A Step Forward to Unravel Open Histamine H₂ Receptor Questions: Synthesis and Biological Evaluation of Novel H₂R Ligands Including Radioand Fluorescence-Labeled Pharmacological Tools

Dissertation

Zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) an der Fakultät für Chemie und Pharmazie der Universität Regensburg

vorgelegt von

Katharina Tropmann

aus Jagotino (Russland)

2021

The experimental work was carried out between June 2017 and February 2021 at the University of Regensburg, Institute of Pharmacy under the supervision of PD Dr. Andrea Strasser.

Date of submission: 04.03.2021

Date of colloquium: 31.05.2021

Board of examiners:

Prof. Dr. Achim Göpferich(Chair)PD Dr. Andrea Strasser(1st Referee)Prof. Dr. Joachim Wegener(2nd Referee)Prof. Dr. Frank-Michael Matysik(Examiner)

Universität Regensburg

To my family & Daniel

Table of Contents

1	Inti	roduction	1
	1.1 Famil	General Information on G Protein Coupled Receptors, the Histamine Receptor y, and the Histamine H ₂ Receptor	1
	1.2	The Histamine H ₂ Receptor in the Brain	2
	1.3	The Signaling Pathways of the Histamine H ₂ Receptor	3
	1.4	Biased Signaling of the Histamine H ₂ Receptor	3
	1.5	Histamine H ₂ Receptor Agonists	5
	1.6	In Silico Studies of Histamine H ₂ Receptor Ligands	7
	1.7	Histamine H ₂ Receptor Antagonists	. 10
	1.8	References	. 12
2		covery of a G Protein Biased Radioligand for the Histamine H ₂ Receptor with	
		ble Binding Properties	
	2.1	Introduction	
	2.2	Results and Discussion	
	2.2.		
	2.2		
	2.2.	0 -	
	2.2		
	2.2		
	2.2		
	2.2		
	2.2. 2.3	.8 Red Blood Cell Partitioning of [³ H] 2.10 and [³ H] 2.23 Summary and Conclusion	
		-	
	2.4	Experimental Section	
	2.4	I	
	2.4	-	
	2.4		
	2.4		
	2.4		
	2.4		
	2.4	-	
	2.5	References	
A	ppend	ix 1 Discovery of a G Protein Biased Radioligand for the Histamine H ₂	
		r with Reversible Binding Properties	. 61

App1.1	Generation of the HEK293T-CRE-Luc-gpH ₂ R and the HEK293T NlucN-							
mGs/gpH	H ₂ R-NlucC Cell Lines							
App1.	1.1 Molecular Cloning							
App1.	1.2 Generation of Stable Cell Lines							
App1.								
App1.								
App1.2 NlucN-m	Mini-G Protein Recruitment Assay Using HEK293T Cells Co-Expressing the iGs and gpH ₂ R-NlucC Fusion Proteins							
App1.3	Red Blood Cell Partitioning of [³ H] 2.10 and [³ H] 2.23							
App1.4	Bias Analysis for Compounds 2.20-2.25							
App1.5	References							
3 Synthe	esis and Pharmacological Characterization of Fluorescent Histamine H ₂							
Receptor (Carbamoylguanidine-Type Agonist71							
3.1 In	troduction							
3.2 R	esults and Discussion74							
3.2.1	Design74							
3.2.2	Chemistry75							
3.2.3	H ₂ R Affinity and Receptor Subtype Preference77							
3.2.4	Functional Studies at the Human H ₂ R81							
3.2.5 Expre	Association and Dissociation Kinetics of 3.32 , 3.34 and 3.35 at the hH ₂ R ssed in HEK293T-qs5-HA Cells Studied by Flow Cytometry							
3.2.6 Exper	Investigation of Unlabeled H ₂ R Standard Ligands in Competition Binding iments Using Flow Cytometry							
3.2.7 Cells 1	Cellular Localization of 3.32 , 3.34-3.35 and 3.39-3.40 at Human H ₂ R Expressing Determined by Confocal Microscopy							
	Immary and Conclusion							
3.4 Ez	xperimental Section							
3.4.1	General Experimental Section							
3.4.2	Synthesis and Analytical Data							
3.4.3	Cell Culture							
3.4.4	Generation of the HEK293T-SP-FLAG-hH2R K33 Cell Line							
3.4.5	Radioligand Binding Experiments Using Sf9 Membranes							
3.4.6	Radioligand Binding Experiments Using HEK293T-hH2R-qs5-HA Cells 104							
3.4.7	Flow Cytometric Binding Assays Using Whole HEK293T-hH2R-qs5-HA Cells.							
3.4.8	Functional Assays							
3.4.9	Confocal Microscopy							
3.5 R	eferences							

	2 Synthesis and Pharmacological Characterization of Fluorescent Hist for Carbamoylguanidine-Type Agonists	
App2.1	Experimental Details for 3.23-3.27	114
App2.2	¹ H- and/or ¹³ C-NMR Spectra of 3.26 and 3.28-3.40	116
App2.3	RP-HPLC Chromatograms of 3.26 and 3.28-3.40	125
App2.4	Absorption and Emission Spectra	132
App2.5 hH ₂ R-qs	Saturation Binding Experiments of 3.28-3.31 , 3.36-3.37 and 3.40 at HEK s5 Cells Studied by Flow Cytometry	
App2.6	Confocal Microscopy	137
App2.7	Bias Analysis	144
App2.8	References	145
4 Synth	esis and Pharmacological Characterization of 2-Arylbenzimidazole	
Derivative	es as Histamine H ₂ Receptor Ligands	146
4.1 Intr	roduction	147
4.2 Res	sults and Discussion	149
4.2.1	Chemistry	149
4.2.2	Covalent Binding Experiments	162
4.2.3	Pharmacological Studies	165
4.3 Sur	mmary and Conclusion	175
4.4 Exp	perimental Section	175
4.4.1	General Experimental Section	175
4.4.2	General Procedures	176
4.4.3	Preparation of 2-(1-Trityl-1 <i>H</i> -imidazol-4-yl)ethan-1-amine (4.4)	178
4.4.4	Preparation of the Amine Building Blocks 4.17-4.19	179
4.4.5	Preparation of the Amine Building Block 4.26	185
4.4.6	Preparation of the Building Blocks 4.32 and 4.35	187
4.4.7	Preparation of the Cbz- or Phthalimide-Protected Amines 4.42-4.43, 4.46	
and 4 .		190
4.4.8	Preparation of the Amine Building Blocks 4.66-4.72	195
4.4.9 the Ar	Preparation of the Mixed Squaramate Building Blocks 4.75 and 4.76 as w nine Building Block 4.78	
4.4.10 4.114-	Preparation of the 2-Arylbenzimidazoles 4.82-4.97 , 4.104-4.110 , 4.112 ar -4.116 , the Squareamide 4.117 as well as Carbamoylguanidine 4.120	
4.4.11	Radioligand Binding Experiments	232
4.4.12	2 Functional Assays	233
4.5 Ref	ferences	233

	Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole as Histamine H ₂ Receptor Ligands							
App3.1 and 4.120	¹ H- and/or ¹³ C-NMR Spectra of 4.82-4.97 , 4.104-4.110 , 4.112 , 4.114-1.117 							
App3.2 and 4.120								
	Assay Curves of Selected Ligands 4.85 , 4.86 (PB513), 4.88 , 4.108 , 4.110 and dioligand Binding-, Mini-G Recruitment-, [³⁵ S]GTPγS Binding- and β-Arrestin2 ent Assays)							
App3.4	References							
	ning Dopamine D _{2long} /D ₃ Receptor Affinity of Subtype-Selective guanidine-Type Histamine H ₂ R Agonists							
5.1 Int	roduction							
5.2 Re	sults and Discussion							
5.2.1	Chemistry							
5.2.2	Chemical Stability of Carbamoylguanidines							
5.2.3	H ₂ R Affinity and Receptor Subtype Selectivity							
5.2.4	D _{2long} R and D ₃ R Affinities of N ^G -Carbamoylated Guanidines							
5.2.5	Functional Studies at the Human H ₂ R							
5.2.6	Functional Studies at the Guinea Pig H ₂ R							
5.2.7	Functional Studies at the Human D _{2long/3} Receptors							
5.2.8	Molecular Docking Studies							
5.3 Su	mmary and Conclusion							
5.4 Ex	perimental Section							
5.4.1	General Experimental Section							
5.4.2	Compound Characterization							
5.4.3	Synthesis and Analytical Data							
5.4.4	Control of the Chemical Stability of 5.30-5.35 , 5.37 , 5.41 and 5.57							
5.4.5	Cell Culture							
5.4.6	Radioligand Binding Experiments							
5.4.7	Functional Assays							
5.4.8	Docking							
5.4.9	Data Processing							
5.5 Re	ferences							
	Abolishing Dopamine D _{2long} /D ₃ Receptor Affinity of Subtype-Selective guanidine-Type Histamine H ₂ R Agonists							
App4.1 5.18-5.29	Experimental Details for the Amines 5.8-5.17 and the Guanidinylating Reagents							
App4.1	.1 Synthesis of the Amine 5.9							

App ²	4.1.2 Synthesis of the Amine 5.11					
	4.1.3 Synthesis of the Amine 5.14					
	4.1.4 Synthesis of the Amine 5.15					
App-	4.1.5 Synthesis of the Amine 5.16					
App-	4.1.6 Synthesis of the Amine 5.17					
App4.2	Experimental Details for the Acylhydrazides 5.108 and 5.109					
App4.3	Determination of the pK_a Value					
App4.4	Bias Analysis					
App4.5	References					
6 Sum	nary					
	Zusammenfassung					
	of Abbreviations and Acronyms					
	of Posters and Publications					
10 Dank	sagungen					

1.1 General Information on G Protein Coupled Receptors, the Histamine Receptor Family, and the Histamine H₂ Receptor

G protein coupled receptors (GPCRs) constitute one of the most important class of bioactive complexes in humans, consisting of seven hydrophobic transmembrane (TM) domains with three extracellular and three intracellular loops.¹⁻² The extracellular and the transmembrane domains are important for ligand binding (e.g. biogenic amines, peptides, hormones, or lipids).³ The intracellular domains are involved in signaling and feedback mechanisms.³

Their versatile role in cell signal transduction makes these proteins valuable pharmacological targets for the pharmaceutical industry (~35% of Food and Drug Administration- and European Medicines Agency-approved drugs) and in academic research.¹⁻² A well-studied GPCR subclass is the histamine receptor family (H₁R, H₂R, H₃R, and H₄R), which belongs to the rhodopsin-like family (class A) and interacts with histamine (1.1) as the endogenous ligand.⁴⁻⁷ The H₁R is expressed on the surface of a wide variety of cell types, including epithelial, vascular endothelial, smooth vascular, neuronal, glial, and immune cells.⁸⁻⁹ H₁R is therapeutically best known for its role in allergic and anaphylactic responses as well as nausea and vomiting due motion sickness.⁹⁻¹⁰ The H₂R is located on neuronal, epithelial, endothelial, immune, smooth muscle, and gastric parietal cells and is involved in the regulation of gastric acid secretion, heart rate and contraction force, and blood pressure.^{9, 11} The H₃R is mostly expressed in the brain (e.g. basal ganglia, hippocampus, cortex, and striatal area) and linked to various neurophysiological processes, including cognition, sleep-wake cycle, weight regulation, and energy homeostasis.^{9, 12} To a lesser extent, the H₃R is also expressed in the periphery, like e.g., the bronchial and cardiovascular system and gastrointestinal tract.^{9, 13} Finally, the H₄R is found to be predominantly expressed in bone marrow and hematopoietic cells (e.g. eosinophils, mast cells, basophils, neutrophils, dendritic cells, monocytes, and T cells).^{9, 14-15}

Although the H₂R is a well-studied receptor, its function in the central nervous system (CNS) is still elusive. To gain a better understanding, selective ligands which may cross the blood brain barrier as well as studies in laboratory animals are necessary. A major challenge is that the different H₂R species isoforms interact in a similar way with their endogenous ligand histamine (**1.1**) and synthetic antagonists, but quite differently with most synthetic agonists.¹⁶⁻¹⁷ One reason for this might be the difference in H₂R species sequence identities within the several isoforms: canine (c, 359 amino acids (aa))¹⁸, human (h, 359 aa)¹⁹, rat (r, 358 aa)²⁰, guinea pig (gp, 359 aa)²¹, mouse (m, 358 aa)²², chicken (369 aa)²³, and zebra fish (410 aa)²⁴.

The amino acid sequence alignments of human H₂R and its orthologs revealed moderate (<60% for zebra fish and chicken) to high (>80% for canine, guinea pig, rat, and mouse) overall sequence identity.⁹ The highest conservation exists within the seven α -helical transmembrane domains (sequence identity of more than 90%), whereas the N-terminal domain together with the extracellular end of TM1 and the C-terminal domain are the least conserved regions. Since the canine, guinea pig, rat, and mouse H₂Rs possess a high sequence overlap with the human H₂R, these animals (especially the rodents) should be well suited for studying the function of H₂R in the brain.

1.2 The Histamine H₂ Receptor in the Brain

The H₂R is widely expressed in the brain and the spinal cord, which was visualized in rats, guinea pigs, dogs, and humans by mapping with radioligands (e.g. [125 I]iodaminopotentidine ([125 I]**1.27**)) as well as with Northern hybridization (quantification of messenger ribonucleic acid in tissues).^{5, 25-27} It was found that the H₂Rs are located primarily on the bodies of neuronal cells.²⁸ The highest density of H₂Rs is concentrated in the basal ganglia, especially in the caudate-putamen and nucleus accumbens as well as in parts of the limbic system, e.g. hippocampus, amygdala, and cerebral cortex.^{5, 25} The lowest amounts are found in the cerebellum and the hypothalamus.^{5, 25}

Stimulation of the H₂R has mostly excitatory effects or potentiates excitation.²⁹ H₂Rs in the brain couple to Gs proteins, which stimulate the adenylyl cyclase (AC).³⁰⁻³³ The downstream elements of AC stimulation (3`,5`-cyclic AMP (cAMP), protein kinase A (PKA) and cAMP response element binding protein (CREB)) are key regulators of neuronal physiology and plasticity through interaction with e.g. SK^{-34-35} , $HCN2^{-36-37}$, and Kv3.2-ion-channels³⁸. Moreover, Selbach et al. published, that histamine (1.1) induced excitation in rat hippocampal subfield Cornu Ammonis 1 pyramidal cells could be prevented by the H₂R antagonist cimetidine (1.20) and mimicked by the H₂R agonist impromidine (1.7). In addition, positive effects of the H₂-antagonist famotidine (1.23) against schizophrenia and an improvement in L-DOPA-induced dyskinesia are reported in the literature.³⁹⁻⁴⁷ Furthermore, it was observed that H₂R knockout mice exhibit selective cognitive deficits, an impairment in hippocampal long-term potentiation⁴⁸, abnormalities in pain perception⁴⁹⁻⁵⁰ as well as unusual gastric and immune functions^{39, 51-53}.

Since most H₂R ligands hardly pass the blood-brain barrier and possess a lack of receptor selectivity (for more details see Chapter 1.5: Histamine H₂ Receptor Agonists), the behavioral testing of H₂R functions in vivo remains a great challenge. Therefore, the development of

centrally active H₂R ligands as pharmacological tools will be necessary to study the role of this receptor in the brain.

1.3 The Signaling Pathways of the Histamine H₂ Receptor

The H₂R predominantly couples to the Gs the proteins⁵⁴ leading to an activation of the AC and production of cAMP in various cell types, e.g. CNS-derived cells, gastric mucosa, cardia myocytes, fat cells, vascular smooth cells, basophils and neutrophils.⁵⁵⁻⁵⁶ Increased cAMP concentrations activate PKA, which is the downstream effector kinase of this pathway, phosphorylating a wide variety of proteins, e.g. CREB, in the above mentioned cells.⁵⁶

In addition, the H₂R also couples to Gq/11 proteins, resulting in inositol triphosphate (IP3) formation and an increase of the cytosolic Ca²⁺ concentration in some, but not all, H₂R expressing cells.^{54, 57-62} On the other hand, also interactions with Gi and G12 proteins in human embryonic kidney (HEK) 293 cells were previously reported, using a sensitive bioluminescence resonance energy transfer (BRET) technique⁵⁴ and the constitutive activity of the H₂R was observed in some other recombinant test systems.^{17, 63-64}

Continuous or repeated stimuli of the H₂R lead to receptor phosphorylation (specifically serine/threonine residues in the third intracellular loop and C-terminal tail (T308 and T315 in cH₂R⁶⁵) by G protein-coupled kinases (GRK) 2 and $3.^{65-67}$ In turn, GRK-mediated phosphorylation facilitates the binding of the third intracellular loop and the C-terminal tail of the receptor to β -arrestin1 and 2, which leads to physical uncoupling of the receptor from the G protein.^{65, 68-69} Another event that occurs after H₂R stimulation is receptor internalization, in which the receptor is translocated from the plasma membrane to endosomes. Previous studies have demonstrated that the H₂R is internalized via a dynamin- and clathrin-dependent mechanism (most likely via clathrin-coated pits).^{68, 70} Moreover, for U937 or Chinese hamster ovary (CHO) cells expressing both H₁- and H₂-receptors, GRK2-dependent cross-desensitization between both receptors and subsequent co-internalization by forming heterodimers was demonstrated.⁷¹ However, the exact mechanism by which H₂R is internalized could not be elucidated until today.

1.4 Biased Signaling of the Histamine H₂ Receptor

In the classical ternary complex model for receptor activity (two-state model), agonist activation of the receptor requires three principal components to initiate signaling: ligand, receptor, and signaling protein (e.g. G protein or β -arrestin).⁷² Ligand binding to the receptor influences the equilibrium between the two receptor states: agonists shift the equilibrium

towards the active conformation, while inverse agonists favor the inactive conformation and neutral antagonists bind to both without a clear preference. This model distinguishes between an active receptor state, which can bind to and activate transducers, and an inactive receptor state, which is incapable of signaling. Thus, different agonists induce the same downstream response(s), but the strength of the response varies depending on the specific ligand.

Progress in molecular biology provided recombinant test systems allowing the independent observation of multiple ligand induced receptor behaviors, including activation of different G proteins (Gs, Gi/o, Gq/11, and G12/13⁷³), arrestins (arrestin1-4⁷⁴) or other effects like receptor phosphorylation (GRK 1-7⁷⁵) and internalization.^{69, 76} This refined methodology revealed discrepancies of the reported function of certain ligands when different cellular effectors were independently analyzed.⁶⁹ Some of the earlier observations, e.g. receptor internalization by ligands described as antagonists, differential activation of ACs or phospholipase C (PLC) through ligands acting on the same receptor, or the G protein independent activation of arrestins, are incompatible with the existence of a single active state of a receptor.⁷⁷ According to the current understanding, receptors rather exist in ensembles of multiple conformations that interact with various downstream effectors.⁷⁸⁻⁷⁹ In this "multistate model" the functional selectivity of a ligand is explained by its ability to stabilize distinct conformations of the receptor leading to an activation of only a subset of cellular signaling proteins.^{78, 80-81} Such molecules, which preferably induce one specific receptor signaling pathway over others, are referred to as "biased" ligands.

In the long history of research on the H₂R, several biased ligands were identified, e.g. some of which modulate the receptor internalization pathways in different ways. On the one hand, amthamine (1.4) mainly induces recycling of receptors to the cell surface, whereas famotidine (1.23) stimulation results in receptor downregulation.^{9, 82} In addition to these observations, several monomeric and dimeric H₂R ligands were recently investigated for biased agonism regarding G protein activation ([³⁵S]GTPγS assay) and β-arrestin recruitment (split luciferase-based assay).⁶⁹ While all antagonists were unbiased, the investigated acyl- and carbamoyl-guanidine-based agonists revealed varying degrees of G protein bias.⁶⁹ Further investigation of such biased ligands might lead to an application as molecular tools to generate a deeper understanding of a specific receptor, or contribute to the development of more selective drugs with an improved safety profile.

1.5 Histamine H₂ Receptor Agonists

The known H₂R agonists can be divided into a total of four chemical classes: the amine- (1.1-1.5), the guanidine- (1.6-1.10), the acylguanidine- (1.11-1.14), and the carbamoylguanidine-(1.15-1.18) type agonists (cf. Figure 1.1). The first developed H₂R agonists were of the aminetype and were very similar in size and structure to the endogenous ligand histamine (1.1), e.g. 4-methylhistamine (1.2) and dimaprit⁸³ (1.3). Incorporation of the isothiourea partial structure of **1.3** into a heterocycle led to amthamine (**1.4**).⁸⁴ Further replacement of the sulfur atom in **1.4** by selenium (cf. amselamine (1.5)) was found to result in similar activity.⁸⁵ Replacement of the free amine by a guanidine group resulted in Smith, Kline & French (SK&F) 91486 (1.6),⁸⁶ which is the first member of the second class of H₂R agonists and served for more than three decades as prototypic pharmacophore for the development of high affinity guanidine-type H₂R agonists, e.g. impromidine (1.7) or arpromidine (1.8).⁸⁷⁻⁸⁸ Until today, 1.7 is the only agonist, which was effective in clinical studies for the treatment of catecholamine-refractory myocardial insufficiency.⁸⁹ However, its unfavorable side effect profile, such as massive gastric acid production and arrhythmias, prevented 1.7 from being approved as a drug.⁸⁹ Another problem of guanidine-type H₂R ligands is their high basicity ($pK_a \sim 13$) which leads to nearly quantitative protonation at physiological pH and has a negative effect on their bioavailability and CNS permeability.⁹⁰⁻⁹² To solve this problem, a carbonyl function adjacent to the guanidine moiety was introduced, which lowered the basicity by 4-5 orders of magnitude ($pK_a \sim 8^{92-93}$, e.g. UR-AK24⁹² (1.11)). Such N^G-acylated guanidines (third class of H₂R agonists) can be absorbed from the gastrointestinal tract and are capable of penetrating the blood brain barrier.⁹² However, this class of molecules turned out to undergo hydrolytic cleavage in aqueous solution.⁹⁴⁻⁹⁵ Finally, replacement of the acylguanidine moiety by a carbamoylguanidine group $(pK_a \sim 8)$ resulted in chemically stable H₂R ligands (fourth class).⁹⁴⁻⁹⁵ The linkage of two pharmacophores with an alkyl spacer resulted in dimeric ligands (guanidine- (e.g. SK&F 93082⁹⁶ (1.9)), acylguanidine- (e.g. UR-AK480⁹⁷ (1.12)), and carbamoylguanidine-type (e.g. UR-NK60⁹⁴ (1.15))) with increased potency at the H_2R compared with their monomeric counterparts.^{94, 97-98} This high potency might result from an interaction of the ligand with a second binding site at the same receptor because the simultaneous occupation of two orthosteric binding sites in a H₂R dimer is unlikely due to the short spacer length (necessary spacer length is about 20 CH₂ groups).⁹⁹

After the discovery of the histamine H_3 and H_4 receptors, it was found that almost all H_2R agonists showed high affinities for the new receptors with amthamine being the only exception.¹⁰⁰ To generate subtype selective ligands, the imidazole ring of the guanidines and

 N^{G} -acylated or N^{G} -carbamoylated analogues was bioisosterically replaced by the 2-amino-4methylthiazole group (UR-Po448⁹⁸ (1.10), UR-AK477¹⁰¹ (1.13), UR-AK381⁹⁷ (1.14), UR-NK22⁹⁴ (1.16), UR-MB-69⁹⁵ (1.17) and UR-KAT523⁹⁵ (1.18)).¹⁰¹

However, the 2-aminothiazole motif is also a part of some dopamine receptor agonists, e.g. pramipexole (**1.19**, for structure see Figure 1.1) which is used as a drug for treatment of Parkinson's disease.¹⁰²⁻¹⁰³ Radioligand binding studies of selected H₂R agonists with a 2-aminothiazolyl ring (e.g. **1.17**⁹⁵ and **1.18**⁹⁵) revealed a considerable affinity for dopamine receptors of the D₂-like family (D₂, D₃, and D₄ receptors), especially D₃ receptors.^{95, 104} To avoid experimental bias during the elucidation of the activity of the H₂R in the brain, it is necessary to modify the structure of N^{G} -carbamoylated agonists in such way that these ligands bind selectively to the H₂R.

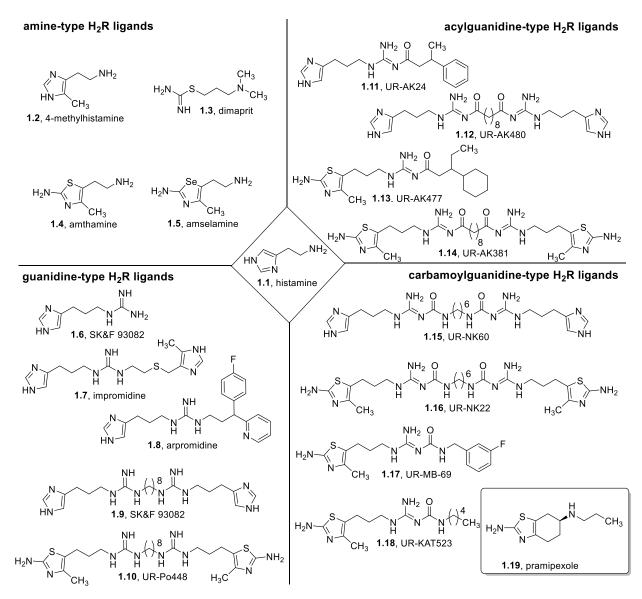
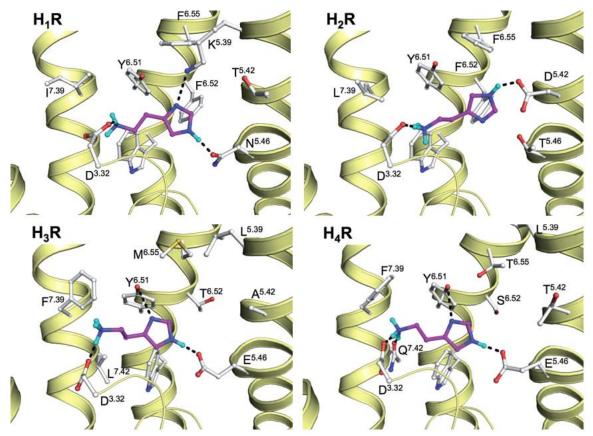
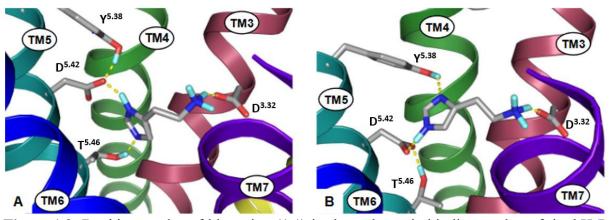



Figure 1.1. Chemical structures of selected H_2R agonists (1.1-1.18) and the D_2 -like ($D_{2/3/4}$) receptor agonist pramipexole (1.19).


1.6 In Silico Studies of Histamine H₂ Receptor Ligands

Several docking experiments on the H_2R with different ligands and objectives were carried out and reported in the literature, some of these studies were supported by mutagenesis studies. The results of these studies are summarized in the following four paragraphs.

The first studies examined how the endogenous ligand, histamine (1.1), binds to the H₂R and which amino acids of the H₂R are crucial for the interaction with 1.1. On the basis of mutagenesis data and molecular modelling using a H₂R model based on the H₁R X-ray structure¹⁰⁵, 1.1 is thought to bind in the orthosteric binding pocket with a different orientation, compared to the H_{1,3,4} receptors (cf. Figure 1.2).^{5, 106} In the proposed model, 1.1 binds in the binding pocket in a such way, that N^{π} and N^{π} form hydrogen bonds with D^{5.42} and T^{5.46}, respectively, and the protonated aliphatic amino group forms a salt bridge with D^{3.32} (confirmed by mutagenesis studies) (cf. Figure 1.2).¹⁰⁶⁻¹⁰⁷ A possible interaction with Y^{5.38} instead of T^{5.46} was also proposed (cf. Figure 1.3),^{16, 92, 101, 108-111} but this hypothesis was later weakened by mutagenesis studies, as the potencies of imidazole-containing ligands (e.g. 1.1) tested on the hH₂R-Y^{5.38}F mutant in [³⁵S]GTP_γS binding assay were unaffected in contrast to the hH₂R-T^{5.46}A mutant.¹¹¹⁻¹¹² Moreover, it was reported that the increased distance between the negatively charged D^{5.42} and *N*^π might lead to a reduced affinity for the H₂R compared with the H₃R and H₄R (hH₂R-G_{so}S: 6.58, hH₃R: 7.59 and hH₄R: 7.60).^{98, 113}

Figure 1.2. Proposed binding modes of histamine (**1.1**) in the four histamine receptors as based on mutagenesis data and docking studies on the H₁ receptor X-ray structure (protein data base (PDB) ID 3RZE¹⁰⁵) and on homology models of the H₂, H₃, and H₄ receptors based on the H₁ receptor X-ray structure. Residues are numbered as found in the human sequences and with the corresponding Ballesteros-Weinstein¹¹⁴ numbering. Reprinted with permission from ASPET, Pharmacol. Rev.⁵

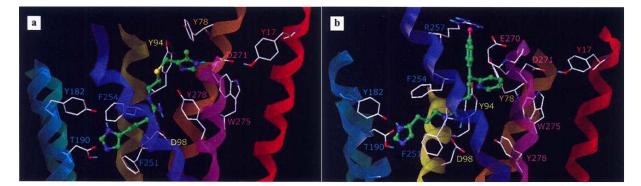


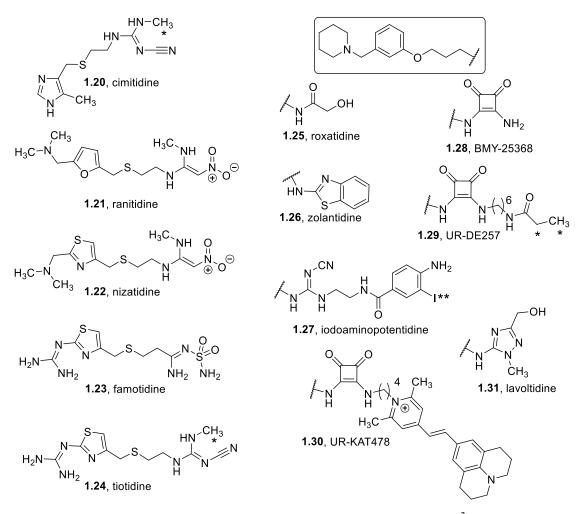
Figure 1.3. Docking modes of histamine (**1.1**) in the orthosteric binding pocket of the hH₂R homology model based on the crystal structure of the nanobody-stabilized active state of the β_2 -adrenoceptor (PDB ID 3P0G)¹¹⁵. **A**: Histamine in the N^{π} H tautomeric form forming H-bonds with D^{5.42} and Y^{5.38}. **B**: Histamine in the N^{π} H tautomeric form forming the H-bonds with D^{5.42} and T^{5.46}. Images taken from Ph.D. thesis of Dr. T. Holzammer.¹¹¹

Another set of in silico studies investigated the binding mode of the 2-amino-4methylthiazole partial structure at the H_2R and its influence on the subtype selectivity. Docking studies supported that the 2-amino-4-methylthiazole partial structure interacts with the H₂R like a bioisoster for the imidazole partial structure.¹⁰¹ However, mutagenesis studies suggested a different binding mode for these heterocycles. In contrast to imidazole-type H₂R ligands (e.g. histamine) the mutation of hH₂R-T^{5.46}A did not affect the potencies/efficacies of thiazole-type ligands (e.g. amthamine, but also dimaprit).¹¹² On the other hand, the hH_2R - $Y^{5.38}F$ mutation had also no significant effect on either heterocycle.¹¹¹⁻¹¹² Moreover, docking studies on receptor models of $hH_{1-4}R$ ($hH_{2-4}R$: homology models based on the inactive state H_1R crystal structure: 3RZE) demonstrated that the different steric effects of the amino acids which enclose the orthosteric binding pocket, might be responsible for the subtype selectivity of the 2-amino-4methylthiazole containing ligands.⁹⁸ While in the hH₂R less voluminous residues are located in the positions 3.33, extracellular loop (ECL) 2.54 and ECL2.55 (V^{3.33}, V^{ECL2.54}-Q^{ECL2.55}), the hH₁R, hH₃R and hH₄R possess more voluminous residues in these positions (hH₁R: Y^{3.33}, F^{ECL2.54}-Y^{ECL2.55}, hH₃R: Y^{3.33}, F^{ECL2.54}-F193^{ECL2.55}, and hH₄R Y^{3.33}, F^{ECL2.54}-F^{ECL2.55}).⁹⁸ Finally, also the absence or altered location of important acidic amino acids in TM5 (in case of hH₁R, hH₃R and hH₄R compared with the hH₂R) might further contribute to the hH₂R subtype selectivity of 2-amino-4-methylthiazole-containing compounds.⁹⁸

Another docking study examined why the guanidine-type ligands impromidine (1.7) and arpromidine (1.8) possess a higher potency at the H_2R , if compared with the endogenous ligand histamine (1.1) and the guanidine analog SK&F 91486 (1.6). Furthermore, the authors investigated, why 1.7 and 1.8 are more potent and efficacious at the gpH₂R than at the hH₂R. The results of their docking studies stated that the imidazolylpropylguanidine moiety binds like histamine to the gpH₂R, maintaining the key interactions with D^{3.32} (D98), D^{5.42} (D186) and T^{5.46} (T190) (cf. Figure 1.4).¹¹⁰ In addition, the imidazolylpropyl side chain fits into a pocket consisting of V^{ECL2.54} (V176), Y^{6.51} (Y250), F^{6.52} (F251) and F^{6.55} (F254).¹¹⁰ Since **1.6** is only a weakly active partial H₂R agonist, the phenyl(pyridyl)propyl substituent of **1.8** appears to increase the affinity to the receptor by an interaction with another aromatic pocket consisting of Y^{2.64} (Y78), Y^{3.28} (Y94), W^{7.40} (W275) and Y^{7.43}(Y278) (cf. Figure 1.4b).¹¹⁰ Moreover, the combination of $D^{7.36}$ (D271) and $Y^{1.31}$ (Y17), which are only present in the gpH₂R, might stabilize the active, impromidine-bound conformation by hydrogen bond formation with the N^{t} H of the imidazole ring.^{16, 110} The modelling results presented in Figure 1.4a support that this interaction is the reason for the preference of 1.7 for the gpH_2R over the hH_2R . On the other hand, the pyridyl moiety of **1.8** might bind with an ion-dipole interaction to $D^{7.36}$ (D271) (cf.

Figure 1.4b), indicating that a positive charge around the pyridyl region increases the potency at the gpH₂R.¹¹⁰ Side-directed mutagenesis studies (hH₂R-A^{7.36}D-G_{saS} and hH₂R-C^{1.31}Y-G_{saS} (double) mutant(s)) and analysis of chimeric h/gpH₂Rs confirmed the computer modeling results, proving that the combination of D^{7.36} (D271) and Y^{1.31} (Y17) accounts for the species selective action of guanidine-based ligands.^{16, 110, 116}

Figure 1.4. Putative binding of (a) impromidine (**1.7**) and (b) arpromidine (**1.8**), respectively, to the gpH₂R. The TM regions are presented as ribbons in spectral colors: TM1-red, TM2-orange, TM3-yellow, TM4-green blue, TM5-cyan, TM6-violet. Reprinted with permission from Bentham Science Publisher Ltd.¹¹⁰


Finally, also the binding mode of the acylguanidine motif at the H₂R was examined in an in silico study because in many cases a lower potency of acylguanidine-type ligands compared with their corresponding guanidine counterparts was observed.⁹² Surprisingly, the docking studies indicated that the acylguanidine moiety binds to the H₂R exactly like the guanidine group.⁹² As a consequence, the authors postulated that the carbonyl group of the acylguanidine must be the reason for the reduced potency due to the restricted overall flexibility of the molecule.⁹²

1.7 Histamine H₂ Receptor Antagonists

In contrast to the H₂R agonists, the H₂R antagonists (**1.20-1.23** and **1.25**) revolutionized the drug market in the therapy of gastric ulcers (cf. Figure 1.5). With the approval of cimetidine (**1.20**) in 1976 (discovered by SK&F (now GlaxoSmithKline (GSK)), one of the first blockbusters of the pharma industry was created.¹¹⁷ However, cimetidine's greatest drawback is the potent inhibition of certain cytochrome P450 enzymes.¹¹⁸ The follow-up drugs (ranitidine (**1.21**), nizatidine (**1.22**), famotidine (**1.23**), and roxatidine (**1.25**)) possess less than 10% of the negative effects on cytochrome P450 metabolism as **1.20** and could be applied in much lower dosage due to their superior affinity.¹¹⁸⁻¹¹⁹ The safety of the newer H₂R antagonists even led to

the availability of some of these compounds as over-the-counter drugs.¹¹⁸ Nowadays, proton pump inhibitors like omeprazole have replaced the H_2R antagonists as first line therapy due to their improved therapeutic profile.¹¹⁸

In addition, several antagonists (1.24 and 1.26-1.31) for other/special applications were synthesized (cf. Figure 1.5), e.g. the slightly brain penetrating zolantidine¹²⁰ (1.26), the radioligands [125 I]iodoaminopotentidine²⁵ ([125 I]1.27), [3 H]tiotidine¹²¹ ([3 H]1.24) and [3 H]UR-DE257¹²² ([3 H]1.29) and some fluorescence ligands¹²³⁻¹²⁷ (e.g. UR-KAT478 (1.30)) structurally derived from Bristol-Myers Squibb (BMY)-25368¹²⁸ (1.28). However, some antagonists containing the piperidinomethylphenoxyalkylamine-motif (e.g. 1.27²⁵, 1.29¹²², 1.30¹²⁷ and lavoltidine (1.31)) showed insurmountable, specifically non-competitive, binding in functional and kinetic studies. Unfortunately, blocking of the H₂R with such long-binding H₂R antagonists, was found to be associated with the emergence of gastric cancer in rodents.¹²⁹⁻¹³¹ Therefore, these molecules did not find any clinical applications.

Figure 1.5. Chemical structures of selected H_2R antagonists. *[³H]-labeled position(s). **[¹²⁵I]-labeled position.

1.8 References

1. Kobilka, B. K., G protein coupled receptor structure and activation. *Biochim. Biophys. Acta - Biomembranes* **2007**, *1768*, 794-807.

2. Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka, B. K., The structure and function of G-protein-coupled receptors. *Nature* **2009**, *459*, 356-363.

3. Luttrell, L. M., Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. *Mol. Biotechnol.* **2008**, *39*, 239-264.

4. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L., International union of pharmacology. XIII. Classification of histamine receptors. *Pharmacol. Rev.* **1997**, *49*, 253-278.

5. Panula, P.; Chazot, P. L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W. L.; Stark, H.; Thurmond, R. L.; Haas, H. L., International union of basic and clinical pharmacology. XCVIII. Histamine receptors. *Pharmacol. Rev.* **2015**, *67*, 601-655.

6. Hough, L. B., Genomics meets histamine receptors: new subtypes, new receptors. *Mol. Pharmacol.* **2001**, *59*, 415-419.

7. Foord, S. M.; Bonner, T. I.; Neubig, R. R.; Rosser, E. M.; Pin, J. P.; Davenport, A. P.; Spedding, M.; Harmar, A. J., International union of pharmacology. XLVI. G protein-coupled receptor list. *Pharmacol. Rev.* **2005**, *57*, 279-288.

8. Traiffort, E.; Leurs, R.; Arrang, J. M.; Tardivel-Lacombe, J.; Diaz, J.; Schwartz, J. C.; Ruat, M., Guinea pig histamine H₁ receptor. I. Gene cloning, characterization, and tissue expression revealed by in situ hybridization. *J. Neurochem.* **1994**, *62*, 507-518.

9. Mocking, A. M.; Bosma, R.; Rahman, S. N.; Verweij, E. W. E.; McNaught-Flores, D. A.; Vischer, H. F., (2016) Molecular Aspects of Histamine Receptors. In: Blandina, P., Passani, M. (eds) Histamine Receptors. The Receptors, vol 28. Humana Press, Cham.

10. Simons, F. E.; Simons, K. J., Histamine and H₁-antihistamines: celebrating a century of progress. *J. Allergy Clin. Immunol.* **2011**, *128*, 1139-1150.

11. Yellin, T. O.; Sperow, J. W.; Buck, S. H., Antagonism of tolazoline by histamine H₂-receptor blockers. *Nature* **1975**, *253*, 561-563.

12. Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M. R.; Erlander, M. G., Cloning and functional expression of the human histamine H₃ receptor. *Mol. Pharmacol.* **1999**, *55*, 1101-1107.

13. Malinowska, B.; Godlewski, G.; Schlicker, E., Histamine H₃ receptors--general characterization and their function in the cardiovascular system. *J. Physiol. Pharmacol.* **1998**, *492*, 191-211.

14. Nakamura, T.; Itadani, H.; Hidaka, Y.; Ohta, M.; Tanaka, K., Molecular cloning and characterization of a new human histamine receptor, hH₄R. *Biochem. Biophys. Res. Commun.* **2000**, *279*, 615-620.

15. Cogé, F.; Guénin, S.-P.; Rique, H.; Boutin, J. A.; Galizzi, J.-P., Structure and expression of the human histamine H₄-receptor gene. *Biochem. Biophys. Res. Commun.* **2001**, *284*, 301-309.

16. Kelley, M. T.; Bürckstürmmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R., Distinct interaction of human and guinea pig histamine H₂-receptor with guanidine-type agonists. *Mol. Pharmacol.* **2001**, *60*, 1210-1225.

17. Preuss, H.; Ghorai, P.; Kraus, A.; Dove, S.; Buschauer, A.; Seifert, R., Constitutive activity and ligand selectivity of human, guinea pig, rat, and canine histamine H₂ receptors. *J. Pharmacol. Exp. Ther.* **2007**, *321*, 983-995.

18. Gantz, I.; Schäffer, M.; DelValle, J.; Logsdon, C.; Campbell, V.; Uhler, M.; Yamada, T., Molecular cloning of a gene encoding the histamine H₂ receptor. *Proc. Natl. Acad. Sci. USA* **1991**, *88*, 429-433.

19. Gantz, I.; Munzert, G.; Tashiro, T.; Schäffer, M.; Wang, L.; DelValle, J.; Yamada, T., Molecular cloning of the human histamine H₂ receptor. *Biochem. Biophys. Res. Co.* **1991**, *178*, 1386-1392.

20. Ruat, M.; Traiffort, E.; Arrang, J.-M.; Leurs, R.; Schwartz, J.-C., Cloning and tissue expression of a rat histamine H₂-receptor gene. *Biochem. Biophys. Res. Co.* **1991**, *179*, 1470-1478.

21. Traiffort, E.; Vizuete, M. L.; Tardivellacombe, J.; Souil, E.; Schwartz, J. C.; Ruat, M., The guinea pig histamine H₂ receptor: gene cloning, tissue expression and chromosomal localization of its human counterpart. *Biochem. Biophys. Res. Co.* **1995**, *211*, 570-577.

22. Kobayashi, T.; Inoue, I.; Jenkins, N. A.; Gilbert, D. J.; Copeland, N. G.; Watanabe, T., Cloning, RNA expression, and chromosomal location of a mouse histamine H₂ receptor gene. *Genomics* **1996**, *37*, 390-394.

23. UniProtKB, Gastric receptor I (HRH2), gallus gallus (chicken) [Online], Dec 02, 2020, accession number A0A3Q2TUM1. https://www.uniprot.org/uniprot/A0A3Q2TUM1 (accessed Dec 20, 2020).

24. Peitsaro, N.; Sundvik, M.; Anichtchik, O. V.; Kaslin, J.; Panula, P., Identification of zebrafish histamine H_1 , H_2 and H_3 receptors and effects of histaminergic ligands on behavior. *Biochem. Pharmacol.* **2007**, *73*, 1205-1214.

25. Traiffort, E.; Pollard, H.; Moreau, J.; Ruat, M.; Schwartz, J. C.; Martinez-Mir, M. I.; Palacios, J. M., Pharmacological characterization and autoradiographic localization of histamine H_2 receptors in human brain identified with [¹²⁵I]iodoaminopotentidine. *J. Neurochem.* **1992**, *59*, 290-299.

26. Vizuete, M. L.; Traiffort, E.; Bouthenet, M. L.; Ruat, M.; Souil, E.; Tardivel-Lacombe, J.; Schwartz, J. C., Detailed mapping of the histamine H₂ receptor and its gene transcripts in guinea-pig brain. *Neuroscience* **1997**, *80*, 321-343.

27. Honrubia, M. A.; Vilaró, M. T.; Palacios, J. M.; Mengod, G., Distribution of the histamine H₂ receptor in monkey brain and its mRNA localization in monkey and human brain. *Synapse* **2000**, *38*, 343-354.

28. Haas, H. L.; Sergeeva, O. A.; Selbach, O., Histamine in the nervous system. *Physiol. Rev.* **2008**, 88, 1183-1241.

29. Haas, H.; Panula, P., The role of histamine and the tuberomamillary nucleus in the nervous system. *Nat. Rev. Neurosci.* **2003**, *4*, 121-130.

30. Daly, J. W., The nature of receptors regulating the formation of cyclic AMP in brain tissue. *Life Sci.* **1976**, *18*, 1349-1358.

31. Kanof, P. D.; Greengard, P., Pharmacological properties of histamine-sensitive adenylate cyclase from mammalian brain. *J. Pharmacol. Exp. Ther.* **1979**, *209*, 87-96.

32. Baudry, M.; Martres, M. P.; Schwartz, J. C., H₁ and H₂ receptors in the histamineinduced accumulation of cyclic AMP in guinea pig brain slices. *Nature* **1975**, *253*, 362-364.

33. Garbarg, M.; Schwartz, J. C., Synergism between histamine H₁- and H₂-receptors in the cAMP response in guinea pig brain slices: effects of phorbol esters and calcium. *Mol. Pharmacol.* **1988**, *33*, 38-43.

34. Haas, H. L.; Konnerth, A., Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. *Nature* **1983**, *302*, 432-434.

35. Pedarzani, P.; Storm, J. F., Pka mediates the effects of monoamine transmitters on the K^+ current underlying the slow spike frequency adaptation in hippocampal neurons. *Neuron* **1993**, *11*, 1023-1035.

36. Pedarzani, P.; Storm, J. F., Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP. *Proc. Natl. Acad. Sci. U. S. A.* **1995**, *92*, 11716-11720.

37. McCormick, D.; Williamson, A., Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. *J. Neurosci.* **1991**, *11*, 3188-3199.

38. Atzori, M.; Lau, D.; Tansey, E. P.; Chow, A.; Ozaita, A.; Rudy, B.; McBain, C. J., H₂ histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking. *Nat. Neurosci.* **2000**, *3*, 791-798.

39. Schneider, E. H.; Neumann, D.; Seifert, R., Modulation of behavior by the histaminergic system: lessons from H₁R-and H₂R-deficient mice. *Neurosci. Biobeh. Rev.* **2014**, *42*, 252-266.

40. Deutsch, S. I.; Rosse, R. B.; Schwartz, B. L., Histamine H₂ receptor antagonists in schizophrenia. *CNS Drugs* **1997**, *8*, 276-284.

41. Farzin, D.; Hosseini, S. H.; Shafaat, A., A randomized double blind clinical trial in famotidine adjuvant therapy in schizophrenia. *Iran. J. Med. Sci.* **2005**, *30*, 59-62.

42. Johnston, T. H.; van der Meij, A.; Brotchie, J. M.; Fox, S. H., Effect of histamine H₂ receptor antagonism on levodopa–induced dyskinesia in the MPTP-macaque model of Parkinson's disease. *Mov. Disord.* **2010**, *25*, 1379-1390.

43. Meskanen, K.; Ekelund, H.; Laitinen, J.; Neuvonen, P. J.; Haukka, J.; Panula, P.; Ekelund, J., A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia. *J. Clin. Psychopharmacol.* **2013**, *33*, 472-478.

44. Shi, H.; Yang, X.; Zhao, H.; Zhang, S.; Zu, J.; Zhang, W.; Shen, X.; Cui, G.; Hua, F.; Yan, C., Ranitidine reduced levodopa-induced dyskinesia by remodeling neurochemical changes in hemiparkinsonian model of rats. *Neuropsychiatr. Dis. Treat.* **2015**, *11*, 1331-1337.

45. Ahmed, M. R.; Jayakumar, M.; Ahmed, M. S.; Zamaleeva, A. I.; Tao, J.; Li, E. H.; Job, J. K.; Pittenger, C.; Ohtsu, H.; Rajadas, J., Pharmacological antagonism of histamine H_2R ameliorated L-DOPA-induced dyskinesia via normalization of GRK3 and by suppressing FosB and ERK in PD. *Neurobiol Aging* **2019**, *81*, 177-189.

46. Oyewumi, L. K.; Vollick, D.; Merskey, H.; Plumb, C., Famotidine as an adjunct treatment of resistant schizophrenia. *J. Psychiatry Neurosci.* **1994**, *19*, 145-150.

47. White, J. M.; Rumbold, G. R., Behavioural effects of histamine and its antagonists: a review. *Psychopharmacology* **1988**, *95*, 1-14.

48. Dai, H.; Kaneko, K.; Kato, H.; Fujii, S.; Jing, Y.; Xu, A.; Sakurai, E.; Kato, M.; Okamura, N.; Kuramasu, A.; Yanai, K., Selective cognitive dysfunction in mice lacking histamine H₁ and H₂ receptors. *Neurosci. Res.* **2007**, *57*, 306-313.

49. Mobarakeh, J. I.; Takahashi, K.; Sakurada, S.; Nishino, S.; Watanabe, H.; Kato, M.; Naghdi, N.; Yanai, K., Enhanced antinociception by intracerebroventricularly administered orexin A in histamine H_1 or H_2 receptor gene knockout mice. *Pain* **2005**, *118*, 254-262.

50. Mobarakeh, J. I.; Takahashi, K.; Sakurada, S.; Kuramasu, A.; Yanai, K., Enhanced antinociceptive effects of morphine in histamine H_2 receptor gene knockout mice. *Neuropharmacology* **2006**, *51*, 612-622.

51. Jutel, M.; Watanabe, T.; Klunker, S.; Akdis, M.; Thomet, O. A. R.; Malolepszy, J.; Zak-Nejmark, T.; Koga, R.; Kobayashi, T.; Blaser, K.; Akdis, C. A., Histamine regulates T-cell and antibody responses by differential expression of H₁ and H₂ receptors. *Nature* **2001**, *413*, 420-425.

52. Teuscher, C.; Poynter, M. E.; Offner, H.; Zamora, A.; Watanabe, T.; Fillmore, P. D.; Zachary, J. F.; Blankenhorn, E. P., Attenuation of Th1 effector cell responses and susceptibility to experimental allergic encephalomyelitis in histamine H₂ receptor knockout mice is due to dysregulation of cytokine production by antigen-presenting cells. *Am. J. Pathol.* **2004**, *164*, 883-892.

53. Kobayashi, T.; Tonai, S.; Ishihara, Y.; Koga, R.; Okabe, S.; Watanabe, T., Abnormal functional and morphological regulation of the gastric mucosa in histamine H₂ receptor-deficient mice. *J. Clin. Invest.* **2000**, *105*, 1741-1749.

54. Okashah, N.; Wan, Q.; Ghosh, S.; Sandhu, M.; Inoue, A.; Vaidehi, N.; Lambert, N. A., Variable G protein determinants of GPCR coupling selectivity. *Proc. Natl. Acad. Sci. U. S. A.* **2019**, *116*, 12054-12059.

55. Del Valle, J.; Gantz, I., Novel insights into histamine H₂ receptor biology. *Am. J. Physiol.* **1997**, *273*, 987-996.

56. Hegyesi, H.; Darvas, Z.; Thurmond, R. L.; Falus, A., (2005) Histamine Receptors and Signaling. In: Damjanovich S. (eds) Biophysical Aspects of Transmembrane Signaling. Springer Series in Biophysics, vol 8. Springer, Berlin, Heidelberg.

57. Kühn, B.; Schmid, A.; Harteneck, C.; Gudermann, T.; Schultz, G., G proteins of the G_q family couple the H_2 histamine receptor to phospholipase C. *Mol. Endocrinol.* **1996**, *10*, 1697-1707.

58. Houston, C.; Wenzel-Seifert, K.; Bürckstümmer, T.; Seifert, R., The human histamine H_2 -receptor couples more efficiently to Sf9 insect cell G_s -proteins than to insect cell G_q -proteins: limitations of Sf9 cells for the analysis of receptor/ G_q -protein coupling. *J. Neurochem.* **2002**, *80*, 678-696.

