
. (4.49)

We noticed that if we truncate the sum up to a certain number there is a slowly converging
shift in comparison to the exact result. If we add the �rst term of a Taylor expansion in
the three energy parameters to the truncated sum, then we compensate this shift. The
truncation is chosen so that (N − 1)� |β(max(µ, µ′))/(2π)|.

Another time-consuming part is the calculation of the intermediate energies which will be
then the arguments of theD- andX-functions. These energies stem from the product of the
four creation-/annihilation-operators (compare Eq. (4.41)) and they can be seen as di�erent
paths to reach a certain �nal state. In the code, a huge speedup is achieved if we precal-
culate this product of the dp,αi

n -operators for every set of parameters {αi}, {n}, {m}, {p}.
We can store then all the paths which are associated with one diagram in an energy inde-
pendent tensor (compare Table 4.2). This tensor can be �nally used for the whole voltage
landscape.
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4.6. Transport code implementation

Final state: |Ψb〉 〈Ψb′ | µ-state ∆-state µ′-state Initial state: |Ψa〉 〈Ψa′ |

|2, 2〉 〈2, 2| |↓, 2〉 〈2, 2| |↓, ↓〉 〈2, 2| |↓, 2〉 〈2, 2| |2, 2〉 〈2, 2|

|2, ↑〉 〈2, ↑| |↓, ↑〉 〈2, ↑| |↓, 0〉 〈2, ↑| |↓, ↑〉 〈2, ↑| |2, ↑〉 〈2, ↑|

|↑, ↑〉 〈↑, ↑| |0, ↑〉 〈↑, ↑| |0, 0〉 〈↑, ↑| |0, ↑〉 〈↑, ↑| |↑, ↑〉 〈↑, ↑|

... ... ... ... ...

Table 4.2 Precalculation of intermediate paths for the cotunnelling energy integrals:
A speci�c diagram allows only some transitions from an intial state |Ψa〉 〈Ψa′ | to a �nal state
|Ψb〉 〈Ψb′ |. In this table, an exemplary diagram which is determined by a certain con�guration

of its d-operators is chosen (dp̄,α4
n dp̄

′,α3

n′ dp
′,α2

m′ dp,α1
m → d+,+

↑L d+,+
↑R d−,+↑R d−,+↑L ). It is a D-type diagram

where all the superoperators act from the left on the density matrix due to the α-indices. The
density matrix which we are looking at in this example is one of a double dot with four single-
particle states {|↑ L〉 , |↑ R〉 , |↓ L〉 , |↓ R〉}. Before going through the whole voltage landscape, we
identify the paths which are connected to each diagram and store them in a tensor. For the actual
calculation of the Kernel with a given bias and gate voltage, we just have to calculate the value of
the possible energies but not again the paths itself, plug them into the D-function and place the
result according to the initial respective �nal state in the correct position of the Kernel.
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5
Spin resonance model

In this chapter, we will focus on transport through a single and a double quantum dot in the
spin valve con�guration. In this setup, one can �nd spin resonance lines in the stability
diagram which are due to a mixing of spin channels induced by an e�ective exchange
�eld. This setup is ideal for comparing the results of the self-implemented transport code
of the cotunnelling regime with existing numerical transport data. In this respect, we
have to mention the work of M. Hell et al. where they analyze such a spin resonance in
a single quantum dot [35]. We will dedicate the �rst section to the explanation of this
mechanism and afterwards, we will show explicitly the e�ect of including cotunnelling
events to the transport calculations. In the second section of this chapter, we will go
beyond the Anderson impurity model and extend their work by looking at a parallel double
quantum dot and analyze its spin resonance lines with the help of our found equations of
motion.

5.1. Single quantum dot spin resonance

In order to obtain a spin resonance line inside the Coulomb blockade region, three points
are crucial. First of all, we need to have degenerate or almost degenerate states in our
system. This is achieved when we do not apply an external magnetic �eld to the quantum
dot so that the spin up and spin down levels have the same energy. As we have pointed out
already in the introduction, this is a necessary condition for interference e�ects to appear.
The second point is - again another prerequisite of interference e�ects - the existence
o�-diagonal elements in the tunnelling rate matrices which can be associated with the
tunnelling behaviour of the two leads. To be more precise, we do not need them just to
be o�-diagonal rather them not to share a common eigenbasis with the energy eigenbasis
of the central system. With this condition, we are sure that there is not another basis
where these three constituents, namely right lead, leaf lead and central system, can be
diagonalized at the same time. The last point for the existence of a spin resonance line
is that we need the setup to be in the so-called spin valve con�guration which we achieve
e.g. with ferromagnetic leads of almost antiparallel alignment [39]. The mechanism of
a spin valve setup is explained in more detail in Figure 5.1. First of all, we de�ne the
Hamiltonian of the quantum dot Ĥ0 (compare Eq. (2.3)):

Ĥ0 =
∑

ζ={↑,↓}

(
ε0 −

U

2

)
d̂†ζ d̂ζ + Ud̂†↑d̂↑d̂

†
↓d̂↓. (5.1)
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Figure 5.1 General setup of a single quantum dot in the spin valve con�guration: The
two black arrows indicate the polarization unit vectors nL/R of the two leads which are in this
case almost antiparallel aligned so that the angle between them is approaching φ = π. If now
one electron with the spin from the left lead enters into the system, there is almost no possibility
for this electron to leave the system through the right lead. The red arrow symbolizes the spin
of the central system S. The e�ective magnetic �eld B which stems from an interplay of spin
polarization and electrical correlations on the dot will induce a spin precession. With the thickness
of the arrows between the dot and the leads, the asymmetry in the coupling should be emphasized.
At the vectorial resonance condition of maximum precession (compare Eq. (5.7)) the spin valve
e�ect is partly lifted and a spin resonance line appears (see Figure 5.2).

To account for the spin polarization, we choose the tunnelling rate matrix for the l-lead to
have the following form:

Γpl,nm =
∑
σ

2π

~
ḡlσt

p̄
lσ,nt

p
lσ,m =

[
Γ0
l (12 + Plnl · σ)

]p
nm

. (5.2)

An upper index p = −1 of the matrix in the last step does not change the matrix while
p = +1 will transpose the matrix (compare Eq. (4.25)). The spin-averaged coupling
strength of the tunnelling rate matrix Γ0

l is de�ned by half of the trace of the given matrix.
The polarization of the l-lead is entering this formula via Pl and the polarization unit
vector of the l-lead via nl. The vector σ contains the Pauli-matrices σ as entries:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5.3)

From now on, we will use bold symbols to denote vectors. In Figure 5.2, the transport data
of the self-implemented code is shown. Before explaining all the details of the plots, we �rst
want to give all the tools which are necessary for a full understanding of the mechanism.
To de�ne the state of a single quantum dot, we need in principle six parameters: the three
populations (p0, p1 and p2) and the three components of the spin S. The components of
the spin are de�ned by the expectation values of the spin operators Ŝi

Ŝi =
1

2

∑
ζ,ζ′

d̂†ζ′ [σi]ζζ′ d̂ζ′ (5.4)
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5.1. Single quantum dot spin resonance

with i = x, y, z. The equations of motion which follow from this setup are

ṗ0 = − 2γ+
10 p0 + γ−10 p1 + 2γ−10 · S, (5.5a)

ṗ1 = 2γ+
10 p0 −

(
γ−10 + γ+

21

)
p1 + 2γ−21 p2 − 2

(
γ−10 − γ

+
21

)
· S, (5.5b)

ṗ2 = γ+
21 p1 − 2γ−21 p2 − 2γ+

21 · S, (5.5c)

Ṡ = γ+
10 p0 +

(
−1

2γ
−
10 + 1

2γ
+
21

)
p1 − γ−21 p2 −

(
γ−10 + γ+

21

)
S − S ×B (5.5d)

with γ±nm =
∑

l γ
±
l,nm and γ±l,nm = Γ0

l f
±
l (ε−µnm) where µnm is the energy di�erence between

the state n and the state m. The vectorial form is de�ned by γ±nm =
∑

l nlPlγ
±
l,nm. Out of

an analysis of these equations, we can deduce two things. Firstly, we encounter in the last
term of Eq. (5.5d) a part which acts as if it would be a magnetic �eld thus will be called
e�ective magnetic �eld B:

B =
∑
l

2PlΓ
0
l Im

(
Y +

+ (µ10 − µl)− Y +
+ (µ21 − µl)

)
nl (5.6)

