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Electrical and thermal transport properties of C60 molecules are investigated with density-functional-
theory based calculations. These calculations suggest that the optimum contact geometry for an elec-
trode terminated with a single-Au atom is through binding to one or two C-atoms of C60 with a
tendency to promote the sp2-hybridization into an sp3-type one. Transport in these junctions is pri-
marily through an unoccupied molecular orbital that is partly hybridized with the Au, which re-
sults in splitting the degeneracy of the lowest unoccupied molecular orbital triplet. The transmission
through these junctions, however, cannot be modeled by a single Lorentzian resonance, as our re-
sults show evidence of quantum interference between an occupied and an unoccupied orbital. The
interference results in a suppression of conductance around the Fermi energy. Our numerical find-
ings are readily analyzed analytically within a simple two-level model. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4840535]

I. INTRODUCTION

C60 on metal surfaces is an important model system for
understanding basic processes in binding of (conjugated) or-
ganic molecules to metal electrodes, and has been studied in
the past both experimentally and theoretically.1–8 Transport
through C60 has motivated investigations by experimentalists
and theorists from early on with an emphasis on correlation
physics like the Kondo effect9–13 or vibrational degrees of
freedom.14–18

Concerning the linear conductance, the situation seems
to be particularly well investigated with Cu-electrodes,
where a combination of ab initio based calculations and
STM-experiments has provided a detailed understanding.19–21

These investigations suggest that the conductance, G, of C60

bound to Cu(111)-substrates is sensitive to the anchoring
mechanism. In general, G is relatively large for a single
Cu-atom contacting C60 immobilized on a Cu(111) surface
(∼0.13 G0, where G0 = 2e2/h).22 In contrast, the conduc-
tance of C60 on Au-electrodes has not been studied exten-
sively. Mechanical break junction experiments have found
that the conductance of a junction can be as high as 0.1–0.2
G0

23, 24 while STM-break junction experiments report much
smaller values with a very broad scattering in conductance
histograms for Au-, Pt- and Ag-electrodes.25

Understanding the transport mechanism in C60/Au junc-
tions is of interest for two reasons. First, any analysis and
design of transport processes through single molecules relies
upon an understanding of the influence of the electrodes.26

Second, the specific molecule C60-molecule might play a spe-
cial role in the context of contact formation because it was

recently proposed to be a suitable general anchor group due
to its size and electronic conjugation.27, 28

In this paper, we address the transport characteristics
of single-molecule junctions formed using C60 molecules
attached to Au electrodes. Our calculations are employing
the density functional theory (DFT)-based non-equilibrium
Green’s functions (NEGF) formalism29 and two-level toy
models that we treat analytically. We begin the presentation
of our results in Sec. II with the analysis of the binding geom-
etry of C60 on Au- and Cu-surfaces for the two cases of flat
surfaces and rough surfaces, modelled by a single adatom.
Together with Sec. III this will be a prerequisite for the trans-
port study that follows later in Sec. IV and that constitutes
the central part of this work. A first theoretical result already
obtained in Sec. II is that Au-electrodes are invasive: Au sin-
gle adatoms have a tendency to form chemical bonds with C-
atoms and thus locally affect the sp2-conjugation in C60, sim-
ilar to what has been reported for Cu electrodes. We find that
the alternative scenario, where the adatom resides in a hexag-
onal/pentagonal facet of C60 is not energetically favored as it
has a binding energy that is 0.5 eV lower. We, thus, confirm
statements reported in Ref. 30. In Sec. III, we investigate the
molecule’s electronic structure after binding to the substrate.

Our second result is that C60 has a slight tendency to
charge negatively on Au with single adatom binding, though
not as much as on Cu (or Ag).31 This contrast results on
flat Au(111) where the charge transfer is negligible.4, 5 As a
consequence, with Au-electrodes transport is more LUMO-
dominated. However, in contrast with Cu, it will in general
not be close to resonant.
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The analysis of the transport characteristics builds on the
results of Secs. II and III. It is presented in Sec. IV that con-
tains our most important findings. We determine the trans-
mission function, T(E), and the Seebeck-coefficients, S(E), of
several C60-junctions that exhibit somewhat different contact
geometries. For two of these data similar to ours have been
reported before in Ref. 32. Our analysis goes significantly
beyond earlier work because we provide evidence that inter-
ference between transport channels plays a quantitatively im-
portant role, especially when the Fermi-energy is situated be-
tween HOMO- and LUMO-resonances of the C60 molecule.
We show that deviating from earlier claims33 the conductance
at the Fermi energy is not resonant but rather strongly sup-
pressed due to destructive interference from two strongly cou-
pled transport channels. This suppression leads to a sharp,
step-like increase of the Seebeck-coefficient near the mini-
mum transmission energy. We analyze our findings within an
analytic model for a two-level system and find that it supports
the results of DFT-based transport calculations. In addition,
this analysis also shows that due to cancellation effects, elec-
trical currents driven by heat gradients (rather than by a bias
voltage) remain almost unaffected by destructive interference
effects.

II. SYMMETRIC CONTACTS WITH SINGLE ADATOM

A. Method

We compute the total energy of the extended molecule
(C60 plus contact model) for different contact geometries
using DFT. To this end, we employ the TURBOMOLE
package34 with the SVP basis set, effective core potentials
(ECPs) for the Au core electrons that include relativistic cor-
rections, the BP86 functional35 and van der Waals interactions
included on the level of Grimme corrections;36 see Appendix
A for details on them. The geometry was optimized in the
following way: the relative position of all electrode atoms
was fixed with bond-lengths as given by Au-bulk. The ge-
ometry of C60 was optimized in vacuum. Thereafter, C60 was
approached to the electrode with different surface-molecule
contact geometries: hexagon or pentagon on the flat surface
or atop (C–Au-atom) and bridge position for single-adatom
geometries, see Fig. 1. For each contact geometry a trace

binding-energy was recorded as a function of distance. In this
process, the geometry of C60 was fixed.39

B. Results: Adatom geometries

Binding energies for different inter-electrode distances
are displayed in Fig. 1. One infers from Figs. 1(a) and
1(b) that Cu or Au-adatoms prefer bonding in bridge
positions, where two hexagons touch each other (hexa-
hexa-bridges). However, for larger distances between the
electrodes, i.e., more generally for relaxation under external
constraints, adatoms may also sit on-top of C-atoms or in
penta-hexa bridge position. Since the energy difference
between these three geometries is under 100 meV even close
to the minima, these three geometries should be energetically
accessible, especially in break-junction experiments where
the electrode structures can deviate from pyramidal tips.