59. Seifert, R.; Höer, A.; Schwaner, I.; Buschauer, A., Histamine increases cytosolic Ca^{2+} in HL-60 promyelocytes predominantly via H₂ receptors with an unique agonist/antagonist profile and induces functional differentiation. *Mol. Pharmacol.* **1992**, *42*, 235-241.

60. Wellner-Kienitz, M.-C.; Bender, K.; Meyer, T.; Pott, L., Coupling to G_s and $G_{q/11}$ of histamine H₂ receptors heterologously expressed in adult rat atrial myocytes. *BBA-Mol. Cell Res.* **2003**, *1642*, 67-77.

61. Hill, S. J., Distribution, properties, and functional characteristics of three classes of histamine receptor. *Pharmacol. Rev.* **1990**, *42*, 45-83.

62. Leopoldt, D.; Harteneck, C.; Nürnberg, B., G proteins endogenously expressed in Sf9 cells: interactions with mammalian histamine receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1997**, *356*, 216-224.

63. Plank, N. Dimeric Histamine H_2 Receptor Agonists as Molecular Tools and Genetically Engineered HEK293T Cells as an Assay Platform to Unravel Signaling Pathways of hH_1R and hH_2R . Ph. D. Thesis. University of Regensburg, 2015.

64. Höring, C.; Seibel, U.; Tropmann, K.; Grätz, L.; Mönnich, D.; Pitzl, S.; Bernhardt, G.; Pockes, S.; Strasser, A., A dynamic, split-luciferase-based mini-G protein sensor to functionally characterize ligands at all four histamine receptor subtypes. *Int. J. Mol. Sci.* **2020**, *21*, 8440.

65. Fukushima, Y.; Asano, T.; Takata, K.; Funaki, M.; Ogihara, T.; Anai, M.; Tsukuda, K.; Saitoh, T.; Katagiri, H.; Aiharai, M.; Matsuhashi, N.; Oka, Y.; Yazaki, Y.; Sugano, K., Role of the C terminus in histamine H₂ receptor signaling, desensitization, and agonist-induced internalization. *J. Biol. Chem.* **1997**, *272*, 19464-19470.

66. Fernandez, N.; Gottardo, F. L.; Alonso, M. N.; Monczor, F.; Shayo, C.; Davio, C., Roles of phosphorylation-dependent and -independent mechanisms in the regulation of histamine H₂ receptor by G protein-coupled receptor kinase 2. **2011**, *286*, 28697-28706.

67. Rodriguez-Pena, M. S.; Timmerman, H.; Leurs, R., Modulation of histamine H₂ receptor signalling by G-protein-coupled receptor kinase 2 and 3. *Br. J. Pharmacol.* **2000**, *131*, 1707-1715.

68. Fernandez, N.; Monczor, F.; Baldi, A.; Davio, C.; Shayo, C., Histamine H₂ receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H₂ receptor internalization. *Mol. Pharmacol.* **2008**, *74*, 1109-1118.

69. Felixberger, J. Luciferase Complementation for the Determination of Arrestin Recruitment: Investigation of Histamine and NPY receptors. Ph.D. Thesis. University of Regensburg, 2014.

70. Xu, A.-J.; Kuramasu, A.; Maeda, K.; Kinoshita, K.; Takayanagi, S.; Fukushima, Y.; Watanabe, T.; Yanagisawa, T.; Sukegawa, J.; Yanai, K., Agonist-induced internalization of histamine H₂ receptor and activiation of extracellular signal-regulated kinases are dynamin-dependent. *J. Neurochem.* **2008**, *107*, 208-217.

71. Alonso, N.; Fernandez, N.; Notcovich, C.; Monczor, F.; Simaan, M.; Baldi, A.; Gutkind, J. S.; Davio, C.; Shayo, C., Cross-desensitization and cointernalization of H₁ and H₂ histamine

receptors reveal new insights into histamine signal integration. *Mol. Pharmacol.* **2013**, *83*, 1087-1098.

72. Kenakin, T.; Morgan, P.; Lutz, M.; Weiss, J., (2020) The Evolution of Drug-Receptor Models: The Cubic Ternary Complex Model for G Protein-Coupled Receptors. In: Kenakin T., Angus J. A. (eds) The Pharmacology of Functional, Biochemical, and Recombinant Receptor Systems. Handbook of Experimental Pharmacology, vol 148. Springer, Berlin, Heidelberg.

73. Wettschureck, N.; Offermanns, S., Mammalian G proteins and their cell type specific functions. *Physiol. Rev.* **2005**, *85*, 1159-1204.

74. Gurevich, E. V.; Gurevich, V. V., Arrestins: ubiquitous regulators of cellular signaling pathways. *Genome Biol.* **2006**, *7*, 236-236.

75. Watari, K.; Nakaya, M.; Kurose, H., Multiple functions of G protein-coupled receptor kinases. *J. Mol. Signal.* **2014**, *9*, 1.

76. Kenakin, T., Functional selectivity and biased receptor signaling. *J. Pharmacol. Exp. Ther.* **2011**, *336*, 296-302.

77. Spengler, D.; Waeber, C.; Pantaloni, C.; Holsboer, F.; Bockaert, J.; Seeburg, P. H.; Journot, L., Differential signal transduction by five splice variants of the PACAP receptor. *Nature* **1993**, *365*, 170-175.

78. Liu, J. J.; Horst, R.; Katritch, V.; Stevens, R. C.; Wüthrich, K., Biased signaling pathways in β_2 -adrenergic receptor characterized by ¹⁹F-NMR. *Science* **2012**, *335*, 1106-1110. 79. Liang, Y.-L.; Khoshouei, M.; Glukhova, A.; Furness, S. G. B.; Zhao, P.; Clydesdale, L.; Koole, C.; Truong, T. T.; Thal, D. M.; Lei, S.; Radjainia, M.; Danev, R.; Baumeister, W.; Wang, M.-W.; Miller, L. J.; Christopoulos, A.; Sexton, P. M.; Wootten, D., Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. *Nature* **2018**, *555*, 121-125.

80. Kahsai, A. W.; Xiao, K.; Rajagopal, S.; Ahn, S.; Shukla, A. K.; Sun, J.; Oas, T. G.; Lefkowitz, R. J., Multiple ligand-specific conformations of the β_2 -adrenergic receptor. *Nat. Chem. Biol.* **2011**, *7*, 692-700.

81. Nygaard, R.; Zou, Y.; Dror, R. O.; Mildorf, T. J.; Arlow, D. H.; Manglik, A.; Pan, A. C.; Liu, C. W.; Fung, J. J.; Bokoch, M. P.; Thian, F. S.; Kobilka, T. S.; Shaw, D. E.; Mueller, L.; Prosser, R. S.; Kobilka, B. K., The dynamic process of β_2 -adrenergic receptor activation. *Cell* **2013**, *152*, 532-542.

82. Lemos Legnazzi, B.; Shayo, C.; Monczor, F.; Martin, M. E.; Fernandez, N.; Brodsky, A.; Baldi, A.; Davio, C., Rapid desensitization and slow recovery of the cyclic AMP response mediated by histamine H2 receptors in the U937 cell line. *Biochem. Pharmacol.* **2000**, *60*, 159-166.

83. Durant, G. J.; Ganellin, C. R.; Parsons, M. E., Dimaprit, (S-[3-(N,N-dimethylamino)propyl]isothiourea). A highly specific histamine H₂-receptor agonist. Part 2. Structure-activity considerations. *Agents Actions* **1977**, *7*, 39-43.

84. Eriks, J. C.; van der Goot, H.; Sterk, G. J.; Timmerman, H., Histamine H₂-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4- and 5-(2-aminoethyl)thiazoles. *J. Med. Chem.* **1992**, *35*, 3239-3246.

85. van der Goot, H.; Eriks, J. C.; Leurs, R.; Timmerman, H., Amselamine, a new selective histamine H₂-receptor agonist. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 1913-1916.

86. Parsons, M. E.; Blakemore, R. C.; Durant, G. J.; Ganellin, C. R.; Rasmussen, A. C., Proceedings: 3-(4(5)-imidazolyl) propylguanidine (SK&F 91486) - a partial agonist at histamine H₂-receptors. *Agents Actions* **1975**, *5*, 464.

87. Durant, G. J.; Duncan, W. A. M.; Ganellin, C. R.; Parsons, M. E.; Blakemore, R. C.; Rasmussen, A. C., Impromidine (SK&F 92676) is a very potent and specific agonist for histamine H₂ receptors. *Nature* **1978**, *276*, 403-405.

88. Buschauer, A., Synthesis and in vitro pharmacology of arpromidine and related phenyl(pyridylalkyl)guanidines, a potential new class of positive inotropic drugs. *J. Med. Chem.* **1989**, *32*, 1963-1970.

89. Baumann, G.; Permanetter, B.; Wirtzfeld, A., Possible value of H₂-receptor agonists for treatment of catecholamine-insensitive congestive heart failure. *Pharmacol. Ther.* **1984**, *24*, 165-177.

90. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Deliv. Rev.* **1997**, *23*, 3-25.

91. Manallack, D. T., The pK_a distribution of drugs: application to drug discovery. *Perspect. Medicin. Chem.* **2007**, *1*, 25-38.

92. Ghorai, P.; Kraus, A.; Keller, M.; Götte, C.; Igel, P.; Schneider, E.; Schnell, D.; Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer, A., Acylguanidines as bioisosteres of guanidines: N^{G} -acylated imidazolylpropylguanidines, a new class of histamine H₂ receptor agonists. *J. Med. Chem.* **2008**, *51*, 7193-7204.

93. Keller, M.; Pop, N.; Hutzler, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A., Guanidine–acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N^{G} -propionylargininamide ([³H]-UR-MK114) as a highly potent and selective neuropeptide Y Y₁ receptor antagonist. *J. Med. Chem.* **2008**, *51*, 8168-8172.

94. Kagermeier, N.; Werner, K.; Keller, M.; Baumeister, P.; Bernhardt, G.; Seifert, R.; Buschauer, A., Dimeric carbamoylguanidine-type histamine H₂ receptor ligands: a new class of potent and selective agonists. *Bioorg. Med. Chem.* **2015**, *23*, 3957-3969.

95. Biselli, S.; Bresinsky, M.; Tropmann, K.; Forster, L.; Honisch, C.; Buschauer, A.; Bernhardt, G.; Pockes, S., Pharmacological characterization of a new series of carbamoylguanidines reveals potent agonism at the H_2R and D_3R . *Eur. J. Med. Chem.* **2021**, *214*, 113190.

96. Sterk, G. J.; Kramer, K.; van der Goot, H.; Timmerman, H., Studies on histaminergic compounds, Part VII.1 Histamine H₂-binding on guinea-pig cerebral cortex compared to histamine (ANT)agonism. *J. Recept. Res.* **1989**, *9*, 417-427.

97. Birnkammer, T.; Spickenreither, A.; Brunskole, I.; Lopuch, M.; Kagermeier, N.; Bernhardt, G.; Dove, S.; Seifert, R.; Elz, S.; Buschauer, A., The bivalent ligand approach leads to highly potent and selective acylguanidine-type histamine H_2 receptor agonists. *J. Med. Chem.* **2012**, *55*, 1147-1160.

98. Pockes, S.; Wifling, D.; Keller, M.; Buschauer, A.; Elz, S., Highly potent, stable, and selective dimeric hetarylpropylguanidine-type histamine H₂ receptor agonists. *ACS Omega* **2018**, *3*, 2865-2882.

99. Portoghese, P. S., Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. *Trends Pharmacol. Sci.* **1989**, *10*, 230-235.

100. Lim, H. D.; van Rijn, R. M.; Ling, P., Evaluation of histamine H₁-, H₂- and H₃-receptor ligands at the human histamine H₄ receptor: identification of 4-methylhistamine as the first potent and selective H₄ receptor agonist. *J. Pharmacol. Exp. Ther.* **2005**, *314*, 1310-1321.

101. Kraus, A.; Ghorai, P.; Birnkammer, T.; Schnell, D.; Elz, S.; Seifert, R.; Dove, S.; Bernhardt, G.; Buschauer, A., N^{G} -Acylated aminothiazolylpropylguanidines as potent and selective histamine H₂ receptor agonists. *ChemMedChem* **2009**, *4*, 232-240.

102. Mierau, J., Pramipexole: a dopamine-receptor agonist for treatment of Parkinson's disease. *Clin. Neuropharmacol.* **1995**, *18*, 195-206.

103. Bennett, J. P., Jr.; Piercey, M. F., Pramipexole-a new dopamine agonist for the treatment of Parkinson's disease. *J. Neurol. Sci.* **1999**, *163*, 25-31.

104. Biselli, S. Synthesis and Pharmacological Characterization of Subtype-Selective Ligands, Including Radio- and Fluorescence Labeled Ligands, for the Histamine H₂ Receptor. Ph.D. Thesis. University of Regensburg, 2020.

105. Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G. W.; Kobayashi, T.; Stevens, R. C.; Iwata, S., Structure of the human histamine H_1 receptor complex with doxepin. *Nature* **2011**, *475*, 65-70. 106. Kooistra, A. J.; Kuhne, S.; de Esch, I. J. P.; Leurs, R.; de Graaf, C., A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. *Br. J. Pharmacol.* **2013**, *170*, 101-126.

107. Gantz, I.; DelValle, J.; Wang, L. D.; Tashiro, T.; Munzert, G.; Guo, Y. J.; Konda, Y.; Yamada, T., Molecular basis for the interaction of histamine with the histamine H₂ receptor. *J. Biol. Chem.* **1992**, *267*, 20840-20843.

108. Nederkoorn, P. H. J.; van Gelder, E. M.; Donné-Op den Kelder, G. M.; Timmerman, H., The agonistic binding site at the histamine H_2 receptor. II. Theoretical investigations of histamine binding to receptor models of the seven α -helical transmembrane domain. *J. Comput. Aided Mol. Des.* **1996**, *10*, 479-489.

109. Sun, X.; Li, Y.; Li, W.; Xu, Z.; Tang, Y., Computational investigation of interactions between human H₂ receptor and its agonists. *J. Mol. Graph. Model.* **2011**, *29*, 693-701.

110. Dove, S.; Elz, S.; Seifert, R.; Buschauer, A., Structure-activity relationships of histamine H₂ receptor ligands. *Mini-Re. Med. Chem.* **2004**, *4*, 941-954.

111. Holzammer, T. Homology Modeling, Molecular Dynamics Simulations and Sitedirected Mutagenesis of Histamine H_2 Receptors. Ph.D. Thesis. University of Regensburg, 2013.

112. Kagermeier, N.; Holzhammer, T.; Bernhardt, G.; Dove, S.; Buschauer, A., Thr190 in the human histamine H_2 receptor (h H_2R) contributes to binding of imidazole type ligands. 6th Summer School Medicinal Chemistry, September 26-28, 2012, University of Regensburg. **2012**.

113. Shin, N.; Coates, E.; Murgolo, N. J.; Morse, K. L.; Bayne, M.; Strader, C. D.; Monsma, F. J., Jr., Molecular modeling and site-specific mutagenesis of the histamine-binding site of the histamine H₄ receptor. *Mol. Pharmacol.* **2002**, *62*, 38-47.

114. Ballesteros, J. A.; Weinstein, H., [19] Integrated Methods for the Construction of Three-Dimensional Models and Computational Probing of Structure-Function Relations in G Protein-Coupled Receptors. In *Methods in Neurosciences*, Sealfon, S. C., Ed. Academic Press: 1995; Vol. 25, pp 366-428.

115. Rasmussen, S. G. F.; DeVree, B. T.; Zou, Y.; Kruse, A. C.; Chung, K. Y.; Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D.; Mathiesen, J. M.; Shah, S. T. A.; Lyons, J. A.; Caffrey, M.; Gellman, S. H.; Steyaert, J.; Skiniotis, G.; Weis, W. I.; Sunahara, R. K.; Kobilka, B. K., Crystal structure of the β_2 adrenergic receptor–Gs protein complex. *Nature* **2011**, *477*, 549-555.

116. Preuss, H.; Ghorai, P.; Kraus, A.; Dove, S.; Buschauer, A.; Seifert, R., Mutations of Cys-17 and Ala-271 in the human histamine H₂ receptor determine the species selectivity of guanidinetype agonists and increase constitutive activity. *J. Pharmacol. Exp. Ther.* **2007**, *321*, 975-982.

117. Ganellin, R., 1980 Award in medicinal chemistry. Medicinal chemistry and dynamic structure-activity analysis in the discovery of drugs acting at histamine H₂ receptors. *J. Med. Chem.* **1981**, *24*, 913-920.

118. Stark, H., Histamine receptors. *Biotrend Reviews* **2007**, *1*, 1-8.

119. Barry, M.; Feely, J., Enzyme induction and inhibition. *Pharmacol. Ther.* **1990**, *48*, 71-94.

120. Calcutt, C. R.; Ganellin, C. R.; Griffiths, R.; Leigh, B. K.; Maguire, J. P.; Mitchell, R. C.; Mylek, M. E.; Parsons, M. E.; Smith, I. R.; Young, R. C., Zolantidine (SK&F 95282) is a potent selective brain-penetrating histamine H₂-receptor antagonist. *Br. J. Pharmacol.* **1988**, *93*, 69-78.

121. Gajtkowski, G. A.; Norris, D. B.; Rising, T. J.; Wood, T. P., Specific binding of ³H-tiotidine to histamine H₂ receptors in guinea pig cerebral cortex. *Nature* **1983**, *304*, 65-67.

122. Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A., $[^{3}H]$ UR-DE257: development of a tritium-labeled squaramide-type selective histamine H₂ receptor antagonist. *ChemMedChem* **2015**, *10*, 83-93.

123. Malan, S. F.; Marle, A. v.; Menge, W. M.; Zuliana, V.; Hoffman, M.; Timmerman, H.; Leurs, R., Fluorescent ligands for the histamine H₂ receptor: synthesis and preliminary characterization. *Bioorg. Med. Chem.* **2004**, *12*, 6495-6503.

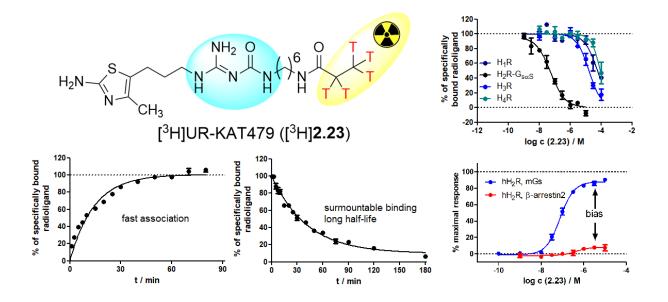
124. Li, L.; Kracht, J.; Peng, S.; Bernhardt, G.; Elz, S.; Buschauer, A., Synthesis and pharmacological activity of fluorescent histamine H_2 receptor antagonists related to potentidine. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1717-1720.

125. Xie, S.-X.; Petrache, G.; Scheiner, E.; Ye, Q.-Z.; Bernhardt, G.; Seifert, R.; Buschauer, A., Synthesis and pharmacological characterization of novel fluorescent histamine H₂-receptor ligands derived from aminopotentidine. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 3886-3890.

126. Biselli, S.; Alencastre, I.; Tropmann, K.; Erdmann, D.; Chen, M.; Littmann, T.; Maia, A. F.; Gomez-Lazaro, M.; Tanaka, M.; Ozawa, T.; Keller, M.; Lamghari, M.; Buschauer, A.; Bernhardt, G., Fluorescent H₂ receptor squaramide-type antagonists: synthesis, characterization and applications. *ACS Med. Chem. Lett.* **2020**, *11*, 1521-1528.

127. Grätz, L.; Tropmann, K.; Bresinsky, M.; Müller, C.; Bernhardt, G.; Pockes, S., NanoBRET binding assay for histamine H₂ receptor ligands using live recombinant HEK293T cells. *Sci. Rep.* **2020**, *10*, *e13288*.

128. Cavanagh, R. L.; Buyniski, J. P., Effect of BMY-25368, a potent and long-acting histamine H₂-receptor antagonist, on gastric secretion and aspirin-induced gastric lesions in the dog. *Aliment. Pharmacol. Ther.* **1989**, *3*, 299-313.


129. Brittain, R. T.; Jack, D.; Reeves, J. J.; Stables, R., Pharmacological basis for the induction of gastric carcinoid tumours in the rat by loxtidine, an insurmountable histamine H₂-receptor blocking drug. *Br. J. Pharmacol.* **1985**, *85*, 843-847.

130. Washington, N., (1991) Antacids and Anti Reflux Agents. Boca Raton: CRC Press.

131. Poynter, D.; Pick, C. R.; Harcourt, R. A.; Selway, S. A.; Ainge, G.; Harman, I. W.; Spurling, N. W.; Fluck, P. A.; Cook, J. L., Association of long lasting unsurmountable histamine H₂ blockade and gastric carcinoid tumours in the rat. *Gut* **1985**, *26*, 1284-1295.

Binding Properties

2 Discovery of a G Protein Biased Radioligand for the Histamine H₂ Receptor with Reversible Binding Properties

Currently employed histamine H₂ receptor (H₂R) radioligands possess several drawbacks, e.g. high non-specific, insurmountable binding, or short half-life. We report the synthesis and the chemical- and pharmacological characterization of the highly stable carbamoylguanidine-type radioligand [³H]UR-KAT479 ([³H]**2.23**), a subtype selective histamine H₂ receptor G protein biased agonist. [³H]**2.23** was characterized in saturation, kinetic and competition binding assays at human, guinea pig and mouse H₂ receptors (co-)expressed in HEK293(T) cells. [³H]**2.23** reversibly bound to the respective H₂Rs with moderate to high affinity (human/guinea pig/mouse: K_d 24/28/94 nM). In order to investigate the applicability of carbamoylguanidine-type ligands in animal studies elucidating the role of the H₂R in the brain, we performed a preliminary partitioning experiment in whole human/mouse blood, which indicated a low binding of [³H]**2.23** to red blood cells. These properties turn [³H]**2.23** into a powerful tool for the determination of binding affinities and demonstrate the promising pharmacokinetic profile of carbamoylguanidine-type ligands.

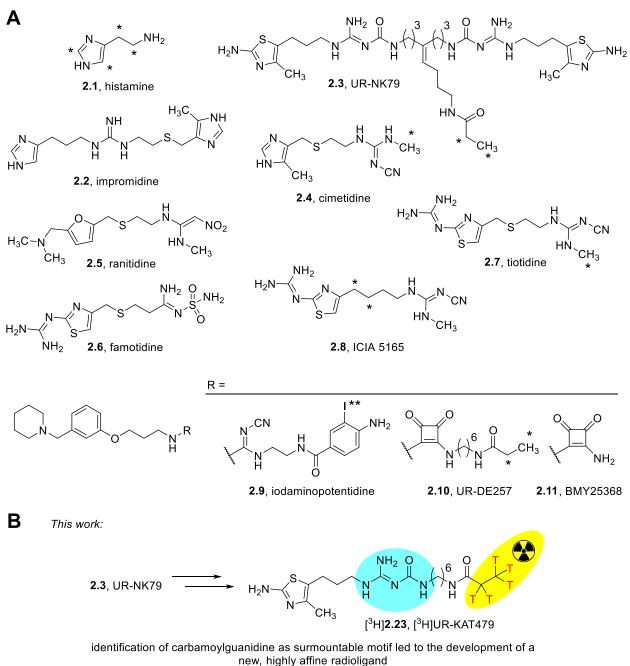
This chapter has been published in:

K. Tropmann, C. Höring, N. Plank, and S. Pockes, J. Med. Chem. 2020, 63, 13090-13102

"Reprinted (adapted) with permission from (K. Tropmann, C. Höring, N. Plank, S. Pockes, Discovery of a G protein biased radioligand for the histamine H₂ receptor with reversible binding properties. *J. Med. Chem.* **2020**, *63*, 13090-13102). Copyright (2020) American Chemical Society."

Author contributions:

K.T. conceived the project with input from S.P.; K.T. performed the synthesis and the analytical characterization of the chemical compounds; K.T. and S.P. performed the radiosynthesis and analytical characterization of the radioligand; K.T. performed and analyzed the radioligand binding (saturation, competition, kinetic)-, β -arrestin2 recruitment-, mini-G recruitment-, and RBC proportioning experiments with supervision from S.P.; C.H. cloned the pcDNA3.1(+) gpH₂R-NlucC vector, generated the HEK293T NlucN-mGs/gpH₂R-NlucC cell line and established the mini-G protein recruitment assay for gpH₂R; N.P. cloned the pcDNA3.1 gpH₂R vector and generated the HEK293T-CRE-Luc-gpH₂R cell line; K.T. and S.P. wrote the manuscript with input from all co-authors.


2.1 Introduction

The human histamine H₂ receptor (H₂R) has been subject of many research studies due to its interesting and versatile physiological properties.¹⁻² It belongs to class A G protein-coupled receptors (GPCRs) and is expressed throughout the whole human body, including brain, uterus, airways, gastric parietal cells and the cardiac tissues.¹⁻⁴ The stimulation of the H₂R has positive inotropic and chronotropic effects in atrial and ventricular tissues⁵, but its most prominent effect is the stimulation of gastric acid secretion.^{2, 6} Therefore, many H₂R antagonists were developed by academia and the pharmaceutical industry to treat the gastroesophageal reflux disease and gastroduodenal ulcers.^{1, 7} On the other hand, H₂R agonists did not find broad application as drug molecules, but are used as molecular tools for pharmacological investigations and might contribute to a better understanding of the until today widely unknown role of the H₂R in the CNS.

2 Discovery of a G Protein Biased Radioligand for the Histamine H₂ Receptor with Reversible Binding Properties

Within the last decades many radioactively labeled agonists (2.1-2.3) and antagonists (2.4-2.5, **2.7-2.10**) for the H₂R were developed (Figure 2.1A).⁸⁻²¹ However, most of these ligands possess significant drawbacks which hamper their ability to study the H₂R accurately: e.g. Wood et al. found that $[{}^{3}H]$ cimetidine (2.4) binds to an imidazole recognition site rather than to the H₂R ligand binding domain.¹¹ Furthermore, the H_2R affinities and potencies of histamine (2.1) and ranitidine (2.5) are low, limiting their application potential as molecular tools.^{20, 22} Although $[^{3}H]$ tiotidine (2.7) is often employed as a radioligand in biological assays, it is reported that it has a very high non-specific binding and addresses only a subpopulation of the H₂R.¹⁹⁻²⁰ Moreover, ¹²⁵I]iodoaminopotentidine (2.9) turned out to be a potent radioligand, which was used for autoradiography of the H₂R in primates (human/non-human (brain)) and rodents (brain/heart), as well as for saturation, competition and kinetic binding studies.²²⁻²⁴ The downside of **2.9** is, however, that the preparation and usage of [¹²⁵I]-labeled molecules requires higher safety precautions compared to tritiated compounds and that the ligands can only be used for 4-5 weeks after preparation, due to their short half-life.²⁵ To deal with these drawbacks, our group recently published the high affinity, potent and tritium labeled H₂R antagonist $[^{3}H]$ UR-DE257²⁵ (2.10), which is structurally related to the squaramide BMY-25368²⁶ (2.11, Figure 2.1A), as an alternative to [¹²⁵I]iodoaminopotentidine.²⁵ **2.10** proved to be very useful for the determination of pK_i values, but turned out to be an insurmountable antagonist in functional and kinetic assays.²⁵

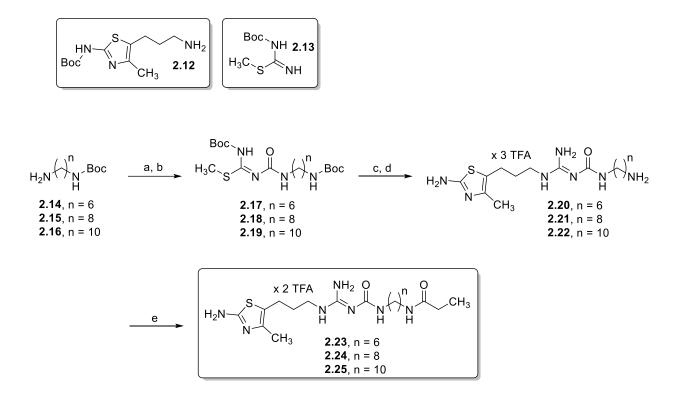
2 Discovery of a G Protein Biased Radioligand for the Histamine H₂ Receptor with Reversible Binding Properties

new, nighty anne radioligand

Figure 2.1. A: Structures of the endogenous ligand histamine (2.1), impromidine (2.2), the dimeric agonist UR-NK79⁹ (2.3) and selected standard H₂R antagonists (2.4-2.11). **B**: Our approach for the synthesis of a new, high affinity, and surmountable radioligand as molecular tool for the exploration of the H₂R functions. $*[^{3}H]$ -labeled position(s). For impromidine and ranitidine the exact location of the tritium label was not indicated in the literature. $**[^{125}I]$ -labeled position. Famotidine and BMY-25368 have not been synthesized in radiolabeled form.

2 Discovery of a G Protein Biased Radioligand for the Histamine H₂ Receptor with Reversible Binding Properties

These findings motivated us to develop a new, high affinity but surmountable H₂R radioligand. Despite the high non-specific binding of [³H]**2.3**, we considered carbamoylguanidine-containing amines as promising precursors for further optimization (Figure 2.1B), as some observations indicated an improved kinetic behaviour.⁹ This study presents the synthesis and pharmacological characterization (saturation-, kinetic- and competition experiments) of [³H]UR-KAT479 ([³H]**2.23**) at human (h), guinea pig (gp) and mouse (m) H₂Rs (co)expressed in HEK293(T) cells. Although the rat is more commonly used to study species differences, we chose to investigate the guinea pig because of its historic significance for the development and evaluation of antihistamines in general and for H₂R ligands in particular.^{3, 8, 11, 15, 18-20, 22, 25} We believe that [³H]**2.23** could act as model substance for other carbamoylguanidine-type H₂R agonists and could be used to explore the pharmacokinetic properties of this compound class in more detail. The obtained in vitro results (especially on the mouse H₂R) should build the basis for future in vivo experiments to clarify the widely unknown role of the H₂R in the CNS.


2.2 Results and Discussion

2.2.1 Chemistry

The synthesis of the radioligand candidates was straight forward (Scheme 2.1). In the first step, the mono-Boc protected diamines **2.14-2.16** were treated with triphosgene to give the corresponding isocyanates, which were allowed to react with mono-Boc-protected *S*-methylisothiourea **2.13** to give the guanidinylating reagents **2.17-2.19**. The corresponding Boc-protected intermediates were prepared by treating the amine building block **2.12**²⁷ with **2.17-2.19** in presence of HgCl₂ and base. Addition of TFA gave the amine precursors **2.20-2.22**, which were finally propionylated with *N*-succinimidyl propionate giving the amides **2.23-2.25**.

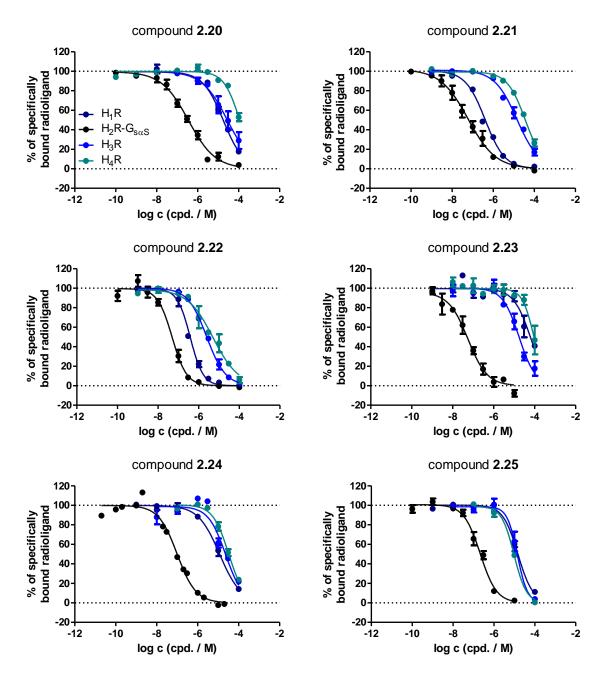
Binding Properties

Scheme 2.1. Synthesis of the Carbamoylguanidine Containing Amines 2.20-2.22 and the Resulting Propionylated Amides 2.23-2.25^{*a*}

^{*a*}Reagents and conditions: (a) triphosgene, DIPEA, CH₂Cl₂, 0 °C, 30 min; (b) **2.13**, rt, 2.5 h, **2.17**: 38%, **2.18**: 17%, **2.19**: 15% over two steps; (c) **2.12**, NEt₃, HgCl₂, CH₂Cl₂, rt, 4-16 h; (d) 30% TFA, CH₂Cl₂, rt, 7-18 h, **2.20**: 48%, **2.21**: 36%, **2.22**: 25% over two steps; (e) *N*-succinimidyl propionate, NEt₃, DMF, rt, 2 h, **2.23**: 47-78%, **2.24**: 75%, **2.25**: 42%.

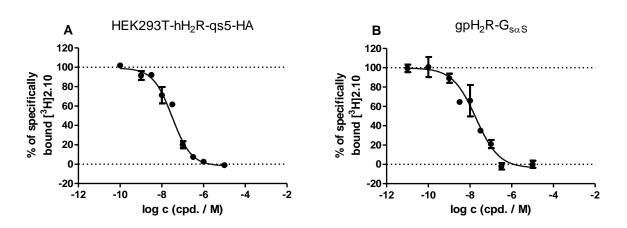
2.2.2 H₂R Affinity and Receptor Subtype Selectivity

To investigate the affinities of the compounds **2.20-2.25** at the four hHR subtypes, competition binding studies were performed using the radioligands [³H]mepyramine (hH₁R), [³H]**2.10**²⁵ (hH₂R-G_{s \Box S}), [³H] N^{α} -methylhistamine or [³H]UR-PI294²⁸ (hH₃R) and [³H]**2.1** (hH₄R) and membranes of Sf9 insect cells expressing the respective hHR (Table 2.1). Among the studied amides, **2.23**, containing a hexyl spacer, exhibited the highest affinity at the hH₂R-G_{s α S} fusion protein, and the highest selectivity over the other three hHR subtypes (K_i (H_{1,3,4}R)/ K_i (H₂R) >380, Table 2.1). Following these promising results, we further determined the p K_i value of **2.23** towards the hH₂R, expressed in HEK293T cells. The reason for this is that the affinity of H₂R


2 Discovery of a G Protein Biased Radioligand for the Histamine H₂ Receptor with Reversible Binding Properties

agonists on HEK293T cells may be lower than the affinity to the hH₂R-G_{saS} fusion protein expressed in Sf9 membranes, which was recently reported.²⁹ Fortunately, the p*K*_i value of **2.23** using HEK293T cells (p*K*_i = 7.78, Table 2.1) agreed with the p*K*_i value determined using Sf9 membranes (p*K*_i = 7.59, Table 2.1). Since the p*K*_i value at the gpH₂R-G_{saS} (p*K*_i = 7.94, Table 2.1) also matched the value at the hH₂R-G_{saS}, we chose amide **2.23** for the preparation of the corresponding radioligand [³H]**2.23** (Figure 2.5A).

Table 2.1. Binding	Data	of the	Compounds	2.20-2.25	on	Human	Histamine	Receptor
Subtypes ^a								


	p <i>K</i> i								H ₂ R selectivity K_i (H _{1,3,4} R)/ K_i (H ₂ R)		
	hH_1R^b	Ν	hH ₂ R-	N	hH ₃ R ^{d,e}	Ν	hH_4R^f	Ν	H_1	H ₃	H ₄
compd.			$G_{s\alpha S}{}^{c}$								
His	$5.62 \pm$	3	$6.58 \pm$	48	$7.59 \pm$	42	$7.60 \pm$	45	9	0.1	0.1
1115	0.03^{30}		0.04^{31}		0.01^{31}		0.01^{31}				
2.20	$5.03 \pm$	3	$6.88 \pm$	5	$< 5^{d,e}$	3	<5	3	71	>76	>76
2.20	0.10		0.10								
2.21	6.71 ±	3	$7.66 \pm$	3	$5.06 \pm$	3	<5	3	9	398	>457
2.21	0.04		0.17		0.10^{e}						
2.22	$6.80 \pm$	3	$7.85~\pm$	3	$5.82 \pm$	3	$5.36 \pm$	3	11	107	309
2.22	0.04		0.17		0.07^{e}		0.17				
2.23	<5	3	$7.59 \pm$	3	4.91 ±	3	<5	4	>389	479	>389
2.23			0.12		0.17^{e}						
	HEK29	3T :	$7.78 \pm$	3							
			0.11^{g}								
	gpH ₂ F	č -	$7.94 \pm$	3							
	Gsas:		0.12^{h}								
2.24	$5.26 \pm$	3	$7.40 \pm$	3	$<5^{e}$	3	<5	3	138	>251	>251
2.24	0.09		0.02								
2.25	$5.17 \pm$	3	$7.12 \pm$	3	$5.12 \pm$	3	$5.23 \pm$	3	89	100	78
2.23	0.05		0.09		0.11^{e}		0.01				

^{*a*}Competition binding assay at membranes of Sf9 cells expressing the hH₁R + RGS4, the hH₂R-G_{saS}, the hH₃R + G_{ai2} + G_{β1γ2} or the hH₄R + G_{ai2} + G_{β1γ2}. Data shown are mean values ± SEM of N independent experiments, each performed in triplicate. Data were analyzed by nonlinear regression and were best fitted to sigmoidal concentration-response curves. The displacement curves are presented in Figure 2.2 & 2.3. ^{*b*}Displacement of 5 nM [³H]mepyramine ($K_d = 4.5 \text{ nM}^9$). ^{*c*}Displacement of 20 nM [³H]**2.10**²⁵ ($K_d = 12.1 \text{ nM}^{29}$). ^{*d*}Displacement of 8.6 nM [³H] N^{α} -methylhistamine ($K_d = 3 \text{ nM}^{31}$). ^{*e*}Displacement of 2 nM [³H]UR-PI294²⁸ ($K_d = 3 \text{ nM}$). ^{*f*}Displacement of 30 nM [³H]**2.1** ($K_d = 47.5 \text{ nM}^{32}$). ^{*g*} PK_i value obtained in competition binding with [³H]**2.10**²⁵ (c = 25 nM, $K_d = 40 \text{ nM}$) using HEK293T-hH₂R-qs5-HA cells³³. ^{*h*} PK_i value obtained in competition binding with [³H]**2.10**²⁵ (c = 30 nM, $K_d = 37 \text{ nM}^{25}$) using membranes of Sf9 cells expressing the gpH₂R-G_{saS}.

Binding Properties

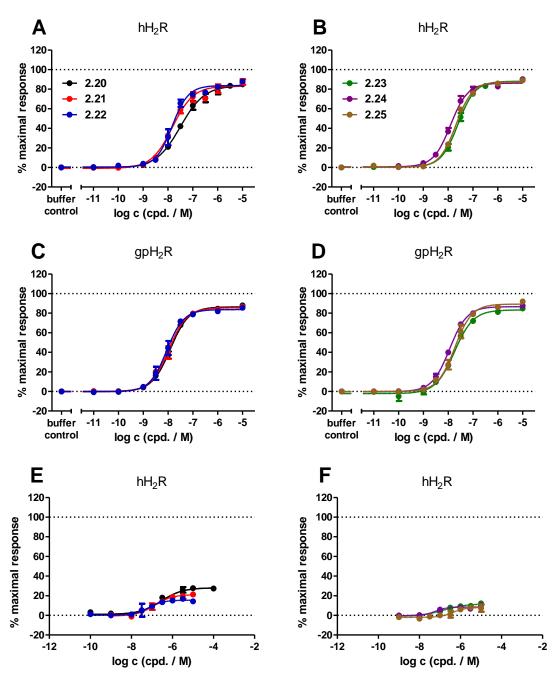
Figure 2.2. Displacement curves obtained from competition binding experiments with $[{}^{3}H]$ mepyramine⁹ (hH₁R, c = 5 nM, $K_{d} = 4.5 \text{ nM}^{9}$), $[{}^{3}H]$ **2.10**^{25, 29} (hH₂R, c = 20 nM, $K_{d} = 12.1 \text{ nM}^{25}$), $[{}^{3}H]$ UR-PI294²⁸ (hH₃R, c = 2 nM, $K_{d} = 3 \text{ nM}$) or $[{}^{3}H]$ **2.1**³² (hH₄R, c = 30 nM, $K_{d} = 47.5 \text{ nM}^{32}$) and **2.20-2.25** at membranes of Sf9 cells expressing the hH₁R + RGS4, the hH₂R-G_{sas}, the hH₃R + G_{ai2} + G_{β1γ2} or the hH₄R + G_{ai2} + G_{β1γ2} or at intact HEK293T-hH₂R-qs5-HA cells³³. Data represent mean values ± SEM from at least three independent experiments (performed in triplicate).

Figure 2.3. A. Displacement curves obtained from competition binding with $[{}^{3}\text{H}]2.10^{25}$ (c = 25 nM, $K_d = 40$ nM) and 2.23 using HEK293T-hH₂R-qs5-HA cells³³. **B.** Displacement curves obtained from competition binding with $[{}^{3}\text{H}]2.10^{25}$ (c = 30 nM, $K_d = 37$ nM²⁵) and 2.23 using membranes of Sf9 cells expressing the gpH₂R-G_{sαS} fusion protein. Data represent mean values ± SEM from three independent experiments (performed in triplicate).

2.2.3 Functional Studies at the Human and Guinea Pig H₂R

The target compounds **2.20-2.25** were investigated for H₂R agonism in both β -arrestin2 and mini-G protein recruitment assays using genetically engineered HEK293T cells. The results are presented in Table 2.2. The responses in both assays were normalized to the maximum effect induced by 100 µM histamine (E_{max} = 1.00) and buffer control (E_{max} = 0). Thus, histamine is defined as a full, unbiased agonist in either readout. Histamine exhibits a significantly lower potency in the β -arrestin2 recruitment assay compared to the mini-G protein recruitment assay (pEC₅₀ (β -arrestin2) = 5.42; pEC₅₀ (mGs) = 6.94; Table 2.2). Similarly, the potencies of the investigated *N*^G-carbamoylated guanidines were lower in the β -arrestin2 recruitment assay. A possible explanation for this trend could be the employed mGs protein, since mG proteins have been reported to stabilize the active states of GPCRs, which favours agonist binding.³⁴⁻³⁷

All tested ligands were strong partial agonists in the mini-G protein recruitment assay ($E_{max} = 0.83 - 0.88$, Table 2.2) and only weak partial agonists in the β -arrestin2 recruitment assay ($E_{max} = 0.07 - 0.28$, Table 2.2). This discrepancy results in a significant G protein bias of the propionylated amides **2.23-2.25** (for detailed bias analysis see Appendix 1, App1.4 Bias Analysis


for Compounds **2.20-2.25**). A key advantage of such agonistic G protein biased ligands is that they are unlikely to be internalized due to their low β -arrestin2 recruitment and therefore can also be applied to cells without taking any measures against internalization (e.g. hypotonic buffer).³⁸

The obtained pEC₅₀ values were in good agreement with the p K_i values from the radioligand competition binding assays, especially in the case of the mini-G protein recruitment assay (Table 2.2). In the mini-G protein recruitment assay at the gpH₂R, **2.20-2.25** were strong partial agonists with slightly increased potencies. Moreover, **2.23** was investigated for agonist-induced chronotropic response at the guinea-pig right atrium as a more complex, but well established model for the characterization of H₂R ligands under more physiological conditions.¹ **2.23** acted as a strong partial agonist (E_{max} = 0.90) in this assay with a pEC₅₀ value of 7.47 (Table 2.2), which is similar to the result observed in the mini-G protein recruitment assay.

		h	guinea pig H2R						
	β-arrestir	n2 recruitm	mGs	recruitmer	nt ^c	mGs recruitment ^d			
compd.	pEC ₅₀ ^e	E _{max} ^f	N	pEC ₅₀ ^e	E _{max} ^f	N	pEC ₅₀ ^e	E _{max} ^f	N
His	${\begin{array}{c} 5.42 \pm \\ 0.02^{39} \end{array}}$	1.00 ³⁹	3	6.94 ± 0.06^{37}	1.00^{37}	9	6.60 ± 0.07	1.00	3
2.20	$\begin{array}{c} 6.55 \pm \\ 0.22 \end{array}$	$\begin{array}{c} 0.28 \pm \\ 0.01 \end{array}$	3	$\begin{array}{c} 7.53 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 0.83 \pm \\ 0.02 \end{array}$	3	$\begin{array}{c} 7.89 \pm \\ 0.05 \end{array}$	$\begin{array}{c} 0.87 \pm \\ 0.01 \end{array}$	3
2.21	6.87 ± 0.12	$\begin{array}{c} 0.23 \pm \\ 0.01 \end{array}$	4	$\begin{array}{c} 7.84 \pm \\ 0.04 \end{array}$	$\begin{array}{c} 0.84 \pm \\ 0.03 \end{array}$	3	$\begin{array}{c} 7.94 \pm \\ 0.08 \end{array}$	$\begin{array}{c} 0.85 \pm \\ 0.01 \end{array}$	3
2.22	6.91 ± 0.10	0.15 ± 0.01	4	7.83 ± 0.12	$\begin{array}{c} 0.85 \pm \\ 0.02 \end{array}$	3	$\begin{array}{c} 8.04 \pm \\ 0.08 \end{array}$	$\begin{array}{c} 0.83 \pm \\ 0.01 \end{array}$	3
2.23	$\begin{array}{c} 6.53 \pm \\ 0.08 \end{array}$	$\begin{array}{c} 0.07 \pm \\ 0.02 \end{array}$	4	7.61 ± 0.04	$\begin{array}{c} 0.88 \pm \\ 0.01 \end{array}$	3	$\begin{array}{c} 7.74 \pm \\ 0.04 \end{array}$	$\begin{array}{c} 0.83 \pm \\ 0.01 \end{array}$	3
							7.47 ± 0.07^{g}	0.90 ± 0.10^{g}	3
2.24	$\begin{array}{c} 7.06 \pm \\ 0.05 \end{array}$	$\begin{array}{c} 0.10 \pm \\ 0.02 \end{array}$	4	$\begin{array}{c} 7.89 \pm \\ 0.05 \end{array}$	$\begin{array}{c} 0.87 \pm \\ 0.02 \end{array}$	3	$\begin{array}{c} 7.94 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 0.87 \pm \\ 0.09 \end{array}$	3
2.25	$\begin{array}{c} 6.80 \pm \\ 0.09 \end{array}$	$\begin{array}{c} 0.12 \pm \\ 0.01 \end{array}$	3	7.66 ± 0.03	$\begin{array}{c} 0.88 \pm \\ 0.01 \end{array}$	3	$\begin{array}{c} 7.72 \pm \\ 0.07 \end{array}$	$\begin{array}{c} 0.89 \pm \\ 0.01 \end{array}$	3

Table 2.2. Potencies and Efficacies of the Tested Carbamoylated Guanidines in the β -Arrestin2 and Mini-G Protein Recruitment Assay at the Human or Guinea Pig H₂R^{*a*}

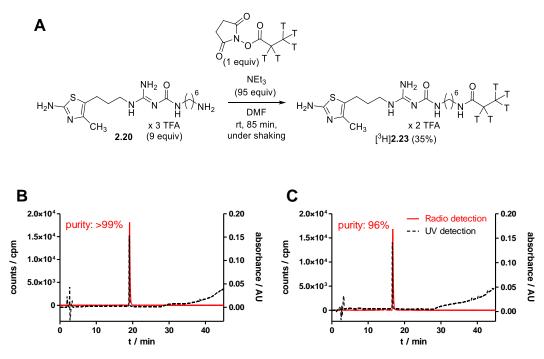
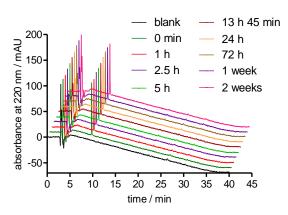

^{*a*}Data represent mean values ± SEM from N independent experiments, each performed in triplicate. Data were analyzed by nonlinear regression and were best fitted to sigmoidal concentration-response curves (for curves see Figure 2.4). ^{*b*}β-arrestin2 recruitment assays were performed with a HEK293T-ARRB2-H₂R³⁹ cell line as described by Grätz et al.²⁹ ^{*c*}Mini-G protein recruitment assays were performed with a HEK293T NlucN-mGs/hH₂R-NlucC cell line as described by Höring et al.³⁷ ^{*d*}Mini-G protein recruitment assays were performed with a HEK293T NlucN-mGs/gpH₂R-NlucC cell line as described in the Appendix 1, App1.2 Mini-G Protein Recruitment Assay at HEK293T Cells Expressing NlucN-mGs/gpH₂R-NlucC. ^{*e*}pEC₅₀ = -logEC₅₀. ^{*f*}The response in both assays was normalized to the maximal effect induced by 100 µM histamine (E_{max} = 1.00) and buffer control (E_{max} = 0.00). ^{*g*}pEC₅₀ and E_{max} values determined at the guinea pig right atrium. Experiments on the isolated, spontaneously beating guinea pig right atrium were performed as described by Pockes et al.³¹

Figure 2.4. Investigation of H₂R agonism of **2.20-2.25** in the mini-G protein recruitment assay using HEK293T NlucN-mGs/hH₂R-NlucC cells (**A**: **2.20-2.22** and **B**: **2.23-2.25**) or HEK293T NlucN-mGs/gpH₂R-NlucC cells (**C**: **2.20-2.22** and **D**: **2.23-2.25**) and in the β -arrestin2 recruitment assay using HEK293T-ARRB2-H₂R cells³⁹ (**E**: **2.20-2.22** and **F**: **2.23-2.25**).. The response in both assays was normalized to the maximal effect induced by 100 µM histamine (maximal response: 100%) and buffer control (maximal response: 0%). Data represent mean values ± SEM from at least three independent experiments (performed in triplicate).


2.2.4 Synthesis of the Radiolabeled Ligand [³H]2.23

Based on the results obtained in the assays, **2.23** was selected for the synthesis of the corresponding tritiated ligand. A 9-fold excess of the precursor **2.20** was treated with commercially available succinimidyl [³H]propionate in the presence of triethylamine at room temperature (Figure 2.5A). [³H]**2.23** was isolated by RP-HPLC in high (radio)chemical purity (\geq 98%, Figure 2.5B). After storage of [³H]**2.23** in EtOH/H₂O (70:30) at -20 °C for 9 months, approx. 3% were decomposed (Figure 2.5C), showing that [³H]**2.23** has a high chemical stability. Moreover, the chemical stability of the "cold" form **2.23** in binding buffer⁹ (pH 7.4) at 23 °C was investigated for 2 weeks. Under these conditions, compound **2.23** proved to be stable. For details see the chemical stability section in the Experimental Section and for chromatograms see Figure 2.6.

Figure 2.5. Synthesis, analytical characterization, and long-term stability of $[{}^{3}H]2.23$. A: Synthesis of $[{}^{3}H]2.23$ by propionylation of the precursor 2.20. Radiochemical yield 35%. B: Chromatograms of $[{}^{3}H]2.23$, spiked with the "cold" form of 2.23, recorded 36 days after synthesis. C: Long-term stability test after 9 months of storage at -20 °C in EtOH/H₂O (70:30) using radiometric and UV detection (for details see Experimental Section). The same stock solution of 2.23 was used for spiking in both HPLC runs and the identity of 2.23 was verified at both time points by means of LC-HRMS. The minor differences in t_{R} result from serial detection of the UV and radiometric signals.

Binding Properties

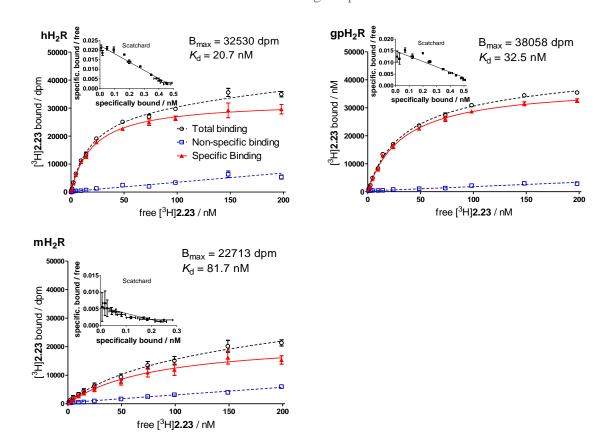
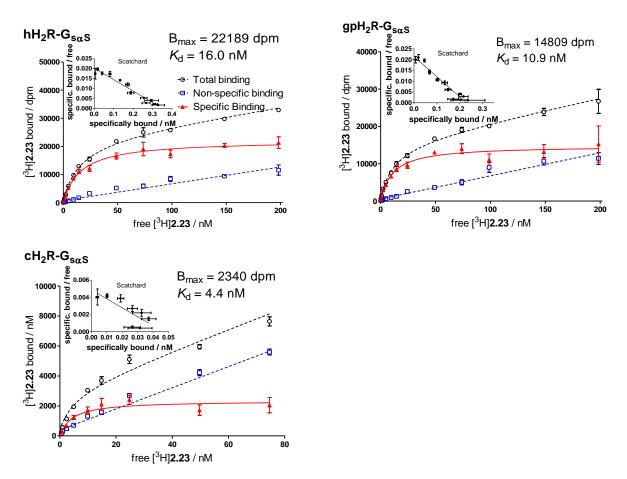


Figure 2.6. Chromatograms of **2.23** after different periods of incubation in binding buffer (pH 7.4) at rt.