In other sources, the same �eld is referred to an exchange �eld. The e�ective magnetic �eld
is induced by Coulomb interaction and is characterized by the di�erence of the principal
parts of the Y -function and thus by the real part of the digamma functions (compare
Eq. (4.28)). This e�ective magnetic �eld can be seen as a many-body interaction e�ect
which will vanish if the Coulomb interaction U becomes zero. The e�ective magnetic �eld
B causes precession of the spin S but it also generates a spin splitting of order Γ0

l . Due
to this precession, an electron captured in a spin valve con�guration can now turn its spin
in order to leave the dot which results in a lifting of the spin valve. This lifting e�ect
can only appear if our system stays in a coherent state for a certain time to be able to
precess. Coherence, as we have pointed out already a couple of times, is described by the
o�-diagonal elements of the tunnelling rate matrix. For a coherent state in the reduced
density matrix where we traced out the leads and the tunnelling rate matrices are tilted,
we need inevitably the o�-diagonal elements of the reduced density matrix, namely the
coherences, to describe such a state. It is therefore reasonable why in B the principal
parts which are connected to the dynamics of the coherences appear. In the work of M.
Hell, they gave a vectorial argument for the lifting of the spin valve [35]:

B ·nL = (BLnL +BRnR) ·nL =
((
BL +BR,‖

)
nL +BR,⊥n⊥

)
·nL = BL+BR,‖ = 0 (5.7)

They argue that this is the condition of maximum precession. The magnetic �eld can
be split up into one part stemming from the left lead BLnL and one from the right lead
BRnR (compare Eq. (5.6)). It is possible to reexpress the part from the right lead into
one which is perpendicular to left lead BR,⊥n⊥ = BR sinφn⊥ and one which is parallel
to it BR,‖nL = BR cosφnL. The second point which we can deduce from the equations
of motion is the one of the overall current suppression of the spin valve itself. When the
e�ective magnetic �eld is ignored and at large biases where the Fermi-functions are either
0 or 1, we get for the current [39]:

I =
eΓ0

L

4~

(
1− P 2

L sin2 φ

2

)
. (5.8)

Now, we want to turn our attention to a precise description of the actual transport data
of Figure 5.2. One can observe a spin resonance line in the current landscape but even
better in the stability diagram of di�erential conductance. In all the shown plots, we have
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an asymmetry (Γ0
L/Γ

0
R 6= 1) in the coupling to the leads. Without this condition, we

would observe the resonance line at zero bias voltage according to Eq. (5.7). The plot of
the fourth order di�erential conductance (see Figure 5.2 a)) matches perfectly in shape
and magnitude the one from Figure 2 of [35]. Together with various line cuts which also
agree with their data (e.g. Figure 9 of [35]), we have a strong indication that our fourth
order code is producing trustworthy results. This spin resonance e�ect already appears in
second order calculations as it is anticipated from the second order resonance condition
(see Figure 5.2 b)). Comparing the scale of the di�erential conductance in fourth and
second order, we can see that the resonance line in the second order is stronger than in the
fourth order plot. Generally, there are two competing in�uences of including fourth order
processes.

Figure 5.2 Transport data of a single dot spin resonance in the spin valve con�gura-
tion: a) Di�erential conductance obtained by fourth order calculations: The transition lines are
highlighted by the black dashed lines. The s-shape of the spin resonance line is centred around
the particle-hole symmetric point. With white dashed lines the predicted resonance position is
marked. b) Di�erential conductance obtained by second order calculations: In comparison with
a) the spin resonance line is more pronounced. c) Current obtained by fourth order calculations.
d) Di�erence of fourth order and second order current highlights the increased current through
cotunnelling events inside the Coulomb blockade region. Furthermore, suppression of the resonance
line through increased spin decay can be extracted. The parameters of all plots are measured in
terms of the Coulomb interaction U = 1: T = 0.05, Ez = 0, W = 1050, φ = 0.99π, Pl = 0.99 and
2Γ0

L = Γ0
R = 0.01.
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5.2. Double quantum dot spin resonance

On the one hand, there are more tunnelling events available so that - especially in the
Coulomb blockade region - a higher maximal current can be achieved. In Figure 5.2 d)
which displays the di�erence between the fourth and second order current, we observe
exactly this (red respective blue region inside the Coulomb blockade region for positive
respective negative bias). Though, the regions of current which are enclosed by the black
dashed transition lines are exhibiting a lowering of the current. With including fourth order
tunnelling events, additional transitions to states are possible which di�er by two in terms of
particle number and not only the ones with neighbouring particle numbers. On the other
hand, a fourth order treatment increases also the spin decay and thus hinders coherent
precession of the spin S. In this regime, there are more tunnelling events to leave this
coherent state at disposal. Due to this decay, the spin resonance line is suppressed close to
the transition lines where also sequential tunnelling via thermal excitation can contribute to
the current. Well inside the Coulomb blockade region, the current is increased. According
to Eq. (5.7), we can predict the position of the spin resonance line through a second order
analysis (compare white dashed lines in Figure 5.2 a) and b)).

5.2. Double quantum dot spin resonance

In this section, we will now focus on a double quantum dot setup (see Figure 5.3) in the
spin valve con�guration in analogy to the previous example of a single quantum dot. The
two dots are coupled to both leads, have an on-site Coulomb interaction U and a crucial
inter-site Coulomb interaction V which will be chosen throughout our analysis to be smaller
than U . The Hamiltonian of the isolated system Ĥ0 reads then:

Ĥ0 =
∑
αζ

(
ε0 −

U

2
− V

)
d̂†αζ d̂αζ+U

∑
α

d̂†α↑ d̂α↑ d̂
†
α↓ d̂α↓+V

∑
ζ

d̂†d1ζ d̂d1ζ

∑
ζ

d̂†d2ζ d̂d2ζ


(5.9)

with α = {d1, d2} as the index to specify the dot and ζ = {↑, ↓} as the index to specify
the spin. In order to see resonance lines in this setup, one needs once again asymmetric
coupling to the leads. We have to deal now with a system which has in principle an orbital
and a spin degree of freedom. To account for this, we model the tunnelling rate matrix as
a Kronecker product between an orbital part and a spin part:

Γpl,nm =
[
Γspin
l ⊗ Γorb

l

]p
nm

=

[(
12 + P spin

l n spin
l · σ

)
⊗
(

Γorb
l,d1 0

0 Γorb
l,d2

)]p
nm

(5.10)

With this form of Γpl,nm, we can describe spin polarization as well as di�erent coupling to
the di�erent orbitals. Furthermore, it implies that we do not allow for coherent coupling
to the orbitals (o�-diagonal elements of Γorb

l ). We will address this particular issue in the
outlook of this thesis in chapter 8.

At �rst, we assume Γorb
L,d1 = Γorb

L,d2 6= Γorb
R,d1 = Γorb

R,d2 which can be seen as an equal coupling
to both orbitals of each respective lead but with di�erent strength depending on the l-
index. For such a double dot, we could �nd the equations of motion which are depicted in
Appendix D. The 16 eigenstates of this system can be found in Table D.1. The interesting
part about this double dot system is the splitting of the six states with particle number two.
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5. Spin resonance model

Figure 5.3 General setup of a double quantum dot in the spin valve con�guration:
The two black arrows indicate the polarization unit vectors nL/R of the two leads which are again
almost antiparallel aligned (compare Figure 5.1). If one wants to �ll up one dot with two electrons,
one has to pay energy of the on-site Coulomb repulsion U . Additionally, there is an inter-site
Coulomb repulsion V between the dots. The coupling to the dots can be asymmetric which is
denoted by the di�erent thickness of the tunnelling arrows.