1. Discussion

Carbon atoms of C60 in vacuum are sp2-hybridized. How-
ever, the bond angle (108◦) is relatively far from the “ideal”
sp2-hybridization value (≈ 120◦). Therefore, it is plausible
that C60 is susceptible for bonding with adatoms,37 in contrast
to simple sp2-hybridized carbon like graphene or other conju-
gate molecules. Figures 1(a) and 1(b) reveal that the binding
energy of Cu to C60 exceeds that of Au by 0.5 eV. On a qual-
itative level this observation could be related to the fact that
the Kohn-Sham (KS)-work function of Cu is situated consid-
erably above the one of C60 in vacuum (see Fig. 2). There-
fore, a moderate flow of electrons into the C60-LUMO might
increase the interaction with the Cu-surface as compared to
the one of Au.

The relatively strong interaction between the carbon π -
system and the Au-adatom also manifests itself in the ra-
tio of the generalized gradient approximation (GGA) binding
energy (ignoring Grimme the corrections) to the total bind-
ing energy, ρ ≡ EGGA/(EGGA + EGrimme). It helps to quantify
how close the bond is to being covalent. If ρ ≈ 1, the van der
Waals contribution is negligible and a covalent chemical bond
has formed. In contrast, if ρ � 1, bonding is predominantly
of the van der Waals type and the adatom should be thought
about as being physisorbed.

FIG. 1. Energy profiles from DFT with Grimme corrections: (a) Adatom geometries with Cu-electrodes and (b) Au-electrodes. (c) Flat Au-electrodes facing
C60 hexagons.



234701-3 Géranton et al. J. Chem. Phys. 139, 234701 (2013)

FIG. 2. Kohn-Sham energy levels of C60 in vacuum (black lines). Fermi en-
ergies of Cu (red) and Au (yellow) estimated from DFT calculation for the
24-atoms clusters used for the transport calculations.

The ratios of ρ are given in Table I along with the corre-
sponding total binding energies and bond lengths. For both Cu
and Au-electrodes, the values ρ ≥ 1/2 suggest that bonding is
predominantly covalent, consistent with the expectations for-
mulated in the preceding paragraph.

C. Results: Flat Au(111) electrodes

We also consider flat Au(111) electrodes (without an
adatom) facing a hexagon of C60. The binding energy profile
of that configuration is displayed in Fig. 1(c). The bond dis-
tance here is measured from the position of the nuclei of the
first Au(111) layer. Most notably, the pure GGA functional
without Grimme corrections would indicate that the configu-
ration at a distance of ∼3.0 Å is non-binding. This is reflected
in the sign of ρ in Table I. The bond has no covalent contribu-
tion in this geometry, consistent with the higher coordination
number of surface atoms compared to adatoms. As shown in
Table I, the bond distances for the C60-Au(111) geometry is
0.8–1.0 Å larger than the case of C60-adatom geometry. The
binding energy is of similar magnitude as in the adatom case,
indicating that this configuration may indeed be relevant in
experiments.

TABLE I. Characteristics of lowest energy molecular junction geometries
where lbond is the Au–C or Cu–C bond length, Ebind is the binding energy per
electrode and ρ ≡ EGGA/Ebind gives an indication of the covalent contribu-
tion to the bond.

Electrode Position lbond (Å) Ebind (eV) ρ

Cu C-atom 2.0 −1.83 0.66
p-h bridge 2.2 −1.89 0.61
h-h bridge 2.2 −2.05 0.63

Au C-atom 2.2 −1.29 0.56
p-h bridge 2.4 −1.31 0.54
h-h bridge 2.2 −1.49 0.54

Au (flat) hexagon 3.0 −1.02 −0.32

III. ELECTRONIC STRUCTURE

The nature of the molecule-electrode bond is of crucial
importance for C60 transport properties. Since the formation
of a covalent bond with C60 implies that the conjugation of the
π -electron system is broken at the contact, a transport barrier
forms and the molecule should be considered as “weakly cou-
pled.” In this section, we discuss the effect of the bonding on
the electronic structure of the molecule.

A. Free molecule

The position of relevant molecular orbitals of C60 in vac-
uum, as obtained from DFT calculations, is shown in Fig. 2.
The Highest Occupied Molecular Orbital (HOMO) and Low-
est Unoccupied Molecular Orbital (LUMO) levels are 5-fold
and 3-fold degenerate. The associated HOMO-LUMO gap is
� ∼ 1.6 eV, slightly underestimating the experimental value
2.3 eV.38 (For a discussion of this discrepancy, see Sec. IV E.)
The position of the chemical potentials of Au and Cu relative
to C60 energy levels are also shown in Fig. 2. These values are
from DFT calculations on 24-atoms clusters since the same
values will be used in our transport calculations. The posi-
tion of these levels suggests that charge transfer between the
Au-electrode and molecule will be relatively week, in com-
parison with Cu-electrodes where the molecule can pick up a
pronounced negative excess charge.