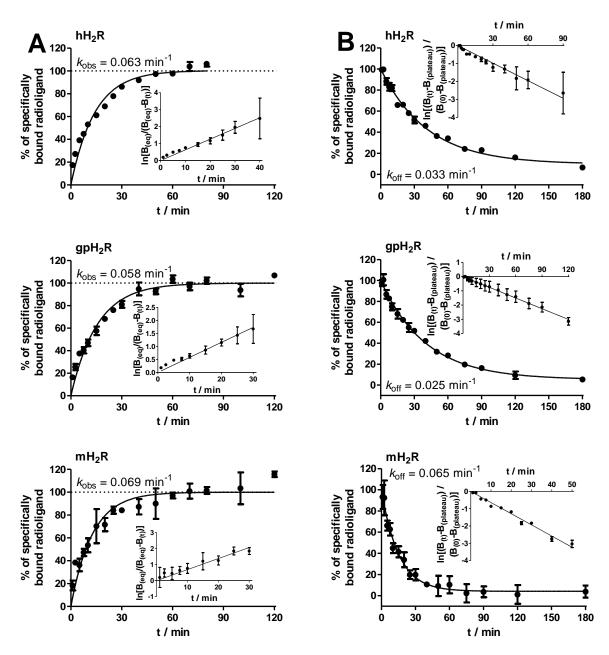

2.2.5 Saturation Binding Experiments Using [³H]2.23

The radioligand [³H]**2.23** was characterized by saturation binding experiments using HEK293T-hH₂R-qs5-HA cells³³, HEK293T-CRE-Luc-gpH₂R cells or HEK293-mH₂R cells in suspension. All cells stably expressed the respective H₂R. Representative saturation binding curves and the corresponding Scatchard plots are depicted in Figure 2.7. The specific binding of [³H]**2.23** was best fitted by nonlinear regression to a one-site binding model and the non-specific binding by linear regression. [³H]**2.23** bound to all H₂R orthologs in a saturable manner revealing comparable K_d values at the h/gpH₂R (K_d (hH₂R) = 23.6 nM; K_d (gpH₂R) = 27.8 nM, Table 2.4) with the exception of the mH₂R (K_d = 94.3 nM, Table 2.4). The determined K_d values were similar to the K_i values obtained for unlabeled compound **2.23** in competition binding assays with [³H]**2.10** (hH₂R: 16.6 nM (HEK293T), 25.7 nM (Sf9); gpH₂R: 11.5 nM (Sf9), Table 2.1). In general, the non-specific binding determined in the presence of **2.6** (1 mM, Figure 2.1A) was low (3 - 14% at c = K_d , cf. Figure 2.7).

Since the H₂R has historically been studied in dogs (Heidenhain pouch), we wanted to elucidate the affinity of the new radioligand [³H]**2.23** at the canine H₂R (cH₂R).⁴⁰⁻⁴¹ We investigated it on cH₂R-G_{saS} Sf9 insect cell membrane preparations.^{20, 42} The obtained K_d value is in good agreement with the K_d values at the hH₂R-G_{saS} and gpH₂R-G_{saS}, which were also recorded on Sf9 membrane preparations for a better comparison (cf. Figure 2.8 and Table 2.3).

Figure 2.7. Representative data from saturation binding experiments at the hH₂R, co-expressed in HEK293T-qs5-HA cells³³, the gpH₂R, co-expressed in HEK293T-CRE-Luc cells and the mH₂R, expressed in HEK293 cells. Total binding (dashed black curve), specific binding (red curve), and non-specific binding (dashed blue line, determined in the presence of **2.6** (1 mM)) of [³H]**2.23** are depicted. Inserts: Scatchard transformations of shown specific binding curves. The experiments were performed in triplicate. Error bars of specific binding and Scatchard plots were calculated according to the Gaussian law of error propagation. Error bars of total and non-specific binding represent SEMs.

Figure 2.8. Representative data from saturation binding experiments at the hH₂R-G_{sαS}, gpH₂R-G_{sαS} or cH₂R-G_{sαS} fusion proteins, expressed in membrane preparations of Sf9 insect cells. Total binding (dashed black curve), specific binding (red curve), and nonspecific binding (dashed blue line, determined in the presence of famotidine (1 mM)) of [³H]**2.23** are depicted. Inserts: Scatchard transformations of shown specific binding curves. The experiments were performed in triplicate. Error bars of specific binding and in the Scatchard plots were calculated according to the Gaussian law of error propagation. Error bars of total and nonspecific binding represent SEMs.


Table 2.3. *K*_d Values of [³H]2.23 on Membrane Preparations of Sf9 Cells Expressing the hH₂R-G_{su}, gpH₂R-G_{su} or cH₂R-G_{su} Fusion Proteins^{*a*}

H2R-Gsas	$K_{\rm d}$ [nM]	Ν
h	14.6 ± 1.7	3
gp	13.2 ± 1.4	3
c	$4.6\ \pm 0.2$	3

^{*a*}Data are mean values \pm SEM of three independent experiments, each performed in triplicate.

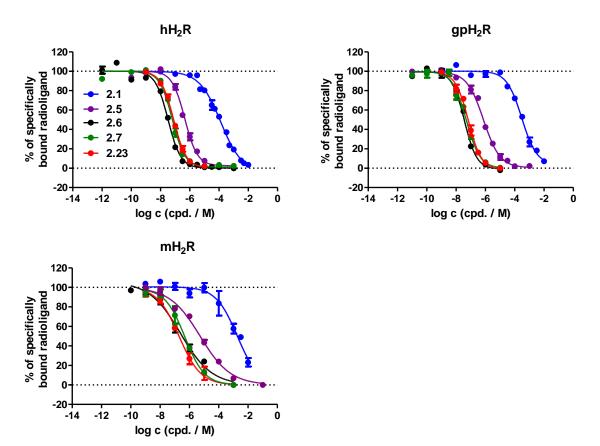
2.2.6 Kinetic Binding Experiments Using [³H]2.23

To further characterize [³H]**2.23**, kinetic binding experiments were performed using HEK293T-hH₂R-qs5-HA cells³³, HEK293T-CRE-Luc-gpH₂R cells or HEK293-mH₂R cells in suspension. The association and dissociation curves of [³H]**2.23** are depicted in Figure 2.9. The association of the radioligand to the ortholog H₂Rs was complete after 60 min and could be described by a monophasic fit with k_{on} values ranging from 0.00011 to 0.00164 min⁻¹ x nM⁻¹ (cf. Figure 2.9 & Table 2.4). k_{obs} (approx. 0.06 min⁻¹ (h/gp/m) (Table 2.4)) was calculated from the linearization of the association curve. The dissociation of [³H]**2.23** (h/gpH₂R: c = 25 nM, mH₂R: c = 50 nM, 120 min preincubation) in the presence of **2.6** (1500-fold excess) was performed using HEK293(T) cells. The obtained data suggested a reversible binding and the equilibrium dissociation constants, calculated from kinetics ($K_d = k_{off}/k_{on}$, 24.7 nM (h), 12.8 nM (gp), 551.5 nM (m), Table 2.4), were consistent with the K_d values obtained from saturation binding experiments (23.6 nM (h), 27.8 nM (gp), 94.3 nM (m); cf. Table 2.4).

Figure 2.9. Comparison of the kinetic binding experiments with $[{}^{3}H]$ **2.23** using HEK293T-hH₂R-qs5-HA cells³³, HEK293T-CRE-Luc-gpH₂R cells or HEK293-mH₂R cells. A: Representative associations of $[{}^{3}H]$ **2.23** (c (h/gpH₂R) = 25 nM; c (mH₂R) = 50 nM) as a function of time. Inserts: Transformation of the depicted association kinetics using $\ln[B_{(eq)}/B_{(eq)}-B_{(t)}]$ versus time (k_{obs} , observed association rate constant). B: Representative dissociations of $[{}^{3}H]$ **2.23** (preincubation: 120 min, c (h/gpH₂R) = 25 nM; c (mH₂R) = 50 nM) in the presence of 2.6 (1500-fold excess) as a function of time, showing a complete monophasic exponential decline [plateau: 15% (hH₂R), 4% (gpH₂R), 3% (mH₂R)]. Inserts: transformation of the depicted dissociation kinetics using $\ln[B_{(t)}-B_{(plateau)}/(B_{(0)}-B_{(plateau)}]$ versus time (k_{off} , dissociation rate constant). Each experiment was performed in triplicate. Error bars represent propagated errors according to the Gaussian law of error propagation.

H ₂ R	$K_{\rm d} ({\rm sat})^a$	Ν	$K_{\rm d}$ (kin) ^b	$k_{\rm obs} [\min^{-1}]^c$	$k_{\text{on}} [\min^{-1} \mathrm{x} \mathrm{n} \mathrm{M}^{-1}]^d$	$k_{\text{off}} \text{ [min}^{-1} \text{]},^{e}$
	[nM]		[nM]			$t_{1/2} [min]^e$
h	23.6 ± 3.0	3	24.7 ± 8.4	0.064 ± 0.006	0.00129 ± 0.00028	0.032 ± 0.004 ,
						25 ± 3
gp	27.8 ± 2.4	3	12.8 ± 3.1	0.062 ± 0.003	0.00164 ± 0.00024	0.021 ± 0.002 ,
						33 ± 3
m	94.3 ± 12.8	4	551.5 ± 104.4	0.066 ± 0.002	0.00011 ± 0.00001	0.061 ± 0.006 ,
						11 ± 1

Table 2.4. Comparison of Kinetic and Thermodynamic Binding Constants of [³H]2.23 at the Human (h), Guinea Pig (gp), and Mouse (m) H₂Rs


^{*a*}Equilibrium dissociation constant determined by saturation binding using HEK293T-hH₂R-qs5-HA cells³³, HEK293T-CRE-Luc-gpH₂R cells or HEK293-mH₂R cells; mean values \pm SEM from N independent experiments each performed in triplicate. ^{*b*}Kinetically derived dissociation constant \pm propagated error (K_d (kin) = k_{off}/k_{on}). ^{*c*}Observed association rate constant represents mean values \pm SEM from three independent experiments each performed in triplicate using HEK293T-hH₂R-qs5-HA cells³³, HEK293T-CRE-Luc-gpH₂R cells or HEK293-mH₂R cells. ^{*d*}Association rate constant \pm propagated error ($k_{on} = (k_{obs}-k_{off})/[RL]$). ^{*c*}Dissociation rate constant and derived half-life represent mean values \pm SEM from three independent experiments each performed in triplicate using HEK293T-hH₂R-qs5-HA cells³³, HEK293T-hH₂R-qs5-HA cells³³, HEK293T-CRE-Luc-gpH₂R cells or HEK293-mH₂R cells.

2.2.7 Competition Binding Experiments Using [³H]2.23

Finally, we performed competition binding experiments with $[{}^{3}H]2.23$ and several standard ligands for the H₂R (2.1, 2.5-2.7, Figure 2.1A) using HEK293T-hH₂R-qs5-HA cells³³, HEK293T-CRE-Luc-gpH₂R cells or HEK293-mH₂R cells in suspension (Table 2.5). $[{}^{3}H]2.23$ was completely displaced by endogenous agonist histamine (2.1) and 2.23 (the cold form of the radioligand), as well as by the standard H₂R antagonists/inverse agonists ranitidine, famotidine and tiotidine (2.5-2.7) (cf. Figure 2.10). All competition curves were monophasic and best fitted by a one-site competition model.

The K_d values determined from saturation binding were used for the calculation of K_i values by means of the Cheng-Prusoff equation.⁴³ Table 2.5 shows the data of the radioligand [³H]**2.23** (colored columns) compared to binding or functional data from different laboratories and different expression systems. Data from Leurs' lab (CHO-hH₂R homogenates²⁴) and from our lab (NanoBRET-based binding assay, HEK293T-Nluc-hH₂R cells²⁹) are in good agreement with the p K_i values determined using [³H]**2.23**, while data from Sf9 insect cell membranes expressing the hH₂R-G_{sαS} fusion protein²⁵ show larger deviations. We observed that histamine possess

higher affinity at Sf9 membranes (cf. Table 2.5; 2.1), whereas antagonists/inverse agonists show lower affinities (cf. Table 2.5; 2.5-2.7). Possible explanations for this trend might be the direct fusion of the receptor to the G_{sαS} protein and the allosteric effect of sodium on the binding of agonists to several GPCRs, which was previously discussed.²⁹ The pK_i values determined for the gpH_2R agreed very well with the pK_i values for hH_2R . Moreover, the data were in the ranges defined by pK_i values determined using [³H]**2.10** and the gpH₂R-G_{sas} fusion protein expressed in Sf9 membranes, [³H]**2.9** at striatal membranes or pK_b and pEC_{50} values reported for experiments on the isolated, spontaneously beating guinea pig right atrium. Lower affinities could be measured for the mH₂R, while the order of affinities remained the same. Unfortunately, there are no p K_i values described in the literature for the gpH₂R expressed in cells and none at all for the mH₂R. Therefore, a comparison with literature data was not possible, but a first set of pK_i values was provided for these systems. Noteworthily, the pK_i values obtained at the mH₂R are one order of magnitude lower than at the hH₂R and gpH₂R, indicating a species dependent difference in binding affinities (see also Figure 2.10). Although a lot of research has been done focusing on the relevant amino acids in the orthosteric binding pocket of different H_2R orthologs^{20, 44-46}, there was no convincing evidence to explain such differences. Therefore, this phenomenon could be subject of further research studies to elucidate its origin.

Binding Properties

Figure 2.10. Radioligand displacement curves from competition binding experiments performed with $[^{3}H]$ **2.23** (25 nM, hH₂R; 26.5 nM gpH₂R; 50 nM, mH₂R) at the hH₂R, co-expressed in HEK293T-qs5-HA cells³³, gpH₂R, co-expressed in HEK293T-CRE-Luc cells or mH₂R, expressed in HEK293 cells. Data represent mean values ± SEM of three independent experiments each performed in triplicate.

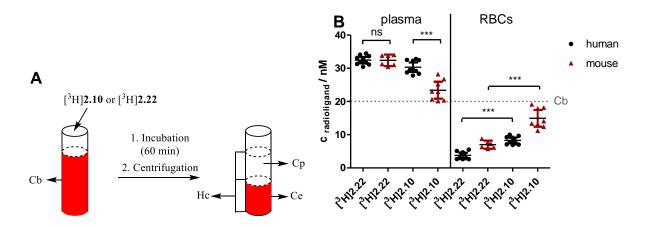

	c	, ,	0	, ,								
		h	H ₂ R		gpH2R						mH ₂ R	
	^{<i>a</i>1} HEK cells [³ H] 2.23	^{c5} Sf9 membranes [³ H] 2.10	^{c4} CHO membranes [³ H] 2.9	^d NanoBRET HEK cells UR- KAT478 ²⁹	^{<i>a</i>²} HEK cells [³ H] 2.23		^{c2} Sf9 membranes [³ H] 2.10	^{c6} striatal membranes [³ H] 2.9	^e right atrium	^{a3} HEK cells [³ H] 2.23		
compd.	pKi ^b N	p <i>K</i> i	p <i>K</i> _i	p <i>K</i> i	pK ^b i	N	pK _i	pK _i	$pEC_{50}/(pK_b)/\{E_{max}\}$	pK ^b	Ν	
2.1	$\begin{array}{rrr} 4.18 \pm & 3 \\ 0.04 \end{array}$	6.27 ²⁵	$4.10^{24}, \\ 5.69^{24}$	4.96 ²⁹	3.83 ± 0.06	3	6.82 ²⁵	4.55 ³	6.14 ²² {1.00}	3.10 ± 0.17	3	
									6.16^{31} { 1.00 }			
2.23	$\begin{array}{rrr} 7.42 \pm & 3 \\ 0.04 \end{array}$	$\begin{array}{c} 7.59 \pm \\ 0.12 \end{array}$	n.d.	n.d.	7.45 ± 0.07	3	$\begin{array}{c} 7.83 \pm \\ 0.14 \end{array}$	n.d.	$\begin{array}{c} 7.47 \pm \\ 0.07 \end{array}$	6.89 ± 0.06	3	
									$\{0.90 \pm 0.10\}$			
2.5	$\begin{array}{rrr} 6.65 \pm & 3 \\ 0.07 \end{array}$	5.76 ²⁵	7.07 ²⁴	7.19 ²⁹	$\begin{array}{c} 6.45 \pm \\ 0.01 \end{array}$	3	n.d.	7.30 ³	$(7.20)^{22}$	5.47 ± 0.12	3	
2.6	$\begin{array}{rrr} 7.78 \pm & 3 \\ 0.04 \end{array}$	6.87 ²⁵	7.80^{24}	7.94 ²⁹	$\begin{array}{c} 7.79 \pm \\ 0.07 \end{array}$	3	6.30 ²⁵	8.25 ³	$(7.80)^{22}$	6.71 ± 0.06	3	
2.7	$\begin{array}{rrr} 7.51 \pm & 3 \\ 0.06 \end{array}$	6.57 ²⁵	7.77 ²⁴	n.d.	7.66 ± 0.08	3	7.30 ²⁵	8.30 ³	$(7.82)^{22}$	6.59 ± 0.12	3	

Table 2.5. Comparison of the Determined Binding Data (p*K*_i) of Unlabeled hH₂R Ligands (2.1, 2.5-2.7 and 2.23), Using [³H]2.23 as Radioligand at the H₂R Orthologs, with Reference Data

^{*a*}Data from competition binding experiments (p*K*_i) with [³H]**2.23** (¹25 nM, hH₂R; ²26.5 nM, gpH₂R; ³50 nM, mH₂R) for H₂R ligands at the ¹hH₂R, co-expressed in HEK293T-qs5-HA cells³³, ²gpH₂R, co-expressed in HEK293T-CRE-Luc cells or ³mH₂R, expressed in HEK293 cells. ^{*b*}The p*K*_i values represent mean values \pm SEM from three independent experiments each performed in triplicate. ^{*c*}Data from competition binding experiments (p*K*_i) with ^{4,6}[³H]**2.9** or ⁵[³H]**2.10**, ⁴performed at membranes of CHO cells stably expressing the hH₂R²⁴, ⁵membranes of Sf9 insect cells expressing the h or gp H₂R-G_{sαs}²⁵, ⁶striatal membranes from male Hartley guinea pigs²². ^{*d*}NanoBRET experiments were performed with HEK293T cells stably expressing NLuc-hH₂R.²⁹ ^{*e*}pEC₅₀/p*K*_b and E_{max} values determined using the guinea pig right atrium.²²

2.2.8 Red Blood Cell Partitioning of [³H]2.10 and [³H]2.23

To investigate the unknown role of the H₂R in the CNS, we envisage the application of carbamoylguanidine-type ligands in laboratory mice in future. For this purpose, the ligand has to be applied intravenously (i.v.) or perorally (p.o.). In a preliminary study the aim was to compare the distribution of $[{}^{3}\text{H}]2.10$ and $[{}^{3}\text{H}]2.23$ in whole human and mouse blood (Figure 2.11, for details see the Experimental Section and Table App1.2 in the Appendix 1). $[{}^{3}\text{H}]2.23$ showed a similar binding to human and mouse plasma, whereas the binding of $[{}^{3}\text{H}]2.10$ was lower in mouse plasma. On the other hand, $[{}^{3}\text{H}]2.10$ accumulated to a significantly higher degree in human or mouse red blood cells (RBCs) than $[{}^{3}\text{H}]2.23$, which might lead to undesired pharmacokinetic properties of $[{}^{3}\text{H}]2.10.{}^{47.49}$ Due to the low binding of $[{}^{3}\text{H}]2.23$ to RBCs we believe that the carbamoylguanidine H₂R ligand subclass is suitable for further investigations to clarify the role of the H₂R in murine brain after i.v. or p.o. application.

Figure 2.11. A: Determination of extent of red blood cell (RBCs) partitioning of $[{}^{3}H]2.10$ and $[{}^{3}H]2.23$ in whole blood. Cb, drug concentration in whole blood; Cp, drug concentration in plasma; Ce, drug concentration in red blood cells; Hc, haematocrit (packed red blood cell volume). Calculated by assuming a Hc of 0.41 and plasma 0.55 (human and mouse). **B**: Dot plot of binding of $[{}^{3}H]2.10$ and $[{}^{3}H]2.23$ to human and mouse plasma and red blood cells. Dot plots represent mean values \pm CI 95%. Black dots are used for human and red triangles for mouse plasma/red blood cells subsets. Mann-Whitney test: *** <0.001 between $[{}^{3}H]2.10$ and $[{}^{3}H]2.23$ subsets in human vs. mouse RBCs, ns: not significant.

2.3 Summary and Conclusion

In summary, we synthesized and characterized a novel, potent, selective, and G protein biased H₂R radioligand by derivatizing amino-functionalized precursors, structurally related to amthamine. UR-KAT479 (2.23) proved to be a high affinity hH₂R agonist with >380-fold selectivity over the other three hHRs. Subsequent tritiation with commercially available Nsuccinimidyl [2,3-³H]propionate yielded [³H]2.23 with a specific activity of 149 Ci/mmol in a radiochemical yield of 35% and a high (radio)chemical purity (\geq 98%). Binding of [³H]**2.23** to HEK293(T) cells (co)expressing human, guinea pig or mouse H₂R was saturable and highly specific showing only low non-specific binding (3 - 14% at $c = K_d$). [³H]**2.23** possessed high affinities to human and guinea pig H₂Rs ($K_d = 24/28$ nM, h/gp) and a moderate affinity to mouse H_2R ($K_d = 94$ nM). The saturation binding curves were best described by a one-site model and the Scatchard plots were linear, suggesting that $[^{3}H]$ **2.23** binds to a single binding site. Kinetic experiments showed a rapid association of $[{}^{3}H]2.23$ to (60 min) and a complete dissociation from the receptor (60-180 min). The resulting dissociation constants were in good agreement with the $K_{\rm d}$ values obtained in saturation binding assays for all three orthologs. The determined binding constants of standard H₂R ligands were consistent with data reported in the literature. Moreover, we are the first group to report pK_i values for histamine, as well as standard antagonists/inverse agonists at the gpH₂R and mH₂R expressed in cells. In contrast to the other commonly employed radioligands (e.g. [³H]**2.10**), a significant advantage of [³H]**2.23** is its surmountability at the H₂R enabling the determination of K_i values in a true equilibrium according to the Cheng-Prusoff equation. Since all acquired data recommend [³H]2.23 as a suitable radioligand for the characterization of H₂R ligands in different species, a further application of carbamoylguanidinetype ligands to study the role of the H₂R in the CNS is planned.

2.4 Experimental Section

2.4.1 General Experimental Section

Unless otherwise stated, chemicals and solvents were from commercial suppliers and were used as received. All the solvents were of analytical grade or were distilled prior to use. For column chromatography silica gel 60 (0.04-0.063 mm, Merck, Darmstadt, Germany) was used. Flash-chromatography was performed on an Intelli Flash-310 flash chromatography workstation

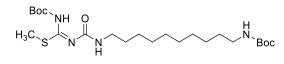
from Varian Deutschland GmbH (Darmstadt, Germany) with SuperFlash columns (Si35) from Agilent Technologies (Waldbronn, Germany). Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60 F254 aluminium sheets, and spots were visualized with UV light at 254 nm or ninhydrin staining. NMR spectra were recorded on a Bruker Avance 300 (¹H: 300 MHz, ¹³C: 75.5 MHz) and a Bruker Avance 600 (¹H: 600 MHz, ¹³C: 150.9 MHz) (Bruker, Karlsruhe, Germany) with deuterated solvents from Deutero (Kastellaun, Germany). HRMS was performed on an Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, CA, USA) using an ESI source. Preparative HPLC was performed with a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps, a K-2001 detector and the column was a Phenomenex Kinetex (250 x 21 mm, 5 µm) (Phenomenex, Aschaffenburg, Germany). As mobile phase mixtures of MeCN and 0.1% aqueous TFA were used. The UV detection was carried out at 220 nm. Prior to lyophilization (ScanVac CoolSafe 4-15L freeze dryer from Labogene (LMS, Brigachtal, Germany), equipped with a RZ 6 rotary vane vacuum pump (Vacuubrand, Wertheim, Germany)), MeCN was removed under reduced pressure. Analytical HPLC experiments were performed on a 1100 HPLC system from Agilent Technologies equipped with Instant Pilot controller, a G1312A Bin Pump, a G1329A ALS autosampler, a G1379A vacuum degasser, a G1316A column compartment and a G1315B DAD detector. The column was a Phenomenex Kinetex XB-C18 column (250 x 4.6 mm, 5 µm) (Phenomenex, Aschaffenburg, Germany), tempered at 30 °C. As mobile phase, mixtures of MeCN/aqueous TFA were used. Gradient mode: MeCN/TFA (0.05 %) (v/v) 0 min: 10:90, 30 min: 90:10, 33 min: 95:5, 40 min: 95:5; flow rate: 0.8 mL/min, $t_0 = 3.21$ min; capacity factor $k = (t_{\rm R}-t_0)/t_0$. Absorbance was detected at 220 nm. Compound purities were calculated as the percentage peak area of the analyzed compound by UV detection at 220 nm.

2.4.2 Compound Characterization

Target compounds (**2.20-2.25**) were characterized by ¹H-NMR, ¹³C-NMR, and 2D NMR (COSY, HSQC, HMBC) spectroscopy, HRMS, and RP-HPLC analysis. The purities of the H₂R ligands used for pharmacological investigation were >95%. The corresponding ¹H- and ¹³C-NMR spectra and RP-HPLC chromatograms are shown in the Supporting Information of the published manuscript. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c01494.

2.4.3 Synthesis and Analytical Data

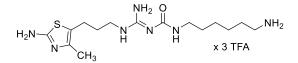
The amine building block 5-(3-aminopropyl)-4-methylthiazol-2-amine (**2.12**) was synthesized as previously reported.²⁷ The mono-Boc protected *S*-methylisothiourea **2.13**, a well-established guanidinylation reagent⁵⁰, was prepared as previously described.²⁷ The mono-Boc protected diamines **2.14-2.16** were synthesized from the unprotected diamines as published elsewhere.⁵¹⁻⁵³


General Procedure for the Synthesis of the Guanidinylating Reagents (2.17-2.19). The guanidinylating reagents 2.17-2.19 were prepared using the procedure of Kagermeier et al.⁹ Triphosgene (0.5 equiv) was dissolved in dry CH_2Cl_2 (1 mL) in an argon flushed round bottom flask and cooled to 0 °C (ice-bath). DIPEA (5.6 equiv) and mono-Boc protected diamine (2.14, 2.15 or 2.16, 1 equiv) were dissolved in dry CH_2Cl_2 (2 mL) and added dropwise to the triphosgene solution over a period of 30 min. After addition of 2.13 (4 equiv), the ice-bath was removed, and the reaction mixture was stirred at room temperature for 2.5 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (eluent PE/EtOAc or CH_2Cl_2 or $CH_2Cl_2/MeOH$).

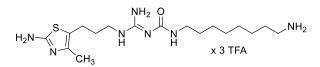
N-tert-Butoxycarbonyl-*N'*-[*N*-(6-tert-butoxycarbonylaminohexyl)aminocarbonyl]-*S*-

methylisothiourea (2.17). The title compound was prepared from 2.14 (0.50 g, 2.31 mmol, 1 equiv), DIPEA (2.2 mL, 12.9 mmol, 5.6 equiv), triphosgene (0.34 g, 1.16 mmol, 0.5 equiv) and 2.13 (1.76 g, 9.24 mmol, 4 equiv) according to the general procedure yielding the product as white solid (380 mg, 38%). ¹H-NMR (300 MHz, CDCl₃) δ 12.30 (s, 1H), 5.58 (t, J = 6.0 Hz, 1H), 4.51 (s, 1H), 3.21 (q, J = 6.77 Hz, 2H), 3.10 (q, J = 6.77 Hz, 2H), 2.30 (s, 3H), 1.40-1.56 (m, 22H), 1.39-1.29 (m, 4H). ¹³C-NMR (101 MHz, CDCl₃) δ 167.23, 161.93, 155.98, 151.12, 82.51, 77.20, 40.38, 39.95, 29.99, 29.61, 28.40, 28.12, 28.01, 26.49, 26.35, 14.24. R_f = 0.70 (CH₂Cl₂/EtOAc 15:1, ninhydrin). HRMS: calcd. for C₁₉H₃₇N₄O₅S⁺: 433.2479; found: 433.2510. MF: C₁₉H₃₆N₄O₅S. MW: 432.58.

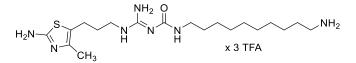
Boc∖ŅH H₃C_SNH O H₃C_SNH N N Boc


N-tert-Butoxycarbonyl-*N*'-[*N*-(8-*tert*-butoxycarbonylaminooctyl)aminocarbonyl]-*S*methylisothiourea (2.18). The title compound was prepared from 2.15 (0.21 g, 0.86 mmol, 1 equiv), DIPEA (0.82 mL, 4.8 mmol, 5.6 equiv), triphosgene (0.13 g, 0.42 mmol, 0.5 equiv) and 2.13 (0.16 g, 0.86 mmol, 1 equiv) according to the general procedure (eluent PE/EtOH; 0-20 min: 100:0-90:10, 40 min: 90:10) yielding the product as a colorless oil (70 mg, 17%). ¹H-NMR (300 MHz, CDCl₃): δ 12.30 (s, 1H), 5.58 (t, *J* = 6.0 Hz, 1H), 4.53 (s, 1H), 3.24-3.12 (m, 2H), 3.07 (q, *J* = 6.7 Hz, 2H), 2.27 (s, 3H), 1.36-1.55 (m, 22H), 1.34-1.21 (m, 8H). ¹³C-NMR (75 MHz, CDCl₃) δ 167.08, 161.84, 155.88, 151.06, 82.44, 78.93, 40.50, 40.06, 29.94, 29.58, 29.12, 29.08, 28.35, 28.12, 27.95, 26.78, 26.62, 14.19. $R_f = 0.71$ (CH₂Cl₂/MeOH 97.5:2.5). HRMS: calcd. for C₂₁H₄₁N₄O₅S⁺: 461.2792; found: 461.2830. MF: C₂₁H₄₀N₄O₅S. MW: 460.63.

N-tert-Butoxycarbonyl-*N*'-[*N*-(10-*tert*-butoxycarbonylaminodecyl)aminocarbonyl]-*S*methylisothiourea (2.19). The title compound was prepared from 2.16 (0.27 g, 0.99 mmol, 1 equiv), DIPEA (0.95 mL, 5.6 mmol, 5.6 equiv), triphosgene (0.148 g, 0.49 mmol, 0.5 equiv) and 2.13 (0.189 g, 0.99 mmol, 1 equiv) according to the general procedure (eluent CH₂Cl₂, isokratic) yielding the product as a colorless oil (74 mg, 15%). $R_f = 0.74$ (PE/EtOAc 5:1) or 0.89 (CH₂Cl₂/MeOH 97.5:2.5). ¹H-NMR (300 MHz, CDCl₃) δ 12.29 (s, 1H), 5.59 (t, *J* = 6.3 Hz, 1H), 4.54 (s, 1H), 3.18 (q, *J* = 6.7 Hz, 2H), 3.05 (q, *J* = 6.8 Hz, 2H), 2.27 (s, 3H), 1.56-1.35 (m, 22H), 1.33-1.14 (s, 12H). ¹³C-NMR (75 MHz, CDCl₃) δ 167.01, 161.82, 151.03, 134.88, 82.41, 80.11, 40.52, 40.07, 29.94, 29.58, 29.34, 29.32, 29.16, 29.13, 28.33, 28.12, 27.92, 26.82, 26.66, 14.16. HRMS: calcd. for C₂₃H₄₅N₄O₅S⁺: 489.3105; found: 489.3111. MF: C₂₃H₄₄N₄O₅S. MW: 488.69.


General Procedure for the Synthesis of the Carbamoylguanidine-Type Precursors 2.20-2.22. In this general procedure mercuric chloride (HgCl₂) is used as reagent, which is very toxic and potentially cancerogenic. It should only be used in a well-ventilated fume hood after reading the safety precautions and wearing proper lab safety equipment (gloves, safety googles and lab

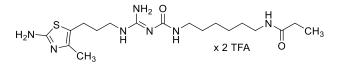
coat). Future synthetic work should consider replacements for mercuric chloride. The guanidinylating reagents **2.17-2.19** (1 equiv) and 5-(3-aminopropyl)-4-methylthiazol-2-amine (**2.12**, 2.1 equiv) were dissolved in CH_2Cl_2 (3 mL). NEt₃ (2.5 equiv) and HgCl₂ (4 equiv) were added and the mixture was stirred for 4-16 h. The reaction mixture was diluted with CH_2Cl_2 (10 mL). The precipitate was removed by filtration through Celite 545 and washed with CH_2Cl_2 (20 mL) and EtOAc (20 mL). The solvent was removed in vacuo and the crude product was purified by column chromatography on silica gel (eluent PE (A), EtOAc (B); gradient: 0-20 min: A/B 100:0-50:50) and dried in vacuo. Subsequently, deprotection was performed by stirring with 30% TFA in CH_2Cl_2 for 7-18 h. The obtained carbamoylguanidine-type precursors were purified by preparative HPLC.


1-(Amino{[3-(2-amino-4-methylthiazol-5-yl)propyl]amino}

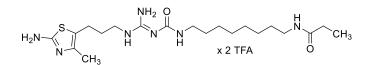
methylene)-3-(6-aminohexyl)urea trihydrotrifluoroacetate (2.20). The title compound was prepared from 2.17 (50 mg, 0.116 mmol, 1 equiv), 2.12 (66 mg, 0.24 mmol, 2.1 equiv), NEt₃ (80 μL, 0.58 mmol, 5 equiv) and HgCl₂ (126 mg, 0.46 mmol, 4 equiv) according to the general procedure, yielding the product as a white fluffy hygroscopic solid (38.49 mg, 48%). HPLC: 96%, ($t_R = 6.51$ min, k = 1.03). ¹H-NMR (300 MHz, MeOD) δ 3.37-3.32 (m, 2H), 3.21 (t, J = 7.0 Hz, 2H), 2.92 (t, J = 7.6 Hz, 2H), 2.72 (t, J = 7.6 Hz, 2H), 2.18 (s, 3H), 1.89 (quint, J = 7.2 Hz, 2H), 1.73-1.49 (m, 4H), 1.49-1.33 (m, 4H). 1H-NMR (600 MHz, DMSO-d₆) δ 10.52 (br s, 1H), 9.11-8.35 (m, 5H), 7.97-7.40 (m, 4H), 3.24 (q, J = 6.6 Hz, 2H), 3.09 (q, J = 6.6 Hz, 2H), 2.82-2.72 (m, 2H), 2.59 (t, J = 7.5 Hz, 2H), 2.07 (s, 3H), 1.72 (quint, J = 7.3 Hz, 2H), 1.51 (quint, J = 7.4 Hz, 2H), 1.43 (quint, J = 7.2 Hz, 2H), 1.34-1.20 (m, 4H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 167.44, 158.17 (q, J = 32.41 Hz, TFA), 153.81, 153.70, 133.06, 116.84 (q, J = 306.6 Hz, TFA), 116.26, 40.05, 39.09, 38.74, 28.95, 28.75, 26.91, 25.73, 25.45, 22.03, 11.78. HRMS: calcd. for C₁₅H₃₀N₇OS⁺: 356.2227; found: 356.2228. MF: C₁₅H₂₉N₇OS x C₆H₃F₉O₆.

1-(Amino{[3-(2-amino-4-methylthiazol-5-yl)propyl]amino}methylene)-3-(8-

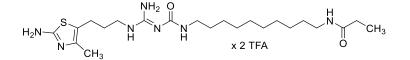
aminooctyl)urea trihydrotrifluoroacetate (2.21). The title compound was prepared from 2.18 (70 mg, 0.15 mmol, 1 equiv), 2.12 (87 mg, 0.32 mmol, 2.1 equiv), NEt₃ (105 µL, 0.76 mmol, 5 equiv) and HgCl₂ (165 mg, 0.61 mmol, 4 equiv) according to the general procedure, yielding the product as a white fluffy hygroscopic solid (40.22 mg, 36%). HPLC: 100%, ($t_{\rm R} = 7.17$ min, k = 1.23). ¹H-NMR (300 MHz, MeOD) δ 3.37-3.31 (m, 2H), 3.19 (t, J = 7.0 Hz, 2H), 2.90 (t, J = 7.6 Hz, 2H), 2.71 (t, J = 7.5 Hz, 2H), 2.18 (s, 3H), 1.89 (quint, J = 7.1 Hz, 2H), 1.73-1.46 (m, 4H), 1.45-1.30 (m, 8H). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.49 (br s, 1H), 9.23-8.21 (m, 5H), 8.05-7.22 (m, 4H), 3.24 (q, J = 6.6 Hz, 2H), 3.08 (q, J = 6.6 Hz, 2H), 2.84-2.69 (m, 2H), 2.59 (t, J = 7.5 Hz, 2H), 2.07 (d, J = 2.0 Hz, 3H), 1.72 (quint, J = 7.3 Hz, 2H), 1.56-1.47 (m, 2H), 1.46-1.37 (m, 2H), 1.29-1.25 (m, 8H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 167.54, 158.75 (q, *J* = 32.0 Hz, TFA), 153.82, 153.68, 132.45, 116.75 (q, *J* = 299.3 Hz, TFA), 116.27, 40.06, 39.19, 38.80, 28.90 (2C), 28.45, 26.96, 26.10 (2C), 25.73, 22.02, 11.70. HRMS: calcd. for $C_{17}H_{34}N_7OS^+$: 384.2540: found: 384.2545. MF: C₁₇H₃₃N₇OS x C₆H₃F₉O₆. MW: (383.56 + 342.07).



1-(Amino{[3-(2-amino-4-methylthiazol-5-yl)propyl]amino}methylene)-3-(8-


aminooctyl)urea trihydrotrifluoroacetate (2.22). The title compound was prepared from **2.19** (74 mg, 0.152 mmol, 1 equiv), **2.12** (87 mg, 0.32 mmol, 2.1 equiv), NEt₃ (105 μ L, 0.76 mmol, 5 equiv) and HgCl₂ (165 mg, 0.61 mmol, 4 equiv) according to the general procedure, yielding the product as a white fluffy hygroscopic solid (28.0 mg, 25%). HPLC: 99%, (t_R = 9.05 min, k = 1.82). ¹H-NMR (300 MHz, MeOD) δ 3.37-3.32 (m, 2H), 3.19 (t, J = 7.0 Hz, 2H), 2.96-2.84 (m, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.18 (s, 3H), 1.98-1.82 (m, 2H), 1.73-1.46 (m, 4H), 1.43-1.28 (m, 12H). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.57 (br s, 1H), 9.26-8.34 (m, 4H), 7.96-7.37 (m, 4H), 3.24 (q, J = 6.6 Hz, 2H), 3.08 (q, J = 6.6 Hz, 2H), 2.82-2.70 (m, 2H), 2.59 (t, J = 7.5 Hz, 2H), 2.07 (s, 3H), 1.72 (quint, J = 7.3 Hz, 2H), 1.51 (quint, J = 7.4 Hz, 2H), 1.46-1.38 (m, 2H),

1.32-1.19 (m, 12H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 167.70, 158.94 (q, *J* = 31.8 Hz, TFA), 153.85, 153.70, 132.39, 116.85 (q, *J* = 296.6 Hz, TFA), 116.27, 40.06, 39.20, 38.81, 28.92 (2C), 28.86, 28.78, 28.66, 28.50, 26.98, 26.21, 25.77, 22.00, 11.56. HRMS: calcd. for C₁₉H₃₈N₇OS⁺: 412.2853; found: 412.2860. MF: C₁₉H₃₇N₇OS x C₆H₃F₉O₆. MW: (411.61 + 342.07).


General Procedure for the Synthesis of the Propionic Amides 2.23-2.25. The reactions were carried out in a 1.5-mL micro tube (Sarstedt, Nümbrecht, Germany). The respective amine precursor (1 equiv) was dissolved in DMF (50 μ L) and NEt₃ (7.5 equiv) was added. The *N*-succinimidyl propionate (1.01-1.2 equiv) was dissolved in DMF (30 μ L) and added to the mixture. The reaction was stirred for 2 h at rt and was stopped by adding 10% aqueous TFA (10 μ L).


N-{6-(Amino{[3-(2-amino-4-methylthiazol-5-yl)propyl]amino}methylene)ureido-1hexyl}propionic amide dihydrotrifluoroacetate (2.23). The title compound was prepared from 2.20 (22.1 mg, 44 µmol, 1 equiv), succinimidyl propionate (9.1 mg, 53 µmol, 1.2 equiv) and NEt₃ (46 µL, 0.33 mmol, 7.5 equiv) according to the general procedure, yielding the product as a white fluffy hygroscopic solid (13.2 mg, 47%). The same reaction was also performed in a 4.32 mg scale. The yield was 3.1 mg (78%). Both batches were unified and used to analytically and pharmacologically characterize the "cold" radioligand. HPLC: 99%, ($t_{\rm R} = 9.21$, k = 1.87). ¹H-NMR (300 MHz, MeOD) δ 3.33 (t, J = 6.9 Hz, 2H), 3.20 (t, J = 7.0 Hz, 2H), 3.16 (t, J = 7.1 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.22-2.15 (m, 5H), 1.90 (quint, J = 7.1 Hz, 2H), 1.58-1.46 (m, 4H), 1.36 (quint, J = 3.5 Hz, 4H), 1.12 (t, J = 7.6 Hz, 3H). ¹H-NMR (600 MHz, DMSOd₆): δ 9.86 (br s, 1H), 8.93 (br s, 1H), 8.44 (br s, 2H), 7.80-7.61 (m, 1H), 7.54-7.37 (m, 1H), 3.22 (q, J = 6.7 Hz, 2H), 3.07 (q, J = 6.6 Hz, 2H), 3.02-2.96 (m, 2H), 2.57 (t, J = 7.5 Hz, 2H), 2.08-1.97 (m, 5H), 1.71 (quint, J = 7.3 Hz, 2H), 1.46-1.32 (m, 4H), 1.29-1.20 (m, 5H), 0.96 (t, J = 7.6 Hz, 3H). ¹³C-NMR (151 MHz, MeOD) δ 177.16, 170.45, 163.52 (q, J = 35.7 Hz, TFA), 156.14, 155.60, 132.96, 118.55, 118.23 (q, J = 293.9 Hz, TFA), 41.55, 40.80, 40.36, 30.49, 30.44, 30.38, 30.03, 27.65, 27.55, 23.74, 11.63, 10.76. HRMS: calcd. for C₁₈H₃₄N₇O₂S⁺: 412.2489; found: 412.2491. MF: C₁₈H₃₃N₇O₂S x C₄H₂F₆O₄. MW: (411.57 + 228.05).

N-{8-(Amino{[3-(2-amino-4-methylthiazol-5-yl)propyl]amino}methylene)ureido-1octyl}propionic amide dihydrotrifluoroacetate (2.24). The title compound was prepared from 2.21 (12.72 mg, 17.5 μmol, 1 equiv), succinimidyl propionate (3.7 mg, 21.0 μmol, 1.2 equiv) and NEt₃ (18 μL, 131 μmol, 7.5 equiv) according to the general procedure, yielding the product as a white fluffy hygroscopic solid (8.78 mg, 75%). HPLC: 97%, ($t_R = 11.26 \text{ min}, k = 2.51$). ¹H-NMR (300 MHz, MeOD) δ 3.37-3.31 (m, 2H), 3.19 (t, J = 7.0 Hz, 2H), 2.91 (t, J = 7.6 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.18 (s, 3H), 1.90 (quint, J = 7.1 Hz, 2H), 1.74-1.47 (m, 4H), 1.45-1.31 (m, 8H). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.28 (br s, 1H), 9.02 (br s, 3H), 8.50 (br s, 2H), 7.69 (t, J = 5.6 Hz, 1H), 7.48 (br s, 1H), 3.24 (q, J = 6.6 Hz, 2H), 3.08 (q, J = 6.6 Hz, 2H), 3.03-2.97 (m, 2H), 2.59 (t, J = 7.6 Hz, 2H), 2.08 (s, 3H), 2.04 (q, J = 7.6 Hz, 2H), 1.73 (quint, J = 7.3 Hz, 2H), 1.43 (t, J = 6.9 Hz, 2H), 1.36 (t, J = 6.9 Hz, 2H), 1.29-1.20 (m, 9H), 0.97 (t, J = 7.6 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 172.60, 167.76, 158.88 (q, J = 32.4 Hz, TFA), 153.78, 153.63, 131.91, 116.87 (q, J = 297.4 Hz, TFA), 116.30, 40.06, 39.24, 38.36, 29.14, 28.90, 28.83, 28.65, 28.60, 28.50, 26.33, 26.14, 21.98, 11.47, 10.03. HRMS: calcd. for C₂₀H₃₈N₇O₂S⁺: 440.2802; found: 440.2804. MF: C₂₀H₃₇N₇O₂S x C₄H₂F₆O₄. MW: (439.62 + 228.05).

N-{10-(Amino{[3-(2-amino-4-methylthiazol-5-yl)propyl]amino}methylene)ureido-1decyl}propionic amide dihydrotrifluoroacetate (2.25). The title compound was prepared from 2.22 (13.23 mg, 17.6 μmol, 1 equiv), succinimidyl propionate (3.0 mg, 17.7 μmol, 1.01 equiv) and NEt₃ (17.5 μL, 132 μmol, 7.5 equiv) according to the general procedure, yielding the product as a white fluffy hygroscopic solid (5.12 mg, 42%). HPLC: 100%, (t_R = 13.53 min, k = 3.21). ¹H-NMR (400 MHz, MeOD) δ 3.38-3.32 (m, 2H), 3.23-3.10 (m, 4H), 2.72 (t, J = 7.6 Hz, 2H), 2.25-2.11 (m, 5H), 1.90 (quint, J = 7.2 Hz, 2H), 1.60-1.40 (m, 4H), 1.39-1.24 (m, 12H), 1.12 (t, J = 7.6 Hz, 3H). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.22 (br s, 1H), 9.16-8.33 (m, 4H), 7.82-7.39 (m, 2H), 3.24 (q, J = 6.6 Hz, 2H), 3.08 (q, J = 6.6 Hz, 2H), 3.03-2.95 (m, 2H), 2.59 (t, J = 7.5 Hz, 2H), 2.07 (s, 3H), 2.03 (q, J = 7.6 Hz, 2H), 1.72 (quint, J = 7.3 Hz, 2H), 1.48-1.40 (m, 2H), 1.36 (quint, J = 6.9 Hz, 2H), 1.30-1.19 (m, 12H), 0.97 (t, J = 7.6 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 172.58, 167.49, 158.60 (q, J = 31.3 Hz, TFA), 153.76, 153.60, 132.89, 116.98 (q, J = 298.7 Hz, TFA), 116.29, 40.06, 39.29, 38.37, 29.16, 28.90 (2C), 28.71, 28.63, 28.50, 26.38, 26.18, 22.03, 11.73, 10.03. HRMS: calcd. for C₂₂H₄₂N₇O₂S⁺: 468.3115; found: 468.3124. MF: C₂₂H₄₁N₇O₂S x C₄H₂F₆O₄. MW: (467.30 + 228.05).

N-{6-(Amino{[3-(2-amino-4-methylthiazol-5-yl)propyl]amino}methylene)ureido-1hexyl}2,3-ditritiopropionic amide dihydrotrifluoroacetate ([³H]2.23). Succinimidyl [2,3-³H]propionate was from Novandi Chemistry AB (Södertälje, Sweden), provided in heptane/ethyl 3:2 (specific radioactivity >100 Ci/mmol acetate (2.7 TBq/mmol),radioactive concentration = 2 mCi/mL (74 MBq/mL). The reaction was carried out in a 1.5 mL micro tube (Sarstedt). The hexane/ethyl acetate mixture was removed in a vacuum concentrator for about 45 min. The precursor 2.20 (192 nmol, 134 µg) was dissolved in a mixture of DMF (40 µL) and TEA (2.1 μ mol, 0.3 μ L). This mixture was added to succinimidyl [2,3-³H]propionate (22 nmol, 2.2 mCi). The mixture was stirred for 1.5 h with a vortexer at rt. 10 µL of 2% aqueous TFA and $350 \,\mu\text{L}$ Millipore water + 5% MeCN + 0.05% TFA were added. The product was isolated with a Waters HPLC system (column: Phenomenex Luna C18 (150 x 4.6 mm, 3 µm)). Eluent: mixtures of 0.04% TFA in MeCN (A) and 0.04% aqueous TFA (B), gradient 0-14 min: A/B 10:90 to 21:79, 25 min: 21:79, 27 min: 96:5, 35 min: 95:5 (flow: 0.8 mL/min). The eluates were collected in a 1.5 mL vessel. The combined fractions were concentrated in a vacuum concentrator to a volume of 300 µL and 700 µL EtOH were added. This solution was transferred in a glass storage vial. The Eppendorf vial was rinsed two times with $100 \,\mu\text{L}$ EtOH/H₂O 70:30 (v/v) and the wash solution was added to the 1000 μ L radioligand solution to a total volume of 1200 μ L.

Quantification: The concentration of the radioligand was determined by a 4-point calibration with **2.23**. The solutions for the calibration were prepared freshly prior to injection. All the solutions were prepared separately in mobile phase from a 20 μ M solution of **2.23**. Eluent: mixtures of 0.04% TFA in MeCN (A) and 0.04% aqueous TFA (B), gradient: 0-14 min: A/B 10:90 to 21:79, 25 min: 21:79, 27 min: 96:5, 35 min: 95:5 (flow: 0.8 mL/min, column:

Phenomenex Luna C18 (150 x 4.6 mm, 3 μ m)). The molarity of the [³H]**2.23**-solution was calculated from the peak areas of the standards.

Determination of the specific activity: 12 aliquots of the diluted radioligand in mobile phase were counted in 10 mL H₂O and 10 mL Quicksave A (Zinsser Analytic GmbH, Eschborn, Germany) (measurement time = 9.799 min) using a Quantulus 1220 liquid scintillation counter (Perkin Elmer, Rodgau, Germany). The calculated specific activity was 146.3 Ci/mmol (5.41 TBq/mmol). This corresponds to a concentration of 6.45 μ M. The radioligand was obtained in a yield of 35% (7.74 nmol) with a radiochemical purity of >99%. The identity of the radioligand was confirmed by HPLC analysis of the labelled and the corresponding unlabelled compound (**2.23**, [³H]**2.23**) under the same conditions, resulting in identical retention times. The radioligand [³H]**2.23** was stored at -20°C.

2.4.4 Control of the Chemical Stability of the "Cold" Radioligand 2.23 by HPLC

The chemical stability of the "cold" radioligand **2.23** was investigated at physiological pH (7.4) in binding buffer (12.5 mM MgCl₂, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4)¹ at 23 °C for a period of 2 weeks. Incubation was started by addition of 25 μ L of a 1 mM solution of the compound in EtOH/Millipore H₂O 1:4 (v/v), which were freshly prepared from a 5 mM stock solution in EtOH, to 475 μ L of binding buffer to give a final concentration of 50 μ M. The sample was shaken for up to 2 weeks at 700 rpm. After different time periods, a 70 μ L aliquot was taken and diluted with 70 μ L of a mixture of MeCN, Millipore H₂O and 10% aqueous TFA (60:90:1). Prior to HPLC analysis the samples were stored at -20 °C. 50 μ L of the resulting solution were analyzed by HPLC as described in the general experimental section of the chapter 2. The absorption was detected at 220 nm. The blank HPLC run was performed under identical conditions without any ligand.