We will �nd two excited states where two electrons occupy either dot one (subscript "d1")
or dot two (subscript "d2"). The remaining four ground states are divided into a triplet
and a singlet. Interestingly, to describe precisely the spin of this triplet state the concept
of quadrupole moments is entering (compare Appendix D). The quadrupole moments are
able to express an anisotropy of the spin of the triplet. With the help of the equations of
motion, we are able to predict the position of the resonance lines (white dashed lines in
Figure 5.4). In the plots, we always see from right to left the one-particle, the two-particle
and the three-particle Coulomb diamond. We focus now on the one-particle diamond. Here
the spins S1d1 and S1d2 have to be considered which are de�ned by the expectation values
of the respective operators in close analogy to Eq. (5.4). From their equations of motion
(see Eq. (D.3c)), we can extract a magnetic �eld which is exerting a torque on S1α which
is de�ned as

B1α =
∑
l

2PlΓ
orb
l,α Im

(
Y +

+ (µ10 − µl)− Y +
+ (µ2e1 − µl)

)
nl, α = {d1, d2} . (5.11)

The di�erence in respect with the e�ective magnetic �eld of the single dot spin resonance
(compare Eq. (5.6)) is that here the excited energy di�erence µ2e1 is entering. It causes
that the resonance line will extend to higher bias voltages (see Figure 5.4 b)). According
to the resonance condition of maximum precession (see Eq. (5.7)), we are once again able
to predict the position of this resonance line. Due to the particle-hole symmetry of this
setup, we can apply the same analysis to the three-particle diamond. In the two-particle
diamond, however, the e�ective magnetic �eld which will precess the spin of the triplet
S2gT is determined by Eq. (D.3g):

B2gT =
∑
l

2PlΓ
orb
l,d1 Im

(
Y +

+ (µ2g1 − µl)− Y +
+ (µ32g − µl)

)
nl. (5.12)

Here the energy di�erence is with respect to the two-particle ground state.
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5.2. Double quantum dot spin resonance

A deviation of the previous plots is achieved when we are dealing with an additional
asymmetric orbital coupling within the l-tunnelling matrix itself. With Γorb

L,d1 = 0.005,
Γorb
L,d2 = Γorb

R,d1 = 0.01 and Γorb
R,d2 = 0.0075, we observe then a splitting of the resonance

lines (see Figure 5.4 c) and d)). The singlet and triplet basis is not ideal to describe the
spin resonance e�ect for such a coupling. Our found equations of motion are not able to
capture this observation. If we are just interested in the spin resonance e�ect in a double
quantum dot, it is actually more accurate as well as more straightforward way to think
about a double quantum dot as two parallel quantum single dots in parallel. The term
which is connecting the two systems is the inter-site Coulomb energy V but it does not
distinguish the spin of the involved electrons just its population. Using this ansatz of two
independent single dots in respect with their e�ective magnetic �elds allows us - with the
help of the resonance condition (compare Eq. (5.7)) - to precisely predict the position of the
resonance lines for each orbital separately. The blocking state in the one-particle diamond
is now |↑, 0〉 respective |0, ↑〉 and it can be left through �uctuations to the |0, 0〉 and the
|2, 0〉 respective |0, 2〉 state. It is important to note that the coupling to the orbital degree
of freedom is diagonal so that there cannot be �uctuations to a di�erent orbital. From
this analysis, we get an e�ective magnetic �eld B1α which coincides with Eq. (5.11). The
blocking state in the two-particle diamond is |↑, ↑〉 and it can be left through �uctuations
to the neighbouring particle numbers but this time starting from |↑, ↑〉 which is associated
with the ground state energy. The formerly de�ned B2gT splits then up into B2α using
the just described more suitable picture:

B2α =
∑
l

2PlΓ
orb
l,α Im

(
Y +

+ (µ2g1 − µl)− Y +
+ (µ32g − µl)

)
nl, α = {d1, d2} . (5.13)
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5. Spin resonance model

Figure 5.4 Transport data of a double dot spin resonance in the spin valve con�gu-
ration: a) Current obtained by fourth order calculations for a coupling Γorb

L,d1 = Γorb
L,d2 = 0.005

and Γorb
R,d1 = Γorb

R,d2 = 0.01. b) Di�erential conductance obtained by fourth order calculations: The
resonance line in the N = 2 Coulomb diamond is very pronounced compared to the outer resonance
lines in the N = 1 and N = 3 Coulomb diamonds. The coupling is the same as in a). c) Current
obtained by fourth order calculations for a coupling Γorb

L,d1 = 0.005, Γorb
L,d2 = Γorb

R,d1 = 0.01 and

Γorb
R,d2 = 0.0075. d) Di�erential conductance obtained by fourth order calculations (same coupling

as c)): Due to the asymmetric coupling, the three resonance lines in the respective diamonds split
up. In all the plots, the predicted resonance positions for positive gate voltages are marked with
white dashed lines. The parameters of all plots are measured in terms of the Coulomb interaction
V = 1: U = 3, T = 0.05, Ez = 0, W = 1050, φ = 0.99π and Pl = 0.99.
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6
Canyon of conductance

In the introduction, we asked ourselves if in the cotunnelling transport regime the so-
called canyon of conductance will protrude into the Coulomb blockade region. We will
explain in this chapter the speci�cations of both the experimental [22] and the theoretical
setup [24] in which such suppression of current and therefore conductance can be observed.
Moreover, we will show our transport calculations which will proof that cotunnelling current
is extending the canyon of conductance into the Coulomb blockade region.

In an InSb nanowire quantum dot (see Figure 1.5 (i) (a)), there exist multiple energy
levels which have a large level dependent g-factor. If one applies now a magnetic �eld to
this system, it is possible to shift these energy levels so that two of them get degenerate
(compare Figure 1.5 (i) (c)). At low temperatures (here 300mK) exactly at those points,
one sees the conductance dropping. This prerequisite of degenerate energies is ful�lled
on a line in a gate voltage versus magnetic �eld plot (compare Figure 1.5 (i) (b) or Fig-
ure 6.1 a)). It should be noted that in this setup a constant bias voltage is provided to
enable current. The cause of this canyon is an interplay of interference and correlations of
the involved electrons due to Coulomb interaction. These plots in a gate voltage-magnetic
�eld-landscape have, similar to stability diagrams, regions where the system is in a state of
Coulomb blockade. There one exhibits suppression of current in respect to regions where
current can easily �ow. In this case, the canyon is stretching from the N = 6 Coulomb
blockade region with spin Sz = 0 to the one of N = 8 with spin Sz = 1. Nevertheless,
tunnelling events like the ones of cotunnelling or higher order ones can provide means to
have current in the Coulomb blockade region N = 7 with Sz = 1

2 where the canyon is
cutting through. Though due to interference, even those tunnelling processes cannot drive
a current in special parameter sets like the ones of precisely the canyon of conductance.

We turn now the attention to the theoretical explanation and especially to the numerical
calculations of the canyon of conductance which were done in [22] but to a greater extent
in a following up publication [24]. At �rst, we notice that in the experimental (compare
Figure 1.5 (ii) (b)-(f)) as well in the numerical data (compare e.g. Figure 4 of [22]) the
canyon of conductance is always accompanied by a correlation-induced resonance near
the electron-hole symmetric point which was predicted at �rst in [40]. This correlation-
induced resonance depends exponentially on the Coulomb repulsion U [40]. For numerical
calculations of the conductance, they use in both cited theoretical works the second order
von Neumann (2vN) approach [23] and apply it on a two-level, spinless, interacting model.
As already pointed out in the introduction, this approach is numerically very expensive
because it is, among others, non-perturbative. It is therefore not easily applicable to bigger
systems. Besides, it should be noted that the 2vN approach is only reliable in a temperature
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6. Canyon of conductance

regime where the temperature is higher than the Kondo temperature [23] so that they had
to give a slightly higher temperature as in the experiment. Due to the 2vN approach, it
is not clear if this conductance suppression only appears when taking into account higher
order processes.

With our self-implemented transport code, we have now the ability to check if also the
cotunnelling regime exhibits this canyon of conductance. With our fourth order diagram-
matic approach, there are some advantages as well as disadvantages with respect to the
2vN approach. Obviously, our approach is perturbative and therefore de�nitely more
suitable for problems with lower coupling strengths. On the other side, the cotunnelling
contribution is - at least in the weak coupling limit - the strongest contribution and higher
order processes are just small corrections to it. In contrast to the sequential tunnelling
regime, it provides though conceptionally di�erent tunnelling processes which due to quan-
tum �uctuations allow for transport in the Coulomb blockade regime. With one-electron
and two-electron processes together, we would capture the leading order of all possible
processes. Furthermore, we have a clean construction of our fourth order theory where we
do not neglect any contributions so far. In contrast to this, the 2vN approach can exhibit
negative conductivities due to an improper treatment of higher order processes [22].

