
Finite-Size Effects and Irrelevant Corrections to Scaling Near the Integer Quantum
Hall Transition

Hideaki Obuse,1,* Ilya A. Gruzberg,2 and Ferdinand Evers1,3,4

1Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
2The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA

3Institut für Theorie der kondensierten Materie, Universität Karlsruhe, 76131 Karlsruhe, Germany
4Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

(Received 12 May 2012; published 16 November 2012)

We present a numerical finite-size scaling study of the localization length in long cylinders near the

integer quantum Hall transition employing the Chalker-Coddington network model. Corrections to scaling

that decay slowly with increasing system size make this analysis a very challenging numerical problem.

In this work we develop a novel method of stability analysis that allows for a better estimate of error bars.

Applying the new method we find consistent results when keeping second (or higher) order terms of the

leading irrelevant scaling field. The knowledge of the associated (negative) irrelevant exponent y is crucial

for a precise determination of other critical exponents, including multifractal spectra of wave functions.

We estimate jyj * 0:4, which is considerably larger than most recently reported values. Within this

approach we obtain the localization length exponent 2:62� 0:06 confirming recent results. Our stability

analysis has broad applicability to other observables at integer quantum Hall transition, as well as other

critical points where corrections to scaling are present.
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Despite a long history, scaling properties of the integer
quantum Hall transition (IQHT) still pose a considerable
challenge [1]. In addition to the critical exponent � of the
localization length near the transition, recent studies [2–4]
analyze the multifractal spectrum �q that describes the

scaling of moments of the local density of states (LDOS)
with the system size: h%ðrÞqi � L��q . This spectrum can,
in principle, be measured in STM experiments. Though
promising experiments have been undertaken [5,6], the
presently attainable energy resolution appears to be
insufficient to allow a sufficiently accurate measurement
of �q. Hence, one relies on numerical simulations of

critical wave functions statistics which relate to �q via

hðLdjc ðrÞj2Þqi�L��q [1].
On the other hand, one can hope to calculate the spec-

trum �q analytically. In the past decade, several proposals

have been made for the quantum field theory underlying
the IQHT critical point [7–12]. However, most of them
rely on assumptions that can neither be taken for granted
nor easily checked against experiments. The identification
of the correct critical theory remains an outstanding open
problem, and predictions of the proposed models should
be treated with caution. For example, Wess-Zumino-type
theories [7–10] are expected to exhibit a strictly parabolic
multifractality spectrum �q / qð1� qÞ. However, the

existing numerical evidence contradicts this prediction
because �q shows a significant, albeit small, quartic

component �ðq� 1=2Þ4 [3,4].
Generally, numerical studies are performed for finite

systems. How well the true asymptotic scaling regime

can actually be probed often depends crucially on a careful
analysis of subleading corrections to scaling near a critical
point. They tend to mask the true long-distance asymp-
totics and usually constitute the main difficulty for analysis
of high-precision numerical simulations.
Two different kinds of subleading corrections should be

distinguished. They can be easily understood in the frame-
work of renormalization group (RG), and we adopt the
corresponding terminology in the following discussion.
One kind of subleading behavior is due to the fact that
expectation values h� � �i are calculated using a Hamiltonian
(or an action functional) whose parameters (coupling con-
stants) lie on a critical surface, but which does not coincide
with the fixed point Hamiltonian. Deviations from the fixed
point along the critical surface are parametrized by irre-
levant scaling fields, whose decay under RG flow is
described by irrelevant exponents yi < 0. The leading ir-
relevant field decays with the exponent y with the smallest
absolute value. Its contributions are present in subleading
corrections to scaling of any correlation function in a finite
system at criticality.
The second kind of subleading corrections is associated

with the specific correlation functions that one studies.
The point is that a particular physical observable of interest
may not exhibit pure scaling behavior even at the RG fixed
point. Only certain carefully chosen observables corre-
spond to pure scaling operators in the fixed point theory.
As has recently been emphasized, moments of the LDOS
and critical wave functions at an Anderson transition are
examples of such pure scaling operators [13]. Thus, for
moments of critical wave functions we expect corrections
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to scaling to come only from irrelevant fields, and primar-
ily from the leading irrelevant field:

hðLdjc ðrÞj2Þqi ¼ cqL
��qð1þ bqL

y þ b0qL2y þ � � �Þ: (1)

Even though the correction terms (Ly; . . . ) do not influence
scaling to leading order (hence the term ‘‘irrelevant’’), they
are still important to be studied because they ultimately
determine the size of the critical parameter window (the
true scaling regime) [14]. As opposed to moments of
LDOS, moments of the so-called point contact conductan-
ces are not pure scaling operators. We will return to this
issue in subsequent papers.