B. Local density of states

When the molecule is in contact with metal electrodes,
the position of these molecular levels will shift and experience
a lifetime broadening. The electronic structure of the junction
is represented by the density of states projected on the C60

(local density of states, LDOS). We calculate it for the ge-
ometries of lowest total energy with the DFT-based Green’s
function formalism for non-interacting particles described in
Appendix B and Ref. 29. The result is displayed in Figs. 3(a)
and 3(b).

To quantify further, we parametrize the LDOS as a sum
of Lorentzians,

LDOS(E) = 1

π

∑
n

δn

(E − εn)2 + δ2
n

. (1)

Values of the fitting parameters, resonance position εn, and
broadening δn are given in Table II for junctions where the
adatom is facing a C-atom of the C60 (Fig. 1).

1. Adatom geometry

The splitting of molecular energy levels in Fig. 3, espe-
cially the LUMO ones, indicates that the formation of the
chemical bond constitutes a significant perturbation in the
sense that one of the LUMO states of the molecule splits away
from the others. It hybridizes more strongly with the elec-
trode states as exhibited by the corresponding increased level
broadening. Electron transport through C60 will be mostly via
this level. Table II reveals the effect of electrode coupling on
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FIG. 3. Local Density of States (LDOS) projected on C60 for (a) Cu-electrodes and (b) Au-electrodes for the three geometries of lowest total energies identified
in Fig. 1. (c) LDOS of C60 in a junction with direct coupling to a flat Au(111) surface for the optimum geometry, see Fig. 1(c).

level splitting and broadening is about two times stronger for
Au- than for Cu-electrodes.

2. Flat Au(111) contacts

With a flat Au(111) surface (see Fig. 1(c)) EFermi resides
in the middle of the HOMO-LUMO gap, much closer to its
vacuum position (see Fig. 2) than in the adatom geometries.
This indicates that partial charge transfer is weaker with a flat
electrode as compared to the case of adatoms, and reflects that
binding is purely of the van-der-Waals type. Consequently, the
splitting of the energy levels (see Table II) is much smaller
than that of the adatom geometry. In other words, the pres-
ence of the electrodes implies only a weak symmetry break-
ing with an overall small effect on the molecular frontiers or-
bitals. We associate the large quantitative differences in the
observed shifts and broadenings with wavefunction overlaps:
symmetry related extinction results in reduced hybridization
matrix elements.

IV. TRANSPORT CALCULATIONS FOR C60

If we were to consider a system with N channels that do
not interfere with each other, then by definition the transmis-
sion (per spin) could be written as a sum of Lorentzians,

T (E) =
∑

n

δ2
n

(E − εn)2 + δ2
n

, (2)

with parameters given in Table II. The formula yields a good
approximation, usually, in the presence of symmetric cou-
pling if a single transport resonance dominates. However, in
cases where transfer amplitudes of different channels can be

of comparable magnitude interference terms may become sig-
nificant and the approximation (2) breaks down. Then, in prin-
ciple, the Landauer formula, Eq. (B4) in Appendix B, has to
be employed.

A. Results: Transmission function

The full transmission function, T(E), as obtained from
the Landauer formula in the NEGF-formulation29 is displayed
in Figs. 4(a) and 4(b) for the Au–C atop-geometry. It ex-
hibits pronounced non-Lorentzian features, with a suppres-
sion of the transmission in the valley region. Comparing with
the model of isolated resonances, Eq. (2), one can see that
the missing cross-terms between different transfer modes ex-
plain this behavior. We conclude that interference between
transport resonances plays a quantitatively important role in
electron transport through C60 when the chemisorbed C60-
molecule is only weakly charged. The conductance could be
reduced by roughly one order of magnitude as a result.

B. Discussion: Effective two level model

We interpret our findings for the transmission function
using an effective two level model. Its precise definition to-
gether with a derivation of basic properties are given in
Appendix D.39 The salient features of the simplified model
are summarized by the following set of equations:

T (E) = T0 + T1 ± T̄01, (3)

T̄01(E) ≈ 2
√

T0T1
(E − ε0)(E − ε1) + γ0γ1√

(E−ε0)2+γ 2
0

√
(E−ε1)2+γ 2

1

. (4)

TABLE II. Linewidths, δn, and positions of energy levels, εn, for the geometry where the adatom sits on-top of a C-atom and the flat surface geometry. Levels
are classified according to their position in the energy spectrum of the molecule in vacuum (HOMO, LUMO, HOMO+1).

HOMO LUMO LUMO+1

Au εn − EF (eV) − 1.68 − 1.38 − 1.37 − 1.35 − 1.35 0.10 0.25 0.28 1.15 1.28 1.33
δn (meV) 149 26 8 1 6 116 8 6 175 21 1

Cu εn − EF (eV) − 1.59 − 1.48 − 1.48 − 1.45 − 1.44 0.06 0.12 0.16 1.02 1.15 1.24
δn (meV) 55 15 17 5 3.5 50 12 11 60 40 1.1

Au (flat) εn − EF (eV) − 0.78 − 0.77 − 0.76 − 0.75 − 0.75 0.84 0.86 0.87 1.92 1.92 1.93
δn (meV) 114 116 4 2 2 82 75 17 9 42 53
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FIG. 4. Transmission functions for different electrode models. (a) Adatom in atop-position with Cu-electrode, (b) Au-electrode, and (c) displays the flat
Au(111)-surface. Red line: DFT-based transport code with Landauer formula/NEGF-formalism. Green line: isolated resonances model, Eq. (2). Plot highlights
the effect of crosstalk between different transport channels in the transmission valley regime of energies.

The two levels that one should refer to here are derived
from the C60-HOMO quintet and LUMO-triplet that exhibit
resonances with the strongest broadening. Accordingly, we
see from Table II the set of parameters: ε0 = −1.68 eV,
ε1 = 0.1 eV, γ 0 = 0.149 meV, γ 1 = 0.116 meV. A decompo-
sition of the LDOS given in Appendix C further substantiates
this simplification.