For our calculations, we assume the same tunnelling rate matrices as in [24]:

Γcanyon
L = Γcanyon,0

(
1 a
a a2

)
,Γcanyon

R = Γcanyon,0

(
1 −a
−a a2

)
, a ∈ R (6.1)

With such a coupling the two dot states couple with opposite parity to the leads. If one
thinks about coupling as an overlap of the dot wave function with the lead wave functions,
we could think about one dot state with a symmetric wave function and one with an
antisymmetric one. In Figure 6.1, our numerical �ndings are displayed. There is a strong
indication that every order will - due to interference - cancel itself within this correlation-
induced resonance peak and result in a canyon of conductance. The argument for the
existence of such a canyon inside the Coulomb blockade region is therefore not based on a
summation of all orders.
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Figure 6.1 Canyon of conductance of a single quantum dot in a Ez-Vg plot: a) Ex-
perimental data of the conductance of an InSb quantum dot where one observes a canyon of
conductance (blue dashed line). The red dashed box should schematically show the area which we
model in our calculations. Picture is taken from Figure 2 of [22]. b) Increasing a magnetic �eld
B is proportional to increasing the Zeeman splitting Ez of the two dot states. In this plot, the
fourth order current is shown in a Ez-Vg-landscape. Close to Ez = 0, a canyon of conductance is
cutting through the plot. The asymmetry parameter is chosen to be a = 0.5. All other param-
eters are chosen with respect to U = 1: Vb = 0.5, T = 0.05, Γcanyon,0 = 0.01 and W = 1050.
c) The di�erence of fourth and second order current is depicted. Due to fourth order processes,
more current inside the Coulomb blockade is observed. The parameters are the same as in b). d)
The two line cuts along the white dashed line of plot b) (Vg = 0.05) of fourth (blue) and second
(red) current highlight the appearance of a canyon of conductance. The fact that the canyon does
not cut through the Coulomb blockade regime as a vertical line can be seen by the asymmetric
peaks which accompany the canyon. The reason why the fourth and second order current does not
drop exactly to zero inside the canyon is due to a slightly incomplete destructive interference. A
complete destructive interference is just obtained for one speci�c line in a gate voltage versus bias
voltage, which would translate here to one speci�c gate voltage per �xed bias voltage (compare
[18]).
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7
Unifying picture for interference

In this chapter, we want to give a unifying picture for interference. In chapter 5, we
investigated spin resonances where, due to coherent precession of the spin, we could see an
increase in the current. In chapter 6, we dealt with the so-called canyon of conductance
where the conductance is suppressed by interference. In the introduction, we mentioned
interference blockade in a carbon nanotube quantum dot where once again suppression of
conductance in certain transitions lines is observed. Now, we will address the connection
of all these setups which was one of the questions, we raised in the introduction.

The way how we constructed our transport code allows us now to easily switch between
the setups which look at the �rst glance quite di�erent (e.g. sometimes we have an increase
of current and sometimes a decrease). The link to bring these setups nonetheless together
are the tunnelling rate matrices. They are the fundamental part to describe interference
e�ects. For a single quantum dot in the spin valve con�guration, we de�ne them as

Γpl,nm =
[
Γ0
l (12 + Plnl · σ)

]p
nm

. (7.1)

In Figure 7.1, we show the transition of the interference blockade picture to the spin
resonance one. If the polarized leads have an intermediate opening angle of roughly 0.2π <
φ < 0.8π, we observe the disappearance of transition lines along with negative di�erential
conductance which both are �ngerprints for interference blockade (compare Figure 7.1 a)).
The origin of negative di�erential conductance is the existence of a blocking state which
is characterized by non-coupling to one of the leads [21]. The remaining transition to the
other lead is, due to the bias voltage, energetically not favourable so that both transition
lines are suppressed. If we increase the opening angle between the polarized leads further
(φ > 0.9π), then we enter into the realm of the spin valve con�guration and thus of the spin
resonance lines (compare Figure 7.1 b) and c)). Spin resonance is therefore just at the very
end of this increase of the opening angle. It is important to note that if we reach an angle
of exactly antiparallel alignment (φ = π, compare Figure 7.1 d)) spin resonance disappears
which seems counterintuitive at �rst sight. Though as we have pointed out already, we
need the coherences of the involved density matrix to play a role which will induce the all-
important e�ective magnetic �eld. If we can diagonalize the two tunnelling rate matrices
at the same time which is the case in antiparallel alignment, the role of the coherences
will vanish and hence the e�ective magnetic �eld. The maximum of spin resonance is
therefore not - as one could suspect - close to φ = 0.99π but closer to φ = 0.95π (compare
Figure 7.1 b) and c)). In the canyon of conductance setup, we deal with a tunnelling rate
matrix of the following form

Γcanyon
l = Γcanyon,0

(
1 (−1)la

(−1)la a2

)
, l = {0, 1} (7.2)
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7. Unifying picture for interference

Figure 7.1 Transformation of the interference blockade picture to the spin resonance
picture: All parameters of the following di�erential conductance plots of this �gure are measured
in terms of the Coulomb interaction U = 1: T = 0.05, Ez = 0, W = 1050, Pl = 0.99, 2Γ0

L = Γ0
R =

0.01 and a) φ = 0.7π, b) φ = 0.95π, c) φ = 0.99π, d) φ = π.

where the l-index changes the sign of the asymmetry parameter a so that L→ 0 and R→ 1.
We are now able to �nd the parameters Pl and nl to reexpress the tunnelling rate matrix
of the canyon of conductance setup into the one of spin polarized leads (Eq. (7.1)):

Γ0
l = Γcanyon,0

(
1 + a2

)
,nl =

(−1)l sinφ
0

cosφ

 , φ = sin−1

(
2a

1 + a2

)
, Pl = 1. (7.3)

In the polarization vector, the factor (−1)l should be understood as 1 for L and as -1
for R. With a = 0.5, we have a polarization opening angle of φ ≈ 0.59π so that we are
exactly in the picture of interference blockade with decoupled states. In Figure 7.2, we
highlight graphically the link between interference blockade in the Vg-Vb-landscape and
canyon of conductance in the Ez-Vg. With the help of this connection, the interpretation
of this origin of the canyon of conductance is now more evident. Due to degenerate states,
a decoupling of a certain state from one of the leads can arise which is accompanied by
negative di�erential conductance (compare Figure 7.2 e)). In Figure 7.2 d), a drop of
current close to the N = 1 ↔ N = 2 transition can be observed. For the interpretation
of the origin of the canyon of the conductance, one could go even further and make the
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comparison to optical dark states. The latter ones were �rstly studied in 1976 [41, 42]. A
three-level system irradiated by a laser exhibits an optical interference e�ect. If the level
splitting of the ground states matches the frequency separation between the laser modes,
the �uorescent light emitted by depopulation of an excited state is disappearing [42]. The
canyon of conductance is nothing else as an all-electronic analogon of this optical dark
state. Such an all-electronic dark state was proposed in [21]. The coherent tunnelling
takes on the role of the coherent laser pumping. The di�erent modes of the laser are
represented by the di�erent couplings to leads. In Figure 7.3, we display a plot of the
excited state occupation in the optical dark state case and one of the current through the
dot in the canyon of conductance case. In both cases, we vary the resonance parameter of
the splitting of the two ground states. The parameters which are chosen are di�erent but
the qualitative agreement is striking. In the work of [21], there is, though, no variation
of the energy splitting because there is no magnetic �eld applied but rather a change in
the Lamb shift frequencies of the energy levels. The Lamb shift contributions stem once
again from �uctuations of the system to the leads and they are strongly depending on the
applied bias and gate voltage. To summarize it, they all are based on the same underlying
physics even if there are some subtle di�erences.