For many Anderson transitions corrections to scaling
decay sufficiently fast, so that the true asymptotic behavior
is reliably addressed by a simple scaling analysis of nu-
merical simulations [1,16–20]. The situation appears to be
much less favorable for the IQHT. Over time it became
clear that the Chalker-Coddington (CC) network model
[21,22], specifically designed for numerical analysis,
exhibits significant corrections to scaling which are very
difficult to take into account systematically [1].

The problemmanifests itself in the recently reported low
value jyj � 0:17 [23], which is smaller than earlier esti-
mates by more than a factor of 2 [1]. Recent developments
climaxed when Amado et al. [24] reported the presence of
logarithmic corrections near the critical point in the CC
model, implying, in a sense, y ¼ 0. Concomitant with this
was an estimate for the ratio �c of the quasi-one-
dimensional localization length and the system width at
the IQHT. Conformal invariance, which is expected to hold
at the IQHT, predicts the relation �c=� ¼ �0 � 2, where
�0 ¼ d�q=dqjq¼0 [25–27]. The values �0 � 2 ¼ 0:2596

and 0.2617 obtained in Refs. [3,4] are drastically different
from the estimate �c=� ¼ 0:223½0:219; 0:228� reported
in Ref. [24]. Taken at face value, the discrepancy would
indicate a breakdown of conformal invariance at the IQHT
fixed point. In addition, if the value jyjwere indeed 0.17 or
smaller, the critical window for the IQHTwould hardly be
accessible with the currently attainable system sizes. As a
consequence, reliable estimates for other critical expo-
nents, like �q, could not be obtained.

Motivated by this situation we revisit the finite size
scaling corrections to the localization length in quasi-
one-dimensional geometry near the IQHT. In addition to
including the leading irrelevant scaling field in our analy-
sis, we develop and employ a new method of ‘‘stability
map’’ in the parameter space. The fitting procedure adjusts
two critical exponents (the leading irrelevant exponent y
and the exponent of the localization length �) and four or
more coefficients in the expansion of the scaling function.
Despite many fitting parameters, reliability of our results
is demonstrated by the stability map analysis. As a result,
we arrive at the following conclusions: the estimate of
the critical exponent for the localization length � ¼ 2:62�
0:06 obtained by previous authors [15,23,24,27–29]
is confirmed. Furthermore, we find jyj * 0:4 and

�c=� ¼ 0:257� 0:002. The latter value is consistent
with predictions coming from conformal invariance, as
well as earlier estimates [2–4].
To calculate the localization length �MðxÞ in quasi-one-

dimensional geometry we employ the isotropic version of
the CC network model [21,22] on cylinders (meaning, with
periodic boundary conditions in one direction) of length L
and circumference M. �MðxÞ is calculated from the stan-
dard transfer matrix method [23,30]. The relevant scaling
field x parametrizes the nonrandom part of the transfer
matrix at a node as

t�1 rt�1

rt�1 t�1

� �
;

where t�2 ¼ e2x þ 1 and r2 ¼ 1� t2.
To extract critical exponents we fit numerical data for

the finite size ratio �MðxÞ � M=�MðxÞ by the following
expression for the scaling function:

�ðx;MÞ ¼ �ðMÞ þ x2�0ðMÞ þOðx4M4=�Þ; (2)

�ðMÞ ¼ �cð1þ a1M
y þ a2M

2y þ � � �Þ; (3)

�0ðMÞ ¼ �0M2=�ð1þ a01My þ a02M2y þ � � �Þ: (4)

[Notice that we distinguish the data �MðxÞ from the scaling
function �ðx;MÞ by using different notation.] The analyti-
cal form of Eqs. (2)–(4) is standard for a scaling function
near a critical fixed point combined with a fact that �ðx;MÞ
is an even function of x at the IQHT [23]. It involves an
expansion in even powers of x and integer powers of the
leading irrelevant field that itself is assumed to scale asMy

with the systems width. We keep only the leading order

in x2M2=� to reduce the number of fitting parameters.
Moreover, while we will keep the terms up to M3y for
�ðMÞ, we will ignore terms starting from M2y for �0ðMÞ.
The reason is that, within our range of system sizes, keep-
ing these correction terms changes the exponent � at the
level of less than 1%.
We show numerical data �MðxÞ in Fig. 1. The solid

straight lines in the figure show the results of the least-
squares fit of the first two terms in Eq. (2) to the data,
performed separately for each M in the range x � 0:05.
We will denote the offset and the slope of the straight lines
obtained in this way by �M and �0