The sign in Eq. (3) controls the effective mixing between
the two transport channels, i.e., whether they interfere con-
structively (minus sign) or destructively (plus sign) for en-
ergies in the valley region, ε0 < E < ε1. As we explain in
Appendix D, destructive interference occurs in two-level
models where both states couple with similar strength to both
reservoirs. For C60, we expect that there should not be any
important difference between the coupling of the HOMO and
LUMO levels to the leads, we can expect to see destructive
interference.

Indeed, already from Fig. 4 we can see that for
the case of the C60-Au-junction, the transmission in the
valley region is very strongly suppressed supporting our
claim.

Hence, we conclude that the plus-sign should be cho-
sen in Eq. (3). Furthermore, with symmetric coupling we also

have

Ti(E) = γ 2
i

(E − εi)2 + γ 2
i

, i = 0, 1. (5)

The sign in Eq. (3) is the toy model’s only ingredient in T(E)
that is not fixed by the LDOS alone.

In Fig. 5(a), we compare the full transmission with the
one from the toy model, Eq. (3). Indeed, in the valley region
the toy model reproduces the transmission and all its non-
Lorentzian features well up to a small shift of the minimum-
transmission energy. This shift is readily explained, e.g., by
residual energy dependencies in the pole-positions due to the
structured density of states in the reservoirs. For the mini-
mum conductance at energy ε∗ we obtain a parametrical esti-
mate T ∗

constr ≈ 4γ0γ1/|ε0 − ε∗||ε1 − ε∗| for constructive inter-
ference and

T ∗
destr ≈ 1

4
T ∗2

constr (6)

in the other case.

C. Thermopower

We complete our account of C60 transport properties with
a discussion of the thermopower of an Au-C60-Au junction.

FIG. 5. (a) Comparison of transmissions obtained from the transport code (Fig. 4(b), solid red) and the two-states model (solid blue), see Eq. (3). In order to
highlight the impact of the interference term, T̄01, Eq. (3), results for constructive and destructive situations are given. (b) Logarithm of the transmission function
(dashed lines) and its derivative. The latter represents the system specific information content of the Seebeck-coefficient, Eq. (8). (c) System specific, energy
dependent characteristics, T(E)dln T(E)/dE, of the thermal current, Eq. (7). Plot highlights a result of the two-level model: traces for destructive (blue) and
constructive (brown) interference give nearly coinciding results, even though their electronic transmission deviates by orders of magnitude, see the transmission
functions given in the left figure.
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The thermopower or Seebeck coefficient S determines the
magnitude of the built-in potential developed across the junc-
tion when a temperature difference �T is applied.40 In par-
ticular, molecular junction thermopower can be useful in de-
termining the dominant molecular orbital for transport and
the identity of the primary charge carriers.41, 42 With the ad-
ditional presence of an external voltage bias �V across the
junction,43, 44 the total current I in this case is simply

I = 2e2

h
[T (EF)�V + T (EF)S(EF)� T] , (7)

where T (EF) denotes the transmission at the Fermi energy.
For non-interacting electrons, the Seebeck-coefficient, S(E),
is closely related to the transmission function T(E), ultimately,
because all transport processes are controlled by the tunneling
probabilities of electrons with a given energy through the bar-
rier. We have (using the convention e = |e|)

S(E) = −π2k2
BT

3e

d ln T (E)

dE
, (8)

where T denotes the (electronic) temperature. The system
specific information is all encoded in the logarithmic deriva-
tive, which we now discuss.

Figure 5(b) displays the logarithmic derivative for our
model system, C60. Again, we can convince ourselves that the
two-level model with destructive interference accounts well
for the salient features of the full DFT-based trace. A striking
characteristic to be observed here is the step-like transition,
changing sign, that the derivative undergoes when the energy
sweeps by the valley minimum point ε∗ ≈ −0.51 eV. We can
estimate the parametrical dependency of the slope at ε∗ em-
ploying Eqs. (3)–(5):

d ln T (E)

dE

∣∣∣∣
E≈ε∗

≈ (E−ε∗)(ε1−ε0)2

2γ0γ1|�0�1| , |E − ε∗| � γ0, γ1,

(9)
where �i = εi − ε∗. For the typical cases where γ 0 and γ 1 are
comparable, ε∗ is halfway between ε1 and ε0, so the expres-
sion simplifies further: d ln T (E)/dE|ε∗ ≈ 2(E − ε∗)/γ0γ1.
Hence, the slope diverges in the weak coupling limit, where
γ 0, 1 tend to zero at fixed level splitting |ε1 − ε0|.

The estimate for the slope is valid for energies in a vicin-
ity of width γ 0, 1 about ε∗. Hence, the logarithmic derivative
takes very large magnitudes ∼±1/γ 0, 1 near the center of the
valley region. It is only near the resonances where it reaches
similar values, e.g., ∼1/γ 1 near ε1. The intermediate region
interpolates between these to maxima.

This behavior is typical of systems that exhibit almost
perfect destructive interference, so that T(E) approaches zero
near some energy ε∗. It is completely absent with constructive
interference, see Fig. 5(b). There the logarithmic derivative
has a parametrically small slope of the order of ∼1/|�0�1|
(rather than 1/γ 0γ 1) near ε∗.

The temperature driven current is, up to system unspe-
cific prefactors, given by the product Tdln (T)/dE. Each factor
has been seen to be very sensitive to the sign in Eq. (3) in our
discussion. For the product this is not the case, as one infers
from Fig. 5(c). The reason is that the suppression of T∗ for
the case of destructive interference is largely compensated by
the strong slope in the logarithmic derivative. Indeed, in the

valley region we have for the product with either destructive
of constructive interference a similar behavior: T∗dln (T)/dE
≈ (ε − ε∗)γ 2/δ4, where γ = γ 0 = γ 1, δ = �0 = −�1 = (ε0

− ε1)/2 has been assumed.
Hence, we arrive at the following conclusion: In the pres-

ence of destructive interference (minus sign in Eq. (3)) the
bias voltage driven current can be suppressed by orders of
magnitude in the valley region. Nevertheless, an electrical
current driven by a thermal bias reaches similar values as it
would in the absence of interference effects.