If we apply a magnetic �eld to all of our models, the direction of magnetic �eld with respect
of the polarization plane of the two leads is of crucial importance. We can, for example,
apply an additional magnetic �eld to the spin resonance picture. The direction vector of
the applied magnetic �eld will directly add to the e�ective magnetic �eld in the resonance
condition (compare Eq. (5.7)) and hence alter the position of the spin resonance. Though,
applying the magnetic �eld perpendicular to the polarization plane of the leads would not
in�uence the e�ect of interference because it is equally coupled to both spins. It is clear
that the e�ective magnetic �eld and thus the spin resonance will always disappear if the
Zeeman splitting of the states is big enough so that the coupling can distinguish between
the formerly quasi-degenerate states.
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7. Unifying picture for interference

Figure 7.2 Transformation of the canyon of conductance picture to the interference
blockade picture: a) Canyon of conductance: The asymmetry parameter is set to a = 0.5.
All other parameters are chosen with respect to U = 1: Vb = 0.5, T = 0.05, Γcanyon,0 = 0.01 and
W = 1050. All other plots which will follow have the same parameters except that the bias voltage is
not �xed. The two white dashed lines represent the line cuts (Ez = −0.2 respective Ez = −0.005)
which will correspond to the line cuts of b) respective d) (black dashed lines) b) Current for
Ez = −0.2. c) Di�erential conductance for Ez = −0.2: Far from the canyon of conductance small
negative di�erential conductance appears close to the N = 0↔ N = 1 transition. The asymmetric
coupling to the leads results in a smaller split-up of the transition lines on the right hand side which
will cause then negative di�erential conductance according to [43]. d) Current for Ez = −0.005.
e) Di�erential conductance for Ez = −0.005: Inside the canyon of conductance, there is strong
suppression of the transition lines N = 1 ↔ N = 2 which indicates that the two-particle state is
decoupled from one of the leads.
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Figure 7.3 Comparison of an optical and an all-electric dark state: a) Excited-state
occupation as a function of the resonance parameter. Taken from Figure 1 of [42]. b) Same plot as
Figure 6.1 d) shows the fourth and second order current with respect to the Zeeman splitting Ez.
The applied magnetic �eld is in the plane of the lead polarization which results in an asymmetry
of the peaks which accompany the interference canyon. Nevertheless, there is good qualitative
agreement with the plot of an optical dark state. b) Sketch of a three-level system (ε1, ε2, ε3)
on which an optical dark state is based. The curvy lines represent the di�erent laser modes of
frequency ω1 and ω2. These modes are detuned by ∆1 respective ∆2. The dark state forms under
the condition ∆1 = ∆2 even if the lasers are slightly tuned away from resonating the excited state.
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8
Conclusion and outlook

In this thesis, we addressed the topic of interference e�ects in tunnelling setups with the
focus on the cotunnelling transport regime. There are �ve main points of this thesis which
we want to stress now. One achievement is surely that we managed to �nd an analytic
expression for the cotunnelling energy integrals, namely the D- and the X-function. We
did not restrict ourselves to the real part of the cotunnelling energy integrals which are
needed for the dynamics of the populations but rather include also the imaginary part.
With this imaginary part, we are now also able to consider the dynamics of the coherences
up to fourth order (compare section 4.3). Besides, we embedded these integrals in a concise
formalism based on the diagrammatic approach expressed in the Liouville space.

Another important point of this thesis is the implementation of a transport code upon
this theory. In section 4.6, we demonstrated the general operating principle of this trans-
port code as well as some numerical objections like e.g. how to treat in�nite sums in the
cotunnelling energy integrals.

Furthermore, we dedicated section 5.1 to introduce the spin valve con�guration and explain
the origin of resonance lines which appear in a single quantum dot. Based on this, we could
extend this already known mechanism to a double quantum dot which is coupled via inter-
site Coulomb interaction. We showed numerical data of the appearing resonance lines and
predicted their positions through our analytical �ndings. For example, we could set up
the equations of motion for a double quantum dot with equal orbital coupling (compare
Appendix D) out of which we concluded the exact de�nitions of the involved e�ective
magnetic �elds. The latter ones are responsible for lifting the spin valve e�ect and thus
result in a resonance current. In the single and double quantum dot, the cotunnelling
processes are necessary to obtain such a resonance line deep inside the Coulomb blockade
region.

The next �nding of this thesis is the occurrence of a canyon of conductance in the cotun-
nelling transport regime. In chapter 6, we demonstrated the extension of the canyon of
conductance into the Coulomb blockade region. We could conclude that the cotunnelling
current exhibits destructive interference within itself similar as in sequential tunnelling.
Another available transport code which showed this canyon of conductance at �rst works
with a non-perturbative approach so that they could not make an explicit statement about
interference in the cotunnelling transport regime.

Last but not least, we were able to combine three - at �rst glance - di�erent models,
namely interference blockade, spin resonance and canyon of conductance, into a unifying
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picture. The link to bring these models together are the tunneling rate matrices. In
chapter 7, we could show the transition of the inference blockade picture into the spin
resonance picture via a monotonous increase of the opening angle of the spin polarized
leads. Even more interesting, the mapping of the canyon of conductance picture into
the interference blockade, both analytical and graphical, was displayed. The similarities of
these di�erent manifestations of interference e�ects were, up to now, not greatly emphasized
in the literature. Moreover, we could extend the �ndings of a work about all-electric dark
states in a carbon nanotube quantum dot. We could support their claim of encountering
an electrical analogon of an optical dark state in their setup. We produced in similar setup
a line cut of current which has the characteristic shape of a plot of �uorescence of an
optical dark state. With our appropriated knowledge, we can now con�dently claim that
the canyon of conductance is, in his essence, also an all-electric dark state.

This thesis represents not a closed research work but more an ongoing one. Therefore, one
can mention as an outlook of this thesis a couple of things. First of all, the model of a
double quantum dot is not yet elaborated to full extent. In section 5.2, we addressed a
double quantum dot with spin polarized leads. Though, the orbital coupling of the leads
was in both treated cases diagonal. If we allow the orbital part to be o�-diagonal, we can
assume for the tunnelling rate matrix:

Γpl,nm =
[
Γ0
l

(
12 + P spin

l n spin
l · σ

)
⊗
(
12 + P orb

l norb
l · σ

)]p
nm

(8.1)

Preliminary results which are obtained in such a con�guration of a spin valve - both in terms
of spin and orbit - are displayed in Figure 8.1. Several lines with di�erent slopes inside
the outer Coulomb diamonds suggest the existence of an interesting mechanism which is
so far not understood. Furthermore, the existing transport code is through its generality
ideal to apply it to di�erent transport setups. Another interesting path could be to go to
bigger system like e.g. a triple quantum dot which is the smallest system with symmetry
protected orbital degeneracies but where we would have to improve the performance of
the transport code. Moreover, the transport code is the perfect prelude for a setup with
superconducting leads. To work with a particle-conserving approach to superconductivity
can be very promising in this respect [44]. Due to the knowledge we gained by calculating
the complex cotunnelling energy integrals and especially due to �ndings of the former group
member Jordi Picó Cortés, we �nd it encouraging to head into this direction.
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Figure 8.1 Di�erential conductance of a double quantum dot with spin and orbital
polarized leads: Inside the one- and three-particle Coulomb diamond resonance lines appear but
the origin of them cannot be explained so far. All parameters are measured in terms of the Coulomb
interaction V = 1: T = 0.05, U = 3, Ez = 0, W = 1050, P orb

l = P spin
l = 0.99, φorb = φspin = 0.99π

and 2Γ0
L = Γ0

R = 0.01 (according to Eq. (8.1)).
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Part IV.

Appendix
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A
Sequential tunnelling energy integral

The following integral de�nes the Y -function up to the prefactor
(
− i

2π

)
. To perform this

integral, we use the residue theorem. It states that an integration on a closed contour
in the complex plane is equal to the sum of all residues of the poles which are located
inside the contour multiplied by (2πi). The contour which is chosen for this integration
is depicted in Figure A.1. The contour consists of only the real axis and a big semi-circle
which will be zero due to the cut-o� function. The integral then yields

lim
η→0

∫
dω

fp(ω)L(W,ω)

ω − µ+ iη
= 2πi

∞∑
k=0

(−p) L(W, iωk)

iωk − µ
+ 2πi

(
−1

2
iW

)
1

iW − µ
fp(+iW )

= 2πi
∞∑
k=0

(−p) iL(W,µ)

[
1

2

(
1− iµ

W

ωk −W
+

1 + iµ
W

ωk +W

)
− 1

ωk + iµ

]

+ 2πi

(
−1

2
iW

)
1

2

(
1− ip tan

(
W

2

))
1

iW − µ

= πpL(W,µ)

[
1

π

(
Ψ(0)

(
1

2
+
iµ

2π

)
− C ′

)
− 1

2π

(
1− iµ

W

)(
Ψ(0)

(
1

2
− W

2π

)
− C ′

)

− 1

2π

(
1 +

iµ

W

)(
Ψ(0)

(
1

2
+
W

2π

)
− C ′

)]
+
π

2

W

iW − µ

(
1− ip tan

(
W

2

))

= pL(W,µ)

[
−
(

1

2
− iµ

2W

)
Ψ(0)

(
1

2
− W

2π

)
−
(

1

2
+

iµ

2W

)
Ψ(0)

(
1

2
+
W

2π

)

Ψ(0)

(
1

2
+
iµ

2π

)]
+

1

2
L(W,µ)

( µ
W
− i
)[

π − ip
(

Ψ(0)

(
1

2
+
W

2π

)
−Ψ(0)