2.4.5 Functional Assays

Functional studies in the β-arrestin2 or mini-G protein recruitment assays at HEK293T-ARRB2-H₂R cells^{29, 39}, HEK293T NlucN-mGs/hH₂R-NlucC cells³⁷, HEK293T NlucN-mGs/gpH₂R-NlucC cells and using the isolated spontaneously beating guinea pig right atrium³¹ were performed as previously described or as described in the Appendix 1, App1.2 Mini-G Protein Recruitment Assay at HEK293T Cells Expressing NlucN-mGs/gpH₂R-NlucC.

2.4.6 Radioligand Binding Experiments

Binding data on recombinant histamine receptor subtypes and guinea pig ortholog expressed in $hH_2R-G_{s\alpha s}^{20}$; $gpH_2R-G_{s\alpha s}^{20};$ $(hH_1R + RGS4^{54};$ Sf9 cells $hH_3R + G_{\alpha i2} + G_{\beta 1\gamma 2}^{55}$, $hH_4R + G_{\alpha i2} + G_{\beta 1\gamma 2}$ or HEK293T-hH₂R-qs5-HA cells³³ were assessed using the following radioligands: [³H]mepyramine (hH₁R, Hartmann Analytics, Braunschweig, Germany or Novandi Chemistry AB), $[{}^{3}H]2.10^{25}$ (hH₂R), $[{}^{3}H]N^{\alpha}$ -methylhistamine (Hartmann Analytics) or $[{}^{3}H]UR$ -PI294²⁸ (hH₃R), [³H]**2.1** (hH₄R, Hartmann Analytics) according to recently published protocols.⁹, ²⁵ Modifications were made as follows: the washing steps were performed with PBS (pH 7.4) and not with binding buffer. Saturation binding, binding kinetics and competition binding studies with [3H]2.23 were performed by analogy with the previously reported protocols^{25, 28, 32, 57-59} using PBS (pH 7.4) as washing buffer and using a MicroBeta2 1450 scintillation counter (PerkinElmer, Rodgau, Germany) in the 96-well plate format.

For competition binding, saturation binding and kinetic binding experiments with [³H]2.23, the radioligand solution [6.45 µM in EtOH/H₂O 70/30 (v/v)] was mixed with a solution of 2.23 $[6.45 \,\mu\text{M}$ in EtOH/H₂O 70/30 (v/v), ratio: 1:5 to 1:10 (v/v), depending on the experiment] because of economic reasons. Cells were maintained in 75 cm² flasks (Sarstedt) in a humidified atmosphere (95% air, 5% CO₂) at 37 °C. Dulbecco's Modified Eagle Medium (DMEM, Sigma-Aldrich, Taufkirchen, Germany), containing 4.5 g/L glucose, 3.7 g/L NaHCO₃, 110 mg/L sodium pyruvate and supplemented with 0.584 g/L L-glutamine (Sigma-Aldrich) and 10% fetal calf serum (FCS, Biochrom, Berlin, Germany) was used as culture medium. Additionally, 100 µg/mL hygromycin B (A. G. Scientific, Inc., San Diego, CA) and 400 µg/mL G418 (Biochrom) were added to the culture medium of HEK293T-hH₂R-gs5-HA cells.³³ The culture medium of HEK293T-CRE-Luc-gpH₂R cells (for generation of this cell line see Appendix 1, App1.1 Generation of the HEK293T-CRE-Luc-gpH2R and the HEK293T NlucN-mGs/gpH2R-NlucC Cell Lines) was supplemented with 250 µg/mL hygromycin B and 600 µg/mL G418 and the culture medium of HEK293-mH₂R cells was supplemented with 200 µg/mL hygromycin B. On the day of the experiment, the cells were detached with trypsin (0.05% trypsin, 0.02% EDTA in PBS w/o Ca²⁺ and w/o Mg²⁺, Biochrom). After subsequent centrifugation (500 x g, 5 min), the pellet was resuspended in Leibovitz's L-15 (Life Technologies Corporation, Grand Island, NY, USA) supplemented with 1% FCS and HEPES (10 mM, Serva, Heidelberg, Germany) and the density of the suspension was adjusted to 1.0×10^6 cells/mL.

For saturation binding experiments, $10 \,\mu$ L of a solution of 2.6 (10 mM) or $10 \,\mu$ L of Leibovitz's L-15 containing 10 mM HEPES were pipetted per cavity of a 96-well plate (ratiolab, Dreieich, Germany) either for the determination of non-specific or total binding and 80 µL of the cell suspension were added per well. Samples were completed by addition of 10 µL of the respective [³H]2.23 solution (10-fold concentrated feed-solutions compared to final concentration). The plates were shaken at 300 rpm for 120 min. Cell-bound radioactivity was transferred to a glass fibre filter GF/C (Whatman, Maidstone, UK) pre-treated with polyethylenimine (0.3% (v/v), Sigma-Aldrich) by a 96-well Brandel harvester (Brandel Inc., Unterföhring, Germany). After four washing steps with PBS (pH 7.4, 4 °C), filter pieces were stamped and transferred into untapped 96-well flexible sample plates (Perkin Elmer). Each well was supplemented with 200 µL of scintillation cocktail (Rotiscint Eco plus, Roth, Karlsruhe, Germany) and incubated in the dark for 12 h. Radioactivity was measured with a MicroBeta2 1450 scintillation counter. Specific binding data (dpm) were plotted against the free radioligand concentration (nM) and analyzed by non-linear regression (one site - specific binding equation) to obtain K_d and B_{max} values (GraphPad Prism 5). Non-specific binding data were fitted by linear regression (GraphPad Prism 5).

Saturation binding experiments on membrane preparations of Sf9 insect cells, expressing the h, gp or c H₂R-G_{saS}^{20, 42} were performed in analogy to the above described protocol for HEK293(T) cells with minor modifications: Leibovitz's L-15 was replaced by binding buffer⁹ (which is typically used as buffer for Sf9 membranes) and instead of the HEK293(T) cell suspension Sf9 membrane preparations were used. The Sf9 membrane preparations were thawed and sedimented by centrifugation at 13000 x g and 4 °C for 10 min. The membranes were resuspended in cold (4 °C) binding buffer so that the final concentration was 2-6 µg of protein per 1 µL binding buffer⁹. 10 µL of this membrane suspension and 70 µL binding buffer were used per well. The total volume in a well was 100 µL. Data analysis was performed as described in the protocol for HEK293(T) cells.

For competition binding experiments, cells were incubated with the unlabelled ligands of interest in presence of either 25 nM (hH₂R, gpH₂R) or 50 nM (mH₂R) of [³H]**2.23** according to the conditions for the saturation binding experiments. Total binding was plotted versus logarithmic concentration of the competitor and normalized (100% = bound radioligand (dpm) in the absence of a competitor, 0% non-specifically bound radioligand (dpm) in the presence of **2.6**

(1 mM, h, gp, m H₂R)). Applying a log(inhibitor) vs. response - variable slope equation (GraphPad Prism 5), pIC₅₀ values were obtained. The corresponding IC₅₀ values were converted to K_i values by applying the Cheng-Prusoff equation followed by the calculation of pK_i .⁴³

For kinetic experiments, the cells were prepared as described for binding assays. In association experiments, wells contained [3 H]**2.23** at a concentration of 25 nM (h/gp) or 50 nM (m) and the respective h, gp or m H₂R (co)expressing HEK293(T) cells at a concentration of 0.8 x 10⁶ cells/mL in Leibovitz's L-15 supplemented with 1% FCS and 10 mM HEPES. The final volume per well was 100 µL. Non-specific binding was determined for each time point in the presence of **2.6** (7.5 µM (h/gp); 15 µM (m)). The plates were shaken at 300 rpm. The incubation was stopped after different time points (0-120 min) by transfer of the cells to a glass fibre filter using the harvester. In case of dissociation experiments, the cells were pre-incubated with [3 H]**2.23** (25 nM (h/gp) or 50 nM (m)) for 120 min. The final volume per well during the preincubation was 100 µL. The dissociation was started by addition of Leibovitz's L-15 medium (100 µL) containing **2.6** ((75 µM (h/gp); 150 µM (m)) after different periods of time (between 1 and 180 min; starting with the longest incubation time) followed by the transfer of the cells to a glass fibre filter using the harvester. The plates were shaken at 300 rpm. To determine non-specific binding, **2.6** (7.5 µM (h/gp); 15 µM (m)) was added during the preincubation step.

The specific binding data (dpm) from association experiments were fitted by a one-phase equation (one-phase association, GraphPad Prism 5) to a maximum to obtain k_{obs} (observed association rate constant) and B_{eq} (maximum specifically bound radioligand), which was used to calculate the specifically bound radioligand B_t in %, that is plotted over time. Data from dissociation experiments B_t in % were plotted over time and were analyzed by a three-parameter equation (one phase decay, GraphPad Prism 5).

2.4.7 Red Blood Cell Partitioning of [³H]2.10 and [³H]2.23

The extent of RBC partitioning of $[{}^{3}H]2.10$ and $[{}^{3}H]2.23$ was determined in vitro. The experiment with mouse blood was performed according to the *German Animal Welfare Act* (article 15) as well as to the *European Guidelines* (2010/63/EU). If vertebrates are euthanized without any pretreatment (e.g. to collect organs or tissues or blood) there is no approval from the governmental authorities needed, which is true in our case. Therefore, $[{}^{3}H]2.10$ or $[{}^{3}H]2.23$ was added to human (h, 1 mL aliquots/1.5 mL micro tubes (Sarstedt) or mouse (m, stem name: β B1

CTGF line 6 (CD1), 0.5 mL aliquots/1.5 mL micro tubes) heparinized (h: Li-Heparin S-Monovette, 4.9 mL, Sarstedt; m: Liquemin) freshly drawn blood (t < 30 min) so that the final concentration was 20 nM. In the case of mouse blood, the volume of the aliquots was reduced to 0.5 mL in order to keep the number of required animals as low as possible. Immediately after the addition of the radioligand, the micro tubes were shaken vigorously for few seconds and were then carefully shaken using a RED ROCKER shaker (Hoefer Scientific Instruments, San Francisco, CA) for 60 min at rt. After 60 min, the plasma and RBCs were separated by centrifugation (500 x g, 10 min, 4 °C). The plasma was transferred with a pipette to 1.5 mL micro tubes. The border area between plasma and RBCs was rejected. Defined volume or plasma or RBCs (h: 100 µL; m: 25 µL; 2 times per sample) was lysed with four times the volume of lysis puffer (h: 400 µL; m: 100 µL) for 60 min while shaking. The lysis buffer consisted of urea (8 M, Roth), acetic acid (3 M, Merck) and Triton-X 100 (1%, Sigma-Aldrich) in water. 5 µL of the lysed plasma or RBCs were transferred to 3 mL Rotiscint®eco plus in scintillation counting mini-vials (6 mL, HD-PE, Sarstedt) and the radioactivity of the samples was determined using a Beckman LS 6500 liquid scintillations counter (Beckmann Coulter, München, Germany). The concentrations of the radioligand in plasma and RBCs were calculated using the specific activity of each radioligand ([³H]**2.10**: 55.7 Ci/mmol; [³H]**2.23**: 146.3 Ci/mmol) and a hematocrit value (packed red blood cell volume) of 0.41 and a plasma value of 0.55 for human as well as for mouse. The calculated concentrations of $[{}^{3}H]2.10$ and $[{}^{3}H]2.23$ in human or mouse plasma or RBCs are shown in Table App1.2 in the Appendix 1.

2.4.8 Statistical Analysis

Results are reported as scatter plot representing mean values $\pm 95\%$ CI. Statistic differences were analyzed using a Mann-Whitney test. All reported p values are two-sided, and p values lower than 0.05 were considered to indicate statistical significance. All calculations were performed using the GraphPad Prism 5 software.

2.5 References

1. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L., International union of pharmacology. XIII. Classification of histamine receptors. *Pharmacol. Rev.* **1997**, *49*, 253-278.

Binding Properties

2. Panula, P.; Chazot, P. L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W. L. S.; Stark, H.; Thurmond, R. L.; Haas, H. L., International union of basic and clinical pharmacology. XCVIII. Histamine receptors. *Pharmacol. Rev.* **2015**, *67*, 601-655.

3. Traiffort, E.; Pollard, H.; Moreau, J.; Ruat, M.; Schwartz, J. C.; Martinez-Mir, M. I.; Palacios, J. M., Pharmacological characterization and autoradiographic localization of histamine H₂ receptors in human brain identified with [¹²⁵I]iodoaminopotentidine. *J. Neurochem.* **1992**, *59*, 290-299.

4. Dove, S.; Elz, S.; Seifert, R.; Buschauer, A., Structure-activity relationships of histamine H₂ receptor ligands. *Mini-Re. Med. Chem.* **2004**, *4*, 941-954.

5. Levi, R. C.; Allotti, G., Histamine modulates calcium current in guinea pig ventricular myocytes. *J. Pharmacol. Exp. Ther.* **1988**, *246* (1), 377-383.

6. Black, J. W.; Duncan, W. A. M.; Durant, C. J.; Genellin, C. R.; M., P. E., Definition and antagonism of histamine H₂-receptors. *Nature* **1972**, *236*, 385-390.

7. Yanagisawa, I.; Hirata, Y.; Ishii, A., Studies on histamine H₂ receptor antagonists. 2. Synthesis and pharmacological activities of *N*-sulfamoyl and *N*-sulfonyl amidine derivatives. *J. Med. Chem.* **1987**, *30*, 1787-1793.

8. Sinkins, W. G.; Kandel, M.; Kandel, S. I.; Schunack, W.; Wells, J. W., G protein-linked receptors labeled by [³H]histamine in guinea pig cerebral cortex. I. Pharmacological characterization [corrected]. *Mol. Pharmacol.* **1993**, *43*, 569-582.

9. Kagermeier, N.; Werner, K.; Keller, M.; Baumeister, P.; Bernhardt, G.; Seifert, R.; Buschauer, A., Dimeric carbamoylguanidine-type histamine H₂ receptor ligands: a new class of potent and selective agonists. *Bioorg. Med. Chem.* **2015**, *23*, 3957-3969.

10. Warrander, S. E.; Norris, D. B.; Rising, T. J.; Wood, T. P., ³H-cimetidine and the H₂-receptor. *Life Sci.* **1983**, *33*, 1119-1126.

11. Rising, T. J.; Norris, D. B.; Warrander, S. E.; Wood, T. P., High affinity ³H-cimetidine binding in guinea-pig tissues. *Life Sci.* **1980**, *27*, 199-206.

12. Kendall, D. A.; Ferkany, J. W.; Enna, S. J., Properties of ³H-cimetidine binding in rat brain membrane fractions. *Life Sci.* **1980**, *26*, 1293-1302.

13. Smith, I. R.; Cleverley, M. T.; Ganellin, C. R.; Metters, K. M., Binding of [³H]cimetidine to rat brain tissue. *Agents Actions* **1980**, *10*, 422-426.

14. Bristow, D. R.; Hare, J. R.; Hearn, J. R.; Martin, L. E., Radioligand binding studies using [³H]-cimetidine and [³H]-ranitidine. *Br. J. Pharmacol.* **1980**, *72*, 547-548.

15. Tanaka, A.; Nishihara, S.; Misawa, T.; Ibayashi, H., Effects of H₂-receptor antagonists on ³H-cimetidine binding and histamine-stimulation of cellular cAMP in isolated guinea pig gastric glands. *Jpn. J. Pharmacol.* **1987**, *45*, 97-105.

16. Devoto, P.; Marchisio, A. M.; Carboni, E.; Spano, P. F., Detection of ³H-cimetidine specific binding in rat anterior pituitary. *Eur. J. Pharmacol.* **1980**, *63*, 91-93.

17. Kandel, S. I.; Steinberg, G. H.; Wells, J. W.; Kandel, M.; Gornall, A. G., Separate binding sites for histaminic drugs in rat cerebral cortex. *Biochem. Pharmacol.* **1980**, *29*, 2269-2272.

18. Nielsen, S. T., Binding of $[^{3}H]$ ICIA 5165, an H₂-receptor antagonist to guinea pig gastric mucosa. *Agents Actions* **1986**, *18*, 524-531.

19. Gajtkowski, G. A.; Norris, D. B.; Rising, T. J.; Wood, T. P., Specific binding of 3 H-tiotidine to histamine H₂ receptors in guinea pig cerebral cortex. *Nature* **1983**, *304*, 65-67.

Binding Properties

20. Kelley, M. T.; Bürckstürmmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R., Distinct interaction of human and guinea pig histamine H₂-receptor with guanidine-type agonists. *Mol. Pharmacol.* **2001**, *60*, 1210-1225.

21. Schwartz, J. C.; Arrang, J. M.; Garbarg, M.; Pollard, H.; Ruat, M., Histaminergic transmission in the mammalian brain. *Physiol. Rev.* **1991**, *71*, 1-51.

22. Ruat, M.; Traiffort, E.; Bouthenet, M. L.; Schwartz, J. C.; Hirschfeld, J.; Buschauer, A.; Schunack, W., Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H₂ receptor using [¹²⁵I]iodinated probes. *Proc. Natl. Acad. Sci. USA* **1990**, *87*, 1658-1662.

23. Martinez-Mir, M. I.; Pollard, H.; Moreau, J.; Arrang, J. M.; Ruat, M.; Traiffort, E.; Schwartz, J. C.; Palacios, J. M., Three histamine receptors (H₁, H₂ and H₃) visualized in the brain of human and non-human primates. *Brain Res.* **1990**, *526*, 322-327.

24. Leurs, R.; Smit, M. J.; Menge, W. M.; Timmerman, H., Pharmacological characterization of the human histamine H₂ receptor stably expressed in chinese hamster ovary cells. *Br. J. Pharmacol.* **1994**, *112*, 847-854.

25. Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A., $[{}^{3}H]$ UR-DE257: development of a tritium-labeled squaramide-type selective histamine H₂ receptor antagonist. *ChemMedChem* **2015**, *10*, 83-93.

26. Cavanagh, R. L.; Buyniski, J. P., Effect of BMY-25368, a potent and long-acting histamine H₂-receptor antagonist, on gastric secretion and aspirin-induced gastric lesions in the dog. *Aliment. Pharmacol. Ther.* **1989**, *3*, 299-313.

27. Kraus, A.; Ghorai, P.; Birnkammer, T.; Schnell, D.; Elz, S.; Seifert, R.; Dove, S.; Bernhardt, G.; Buschauer, A., N^{G} -Acylated aminothiazolylpropylguanidines as potent and selective histamine H₂ receptor agonists. *ChemMedChem* **2009**, *4*, 232-240.

28. Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A., Tritium-labeled N^1 -[3-(1H-imidazol-4-yl)propyl]- N^2 -propionylguanidine ([³H]UR-PI294), a high-affinity histamine H₃ and H₄ receptor radioligand. *ChemMedChem* **2009**, *4*, 225-231.

29. Grätz, L.; Tropmann, K.; Bresinsky, M.; Müller, C.; Bernhardt, G.; Pockes, S., NanoBRET binding assay for histamine H₂ receptor ligands using live recombinant HEK293T cells. *Sci. Rep.* **2020**, *10*, *e13288*.

30. Pertz, H. H.; Görnemann, T.; Schurad, B.; Seifert, R.; Straßer, A., Striking differences of action of lisuride stereoisomers at histamine H₁ receptors. *N.-S. Arch. Pharmacol.* **2006**, *374*, 215-222.

31. Pockes, S.; Wifling, D.; Keller, M.; Buschauer, A.; Elz, S., Highly potent, stable, and selective dimeric hetarylpropylguanidine-type histamine H₂ receptor agonists. *ACS Omega* **2018**, *3*, 2865-2882.

32. Bartole, E.; Littmann, T.; Tanaka, M.; Ozawa, T.; Buschauer, A.; Bernhardt, G., [³H]UR-DEBa176: a 2,4-diaminopyrimidine-type radioligand enabling binding studies at the human, mouse, and rat histamine H₄ receptors. *J. Med. Chem.* **2019**, *62*, 8338-8356.

33. Mosandl, J. Radiochemical and Luminescence-Based Binding and Functional Assays for Human Histamine Receptors Using Genetically Engineered Cells. Ph.D. Thesis. University of Regensburg, 2009.

34. Carpenter, B.; Tate, C. G., Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. *Protein Eng. Des. Sel.* **2016**, *29*, 583-594.

Binding Properties

35. Nehmé, R.; Carpenter, B.; Singhal, A.; Strege, A.; Edwards, P. C.; White, C. F.; Du, H.; Grisshammer, R.; Tate, C. G., Mini-G proteins: novel tools for studying GPCRs in their active conformation. *PLOS ONE* **2017**, *12*, e0175642.

36. Wan, Q.; Okashah, N.; Inoue, A.; Nehmé, R.; Carpenter, B.; Tate, C. G.; Lambert, N. A., Mini G protein probes for active G protein–coupled receptors (GPCRs) in live cells. *J. Biol. Chem.* **2018**, *293*, 7466-7473.

37. Höring, C.; Seibel, U.; Tropmann, K.; Grätz, L.; Mönnich, D.; Pitzl, S.; Bernhardt, G.; Pockes, S.; Strasser, A., A dynamic, split-luciferase-based mini-G protein sensor to functionally characterize ligands at all four histamine receptor subtypes. *Int. J. Mol. Sci.* **2020**, *21*, 8440.

38. Fernandez, N.; Monczor, F.; Baldi, A.; Davio, C.; Shayo, C., Histamine H₂ receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H₂ receptor internalization. *Mol. Pharmacol.* **2008**, *74*, 1109-1118.

39. Felixberger, J. Luciferase Complementation for the Determination of Arrestin Recruitment: Investigation of Histamine and NPY receptors. Ph.D. Thesis. University of Regensburg, 2014.

40. Daly, M. J.; Humphray, J. M.; Bunce, K. T.; Stables, R., The effect of ranitidine on gastric acid secretory response curves to histamine, pentagastrin or bethanechol in the dog with a heidenhain pouch. *Agents Actions* **1981**, *11*, 160-164.

41. Durant, G. J.; Duncan, W. A. M.; Ganellin, C. R.; Parsons, M. E.; Blakemore, R. C.; Rasmussen, A. C., Impromidine (SK&F 92676) is a very potent and specific agonist for histamine H₂ receptors. *Nature* **1978**, *276*, 403-405.

42. Preuss, H.; Ghorai, P.; Kraus, A.; Dove, S.; Buschauer, A.; Seifert, R., Constitutive activity and ligand selectivity of human, guinea pig, rat, and canine histamine H₂ receptors. *J. Pharmacol. Exp. Ther.* **2007**, *321*, 983-995.

43. Cheng, Y. C.; Prusoff, W. H., Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 percent inhibition (I_{50}) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099-3108.

44. Preuss, H.; Ghorai, P.; Kraus, A.; Dove, S.; Buschauer, A.; Seifert, R., Point mutations in the second extracellular loop of the histamine H_2 receptor do not affect the species-selective activity of guanidine-type agonists. *N.-S. Arch. Pharmacol.* **2007**, *376*, 253-264.

45. Sun, X.; Li, Y.; Li, W.; Xu, Z.; Tang, Y., Computational investigation of interactions between human H₂ receptor and its agonists. *J. Mol. Graph. Model.* **2011**, *29*, 693-701.

46. Zhang, J.; Qi, T.; Wei, J., Homology modeling and antagonist binding site study of the human histamine H₂ receptor. *Med. Chem.* **2012**, *8*, 1084-1092.

47. Hinderling, P. H., Kinetics of partitioning and binding of digoxin and its analogues in the subcompartments of blood. *J. Pharm. Sci.* **1982**, *73*, 1043-1053.

48. Hinderling, P. H., Red blood cells: A neglected compartment in pharmacokinetics and pharmacodynamics. *Pharmacol. Rev.* **2000**, *49*, 279-473.

49. Kalamaridis, D.; DiLoreto, K., Drug Partition in Red Blood Cells. In *Optimization in Drug Discovery: In Vitro Methods, Methods in Pharmacology and Toxicology*, Springer, Ed. New York, 2014; pp 39-47.

50. Gers, T.; Kunce, D.; Markowski, P.; Izdebski, J., Reagents for efficient conversion of amines to protected guanidines. *Synthesis* **2004**, *1*, 37-42.

51. Cinelli, M. A.; Cordero, B.; Dexheimer, T. S.; Pommier, Y.; Cushman, M., Synthesis and biological evaluation of 14-(aminoalkyl-aminomethyl)aromathecins as topoisomerase I

Binding Properties

inhibitors: investigating the hypothesis of shared structure-activity relationships. *Bioorg. Med. Chem.* 2009, 17, 7145-7155.

52. Morrell, A.; Placzek, M. S.; Steffen, J. D.; Antony, S.; Agama, K.; Pommier, Y.; Cushman, M., Investigation of the lactam side chain length necessary for optimal indenoisoquinoline topoisomerase I inhibition and cytotoxicity in human cancer cell cultures. *J. Med. Chem.* **2007**, *50*, 2040-2048.

53. Pockes, S.; Wifling, D.; Buschauer, A.; Elz, S., Structure-activity relationship of hetarylpropylguanidines aiming at the development of selective histamine receptor ligands. *ChemistryOpen* **2019**, *8*, 285-297.

54. Houston, C.; Wenzel-Seifert, K.; Bürckstümmer, T.; Seifert, R., The human histamine H₂-receptor couples more efficiently to Sf9 insect cell G_s -proteins than to insect cell G_q -proteins: limitations of Sf9 cells for the analysis of receptor/ G_q -protein coupling. *J. Neurochem.* **2002**, *80*, 678-696.

55. Schnell, D.; Strasser, A.; Seifert, R., Comparison of the pharmacological properties of human and rat histamine H₃-receptors. *Biochem. Pharmacol.* **2010**, *80*, 1437-1449.

56. Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R., High constitutive activity and a G-protein-independent high-affinity state of the human histamine H₄-receptor. *Biochemistry* **2009**, *48*, 1424-1438.

57. Igel, P.; Geyer, R.; Strasser, A.; Dove, S.; Seifert, R.; Buschauer, A., Synthesis and structure-activity relationships of cyanoguanidine-type and structurally related histamine H₄ receptor agonists. *J. Med. Chem.* **2009**, *52*, 6297-6313.

58. Geyer, R.; Kaske, M.; Baumeister, P.; Buschauer, A., Synthesis and functional characterization of imbutamine analogs as histamine H_3 and H_4 receptor ligands. *Arch. Pharm.* **2014**, *347*, 77-88.

59. Pegoli, A.; X., S.; Wifling, D.; Hübner, H.; Bernhardt, G.; Gmeiner, P.; Keller, M., Radiolabeled dibenzodiazepinone-type antagonists give evidence of dualsteric binding at the M_2 muscarinic acetylcholine receptor. *J. Med. Chem.* **2017**, *60*, 3314-3334.

App1.1 Generation of the HEK293T-CRE-Luc-gpH₂R and the HEK293T NlucN-mGs/gpH₂R-NlucC Cell Lines

App1.1.1 Molecular Cloning

In order to generate the pcDNA3.1(+) gpH₂R vector, the cDNA encoding the gpH₂R was isolated from the pVL 1392-SF-gpH₂R- $G_{s\alpha S}^{1}$ by PCR, whereby a stop codon was added (forward primer: 5⁻-ataaagcttATGGCGTTCAATGGCA-3⁻; reverse primer: 5⁻-ataatctagattaCCTGTTTGTGGCTCCCT-3⁻). Afterwards, the construct was subcloned into a pcDNA3.1(+) vector backbone using *Hin*dIII and *Xb*aI.

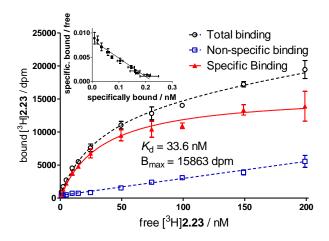
For construction of the pcDNA3.1(+) gpH₂R-NlucC vector, the receptor gene was amplified PCR without 5'by а stop codon (forward primer: gatcaagcttgctagcgccaccATGGCGTTCAATGGCACG-3'; reverse primer: 5'gatetetagactegagececetagactegagecetagactegagececetagactegagececetagactegagececetagactegagececetagactegagececetagactegagececetagactegagecetagactegagetegagetegage H₁R-NlucC vector replacing the H₁R gene by digest with *Hin*dIII and *Xb*aI as described previously.² Both constructs encoding the gpH_2R were verified by sequencing (Eurofins Genomics LLC, Ebersberg, Germany).

App1.1.2 Generation of Stable Cell Lines

In order to generate HEK293T cells stably co-expressing the CRE-Luc and the gpH₂R, the parental cell line HEK293T-CRE-Luc³ was seeded into a 6-well dish at a density of 0.5×10^6 cells/mL one day prior to the transfection. The day of the transfection, the pcDNA3.1(+) gpH₂R plasmid was digested for 2 h at 37 °C with *Pv*uI (New England Biolabs, Frankfurt am Main, Germany) and purified using a PCR purification KIT (Quiagen, Leipzig, Germany). Thereafter, 2 µg of the linearized cDNA were transfected using the FuGENE HD transfection reagent (Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer's instructions.

Stable expression of the gpH₂R-NlucC was achieved using HEK293T cells which already stably expressed NlucN-mGs² and which were seeded into a 6-well dish (0.3 x 10^6 cells/mL) the day prior to the transfection. 2 µg of the pcDNA3.1(+) gpH₂R-NlucC vector were

transfected using the transfection reagent XtremeGENE HP according to the manufacturer's protocol (Merck KGaA, Darmstadt, Germany).


App1.1.3 Cell Culture

HEK293T-CRE-Luc-gpH₂R cells were cultured in DMEM supplemented with 10% FCS, 250 μ g/mL hygromycin B and 600 μ g/mL G418 and HEK293T NlucN-mGs/gpH₂R-NlucC cells were cultured in DMEM containing 10% FCS, 1 μ g/mL puromycin (InvivoGen, Toulouse, France) and 600 μ g/mL G418. The cells were incubated at 37°C in a water-saturated atmosphere containing 5% CO₂. Periodically, the cells were tested for mycoplasma contamination using the Venor GeM Mycoplasma Detection Kit (Minerva Biolabs, Berlin, Germany) and were negative.

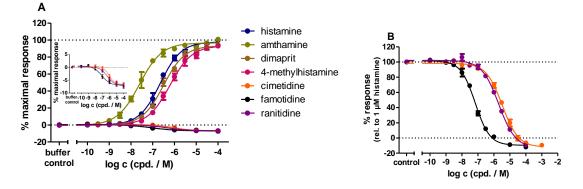
App1.1.4 [³H]2.23 Saturation Binding Using gpH₂R Expressing Cells

[³H]**2.23** bound in a specific, saturable manner to both the HEK293T-CRE-Luc-gpH₂R (for more details see Figure 2.7 and Table 2.4 in the chapter 2) & HEK293T NlucN-mGs/gpH₂R-NlucC cells ($K_d = 29 \pm 3$ nM, N = 3, representative curve is shown in Figure App1.1). Non-specific binding was determined in the presence of 1 mM famotidine. The determined B_{max} values allowed the calculation of the number of specific binding sites per cell, revealing a comparably high receptor expression level for both cell lines, 0.89 ± 0.01 millions receptors/cell (N = 3) for the HEK293T-CRE-Luc-gpH₂R and 0.39 ± 0.01 millions receptors/cell (N = 3) for the HEK293T NlucN-mGs/gpH₂R-NlucC cells, respectively.

Appendix 1

Figure App1.1. Representative data from saturation binding experiments at the gpH₂R, coexpressed in HEK293T NlucN-mGs cells. Total binding (dashed black curve), specific binding (red curve), and nonspecific binding (dashed blue line, determined in the presence of famotidine (1 mM)) of [³H]**2.23** are depicted. Inserts: Scatchard transformations of shown specific binding curves. The experiments were performed in triplicate. Error bars of specific binding and in the Scatchard plots were calculated according to the Gaussian law of error propagation. Error bars of total and nonspecific binding represent SEMs.

App1.2 Mini-G Protein Recruitment Assay Using HEK293T Cells Co-Expressing the NlucN-mGs and gpH₂R-NlucC Fusion Proteins


The assay was performed and evaluated as recently published for the hH_2R by Höring et al.² The results of standard H_2R agonists and antagonists/inverse agonists are summarized in Table App1.1 and the curves are shown in Figure App1.2. The curves of **2.20-2.25** are shown in Figure 2.4 in the chapter 2.

Appendix 1

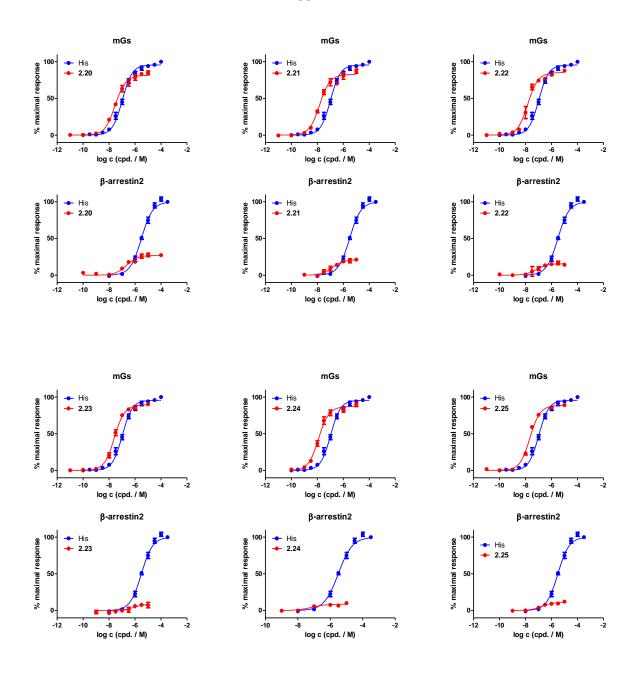
Table App1.1.	pEC50,	Emax	and	р <i>К</i> ь	Values	of	Standard	H ₂ R	Agonists	and
Antagonists/Inv	verse Ag	onists	Analy	yzed i	n Mini-(G P	rotein Recr	uitme	nt Assay ı	using
HEK293T Cells Expressing NlucN-mGs and gpH2R-NlucC ^a										

compd.	$pEC_{50}^{b/(pK_{b})^{c}}$	$\mathrm{E}_{\mathrm{max}}{}^d$	Ν
histamine, 2.1	6.65 ± 0.07	1.00	5
amthamine	7.60 ± 0.06	1.01 ± 0.01	4
dimaprit	6.50 ± 0.04	0.94 ± 0.01	4
4-methylhistamine	6.21 ± 0.05	0.93 ± 0.02	4
cimetidine, 2.4	6.06 ± 0.02	$\textbf{-0.07} \pm 0.01$	3
	(6.18 ± 0.06)		3
ranitidine, 2.5	6.32 ± 0.09	-0.07 ± 0.01	3
	(6.46 ± 0.04)		3
famotidine, 2.6	7.04 ± 0.07	$\textbf{-0.07} \pm 0.01$	3
	(7.91 ± 0.05)		3

^{*a*}Data represent mean values \pm SEM from N independent experiments, each performed in triplicate. Data were analyzed by nonlinear regression and were best fitted to sigmoidal concentration-response curves (GraphPad Prism 5, log(agonist or antagonist) vs. response–variable slope). ^{*b*}pEC₅₀ = -logEC₅₀. ^{*c*}pK_b = -logK_b. K_b values were calculated according to the Cheng-Prusoff equation.⁴ The K_b values of antagonists and inverse agonists were determined in the antagonist mode versus 1 µM histamine. ^{*d*}The response was normalized to the effect induced by 100 µM histamine (E_{max} = 1.00) and buffer control (E_{max} = 0.00).

Figure App1.2. Characterization of standard ligands at the gpH₂R using the developed mini-G protein recruitment assay. Live HEK293T cells, stably expressing the NlucN-mGs and gpH₂R-NlucC, were analyzed regarding their response to standard agonists and antagonists/inverse agonists in the agonist mode (**A**; inset: increase of the range y = 5 to -10% maximal response) and antagonist mode (**B**; only in case of antagonists/inverse agonists). **A**: The response was normalized to the maximal effect induced by 100 µM histamine (maximal response: 100%) and buffer control (maximal response: 0%). **B**: The response was normalized to the effect induced by 100 µM histamine (maximal response: 100%) and buffer control (maximal response: 100%) and buffer control (response: 0%). pEC₅₀, E_{max}, and pK_b values are listed in Table App1.1 and were in good accordance with data described in literature. Data are presented as means \pm SEM from at least three independent experiments, each performed in triplicate.

App1.3 Red Blood Cell Partioning of [³H]2.10 and [³H]2.23


Table App1.2. Calculated Concentrations of [3H]2.10 and [3H]2.23 in Human (h) orMouse (m) Plasma or Red Blood Cells (RBCs)

	plasma	Ν	plasma	Ν	RBCs	Ν	RBCs	Ν	c[³ H] 2.10 found	c[³ H] 2.23 found
	c[³ H] 2.10		c[³ H] 2.23		c[³ H] 2.10		c[³ H] 2.23		(plasma + RBCs)	(plasma + RBCs)
h	30.3 ± 0.6	10	32.5 ± 0.4	10	3.8 ± 0.3	10	8.3 ± 0.4	10	20.1 ± 1.2	19.6 ± 2.0
m	23.4 ± 1.0	8	32.4 ± 0.6	6	15.0 ± 1.0	6	7.0 ± 0.4	6	20.7 ± 1.7	19.0 ± 2.1

App1.4 Bias Analysis for Compounds 2.20-2.25

A bias analysis for **2.20-2.25** was performed as described by van der Westhuizen et al.⁵ based on the operational model using the endogenous ligand histamine as a reference agonist. This model was chosen because several publications recommend the use of this model to overcome a systemic bias between two readouts systems as described in the chapter 2 regarding the lower potencies of all tested compounds in the β -arrestin2 recruitment assay compared to the mini-G protein recruitment assay.⁶⁻⁸ Table App1.3 shows the absolute (log(τ/K_A)) and the normalized (Δ log(τ/K_A)) transduction coefficients as well as the relative effectiveness for both assays and the $\Delta\Delta$ log(τ/K_A) ratios and bias factors of the ligands between the G-protein and arrestin pathways. The determined $\Delta\Delta$ log(τ/K_A) ratios allowed for the quantification of the functional selectivity which can be observed in the functional data of the carbamoylguanidine-type ligands (Figure App1.4). Based on these analyses, **2.23** showed a significant preference for the Gprotein mediated pathway ($\Delta\Delta$ log(τ/K_A) >0). Although until today no flawless model for bias quantification has been developed, the presented results can be considered as decent evidence for functionally selective signaling profiles of the investigated carbamoylguanidines.

Appendix 1

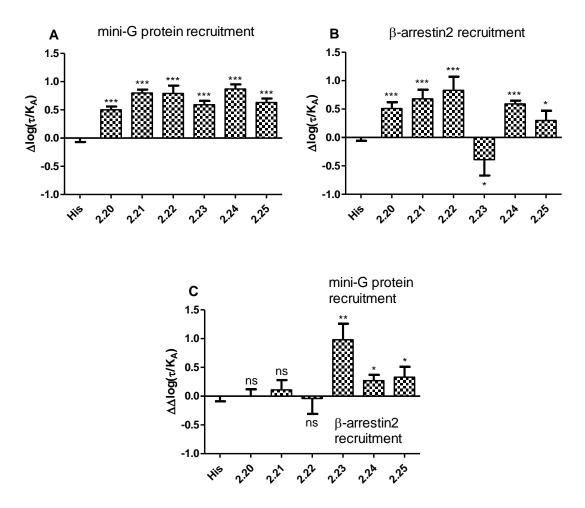


Figure App1.3. Concentration-response curves of **2.20-2.25** in comparison with the endogenous ligand histamine fitted with the operational model of agonism as described by van der Westhuizen.⁵

		β-arrestin2	2		mGs		mGs-β-arrestin2		
compd.	log	Δlog	relative	log	Δlog	relative	$\Delta\Delta\log$	bias factor	
	$(\tau/K_A)^a$	$(\tau/K_A)^b$	effecti-	(τ/K_A)	$(\tau/K_A)^b$	effecti-	$(\tau/K_A)^c$		
			veness	а		veness			
His	$5.52 \pm$	$0.00 \pm$	1.00	$6.95 \pm$	$0.00 \pm$	1.00	$0.00 \pm$	1.00	
	0.04	0.06		0.05	0.07		0.09		
2.20	$5.80 \pm$	$0.51 \pm$	3.21	$7.45 \pm$	$0.50 \pm$	3.19	$0.00 \pm$	0.99	
	0.10	0.11		0.03	0.06		0.12		
2.21	$6.20 \pm$	$0.68 \pm$	4.82	7.74	$0.80 \pm$	6.26	$0.11 \pm$	1.30	
	0.16	0.16		± 0.03	0.06		0.17		
2.22	$6.35 \pm$	$0.83 \pm$	6.75	$7.74 \pm$	$0.79 \pm$	6.20	-0.04 \pm	0.92	
	0.23	0.24		0.13	0.14		0.27		
2.23	$5.13 \pm$	$-0.39 \pm$	0.41	$7.54 \pm$	$0.59 \pm$	3.89	$0.98 \pm$	9.56	
	0.27	0.28		0.04	0.07		0.28		
2.24	6.11 ±	$0.59 \pm$	3.93	$7.81 \pm$	$0.87 \pm$	7.36	$0.27 \pm$	1.87	
	0.04	0.06		0.06	0.08		0.10		
2.25	$5.82 \pm$	$0.30 \pm$	2.00	$7.58 \pm$	$0.63 \pm$	4.30	$0.33 \pm$	2.15	
	0.17	0.17		0.04	0.07		0.18		

Table App1.3. Calculated $\Delta log(\tau/K_A)$ Ratios, $\Delta \Delta log(\tau/K_A)$ Ratios and Bias Factors for theEndogenous Ligand Histamine and 2.20-2.25

^{*a*}Data were analyzed by non-linear regression using the operational model equation described by van der Westhuizen et al.⁵ in GraphPad Prism 5 to determine the $log(\tau/K_A)$ ratios. ^{*b*} $\Delta Log(\tau/K_A)$ ratios were calculated from the $log(\tau/K_A)$ ratios, considering histamine as the reference ligand as described by van der Westhuizen.⁵ ^{*c*}Subtraction of the $\Delta log(\tau/K_A)$ ratios of the β -arrestin2- from the $\Delta log(\tau/K_A)$ ratios of mini-G protein recruitment assay yielded the $\Delta \Delta log(\tau/K_A)$ ratios for the tested compounds. The standard errors were calculated according to the Gaussian law of error propagation. Data are the mean ± standard error of 3-9 independent experiments performed in triplicates.

Figure App1.4. Quantification of the functional bias of the tested H₂R agonists **2.20-2.25** between the mini-G protein- and the β -arrestin2 recruitment assays. The $\Delta \log(\tau/K_A)$ ratios for the G-protein pathway (**A**, mGs recruitment) and arrestin pathway (**B**, β -arrestin2 recruitment) were calculated as described by Westhuizen et al., using histamine as reference agonist.⁵ Subtraction of the $\Delta \log(\tau/K_A)$ ratios of the β -arrestin2- from the $\Delta \log(\tau/K_A)$ ratios of the mini-G protein recruitment assay yielded the $\Delta \Delta \log(\tau/K_A)$ ratios for the tested compounds (**C**). A $\Delta \Delta \log(\tau/K_A)$ ratio = 0 indicate an equal activation of the G-protein- and arrestin pathways, while a $\Delta \Delta \log(\tau/K_A)$ ratio $\neq 0$ indicate a preference for one signal pathway over the other. Data represent mean \pm standard error of 3-9 independent experiments performed in triplicates. Data were analyzed in a pairwise manner using a two-tailed unpaired student's t-test (***p <0.001, *p <0.05) to determine the significance of the $\Delta \log(\tau/K_A)$ and $\Delta \Delta \log(\tau/K_A)$ ratios.

App1.5 References

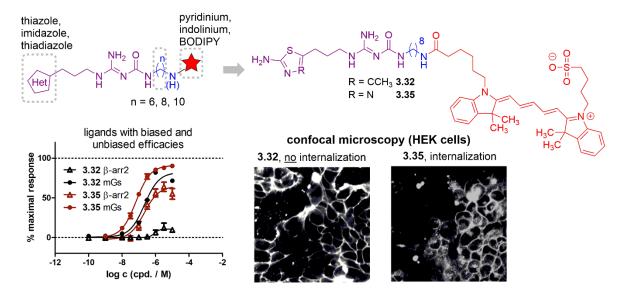
1. Kelley, M. T.; Bürckstürmmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R., Distinct interaction of human and guinea pig histamine H₂-receptor with guanidine-type agonists. *Mol. Pharmacol.* **2001**, *60*, 1210-1225.

2. Höring, C.; Seibel, U.; Tropmann, K.; Grätz, L.; Mönnich, D.; Pitzl, S.; Bernhardt, G.; Pockes, S.; Strasser, A., A dynamic, split-luciferase-based mini-G protein sensor to functionally characterize ligands at all four histamine receptor subtypes. *Int. J. Mol. Sci.* **2020**, *21*, 8440.

3. Nordemann, U.; Wifling, D.; Schnell, D.; Bernhardt, G.; Stark, H.; Seifert, R.; Buschauer, A., Luciferase reporter gene assay on human, murine and rat histamine H₄ receptor orthologs: correlations and discrepancies between distal and proximal readouts. *PLOS ONE* **2013**, *8*, *e73961*.

4. Cheng, Y. C.; Prusoff, W. H., Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 percent inhibition (I_{50}) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099-3108.

5. van der Westhuizen, E. T.; Breton, B.; Christopoulos, A.; Bouvier, M., Quantification of ligand bias for clinically relevant β_2 -adrenergic receptor ligands: implications for drug taxonomy. *Mol. Pharmacol.* **2014**, *85*, 492-509.


6. Black, J. W.; Leff, P., Operational models of pharmacological agonism. *Proc. R. Soc. London, Ser. B* **1983**, 220, 141-162.

7. Kenakin, T.; Watson, C.; Muniz-Medina, V.; Christopoulos, A.; Novick, S., A simple method for quantifying functional selectivity and agonist bias. *ACS Chem. Neurosci.* **2012**, *3*, 193-203.

8. Rajagopal, S.; Ahn, S.; Rominger, D. H.; Gowen-MacDonald, W.; Lam, C. M.; Dewire, S. M.; Violin, J. D.; Lefkowitz, R. J., Quantifying ligand bias at seven-transmembrane receptors. *Mol. Pharmacol.* **2011**, *80*, 367-377.

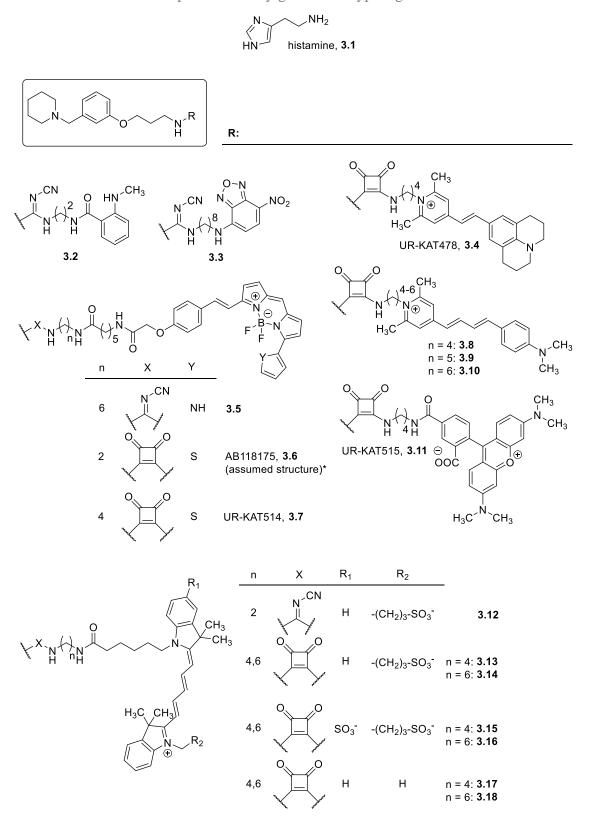
3 Synthesis and Pharmacological Characterization of Fluorescent

Histamine H₂ Receptor Carbamoylguanidine-Type Agonists

So far, only little is known about the internalization process of the histamine H₂ receptor (H₂R). One promising approach to study such dynamic processes is the use of agonistic fluorescent ligands. Therefore, a series of carbamoylguanidine-type H₂R agonists containing various fluorophores, heterocycles, and linkers (**3.31-3.40**) was synthesized. The ligands were pharmacologically characterized in several binding and functional assays. These studies revealed a significantly biased efficacy (E_{max}) for some of the compounds, e.g. **3.32**: whereas **3.32** acted as strong partial (E_{max} : 0.77, mini-Gs recruitment) or full agonist (E_{max} : 1.04, [³⁵S]GTP γ S binding) with respect to G protein activation, it was only a weak partial agonist regarding β -arrestin1/2 recruitment (E_{max} : 0.09-0.12) and failed to promote H₂R internalization (confocal microscopy). On the other hand, H₂R internalization was observed for compounds that exhibited moderate agonistic activity in the β -arrestin1/2 pathways ($E_{max} \ge 0.22$). The direct comparison of such differentially biased ligands gave valuable insights into the internalization process of the H₂R and supports that activation of β -arrestin plays a crucial role in this process.

Ulla Seibel cloned the pIRESneo3-SP-FLAG-hH₂R vector and generated the HEK293T-SP-FLAG-hH₂R K33 cell line. Lukas Grätz synthesized the Py-5 label. The confocal microscopy experiments were performed with the help and instructions of Dr. Timo Littmann.

3.1 Introduction


The histamine H₂ receptor (H₂R) is a member of class A G protein-coupled receptors (GPCR) and is important for the regulation of gastric acid secretion, cell differentiation and proliferation, immune reactions, and central nervous system functions.¹⁻² The H₂R can induce signal transduction in multiple ways, e.g. via heterotrimeric G proteins, G protein receptor kinases (GRK) and β -arrestins (β -arr).²⁻⁶ Furthermore, it was also reported that different agonists can activate different downstream signaling cascades.^{3, 7}

In detail, agonistic stimulation of the H₂R results in activation of both adenylate cyclase and phospholipase C via Gs and Gq proteins, respectively.^{4, 8-15} In addition, it was recently published that the H₂R can also interact to a lesser extent with Gi and G12 proteins in HEK293 cells.¹¹ Excessive continuous or repeated stimulation of the H₂R by an agonist leads to receptor desensitization. In turn, GRK2 and GRK3 mediated phosphorylation of the receptor facilitates the interaction with β-arrestin1 and β-arrestin2 which leads to uncoupling of the receptor from its G protein.¹⁶⁻¹⁸ The desensitization of the H₂R has been previously investigated in the human gastric cell line HGT-1¹⁹⁻²⁰, in clonal cytolytic T lymphocytes²¹ and in the human monocytic cell line U937²², in which the H₂R rapidly desensitizes in response to histamine (3.1, Figure 3.1) stimulation. Another event that occurs after H₂R stimulation is internalization, in which the receptor is translocated from the plasma membrane into intracellular endosomes. Previous findings showed that the H₂R undergoes rapid agonist-induced internalization (visualized by immunofluorescence).²³⁻²⁴ Agonist-induced GPCR internalization is a very complex process and can occur through several distinct pathways including (1) clathrin-coated pit pathway, (2) caveolae-pathway, and (3) dynamin-independent pathway.²⁵⁻²⁶ However, little is known about the exact mechanism by which the H₂R is internalized, although previous studies suggest the involvement of β -arrestin2.²⁷ One way to study such processes in detail is by use of fluorescent ligands.

Fluorescent GPCR ligands gained increased popularity to study various aspects of receptor pharmacology.²⁸⁻³² These ligands allow the direct visualization of dynamic processes such as internalization, trafficking and characteristics of diffusion in the plasma membrane of cells.³³ Many different antagonistic (**3.2-3.18**, Figure 3.1)³⁴⁻³⁹ and agonistic (**3.19-3.21**, Figure 3.2A)⁴⁰ fluorescent ligands for the H₂R have been reported. However, only the agonistic fluorescent ligands can be used to clarify the mechanisms, underlying the H₂R internalization, since only agonists can trigger this process. But although the fluorescent agonist-based probes developed by Kagermeier et al.⁴⁰ (**3.19-3.21**) possess high affinity, their high level of non-specific (non-sp.) binding and receptor-independent diffusion through the cell membrane, limited their applications in studies with live cells.