D. Contact geometries revisited: Asymmetry and
chain formation

In this section, we show that the shape of the transmission
function can be significantly modified by changing the contact
geometry.

1. Single adatom contacts breaking
inversion symmetry

By selecting different pairs of C-atoms on the molecule,
one modifies the phase difference between parallel transmis-
sion paths (Fig. 6). The situation is similar to the case consid-
ered previously,45, 46 except that there a torus geometry was
considered while we investigate a sphere. The different con-
tact geometry has an impact on the effect of T01. Specifically,
the transmission function for the second geometry (maroon
trace in Fig. 6) is very similar to a pure superposition of
Lorentzian resonances, suggesting that the T01 in Eq. (3) does
not contribute significantly and interference effects between
parallel paths are much weaker than the other cases.

In contrast, destructive interference reappears in geome-
try (3), Fig. 6. This geometry is, however, far from perfectly

FIG. 6. Transmission function for different anchoring geometries: (1) Sym-
metrical geometry from previous plot Fig. 5. Asymmetrical geometries (2,
maroon; 3, blue). Position (2) can be fitted by adding two Lorentzians (dashed
line, γ 0 = 0.106, ε0 = −1.6, γ 1 = 0.096, ε1 = 0.13), indicating that inter-
ference effects are weak. In contrast, geometry (3) exhibits destructive inter-
ference. The model (3) fails in the valley region (blue dotted dashed line),
mainly because the angle �c (defined in Appendix D) is not close to π . From
the blue data trace one estimates roughly cos �c ≈ −0.8 together with an
asymmetry γ0L/γ0R ≈ 0.45.



234701-7 Géranton et al. J. Chem. Phys. 139, 234701 (2013)

symmetric, and therefore the simplified model Eq. (4) cannot
be expected to hold. Instead, in principle, the more complete
formula given in Appendix D, (D13)–(D15), should be ap-
plied. Indeed, the fit based on the simplified expression (3)
does not properly reproduce the behavior of T(E) in the val-
ley region. (Based on the discrepancy one expects cos (�c)
≈ −0.8.)

We emphasize that there is a very large variability of the
conductance in the valley region even though all electrode po-
sitions (1)–(3) are associated with similar resonance positions
and broadenings. We attribute this behavior to the mixing an-
gle �c oscillating from π (geometry 1) to 0 (2) back to larger
values �c ≈ 2.5 (3) again. This observation we take as sup-
port for our claim that the variations observed in the transmis-
sion function are due to a modification of the phase difference
between parallel paths.

2. Au-contact chains

In order to investigate the development of interference
with decreasing level broadening, we consider here geome-
tries where the molecule is included between Au-chains. In
this configuration, the number of incoming and outgoing lead
channels is limited to essentially a single one. This reflects in
the local density of states at the chain terminating Au-atom
that the molecule couples to. It is more strongly structured
as compared to the case with a single Au-adatom, only; the
number of states that are ready to hybridize with the C60-
orbitals is reduced. As a consequence, broadening of molec-
ular orbitals contacting Au-chains is in general weaker, and
also more complicated since a convolution of two structured
functions (LDOS on molecule and contact-atom/Au-wire) is
involved.

The transmission functions obtained for one-, two-, and
three-atoms chains geometries shown in Fig. 7 support these
expectations. We observe a progressive development of large
amplitude anti-resonances with increasing chains length.
They reflect the fact molecular states and wire states can co-
operate in a complicated manner which allows, in particular,
for more levels to develop interference patterns in valley re-

FIG. 7. Transmission functions for contacts made via adatoms (1), two-
atoms Au-chains (2), and three-atoms Au-chains (3).

gions. In this way, transmission values below 10−4 can come
about for 3-atoms chains, which suggest that extremely low
conductance values, between 10−3G0 and 10−4G0, see Fig. 7,
can be observed with these type of junctions. This finding be-
comes particularly interesting in view of the fact that a single
Au-chain is well known to exhibit a single perfectly transmit-
ting channel. Our result, Fig. 7, gives a solid demonstration
that due to quantum effects even a perfect conductor can be a
very invasive means to facilitate an electrode coupling.

E. Additional remarks

We add several remarks on artifacts of DFT-based trans-
port calculations and about experiments.

First, the functionals used in our study are well known
to underestimate the true HOMO-LUMO gap, as was
pointed out already in Sec. III A. The missing derivative
discontinuity influences the alignment of the molecule-based
and metal-based electronic levels; in general, it leads to an
overestimation of charge transfer. Hence, while one expects
that the qualitative features of the DFT-based transport calcu-
lations are captured correctly, the positioning of the LUMO
with respect to the Fermi-energy, EF, should be slightly too
close. The true EF is probably situated somewhat closer to
the valley region than seen in the DFT-calculation.

Second, recent research has shown that DFT-based trans-
port calculations employing exact functionals reproduce the
exact transmission for interacting single level models.47–49 At
present, a rigorous generalization of the statement to mod-
els with several levels does not exist. In contrast, the numeri-
cal results of Ref. 50 show deviations between exact conduc-
tances and DFT-based transport with exact functionals in the
valley region indicating that a precise generalization to two-
level models may, in fact, not exist.

In view of this problem, it is important to realize that
the main finding of our paper is likely to be insensitive to
(weak) interaction effects beyond our GGA treatment. The
reason is that our statements already follow from a two-level
model with the basic ingredients: a closed shell system (i.e.,
no magnetism), time-reversal symmetry, inversion symmetry,
and the fact, that the HOMO- and LUMO-orbitals are conju-
gated, coupling well in similar ways to both leads.