M. We see from the plots
that corrections coming from x4 (and higher order terms)
are very small even within the range of x2 shown in
Fig. 1(b). This justifies keeping only terms up to order x2

in the expansion (2). The effects of corrections to scaling
are most pronounced near the critical point (Fig. 1, inset)
where the solid lines intersect at nonzero values of x
instead of meeting at a single point �c at x ¼ 0.
In Fig. 2 we plot the offset �M and the slope �0

M obtained
from fitting by Eq. (2), together with the original data for
�Mðx ¼ 0Þ. We see that the all these quantities significantly
depend on the system size M. The variation of �Mð0Þ
over the available range of M is �4%. The very slow
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(approximately logarithmic) dependence on M seen in
Fig. 2 constitutes the notorious difficulty for numerical
studies on the IQHT mentioned in the introduction. At
this point we can proceed in two different ways.

Method I (the two-step optimization method).—In this
method we take a subset of �Mð0Þ and �0

M presented in
Fig. 2 and use these as the input data set for fitting the
functions �ðMÞ and �0ðMÞ from Eqs. (3) and (4). These
functions depend on a number of fitting parameters �, y,
�c, �

0, a1, a01, etc., that we optimize by finding a minimum
to the ‘‘cost’’ function

�2
I ¼

X
M

ð�Mð0Þ � �ðMÞÞ2
�2

Mð0Þ
þX

M

ð�0
M � �0ðMÞÞ2

�02
M

; (5)

where �Mð0Þ, �0
M are the (absolute) statistical errors of the

input data �Mð0Þ, �0
M [31].

Method II (the global optimization method).—In this
method we take a subset of all numerical data �MðxÞ as
the input for a global fitting by the function �ðx;MÞ from
Eqs. (2)–(4). Optimal parameters of �ðx;MÞ are found by
minimizing the cost function

�2
II ¼

X
M

X
x

ð�MðxÞ � �ðx;MÞÞ2
�2

MðxÞ
; (6)

where �MðxÞ are the (absolute) standard errors of �MðxÞ.

In both methods we can vary the input sets by varying
the range Mmin-Mmax of the system sizes and the total
number N of data points in the set.
We have employed both methods I and II with more than

1000 fitting trials for each input data set, starting with
different initial fitting parameters chosen randomly [32].
To visualize the results, we show a stability map in Fig. 3.
It displays minima of �2

I;II as functions of all fitting para-

meters. The map allows for a better estimate of error bars
and helps us understand how fitting parameters affect the
cost functions.
For method II the optimization routine yields a unique

minimum of �2
II for each data set. The minima for sets with

different ranges of M and different numbers of points N
are tightly clustered together if we take into account the
terms up to a2M

2y in the function �ðMÞ, but not when we
keep only the first correction term a1M

y; see lower panels
in Fig. 3.
In stark contrast, the cost function �2

I exhibits multiple

local minima where method I gets stuck. On the upper
panels in Fig. 3 we show the local minima with low values
of �2

I obtained by method I with terms up to a2M
2y in

�ðMÞ. From the panel (I-b) one infers that the local minima
exist in a wide range 0< jyj< 0:7. However, only for
values of jyj above jyj � 0:4 the cost function �2

I

approaches its global minimum, which is emphasized by
colored symbols with error bars. At this global minimum
the results of methods I and II agree.
From the fitted data presented in Fig. 3 we extract

several observations [33]: (i) If only the a1M
y term is

included in �ðMÞ, and Mmin � 40, we find jyj & 0:2.
This is consistent with a previously reported value [23].
The small apparent exponent y reflects the slow decay of
�M with 1=M seen in Fig. 2. Remarkably, when the next
correction term is kept in �ðMÞ, the optimal value for jyj
increases; we obtain 0:4 & jyj & 0:6 [34]. This estimate
remains unchanged when we add the term a3M

3y [33].
Larger values of jyj obtained when a1;2 terms and higher

ones are included do not contradict the slow decay of �M if
these terms partially cancel each other for small system

FIG. 2 (color online). Original data �Mðx ¼ 0Þ (black 	, left
axis) and the offset �M (red 
, left axis) and the slope �0

M (blue
d, right axis) obtained from fitting the first two terms in Eq. (2)
to �MðxÞ for x � 0:05.