3 Synthesis and Pharmacological Characterization of Fluorescent Histamine H₂

Receptor Carbamoylguanidine-Type Agonists

Figure 3.1. Chemical structures of histamine (**3.1**) and reported fluorescent H₂R antagonists **3.2-3.18**³⁴⁻³⁸. *The exact chemical structure of AB118175 (**3.6**) is not published and was derived from the formula ($C_{48}H_{56}BF_2N_9O_4S$) and the reported presence of the aminopotentidine and BODIPY 630/650 motifs.³⁹

3 Synthesis and Pharmacological Characterization of Fluorescent Histamine H₂ Receptor Carbamoylguanidine-Type Agonists

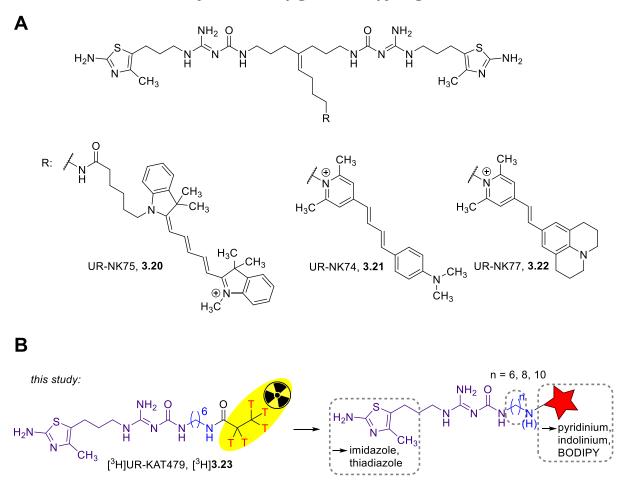
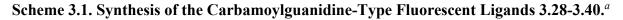


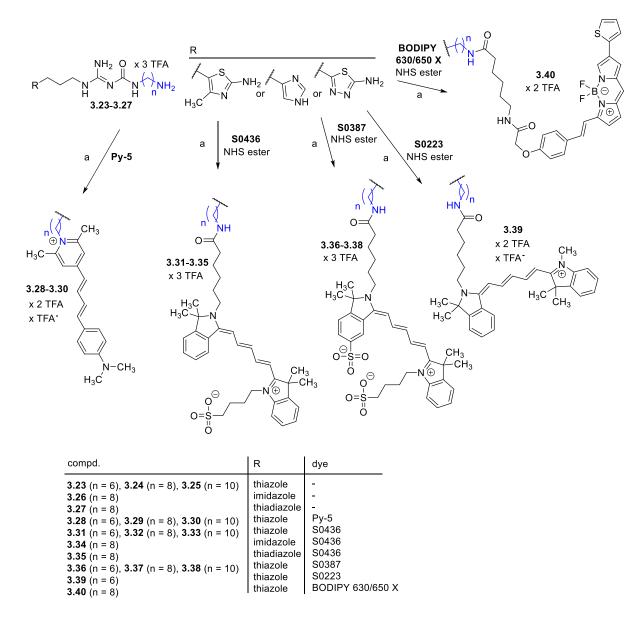
Figure 3.2. (A) Chemical structures of literature known fluorescent H₂R agonists 3.19-3.21⁴⁰.
(B) Our approach for the synthesis of novel fluorescent agonists for the H₂R.

Consequently, there is still a need to develop novel, agonistic fluorescent ligands with reduced non-specific interactions.

In this study, we describe the design, synthesis, and pharmacological evaluation (radioligand competition binding- and different functional-assays; flow cytometry and confocal microscopy) of several fluorescent carbamoylguanidine-type H₂R agonists containing various fluorophores, heterocycles, and linker lengths.

3.2 Results and Discussion


3.2.1 Design


Recently, the G protein efficacy (E_{max}) biased carbamoylguanidine-type radioligand [³H]UR-KAT479 ([³H]**3.23**) (mini-G: $E_{max} = 0.88 \pm 0.01$; β -arr2: $E_{max} = 0.07 \pm 0.02$) was described (for structure see Figure 3.2B).⁷ Due to its beneficial properties (e.g. low non-specific binding and

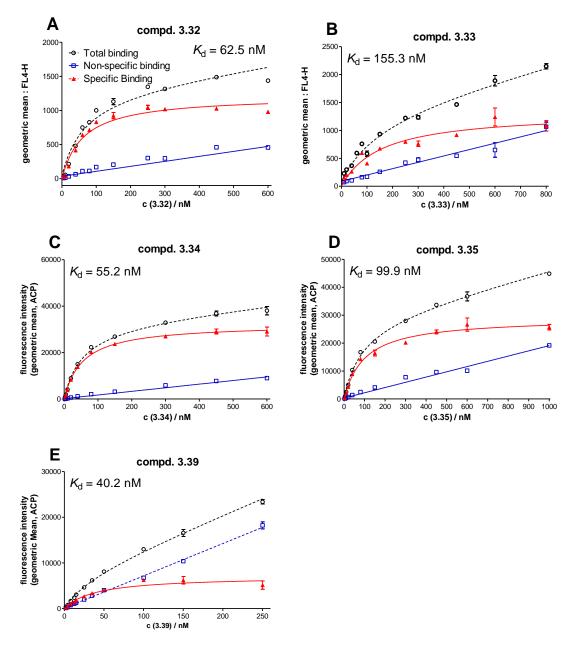
reversible binding to the receptor), the structurally similar carbamoylguanidine containing amine **3.23**⁷ (cf. Scheme 3.1) was considered as a promising starting point for the development of novel fluorescent agonists. As the linker length can affect the pharmacological properties,⁴¹ two additional precursor analogues with different chain lengths were also evaluated (**3.24-3.25**⁷, cf. Scheme 3.1). Moreover, also the heterocycle was altered (**3.26-3.27**, cf. Scheme 3.1) since it is reported that different heterocycles may lead to varying degrees of G protein efficacy bias (thiazole^{3, 7, 42}, imidazole³, thiadiazole⁴³). Finally, the amine precursors were labeled with three different types of electrically charged or net-uncharged, red-emitting fluorophores: Py-5⁴⁴⁻⁴⁵ (positive), differently charged indolinium dyes [S0223 (positive), S0436 (net-uncharged) and S0386 (negative)) and BODIPY 630/650 X (net-uncharged)].⁴⁶⁻⁴⁷

3.2.2 Chemistry

The amine precursors **3.23-3.27**^{7,43} and the Py-5 label⁴⁴⁻⁴⁵ were prepared according to known synthetic routes (for more details see Appendix 2, App2.1 Experimental Details for **3.23-3.27**). The fluorophores S0436, S0387, S0223 and BODIPY 630/650 X were purchased as succinimidyl (NHS) esters and coupled with the precursors **3.23-3.27** in the presence of triethyl amine (NEt₃) to give **3.31-3.40** (Scheme 3.1). Reaction of **3.23-3.25** with Py-5 gave the positively charged pyridinium salts **3.28-3.30** (Scheme 3.1). Purification by preparative RP-HPLC afforded **3.28-3.40** with high purities [\geq 95% (220 nm)]. Fluorescence ligands containing the imidazole (compd. **3.37**) or thiadiazole (compd. **38**) moiety were synthesized only with the octyl linker, as this linker led to the highest H₂R affinities within the thiazole series regardless of which fluorophore was used (Py-5: **3.28-3.30**, S0346: **3.31-3.33**, S0387: **3.36-3.38**, for details see Table 3.1). Analytical characterizations (¹H-NMR, HPLC purity, excitation spectra and emission spectra) of the fluorescent ligands **3.28-3.40** are provided in the Appendix 3.

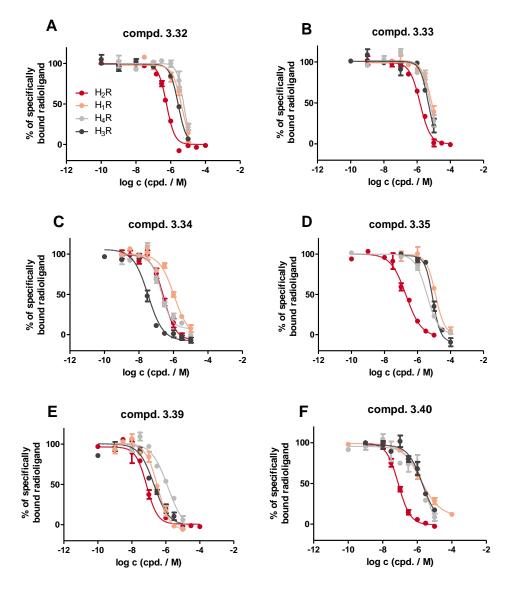
^aReagents and conditions: (a) Py-5, S0436-, S0387-, S0223- or BODIPY 630/650 X-NHS ester, NEt₃, DMF, 2 h, dark, rt, 18-89%.

3.2.3 H₂R Affinity and Receptor Subtype Preference


The amine precursor 3.26 (pK_i values of the precursors 3.23-25⁷ and 3.27⁴¹ were reported elsewhere) and the fluorescent ligands 3.28-3.40 were investigated in competition binding experiments on membrane preparations of Sf9 insect cells expressing the human (h) H_2R - G_{sqS} fusion protein (Table 3.1). In general, the incorporation of the fluorophore into the precursors resulted in a reduced hH₂R affinity compared to the unlabeled precursors (3.23-3.27; pK_i 6.88-7.85), with exception of **3.39** (cf. Table 3.1). The introduction of Py-5 (**3.28-3.30**, pK_i 6.64-7.20), S0223 (**3.39**, pK_i 7.66) or BODIPY 630/650 X (**3.40**, pK_i 7.52) was better tolerated than the introduction of S0436 (**3.31-3.35**, pK_i 6.25-7.18) or S0387 (**3.36-3.38**, pK_i <6-6.74) (cf. Table 3.1). Fluorescent ligands, containing an octyl linker (3.29, 3.32 and 3.37), exhibited higher affinity compared to those containing a hexyl (3.28, 3.31 and 3.36) or decyl linker (3.30, **3.33** and **3.38**) (cf. Table 3.1). To confirm the determined pK_i values, the fluorescent ligands **3.28-3.37** and **3.39-3.40** (not **3.38** because of the very low $pK_i < 6$) were investigated in flow cytometric saturation binding studies using whole HEK293T-qs5-HA cells co-expressing the hH₂R. None of the Py-5-labeled ligands (28-30) bound in a saturable manner (see Figure App2.33A-C in the Appendix 2). The S0223- (3.39), BODIPY 630/650 X- (3.40) and S0387- (3.36-3.37) labeled ligands showed high non-specific binding (see Figure S3.3E and Figure App2.34A-C in the Appendix 2). Only the S0436-labeled ligands 3.32-3.35 bound in saturable manner with concomitantly low non-specific binding (7-20% at a concentration abound the K_d value; see Figure S3.3A-D). The p K_d values determined for these compounds (32-35) were in agreement with the pK_i values from radioligand competition binding experiments (cf. Table 3.1).

To investigate the subtype selectivity, selected compounds were screened for affinity at the other three human histamine receptors (hH_{1,3,4}Rs, Table 3.1). Thiazole- (**3.31-3.33** and **3.39-3.40**) or thiadiazole- (**3.35**) containing compounds showed a preference for the H₂R. The affinity at the hH_{1,3,4}Rs was between a half and two orders of magnitude lower than at the hH₂R. In contrast, the imidazole containing ligand **3.34** had even higher affinity for human H₃ receptor than for the H₂R (cf. Table 3.1 and Figure 3.4C). Similar results were reported in the literature^{40, 43, 48-51}, where thiazoles or thiadiazoles showed higher H₂ receptor selectivity compared to structurally identical imidazoles. In addition, a decrease in H₂R selectivity could be observed for the precursors **3.23-3.25** and the S0436-labeled fluorescent ligands **3.31-3.33** by extending the linker from hexyl to decyl (cf. Table 3.1).

	pK_d flow cytom			pK_i radioligand competition								H ₂ R selectivity K_i (H _{1,3,4} R)/ K_i (H ₂ R)		
Cmpd.	hH_2R^a	N	hH2R-Gsas ^b										(112K) H4	
<u>3.1</u>	-	-	6.58 ± 0.04^{50}	3	5.62 ± 0.03^{52}	48	$7.59 \pm 0.01^{b,c50}$	42	7.60 ± 0.01^{50}	45	H ₁ 9	H ₃ 0.1	0.1	
3.23	_	-	6.88 ± 0.10^7	5	5.03 ± 0.10^7	3	$<5^{c7}$	3	<57	3	71	>76	>76	
3.24	-	-	7.66 ± 0.17^7	3	6.71 ± 0.04^{7}	3	5.06 ± 0.10^{c7}	3	<57	3	9	398	>457	
3.25	-	-	7.85 ± 0.17^{7}	3	6.80 ± 0.04^{7}	3	5.82 ± 0.07^{c7}	3	5.36 ± 0.17^7	3	11	107	309	
3.26	-	-	7.58 ± 0.05^{43}	3	6.96 ± 0.08^{43}	3	7.51 ± 0.13^{c43}	2	6.20 ± 0.16^{43}	2	4	1	41	
3.27	-	-	7.48 ± 0.14	3	6.28 ± 0.09	3	$<5^{c}$	2	<5	3	16	302	302	
3.28	n.m.	2	6.64 ± 0.05	3	n.d.	-	n.d.	-	n.d.	-	-	-	-	
3.29	n.m.	2	7.20 ± 0.11	3	n.d.	-	n.d.	-	n.d.	-	-	-	-	
3.30	n.m.	2	6.95 ± 0.16	3	n.d.	-	n.d.		n.d.	-	-	-	-	
3.31	6.00 ± 0.07	6	6.39 ± 0.12	4	<5	2	$<5^{b}$	4	<5	2	>25	>25	>25	
3.32	7.15 ± 0.05	5	6.60 ± 0.04	3	5.51 ± 0.10	3	$5.67 \pm 0.19^{b,c}$	2	$5.65\pm0.10^*$	2	12	9	9	
3.33	6.64 ± 0.08	6	6.25 ± 0.06	3	$5.41 \pm 0.13^{*}$	2	$5.54 \pm 0.09^{c}*$	2	$5.44 \pm 0.12*$	2	7	5	6	
3.34	7.25 ± 0.02	4	7.02 ± 0.05	3	$6.29\pm0.09*$	2	7.77 ± 0.09^c	2	6.87 ± 0.06	3	5	0.2	1	
3.35	6.95 ± 0.09	3	7.18 ± 0.10	3	$5.20\pm0.01*$	2	5.33 ± 0.04^c	3	$5.64 \pm 0.03*$	2	95	71	35	
3.36	<6	2	6.58 ± 0.04	3	n.d.	-	n.d.	-	n.d.	-	-	-	-	
3.37	<6	3	$6.74 \pm 0.17*$	2	n.d.	-	n.d.	-	n.d.	-	-	-	-	
3.38	n.d.	-	<6	2	n.d.	-	n.d.	-	n.d.	-	-	-	-	
3.39	7.48 ± 0.06	3	7.66 ± 0.18	3	$6.79\pm0.08*$	2	$6.92 \pm 0.07^{c} *$	2	$6.13 \pm 0.08*$	2	10	7	46	
3.40	7.09 ± 0.10	3	7.52 ± 0.03	3	6.02 ± 0.14	3	$5.97 \pm 0.16^{c} *$	2	5.96 ± 0.13	3	32	35	36	


Table 3.1. pKd Values of 3.28-3.40 Determined by Saturation Binding (hH₂R) and Binding Data (pK_i) of 3.1 and 3.23-3.40 to Human Histamine Receptors (H₁R, H₂R, H₃R and H₄R) Determined in Radioligand Binding Studies

^{*a*}Determined by flow cytometric saturation binding at HEK293T-hH₂R-qs5-HA cells. ^{*b-f*}Determined by radioligand competition binding with ${}^{b}[{}^{3}\text{H}]\text{UR-DE257}^{53}$ ($K_{d} = 11.2 \text{ nM}^{38}$, c = 20 nM), ${}^{c}[{}^{3}\text{H}]\text{mepyramine}$ ($K_{d} = 4.5 \text{ nM}^{40}$, c = 5 nM), ${}^{d}[{}^{3}\text{H}]N^{\alpha}$ -methylhistamine ($K_{d} = 8.6 \text{ nM}^{50}$, c = 3 nM), ${}^{e}[{}^{3}\text{H}]\text{UR-PI294}^{54}$ ($K_{d} = 3.0 \text{ nM}^{7}$, c = 2 nM) or ${}^{f}[{}^{3}\text{H}]\text{histamine}$ ($K_{d} = 47.5 \text{ nM}^{55}$, c = 30 nM) at membrane preparations of Sf9 insect cells expressing the ${}^{b}\text{H}_{2}\text{R-G}_{s\alphaS}$ fusion protein, ^{*c*}co-expressing the hH₁R + RGS4, ^{*d.e*}co-expressing the hH₃R + G_{αi2} + G_{β1γ2} or ^{*f*}co-expressing the hH₄R + G_{αi2} + G_{β1γ2}. Presented are mean values ± SEM (N ≥ 3) or SE (N = 2, indicated with *) from N independent experiments (each performed in duplicate (*a*) or triplicate (*b*, *c*, *d*, *e*, *f*)). n.d.: not determined. n.m.: not measurable: the one site - specific binding fit failed due to non-saturable binding of **3.31-3.33**. For the calculation of the selectivity ratios, the p K_i values were converted to the corresponding K_i by applying the equation $K_i = 10^{-pK_i}$.

Figure 3.3. Representative flow cytometric saturation binding experiments performed with the fluorescent ligands **3.32** (**A**), **3.33** (**B**), **3.34** (**C**), **3.35** (**D**) and **3.39** (**E**) at intact HEK293T-hH₂R-qs5-HA cells. Non-specific binding was determined in the presence of famotidine (300-fold excess adjusted to the respective concentration of the fluorescent ligand). Cells were incubated with the fluorescent ligands at room temperature (rt) in the dark for 90 min. Error bars of specific binding represent propagated errors calculated according to the Gaussian law of error propagation. Error bars of total and non-specific binding represent the SEM. Experiments were performed in duplicate. For representative flow cytometric saturation binding experiments of **3.28-3.31**, **3.36-3.37** and **3.40** see Appendix 2, Figures App2.33 and App2.34.

3 Synthesis and Pharmacological Characterization of Fluorescent Histamine H₂ Receptor Carbamoylguanidine-Type Agonists

Figure 3.4. Displacement curves obtained from competition binding experiments with [³H]mepyramine (hH₁R, $K_d = 4.5 \text{ nM}^{40}$, c = 5 nM), [³H]UR-DE257⁵³ (hH₂R, $K_d = 11.2 \text{ nM}^{38}$, c = 20 nM), [³H]UR-PI294⁵⁴ (hH₃R, $K_d = 3 \text{ nM}^7$, c = 2 nM) or [³H]histamine (hH₄R, $K_d = 47.5 \text{ nM}^{55}$, c = 30 nM) and **3.32** (A), **3.33** (B), **3.34** (C), **3.35** (D), **3.39** (E) or **3.40** (F) at membranes of Sf9 cells (co-)expressing the hH₁R + RGS4, the hH₂R-G_{sαS} fusion protein, the hH₃R + G_{αi2} + G_{β1γ2} or the hH₄R + G_{αi2} + G_{β1γ2}. Data represent mean values ± SEM from at least two independent experiments (each performed in triplicate).

3.2.4 Functional Studies at the Human H₂R

To test the functional differences regarding Gs versus β -arrestin activation, the compounds **3.23-3.40** were investigated in different assay systems (cf. Table 3.2). G protein activation was investigated in the [³⁵S]GTP γ S binding assay using membrane preparations of Sf9 insect cells expressing the hH₂R-G_{saS} fusion protein.^{40, 50, 56} In case of compound **3.35** the mini-G protein recruitment assay using the HEK293T NlucN-mGs/hH₂R-NlucC cells stably expressing the NlucN-mGs and hH₂R-NlucC fusion constructs⁵⁷ was used, because the [³⁵S]GTP γ S reagent was no longer commercially available in sufficient purity and at an affordable price.⁵⁸ Therefore, selected compounds **3.26**, **3.32**, **3.34** and **3.39** were additionally analyzed in the mini-G protein recruitment assay for comparison. β -Arrestin2 recruitment was determined in the luciferase complementation assay using the HEK293T-ARRB2-hH₂R cells stably expressing hH₂R-ElucC and the β -arrestin2-ElucN fusion constructs.^{3, 37-38} Selected compounds **3.32**, **3.34**, **3.35** and **3.39** were also investigated in the analogous β -arrestin1 recruitment assay to rule out potential preference for one of the two β -arrestin isoforms (results are shown in the footnote of Table 3.2).

Labeled and unlabeled compounds 3.23-3.39 acted as moderate partial to full agonists in $[^{35}S]GTP\gamma S$ binding and/or mini-G protein recruitment assays (E_{max} = 0.47-1.04) with pEC₅₀ values in the range of 5.62 to 8.12 and were weak to strong partial agonists in β -arrestin1/2 recruitment assays ($E_{max} = 0.06-0.87$) with pEC₅₀ values in the range of 5.41 to 7.02 (Table 3.2). In general, the potencies were in good agreement with the respective binding affinities (pK_i) values, cf. Table 3.2). Among the fluorescence ligands, the difference in activating the G protein and β-arrestin pathways was most pronounced for the aminothiazole containing, S0436labeled compounds 3.32 and 3.33, which were strong partial to full agonists in the G protein pathway (**3.32**: GTP γ S: $E_{max} = 1.04$; mGs: $E_{max} = 0.77$; **3.33**: GTP γ S: $E_{max} = 0.93$), while showing very weak partial agonistic activity in arrestin recruitment assays (3.32: β -arr1: $E_{max} = 0.09$; β -arr2: $E_{max} = 0.12$; **3.33**: β -arr2: $E_{max} = 0.09$) (cf. Table 3.2 and Figures 3.5A & B). In addition, the BODIPY 630/650 X-labeled compound **3.40** showed an "extreme bias"⁵⁹. It acted as a strong partial agonist in the $[^{35}S]GTP\gamma S$ binding assay (E_{max} = 0.70), but as an antagonist in the β -arrestin2 recruitment assay (E_{max} = 0.01) (cf. Table 3.2 and Figure 3.5F). In contrast, three compounds (3.34-3.35 and 3.39) acted as moderate partial agonists in the β arrestin2 recruitment assay. The imidazole containing, S0436-labeled compound 3.34 was a partial agonist in the G protein pathway (GTP γ S: $E_{max} = 0.66$; mGs: $E_{max} = 0.83$) and showed the third highest efficacy regarding β -arrestin activation (3.34: β -arr1: $E_{max} = 0.25$; β -arr2: $E_{max} = 0.22$) (Table 3.2). The S0223-labeled aminothiazole **3.39** also displayed a high G protein efficacy (GTP γ S: $E_{max} = 0.93$; mGs: $E_{max} = 0.81$) and the second highest efficacy of all carbamoylguanidines regarding β -arrestin2 activation ($E_{max} = 0.44$) (Table 3.2). Finally, also the thiadiazole containing ligand **3.35** acted as a strong partial agonist in the G protein pathway (mGs: $E_{max} = 0.90$) and showed the highest efficacy in the β -arrestin2 recruitment assay among the tested compounds ($E_{max} = 0.61$, Table 3.2). In the β -arrestin1 assay **3.35** and **3.39** showed similarly high efficacies (**3.35**: $E_{max} = 0.55$; **3.39**: $E_{max} = 0.57$) (cf. Table 3.2). These results are in agreement with the literature, where imidazoles and thiadiazoles were reported to possess no or only a low G protein bias.^{3, 43}

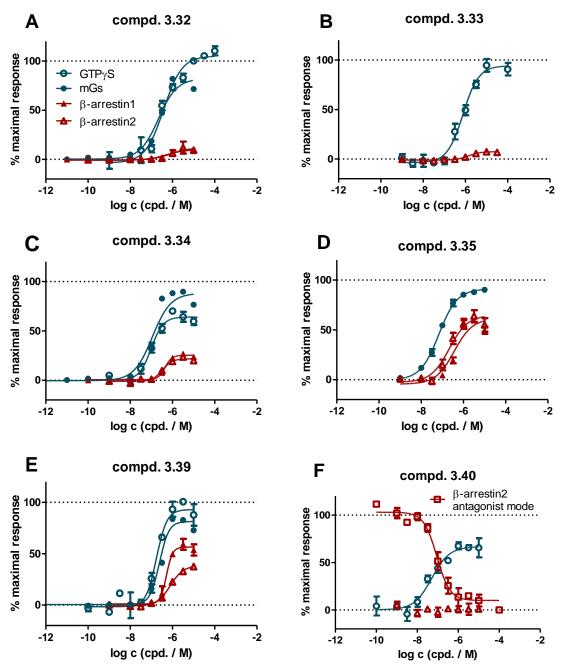

In order to statistically examine these observed efficacy differences, a bias analysis⁶⁰ for selected ligands **3.32-3.35** and **3.39** using the data obtained from [³⁵S]GTP γ S binding, mini-G protein recruitment and β -arrestin2 recruitment assays was carried out. As expected, the greatest efficacy bias factors (eBF's) were calculated for **3.32** ([³⁵S]GTP γ S: eBF = 8.35; mGs: eBF = 6.35) and **3.33** ([³⁵S]GTP γ S: eBF = 10.16), which were proved to be significant by using one-way ANOVA and Dunnett's post-tests (for more details see App2.7 Bias Analysis in the Appendix 2). In contrast, for **3.34-3.35** and **3.39** only low / not significant eBF's were observed.

Table 3.2. Functional Data of Compounds 3.1 and 3.23-3.40 Determined at the hH ₂ R in
the [³⁵ S]GTPγS Binding ^a or Mini-G Protein ^b Recruitment and β-Arrestin1/2 Recruitment ^c
Assays

	[³⁵ S]GT	ΡγS binding ^a		β -arrestin2 recruitment ^c					
compd.	pEC ₅₀	E _{max}	Ν	pEC ₅₀	E _{max}	Ν			
3.1	5.85 ± 0.06^{40}	1.00^{40}	-	5.42 ± 0.02^{3}	1.00^{3}	3			
	$6.94 \pm 0.06^{57,b}$	$1.00^{57,b}$	9						
3.23	7.19 ± 0.12	0.87 ± 0.07	4	6.55 ± 0.22^{7}	0.28 ± 0.01^{7}	3			
	$7.53 \pm 0.03^{7,b}$	$0.83 \pm 0.02^{7,b}$	3						
3.24	7.58 ± 0.15	0.78 ± 0.05	4	6.87 ± 0.12^{7}	0.23 ± 0.01^7	4			
	$7.84 \pm 0.04^{7,b}$	$0.84 \pm 0.03^{7,b}$	3						
3.25	7.75 ± 0.13	0.85 ± 0.04	4	6.91 ± 0.10^{7}	0.15 ± 0.01^{7}	4			
	$7.83 \pm 0.12^{7,b}$	$0.85 \pm 0.02^{7,b}$	3						
3.26	6.88 ± 0.06	0.86 ± 0.07	3	6.70 ± 0.14^{43}	0.87 ± 0.04^{43}	5			
	$8.13 \pm 0.05^{43,b}$	$0.93 \pm 0.01^{43,b}$	3						
3.27	7.47 ± 0.10	0.94 ± 0.04	4	7.02 ± 0.12	0.51 ± 0.06	5			
	8.12 ± 0.02^b	0.90 ± 0.02^b	3						
3.28	$6.92\pm0.33*$	$0.78\pm0.09\texttt{*}$	2	5.60 ± 0.05	0.27 ± 0.09	3			
3.29	7.16 ± 0.20	0.47 ± 0.05	3	5.86 ± 0.12	0.16 ± 0.05	3 3 3 3 3			
3.30	7.05 ± 0.14	0.49 ± 0.10	3	5.91 ± 0.20	0.07 ± 0.02	3			
3.31	6.25 ± 0.17	0.94 ± 0.07	4	5.41 ± 0.13	0.41 ± 0.04	3			
3.32 [†]	6.47 ± 0.09	1.04 ± 0.04	6	5.96 ± 0.11	0.12 ± 0.04	3			
	6.89 ± 0.02^b	0.77 ± 0.01^b	3						
3.33	6.17 ± 0.14	0.93 ± 0.05	5	5.84 ± 0.27	0.09 ± 0.02	3			
3.34 [†]	6.92 ± 0.10	0.66 ± 0.02	4	6.47 ± 0.05	0.22 ± 0.02	3			
	6.94 ± 0.03^{b}	0.83 ± 0.01^{b}	3						
3.35 †	7.19 ± 0.06^b	0.90 ± 0.01^{b}	4	6.59 ± 0.08	0.61 ± 0.03	5			
3.36	6.69 ± 0.08	0.72 ± 0.09	3	6.17 ± 0.13	0.36 ± 0.06	3			
3.37	5.89 ± 0.16	0.74 ± 0.07	4	6.12 ± 0.24	0.06 ± 0.02	3 3 3			
3.38	5.62 ± 0.18	0.77 ± 0.08	3	5.69 ± 0.06	0.10 ± 0.02				
3.39 [†]	6.73 ± 0.07	1.01 ± 0.06	4	6.30 ± 0.14	0.44 ± 0.07	5			
	6.72 ± 0.10^{b}	0.81 ± 0.02^b	3		-				
3.40	7.14 ± 0.15	0.70 ± 0.07	4	$(7.61 \pm 0.19)^{\ddagger}$	0.01 ± 0.02^{I}	5			

^{*a*}[³⁵S]GTP γ S binding assay on membranes of Sf9 cells expressing the hH₂R-G_{saS} fusion protein.^{40, 50, 56} ^bMini-G protein recruitment assay on HEK293T NlucN-mGs/hH₂R-NlucC cells.^{57 c}β-Arrestin2 recruitment assay on HEK293T-ARRB2-hH₂R cells.^{3, 37-38} Data shown are geometric mean values \pm SEM (N \geq 3) or SE (N = 2, indicated with *) of N independent experiments each performed in triplicate. pEC₅₀: negative logarithm of the agonistic potency (EC₅₀). E_{max}: efficacy. The E_{max} value of **3.1** was set to 1.00 and the E_{max} of buffer control was set to 0.00 and values of the other compounds were referenced to these values. [‡]The p K_b value of **3.40** was determined in the antagonist mode versus **3.1** (c = 8 μ M); pK_b = -logK_b. The K_b value was calculated from the corresponding IC₅₀ values (obtained by the GraphPad Prims 5 software) by using the Cheng-Prusoff equation⁶¹. ${}^{1}E_{max}$ at $c = 10 \ \mu M$. n.d.: not determined. [†]Selected compounds were also investigated in the β-arrestin1 recruitment assay on HEK293T-ARRB1-hH₂R cells: **3.1**: $pEC_{50} = 5.26 \pm 0.03^3$, $E_{max} = 1.00^3$, N = 5; **3.32**: $pEC_{50} = 6.21 \pm 0.06$, $E_{max} = 0.09 \pm 0.01, \ N = 3; \ \textbf{3.34}: \ pEC_{50} = 6.37 \pm 0.05, \ E_{max} = 0.25 \pm 0.01, \ N = 3; \ \textbf{3.35}:$ $pEC_{50} = 6.47 \pm 0.05$, $E_{max} = 0.55 \pm 0.04$, N = 3; **3.39**: $pEC_{50} = 6.29 \pm 0.15$, $E_{max} = 0.57 \pm 0.06$, N = 3. The obtained results were in good agreement with the results from the β -arrestin2 recruitment assay.

3 Synthesis and Pharmacological Characterization of Fluorescent Histamine H₂ Receptor Carbamoylguanidine-Type Agonists

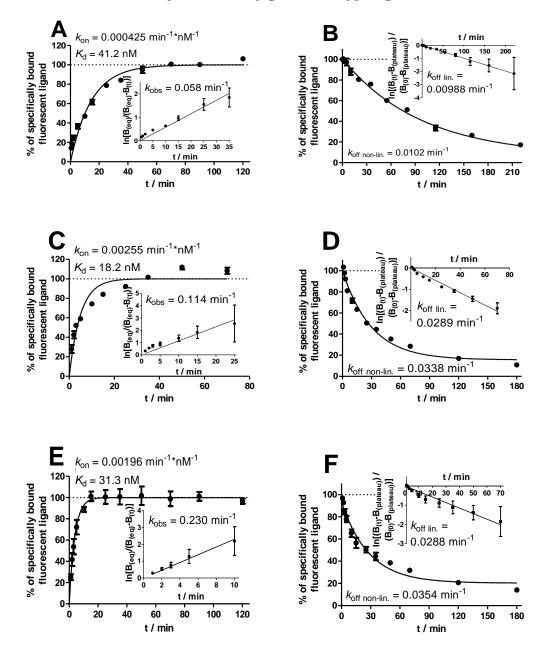


Figure 3.5. Concentration-response curves of S0436-labeled ligands **3.32-3.35** (**A-D**), S0223labeled ligand **3.39** (**E**) and BODIPY 630/650 X-labeled ligand **3.40** (**F**) investigated in the $[^{35}S]$ GTPγS binding assay (\circ empty circles), mini-G protein recruitment assay (\bullet filled circles), β-arrestin1 recruitment assay (\blacktriangle filled triangles, agonist mode), or β-arrestin2 recruitment assay (\triangle empty triangles, agonist mode; \Box empty squares, antagonist mode). The responses in all four assays were normalized to the maximal effects induced by histamine (**3.1**) (100% value) and buffer control (0% value). Data are mean values ± SEM of 3-6 independent experiments, each performed in triplicate. Data were analyzed by nonlinear regression and best fitted to sigmoidal concentration-response curves.

3.2.5 Association and Dissociation Kinetics of 3.32, 3.34 and 3.35 at the hH₂R Expressed in HEK293T-qs5-HA Cells Studied by Flow Cytometry

Besides investigating their affinities, potencies, and efficacies, it is also of importance to elucidate the binding kinetics of new potential molecular tools, providing information on how much time is needed until an equilibrium between receptors and ligands has been established. This is especially important when performing competition binding experiments. Therefore, we performed kinetic experiments with S0436-labeled ligands **3.32** (thiazole, c = 120 nM), **3.34** (imidazole, c = 60 nM) and **3.35** (thiadiazole, c = 100 nM), which showed the most promising properties (e.g. low non-specific binding and high K_d) using flow cytometry. Association of **3.32** and **3.34** was complete after 60 min, while **3.35** showed a faster association, which was already complete after 20 min. Dissociation in the presence of 300-fold excess of famotidine was monophasic with k_{off} values between 0.017-0.063 min⁻¹, with **3.32** showing the slowest dissociation from the receptor. After 180 min, the residual specific binding was approximately 10-20%. For all experiments, the kinetically derived dissociation constants were calculated [using two methods: non-linear regression (Table 3.3A) and linear transformation (Table 3.3B)] which were in good agreement with the pK_d values determined by saturation binding.

3 Synthesis and Pharmacological Characterization of Fluorescent Histamine H₂ Receptor Carbamoylguanidine-Type Agonists

Figure S3.6. Specific binding kinetics of **3.32** (**A**, **B**), **3.34** (**C**, **D**), **3.35** (**E**, **F**) determined at live HEK293T-hH₂R-qs5-HA cells by flow cytometry. Association was induced by the addition of **3.32**, **3.34** or **3.35** [final concentration: 120 nM (**3.32**), 60 nM (**3.34**) or 100 nM (**3.35**)]. Dissociation was initiated after 90 min preincubation by the addition of famotidine (300-fold excess). **A**, **C** and **E**: Inserts: Transformation of the depicted association kinetics using $\ln[B_{(eq)}/(B_{(eq)}-B_{(t)})]$ versus time. **B**, **E** and **F**: Inserts: Transformation of the depicted kinetics using $\ln[(B_{(t)}-B_{(plateau)})/(B_{(0)}-B_{(plateau)})]$ versus time. The results shown are representatives of at least three experiments, each performed in duplicate. Data are presented as means \pm errors. Errors were calculated according to the Gaussian law of error propagation.

Table 3.3. hH ₂ R Binding Characteristics of 3.32, 3.34 and 3.35 Determined by Flow
Cytometry Using Suspended HEK293T-hH2R-qs5-HA Cells at Room Temperature [(A)
Non-Linear Regression and (B) Linear Transformation]

Α	$k_{ m off}{}^a$	Ν	$k_{ m on}{}^b$	Ν	$k_{\rm off} / k_{\rm on}^c$	pK_d (kin.) ^d	pK_d (sat.)
compd.	[min ⁻¹]		[min ⁻¹ * nM ⁻¹]		<i>K</i> _d (kin.) [nM]		
3.32	0.0175 ±	5	0.00045 ±	3	34, 43, 41	7.41 ± 0.02	7.15 ± 0.05
	0.0030		0.000023				
3.34	$0.0461 \pm$	3	$0.0029 \pm$	3	18, 32, 15	7.69 ± 0.06	7.25 ± 0.02
	0.0084		0.00058				
3.35	$0.0634 \pm$	3	$0.0022 \pm$	5	31, 119, 26, 27,	7.47 ± 0.13	6.95 ± 0.09
	0.0142		0.00044		18		

^{*a*}Dissociation rate constant derived from nonlinear regression (GraphPad Prism 5, equation: dissociation – one phase exponential decay). ^{*b*}Association rate constant derived from nonlinear regression (GraphPad Prism 5, equation: association kinetics – one conc. of hot); calculated from k_{obs} , k_{off} and the fluorescent ligand concentration. ^{*c*}Kinetically determined dissociation constant (K_d (kin.) = k_{off} / k_{on}). ^{*d*}Negative decadic logarithm of the kinetically determined dissociation constant (pK_d (kin.) = $-\log(K_d$ (kin.))). Data represent means ± SEM from N independent experiments (each performed in duplicate).

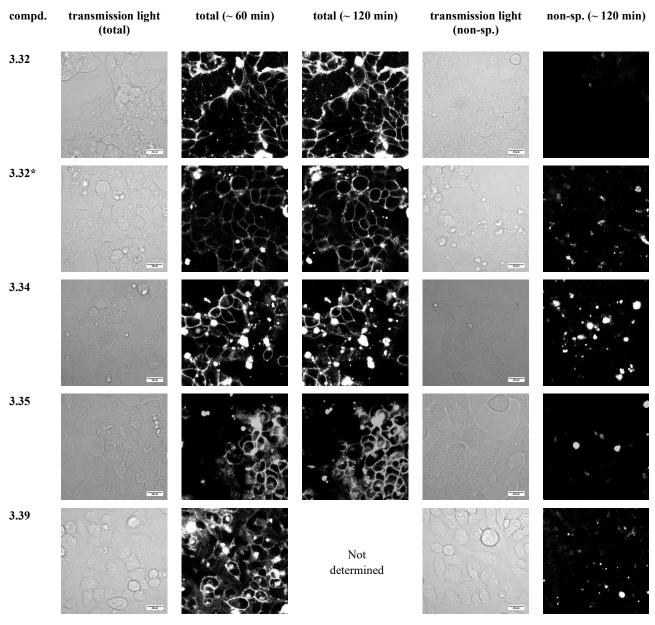
В	$k_{ m off}{}^a$	N	$k_{ m obs}{}^b$	Ν	$k_{ m on}{}^c$	$k_{ m off} / k_{ m on}^{d}$	pK_d (kin.) ^d
compd.	[min ⁻¹]		[min ⁻¹]			<i>K</i> _d (kin.) [nM]	
3.32	0.0159 ±	5	$0.00607 \pm$	3	$0.0003737 \pm$	43 ± 6	7.37
	0.0019		0.00123		0.0000189		
3.34	$0.0357 \pm$	3	$0.1528 \pm$	3	$0.0019522 \pm$	18 ± 6	7.74
	0.0051		0.0328		0.0005532		
3.35	$0.0458 \pm$	3	$0.1671 \pm$	5	$0.0012132 \pm$	38 ± 10	7.42
	0.0084		0.0207		0.0002234		

^{*a*}Dissociation rate constant derived from linearization ln[(B_t-B_{plateau})/(B₀-B_{plateau})] versus time (GraphPad Prism 5, linear regression; $k_{off} = slope^{-1}$). ^{*b*}Observed association rate constant derived from linearization ln[B_{eq}/(B_{eq}-B_t)] versus time (GraphPad Prism 5, linear regression; $k_{obs} = slope$). ^{*c*}Association rate constant calculated from k_{obs} , k_{off} and the fluorescent ligand concentration [$k_{on} = (k_{obs}/ - k_{off}) / c$ (fluorescent ligand)]. ^{*d*}Kinetically determined dissociation constant (K_d (kin.) = k_{off}/k_{on}). ^{*d*}Negative decadic logarithm of the kinetically determined dissociation constant (pK_d (kin.) = $-log(K_d$ (kin.)). ^{*a,b*}Data represent means ± SEM from N independent experiments (each performed in duplicate). ^{*c,d*}Data represent result ± propagated error.

3.2.6 Investigation of Unlabeled H₂R Standard Ligands in Competition Binding Experiments Using Flow Cytometry

To show the versatility of possible uses of the presented fluorescent agonists (**3.32**, **3.34** or **3.35**), equilibrium competition binding experiments with different reported H₂R agonists [**3.1** and amthamine (amt)] and antagonists/inverse agonists [famotidine (fam), ranitidine (rani), tiotidine (tio) and BMY 25368], using a fixed concentration of **3.32** (c = 60 nM), **3.34** (c = 60 nM) or **3.35** (c = 100 nM) and various concentrations of the respective ligands were performed. The results are summarized in Table 3.4. The fluorescence ligands **3.32**, **3.34** and **3.35** were completely displaceable by the employed standard H₂R ligands. The calculated pK_i values were comparable - independent from the fluorescent ligand (**3.32**, **3.34** or **3.35**) used. Moreover, the pK_i values were in good agreement with radioligand binding data at the same cell line using [³H]UR-DE257⁵³ as radioligand and with radioligand binding data published in the literature. (Table 3.4).^{7, 38, 53, 62} Therefore, our new agonistic fluorescence ligands **3.32**, **3.34** or **3.35** can be used as well as the published antagonistic fluorescence ligands or radioligands to determine the pK_i values of unlabeled ligands.³⁷⁻³⁸

Table 3.4. Comparison of the Determined Binding Data (p*K*_i) of Unlabeled H₂R Standard Ligands, Using 3.32, 3.34 or 3.35 as Fluorescent Ligands or [³H]UR-DE257⁵³ as Radioligand at Live HEK293T-hH₂R-qs5-HA Cells, to Reference Data^{*a*}


compd.	3.32	Ν	3.34	Ν	3.35	Ν	[³ H]UR-	N	Reference ^d
	pK _i ^c		pK ^c		pK _i ^c		$DE257^b$		
							pK _i		
fam	$7.29 \pm$	3	$7.37 \pm$	3	$7.28 \pm$	3	$7.67 \pm$	3	6.87-7.94 ¹⁻³
	0.04		0.04		0.02		0.01		
rani	$6.93 \pm$	3	$7.18 \pm$	3	$6.81 \pm$	3	$6.66 \pm$	3	5.76-7.19 ¹⁻³
	0.06		0.13		0.14		0.06		
tio	$7.38 \pm$	2	$7.55 \pm$	3	$7.44 \pm$	3	$7.69 \pm$	3	$6.57 - 7.77^{1-2}$
	0.01		0.08		0.10		0.02		
BMY	$7.17 \pm$	3	n.d.	-	n.d.	-	n.d.	-	7.72 ¹ ; p K_b : 7.36 ^e
25368	0.06								
amt	$4.75 \pm$	3	n.d.	-	n.d.	-	n.d.	-	4.70-6.82 ^{1-2, 4}
	0.12								
3.1	$3.89 \pm$	4	$4.29 \pm$	3	$3.89 \pm$	4	$3.90 \pm$	3	4.00-6.27 ^{1-2, 4}
	0.19		0.12		0.09		0.05		

^{*a*}Determined by competition binding with **3.32** (c = 60 nM, $K_d = 71$ nM), **3.34** (c = 60 nM, $K_d = 56$ nM), or **3.35** (c = 100 nM, $K_d = 112$ nM) at live HEK293T-hH₂R-qs5-HA⁶³ cells. ^{*b*}Determined by competition binding with [³H]UR-DE257⁵³ (c = 25 nM, $K_d = 40$ nM) at live HEK293T-hH₂R-qs5-HA⁶³ cells. Data were analyzed by nonlinear regression and were best fitted to four-parameter sigmoidal concentration-response curves. ^{*c*}The p K_i values represent mean values ± SEM from N independent experiments each performed in duplicated or triplicate. ^{*d*}Data from competition binding experiments (p K_i) with ¹[¹²⁵I]iodaminopotentidine⁶², ^{2,4}[³H]UR-DE257^{53, 64} or ³UR-KAT478³⁸, performed on ¹membrane preparations of CHO cells, expressing the hH₂R⁶², ²membrane preparations of Sf9 insect cells, expressing the hH₂R-G_{sas} fusion protein⁵³, ³HEK293T CRE-Luc cells, stably expressing the hH₂R⁶⁴. ^{*e*}Data from steady-state [³²P]GTPase assay, performed on membrane preparations of Sf9 insect cells, expressing the hH₂R-G_{sas} fusion protein.⁶⁴

3.2.7 Cellular Localization of 3.32, 3.34-3.35 and 3.39-3.40 at Human H₂R Expressing Cells Determined by Confocal Microscopy

The S0436-labeled ligands **3.32-3.35** turned out as the most promising compounds [high affinity (Table 3.1) and low non-specific binding (Figure 3.3A-D)] for the investigation of the β -arrestin-mediated internalization by confocal microscopy. However, **3.33** was excluded from the studies in favor of **3.32** because the octyl linker containing compound **3.32** was structurally more similar to **3.34** and **3.35**. In addition, also the S0223-labeled ligand **3.39** and the BODIPY 630/650 X-labeled ligand **3.40** were employed in the confocal microscopy experiments, despite their high level of non-specific binding observed in the flow cytometric saturation binding

experiments (cf. Figure 3.3E and Figure 2.34C in the Appendix 2). The reason for this is that **3.39** had the second highest efficacy in the β -arrestin2 recruitment assay and **3.40** showed an "extreme bias" (cf. Table 3.2 and Figure 3.5F). For this series of experiments, we used live HEK293T-hH2R-qs5-HA63 and/or HEK293T-SP-FLAG-hH2R K33 cells. Non-specific binding was determined in the presence of the non-fluorescent H₂R antagonist famotidine (300-fold excess). Fluorescence ligand 3.32, which showed very weak partial agonistic activity in β arrestin recruitment assays (β -arr1: E_{max} = 0.09, β -arr2: E_{max} = 0.12) also failed to promote receptor internalization (fluorescence is mainly localized at the cell membrane, cf. Figure 3.7), despite the fact that it was able to activate the Gs protein-mediated signaling ([³⁵S]GTP_yS assay and mini-Gs protein recruitment assay, Table 3.2). However, hH₂R internalization could be observed (fluorescence is localized at the cell membrane and inside the cell, cf. Figure 3.7) if the fluorescence ligands 3.34 (imidazole, S0436), 3.35 (thiadiazole, S0436) or 3.39 (thiazole, S0223), which displayed higher efficacy regarding β -arrestin recruitment (3.34: β -arr1: $E_{max} = 0.25$, β -arr2: $E_{max} = 0.22$; **3.35**: β -arr1: $E_{max} = 0.55$, β -arr2: $E_{max} = 0.61$; **3.39**: β -arr1: $E_{max} = 0.57$, β -arr2: $E_{max} = 0.44$) were applied (cf. Table 3.2). Surprisingly, a significant intracellular fluorescence could be observed in the case of the "extremely biased" ligand 3.40, which was identified as an antagonist in the β -arrestin2 recruitment assay. However, this internalization presumably occurred in a receptor-independent manner since it could be also observed in the presence of the H₂R selective competitor famotidine (selected frames from confocal microscopy experiments with **3.40** are shown in the Figure App2.40, see Appendix 2). We concluded that H₂R specific internalization is only observed if the respective ligand is able to at least moderately recruit β -arrestin (E_{max} ≥ 0.22). Therefore, the binding of **3.32** was examined in HEK293T-SP-FLAG-hH2R K33 cells as well, which should prove that the lack of internalization is not due to the chimeric Gqs protein expressed in the HEK293T-hH2R-qs5-HA cells.⁶³ Also in this case, we could not observe any internalization within 120 min (cf. Figure 3.7, **3.32***). Our results are in agreement with the observations published by Fernandez et al.⁵ who proposed the involvement of β -arrestin2 in the internalization of the H₂R.⁵

Figure 3.7. Selected frames from confocal microscopy experiments with **3.32** (180 nM), **3.34** (200 nM), **3.35** (300 nM) and **3.39** (100 nM) ($c \approx 2.5 \times K_i$, determined using Sf9 cell membranes expressing the hH₂R-G_{5αS}) at HEK293T-hH₂R-qs5-HA cells or *HEK293T-SP-FLAG-hH₂R K33 cells. Cells were incubated with the respective fluorescent agonist at room temperature. Non-specific binding was determined in the presence of famotidine (300-fold excess). In case of **3.32**: after 120 min the fluorescence is mainly localized at the cell membrane suggesting that no receptor internalization had occurred. In case of **3.34-3.35** and **3.39**: after 60 or 120 min the fluorescence is localized at the cell suggesting that receptor internalization had occurred. All images were acquired with a Zeiss Axiovert 200 M microscope, equipped with an LSM laser scanner. Settings: Plan-Apochromat 63x/1.4 Oil objective; scale bar [transmitted light (total/non-sp.)]: 20 µm. For more time-resolved frames see in the Appendix 2 (Figures App2.35-App2.39).

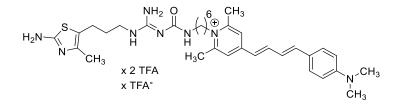
3.3 Summary and Conclusion

In summary, we synthesized several novel histamine H₂ receptor ligands containing different heterocycles, linker lengths, and fluorophores (indolinium, pyridinium, BODIPY). The compounds exhibited weak to high H₂ receptor affinity with pK_i values ranging from <6 to 7.7. The octyl linker led to the highest affinity within a series of the same fluorophore (only investigated for the thiazoles). Interestingly, only fluorescent ligands containing an electroneutral fluorophore (S0436), such as **3.32-3.35**, bound in a saturable manner with low non-specific binding in the range of the respective K_d value. By contrast, compounds containing fluorophores with a net charge (Py-5, S0223 or S0387) or BODIPY 630/650 X, showed high non-specific binding. Investigation of the ligands in a $[^{35}S]GTP\gamma S$ binding assay using membranes of Sf9 insect cells or in a split luciferase mini-G protein recruitment assay (HEK293T cells) and in a split luciferase β -arrestin1/2 recruitment assays (HEK293T cells) revealed a difference in activating the G protein and β -arrestin pathways. Some of the molecules (e.g. 3.32) showed a significant biased efficacy: whereas the fluorescent H₂R ligands acted as strong partial or full agonists with respect to G protein activation, most of them were only weak to moderate partial agonists regarding β -arrestin recruitment. This was consistent with the results from investigations at HEK293T-hH2R-gs5-HA or HEK293T-SP-FLAG-hH2R K33 cells by confocal microscopy, since no H_2R specific endocytosis was observed for 3.32 (β -arr1: $E_{max} = 0.09$, β -arr2: $E_{max} = 0.12$). However, three ligands (3.34, 3.35 and 3.39) showed partial agonism ($E_{max} \ge 0.22$) in the β -arrestin recruitment assay and induced internalization of the H₂ receptor which was confirmed by confocal microscopy. These results visually support that βarrestin plays a critical role for H₂ receptor internalization.

The development of these fluorescent probes will help to understand the cellular regulation of the H_2R (e.g. trafficking) and enables studies on the co-localization of the receptor-ligand complex with various proteins involved in the internalization process throughout further studies.