Due to the large interference induced slope of T(E) in
the valley region, one could expect to observe very large
conductance fluctuations in the experiments—despite of the
high molecular symmetry of C60—due to weak environmental
capacitive couplings. Our study would also suggest that the
Seebeck coefficient does not exhibit such strong fluctuations
because its dependency on the level alignment in the valley
region is relatively weak, see, e.g., Fig. 5(b). Both qualitative
features are indeed observed in Ref. 25.

On a quantitative level, we observe that the theoretical es-
timate for the Seebeck-coefficient, S theo = 91.96 μV/K, over-
shoots the experimental one (Sexp = −14.5 ± 1.2μV/K)25 by
a factor of six. Notice, however, that the experimental conduc-
tance value is log-normal distributed with the peak between
Gexp ≈ 10−3 – 10−4 G0 while in theory Gtheo = 0.37 G0. We
propose that the conductance mismatch is explained partially
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by a slightly different alignment of the Fermi-energy and the
LUMO of C60 in experiment and theory. A small misalign-
ment is plausible, e.g., because the value of the Fermi-energy
is sensitive to the experimental surface morphology which in
turn is not really known and therefore not faithfully repro-
duced in the theoretical modeling. Most likely, also the factor
of six is partially due to this effect, so that the true discrepancy
is somewhat reduced.

V. CONCLUSIONS

We have presented a detailed study of charge transport
properties of the C60-molecule coupled to Au-electrodes. Our
main finding is that the electrical conductance of the molecule
is strongly suppressed due to two interfering transmission
channels. The phenomenon was interpreted as a precursor to a
Fano-anti-resonance. This result has been established by com-
bining ab initio transport calculations with a toy-model analy-
sis. This analysis also suggests that a thermally driven current
is significantly less sensitive to such interference effects due
to cancellation effects in the transmission function and the
Seebeck coefficient.
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APPENDIX A: COEFFICIENTS FOR THE GRIMME
CORRECTION

We employ the Grimme empirical correction (Eqs. (A1)–
(A3))51 to the total GGA energy in order to take van-der-
Waals interactions into account. The coefficients that we used
are given in Table III. For C and Cu-atoms, the values for C6

and R0 have been taken from Ref. 51. For gold atoms, the R0

coefficient has been obtained from the radius of the electron
density contour of a single gold atom and the C6 coefficient
has been obtained from a fit to data obtained from second
order Møller-Plesset perturbation theory (MP2).52 Following
Grimme51 we used d = 20 and s6 = 1.05,

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

C
ij

6

R6
ij

fdmp(Rij ), (A1)

fdmp(Rij ) = 1

1 + e−d(Rij /R0−1) , (A2)

C
ij

6 =
√

Ci
6C

j

6 . (A3)

TABLE III. Coefficients used for Grimme empirical correction.

C6 (J nm6 mol−1] R0(Å)

C 1.75 1.32
Cu 10.8 1.42
Au 21.9 1.58

APPENDIX B: TRANSPORT CODE

A detailed description of our transport simulations has
been given in Refs. 29 and 57. We present a brief summary
of the main steps. The effective KS Hamiltonian HKS of the
extended molecule is constructed from the KS-orbitals and
energies previously computed by DFT (employing the TUR-
BOMOLE package34 in our case). The Green’s function of
the extended molecule is built from this Hamiltonian HKS,

G(E) = 1

E − HKS − 	
, (B1)

where 	 is the self-energy of the reservoirs. It can be taken in
the form29

	nm =
{
δnm(δε − iη) m, n ∈ S

0 m, n /∈ S.
(B2)

This self-energy is diagonal in the atomic basis and has non-
zero values only in the subspace S associated to the outermost
atomic layer of each electrode. The parameter η = 2.72 eV is
the leakage parameter. It is adjusted such a way that the trans-
mission functions are (approximately) invariant under varia-
tion of η. The energy shift δε is tuned for each calculation so
that the Fermi level for the entire system remains unchanged
compared to what has been obtained from DFT calculation,
i.e., about the Fermi energy of the metal used for the elec-
trodes. Here, we used −1.25 eV < δε < −1.15 eV for Au and
−2.00 eV < δε < −1.94 eV for Cu.

The LDOS projected on the molecule can then be written

LDOS(E) = − 1

π

∑
n∈M


Gnn, (B3)

where M is the subspace associated to the atoms of the
molecule.

The transmission function is given by the following ver-
sion of the Landauer formula53

T (E) = Tr {�LG�RG†} (B4)

with �L,R defined by

�L,R = i(	L,R − 	
†
L,R). (B5)

APPENDIX C: LDOS PROJECTED ON MOLECULAR
ORBITALS

In order to illustrate more clearly the mixing of molecular
states, we here introduce a projection of the LDOS on specific
“coupled molecular orbitals,” |μ〉. The formal definition of
such orbitals is given by the following construction. Again,
we construct the KS-Hamiltonian HKS from the KS-orbitals
and energies of the DFT-calculation that has been done for
the extended molecule (C60 plus parts of the leads). In the
orthogonalized atomic basis set, one can partition HKS in the
following way,

HKS =

⎛
⎜⎝

HL VLC VLR

V ∗
LC HC VRC

V ∗
LR V ∗

RC HR

⎞
⎟⎠. (C1)
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FIG. 8. Local density of states projected on the two strongly coupled molec-
ular orbitals (MO 1 and MO 2) for the geometry where the adatom sits on-top
of a C-atom.

where as usual L, R refer to the Hilbert spaces of the left and
right electrodes and C comprises the remaining part of the full
Hilbert space that belongs to the molecule. The states |μ〉 are
the eigenvectors of the central block HC. They are related to
the molecular states of C60 in vacuum, but some effects of
the electrode coupling are taken into account. Since the states
|μ〉 form a complete basis of the molecular Hilbert-subspace
corresponding to HC, the LDOS on the molecule can then be
decomposed into the contributions of each molecular orbital

LDOS(E) = − 1

π

∑
μ

〈μ|
G(E)|μ〉. (C2)

The LDOS projected on a molecular orbital |μ〉 can then be
identified as − 1

π
〈μ|
G(E)|μ〉.