FIG. 1 (color online). (a) �MðxÞ as a function of x2 for the
circumference (number of links in the transverse direction)
M ¼ 16, 20, 24, 32, 36, 40, 48, 64, 80, 96, 128, 160, 192, 256,
and 384 (from the bottom to the top at x2 � 0:005). The relative
standard errors (1�) of our data are 0.005% for M � 64, 0.02%
for 80 � M � 192, and 0.05% for M ¼ 256 and 384. The solid
lines are obtained from fitting the first two terms in Eq. (2) to the
data for each M. Inset: Enlargement of �MðxÞ near x ¼ 0.
(b) Same as (a) but in a wider range of x2.
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sizes. Indeed, we see from Fig. 3 that the coefficients a1
and a2 are similar in magnitude but opposite in sign.
(ii) The estimate of �c=� ¼ �0 � 2 is sensitive to the
number of correction terms kept in �ðMÞ. If only the a1
term is kept, and Mmin � 40, our value of �c is again
consistent with the result �0 � 2 � 0:248½0:244; 0:251�
found earlier [23]. However, adding higher order terms
gives a significantly larger value �0�2�0:257�0:002.
This latter estimate is broadly compatible with results
based on the wave function statistics [2–4]. (iii) We con-
firm the estimate for the localization length exponent
2:62� 0:06 [35] already obtained previously by several
authors [23,24,27–29].

Given that finite size effects are quite significant near the
IQHT, and that they have been treated very differently by
previous authors, it is, perhaps, remarkable that similar
estimates for � were recently found. Using the same model
as in this work, Ref. [23] kept only a single My term, and
Ref. [24] employed powers of 1= lnM. Different boundary
conditions or models were employed in Refs. [27,28], where
only a single My term was used. The authors of Ref. [29]
found corrections to scaling to be insignificant. We believe
that this relative insensitivity of the estimates for � to sub-
leading corrections is related to the facts that (a) � is large

compared to jyj and (b) the ranges of system sizesM used are
narrow, with the ratioMmax=Mmin hardly exceeding 10.
By the same reasoning, it is not clear why earlier esti-

mates of � obtained for the random-Landau-matrix model
(� ¼ 2:35� 0:03 [36]) or other models (� ¼ 2:33� 0:09
[37,38]) differ from more recent values by up to 10%.
While a violation of universality at the IQHT would be a
logically possible explanation, the present numerical evi-
dence is not strong enough to draw such a drastic conclu-
sion. We expect that the apparent discrepancy in estimates
of scaling exponents obtained from different models of the
IQHTwill disappear upon reinvestigating finite size effects
more carefully.
Conclusions.—Using the CC network model on long cyl-

inders, we have numerically analyzed corrections to scaling
near the IQHT. Our data are consistently interpreted using
the standard form of corrections to scaling if more than one
correction term is included in the scaling functions. The
interpretation is facilitated by the stability map analysis.
Our results satisfy predictions of conformal invariance.
We thank S. Bera, A. Furusaki, A.D. Mirlin, T. Ohtsuki,

A. Sedrakyan, K. Slevin, and A. Tsvelik for numerous
discussions of corrections to scaling. We thank K. Slevin
and T. Ohtsuki for sharing Ref. [15] prior to publication,

FIG. 3 (color online). Stability map for the exponents �, jyj and the coefficients �c=�, a1, a2, �
0, a01 appearing in Eqs. (3) and (4),

obtained by methods I and II for 0 � x � 0:05. In a given panel each symbol shows a local minimum of the cost function �2
I;II divided

by the number N of data points taken into account. Different symbols represent different input data sets obtained by varying the range
of system sizes M and the number of data points N, and listed in the legend boxes at the right as Mmin-MmaxðNÞ. Upper panel: In the
case of �2

I many local minima (shown by gray symbols) have been found. The global minima of �2
I for each input data set are shown by

colored symbols with error bars [39]. Lower panel: For �2
II a single minimum (colored symbols) was found for each data set, when the

term a2M
2y in Eq. (3) was included in the analysis. We also show results of minimization (black symbols) for the case when a single

correction term a1M
y in �ðMÞ was taken into account for input data with Mmin � 64. In the panel (II-e) the black symbols are shown

on the vertical line a2 ¼ 0. We note that since �2=N tends to be small for small N, a subtle difference of �2 between different input
data sets is meaningless.
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