(
1

2
− W

2π

))]
lim

W→∞
= − iπ

2
+ p

[
Ψ(0)

(
1

2
+
iµ

2π

)
−Ψ(0)

(
1

2
+
W

2π

)]
(A.1)

The constant C ′ is de�ned by Eq. (4.29) but will drop anyway. For the second line, we
used the following relations

L(W, iωk)

iωk − µ
= iL(W,µ)

[
1

2

(
1− iµ

W

ωk −W
+

1 + iµ
W

ωk +W

)
− 1

ωk + iµ

]
, (A.2)

fp(+iW ) = 1− ip tan

(
W

2

)
, (A.3)

and we expressed in the third last line the tangent in terms of two digamma functions:

π tan(πx) = Ψ(0)

(
1

2
+ x

)
−Ψ(0)

(
1

2
− x
)
. (A.4)
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A. Sequential tunnelling energy integral

FigureA.1 Contour integral of Eq. (A.5) in the complex plane: The dark blue line depicts
the integration path and the crosses are representing the poles of the Fermi-function (red), the
pole of the denominator (green) and the poles of the cut-o� function L(W,ω) (orange). With this
chosen contour only the poles of the Fermi-function, which lay on the positive imaginary axis, and
one pole of the cut-o� function, which lays at ω = iW with residuum − 1

2 iW , have to be taken
into account. The Fermi-poles on the upper half plane are located at ωk = 2π

(
k + 1

2

)
for k ∈ N

with residuum −p. The light blue semi-circle is the contour which is taken for the last term of
Eq. (A.7) while the second last term of this equation is the same semi-circle which is closed in on
the real axis.

Moreover, we de�ned the constant C by the renormalized wide band constant W as C =
Ψ(0)

(
1
2 + W

2π

)
. In the dissertation of S. Koller [5], the same result is obtained by splitting up

the contour into a principle value integration which is denoted by
∫ ′

dω and an integration
of the small area around ω = µ which can be solved by the use of the light blue semi-circle
which is shown in Figure A.1.

lim
η→0

∞∫
−∞

dω
fp(ω)L(W,ω)

ω − µ+ iη
= (A.5)

= lim
η→0

lim
ε→0

 µ−ε∫
−∞

dω
fp(ω)L(W,ω)

ω − µ+ iη
+

∞∫
µ+ε

dω
fp(ω)L(W,ω)

ω − µ+ iη
+

µ+ε∫
µ−ε

dω
fp(ω)L(W,ω)

ω − µ+ iη


(A.6)

= lim
η→0

∫ ′
dω

fp(ω)L(W,ω)

ω − µ+ iη

− lim
η→0

lim
ε→0


∮

dω
fp(ω)L(W,ω)

ω − µ+ iη︸ ︷︷ ︸
=0

−
∮
y

dω
fp(ω)L(W,ω)

ω − µ+ iη︸ ︷︷ ︸
=−iπfp(µ)

 (A.7)

=

∫ ′
dω

fp(ω)L(W,ω)

ω − µ
− iπfp(µ) (A.8)

This split-up coincides exactly with the Sokhotski�Plemelj theorem which states for the
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real line

lim
η→0

∞∫
−∞

dx
f(x)

x− y + iη
=

∫ ′
dx

f(x)

x− y
− iπf(y) (A.9)

with f(x) is an arbitrary complex-valued function which has no poles on the real line. The
purpose of showing that the result of this integral can also obtained without splitting the
integrand into real and imaginary is that we have a justi�cation using this residuum-only
method. It should be mentioned that, in this method, we exchange the order of the limit
η → 0 and the integration. In general, this is not allowed but if we have a function which
is analytic and the integral exists, it is reasonable to exchange them.
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B
Vanishing of the C-constant in sequential

tunnelling

In the following, we proof that the part of the Y -function which does not depend on the
LS is vanishing if we sum over the α-indices. For this reason, the constant C is dropped
from actual calculations. Starting with the Kernel operator

K(2) =
∑
nmp
lαα′

αα′ Γpl,nmd
p̄,α
n dp,α

′
m Y α

+ (β(i~LS − pµl)) (B.1)

we focus on the part with C:

iC

2π

∑
nmp
lαα′

αα′ Γpl,nmd
p̄,α
n dp,α

′
m α

=
iC

2π

∑
nm

{
Γ+
l,nm

(
d−,+n d+,+

m − d−,+n d+,−
m + d−,−n d+,+

m − d−,−n d+,−
m

)
+ Γ−l,nm

(
d+,+
n d−,+m − d+,+

n d−,−m + d+,−
n d−,+m − d+,−

n d−,−m
)}

=
iC

2π

∑
nm

{
Γ+
l,nm

(
−d+,+

m d−,+n + δnm − d+,−
m d−,+n + d+,+

m d−,−n + d+,−
m d−,−n − δnm

)
+ Γ+

l,nm

(
d+,+
m d−,+n − d+,+

m d−,−n + d+,−
m d−,+n − d+,−

m d−,−n
)}

= 0 (B.2)

In the second last step, we used the fermionic anticommutator relation {di, d†j} = δij which
reverses the sign of the �rst and the last contribution. The part with Γ−l,nm can be written
as Γ+

l,mn and then the variable names can be consistently switched (n↔ m).
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C
Cotunnelling energy integrals

In the cotunnelling transport regime, we encounter two di�erent types of integrals, namely
the D- and the X-function. In this section, we will perform these two integrals and they
will be displayed in di�erent cases in the same way as they are displayed in the appendix
of the dissertation of S. Koller [5]. The decisive distinction will be that we will do the
full complex calculation. It should be noted that the functions D and X are smoothly
transforming between these cases within itself. The reason why these cases are anyway
used is that they speed up the numerical calculation of the D- and the X-function a lot
while enhancing the accuracy. Quite often the diagrams which need to be calculated have
e.g. the restriction ∆ = 0. Therefore, it is not needed to perform a slowly converging sum
of digamma functions with taking the limit of ∆→ 0 but rather use an analytic expression
for speci�c sums of digamma functions.

FigureC.1 Contour integral of Eq. (C.1) in the complex plane: The blue line depicts the
integration path and the crosses are representing the poles of the Fermi-function (red), the poles
of the two denominators (green) and the poles of the digamma function (yellow). The poles are
located at iωk = 2πi

(
k + 1

2

)
for k ∈ Z with residuum −p for fp(ω), at ω = µ− iη with residuum

+1 for (ω − µ− iη)
−1

(or µ′ instead of µ) and at iωk = ∆− 2πi
(
k + 1

2

)
for k ∈ N with residuum

−2πi for Ψ(0)
(

1
2 + i(∆−ω)

2π

)
.
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C. Cotunnelling energy integrals

The following three equations will help us for the integration:

(∗1) =
∞∑
k=0

Ψ(0) (k + 1)

k + p

1

k + q

=


1

2(q − p)

[
Ψ(1) (p)−Ψ(1) (q)−

(
Ψ(0) (p)

)2
+
(

Ψ(0) (q)
)2
]

p 6= q,

Ψ(0) (p) Ψ(1) (p)− 1

2
Ψ(2) (p) p = q; p, q ∈ C

(∗2) =
∞∑
k=0

1

k + p

1

k + q
=

=


1

p− q

[
Ψ(0) (p)−Ψ(0) (q)

]
p 6= q,

Ψ(1) (p) p = q; p, q ∈ C

(∗3) = lim
η→0

∫
dω

fn(ω)

ω − µ+ iη

1

ω − µ′ + iη

=

{
Applying residue theorem: 1. kth- residue of fn(ω) is -n and the poles are at

iωk = 2πi
(
k + 1

2

)
; 2. The poles of the two denominators do not contribute

because they are not inside the chosen contour (compare Figure C.1)

}

= 2πi
∞∑
k=0

(−n)
1

2πi(k + 1
2)− µ

1

2πi(k + 1
2)− µ′

=
in

2π

∞∑
k=0

1

k + 1
2 + iµ

2π

1

k + 1
2 + iµ′

2π

=
in

2π

1
i(µ−µ′)

2π

[
Ψ(0)

(
1

2
+
iµ

2π

)
−Ψ(0)

(
1

2
+
iµ′

2π

)]
The relations of (∗1) and (∗2) are taken from [45].
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D.i Given µ = µ′

− 4π2

i~
D nn′

++ (µ, µ,∆) =

= lim
η→0

∫
dω

∫
dω′

fn(ω)

ω − µ+ iη

1

ω + ω′ −∆ + iη

fn
′
(ω′)