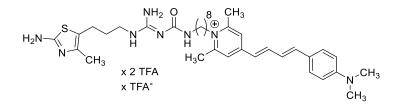
3.4 Experimental Section

3.4.1 General Experimental Section

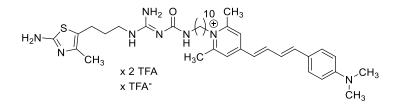

Unless otherwise stated, chemicals and solvents were from commercial suppliers and were used as received. All solvents were of analytical grade or were distilled prior to use. Reactions were monitored by thin layer chromatography (TLC) on silica gel 60 F254 aluminium sheets (Merck, Darmstadt, Germany), and spots were visualized with UV light at 254 nm and/or

ninhydrin stain. Flash-chromatography was performed on an Intelli Flash-310 flash chromatography workstation from Varian Deutschland GmbH (Darmstadt, Germany) with SuperFlash columns (Si50) from Agilent Technologies. NMR spectra were recorded on a Bruker Avance 600 (¹H: 600 MHz, ¹³C: 151 MHz) (Bruker, Karlsruhe, Germany) with deuterated solvents from Deutero (Kastellaun, Germany). All chemical shifts are reported in δscale as parts per million (ppm, multiplicity, coupling constant (J), number of protons) relative to the solvent residual peaks as the internal standard.⁶⁵⁻⁶⁶ The spectra were analyzed by first order and coupling constants are given in Hertz (Hz). Abbreviations for the multiplicities of the signals are s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), dd (double of doublets), br s (broad singlet). HRMS was performed on an Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, CA, USA) using an ESI source. Preparative HPLC was performed with a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps, a K-2001 detector and the column was a Phenomenex Kinetex (250 x 21 mm, 5 µm) (Phenomenex, Aschaffenburg, Germany). As mobile phase mixtures of MeCN and 0.1% aqueous TFA were used. The UV detection was carried out at 220 nm. Lyophilisation was carried out using a ScanVac CoolSafe 4-15L freeze dryer from Labogene (LMS, Brigachtal, Germany), equipped with a RZ 6 rotary vane vacuum pump (Vacuubrand, Wertheim, Germany). Analytical HPLC experiments were performed on a 1100 HPLC system from Agilent Technologies equipped with Instant Pilot controller, a G1312A binary pump, a G1329A ALS autosampler, a G1379A vacuum degasser, a G1316A column compartment and a G1315B DAD detector. The column was a Phenomenex Kinetex XB-C18 column (250 x 4.6 mm, 5 µm) (Phenomenex, Aschaffenburg, Germany), tempered at 30 °C. As mobile phase, mixtures of MeCN/aqueous TFA were used. The following linear gradient was applied: MeCN/TFA (0.05 %) (v/v) 0 min: 10:90, 30 min: 90:10, 33 min: 95:5, 40 min: 95:5; flow rate: 0.8 mL/min, $t_0 = 3.21$ min. The injection volume was 50 µL. Absorbance was detected at 220 nm. Compound concentration was between 50-200 µM.

3.4.2 Synthesis and Analytical Data

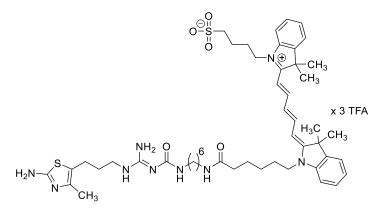

General Procedure for the Synthesis of Fluorescent Ligands 3.28-3.40. The reactions were carried out in a 1.5 mL micro tube (eppendorf, Hamburg, Germany). The amine precursor (3.23-3.27, 1.1-2 equiv) was dissolved in 30 μ L DMF and NEt₃ (6-15 equiv) was added. The fluorescence dye (Py-5⁴⁴, S0436-, S0387-, S0223- or BODIPY 630/650 X-NHS ester, 1 equiv) was dissolved in 20 μ L DMF and this solution was added to the mixture, the cup was rinsed

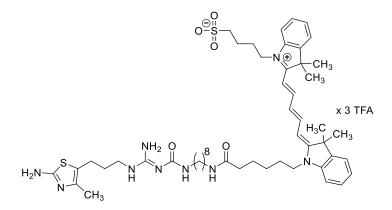
two times with DMF (20 μ L and 10 μ L). The rinsing solution was also added to the reaction mixture. After stirring for 2 h at rt, the reaction was stopped by addition of 10% aqueous TFA (20 μ L). The crude product was purified by preparative HPLC.


1-(6-(3-((Z)-Amino((3-(2-amino-4-methylthiazol-5-

yl)propyl)amino)methylene)ureido)hexyl)-4-((1*E*,3*E*)-4-(4-(dimethylamino)phenyl)buta-1,3-dien-1-yl)-2,6-dimethylpyridin-1-ium trifluoroacetate dihydrotrifluoroacetate (3.28). The title compound was prepared from 3.23 (2.4 mg, 3.44 µmol, 1.6 equiv), Py-5 (0.79 mg, 2.15 µmol, 1 equiv) and NEt₃ (1.79 µL, 12.9 µmol, 6 equiv) according to the general procedure yielding 3.28 as a red solid (1.67 mg, 81%). RP-HPLC: 97% ($t_R = 13.1 \text{ min}, k = 3.08$). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.77 (br s, 1H), 8.90 (br s, 1H), 8.44 (br s, 2H), 7.84 (s, 2H), 7.69 (dd, J = 15.3, 10.4 Hz, 1H), 7.50 (br s, 1H), 7.49-7.43 (m, 2H), 7.04-6.91 (m, 2H), 6.75-6.70 (m, 2H), 6.58 (d, J = 15.3 Hz, 1H), 4.32-4.27 (m, 2H), 3.22 (q, J = 6.7 Hz, 2H), 3.10 (q, J = 6.7 Hz, 2H), 2.97 (s, 6H), 2.75 (s, 6H), 2.55 (t, J = 7.5 Hz, 2H), 2.02 (s, 3H), 1.79-1.67 (m, 4H), 1.51-1.39 (m, 4H), 1.38-1.31 (m, 2H), 1 H signal is missing. HRMS: calcd. for C₃₄H₅₀N₈OS²⁺: 309.1909; found: 309.1922. MF: C₃₄H₄₉N₈OS⁺ x C₆H₂F₉O₆⁻. MW: (617.88 + 341.06).

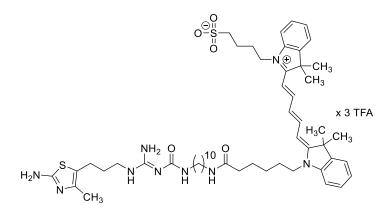
1-(8-(3-((Z)-Amino((3-(2-amino-4-methylthiazol-5-


yl)propyl)amino)methylene)ureido)octyl)-4-((1*E*,3*E*)-4-(4-(dimethylamino)phenyl)buta-1,3-dien-1-yl)-2,6-dimethylpyridin-1-ium trifluoroacetate dihydrotrifluoroacetate (3.29). The title compound was prepared from 3.24 (7.72 mg, 10.64 µmol, 1 equiv), Py-5 (3.91 mg, 10.65 µmol, 1 equiv) and NEt₃ (11.06 µL, 79.79 µmol, 7.5 equiv) according to the general procedure yielding 3.29 as a red solid (3.60 mg, 34%). RP-HPLC: 99% ($t_R = 13.3$ min, k = 3.14). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.89 (br s, 1H), 8.93 (br s, 1H), 8.46 (br s, 2H), 7.85 (s, 2H), 7.70 (dd, J = 15.3, 10.4 Hz, 1H), 7.54-7.43 (m, 3H), 7.01-6.93 (m, 2H), 6.73 (d, J = 9.8 Hz, 2H), 6.59 (d, J = 15.7 Hz, 1H), 4.30 (t, J = 8.0 Hz, 2H), 3.23 (q, J = 6.9 Hz, 2H, overlapped with water signal), 3.09 (q, J = 6.1 Hz, 2H), 2.97 (s, 6H), 2.75 (s, 6H), 2.58 (t, J = 7.5 Hz, 2H, overlapped with DMSO signal), 2.07 (s, 3H), 1.81-1.65 (m, 4H), 1.51-1.20 (m, 10H), 1 H signal is missing. HRMS: calcd. for C₃₆H₅₄N₈OS²⁺: 323.2065; found: 323.2072. MF: C₃₆H₅₃N₈OS⁺ x C₆H₂F₉O₆⁻. MW: (645.93 + 341.06).

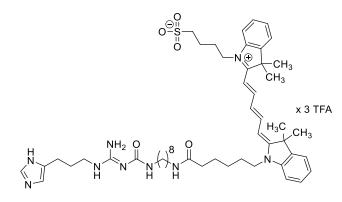

1-(10-(3-((Z)-Amino((3-(2-amino-4-methylthiazol-5-

yl)propyl)amino)methylene)ureido)decyl)-4-((1*E*,3*E*)-4-(4-(dimethylamino)phenyl)buta-1,3-dien-1-yl)-2,6-dimethylpyridin-1-ium trifluoroacetate dihydrotrifluoroacetate (3.30). The title compound was prepared from 3.25 (2.64 mg, 3.50 µmol, 1 equiv), Py-5 (1.29 mg, 3.51 µmol, 1 equiv) and NEt₃ (3.6 µL, 25.97 µmol, 7.4 equiv) according to the general procedure yielding 3.30 as a red solid (1.87 mg, 53%). RP-HPLC: 98% (t_R = 14.6 min, k = 3.55). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.53 (br s, 1H), 8.88 (br s, 1H), 8.42 (br s, 2H), 7.84 (s, 2H), 7.69 (dd, J = 15.8, 9.6 Hz, 1H), 7.42 (d, J = 9.6 Hz, 3H), 7.04-6.91 (m, 2H), 6.72 (d, J = 8.7 Hz, 2H), 2.58 (d, J = 14.7 Hz, 1H), 4.29 (t, J = 8.9 Hz, 2H), 3.24-3.19 (m, 2H, overlapped with water signal), 3.11-3.04 (m, 2H), 2.97 (s, 6H), 2.75 (s, 6H), 2.57-2.53 (m, 2H, 0.57) (m, 1H signal is missing. HRMS: calcd. for C₃₈H₅₇N₈OS⁺: 673.4371; found: 673.4370. MF: C₃₈H₅₇N₈OS⁺ x C₆H₂F₉O₆⁻. MW: (673.99 + 341.06). 3 Synthesis and Pharmacological Characterization of Fluorescent Histamine H₂

Receptor Carbamoylguanidine-Type Agonists



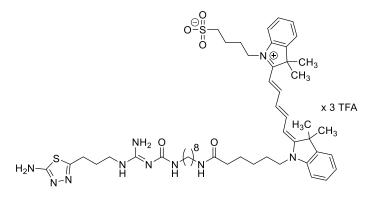
2-((1*E***,3***E***)-5-((***E***)-1-(1-(2-Amino-4-methylthiazol-5-yl)-5-imino-7,16-dioxo-4,6,8,15tetraazahenicosan-21-yl)-3,3-dimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3dimethyl-1-(4-sulfobutyl)-3***H***-indol-1-ium trihydrotrifluoroacetate (3.31). The title compound was prepared from 3.23 (2.4 mg, 3.44 µmol, 1.73 equiv), S0436 NHS ester (1.4 mg, 1.99 µmol, 1 equiv) and NEt₃ (2.6 µL, 18.8 µmol, 9.4 equiv) according to the general procedure yielding 3.31** as a blue solid (0.63 mg, 25%). RP-HPLC: 98% ($t_R = 17.0 \text{ min}, k = 4.30$). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.02 (s, 1H), 8.80 (s, 1H), 8.39 (s, 2H), 8.32 (t, *J* = 13.1 Hz, 2H), 7.73 (t, *J* = 5.7 Hz, 1H), 7.63-7.58 (m, 2H), 7.43-7.35 (m, 4H), 7.28 (s, 1H), 7.26-7.21 (m, 2H), 6.57 (t, *J* = 12.4 Hz, 1H), 6.34 (d, *J* = 13.8 Hz, 1H), 6.26 (d, *J* = 13.8 Hz, 1H), 5.39 (s, 1H), 4.13-4.01 (m, 4H), 3.20 (q, *J* = 6.7 Hz, 2H, overlapped with water signal), 3.07 (q, *J* = 6.5 Hz, 2H), 2.99 (q, *J* = 6.6 Hz, 2H), 2.71-2.63 (m, 2H), 2.55 (t, *J* = 7.5 Hz, 2H), 2.10-1.97 (m, 5H), 1.83-1.74 (m, 4H), 1.72-1.68 (m, 2H), 1.67-1.66 (m, 12H), 1.54 (q, *J* = 7.3 Hz, 2H), 1.43-1.30 (m, 6H), 1.26-1.20 (m, 6H). HRMS: calcd. for C₅₀H₇₂N₉O₅S₂⁺: 942.5092; found: 942.5099. MF: C₅₀H₇₁N₉O₅S₂ x C₆H₃F₉O₆. MW: (943.30 + 342.07).


4-(2-((1*E*,3*E*)-5-((*E*)-1-(1-(2-Amino-4-methylthiazol-5-yl)-5-imino-7,18-dioxo-4,6,8,17-tetraazatricosan-23-yl)-3,3-dimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-

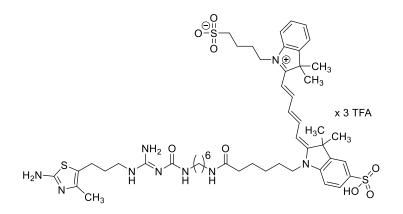
3*H*-indol-1-ium-1-vl)butane-1-sulfonate trihvdrotrifluoroacetate (3.32). The title compound was prepared from 3.24 (2.3 mg, 3.17 µmol, 2 equiv), S0436 NHS ester (1.11 mg, 1.58 µmol, 1 equiv) and NEt₃ (2.42 µL, 17.46 µmol, 11 equiv) according to the general procedure yielding 3.32 as a blue solid (0.67 mg, 33%). RP-HPLC: 97% ($t_R = 17.6$ min. k = 4.48). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.00 (br s, 1H), 8.82 (br s, 1H), 8.39 (br s, 2H), 8.32 (t, J = 13.2 Hz, 2H), 7.71 (t, J = 5.4 Hz, 1H), 7.60 (d, J = 7.6 Hz, 2H), 7.42-7.36 (m, 4H), 7.30 (br s, 1H), 7.25-7.21 (m, 2H), 6.57 (t, J = 12.5 Hz, 1H), 6.33 (d, J = 13.9 Hz, 1H), 6.27 (d, J = 13.6 Hz, 1H), 4.13-4.03 (m, 4H), 3.22 (q, J = 6.5 Hz, 2H, overlapped with water signal), 3.06 (q, J = 6.1 Hz, 2H), 2.98 (q, J = 6.1 Hz, 2H), 2.65 (t, J = 6.8 Hz, 2H), 2.57 (t, J = 7.6 Hz, 2H), 2.57 (t, J = 7.62H), 2.08-2.00 (m, 5H), 1.81-1.73 (m, 4H), 1.72-1.69 (m, 2H), 1.68-1.66 (m, 12H), 1.53 (quint, J = 7.2 Hz, 2H), 1.43-1.29 (m, 6H), 1.27-1.17 (m, 10H), 1 H signal is missing. HRMS: calcd. for $C_{52}H_{76}N_9O_5S_2^+$: 970.5405; found: 970.5392; calcd. for $C_{52}H_{77}N_9O_5S_2^{2+}$: 485.7739; found: 485.7748. MF: $C_{52}H_{75}N_9O_5S_2 \ge C_6H_3F_9O_6$. MW: (970.35 + 342.07).

4-(2-((1*E*,3*E*)-5-((*E*)-1-(1-(2-Amino-4-methylthiazol-5-yl)-5-imino-7,20-dioxo-4,6,8,19tetraazapentacosan-25-yl)-3,3-dimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3dimethyl-3*H*-indol-1-ium-1-yl)butane-1-sulfonate trihydrotrifluoroacetate (3.33). The title compound was prepared from 3.25 (2.21 mg, 2.93 μmol, 2 equiv), S0436 NHS ester (1.03 mg, 1.47 μmol, 1 equiv) and NEt₃ (2.23 μL, 16.09 μmol, 11 equiv) according to the general procedure yielding 3.33 as a blue solid (1.00 mg, 51%). RP-HPLC: 99% (t_R = 18.7 min, k = 4.83). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.93 (br s, 1H), 8.84 (br s, 1H), 8.40 (br s, 2H), 8.32 (t, *J* = 13.0 Hz, 2H), 7.71 (t, *J* = 5.5 Hz, 1H), 7.62-7.58 (m, 2H), 7.41-7.35 (m, 4H), 7.31 (br s, 1H), 7.26-7.21 (m, 2H), 6.57 (t, *J* = 12.4 Hz, 1H), 6.33 (d, *J* = 14.1 Hz, 1H), 6.27 (d, *J* = 13.8 Hz, 1H), 4.12-4.04 (m, 4H), 3.22 (q, *J* = 6.1 Hz, 2H, overlapped with water signal), 3.05 (q, *J* = 6.1 Hz, 2H), 2.97 (q, *J* = 6.1 Hz, 2H), 2.64 (t, *J* = 6.8 Hz, 2H), 2.58 (t, *J* = 7.4 Hz,

2H), 2.06 (s, 3H), 2.03 (t, J = 7.4 Hz, 2H), 1.82-1.74 (m, 4H), 1.72-1.69 (m, 2H), 1.68-1.63 (m, 12H), 1.53 (quint, J = 7.5 Hz, 2H), 1.41-1.29 (m, 6H), 1.26-1.15 (m, 14H), 1 H signal is missing. HRMS: calcd. for C₅₄H₈₀N₉O₅S⁺: 998.5718; found: 998.5714; calcd. for C₅₄H₈₁N₉O₅S²⁺: 499.7896; found: 499.7909. MF: C₅₄H₇₉N₉O₅S₂ x C₆H₃F₉O₆. MW: (998.40+ 342.07).

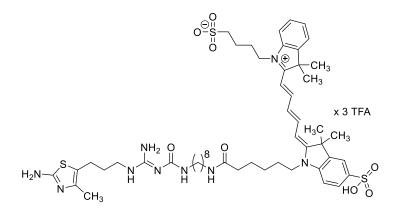


4-(2-((1*E*,3*E*)-5-((*E*)-1-(1-(1*H*-Imidazol-5-yl)-5-imino-7,18-dioxo-4,6,8,17-

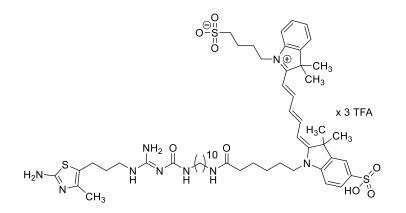

tetraazatricosan-23-yl)-3,3-dimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-3*H*-indol-1-ium-1-yl)butane-1-sulfonate trihydrotrifluoroacetate (3.34). The title compound was prepared from 3.26 (8.87 mg, 13.05 µmol, 2.35 equiv), S0436 NHS ester (3.9 mg, 5.56 µmol, 1 equiv) and NEt₃ (8.47 µL, 61.10 µmol, 11 equiv) according to the general procedure yielding 3.34 as a blue solid (1.28 mg, 18%). RP-HPLC: 98% ($t_{\rm R}$ = 17.6 min, k = 4.48). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.03 (br s, 1H), 8.97-8.86 (m, 2H), 8.43-8.27 (m, 4H), 7.72 (t, J = 5.1 Hz, 1H), 7.63-7.58 (m, 2H), 7.45-7.29 (m, 6H), 7.26-7.21 (m, 2H), 6.57 (t, *J* = 12.6 Hz, 1H), 6.33 (d, *J* = 13.4 Hz, 1H), 6.27 (d, *J* = 14.2 Hz, 1H), 4.12-4.02 (m, 4H), 3.27 (quint, J = 6.6 Hz, 2H, overlapped with water signal), 3.06 (q, J = 5.1 Hz, 2H), 2.98 (q, J = 5.9 Hz, 2H), 2.69-2.63 (m, 4H), 2.03 (t, J = 7.5 Hz, 2H), 1.84 (quint, J = 7.5 Hz, 2H), 1.81-1.72 (m, 4H), 1.67 (s, 12H), 1.53 (quint, J = 7.5 Hz, 2H), 1.43-1.29 (m, 6H), 1.26-1.17 (m, for $C_{51}H_{75}N_9O_5S^{2+}$: 462.7800; 10H). HRMS: calcd. found: 462.7826. MF: C₅₁H₇₃N₉O₅S x C₆H₃F₉O₆. MW: (924.26 + 342.07).

3 Synthesis and Pharmacological Characterization of Fluorescent Histamine H₂

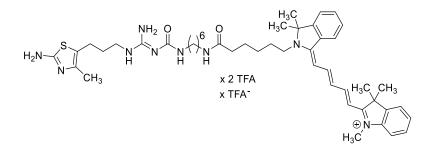
Receptor Carbamoylguanidine-Type Agonists

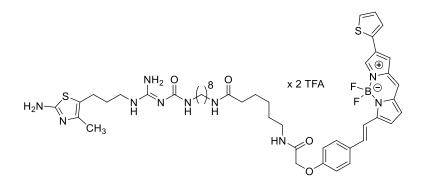


4-(2-((1E,3E)-5-((E)-1-(1-(5-Amino-1,3,4-thiadiazol-2-yl)-5-imino-7,18-dioxo-4,6,8,17tetraazatricosan-23-yl)-3,3-dimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-(3.35). 3H-indol-1-ium-1-yl)butane-1-sulfonate trihydrotrifluoroacetate The title compound was prepared from 3.27 (4.4 mg, 6.17 µmol, 1.1 equiv), S0436 NHS ester (3.9 mg, 5.56 µmol, 1 equiv) and NEt₃ (8.5 µL, 61.3 µmol, 11 equiv) according to the general procedure yielding **3.35** as a blue solid (1.92 mg, 26%). RP-HPLC: 97% ($t_{\rm R} = 18.6 \text{ min}, k = 4.79$). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.92 (br s, 1H), 8.85 (br s, 1H), 8.41 (br s, 2H), 8.32 (t, J = 13.1 Hz, 2H), 7.71 (t, J = 5.6 Hz, 1H), 7.60 (d, J = 7.4 Hz, 2H), 7.45-7.34 (m, 4H), 7.31 (br s, 1H, is incorrectly integrated as 0.01 by the software), 7.26-7.20 (m, 2H), 7.19-7.05 (m, 2H), 6.57 (t, J = 12.4 Hz, 1H), 6.34 (d, J = 13.8 Hz, 1H), 6.27 (d, J = 13.7 Hz, 1H), 4.14-4.03 (m, 4H), 3.27 (q, J = 6.7 Hz, 2H), 3.06 (q, J = 6.5 Hz, 2H), 2.98 (q, J = 6.6 Hz, 2H), 2.83 (t, J = 7.6 Hz, 2H), 2.63 (t, J = 6.8 Hz, 2H), 2.03 (t, J = 7.2 Hz, 2H), 1.87 (quint, J = 7.3 Hz, 2H), 1.82-1.72 (m, 4H), 1.67 (d, J = 1.7 Hz, 12H), 1.53 (quint, J = 7.4 Hz, 2H), 1.43-1.30 (m, 6H), 1.28-1.15 (m, 10H). HRMS: calcd. for C₅₀H₇₄N₁₀O₅S₂²⁺: 479.2637; found: 479.2652. MF: $C_{50}H_{72}N_{10}O_5S_2 \ge C_6H_3F_9O_6$. MW: (957.31 + 342.07).



4-(2-((1*E*,3*E*)-5-((*E*)-1-((*Z*)-5-Amino-1-(2-amino-4-methylthiazol-5-yl)-7,16-dioxo-4,6,8,15-tetraazahenicos-5-en-21-yl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)penta-1,3-


dien-1-yl)-3,3-dimethyl-3*H*-indol-1-ium-1-yl)butane-1-sulfonate trihydrotrifluoroacetate (3.36). The title compound was prepared from 3.23 (2.3 mg, 3.30 µmol, 2 equiv), S0387 NHS ester (1.3 mg, 1.62 µmol, 1 equiv) and NEt₃ (2.5 µL, 18.04 µmol, 11 equiv) according to the general procedure yielding 3.36 as a blue solid (0.6 mg, 27%). RP-HPLC: 95% ($t_R = 13.1$ min, k = 3.08). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.03 (br s, 1H), 8.97-8.86 (m, 1H), 8.43-8.27 (m, 4H), 7.81 (d, J = 1.6 Hz, 1H), 7.72 (t, J = 5.1 Hz, 1H), 7.63-7.58 (m, 2H), 7.45-7.37 (m, 2H), 7.33-7.23 (m, 3H), 6.57 (t, J = 12.6 Hz, 1H), 6.38 (d, J = 13.4 Hz, 1H), 6.24 (d, J = 14.2 Hz, 1H), 4.12-4.02 (m, 4H), 3.20 (q, J = 6.6 Hz, 2H, overlapped with water signal), 3.06 (q, J = 5.1 Hz, 2H), 2.98 (q, J = 5.9 Hz, 2H), 2.63 (t, J = 6.9 Hz, 2H), 2.55 (t, J = 7.2 Hz, 2H), 2.05-1.98 (m, 5H), 1.81-1.72 (m, 6H), 1.68 (s, 6H), 1.67 (s, 6H), 1.53 (quint, J = 7.5 Hz, 2H), 1.43-1.37 (m, 2H), 1.32-1.28 (m, 4H), 1.29-1.17 (m, 6H), 2 H signals are missing. HRMS: calcd. for C₅₀H₇₂N₉O₈S₃⁺: 1022.4660; found: 1022.4671; calcd. for C₅₀H₇₃N₉O₈S₃²⁺: 511.7367; found: 511.7376. MF: C₅₀H₇₁N₉O₈S₃ x C₆H₃F₉O₆. MW: (1022.35 + 342.07).


4-(2-((1*E*,3*E*)-5-((*E*)-1-((*Z*)-5-Amino-1-(2-amino-4-methylthiazol-5-yl)-7,18-dioxo-4,6,8,17-tetraazatricos-5-en-23-yl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-3*H*-indol-1-ium-1-yl)butane-1-sulfonate trihydrotrifluoroacetate (3.37). The title compound was prepared from 3.24 (7.48 mg, 10.31 µmol, 1.2 equiv), S0387 NHS ester (6.91 mg, 8.60 µmol, 1 equiv) and NEt₃ (13.11 µL, 94.58 µmol, 11 equiv) according to the general procedure yielding 3.37 as a blue solid (3.00 mg, 25%). RP-HPLC: 99% ($t_R = 14.6 \text{ min}, k = 3.55$). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.99 (br s, 1H), 8.83 (br s, 1H), 8.52-8.25 (m, 4H), 7.82 (d, J = 1.5 Hz, 1H), 7.72 (t, J = 5.6 Hz, 1H), 7.67-7.58 (m, 2H), 7.47-7.37 (m, 2H), 7.36-7.21 (m, 3H), 6.59 (t, J = 12.3 Hz, 1H), 6.39 (d, J = 13.9 Hz, 1H), 6.26 (d, J = 13.9 Hz, 1H), 4.12 (t, J = 7.3 Hz, 2H), 4.06 (t, J = 6.5 Hz, 2H), 3.23 (q, J = 6.0 Hz, 2H, overlapped with water signal), 3.07 (q, J = 5.9 Hz, 2H), 2.99 (q, J = 6.2 Hz, 2H), 2.62 (t, J = 6.9 Hz, 2H, overlapped with DMSO signal), 2.58 (t, J = 6.9 Hz, 2H), 2.08-2.00 (m, 5H), 1.85-1.62 (m, 18H), 1.54 (quint, J = 7.2 Hz, 2H), 1.43-1.16 (m, 16H), 2 H signals are missing. HRMS: calcd. for C₅₂H₇₆N₉O₈S₃⁺: 1050.4973; found: 1050.4978; calcd. for C₅₂H₇₇N₉O₈S₃²⁺: 525.7523; found: 525.7532. MF: C₅₂H₇₅N₉O₈S₃ x C₆H₃F₉O₆. MW: (1050.41 + 342.07).

4-(2-((1*E*,3*E*)-5-((*E*)-1-((*Z*)-5-Amino-1-(2-amino-4-methylthiazol-5-yl)-7,20-dioxo-4,6,8,19-tetraazapentacos-5-en-25-yl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)penta-1,3dien-1-yl)-3,3-dimethyl-3*H*-indol-1-ium-1-yl)butane-1-sulfonate trihydrotrifluoroacetate (3.38). The title compound was prepared from 3.25 (2.70 mg, 3.58 μmol, 1.5 equiv), S0387 NHS ester (1.91 mg, 2.38 μmol, 1 equiv) and NEt₃ (3.61 μL, 26.04 μmol, 11 equiv) according to the general procedure yielding 3.38 as a blue solid (1.74 mg, 51%). RP-HPLC: 92% (t_R = 15.6 min, k = 3.86). ¹H-NMR (600 MHz, DMSO-d₆) 9.89 (br s, 1H), 8.84 (br s, 1H), 8.48-8.27 (m, 4H), 7.82 (d, *J* = 1.3 Hz, 1H), 7.72 (t, *J* = 6.0 Hz, 1H), 7.67-7.59 (m, 2H), 7.47-7.36 (m, 2H), 7.36-7.22 (m, 3H), 6.58 (t, *J* = 12.5 Hz, 1H), 6.38 (d, *J* = 13.8 Hz, 1H), 6.27 (d, *J* = 14.2 Hz, 1H), 4.12 (t, *J* = 7.2 Hz, 2H), 4.06 (t, *J* = 7.3 Hz, 2H), 3.23 (q, *J* = 6.5 Hz, 2H, overlapped with water signal), 3.06 (q, *J* = 5.7 Hz, 2H), 2.98 (q, *J* = 6.0 Hz, 2H), 2.66-2.60 (m, 2H), 2.59-2.55 (t, *J* = 7.2 Hz, 2H), 2.10-1.99 (m, 5H), 1.84-1.62 (m, 18H), 1.54 (quint, *J* = 7.2 Hz, 2H), 1.44-1.29 (m, 6H), 1.28-1.16 (m, 14H), 2 H signals are missing. HRMS: calcd. for C₅₄H₈₀N₉O₈S₃⁺: 1078.5286, found: 1078.5281, calcd. for C₅₄H₈₁N₉O₈S₃²⁺: 539.7680, found: 539.7684. MF: C₅₄H₇₉N₉O₈S₃ x C₆H₃F₉O₆. MW: (1078.46 + 342.07).

2-((1*E***,3***E***)-5-((***E***)-2-(1-(2-Amino-4-methylthiazol-5-yl)-5-imino-7,16-dioxo-4,6,8,15tetraazahenicosan-21-yl)-3,3-dimethylisoindolin-1-ylidene)penta-1,3-dien-1-yl)-1,3,3trimethyl-3***H***-indol-1-ium trifluoroacetate dihydrotrifluoroacetate (3.39). The title compound was prepared from 3.23 (2.32 mg, 3.33 µmol, 1.8 equiv), S0223 NHS ester (1.2 mg, 1.82 µmol, 1 equiv) and NEt₃ (3.6 µL, 25.97 µmol, 14 equiv) according to the general procedure yielding 3.39 as a blue solid (1.12 mg, 53%). RP-HPLC: 98% (t_R = 17.5 min, k = 4.45). ¹H-NMR (600 MHz, DMSO-d₆) \delta 9.95 (br s, 1H), 8.93 (br s, 1H), 8.45 (br s, 2H), 8.32 (t,** *J* **= 12.3 Hz, 2H), 7.70 (t,** *J* **= 5.7 Hz, 1H), 7.60 (d,** *J* **= 6.9 Hz, 2H), 7.46 (br s, 1H), 7.42-7.34 (m, 4H), 7.27-7.21 (m, 2H), 6.55 (t,** *J* **= 12.3 Hz, 1H), 6.27 (q,** *J* **= 13.6 Hz, 2H), 4.07 (t,** *J* **= 6.6 Hz, 2H), 3.59 (s, 3H, overlapped with water signal), 3.21 (q,** *J* **= 6.9 Hz, 2H), overlapped with water signal), 3.06 (q,** *J* **= 6.9 Hz, 2H), 2.97 (q,** *J* **= 6.9 Hz, 2H), 2.56 (t,** *J* **= 8.2 Hz, 2H, overlapped with DMSO signal), 2.07-2.00 (m, 5H), 1.73-1.68 (m, 2H), 1.67-1.66 (m, 12H), 1.52 (quint,** *J* **= 6.9 Hz, 2H), 1.43-1.37 (m, 2H), 1.36-1.29 (m, 4H), 1.28-1.17 (m, 6H), 1 H signal is missing. HRMS: calcd. for C₄₇H₆₇N₉O₂S²⁺: 410.7564; found: 410.7567. MF: C₄₇H₆₆N₉O₂S⁺ x C₆H₂F₉O₆⁻. MW: (821.17 + 341.06).**

N-(8-(3-((*E*)-Amino((3-(2-amino-4-methylthiazol-5yl)propyl)amino)methylene)ureido)octyl)-6-(2-(4-((*E*)-2-(5,5-difluoro-8-(thiophen-2-yl)-5*H*-5l4,6l4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3yl)vinyl)phenoxy)acetamido)hexanamide dihydrotrifluoroacetate (3.40). The title compound was prepared from 3.24 (3.8 mg, 5.24 µmol, 1.7 equiv), BODIPY 630/650-X NHS ester (2.1 mg, 3.17 µmol, 1 equiv) and NEt₃ (4.7 µL, 33.91 µmol, 11 equiv) according to the general procedure yielding 3.40 as a blue solid (3.27 mg, 89%). RP-HPLC: 96% ($t_{\rm R}$ = 20.2 min, k = 5.29). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.88-9.72 (m, 1H), 8.92 (br s, 1H), 8.43 (br s, 2H), 8.11 (t, J = 6.0 Hz, 1H), 8.03 (dd, J = 3.8, 0.9 Hz, 1H), 7.82 (dd, J = 5.1, 0.9 Hz, 1H), 7.73 (d, J = 16.4 Hz, 1H), 7.69 (t, J = 5.6 Hz, 1H), 7.62-7.58 (m, 3H), 7.44 (t, J = 5.4 Hz, 1H), 7.41-7.36 (m, 2H), 7.30-7.25 (m, 3H), 7.06 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 4.0 Hz, 1H), 4.52 (s, 2H), 3.21 (q, J = 6.3 Hz, 2H), 3.11 (q, J = 6.3 Hz, 2H), 3.06 (q, J = 6.0 Hz, 2H), 2.99 (q, J = 6.0 Hz, 2H), 2.56 (t, J = 7.6 Hz, 2H), 2.07-1.99 (m, 5H), 1.70 (quint, J = 7.2 Hz, 2H), 1.50-1.38 (m, 6H), 1.34 (quint, J = 6.6 Hz, 2H), 1.25-1.18 (m, 10H), 2 H signals are missing. HRMS: $C_{46}H_{61}BF_2N_{10}O_4S_2^+$: 929.4302; 929.4302. calcd. for found: MF: $C_{46}H_{60}BF_2N_{10}O_4S_2 \ge C_4H_2F_6O_4$. MW: (929.98 + 228.05).

3.4.3 Cell Culture

Cells were cultured in 25 or 75 cm² flasks (Sarstedt, Nümbrecht, Germany) in a humidified atmosphere (95% air, 5% CO2) at 37 °C. HEK293T-ARRB1-hH₂R³ cells, HEK293T-ARRB2-hH₂R³ cells, HEK293T NlucN-mGs/hH₂R-NlucC⁵⁷ cells and HEK293T-hH₂R-qs5-HA⁶³ cells were cultured as described previously. HEK293T-SP-FLAG-hH₂R clone (K) 33 cells were cultured in Dulbecco's modified Eagle's medium (DMEM, Sigma-Aldrich, Taufkirchen, Germany) containing 4.5 g/L glucose, 3.7 g/L NaHCO₃, and 110 mg/L sodium pyruvate and supplemented with 0.584 g/L L-glutamine (Sigma-Aldrich), 10% fetal calf serum (FCS, Biochrom, Berlin, Germany) and 600 µg/mL G418 (Biochrom). The used cell lines were regularly monitored for mycoplasma infection using the Venor GeM Mycoplasma Detection Kit (Minerva Biolabs, Berlin, Germany).

3.4.4 Generation of the HEK293T-SP-FLAG-hH₂R K33 Cell Line

Molecular cloning of the hH₂R receptor as well as the generation of the stable cell line were performed according to the procedure described for the HEK293T-SP-FLAG3-hH₃R K16 cell line.⁴⁵ Briefly, the pIRESneo3-SP-FLAG-hH₂R construct was generated using the pIRESneo3-SP-FLAG-hH₄R⁴⁵ vector as template. The hH₄R sequence was replaced by the hH₂R sequence using the PCR Protocol for Phusion Hot Start Flex DNA Polymerase (New England Biolabs GmbH, Frankfurt/Main, Germany) and the NEBuilder HiFi DNA Assembly Reaction Protocol (New England Biolabs GmbH, Frankfurt/Main, Germany). The quality of the vector was

controlled by sequencing (Eurofins Genomics GmbH, Ebersberg, Germany). Subsequently, HEK293T cells were transfected with the pIRESneo3-SP-FLAG-hH₂R vector, and individual clones were selected as previously described for the HEK293T-SP-FLAG-hH₄R K3 cell line⁴⁵. Based on the highest receptor expression (determining using radioligand saturation binding experiments, data not shown), the HEK293T-SP-FLAG-hH₂R K33 cell line was selected for further experiments.

3.4.5 Radioligand Binding Experiments Using Sf9 Membranes

Competition binding experiments were performed using membrane preparations of Sf9 insect cells expressing the hH₁R + RGS4¹⁰, hH₂R-G_{sas} fusion protein⁵⁶, hH₃R + G_{ai2} + G_{β1γ2}⁶⁷ or the $hH_4R + G_{\alpha i2} + G_{\beta 1\gamma 2}^{68}$. General procedures for the generation of recombinant baculoviruses, culture of Sf9 cells and membrane preparations have been described elsewhere.⁶⁹ The competition binding experiments were performed as previously described in detail^{40, 50} with one minor modification: PBS (8 g NaCl, 0.2 g KCl, 1.0 g Na₂HPO₄ x 2 H₂O, 0.15 g NaH₂PO₄ x H₂O, 0.1 g KH₂PO₄ in 1 L Millipore H₂O; pH 7.4; 4 °C) was used as washing buffer while harvesting instead of the previously used binding buffer^{40, 50}. [³H]mepyramine (specific activity: 20.0 or 87 Ci/mmol) was from Hartmann analytics (Braunschweig, Germany) or Novandi Chemistry AB (Södertälje, Sweden), ^{[3}H]histamine (specific activity: 25.0 Ci/mmol) and $[{}^{3}H]N^{\alpha}$ -methylhistamine (specific activity: 85.3 Ci/mmol) were from Hartmann analytics (Braunschweig, Germany). [³H]UR-DE257⁵³ (specific activity: 63.0 Ci/mmol) and [³H]UR-PI294⁵⁴ (specific activity: 41.8 Ci/mmol) were synthesized and characterized in our laboratories. In case of fluorescent ligands, 96-well Primaria plates (CORNING, NY, USA) were used because of the strong adsorption of the fluorescent ligands to the surface of the typically employed PP plates during the incubation period.

3.4.6 Radioligand Binding Experiments Using HEK293T-hH2R-qs5-HA Cells

For the assay, approx. 2×10^6 cells were seeded into two 75 cm² culture flasks (Sarstedt, Nümbrecht, Germany) and grown to approx. 80% confluency (3-4 days) before the radioligand binding assays. The cells were detached by trypsin treatment (0.05% trypsin, 0.02% EDTA in PBS w/o Ca²⁺ and w/o Mg²⁺, Biochrom, Berlin, Germany) and centrifuged for 5 min at 500 x g. The pellet was resuspended in Leibovitz's L-15 medium (Life Technologies Corporation, Grand Island, NY, USA) containing 1% FCS and 10 mM HEPES (Serva, Heidelberg, Germany). The cells were counted in a hemocytometer and finally adjusted to a density of

 1×10^6 cells/mL. For saturation binding experiments, 10μ L of a famotidine (Alfa Aesar) solution (10 mM in Leibovitz's L-15 medium containing 10 mM HEPES) or 10 µL of a Leibovitz's L-15 medium were pipeted per cavity of a 96-well plate (PP microplates 96 well, Greiner Bio-One, Frickenhausen, Germany) either for the determination of non-specific or total binding, respectively. 10 µL of the respective [³H]UR-DE257⁵³ solution (10-fold concentrated feed-solutions compared to final concentration in Leibovitz's L-15 medium containing 10 mM HEPES). Samples were completed by addition of 80 µL of the cell suspension per well. Samples were shaken at 400 rpm for 60 min prior harvesting. Cell-bound radioactivity was transferred to a glass fibre filter GF/C pretreated with PEI (0.3 % (v/v), PEI was from Sigma) by the 96-well harvester (Brandel Inc., Unterföhring, Germany). The filter was washed four times with PBS (4 °C). Filter discs with the cell-bound radioactivity were transferred into a second 96-well plate (96-well flexible PET microplate, Perkin Elmer, Rodgau, Germany). 200 µL of scintilator liquid (Rotiszint eco plus, Roth, Karlsruh, Germany) per well were added and the samples were shaken at 400 rpm for 6-10 h prior to measurement using MicroBeta21450 PlateCounter (Perkin Elmer, Rodgau, Germany). Data were transferred to GraphPad Prism 5. Specific binding was determined by substraction of non-specific binding from the respective values of total binding. Specific binding data (dpm) were plotted against the free radioligand concentration (nM) and analyzed by a two-parameter equation describing hyperbolic binding to obtain K_d and B_{max} values. The free radioligand concentration is the difference between the amount of specifically bound [3H]UR-DE25753 (nM) and total radioligand concentration. Non-specific binding was fitted by a linear regression.

In competition binding experiments, the concentration of [3 H]UR-DE257⁵³ was 25 nM, while increasing concentrations of unlabeled ligands (famotidine (fam), ranitidine (rani, Alfa Aesar), tiotidine (tio) or histamine (his, TCI)) were applied. The plates were shaken at 400 rpm for 60 min. For the analysis of the data, total binding (dpm) was plotted versus log (concentration competitor) and normalized [100% = bound radioligand (dpm) in the absence of a competitior, 0% = non-specific bound radioligand (dpm) in the presence of 1 mM famotidine]. Applying a four-parameter logistic equation (GraphPad Prism 5), IC₅₀ values were obtained for each individual experiment. The IC₅₀ values were converted to K_i values by applying the Cheng-Prusoff equation.⁶¹ The K_i values were converted to the respective negative logarithms (p K_i values) folowed by the calculation of the mean p K_i .

3.4.7 Flow Cytometric Binding Assays Using Whole HEK293T-hH2R-qs5-HA Cells

The flow cytometric measurements were performed with FACSCalibur cytometer or with FACSCanto II flow cytometer (Becton Dickinson, Heidelberg, Germany), both equipped with an argon laser (488 nm) and a red diode laser (FACSCalibur: 635 nm and FACSCanto II: 633 nm) (settings: FACSCalibur: FSC: E-1, SSC: 290 V, FL-3: 800 V and FL-4:480 V; FACSCanto II: FCS: A, log, 0 V; SSC: A, log, 252 V; ACP: A,H,W, log, 350 V) according to general protocols with minor modifications.^{37-38, 63, 70} All samples were prepared in duplicates and recorded either in channel FL-3 (FACSCalibur, pyridinium dye (Py-5), excitation: 488 nm, emission filter: >679 nm), in FL-4 (FACSCalibur, cyanine dyes (S0436, S0387 and S0223), excitation: 635 nm, emission filter: 661 ± 18 nm) or in APC (FACSCanto II, cyanine dyes or BODIPY 630/650 X, excitation: 633 nm). Data acquisition was complete after 20,000 (FACSCalibur) or 10,000 (FACSCanto II) gated events.

On the day of the experiment, HEK293T-hH₂R-qs5-HA⁶³cells (~ 80% confluence) were trypsinized (0.05% trypsin, 0.02% EDTA in PBS w/o Ca²⁺ and w/o Mg²⁺, Biochrom) and detached with Leibovitz's L-15 medium (Life Technologies Corporation) containing 1% FCS. After centrifugation (500 x g, 5 min), the cell pellet was resuspended in Leibovitz's L-15 medium containing 1% FCS and the concentration was adjusted to 1 x 10⁶ cells/mL.

Saturation binding:^{37-38, 63} The solutions of the dilution series of the tested fluorescent ligands (3.28-3.37 and 3.39-3.40) and famotidine (non-specific binding) were prepared in DMSO/H₂O (1:1, v/v). The incubation was performed in 96-well Primaria plates (CORNING). 200 µL of the cell suspension (1 x 10⁶ cells/mL) were either added to 2 μ L of DMSO/H₂O (1:1, v/v, total binding) or to 2 µL of famotidine (300-fold excess to the fluorescent ligand adjusted to the respective concentration of the fluorescent ligand, non-specific binding). Incubation was started by addition of 2 µL of fluorescent ligand solution of interest in different concentrations (100fold concentrated) starting with the highest concentration of total binding. The 96-well plates were incubated under shaking at rt in the dark for 90 min. The samples were transferred to 5 mL polystyrol FACS tubes (Sarstedt) and immediately measured. For the analysis of data obtained with FACSCalibur the software FlowJo V10 (FlowJo, LLC, Ashland, USA) was used. The data from FACS CANTO II were analyzed with the Software FACS Diva (Becton Dickenson). The geometric means of the signal areas detected in the APC channel (FACSCanto II) and the geometric means of the signal heights detected in channels FL-3 or FL-4 (FACSCalibur) were determined for a subpopulation of the gated H₂R-expressing cells. Specific binding data from flow cytometric saturation binding experiments, obtained by subtracting unspecific binding

data from total binding data, were plotted against the fluorescent ligand concentration, and analyzed by a non-linear regression (one site-specific binding equation; GraphPad Prism 5, GraphPad Software, San Diego, CA) in order to obtain K_d values. K_d values of individual experiments were transformed to pK_d values.

<u>Competition binding</u>:^{37, 63} The dilution series of the respective unlabeled competitors (ranitidine, famotidine, tiotidine, BMY 25368 (self-synthesized), amthamine (Axon Medchem, Groningen, Netherlands) or histamine) were prepared in DMSO/H₂O (1:1, v/v). The incubation was performed in 96-well Primaria plates (CORNING). To 200 μ L of the cell suspension (1 x 10⁶ cells/mL), 2 μ L of competitor (100-fold concentrated) and 2 μ L of fluorescent ligand (concentration in the assay: 60 nM (**3.32** or **3.34**) or 100 nM (**3.35**) were added. The 96-well plates were incubated under shaking for 90 min at rt in the dark. The samples were transferred to 5 mL polystyrol FACS tubes and immediately measured. Total binding data were plotted against the logarithmic concentration of the competitor and normalized [100% = bound fluorescent ligand in the absence of a competitor and 0% = non-specifically bound fluorescent ligand in the presence of famotidine (c = 1 mM). Applying a log(inhibitor) vs. response-variable slope equation (GraphPad Prism 5), pIC₅₀ values were obtained. The corresponding IC₅₀ values were converted to *K*_i values by applying the Cheng-Prusoff equation,⁶¹ followed by calculation of the p*K*_i.

<u>Kinetic studies</u>:³⁷ For the kinetic experiments the HEK293T-hH₂R-qs5-HA cell suspension was prepared as described for the binding assays. 5-mL microtubes (eppendorf) containing **3.32** (120 nM), **3.34** (60 nM) or **3.35** (100 nM) and the cell suspension at a concentration 1 x 10⁶ cells/mL in Leibovitz's L15 medium supplemented with 1% FCS were employed. The mixtures were shaken at 500 rpm (Multi Reax Vortexer, Heidolph Instruments, Schwabach, Germany) at rt. Association experiments were started by the addition of the respective fluorescence ligand (**3.32**, **3.34** or **3.35**) to the cell-containing tube. At each time point 200 µL aliquots were withdrawn from the tube and measured. Non-specific binding was determined for each time point in the presence of famotidine (**3.32**: 36 µM, **3.34**: 18 µM or **3.35**: 30 µM). For the dissociation experiments, the tubes containing **3.32** (120 nM), **3.34** (60 nM) or **3.35** (100 nM) and the cell suspension at a concentration 1 x 10⁶ cells/mL in Leibovitz's L15 medium supplemented with 1% FCS were incubated for 90 min, centrifuged (500 x *g*, 5 min) and the supernatant, containing excess fluorescent ligand was removed. Leibovitz's L-15 medium containing 1% FCS and famotidine (**3.32**: 36 µM, **3.34**: 18 µM, or **3.35**: 30 µM, same volume as removed) was added to the cell pellet, before the cells were resuspended. The

incubation at rt was stopped after different periods of time (0-220 min) by measuring the samples.

The kinetic experiments were analyzed using two methods: non-linear regression and linear transformation (for details see 3.2.5 Association and Dissociation Kinetics of **3.32**, **3.34** and **3.35** at the hH₂R Expressed in HEK293T-qs5-HA Cells Studied by Flow Cytometry in the chapter 3).

3.4.8 Functional Assays

The [35 S]GTP γ S assay was performed on Sf9 membranes expressing the hH₂R-G_{saS} fusion protein as previously described^{40, 50, 56} with one minor modification: PBS (8 g NaCl, 0.2 g KCl, 1.0 g Na₂HPO₄ x 2 H₂O, 0.15 g NaH₂PO₄ x H₂O, 0.1 g KH₂PO₄ in 1 L Millipore H₂O; pH 7.4; 4 °C) was used as washing buffer while harvesting instead of the previously used binding buffer. In case of fluorescent ligands 96-well Primaria plates (CORNING) were used, because of the strong adsorption of the fluorescent ligands to the typically used PP plates during the incubation period. The [35 S]GTP γ S binding assay was evaluated as described in detail by Biselli et al.³⁷

Functional studies in the mini-G protein or β -arrestin2 recruitment assays using HEK293T NlucN-mGs/hH₂R-NlucC⁵⁷-, HEK293T-ARRB2-H₂R^{3, 38}-, HEK293T-ARRB1-H₂R³ cells were performed as previously described.

3.4.9 Confocal Microscopy

Two or three days prior to microscopy, HEK293T-hH₂R-qs5-HA⁶³ or HEK293T-SP-FLAGhH₂R K33 cells (~ 80% confluence) were trypsinized (0.05% trypsin, 0.02% EDTA in PBS w/o Ca²⁺ and w/o Mg²⁺, Biochrom) and detached with Leibovitz's L-15 medium (Life Technologies Corporation) containing 10% FCS. After centrifugation (500 x g, 5 min), the cell pellet was resuspended in Leibovitz's L-15 medium containing 10% FCS and the concentration was adjusted to 0.3 x 10⁶ cells/mL. Appr. 6 x 10⁴ HEK293T-hH₂R-qs5-HA or HEK293T-SP-FLAG-hH₂R K33 cells (corresponds to 200 μ L cell suspension) were seeded per cavity of sterile μ -Slide 8 well plates (ibidi, Munich, Germany). The μ -Slide 8 well plates were previously coated with poly-L-lysin (Sigma-Aldrich, Munich, Germany) according to the manufacturer's instructions. The cells were cultured at 37 °C in a water saturated atmosphere w/o CO₂. On the day of the investigation, the medium was carefully removed and replaced by 120 μ L fresh Leibovitz's L-15 medium supplemented with 1% FCS and 10 mM HEPES (Serva)

per well. Until the measurements were performed, the cells were incubated at 37 °C in water saturated atmosphere w/o CO₂. Subsequently, the sample for the total binding was prepared by addition of 40 μ L of Leibovitz's L-15 medium + 1% FCS + 10 mM HEPES and 40 μ L of fluorescence ligand solution (5-fold concentrated). Dilutions of the ligands were prepared from the 5 mM stock solution in DMSO in Leibovitz's L-15 medium + 1% FCS + 10 mM HEPES. The sample of the non-specific binding was prepared in a different cavity by addition of 40 μ L of fluorescence ligand solution (300-fold higher concentration compared to fluorescence ligand, 5-fold concentrated) and 40 μ L of fluorescence ligand solution (5-fold concentrated). The samples were analyzed in the dark at room temperature with a Carl Zeiss Axiovert 200 M microscope, using a LSM S10 laser scanner combined with the Plan-Apochromat 63x/1.4 Oil (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The settings (exitation wavelenght, laser transmittance, filter and pinhole) used for the detection of **3.32**, **3.34**, **3.35** and **3.39** are shown in Figures App2.35-App2.40 in the Appendix 2. Data from confocal microscopy were processed with the Carl Zeiss Zen 2.1 and the ImageJ 1.52i⁷¹ software.

3.5 References

1. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L., International union of pharmacology. XIII. Classification of histamine receptors. *Pharmacol. Rev.* **1997**, *49*, 253-278.

2. Panula, P.; Chazot, P. L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W. L.; Stark, H.; Thurmond, R. L.; Haas, H. L., International union of basic and clinical pharmacology. XCVIII. Histamine receptors. *Pharmacol. Rev.* **2015**, *67*, 601-655.

3. Felixberger, J. Luciferase Complementation for the Determination of Arrestin Recruitment: Investigation of Histamine and NPY receptors. Ph.D. Thesis. University of Regensburg, 2014.

4. Del Valle, J.; Gantz, I., Novel insights into histamine H₂ receptor biology. *Am. J. Physiol.* **1997**, *273*, 987-996.

5. Fernandez, N.; Monczor, F.; Baldi, A.; Davio, C.; Shayo, C., Histamine H₂ receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H₂ receptor internalization. *Mol. Pharmacol.* **2008**, *74*, 1109-1118.

