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We present ab initio calculations of the local current density jðrÞ as it arises in dc-transport
measurements. We discover pronounced patterns in the local current density, ring currents (“eddies”),
that go along with orbital magnetism. Importantly, the magnitude of the ring currents can exceed the
(average) transport current by orders of magnitude. We find associated magnetic fields that exhibit drastic
fluctuations with field gradients reaching 1 T nm−1 V−1. The relevance of our observations for spin
relaxation in systems with very weak spin-orbit interaction, such as organic semiconductors, is discussed. In
such systems, spin relaxation induced by bias driven orbital magnetism competes with relaxation induced
by the hyperfine interaction and appears to be of similar strength. We propose a NMR-type experiment in
the presence of dc-current flow to observe the spatial fluctuations of the induced magnetic fields.
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For the physical nanosciences, the question of how
current flows through a device is a vital one. The reason
is obvious: sending a stream of charges through a device is
the engineer’s simplest way to “talk” to it. For instance,
electrical currents serve as sensors in scanning tunneling
microscopes, but also can operate single molecule switch-
ing in molecular electronics. A good part of the theoretical
nanosciences deals with the question of how to reconstruct
the detailed physics that governs at the nanoscale from the
experimentally measured current-voltage (IV) character-
istics. A traditional theoretical concept in this context is the
Landauer-Büttiker theory, which describes charge transport
as a sequence of scattering processes of (very weakly)
interacting particles. The charming aspect of this approach
is that it reduces the complicated transport problem to the
calculation of the scattering asymptotics, incarnated in
(usually a small number of) transmission coefficients. As
is often the case, the reduction of complexity also elim-
inates interesting physics that in the present case relates to
the internal structure of the scattering states. This inner
structure reflects the nanoscopic pathways that the current
takes through the device region.
Detailed mappings of the current flow through the

sample have been attempted only relatively recently. In
their ground breaking experiment, Topinka et al.monitored
the resistance change δϱðrÞ of a point contact embedded
in a two-dimensional electron gas that is brought about
by a STM tip when scanning the device region (r is the
tip position in the xy-plane) [1,2]. They observed a rich
filamentary structure that inspired consecutive theoretical
work [3]. In the course of this analysis it was emphasized
that strictly speaking δϱðrÞ reflects the sensitivity of the
scattering states to local changes in the scattering potential
δVðrÞ. Since such changes are nonlocal due to their origin

in quantum interference, δϱðrÞ does not directly image the
actual current flow. Such flow images will be presented in
this work.
Model.—The model system that we analyze is a gra-

phene nanoribbon that has been functionalized with hydro-
gen as an adsorbate. Our choice is motivated in three ways.
First, graphene is considered to be a key material for future
technology applications, e.g., in optoelectronics. Second,
graphene is hosting a two-dimensional electron gas at
the material surface. Therefore, it is relatively easy for
local probes, such as magnetic STMs, to access it. Third,
hydrogen is a very common adsorbate.
We calculate the local current density jðrÞ (per spin)

employing an ab initio formalism based on the density
functional theory (DFT) and the nonequilibrium Green’s
function method as implemented in our toolbox AITRANSS

[4–7] which is a part of the ab initio package FHI-AIMS [8].
Using a Landauer-Büttiker approach [9,10], we partition
the graphene nanoribbon into a central region, a left and a
right lead. We extract the single particle (Kohn-Sham)
Green’s function G0ðEÞ for the uncoupled device region
from the DFT calculations. Then, we calculate the self-
energies ΣL=R using absorbing boundary conditions and a
recursive Green’s function technique to model the infinite
extension of our system in current direction [11,12]. The
resulting Green’s function

GðEÞ−1 ¼ G0ðEÞ−1 − ΣRðEÞ − ΣLðEÞ ð1Þ
can be used to calculate the transmission through the
system T ðEÞ ¼ TrfΓLGΓRG†g, where the matrices ΓL=R

denote the anti-Hermitian parts of the self-energies,
i.e., ΓL=R ¼ iðΣL=R − Σ†

L=RÞ. They account for the level
broadenings of the central system due to the coupling to
the leads.
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Important for this work is that the Green’s function
allows us to calculate the Keldysh Green’s function G<,

G< ¼ iG½fLΓL þ fRΓR�G†: ð2Þ

The Keldysh Green’s function depends on the occupation
numbers fL=RðEÞ of the leads. In the case of a dc-transport
setup, a bias voltage Vbias is applied between the leads.
Inside the voltage window (fL ¼ 1, fR ¼ 0), the Keldysh
Green’s function reduces to

G<ðEÞ ¼ iGðEÞΓLðEÞG†ðEÞ: ð3Þ
To calculate local observables, we transform the Keldysh
Green’s function to continuous real space using the
basis functions φiðrÞ of the underlying DFT calculation,
G<ðr; r0; EÞ ¼ P

ijφiðrÞG<
ijðEÞφ�

jðr0Þ. Using this decom-
position, the current density (per spin) is

djðrÞ
dVbias

�
�
�
�
E
¼ 1

2π

ℏ2

2m
lim
r0→r

ð∇r0 −∇rÞG<ðr; r0; EÞ: ð4Þ

The magnetic field B and the magnetization m induced by
the current density are given by the Biot-Savart law,