The local density of states projected on the two rele-
vant molecular orbitals is depicted in Fig. 8. It shows that in
the valley region of the transmission between HOMO- and
LUMO-resonances two associated orbitals contribute simi-
larly to the LDOS. This suggests that there is a possibility
for these orbitals to give interfering terms in the transmission
function T(E).

APPENDIX D: TWO LEVEL (TOY) MODEL

We recall properties of the two-state (toy) model that
accounts for the transport characteristics of non-interacting
quantum dots with two effective transport levels. As opposed

FIG. 9. Schematic representation of the two-level model with the inner part
representing the Hamiltonian H (grey shaded) and the couplings to the leads.

to earlier work,54 we investigate the model analytically in its
full parameter space.

1. Definition

Quite generally, the transmission is given by a formula
of the Landauer type (B4), T (E) = Tr {�LG�RG†}. For toy
model �L,R and G are 2 × 2-matrices. We have for the inverse
Green’s function

G−1(E) = E − H − 	(E), (D1)

where H is a non-interacting two-level Hamiltonian and 	(E)
denotes the self-energy that describes the coupling to a left
and right single channel wire: 	 = 	R + 	L. This self-
energy has the general structure

	α(E) = gα(E)

(
|tuα|2 t∗uαtdα

t∗dαtuα |tdα|2
)

(D2)

=
(

t∗uα

t∗dα

)
gα(E) (tuα, tdα), α=L,R, (D3)

where tuα , tdα denote the hybridization matrix elements that
connect the two level, up and down, with the wire reservoirs
(Fig. 9); gα(E) resembles a scalar, complex valued function,
the “surface Green’s function” of each wire at the point con-
tacting to the two-level system. We have

�α = −i
(
	α(E) − 	†

α(E)
)
. (D4)

Interference effects can occur, if �L,R and G do not commute,
so that they cannot be diagonalized simultaneously. In order
to highlight them, by substituting (D3) into the trace formula,
we obtain

T (E) = (2π )2LR

∣∣∣∣∣(tuL, tdL)G

(
t∗uR

t∗dR

)∣∣∣∣∣
2

, (D5)

with the contact density of states (E) = −1
π


gα(E). Next,
we rotate into the basis of eigenfunctions of G(E),

G(E) = U

( 1
E−z0

0

0 1
E−z1

)
U−1. (D6)

In general, the pole positions z0, 1 and the eigenvectors com-
prising the columns of the rotation matrix U inherit a depen-
dency on energy, E, through 	(E). In order to simplify nota-
tion we introduce effective hybridization matrix elements, v

(v0L, v1L) =
√

2πα(tuL, tdL)U, (D7)

(
v∗

0R

v∗
1R

)
=

√
2παU−1

(
t∗uR

t∗dR

)
(D8)

and transmission coefficients

ταβ(E) = 2π
√

αβ(tuα, tdα)G

(
t∗uβ

t∗dβ

)
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= v0αv∗
0β

E − z0
+ v1αv∗

1β

E − z1
(D9)

that allow us to write

T (E) = |τLR(E)|2. (D10)

To explicitly single out the interference term, we employ a
decomposition

T (E) = T0(E) + T1(E) + T01(E). (D11)

The two first terms constitute the non-mixing contributions
from each energy level

T0(E) = |v0L|2|v0R|2
|E − z0|2 , T1(E) = |v1L|2|v1R|2

|E − z1|2 . (D12)

Each term refers to a single pole only and thus is reproduced
by the model of isolated resonances, Eq. (2). Interference en-
ters via the mixed term

T01(E) = 2
√

T0T1 cos (�c − �), (D13)

�c = arg(v0Lv∗
0Rv∗

1Lv1R), (D14)

�(E) = arg((E − z0)(E − z∗
1)). (D15)

As is seen from Eq. (D13), interference effects are controlled
by two angles, �c and �. They exhibit quite different generic
properties. �c carries an energy dependency only via 	(E)
that reflects a dispersion in the (local) density of states in the
reservoirs. Because the latter often is very smooth compared
to the level splitting, |ε0 − ε1| with Rzi = εi, it can typically
be ignored, so that for practical purposes �c is energy inde-
pendent. By contrast, �(E) can exhibit a very sharp energy
dependency, especially in the limit of low damping.

a. Remark: Level broadening

To reveal further transport properties of the two-level
transmission function, we relate the amplitudes |v0α|2 to the
level broadenings γ i. This broadening originates from the
anti-hermitian part of the inverse Green’s function

G−1 = G−1
0 + 1

2i
�, (D16)

G−1
0 = E − H − 1

2

(
	 + 	†) . (D17)

We have

TrG−1 = 2E − z0 − z1 = Tr G−1
0 + 1

2i
Tr �. (D18)

Since G−1
0 , � by construction are hermitian, each trace is real;

hence

�[z0 + z1] = Tr

[
H + 1

2

(
	 + 	†)] , (D19)


[z0 + z1] = 1

2
Tr �. (D20)

The second line simplifies after recalling (D3):


[z0 + z1] = 1

2

(
−2π

∑
α

ρα(|tuα|2 + |tdα|2)

)
, (D21)

= −1

2

∑
α

|v0α|2 + |v1α|2. (D22)

b. Remark: Unitarity theorem

We split the transmission coefficients into hermitian and
anti-hermitian contributions:

ταβ = 2π
√

αβ(tuα, tdα)G

(
t∗uβ

t∗dβ

)

= 2π
√

αβ(tuα, tdα)

[
1

2
(G+G†)+ i

2
G�G†

] (
t∗uβ

t∗dβ

)
.