6. Plank, N. Dimeric Histamine H_2 Receptor Agonists as Molecular Tools and Genetically Engineered HEK293T Cells as an Assay Platform to Unravel Signaling Pathways of hH_1R and hH_2R . Ph. D. Thesis. University of Regensburg, 2015.

7. Tropmann, K.; Höring, C.; Plank, N.; Pockes, S., Discovery of a G protein biased radioligand for the histamine H_2 receptor with reversible binding properties. *J. Med. Chem.* **2020**, *63*, 13090-13102.

8. Hegyesi, H.; Darvas, Z.; Thurmond, R. L.; Falus, A., (2005) Histamine Receptors and Signaling. In: Damjanovich S. (eds) Biophysical Aspects of Transmembrane Signaling. Springer Series in Biophysics, vol 8. Springer, Berlin, Heidelberg.

9. Kühn, B.; Schmid, A.; Harteneck, C.; Gudermann, T.; Schultz, G., G proteins of the G_q family couple the H₂ histamine receptor to phospholipase C. *Mol. Endocrinol.* **1996**, *10*, 1697-1707.

10. Houston, C.; Wenzel-Seifert, K.; Bürckstümmer, T.; Seifert, R., The human histamine H₂-receptor couples more efficiently to Sf9 insect cell G_s -proteins than to insect cell G_q -proteins: limitations of Sf9 cells for the analysis of receptor/ G_q -protein coupling. *J. Neurochem.* **2002**, *80*, 678-696.

11. Okashah, N.; Wan, Q.; Ghosh, S.; Sandhu, M.; Inoue, A.; Vaidehi, N.; Lambert, N. A., Variable G protein determinants of GPCR coupling selectivity. *Proc. Natl. Acad. Sci. U. S. A.* **2019**, *116*, 12054-12059.

12. Seifert, R.; Höer, A.; Schwaner, I.; Buschauer, A., Histamine increases cytosolic Ca^{2+} in HL-60 promyelocytes predominantly via H₂ receptors with an unique agonist/antagonist profile and induces functional differentiation. *Mol. Pharmacol.* **1992**, *42*, 235-241.

13. Wellner-Kienitz, M.-C.; Bender, K.; Meyer, T.; Pott, L., Coupling to G_s and $G_{q/11}$ of histamine H₂ receptors heterologously expressed in adult rat atrial myocytes. *BBA-Mol. Cell Res.* **2003**, *1642*, 67-77.

14. Hill, S. J., Distribution, properties, and functional characteristics of three classes of histamine receptor. *Pharmacol. Rev.* **1990**, *42*, 45-83.

15. Leopoldt, D.; Harteneck, C.; Nürnberg, B., G proteins endogenously expressed in Sf9 cells: interactions with mammalian histamine receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1997**, *356*, 216-224.

16. Rodriguez-Pena, M. S.; Timmerman, H.; Leurs, R., Modulation of histamine H₂ receptor signalling by G-protein-coupled receptor kinase 2 and 3. *Br. J. Pharmacol.* **2000**, *131*, 1707-1715.

17. Fukushima, Y.; Asano, T.; Takata, K.; Funaki, M.; Ogihara, T.; Anai, M.; Tsukuda, K.; Saitoh, T.; Katagiri, H.; Aiharai, M.; Matsuhashi, N.; Oka, Y.; Yazaki, Y.; Sugano, K., Role of the C terminus in histamine H₂ receptor signaling, desensitization, and agonist-induced internalization. *J. Biol. Chem.* **1997**, *272*, 19464-19470.

18. Shayo, C.; Fernandez, N.; Legnazzi, B. L.; Monczor, F.; Mladovan, A.; Baldi, A.; Davio, C., Histamine H₂ receptor desensitization: involvement of a select array of G protein-coupled receptor kinases. *Mol. Pharmacol.* **2001**, *60*, 1049-1056.

19. Prost, A.; Emami, S.; Gespach, C., Desensitization by histamine of H_2 receptormediated adenylate cyclase activation in the human gastric cancer cell line HGT-1. *FEBS Lett.* **1984**, *177*, 227-230.

20. Emami, S.; Gespach, C., Desensitization by histamine of H_2 receptor activity in HGT-1 human cancerous gastric cells. *Agents Actions* **1986**, *18*, 129-133.

21. Schreurs, J.; Dailey, M. O.; Schulman, H., Pharmacological characterization of histamine H₂ receptors on clonal cytolytic T lymphocytes: Evidence for histamine-induced desensitization. *Biochem. Pharmacol.* **1984**, *33*, 3375-3382.

22. Smit, M. J.; Leurs, R.; Shukrula, S. R.; Bast, A.; Timmerman, H., Rapid desensitization of the histamine H₂ receptor on the human monocytic cell line U937. *Eur. J. Pharmacol.* **1994**, 288, 17-25.

23. Fukushima, Y.; Oka, Y.; Katagiri, H.; Saitoh, T.; Asano, T.; Ishihara, H.; Matsuhashi, N.; Kodama, T.; Yazaki, Y.; Sugano, K., Desensitization of canine histamine H₂ receptor expressed in Chinese hamster ovary cells. *Biochem. Biophys. Res. Commun.* **1993**, *190*, 1149-1155.

24. Smit, M. J.; Timmerman, H.; Alewijnse, A. E.; Punin, M.; van den Nieuwenhof, I.; Blauw, J.; van Minnen, J.; Leurs, R., Visualization of agonist-induced internalization of histamine H₂ receptors. *Biochem. Biophys. Res. Commun.* **1995**, *214*, 1138-1145.

25. Claing, A.; Perry, S. J.; Achiriloaie, M.; Walker, J. K.; Albanesi, J. P.; Lefkowitz, R. J.; Premont, R. T., Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. *Proc. Natl. Acad. Sci. U. S. A.* **2000**, *97*, 1119-1124.

26. Xu, A.-J.; Kuramasu, A.; Maeda, K.; Kinoshita, K.; Takayanagi, S.; Fukushima, Y.; Watanabe, T.; Yanagisawa, T.; Sukegawa, J.; Yanai, K., Agonist-induced internalization of histamine H₂ receptor and activiation of extracellular signal-regulated kinases are dynamin-dependent. *J. Neurochem.* **2008**, *107*, 208-217.

27. Claing, A.; Perry, S. J.; Achiriloaie, M.; Walker, J. K.; Albanesi, J. P.; Lefkowitz, R. J.; Premont, R. T., Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 1119-1124.

28. Daly, C. J.; McGrath, J. C., Fluorescent ligands, antibodies, and proteins for the study of receptors. *Pharmacol. Ther.* **2003**, *100*, 101-118.

29. Ciruela, F.; Jacobson, K. A.; Fernandez-Duenas, V., Portraying G protein-coupled receptors with fluorescent ligands *ASC Chem. Biol.* **2014**, *9*, 1918-1928.

30. Stoddart, L. A.; Kilpatrick, L. E.; Briddon, S. J.; Hill, S. J., Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. *Neuropharmacology* **2015**, *98*, 48-57.

31. Sridharan, R.; Zuber, J.; Connelly, S. M.; Mathew, E.; Dumont, M. E., Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. *Biochim. Biophys. Acta Biomembr.* **2014**, *1838*, 15-33.

32. Soave, M.; Briddon, S. J.; Hill, S. J.; Stoddart, L. A., Fluorescent ligands: bringing light to emerging GPCR paradigms. *Br. J. Pharmacol.* **2020**, *177*, 978-991.

33. Stoddart, L. A.; Vernall, A. J.; Briddon, S. J.; Kellam, B.; Hill, S. J., Direct visualisation of internalization of the adenosine A₃ receptor and localization with arrestin3 using a fluorescent agonist. *Neuropharmacology* **2015**, *98*, 68-77.

34. Erdmann, D. Histamine H_2 and H_3 - Receptor Antagonists Synthesis and Characterization of Radiolabelled and Fluorescent Pharmacological Tools. Ph. D. Thesis. University of Regensburg, 2010.

35. Xie, S.-X.; Petrache, G.; Scheiner, E.; Ye, Q.-Z.; Bernhardt, G.; Seifert, R.; Buschauer, A., Synthesis and pharmacological characterization of novel fluorescent histamine H₂-receptor ligands derived from aminopotentidine. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 3886-3890.

36. Li, L.; Kracht, J.; Peng, S.; Bernhardt, G.; Elz, S.; Buschauer, A., Synthesis and pharmacological activity of fluorescent histamine H₂ receptor antagonists related to potentidine. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1717-1720.

37. Biselli, S.; Alencastre, I.; Tropmann, K.; Erdmann, D.; Chen, M.; Littmann, T.; Maia, A. F.; Gomez-Lazaro, M.; Tanaka, M.; Ozawa, T.; Keller, M.; Lamghari, M.; Buschauer, A.; Bernhardt, G., Fluorescent H₂ receptor squaramide-type antagonists: synthesis, characterization and applications. *ACS Med. Chem. Lett.* **2020**, *11*, 1521-1528.

38. Grätz, L.; Tropmann, K.; Bresinsky, M.; Müller, C.; Bernhardt, G.; Pockes, S., NanoBRET binding assay for histamine H₂ receptor ligands using live recombinant HEK293T cells. *Sci. Rep.* **2020**, *10*, *e13288*.

39. Hill, S. J.; Kellam, B.; Briddon, S. J. Fluorescence-based high content screening of compounds for functional response or pharmacological properties. WO 2006/032926, Mar 30, 2006; *Chem. Abstr.* **2006**, *144*, 343538, 2006.

40. Kagermeier, N.; Werner, K.; Keller, M.; Baumeister, P.; Bernhardt, G.; Seifert, R.; Buschauer, A., Dimeric carbamoylguanidine-type histamine H₂ receptor ligands: a new class of potent and selective agonists. *Bioorg. Med. Chem.* **2015**, *23*, 3957-3969.

41. Baker, J. G.; Middleton, R.; Adams, L.; May, L. T.; Briddon, S. J.; Kellam, B.; Hill, S. J., Influence of fluorophore and linker composition on the pharmacology of fluorescent adenosine A1 receptor ligands. *Br. J. Pharmacol.* **2010**, *159*, 772-786.

42. Biselli, S. Synthesis and Pharmacological Characterization of Subtype-Selective Ligands, Including Radio- and Fluorescence Labeled Ligands, for the Histamine H₂ Receptor. Ph.D. Thesis. University of Regensburg, 2020.

43. Tropmann, K.; Forster, L.; Bresinsky, M.; Buschauer, A.; Wittmann, H.-J.; Pockes, S; Strasser, A., Abolishing dopamine D_{2long}/D_3 receptor affinity of subtype-selective carbamoylguanidine-type histamine H₂ receptor agonists. *J. Med. Chem., submitted for publication* **2020**.

44. Höfelschweiger, B. K. The Pyrylium Dyes: A New Class of Biolabels. Synthesis, Spectroscopy, and Application as Labels and in General Protein Assay. Ph.D. Thesis. University Regensburg, 2005.

45. Bartole, E.; Grätz, L.; Littmann, T.; Wifling, D.; Seibel, U.; Buschauer, A.; Bernhardt, G., UR-DEBa242: A Py-5-Labeled Fluorescent Multipurpose Probe for Investigations on the Histamine H₃ and H₄ Receptors. *J. Med. Chem.* **2020**, *63*, 5297-5311.

46. Nienhaus, G. U.; Nienhaus, K., (2017) Fluorescence Labeling. In: Kubitscheck, U. (eds) Fluorescence microscopy: from principles to biological applications, 2nd Edition; Wiley-VCH: Weinheim, Germany.

47. Keller, M.; Mahuroof, S. A.; Hong Yee, V.; Carpenter, J.; Schindler, L.; Littmann, T.; Pegoli, A.; Hübner, H.; Bernhardt, G.; Gmeiner, P.; Holliday, N. D., Fluorescence labeling of neurotensin(8–13) via arginine residues gives molecular tools with high receptor affinity. *ACS Med. Chem. Lett.* **2020**, *11*, 16-22.

48. Kraus, A.; Ghorai, P.; Birnkammer, T.; Schnell, D.; Elz, S.; Seifert, R.; Dove, S.; Bernhardt, G.; Buschauer, A., N^{G} -Acylated aminothiazolylpropylguanidines as potent and selective histamine H₂ receptor agonists. *ChemMedChem* **2009**, *4*, 232-240.

49. Birnkammer, T.; Spickenreither, A.; Brunskole, I.; Lopuch, M.; Kagermeier, N.; Bernhardt, G.; Dove, S.; Seifert, R.; Elz, S.; Buschauer, A., The bivalent ligand approach leads to highly potent and selective acylguanidine-type histamine H₂ receptor agonists. *J. Med. Chem.* **2012**, *55*, 1147-1160.

50. Pockes, S.; Wifling, D.; Keller, M.; Buschauer, A.; Elz, S., Highly potent, stable, and selective dimeric hetarylpropylguanidine-type histamine H₂ receptor agonists. *ACS Omega* **2018**, *3*, 2865-2882.

51. Biselli, S.; Bresinsky, M.; Tropmann, K.; Forster, L.; Honisch, C.; Buschauer, A.; Bernhardt, G.; Pockes, S., Pharmacological characterization of a new series of carbamoylguanidines reveals potent agonism at the H_2R and D_3R . *Eur. J. Med. Chem.* 2021, 214, 113190.

52. Pertz, H. H.; Görnemann, T.; Schurad, B.; Seifert, R.; Straßer, A., Striking differences of action of lisuride stereoisomers at histamine H₁ receptors. *N.-S. Arch. Pharmacol.* **2006**, *374*, 215-222.

53. Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A., [³H]UR-DE257: development of a tritium-labeled squaramide-type selective histamine H₂ receptor antagonist. *ChemMedChem* **2015**, *10*, 83-93.

54. Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A., Tritium-labeled N^1 -[3-(1H-imidazol-4-yl)propyl]- N^2 -propionylguanidine ([³H]UR-PI294), a high-affinity histamine H₃ and H₄ receptor radioligand. *ChemMedChem* **2009**, *4*, 225-231.

55. Bartole, E.; Littmann, T.; Tanaka, M.; Ozawa, T.; Buschauer, A.; Bernhardt, G., [³H]UR-DEBa176: a 2,4-diaminopyrimidine-type radioligand enabling binding studies at the human, mouse, and rat histamine H₄ receptors. *J. Med. Chem.* **2019**, *62*, 8338-8356.

56. Kelley, M. T.; Bürckstürmmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R., Distinct interaction of human and guinea pig histamine H₂-receptor with guanidine-type agonists. *Mol. Pharmacol.* **2001**, *60*, 1210-1225.

57. Höring, C.; Seibel, U.; Tropmann, K.; Grätz, L.; Mönnich, D.; Pitzl, S.; Bernhardt, G.; Pockes, S.; Strasser, A., A dynamic, split-luciferase-based mini-G protein sensor to functionally characterize ligands at all four histamine receptor subtypes. *Int. J. Mol. Sci.* **2020**, *21*, 8440.

58. In the [35 S]GTP γ S binding assay GTP γ S labelled with 35 S is used. The half-life of this sulfur isotope is 87.37 d, so that the reagent can only be used for a limited time. Therefore, several batches have to be ordered in the course of a project. At the beginning of the project, our supplier still delivered the reagent in good quality, so we were able to perform this assay without any problems. However, the batches ordered towards the end of the project were of inadequate quality (was self-tested in our radiology lab with inadequate purity results). Since we did not find an alternative supplier with sufficient reagent quality, we could not perform this assay anymore. Thus, not all compounds could be characterized in the [35 S]GTP γ S assay. All data given in the manuscript are comparable and have been performed with [35 S]GTP γ S batches of high quality.

59. Rankovic, Z.; Brust, T. F.; Bohn, L. M., Biased agonism: An emerging paradigm in GPCR drug discovery. *Bioorg. Med. Chem. Lett.* **2016**, *26*, 241-250.

60. Thomsen, A. R. B.; Hvidtfeldt, M.; Bräuner-Osborne, H., Biased agonism of the calcium-sensing receptor. This model is only valid for ligands which are agonists in both pathways. The model can not be applied to ligands which are e.g. agonists in G protein and antagonists in arrestin pathway. *Cell Calcium* **2012**, *51*, 107-116.

61. Yung-Chi, C.; Prusoff, W. H., Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099-3108.

62. Leurs, R.; Smit, M. J.; Menge, W. M.; Timmerman, H., Pharmacological characterization of the human histamine H₂ receptor stably expressed in chinese hamster ovary cells. *Br. J. Pharmacol.* **1994**, *112*, 847-854.

63. Mosandl, J. Radiochemical and Luminescence-Based Binding and Functional Assays for Human Histamine Receptors Using Genetically Engineered Cells. Ph.D. Thesis. University of Regensburg, 2009.

64. Baumeister, P. Molecular Tools for G-Protein Coupled Receptors: Synthesis, Pharmacological Characterization and [³H]-Labeling of Subtype-selective Ligands for Histamine H₄ and NPY Y₂ Receptors. Ph. D. Thesis. University of Regensburg, 2014.

65. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. *Organometallics* **2010**, *29*, 2176-2179.

66. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., NMR chemical shifts of common laboratory solvents as trace impurities. *J. Org. Chem.* **1997**, *62*, 7512-7515.

67. Schnell, D.; Strasser, A.; Seifert, R., Comparison of the pharmacological properties of human and rat histamine H₃-receptors. *Biochem. Pharmacol.* **2010**, *80*, 1437-1449.

68. Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R., High constitutive activity and a G-protein-independent high-affinity state of the human histamine H₄-receptor. *Biochemistry* **2009**, *48*, 1424-1438.

69. Pop, N.; Igel, P.; Brennauer, A.; Cabrele, C.; Bernhardt, G.; Seifert, R.; Buschauer, A., Functional reconstitution of human neuropeptide Y (NPY) Y_2 and Y_4 receptors in Sf9 insect cells. *J. Recept. Signal Transduct.* **2011**, *31*, 271-285.

70. Schneider, E.; Mayer, M.; Ziemek, R.; Li, L.; Hutzler, C.; Bernhardt, G.; Buschauer, A., A simple and powerful flow cytometric method for the simultaneous determination of multiple parameters at G protein-coupled receptor subtypes. *ChemBioChem* **2006**, *7*, 1400-1409.

71. Rueden, C. T.; Schindelin, J.; Hiner, M. C.; DeZonia, B. E.; Walter, A. E.; Arena, E. T.; Eliceiri, K. W., ImageJ2: ImageJ for the next generation of scientific image data. *BMC Bioinform.* **2017**, *18*, 529.

Appendix 2 Synthesis and Pharmacological Characterization of Fluorescent Histamine H₂ Receptor Carbamoylguanidine-Type Agonists

App2.1 Experimental Details for 3.23-3.27

The precursors **3.23-3.25**¹ and **3.27**², the amine **3.41**³, the guanidinylating reagent **3.42**¹ as well as the tetrafluoroborate salt of Py-5⁴⁻⁵ were synthesized as reported elsewhere (structures are shown in Figure App2.1).

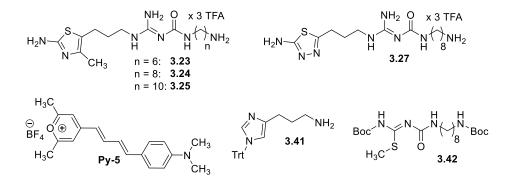
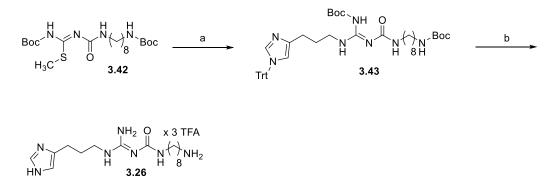
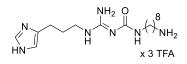
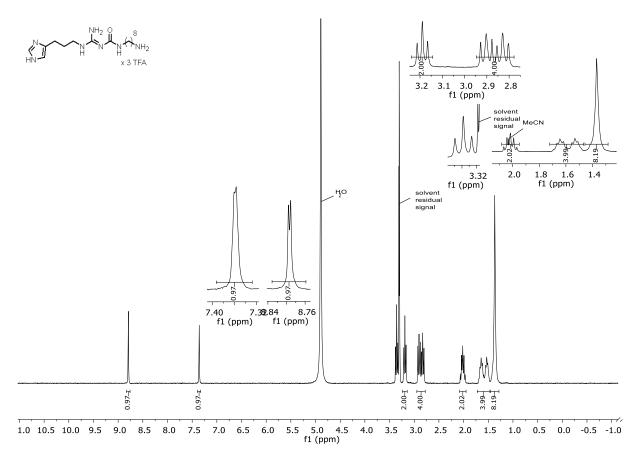



Figure App2.1. Chemical structures of the amine precursors 3.23-3.25 and 3.27, the amine 3.41, the guanidinylating reagent 3.42 as well as the tetrafluoroborate salt of Py-5.


Synthesis of the Amine Precursor 3.26

The precursor **3.26** was prepared in analogy to the described procedure for **3.23-3.25**¹ and **3.27**² by treating **3.41**³ with the guanidinylating reagent **3.42**¹ in the presence of mercuric chloride (HgCl₂) and triethylamine (NEt₃). Treating the protected carbamoylguanidine-type intermediate **3.43** with trifluoracetic acid (TFA) gave compound **3.26** (Scheme App2.1), which was purified by preparative HPLC.



Scheme App2.1. Synthesis of the Precursor 3.26^a

^{*a*}Reagents and conditions: (a) **3.41**, HgCl₂, NEt₃, CH₂Cl₂, 16 h, room temperature (rt); (b) 40% TFA, CH₂Cl₂, 16 h, rt, 20% over 2 steps.

1-(Amino{[3-(1H-imidazol-4-yl)propyl]amino}dmethylene)-3-(8-aminooctyl)urea trihydrotrifluoroacetate (3.26). The guanidinylating reagent 3.42 (70 mg, 0.15 mmol, 1 equiv) and the amine 3.41 (84 mg, 0.23 mmol, 1.5 equiv) were dissolved in CH₂Cl₂ (3 mL). NEt₃ (105 µL, 0.76 mmol, 2.5 equiv) and HgCl₂ (165 mg, 0.608 mmol, 4 equiv) were added to the mixture and stirring was continued for 16 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL). The precipitate was removed by filtration through Celite 545 and washed with CH₂Cl₂ (20 mL) and EtOAc (20 mL). The solvent was removed under reduced pressure and the crude product was purified by flash chromatography on silica gel (eluent PE (A), EtOAc (B); gradient: 0-20 min: A/B 100:0-50:50) and dried under reduced pressure. Subsequently, deprotection was performed by stirring with 40% TFA in CH₂Cl₂ for 16 h. The obtained carbamoylguanidinetype precursor 3.42 was purified by preparative HPLC yielding a white, foamlike and hydroscopic solid (20.67 mg, 20%). RP-HPLC: 99% ($t_{\rm R} = 7.3 \text{ min}, k = 1.27$). ¹H-NMR $(300 \text{ MHz}, \text{MeOD}) \delta 8.79 \text{ (d}, J = 1.4 \text{ Hz}, 1\text{H}), 7.36 \text{ (d}, J = 1.2 \text{ Hz}, 1\text{H}), 3.36 \text{ (t}, J = 6.9 \text{ Hz}, 2\text{H}),$ 3.19 (t, J = 7.0 Hz, 2H), 2.95-2.76 (m, 4H), 2.10-1.93 (m, 2H), 1.77-1.43 (m, 4H), 1.42-1.30 (m, 8H). ¹H-NMR (600 MHz, DMSO-d₆) δ 14.45 (br s, 2H), 10.68 (br s, 1H), 9.09 (br s, 1H), 8.94 (d, J = 1.4 Hz, 1H), 8.55 (br s, 2H), 7.80 (br s, 3H), 7.53 (br s, 1H), 7.46-7.33 (m, 1H), 3.29 (q, J = 6.6 Hz, 2H), 3.09 (q, J = 6.6 Hz, 2H), 2.81-2.72 (m, 2H), 2.68 (t, J = 7.6 Hz, 2H),1.86 (quint, J = 7.3 Hz, 2H), 1.51 (quint, J = 7.4 Hz, 2H), 1.42 (q, J = 6.8 Hz, 2H), 1.32-1.23 (m, 8H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 158.81 (q, J = 31.7 Hz, TFA), 153.91, 153.75, 133.92, 132.49, 116.96 (q, J = 299.1 Hz, TFA), 115.71, 39.92, 39.14, 38.79, 28.90, 28.46, 28.44, 26.97, 26.76, 26.10, 25.73, 21.13. HRMS: calcd. for $C_{16}H_{32}N_7O^+$: 338.2663; found: 338.2662. MF: $C_{16}H_{31}N_7O \ge C_6H_3F_9O_6$. MW: (337.47 + 342.07).

App2.2 ¹H- and/or ¹³C-NMR Spectra of 3.26 and 3.28-3.40

Figure App2.2. ¹H-NMR spectrum (400 MHz, MeOD) of compound 3.26.

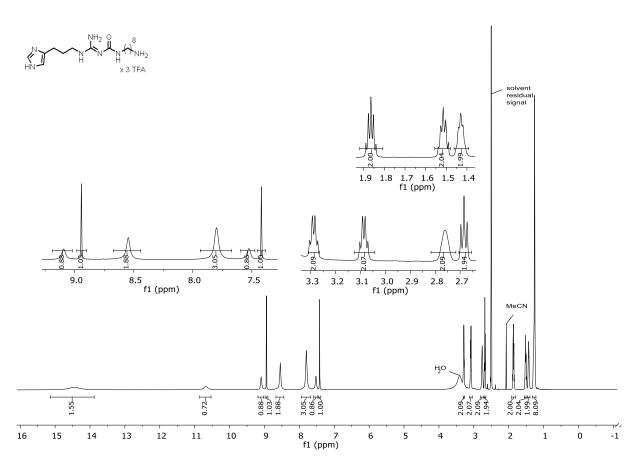


Figure App2.3. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.26.

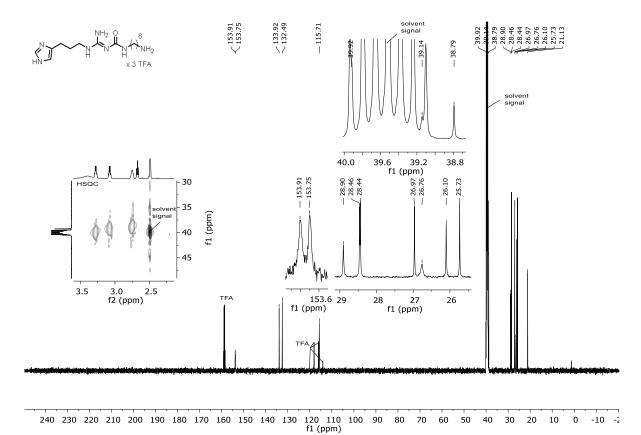


Figure App2.4. ¹³C-NMR spectrum (600 MHz, DMSO-d₆) of compound **3.26**.

Appendix 2

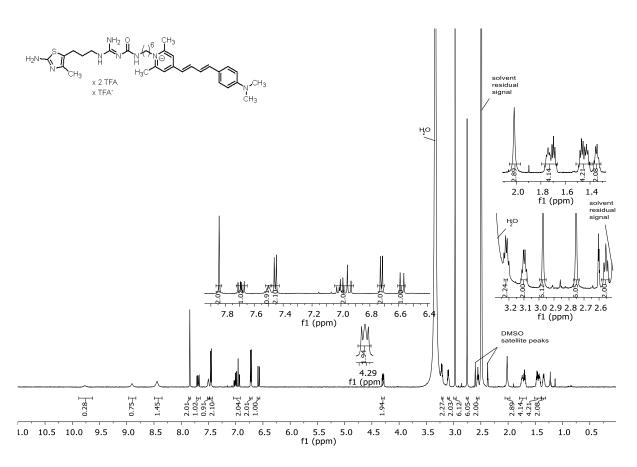


Figure App2.5. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.28.

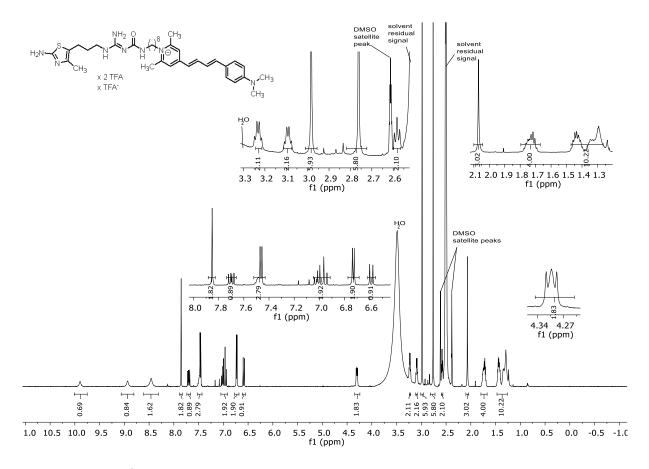


Figure App2.6. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound **3.29**.

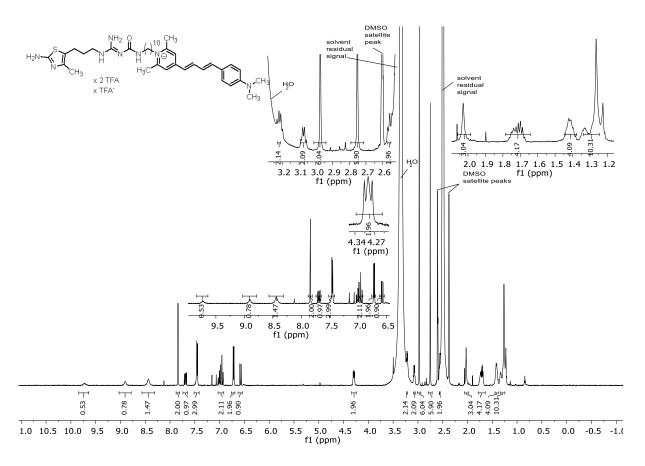


Figure App2.7. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.30.

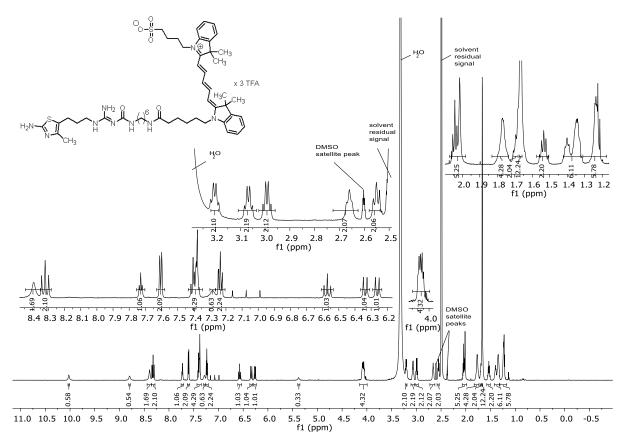


Figure App2.8. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.31.

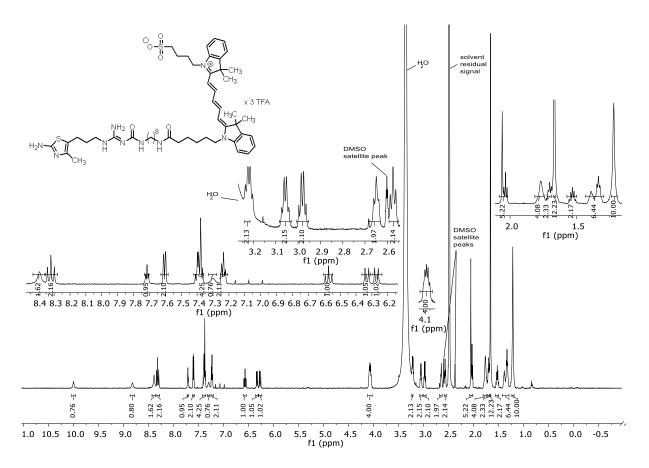


Figure App2.9. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.32.

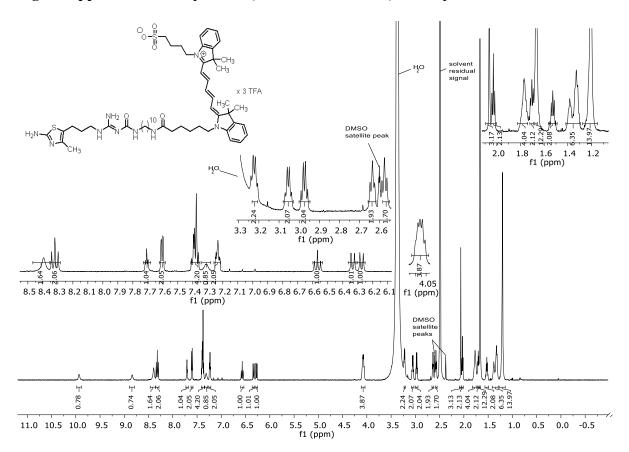


Figure App2.10. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.33.

Appendix 2

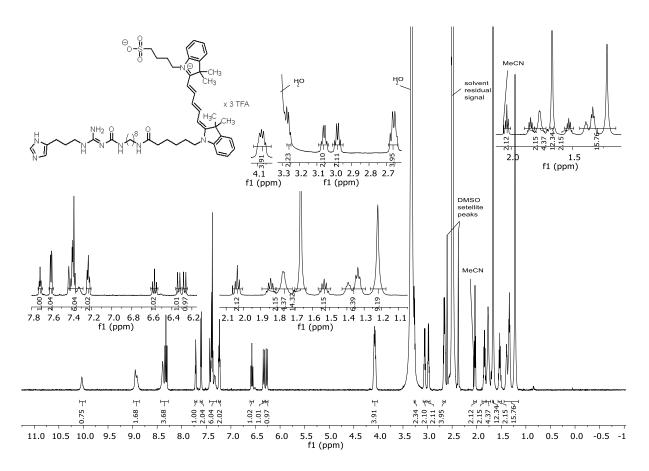


Figure App2.11. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound **3.34**.

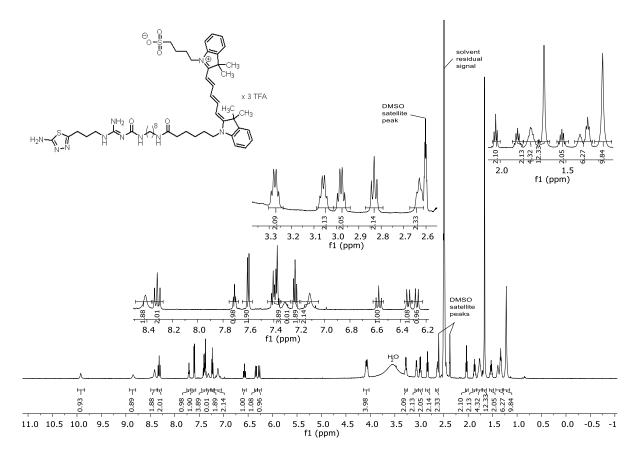


Figure App2.12. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.35.

Appendix 2

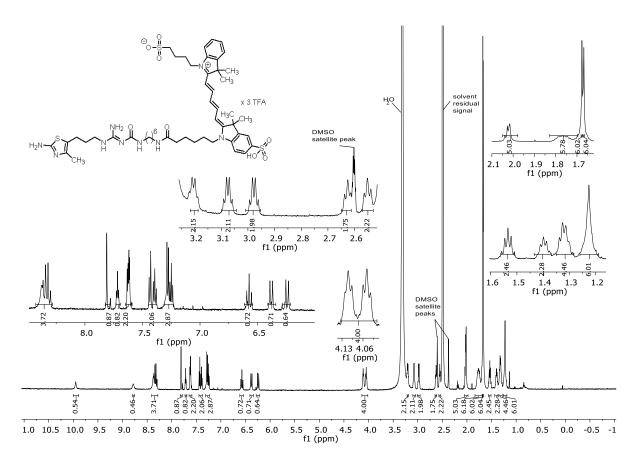


Figure App2.13. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.36.

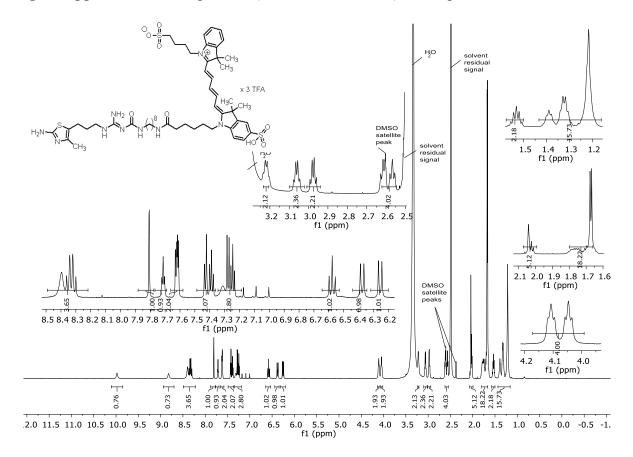


Figure App2.14. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.37.

Appendix 2

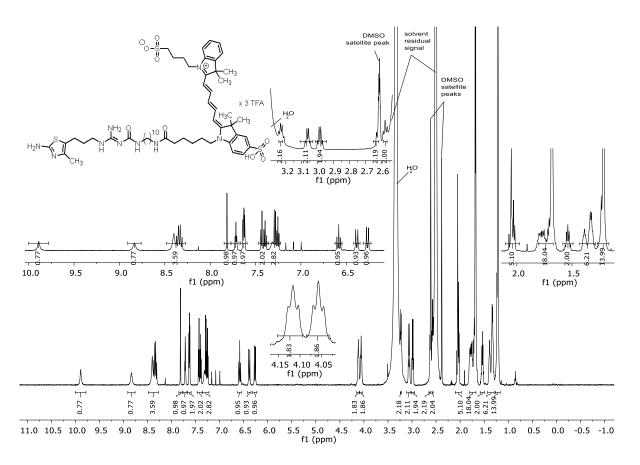


Figure App2.15. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound **3.38**.

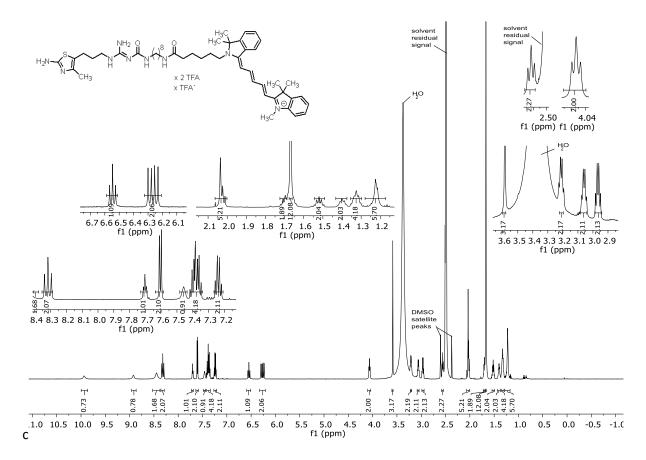


Figure App2.16. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.39.

Appendix 2

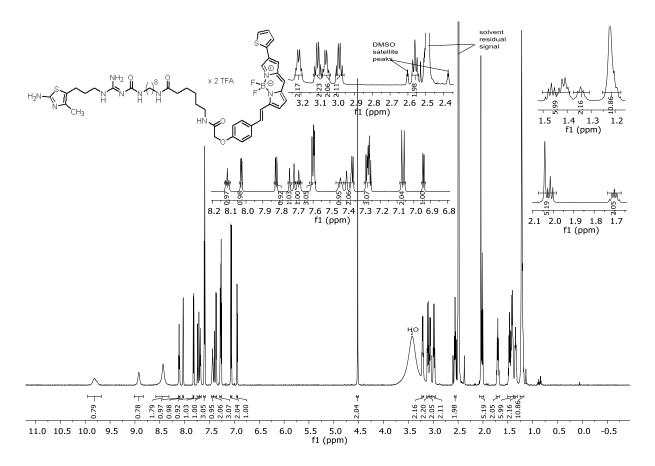


Figure App2.17. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 3.40.

App2.3 RP-HPLC Chromatograms of 3.26 and 3.28-3.40

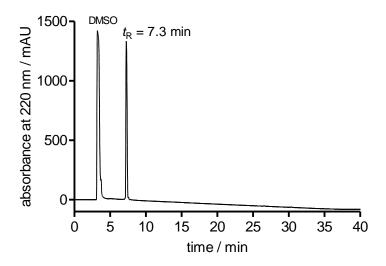


Figure App2.18. RP-HPLC analysis (purity control) of 3.26.

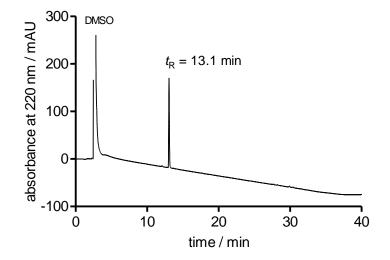


Figure App2.19. RP-HPLC analysis (purity control) of 3.28.

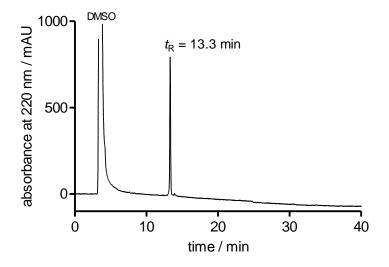


Figure App2.20. RP-HPLC analysis (purity control) of 3.29.

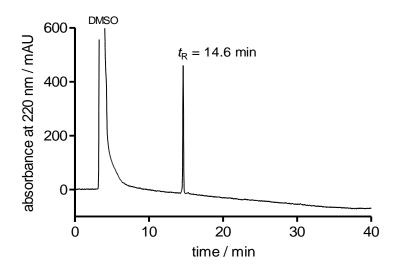


Figure App2.21. RP-HPLC analysis (purity control) of 3.30.

Appendix 2

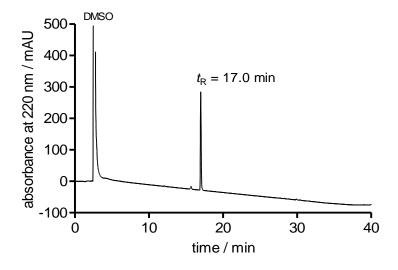


Figure App2.22. RP-HPLC analysis (purity control) of 3.31.

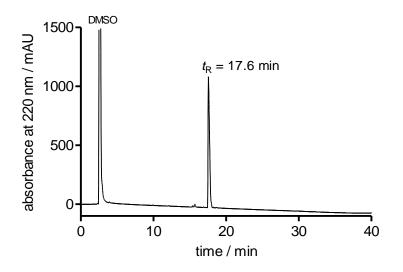


Figure App2.23. RP-HPLC analysis (purity control) of 3.32.

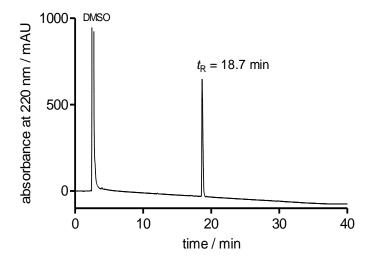


Figure App2.24. RP-HPLC analysis (purity control) of 3.33.

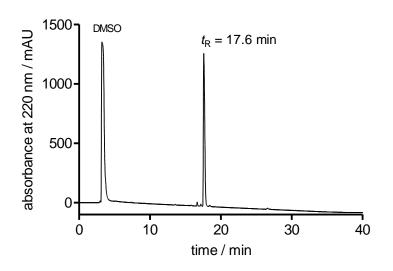


Figure App2.25. RP-HPLC analysis (purity control) of 3.34.

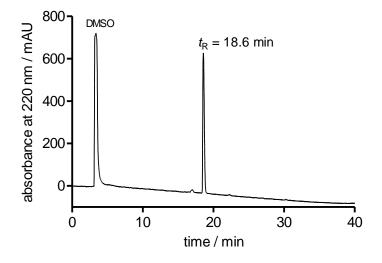


Figure App2.26. RP-HPLC analysis (purity control) of 3.35.

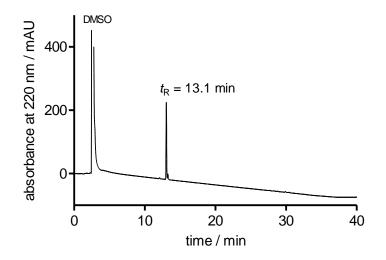


Figure App2.27. RP-HPLC analysis (purity control) of 3.36.

Appendix 2

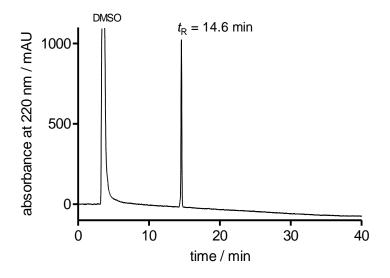


Figure App2.28. RP-HPLC analysis (purity control) of 3.37.

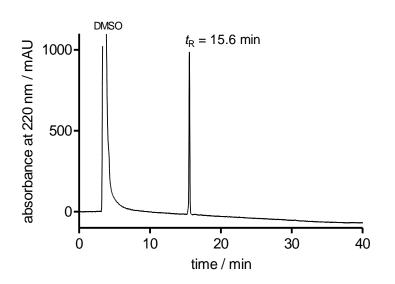


Figure App2.29. RP-HPLC analysis (purity control) of 3.38.

Appendix 2

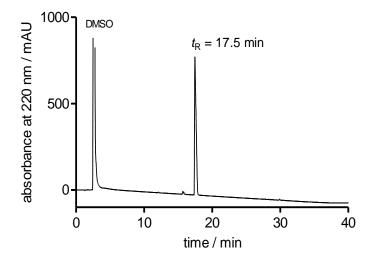


Figure App2.30. RP-HPLC analysis (purity control) of 3.39.

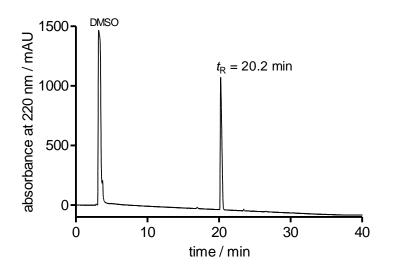
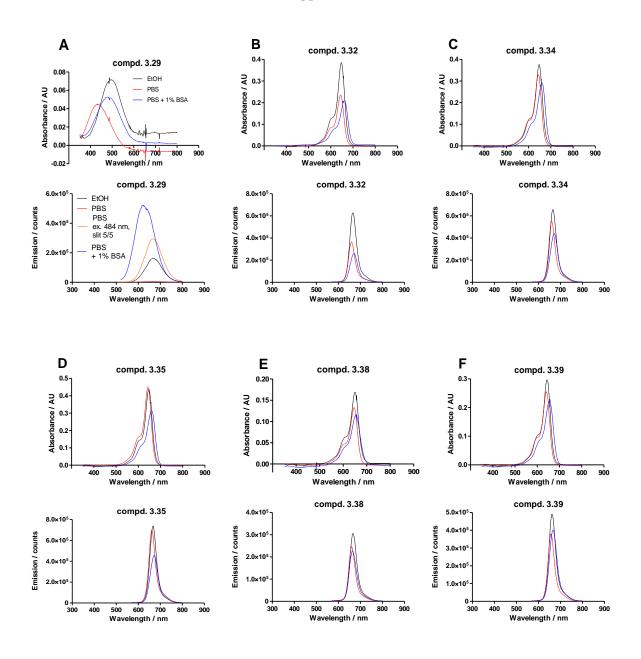
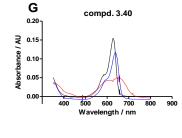


Figure App2.31. RP-HPLC analysis (purity control) of 3.40.

App2.4 Absorption and Emission Spectra


Recording of absorption and emission spectra was performed with a FluoroMax-4 spectrofluorometer (HORIBA Scintific, Oberursel, Germany) and an Agilent Cary 60 UV-Vis spectrophotometer (Agilent Technologies). The resulting absorption and emission spectra are depicted in Figure App3.32 and the absorption and emission maxima are summarized in Table App2.1. Spectra were recorded in PBS (pH 7.4) and in PBS with 1% bovine serum albumin (BSA, SERVA Electrophoresis, Heidelberg, Germany) to simulate assay conditions and to study the influence of proteins on the fluorescence properties. In addition, the spectra were also recorded in ethanol to examine the influence of the polarity of the solvent. The fluorescent ligands were measured in a concentration range from 4-10 μ M. The diluted samples were freshly prepared from 5 mM stock solutions in DMSO before the experiment. Blank spectra (in case of absorption spectra) were recorded with samples containing the respective solvent and the same amount of DMSO as those containing the fluorescent ligands. To avoid bleaching effects, the samples were protected from light between measurements. Recording of the spectra was performed in acryl cuvettes (10 x 10 mm, Sarstedt, Nümbrecht, Germany).


Table App2.1. Spectroscopic Characteristics (Absorption Maxima, λ_{abs} / nm, Emission
Maxima, λ_{em} / nm) of Py-5, Py-5_Propyl, S0436, S0287, S0223, BODIPY 630/650-X NHS-
Ester, 3.29, 3.32, 3.34-3.35 and 3.38-3.40 in Different Solvents

	EtOH		PBS		PBS + 1% BSA		
compd.	λ_{abs} / nm	λ_{em} / nm	λ_{abs} / nm	λ_{em} / nm	λ_{abs} / nm	λ_{em} / nm	
Py-5	645* ⁴	732*4	n.d.	n.d.	n.d.	n.d.	
Py-	484* ⁴	671* ⁴	n.d.	n.d.	n.d.	n.d.	
5_propyl							
3.29	498	671	431	672	483	622	
S0436	644* ^a	666* ^a	n.d.	n.d.	n.d.	n.d.	
3.32	648	665	644	661	661	672	
3.34	647	666	644	660	657	671	
3.35	648	668	644	661	660	671	
S0387	646* ^a	669* ^a	n.d.	n.d.	n.d.	n.d.	
3.38	650	666	647	661	653	663	
S0223	642* ^a	663* ^a	n.d.	n.d.	n.d.	n.d.	
3.39	644	662	641	658	657	668	
BODIPY	628* ⁶	643* ⁶	629** ⁶	646** ⁶	n.d.	n.d.	
630/650-X	646* ^b	664* ^b					
NHS							
Ester							
3.40	628	640	657	644	638	645	
^a Data in	ported fro	m www.fe	w.de (Oct.	2020).	^b Data imp	orted from	
www.spectra.arizona.edu (Oct. 2013). Ligand concentrations were $4-10 \mu$ M. The							

bata imported from www.iew.de (Oct. 2020). Data imported from www.spectra.arizona.edu (Oct. 2013). Ligand concentrations were $4-10 \,\mu$ M. The corresponding absorption and emission spectra are shown in Figure App2.32. *Measured in MeOH as solvent. **Measured in water as solvent.

Appendix 2

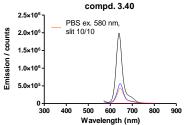
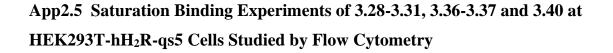
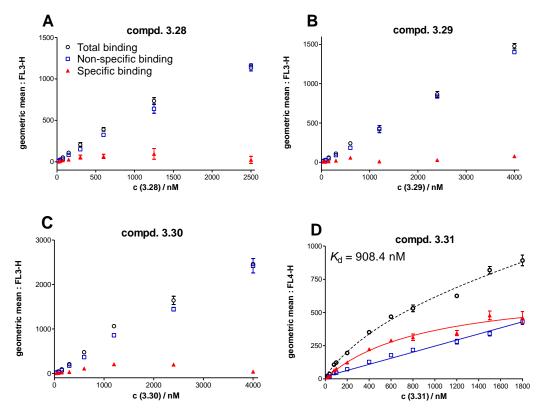
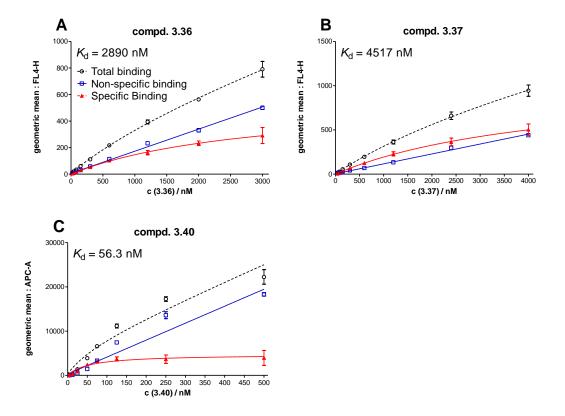





Figure App2.32. Absorption (top) and emission (bottom) spectra of A: Py-5 (3.29), B-D: S0436 (3.32, 3.34 and 3.35), E: S0387 (3.38), F: S0223 (3.39), and G: BODIPY 630/650 X (3.40) labeled compounds dissolved in EtOH, PBS or PBS containing 1% BSA. Ligand concentration was 4-10 μ M. Emission spectra were recorded with slit widths 3 nm/3 nm, unless otherwise noted. The excitation wavelength was 550 nm, unless otherwise noted.