BðrÞ ¼ μ0
4π

Z
jðr0Þ × ðr − r0Þ

jr − r0j3 d3r0;

m ¼ 1

2

Z

r × j dV: ð5Þ

The presented Keldysh formalism is well established to
describe nonequilibrium phenomena. The numerical chal-
lenges of the presented work were a high numerical cost of
ab initio simulations of large systems, especially because
one has to ensure convergence with respect to numerical
parameters [13].
Results.—An image of the current flowing in a wide

ribbon is depicted in Fig. 1. It immediately confirms a
suspicion that could have been based on earlier experimental
work [1]: the current flow follows indeed a complicated
filamentary pattern. More importantly, in Fig. 1 we discover
a significant new feature: the flow has a pronounced
tendency to form ring structures (eddies) with a local current
strength that exceeds the (average) through current by orders
of magnitude.
The strong fluctuations in the current density induce a

highly inhomogeneous magnetic field with very large
correlation length, see Fig. 2. Magnetic islands strongly
vary in size, ranging from subatomic distances up to several
nanometers.
Eddies, as seen in Fig. 1, are a signature of the

mesoscopic fluctuations of wave functions in disordered
media [15]. The latter manifest as reproducible fluctuations
of the conductance with an amplitude of the order of one
conductance quantum when control parameters like the
Fermi energy or magnetic flux are varied. Such conduct-
ance fluctuations are also present in the sample seen in
Fig. 1, as can be seen from the corresponding transmission
curve T ðEÞ shown in Fig. 3. The transmission peaks reflect

FIG. 1 (color online). Local current density per spin (integrated over the out-of-plane direction) in a wide hydrogen-terminated
armchair graphene nanoribbon (41 × 8) that has been functionalized with an additional 20% hydrogen atoms (additional 66 hydrogen
atoms). The current exhibits very strong mesoscopic fluctuations that reflect in a logarithmic color scale covering 4 decades. Some
interesting current paths are drawn in the picture for illustration: local current vortices exceeding the spatial average current by orders of
magnitude (see dark red regions; the average current is only

R ðdjxðrÞ=dVbiasÞdzjavg ¼ T ðe2=hÞw−1 ¼ 10−3 a:u:; width w ¼ 5.2 nm)
and a local backflow channel where the current runs against the average current (see central arrow from bottom to top; average current
direction: from top to bottom). Plot shows current amplitude (color), current direction (arrows), carbon atoms (gray crosses), and
hydrogen atoms (red crosses). Sample magnetization per bias: dmz=dVbias ¼ −38 a:u: ¼ −2.8ðμB=VÞ. (See Sec. S5 of the
Supplemental Material [14] for the detailed atomic structure.)
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individual current carrying sample states. Interestingly,
many maxima are seen to be separated by very sharp
antiresonances.
Discussion.—A first qualitative understanding of the

origin of the phenomena seen in Fig. 1 can be obtained
observing that eddies and antiresonances exist already in
samples with a single scatterer; they are not restricted to
hydrogen adatoms. We also observe eddies and antireso-
nances when using N, B, and OH as impurities. For
illustration, Fig. 4 displays a pronounced current loop that
appears in a narrow armchair ribbon with a single nitrogen
substituent, only. The associated transmission curve, shown
in Fig. 3 (right), exhibits the antiresonance feature, i.e. a
special energy at which the transmission nearly vanishes,
T ðEresÞ ¼ 0. The magnetization dmz=dVbias, correspond-
ing to the average rotation sense of the current vortices, also
vanishes at Eres but additionally changes sign.

A vanishing transmission in this setup should be under-
stood as a consequence of quantum interference. The
adsorbate splits off a resonant level from the conduction
band continuum. In the present case the nitrogen contrib-
utes an additional electron to the π bands. The associated
quasilocalized state contributes a separate transmission
channel that can interfere with the residual ones. In certain
energy windows interference is destructive and the current
is blocked.
In order to support our qualitative argument and connect

back to the current loops, we consult a two-path (toy)
model. The model features two current paths (upper and
lower path) that connect to the same reservoir; see the Fig. 5
inset. Results of a simple analytic calculation (given in
Sec. S2 of the Supplemental Material [14]) are displayed in
Fig. 5. It is comforting to see that a well known fact is
reproduced [16]: antiresonances (destructive interference)
are a generic encounter in this model. The transmission T
vanishes at the antiresonance Eres ¼ ðεT þ εBÞ=2.
The new aspect relevant to us is that the response of the

loop current (orbital magnetization) near Eres is linear in the
detuning E − Eres while the through current (transmission)
is quadratic, see Fig. 5; compare also Fig. 3 (right). Hence,
the ratio of orbital current (magnetization) to the transport
current becomes arbitrarily large near the antiresonance
Eres. Moreover, at the resonance the loop current changes
its direction emphasizing the close relation of the effect to
quantum interference.
Observable consequences.—After discussing the micro-

scopic origin of the loop currents, we turn our attention to

FIG. 2 (color online). Magnetic field distribution per spin (in
out-of-plane direction) for the ribbon of Fig. 1. The magnetic
field strongly varies and changes sign from region to region. The
field is plotted in the (averaged) carbon plane (z ¼ 0), but being
divergence free, it hardly changes with z (checked for z ¼ �1 Å).
The current paths drawn in Fig. 1 are repeated for convenience.