The first term simplifies to 1
2 [ταβ + τ ∗

βα] while the second one
takes the form

(2π )2

2i

√
αβ(tuα, tdα) ·

G

[∑
ᾱ

ᾱ

(
t∗uᾱ

t∗dᾱ

)
(tuᾱ, tdᾱ)

]
G†

(
t∗uβ

t∗dβ

)

= 1

2i

∑
ᾱ

ταᾱτ ∗
βᾱ. (D23)

Summarizing, we have in a matrix notation the general
statement

τ − τ † = −iττ † (D24)

that satisfies a unitarity theorem τ−1 − [τ †]−1 = i.

2. Time reversal symmetry

In the presence of time reversal symmetry, the matrices
G−1

0 and � are both real symmetric, so G−1 is (complex) sym-
metric and U is (complex) orthogonal. Then simplifications
arise for T01.

We focus the discussion on the weak coupling limit,
where the resonance positions are split by an amount that
considerably exceeds their broadening, |ε1 − ε0| � γ 0, 1. In
this case, we can consider the anti-hermitian piece of the self-
energy −i

2 � as a perturbation and the eigenvectors ui are real
to first order in γ i; at least to this order U is real orthogonal.
Hence, also the effective hybridization matrix elements viα

are real and therefore �c takes values zero or π ; we have

cos(�c − �(E)) = sign(v0Lv0Rv1Lv1R) cos �(E). (D25)

To the leading order in γ i the energy dependency is described
by

cos �(E) = sign ([E−ε0][E−ε1]) . (D26)

Equations (D25) and (D26) are important because they high-
light two characteristic features of the interference term T01.
First, whether constructive (cos (�c − �) > 0) or destructive
(cos (�c − �) < 0) interference prevails in the intermediate
range ε0 < E < ε1 is controlled by the model dependent first
factor in (D25). If it is positive, �c = 0, interference is de-
structive; it is constructive in the alternative case �c = π .
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Second, T01 has a very sharp dependency on energy when
E sweeps by ε0 or ε1. In fact, the corresponding derivative
diverges in the limit γ i → 0; specifically, with Eq. (D15) we
have

cos �(E) = (E − ε0)(E − ε1) + γ0γ1

|E − z0||E − z1| , (D27)

sin �(E) = γ1(E − ε0) + γ0(E − ε1)

|E − z0||E − z1| . (D28)

3. Limiting cases: Symmetric vs asymmetric lead
couplings

We now analyze two limiting cases in which the angle �c

is either close to π (constructive interference) or close to zero
(destructive interference).

a. Fully symmetric coupling: Fano anti-resonance

We begin with the second situation, destructive inter-
ference, which is the easier one to investigate and exploit
Eq. (D24) now for a system with completely symmetric cou-
pling, tuL = tuR = tu, tdL = tdR = td . This situation is real-
ized, e.g., to a very good approximation for cross-conjugated
molecular wires with side coupling chains as investigated in
Ref. 55. A cross-conjugated molecule was studied recently
experimentally in Ref. 56, where the Fano-antiresonance has
indeed been observed.

Our interest is in the off-diagonal matrix element,

τLR(E) = �[τLR(E)] − i

2

(ρL+ρR)√
LR

|τLR(E)|2. (D29)

This equation implies the following fact: Let E∗ be a root of
the real part of the transmission coefficients, �[τLR(E∗)] = 0.
Then, at this energy also the imaginary piece has a vanishing
physical solution: 
[τLR(E∗)] = 0.

For generic situations E∗ can be shown to be real, so that
there is no transmission at this energy, T(E∗) = 0. Namely,
let Ũ (E) be the unitary rotation diagonalizing the hermitian
matrix G + G†; then

�[τLR(E)] = 2π
√

ρLρR

[ |ṽ0|2
E − ε̃0

+ |ṽ1|2
E − ε̃1

]
, (D30)

where ε̃0,1 denote the real eigenvalues of (G + G†)/2 and
(ṽ0, ṽ1) = (tu, td )Ũ (E). Under the assumption that the energy
dependency of the eigenvalues is weak (i.e., in the wide band
limit, where α(E) is nearly constant), Eq. (D30) has the real
numbered root

E∗ = ε̃0|ṽ1|2 + ε̃1|ṽ0|2
|ṽ0|2 + |ṽ1|2 . (D31)

It constitutes a weighed average that is situated between the
two pole positions.

Since at E∗ we have complete destructive interference,
it is clear that at this energy �c − �(E∗) = π . Since in the
valley region � is close to π we have �c ≈ 0 with corrections

in γ 0, 1. Therefore, in the valley region away from the anti-
resonance E∗, we expect

T01 = 2
√

T0T1 cos �(E), (D32)

with cos �(E) as given in Eq. (D27).

b. Fully asymmetric coupling

The previous example suggests that constructive interfer-
ence could be expected for an asymmetric limit, tuR, tdL = 0.
In this case, because of Eqs. (D7) and (D8) the effective hy-
bridization matrix elements reproduce the entries of U and
U−1:

viL =
√

2πLtuLU0i

v∗
iR =

√
2πRt∗dR[U−1]i1

so that

�c = arg
(
U00[U−1]01[U−1]∗11U

∗
01

)
. (D33)

The product in brackets is easy to evaluate in the presence
of time reversal symmetry recalling that U is orthogonal in
this case. Like any orthogonal 2 × 2-rotation matrix it has a
representation

U =
(

cos w sin w

− sin w cos w

)
, w ∈ C.

We obtain �c = π . Hence, we now expect a constructive in-
terference contribution

T01 = −2
√

T0T1 cos �(E), (D34)

where again cos �(E) is given in Eq. (D27).
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