ω − µ+ iη

(A.1)
= lim

η→0

∫
dω

fn(ω)

ω − µ+ iη

1

ω − µ+ iη[
− iπ

2
+ n′

(
Ψ(0)

(
1

2
+
i(∆− ω)

2π

)
− C

)]
(∗2)
=

(
− iπ

2
− Cn′

)
in

2π
Ψ(1)

(
1

2
+
iµ

2π

)
+ lim
η→0

∫
dω

fn(ω)

ω − µ+ iη

1

ω − µ+ iη
n′Ψ(0)

(
1

2
+
i(∆− ω)

2π

)
(C.1)

(Fig.C.1)
+(∗1)

=

(
− iπ

2
− Cn′

)
in

2π
Ψ(1)

(
1

2
+
iµ

2π

)

+


inn′

2π

∞∑
k=0

Ψ(0)
(
1 + k + i∆

2π

)(
k + 1

2 + iµ
2π

)2 , ∆ 6= 0

inn′

2π

[
Ψ(1)

(
1

2
+
iµ

2π

)
Ψ(0)

(
1

2
+
iµ

2π

)
− 1

2
Ψ(2)

(
1

2
+
iµ

2π

)]
, ∆ = 0

(C.2)
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C. Cotunnelling energy integrals

D.ii Given µ 6= µ′

− 4π2

i~
D nn′

++ (µ, µ′,∆) =

lim
η→0

∫
dω

∫
dω′

fn(ω)

ω − µ+ iη

1

ω + ω′ −∆ + iη

fn
′
(ω′)

ω − µ′ + iη

(A.1)
= lim

η→0

∫
dω

fn(ω)

ω − µ+ iη

1

ω − µ′ + iη[
−iπ

2
+ n′

(
Ψ(0)

(
1

2
+
i(∆− ω)

2π

)
− C

)]
(∗3)
=

(
− iπ

2
− Cn′

)
n

µ− µ′

[
Ψ(0)

(
1

2
+
iµ

2π

)
−Ψ(0)

(
1

2
+
iµ′

2π

)]
+ lim
η→0

∫
dω

fn(ω)

ω − µ+ iη

1

ω − µ′ + iη
n′Ψ(0)

(
1

2
+
i(∆− ω)

2π

)
(Fig.C.1)

+(∗1)
=

(
− iπ

2
− Cn′

)
n

µ− µ′

[
Ψ(0)

(
1

2
+
iµ

2π

)
−Ψ(0)

(
1

2
+
iµ′

2π

)]

+



inn′

2π

∞∑
k=0

Ψ(0)
(
1 + k + i∆

2π

)(
k + 1

2 + iµ
2π

)(
k + 1

2 + iµ′

2π

) ∆ 6= 0,

nn′

2(µ− µ′)

[
Ψ(1)

(
1

2
+
iµ′

2π

)
−Ψ(1)

(
1

2
+
iµ

2π

)
−
(

Ψ(0)

(
1

2
+
iµ′

2π

))2

+

(
Ψ(0)

(
1

2
+
iµ

2π

))2]
∆ = 0
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X.i Given µ + µ′ = ∆

− 4π2

i~
X nn′

++ (µ, µ′,∆) =

= lim
η→0

∫
dω

∫
dω′

fn(ω)

ω − µ+ iη

1

ω + ω′ −∆ + iη

fn
′
(ω′)

ω′ − µ′ + iη

(∗3)
= lim

η→0

∫
dω′

fn
′
(ω′)

ω′ − µ′ + iη

(
in

2π

)
2π

i(µ+ ω′ −∆ + iη)[
Ψ(0)

(
1

2
+
iµ

2π

)
−Ψ(0)

(
1

2
+
i(∆− ω′)

2π

)]
= lim

η→0

∫
dω′

fn
′
(ω′)

ω′ − µ′ + iη

n

µ+ ω′ −∆ + iη
Ψ(0)

(
1

2
+
iµ

2π

)
− lim
η→0

∫
dω′

fn
′
(ω′)

ω′ − µ′ + iη

n

µ+ ω′ −∆ + iη
Ψ(0)

(
1

2
+
i(∆− ω′)

2π

)
(Fig.C.1)

+(∗1)
= +

inn′

2π
Ψ(0)

(
1

2
+
iµ

2π

)
Ψ(1)

(
1

2
+
iµ′

2π

)

−



inn′

2π

∞∑
k=0

Ψ(0)
(
1 + k + i∆

2π

)(
k + 1

2 + iµ′

2π

)2 ∆ 6= 0,

inn′

2π

[
Ψ(1)

(
1

2
+
iµ′

2π

)
Ψ(0)

(
1

2
+
iµ′

2π

)
−1

2
Ψ(2)

(
1

2
+
iµ′

2π

)]
∆ = 0
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C. Cotunnelling energy integrals

X.ii Given µ + µ′ 6= ∆

− 4π2

i~
X nn′

++ (µ, µ′,∆) =

= lim
η→0

∫
dω

∫
dω′

fn(ω)

ω − µ+ iη

1

ω + ω′ −∆ + iη

fn
′
(ω′)

ω′ − µ′ + iη

(∗3)
= lim

η→0

∫
dω′

fn
′
(ω′)

ω′ − µ′ + iη

(
in

2π

)
2π

i(µ+ ω′ −∆ + iη)[
Ψ(0)

(
1

2
+
iµ

2π

)
−Ψ(0)

(
1

2
+
i(∆− ω′)

2π

)]
= lim

η→0

∫
dω′

fn
′
(ω′)

ω′ − µ′ + iη

n

µ+ ω′ −∆ + iη
Ψ(0)

(
1

2
+
iµ

2π

)
− lim
η→0

∫
dω′

fn
′
(ω′)

ω′ − µ′ + iη

n

µ+ ω′ −∆ + iη
Ψ(0)

(
1

2
+
i(∆− ω′)

2π

)

=



nn′

µ+ µ′ −∆
Ψ(0)

(
1

2
+
iµ

2π

)[
Ψ(0)

(
1

2
+
iµ′

2π

)
−Ψ(0)

(
1

2
+
i(∆− µ)

2π

)]
− inn′

2π

∞∑
k=0

Ψ(0)
(
1 + k + i∆

2π

)(
k + 1

2 + iµ′

2π

)(
k + 1

2 + i(∆−µ)
2π

) ∆ 6= 0,

nn′

µ+ µ′
Ψ(0)

(
1

2
+
iµ

2π

)[
Ψ(0)

(
1

2
+
iµ′

2π

)
−Ψ(0)

(
1

2
− iµ

2π

)]
+

nn′

2(µ+ µ′)

[
Ψ(1)

(
1

2
+
iµ′

2π

)
−Ψ(1)

(
1

2
− iµ

2π

)
−
(

Ψ(0)

(
1

2
+
iµ′

2π

))2

+

(
Ψ(0)

(
1

2
− iµ

2π

))2]
∆ = 0

Furthermore, we want to give the explicit reexpressing of the cotunnelling integrals in
order to get from Eq. (4.37) to Eq. (4.41). It is done exemplary with the D-function but
it similarly applies to the X-function.

− i~
4π2

∞∫
−∞

dε

∞∫
−∞

dε′
f (pα1) (ε)

i0+ + pε−∆E3

1

i0+ + pε+ p′ε′ −∆E2

f (p′α2) (ε′)

i0+ + pε−∆E1

ε=ω/β
= −β i~

4π2

∞∫
−∞

dω

∞∫
−∞

dω′
f (α1) (p (ω − βµl))
i0+ + pω − β∆E3

1

i0+ + pω + p′ω′ − β∆E2

f (α2) (p′ (ω′ − βµl′))
i0+ + pω − β∆E1

ω̃=ω−βµl
ω̃′=ω′−βµl′= −β i~

4π2

∞∫
−∞

dω̃

∞∫
−∞

dω̃′
f (α1) (pω̃)

i0+ + pω̃ + pβµl − β∆E3

1

i0+ + pω̃ + pβµl + p′ω̃′ + p′βµl′ − β∆E2

f (α2) (p′ω̃′)

i0+ + pω̃′ + p′βµl − β∆E1

= βDα1α2
++ (β∆E3 − βpµl, β∆E1 − βpµl, β

(
∆E2 − pµl − p′µl′

)
)
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D
Equations of motion for a double

quantum dot

In this chapter, the coupled equations of motion for a double quantum dot which is speci�ed
in section 5.2 are given. In principle, we need 30 parameters to precisely specify this double
quantum dot. There exist 16 eigenstates of the system which are depicted in Table D.1. We
see that the six states of particle number two are divided into a ground state triplet (p2gT ),
a ground state singlet (p2gS) and two localized excited singlets (p2eSα). The one- respective
three-particle populations and spins are constructed in analogy to a single quantum dot. In
order to correctly account for all degree of freedoms of the triplet state, we have to include
quadrupole moments which can describe spin anisotropy and give additional terms of spin
relaxation. The notation of the following analysis is based on the work of M. Baumgärtel
et al. [46]. To begin with, we choose the orbital part of the tunnelling rate matrix to be
proportional to the identity which describes equal coupling to both orbitals:

Γpl,nm =
[
Γspin
l ⊗ Γorb

l

]p
nm

=
[(

12 + P spin
l n spin

l · σ
)
⊗
(
Γorb
l 12

)]p
nm

(D.1)

Moreover, we de�ne the quadrupole moment tensor operator Q̂ as

Q̂ij =
1

2

(
ŜiŜj − ŜjŜi

)
− 1

3
Ŝδij (D.2)

where Ŝi is the i = x, y, z component of the spin operator Ŝ = 1
2

∑
ζ,ζ′,k d̂

†
ζ′,k (σ)ζζ′ d̂ζ′,k

with σ as the vector containing the Pauli-matrices (compare Eq. (5.3)). The trace of the
quadrupole moment tensor operator Q̂ with a density matrix will lead to the nine observable
quadrupole moments of the quadrupole moment matrix Q. Not all the moments are
independent so that in principle only �ve are needed to completely describe the anisotropy
of the spin (e.g. Qz2 , Qx2−y2 , Qxx, Qxy, Qxz, Qyz). Though, we opted to take into account
all the nine entries in order to simplify the coupled equations. We will use e.g. (Q×B)ij =
εjklQikBl and (B×Q)ij = εiklBkQlj where ε is the Levi-Civita symbol. Moreover, we de�ne
a dyadic product as (ab)ij = aibj which will give us a matrix. The productQ·γ±nm is de�ned
as a conventional matrix-vector product. Similarly to the single dot equations of motion
(compare Eqs. (5.5)), we de�ne γ±nm =

∑
l γ
±
l,nm and γ±l,nm = Γorb

l f±l (ε−µnm) where µnm is
the energy di�erence between the state n and the state m. The vectorial form is de�ned by
γ±nm =

∑
l nlPlγ

±
l,nm. This time though, we encounter two di�erent e�ective magnetic �elds

which we denote by Bmn−op =
∑

l 2PlΓ
orb
l Im

(
Y +

+ (µmn − µl)− Y +
+ (µop − µl)

)
nl. Out of

an analysis of the equations of motion, we can predict the position of the resonance lines in
this double quantum dot (compare section 5.2). Another interesting point is the appearance
of the quadrupole moments which enrich the physics of this particular problem. We can
extract that they couple to the spin of one-/three-particle occupation but as well to the
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spin of the triplet. Interestingly, this coupling Q ·γ−2g1 to both spins di�ers in terms of the
sign so that this contribution tends to make these spins non-collinear [46]. The e�ective
magnetic �eld exerts a torque on the quadrupole moments via the terms (B × Q) and
(Q×B). The index α can take the value d1 respective d2 and ᾱ takes the opposite value
of α. In order to simplify the equations, we de�ne here p1 = p1d1 + p1d2, S1 = S1d1 +S1d2,
p3 = p3d1 + p3d2 and S3 = S3d1 + S3d2. The equations are then:

ṗ0 = − 4γ+
10 p0 + γ−10p1 + 2γ−10 · S1, (D.3a)

ṗ1α = 2γ+
10 p0 −

(
γ−10 + γ+

2e1 + 2γ+
2g1

)
p1α + 2γ−2e1 p2eSα + γ−2g1 (p2gS + p2gT )

− 2
(
γ−10 − γ

+
2e1

)
· S1α + γ−2g1 · S2gT , (D.3b)

Ṡ1α = γ+
10 p0 + 1

2

(
−γ−10 + γ+

2e1

)
p1α − γ−2e1 p2eSα + γ−2g1

(
1
6p2gT − 1

2p2gS

)
−
(
γ−10 + γ+

2e1 + 2γ+
2g1

)
S1α + 1

2γ
−
2g1S2gT − S1α ×B10−2e1 +Q · γ−2g1, (D.3c)

ṗ2gT = 3
2γ

+
2g1p1 − 2

(
γ−2g1 + γ+

32g

)
p2gT + 3

2γ
−
32gp3

+ γ+
2g1 · S1 + 2

(
γ+

32g − γ
−
2g1

)
· S2gT − γ−32g · S3, (D.3d)

ṗ2gS = 1
2γ

+
2g1p1 − 2

(
γ−2g1 + γ+

32g

)
p2gS + 1

2γ
−
32gp3 − γ+

2g1 · S1 + γ−32g · S3, (D.3e)

ṗ2eSα = γ+
2e1 p1α − 2

(
γ−2e1 + γ+

32e

)
p2eSα + γ−32e p3α + 2γ−32e · S3ᾱ − 2γ+

2e1 · S1α, (D.3f)

Ṡ2gT = 4
3

(
γ+

32g − γ
−
2g1

)
p2gT + γ+

2g1p1 − γ−32gp3 + 2γ+
2g1S1 + 2γ−32gS3

− 2
(
γ+

32g + γ−2g1

)
S2gT − S2gT ×B2g1−32g + 2Q ·

(
γ+

32g − γ
−
2g1

)
, (D.3g)

Q̇ = − 2
(
γ−2g1 + γ+

32g

)
Q−Q×B2g1−32g +B2g1−32g ×Q

+ 2
(
S1γ

+
2g1 + γ+

2g1S1

)
− 2

(
S3γ

−
32g + γ−32gS3

)
− 1

2

(
S2gT

(
γ−2g1 − γ

+
32g

)
+
(
γ−2g1 − γ

+
32g

)
S2gT

)
− 2

3

(
γ+

2g1 · S1

)
13

+ 1
3

((
γ−2g1 − γ

+
32g

)
· S2gT

)
13 + 2

3

(
γ−32g · S3

)
13, (D.3h)

ṗ3α = 2γ−43 p4 −
(
γ+

43 + γ−32e + 2γ−32g

)
p3α + 2γ+

32e p2eSα + γ+
32g (p2gS + p2gT )

+ 2
(
γ−32e − γ

+
43

)
· S3α − γ+

32g · S2gT , (D.3i)

Ṡ3α = − γ−43 p4 + 1
2

(
−γ−32e + γ+

43

)
p3α + γ+

32e p2eSα + γ+
32g

(
−1

6p2gT + 1
2p2gS

)
−
(
γ+

43 + γ−32e + 2γ−32g

)
S3α + 1

2γ
+
32S2gT − S3α ×B32e−43 −Q · γ+

32g, (D.3j)

ṗ4 = − 4γ−43 p4 + γ+
43p3 − 2γ+

43 · S3. (D.3k)
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Particle number N State Energy Parameters

0 |0, 0〉 ε p0

1 |σ, 0〉 ε p1L,S1d1

1 |0, σ〉 ε p1d2,S1d2

2 |2, 0〉 2ε+ U p2eSd1

2 |0, 2〉 2ε+ U p2eSd2

2 |↑, ↓〉 − |↓, ↑〉 2ε+ V p2gS

2 |↑, ↓〉+ |↓, ↑〉 2ε+ V p2gT ,S2gT ,Q

2 |↑, ↑〉 2ε+ V p2gT ,S2gT ,Q

2 |↓, ↓〉 2ε+ V p2gT ,S2gT ,Q

3 |2, σ〉 3ε+ U + 2V p3d1,S3d1

3 |σ, 2〉 3ε+ U + 2V p3d2,S3d2

4 |2, 2〉 4ε+ 2U + 4V p4

TableD.1 Double quantum dot states according to the setup of Figure 5.3: In total,
there are 16 states in this double quantum dot. The on-site Coulomb energy U is chosen to be
higher than the inter-site Coulomb energy V so that two localized singlets (subscript "2eSd1" and
"2eSd2") with particle number two exist. They are excited with respect to the ground state singlet
(subscript "2gS") and ground state triplet states (subscript "2gT"). With ε the on-site energy
is denoted. The subscript "d1/d2" labels the two dots which are connected in our chosen setup
parallel - not in series - to the leads.
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