FIG. 3 (color online). The transmission functions (red, left y
axis) belong to the ribbons shown in Fig. 1 (left) and Fig. 4
(right). The transmission functions of the pristine ribbons show
sharp steps (orange, left y axis). The blue arrows mark the energy
for which the current response is plotted in Figs. 1 and 5. Both
ribbons exhibit a finite band gap at E ¼ εF with T ¼ 0. The
sample magnetization per bias dmz=dVbias (perpendicular to the
graphene plane, dashed black, right y axis) shows sign changes in
the vicinity of antiresonances.

FIG. 4 (color online). Local current density per spin (left)
and induced magnetic field (right) in a narrow armchair ribbon
(five carbon atoms wide) with one nitrogen atom replacing a
carbon atom (at right edge) The current reveals a massive
tendency for (local) vortices that exceeds the spatial
average of the current density (through current) by an order of
magnitude. The average current is only

R ðdjxðrÞ=
dVbiasÞdzjavg ¼ T ðe2=hÞw−1 ¼ 1.5 × 10−3 a:u:; width w ¼
6.8 Å). Average current direction: from top to bottom.
Sample magnetization per bias: dmz=dVbias ¼ 2.6 a:u: ¼
0.19 μB=V.

PRL 113, 136602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

26 SEPTEMBER 2014

136602-3



observable consequences. First, we recall that random
magnetic fields give rise to spin relaxation. In leading
order perturbation theory the corresponding rate reads
τ−1s ∼ ðμBB0Þ2τ, where B0 is the typical strength of the
random magnetic field and τ denotes the time it takes the
electron to move from one current loop to the next [17]. For
the example depicted in Fig. 2, we could expect a bare value
for μBB0 ∼ 100 MHz at Vbias ¼ 10 meV. This value is in
the range typical of hyperfine interactions. Such nominally
weak interactions might become the relevant source of spin
relaxation in organic materials where the competing relax-
ation mechanism, spin-orbit interaction, may be quite
weak. In particular, for strongly disordered films, the
relaxation rate τs formally diverges due to correlated
multiple scattering processes (i.e., current loops) [18].
(Notice, however, that recent works indicate that spin-orbit
interaction may be significant in hydrogenated graphene,
enhanced by lattice distortion [19].)
Second, we follow the analogy with the hyperfine

structure and ask what follows from the existence of bias
driven loop currents for NMR experiments performed on
molecular nanostructures in the presence of current flow. In
addition to the chemical shift due to the chemical envi-
ronment, the observed NMR shifts depend on the induced
local magnetic field. If we think about the functional part of
the current carrying device as a big molecule, then we
might hope to reconstruct from conventional NMR tech-
nology (or otherwise) its atomistic structure. If this is
possible, then one also can follow the shift of the NMR
resonances that results from the loop currents upon slowly
increasing the bias voltage. Since this shift directly mea-
sures the (bias induced) local magnetic field, one can in
principle measure the orbital current flow with atomic
precision in a global experiment.
Third, we would like to emphasize that we expect loop

currents to exist in generic situations with phase-coherent
charge transport in the presence of broken symmetries,
such as those brought about by disorder. As illustrated by

tight-binding (toy) models, the formation of current vor-
tices is forbidden in the presence of inversion or mirror
symmetries (see Secs. S3 and S4 of the Supplemental
Material [14]). Experimentally, such perfect symmetries are
typically broken and current vortices should be generic
encounters.
Outlook.—We conclude with an outlook. The idea

underlying this work is very general: scattering states of
mesoscopic samples have an inner, nontrivial structure. Our
focus here was on implications for orbital magnetism, but
the theme readily generalizes to other observables as well.
As an example we mention heat: Meair et al. have recently
proposed the concept of a local temperature applicable to
an out-of-equilibrium situation [20]. This beautiful new
concept is understood from the point of view advocated in
this Letter in the following way. A mesoscopic device, such
as a graphene nanoribbon, has contributions to the local
particle density made by scattering states that emanate from
right and left reservoirs. If the reservoirs carry different
temperatures, the sample will exhibit local temperature
fluctuations. Hot regions have predominant charge con-
tributions from the hot electrode, while colder regions
receive the majority of carriers from the other electrode.
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