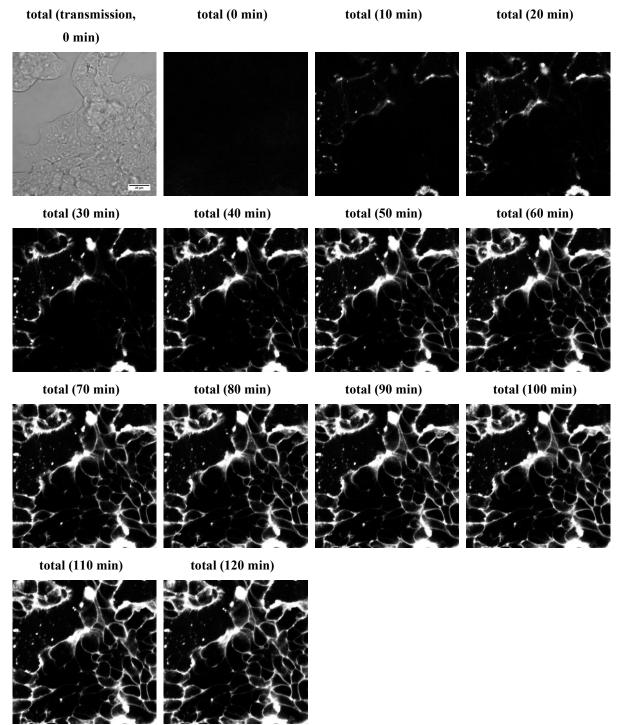
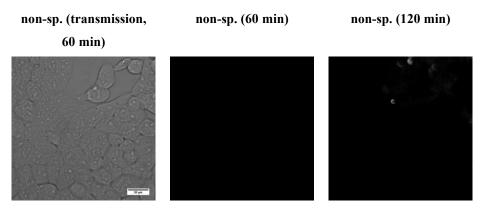
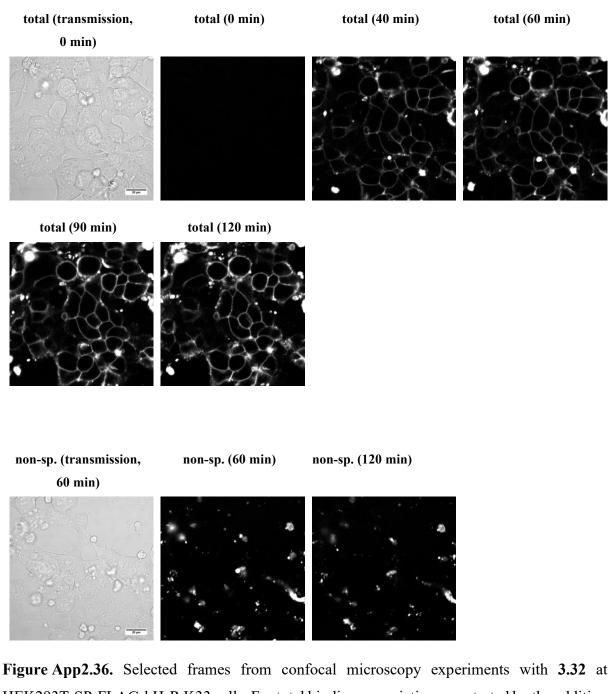
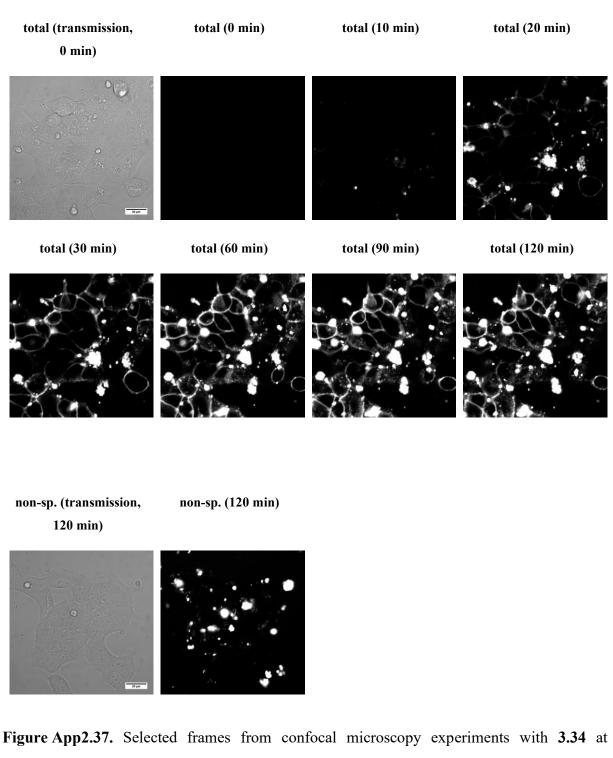


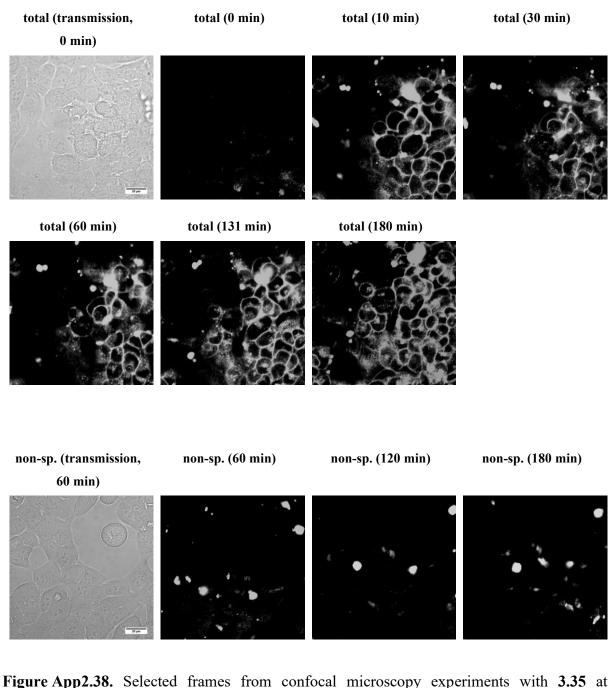
Figure App2.33. Representative flow cytometric saturation binding experiments performed with the fluorescent ligands **3.28-3.31** at intact HEK293T-hH₂R-qs5-HA cells. Non-specific binding was determined in the presence of famotidine (300-fold excess adjusted to the respective concentration of the fluorescent ligand). Cells were incubated with the fluorescent ligands at room temperature in the dark for 90 min. The Py-5-labeled compounds **3.28-3.30** (**A**-**C**) bound in a non-saturable manner. Compound **3.31** (**D**) showed a moderate non-specific binding. Error bars of specific binding represent propagated errors calculated according to the Gaussian law of error propagation. Error bars of total and unspecific binding represent the SEM. Experiments were performed in duplicate.

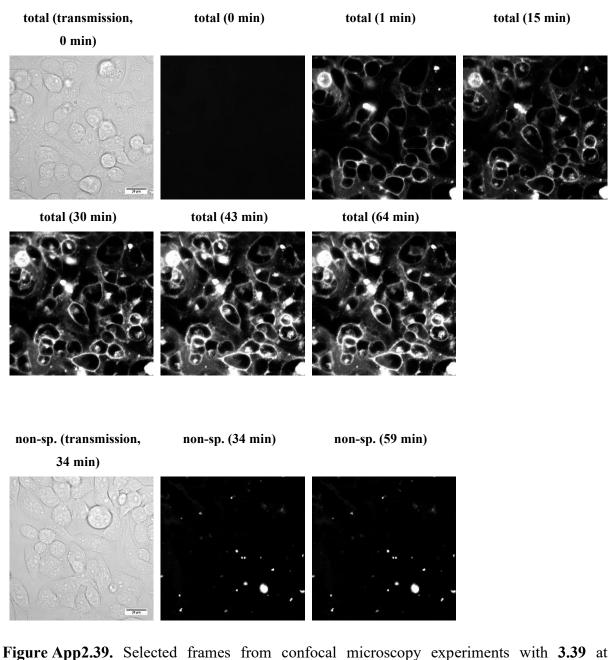
Figure App2.34. Representative flow cytometric saturation binding experiments performed with the fluorescent ligands **3.36-3.37** and **3.39** at intact HEK293T-hH₂R-qs5-HA cells. Unspecific binding was determined in the presence of famotidine (300-fold excess adjusted to the respective concentration of the fluorescent ligand). Cells were incubated with the fluorescent ligands at room temperature in the dark for 90 min. Compounds **3.36** (**A**), **3.37** (**B**) and **3.40** (**C**) showed a high non-specific binding. Error bars of specific binding represent propagated errors calculated according to the Gaussian law of error propagation. Error bars of total and unspecific binding represent the SEM. Experiments were performed in duplicate.

Figure App2.35. Selected frames from confocal microscopy experiments with **3.32** at HEK293T-hH₂R-qs5-HA cells. For total binding, association was started by the addition of **3.32** ($c_{final} = 180 \text{ nM}$) to HEK293T-hH₂R-qs5-HA cells. Non-specific binding was recorded in the presence of famotidine (300-fold excess compared to **3.32**). Images were acquired with a Zeiss Axiovert 200M microscope equipped with LSM 510 Laser scanner. A 63x/1.40 oil immersion objective was used [excitation: 633 nm (7.0%), filter: LP650, pinhole: 248 µm].

App2.6 Confocal Microscopy


Figure App2.35. (continued)


HEK293T-SP-FLAG-hH₂R K33 cells. For total binding, association was started by the addition of **3.32** ($c_{final} = 150 \text{ nM}$) to HEK293T-SP-FLAG-hH₂R K33 cells. Non-specific binding was recorded in the presence of famotidine (300-fold excess compared to **3.32**). Images were acquired with a Zeiss Axiovert 200M microscope equipped with LSM 510 Laser scanner. A 63x/1.40 oil immersion objective was used [excitation: 633 nm (10.0%), filter: LP650, pinhole: 244 µm].

HEK293T-hH₂R-qs5-HA cells. For total binding, association was started by the addition of **3.34** ($c_{final} = 200 \text{ nM}$) to HEK293T-SP-FLAG-hH₂R K33 cells. Non-specific binding was recorded in the presence of famotidine (300-fold excess compared to **3.34**). Images were acquired with a Zeiss Axiovert 200M microscope equipped with LSM 510 Laser scanner. A 63x/1.40 oil immersion objective was used [excitation: 633 nm (7.0%), filter: LP650, pinhole: 248 µm].

HEK293T-hH₂R-qs5-HA cells. For total binding, association was started by the addition of **3.35** ($c_{final} = 300 \text{ nM}$) to HEK293T-hH₂R-qs5-HA cells. Non-specific (non-sp.) binding was recorded in the presence of famotidine (300-fold excess compared to **3.35**). Images were acquired with a Zeiss Axiovert 200M microscope equipped with LSM 510 Laser scanner. A 63x/1.40 oil immersion objective was used [excitation: 633 nm (10%), filter: LP650, pinhole: 276 µm].

HEK293T-hH₂R-qs5-HA cells. For total binding, association was started by the addition of **3.39** ($c_{final} = 100 \text{ nM}$) to HEK293T-hH₂R-qs5-HA cells. Non-specific binding was recorded in the presence of famotidine (300-fold excess compared to **3.39**). Images were acquired with a Zeiss Axiovert 200M microscope equipped with LSM 510 Laser scanner. A 63x/1.40 oil immersion objective was used [excitation: 633 nM (10.0%), filter: LP650, pinhole: 244 µm].

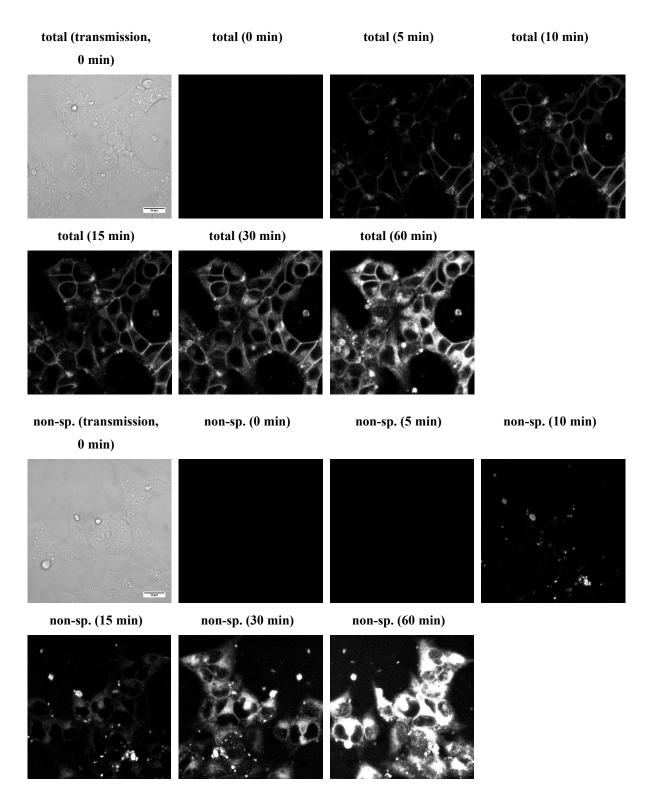
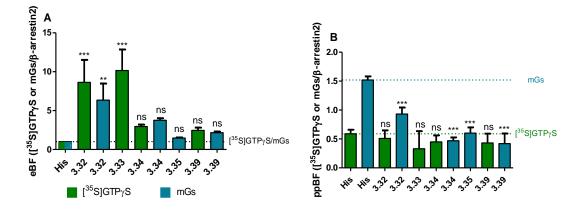


Figure App2.40. Selected frames from confocal microscopy experiments with 3.40 at HEK293T-hH₂R-qs5-HA cells. For total binding, association was started by the addition of 3.40 ($c_{final} = 150 \text{ nM}$) to HEK293T-hH₂R-qs5-HA cells. Non-specific binding was recorded in the presence of famotidine (300-fold excess compared to 3.40). Images were acquired with a Zeiss Axiovert 200M microscope equipped with LSM 510 Laser scanner. A 63x/1.40 oil immersion objective was used [excitation: 633 nM (7.0%), filter: LP650, pinhole: 248 µm].


App2.7 Bias Analysis

To test for biased agonism, we calculated bias factors (BF). To calculate the BF's we either used efficacy BF (eBF) or potency BF (pBF).⁷ Using this method, a biased agonist is defined as an agonist that has a statistically-significant different BF compared to the BF of the endogenous agonist histamine. The eBF for an agonist is calculated as the ratio between maximal responses (E_{max}) of two different signaling pathways (pathway1:pathway2).⁷ The pBF of an agonist is calculated as the ratio between EC₅₀ of two different signaling pathways (pathway1:pathway2).⁷ However, for analysis of statistic difference between pBF of histamine and pBF of the agonist of interest we used the negative logarithm of the pBF or: ppBF(pathway1:pathway2) = pEC₅₀(pathway1) – pEC₅₀(pathway2).⁷ This is necessary since statistic information of SEM is only available for pEC₅₀ and not for EC₅₀.

Table App2.2. Efficacy Bias Factors (eBF) and Negative Logarithm of the Potency Bias Factors (ppBF)

compd. / G protein assay	eBF	ppBF
His / [³⁵ S]GTPγS	1.00 ± 0.00	1.52 ± 0.06
His / mGs	1.00 ± 0.00	0.59 ± 0.07
3.32 / [³⁵ S]GTPγS	8.63 ± 0.34	0.51 ± 0.14
3.32 mGs	6.35 ± 0.33	0.93 ± 0.11
3.33 / [³⁵ S]GTPγS	10.16 ± 0.27	0.33 ± 0.30
3.34 / [³⁵ S]GTPγS	2.96 ± 0.08	0.45 ± 0.11
3.34 / mGs	3.74 ± 0.07	0.47 ± 0.06
3.35 / mGs	1.47 ± 0.06	0.60 ± 0.10
3.39 / [³⁵ S]GTPγS	2.46 ± 0.14	1.31 ± 0.17
3.39 / mGs	2.15 ± 0.14	0.42 ± 0.17

eBF's comparing efficacy and ppBF's comparing potency in Gs and β -arrestin2 signaling pathways. The eBF for an agonist is calculated as the ratio between maximal responses (E_{max}) of Gs pathway and β -arrestin2 pathway [eBF = E_{max} (mGs or [³⁵S]GTP γ S) / E_{max} (β -arrestin2)]. The ppBF of an agonist is calculated as the difference between pEC₅₀ values between Gs pathway and β -arrestin2 pathway [ppBF = pEC₅₀ (mGs or [³⁵S]GTP γ S) – pEC₅₀ (β -arrestin2)]. The E_{max} and pEC₅₀ values used for these calculations are depicted in the Table 3.2 in the chapter 3.

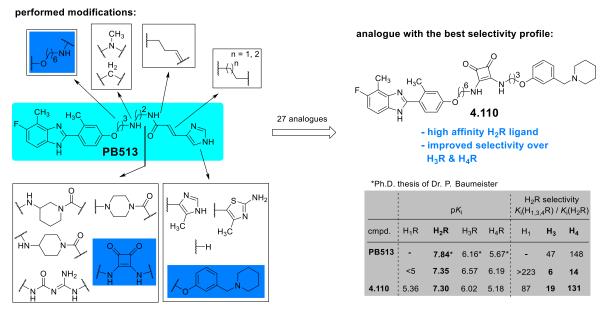
Figure App2.41. Histograms comparing the efficacy bias factors (eBF, **A**) and the negative logarithm of the potency bias factors (ppBF, **B**). Statistical comparison of values was performed by using a one-way ANOVA of BF for each agonist and Dunnett's post-tests were used to compare BF for **3.1** to BF's for all other agonists (ns: not significant, ***p <0.001, **p<0.01, **p<0.05, as described by Thomsen et al.⁷).

App2.8 References

1. Tropmann, K.; Höring, C.; Plank, N.; Pockes, S., Discovery of a G protein biased radioligand for the histamine H_2 receptor with reversible binding properties. *J. Med. Chem.* **2020**, *63*, 13090-13102.

2. Tropmann, K.; Forster, L.; Bresinsky, M.; Buschauer, A.; Wittmann, H.-J.; Pockes, S; Strasser, A., Abolishing dopamine D_{2long}/D_3 receptor affinity of subtype-selective carbamoylguanidine-type histamine H₂ receptor agonists. *J. Med. Chem., submitted for publication* **2020**.

3. Ghorai, P.; Kraus, A.; Keller, M.; Götte, C.; Igel, P.; Schneider, E.; Schnell, D.; Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer, A., Acylguanidines as bioisosteres of guanidines: N^{G} -acylated imidazolylpropylguanidines, a new class of histamine H₂ receptor agonists. *J. Med. Chem.* **2008**, *51*, 7193-7204.


4. Höfelschweiger, B. K. The Pyrylium Dyes: A New Class of Biolabels. Synthesis, Spectroscopy, and Application as Labels and in General Protein Assay. Ph.D. Thesis. University Regensburg, 2005.

5. Bartole, E.; Grätz, L.; Littmann, T.; Wifling, D.; Seibel, U.; Buschauer, A.; Bernhardt, G., UR-DEBa242: A Py-5-Labeled Fluorescent Multipurpose Probe for Investigations on the Histamine H₃ and H₄ Receptors. *J. Med. Chem.* **2020**, *63*, 5297-5311.

6. Buschmann, V.; Weston, K. D.; Sauer, M., Spectroscopic study and evaluation of redabsorbing fluorescent dyes. *Bioconjug. Chem.* **2003**, *14*, 195-204.

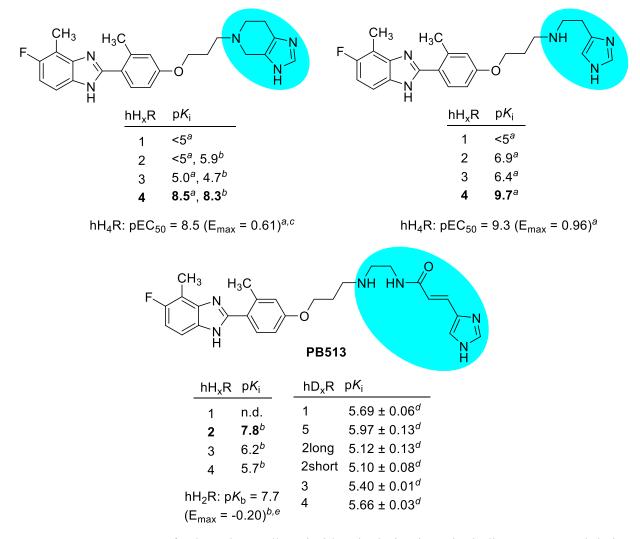
7. Thomsen, A. R. B.; Hvidtfeldt, M.; Bräuner-Osborne, H., Biased agonism of the calcium-sensing receptor. *Cell Calcium* **2012**, *51*, 107-116. This model is only valid for ligands which are agonists in both pathways. The model can not be applied to ligands which are e.g. agonists in G protein and antagonists in arrestin pathway.

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as Histamine H₂ Receptor Ligands

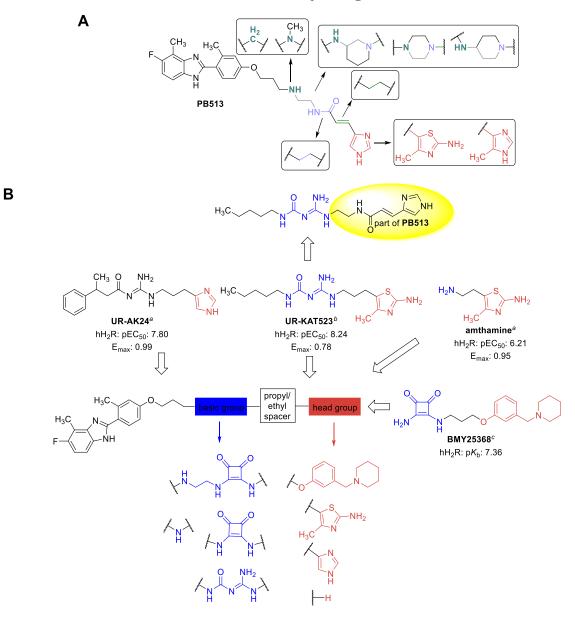
(*E*)-*N*-(2-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-

methylphenoxy)propyl)amino)ethyl)-3-(1H-imidazol-4-yl)acrylamide (PB513) is a high affinity (H₂R: $pK_i = 7.84$) 2-arylbenzimidazole-type histamine H₂ receptor (H₂R) inverse agonist / antagonist, showing a selectivity over the H₄R and the dopamine D₁₋₅ receptors, but only a preference over the H₃R. Aiming at an improved subtype selectivity for the H₂R, a series of 27 analogues related to PB513 was synthesized by variation of the linker and the basic head group. These new derivatives were investigated in radioligand binding and several functional assavs ($[^{35}S]GTP\gamma S$ binding, mini-G and β -arrestin2 recruitment). The structural elements of PB513: 2-arylbenzimidazole, the secondary amine, the double bond, and the imidazole were identified as important for the H₂R affinity. On the other hand, the amide group was not of great importance for the affinity, but mainly influenced the subtype selectivity. Most of the synthesized compounds acted as inverse agonists / antagonists at the H₂R (like PB513), but also a few (biased) agonists were identified. Indeed, the mode of action [(inverse) agonist / antagonist] seemed to depend mainly on the basic head group. Although 27 analogues of PB513 were prepared and characterized, it was not possible to achieve a sufficient subtype selectivity [factor 100; compound with the best selectivity profile: 4.110; H_2R : $pK_i = 7.30$; $K_i(H_{1,3,4})/K_i(H_2)$: H₁: 87; H₃: 19; H₄: 131]. In addition, PB513's previously reported selectivity for the H₄R (K_i (H₄) / K_i (H₂): reported: 148, obtained: 14) and preference for the H₃R (K_i (H₃) $/K_{i}$ (H₂): reported: 47, obtained: 6) could not be reproduced. For this reason, the synthesized molecules were not employed in further studies at dopamine receptors.

4.1 Introduction


2-Arylbenzimidazole derivatives were published as high affinity hH₄R ligands by Lee-Dutra et al. (cf. Figure 4.1).¹ Structural variations of these molecules by Dr. P. Baumeister resulted in a H₄R ligand series including compound PB513 (Figure 4.1).² Surprisingly, PB513 bound to the hH₂R-G_{sαS} with high affinity ($pK_i = 7.8$) and had a 47-fold preference over the hH₃R ($pK_i = 6.2$) and a 148-fold selectivity over the hH₄R ($pK_i = 5.7$).² In the [³⁵S]GTPγS assay at hH₂R-G_{sαS} PB513 revealed a pK_b value of 7.7 ($\alpha = -0.20^2$).²

Since our group is interested in subtype selective H_2R ligands, which are also selective over dopamine receptors, we tested PB513 for its affinity to dopamine receptors. PB513 bound to the dopamine receptors only with low affinity (p K_i 5.10-5.97, Figure 4.1), turning it into a promising starting point in the search for novel and selective (agonistic) H_2R ligands.


The aim of this work was to synthesize a small library of compounds related to PB513 (Figure 4.2A & B) and elucidate the structure-activity (H₂R) and structure-selectivity relationships (H₂R versus H₁R, H₃R and H₄R) using [³⁵S]GTP γ S binding-, mini-G protein recruitment- and β -arrestin2 recruitment assays, as well as radioligand binding experiments. Furthermore, we investigated the feasibility to turn 2-arylbenzimidazoles from antagonistic into agonistic H₂R ligands.

To explore the structural requirements for hH₂R affinity and selectivity of PB513, the functional groups (secondary (sec.) amine, amide, double bound, heterocycle etc.) which deemed important, were gradually removed, replaced by a bioisoster, or rigidified by incorporation into a ring (Figure 4.2A). Moreover, the number and the nature (carbamoylguanidine, squaramide, amine) of basic centers was varied (Figure 4.2B). We did not include the acylguanidine group into the series (cf. UR-AK24³, Figure 4.2B), because acylguanidines undergo hydrolytic cleavage upon long term storage in aqueous solution.⁴ The imidazole-bearing moiety was modified with respect to typical H₂R ligand motifs which were published previously (cf. UR-AK24³, UR-KAT523⁵, BMY25368⁶, Figure 4.2B), aiming at improved H₂R selectivity compared to the other histamine receptors. Moreover, the secondary amine in the spacer of PB513 was methylated to investigate this class of compounds for its potential application as radioligands.

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as

Figure 4.1. Structures of selected 2-arylbenzimidazole derivatives, including PB513 and their binding and functional data at histamine H₁₋₄ receptors and in case of PB513 also at dopamine D₁₋₅ receptors. The terminal amino moiety (shown in light blue) influences the HR selectivity. ^{*a*}Data from Savall et al.^{7 *b*}Data from the Ph.D. thesis of Dr. P. Baumeister.^{2 *c*}Luciferase reporter gene assay using SK-N-MC cells expressing the hH₄R. ^{*d*}Data from Dr. H. Hübner (Friedrich-Alexander University Erlangen-Nürnberg). ^{*e*}[³⁵S]GTPγS binding assay on membrane preparations of Sf9 insect cells expressing the hH₂R-G_{sαS} fusion protein. n.d.: not dertermined.

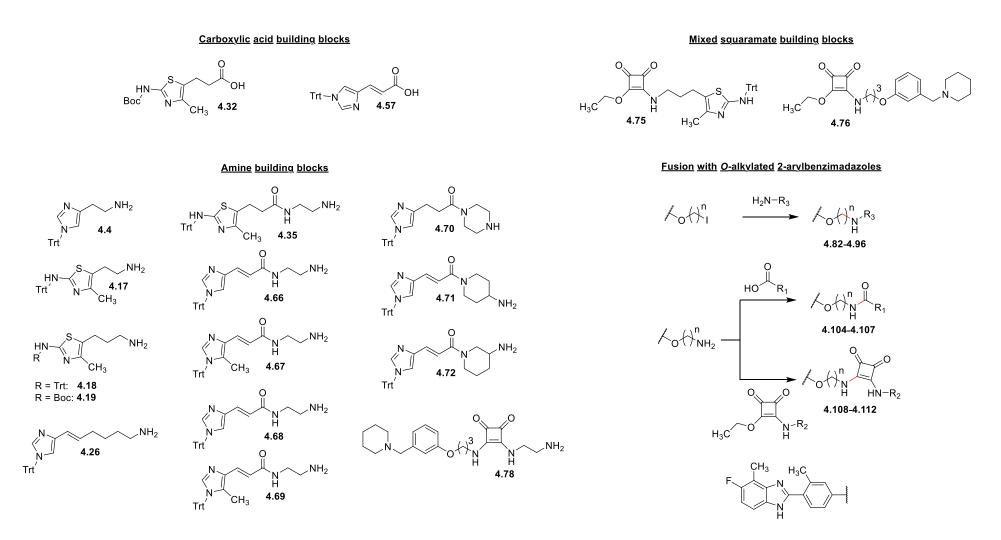


Figure 4.2. A: Overview of the performed structural variations of PB513². **B**: Further variations, including modification of known H₂R ligands with a 2-arylbenzimidazole or urocanic acid amide moiety. ^{*a*}Data from Kraus et al.³ ^{*b*}Data from Biselli et al.⁵ ^{*c*}Data from Baumeister et al.⁸ ^{*a,b*}Agonism measured on guinea pig right atrium. ^{*c*}Agonism measured in the steady-state GTPase assay.

4.2 Results and Discussion

4.2.1 Chemistry

Many different building blocks were synthesized as ligand precursors in multistep syntheses. Figure 4.3 offers an overview of these building blocks and is subdivided into sections containing the respective carboxylic acids, amines and mixed squaramates which were fused together with the corresponding *O*-alkylated 2-arylbenzimidzoles to form the desired bioactive compounds.

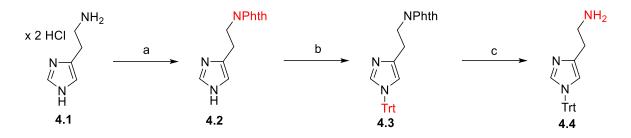
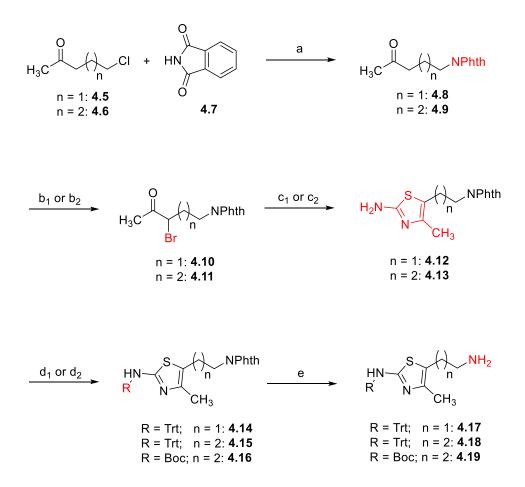


Figure 4.3. Structures of the synthesized carboxylic acid-, amine- and mixed squaramate building blocks and overview of their coupling reaction with *O*-alkylated 2-arylbenzimidazoles.

4.2.1.1 Synthesis of the Amine Building Block 4.4

Compound **4.2** was obtained from the reaction of histamine dihydrochloride (**4.1**) with Nefkens'reagent. Trityl (Trt) protection of the imidazole **4.2**, followed by hydrazinolysis of the phthalimide group afforded the 2-(1-trityl-1*H*-imidazol-4-yl)ethanamine (**4.4**).

Scheme 4.1. Synthesis of 4.4^a

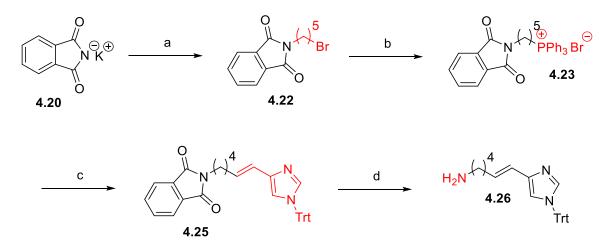


^{*a*}Reagents and conditions: (a) Nefkens' reagent, K_2CO_3 , H_2O , rt, 2 h, 97%; (b) Trt-Cl, NEt₃, MeCN, rt, 16 h, 97%; (c) hydrazine monohydrate (N₂H₄ x H₂O), EtOH, reflux, 2 h, 98%.

4.2.1.2 Synthesis of the Amine Building Blocks 4.17-4.19

The methyl ketones **4.8** and **4.9** were obtained from the reaction of either 5-chloro-2pentanone (**4.5**) or 6-chloro-2-hexanone (**4.6**) with phthalimide (**4.7**). In case of **4.8**, regioselective bromination was achieved by employing Br₂, and glacial acetic acid as solvent according to Black et al.⁹ In contrast, compound **4.9** was α -brominated with Br₂ in 1,4-dioxane and CH₂Cl₂ according to von Angerer et al.¹⁰ Cyclization of the α -bromoketones **4.10** or **4.11** with thiourea gave the thiazoles **4.12** and **4.13**.¹¹ After trityl (**4.14-4.15**) or Boc (**4.16**)¹² protection of the aromatic amine function, the phthalimide group was cleaved by hydrazinolysis to give 5-(2-aminoethyl)-4-methyl-*N*-tritylthiazol-2-amine (**4.17**), 5-(3-aminopropyl)-4methyl-*N*-tritylthiazol-2-amine (**4.18**) and *tert*-butyl 5-(3-aminopropyl)-4-methylthiazol-2ylcarbamate (**4.19**), respectively (Scheme 4.2). Although the Boc protecting group is commonly employed,^{3-4, 13-14} we decided to synthesize the Trt-protected derivatives, because the Trt protecting group proved to be more stable under the conditions of the nucleophilic substitution reaction in the microwave (this observation is based on personal and literature experience¹⁵).

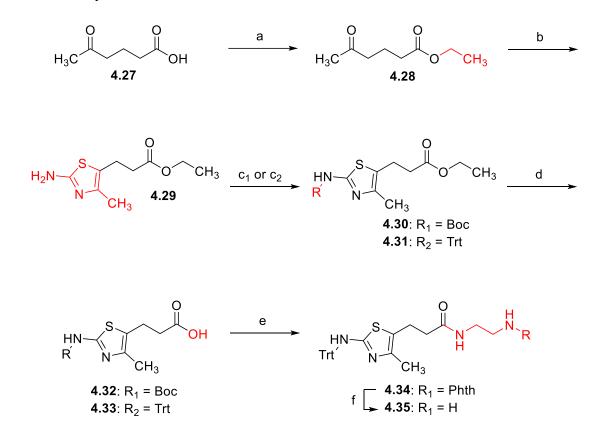
Scheme 4.2. Synthesis of 4.17-4.19^a


^{*a*}Reagents and conditions: (a) K_2CO_3 , KI (cat.), DMF, 95-110 °C, 12-24 h, **4.8**: 50% and **4.9**: 74%; (b₁) Br₂, glacial acetic acid, 10 °C to rt, 1 h, **4.10**: 57%; (b₂) Br₂, 1,4-dioxane/CH₂Cl₂, rt, 4 h, **4.11**: 93%; (c₁) (1) thiourea, DMF, 100 °C, 3 h, (2) MeOH/1 N HCl in MeOH, rt, 72 h, **4.12**: 79% over two steps; (c₂) thiourea, DMF, 100 °C, 3 h, **4.13**: 29%; (d₁) Trt-Cl, NEt₃, MeCN, rt, 16 h, **4.14**: 62% and **4.15**: 27%; (d₂) Boc₂O, NEt₃, DMAP (cat.), chloroform, rt, overnight, **4.16**: 69%; (e) N₂H₄ x H₂O, EtOH, *n*-BuOH or EtOH/*n*-BuOH, rt, 16-24 h, **4.17**: 99%, **4.18**: 68% and **4.19**: 100%.

4.2.1.3 Synthesis of the Amine Building Block 4.26

A synthetic approach similar to that described by Griffith et al.¹⁶ was employed to prepare the ^TN-Trt-protected amine **4.26** (Scheme 4.3). Potassium phthalimide (**4.20**) was first converted to *N*-(5-bromopentyl)phthalimide (**4.22**) using an excess of 1,5-dibromopentane (**4.21**). Treatment of **4.22** with Ph₃P in MeCN provided the corresponding phosphonium salt **4.23**, which was coupled with the ^TN-Trt-protected imidazole aldehyde **4.24** to give the *Wittig* olefination product **4.25**. The following liberation of the primary amine with hydrazine provided the ^TN-Trt-protected amine **4.26**. 4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as

Histamine H₂ Receptor Ligands

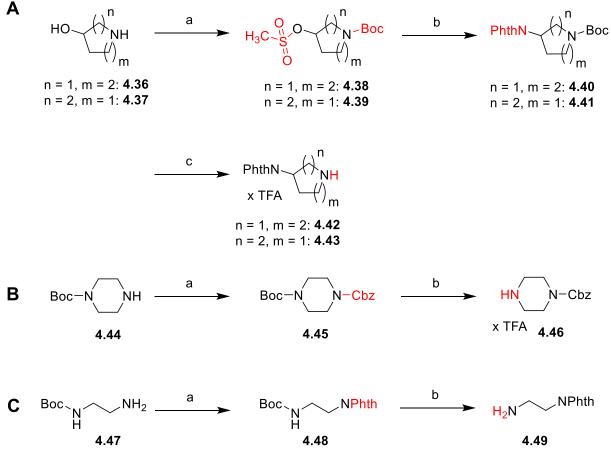


"Reagents and conditions: (a) 1,5-dibromopentane (4.21), DMF, rt, 24 h, 31%; (b) Ph₃P, MeCN, reflux, 48 h, 100%; (c) aldehyde 4.24, *t*-BuOK, THF, 0 °C to reflux, 18 h; (d) $N_2H_4 \times H_2O$, EtOH, rt, 48 h, 7% over 2 steps.

4.2.1.4 Synthesis of the Carboxylic Acid Building Block 4.32 and Amine Building Block 4.35

The carboxylic acid **4.32** and the amine **4.35** were prepared from commercially available γ -acetobutyric acid (**4.27**, Scheme 4.4). **4.27** was converted to ethyl γ -acetobutyrate (**4.28**) by esterification with EtOH. In an one pot reaction, **4.28** was α -brominated using Br₂, and the ring closure reaction was carried out with thiourea under solvent-free conditions as described by Dodson et al.¹⁷ Subsequent Boc (**4.30**) or Trt (**4.31**) protection and ethyl ester hydrolysis gave the carboxylic acids **4.32** or **4.33**. The Trt-protected carboxylic acid **4.33** was coupled to monophthalimide protected ethylenediamine (**4.49**) using EDC/HOBt. The phthalimide group was removed using hydrazine to give the amine **4.35**.

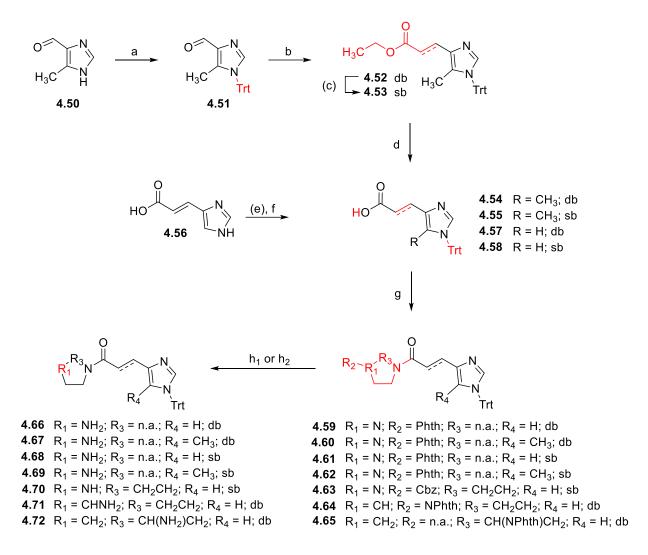
Scheme 4.4. Synthesis of 4.32 and 4.35^a


^{*a*}Reagents and conditions: (a) (1) oxalyl chloride, DMF (cat.), CH₂Cl₂, 0 °C to rt, 2 h; (2) EtOH, NEt₃, rt, 30 min, 34%; (b) Br₂, thiourea, steam-bath, 3 h, 13%; (c₁) Boc₂O, NEt₃, DMAP (cat.), CH₂Cl₂, rt, 16 h, **4.30**: 63%; (c₂) Trt-Cl, NEt₃, DMF, rt, 16 h, **4.31**: 68%; (d) KOH, EtOH/H₂O, 0 °C to rt, 16 h, **4.32**: 89% and **4.33**: 100%; (e) 2-(2-aminoethyl)isoindoline-1,3-dione (**4.49**, Scheme 4.5C), EDC x HCl, HOBt x H₂O, DIPEA, DMF, 0 °C to rt, 16 h, 21%; (f) N₂H₄ x H₂O, EtOH, rt, 16 h, 89%.

4.2.1.5 Synthesis of the Amine Building Blocks 4.66-4.72

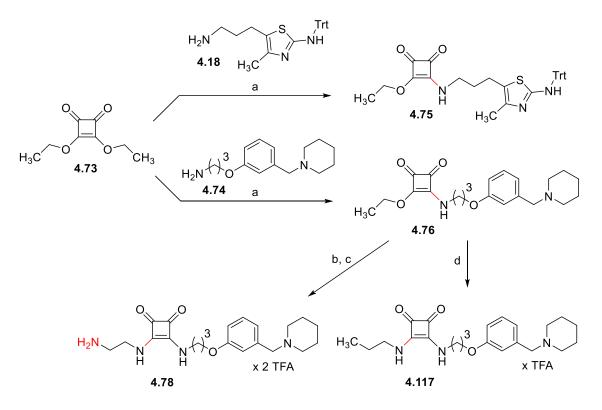
The carboxybenzyl (Cbz)- or phthalimide-protected amines **4.42-4.43**, **4.46** and **4.49** were synthesized as shown in Scheme 4.5. The synthesis started from the commercially available (RS)-3-hydroxypiperidine (**4.36**) or piperidin-4-ol (**4.37**, Scheme 4.5A). These compounds were transformed into the corresponding *N*-Boc derivatives and subsequently mesylated giving **4.38** and **4.39**. Compounds **4.38** and **4.39** were used for nucleophilic substitution with phthalimide. Cleavage of the Boc protecting group with TFA led to the free secondary amines (**4.42-4.43**).

The amines **4.46** and **4.49** were synthesized from mono-Boc-protected piperazine (**4.44**) or ethane-1,2-diamine (**4.47**) by Cbz (**4.45**) and phthalimide (**4.48**) protection and subsequent acidic Boc deprotection (Scheme 4.5B & C).


Scheme 4.5. Synthesis of Cbz- or Phthalimide-Protected Amines 4.42-4.43, 4.46 and 4.49^a

^{*a*}Reagents and conditions: A: (a) (1) Boc₂O, NEt₃, CH₂Cl₂, 0 °C, 2 h; (2) mesityl chloride, NEt₃, 0 °C to rt, 3 h, **4.38**: 75% and **4.39**: 74%; (b) potassium phthalimide, DMF, 75 °C, 24 h, **4.40**: 10% and **4.41**: 21%; (c) TFA, CH₂Cl₂, rt, 8-16 h, **4.42** and **4.43**: 100%; B: (a) benzyl chloroformate, NEt₃, CH₂Cl₂, 0°C to rt, overnight, 61%; (b) TFA, CH₂Cl₂, rt, 7 h, 99%; C: (a) Nefkens`reagent, K₂CO₃, H₂O, rt, 16 h, 22%; (b) TFA, CH₂Cl₂, rt, 48 h, 100%.

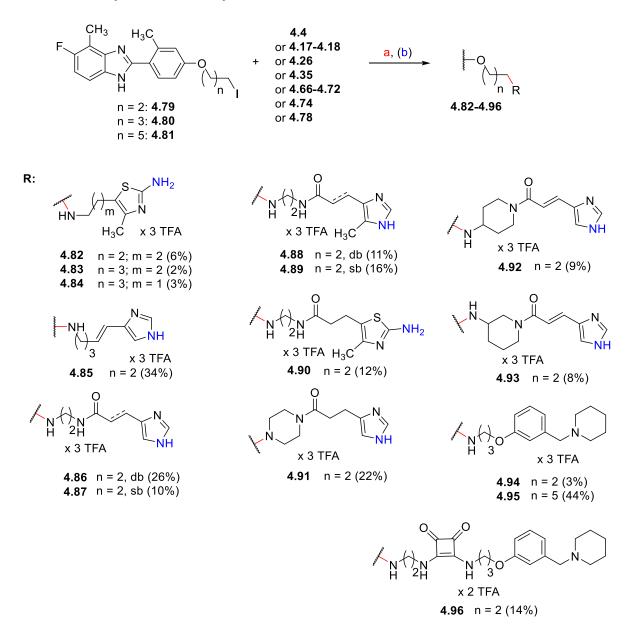
The amine building blocks **4.66-4.72** were prepared as highlighted in Scheme 4.6. The carboxylic acid **4.54** was obtained *via* Horner-Wadsworth-Emmons reaction¹⁸ of the Trtprotected aldehyde **4.51** with triethyl phosphonoacetate followed by saponification of the ethyl ester **4.52** with KOH in EtOH/H₂O. To obtain the hydrogenated derivative **4.55** the C=C double bound of **4.52** was reduced with H₂ and Pd/C.¹⁹ To synthesize the non-methylated precursors (**4.57** and **4.58**), the imidazole of urocanic acid was *N*-Trt-protected. The corresponding reduced derivative (**4.58**) was obtained by hydrogenation of the C=C double bound. Then, the Cbz- or phthalimide-protected amines (**4.43-4.43**, **4.46** and **4.49**, cf. Scheme 4.5) were coupled to carboxylic acids **4.54-4.58** using EDC/HOBt followed by Cbz deprotection with H₂ and Pd/C (**4.63**) or phthalimide deprotection with N₂H₄ (**4.59-4.65**, except **4.63**) to give the amine building blocks **4.66-4.72**.


^{*a*}Reagents and conditions: (a) Trt-Cl, NEt₃, MeCN, rt, 16 h, 43%; (b) NaH, triethyl phosphonoacetate, THF, reflux, 16 h, 18%; (c) Pd/C, H₂ (1 atm), EtOH, rt, overnight, 81%; (d) KOH, EtOH/H₂O, 0 °C to rt, 16-48 h, **4.54**: 79% and **4.55**: 54%; (e) Pd/C, H₂ (1 atm), MeOH, rt, 5 h, 100%; (f) Trt-Cl, NEt₃, DMF, rt, 14 h, **4.57**: 42% and **4.58**: 40%; (g) **4.42**, **4.43**, **4.46** or **4.49**, EDC x HCl, HOBt x H₂O, DIPEA, DMF, 0 °C to rt, 16 h, **4.59**: 34%, **4.60**: 48%, **4.61**: 98%, **4.62**: 79%, **4.63**: 100%, **4.64**: 99% and **4.65**: 55%; (h₁) N₂H₄ x H₂O, EtOH, rt, 16 h, **4.66**: 50%, **4.67**: 60%, **4.68**: 43%, **4.69**: 88%, **4.71**: 80% and **4.72**: 34%; (h₂) Pd/C, H₂ (1 atm), MeOH/THF, rt, 6 h, **4.70**: 62%. sb: single bond. db: double bond. n.a.: not available.

4.2.1.6 Synthesis of the Mixed Squaramate Building Blocks 4.75 and 4.76, the Amine Building Block 4.78 and the Squaramide 4.117

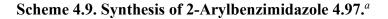
The synthesis of the mixed squaramates 4.75 and 4.76 was adapted from published procedures.^{8, 20} The precursors 4.18 or 4.74 (synthesized as described previously²¹) and 3,4-diethoxycyclobut-3-ene-1,2-dione (4.73) were stirred in EtOH at rt for 3 h or overnight yielding the mixed squaramates 4.75 and 4.76 in very good to excellent yields (Scheme 4.7). The

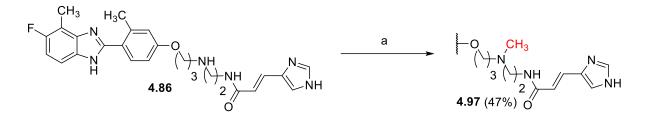
following reaction, leading to squaramides **4.77** (Boc-protected) or **4.117**, was performed in EtOH at rt using *tert*-butyl 2-aminoethylcarbamate or propylamine. Cleavage of the Boc group with TFA led to the corresponding squaramide **4.78** (Scheme 4.7).



^{*a*}Reagents and conditions: (a) EtOH, rt, 3 h or overnight, **4.75**: 90% and **4.76**: 100%; (b) *tert*butyl 2-aminoethylcarbamate, EtOH, rt, overnight, **4.77**: 61%; (c) TFA, CH₂Cl₂, rt, overnight, 100%; (d) propylamine, EtOH, 70 °C, overnight, 69%.

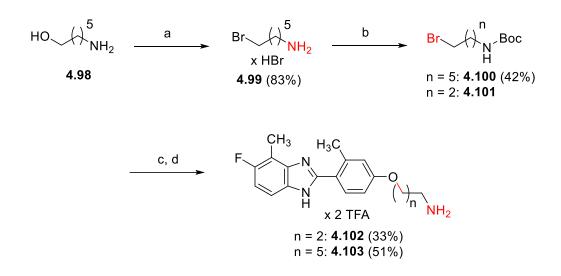
4.2.1.7 Coupling of the Building Blocks with O-Alkylated 2-Arylbenzimidazoles


As shown in Scheme 4.8, the 2-arylbenzimidazoles **4.82-4.96** were synthesized according to the procedure of Savall et al.²² The nucleophilic substitution reaction of the iodine derivatives (**4.79-4.81**) with the respective Trt-protected imidazole- (**4.4**, **4.26** and **4.66-4.72**), Trt-protected thiazole- (**4.17-4.18** and **4.35**), squaramide- (**4.78**) building blocks or 3-(3-(piperidin-1-ylmethyl)phenoxy)propan-1-amine (**4.74**) in the presence of K₂CO₃ in MeCN gave the secondary or tertiary amines. The iodine derivatives (**4.79-4.81**) were synthesized as published previously.² If necessary, the Trt protecting group was removed under acidic conditions. The purification by preparative HPLC led to the 2-arylbenzimidazoles **4.82-4.96** as TFA salts with purities \geq 95%. The isolated yields were poor to moderate, ranging from 2-44%. The tertiary


amine **4.97** was synthesized from the secondary amine **4.86** by Eschweiler-Clarke reaction using an excess of formic acid and formaldehyde (Scheme 4.9).

Scheme 4.8. Synthesis of 2-Arylbenzimidazoles 4.82-4.96^a

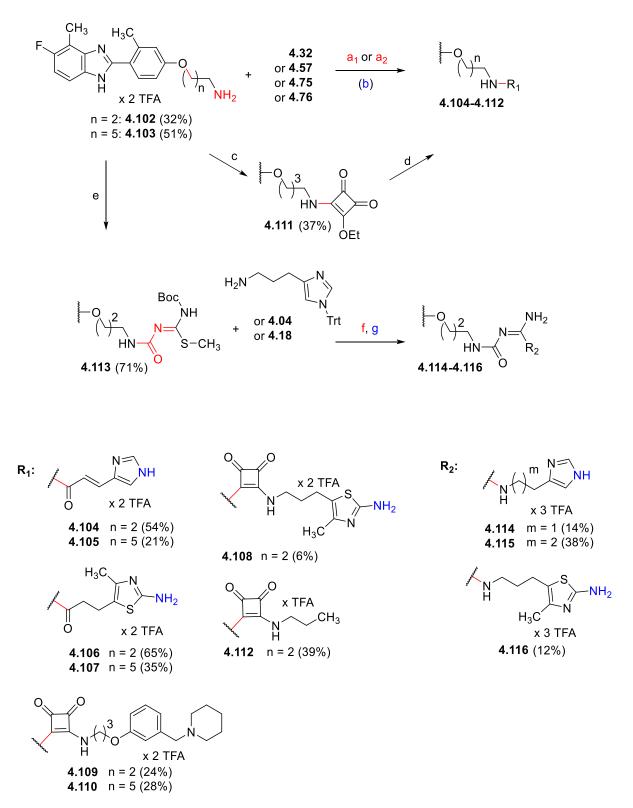
^{*a*}Reagents and conditions: (a) K_2CO_3 , MeCN, microwave, 130 °C, 20 min; (b) in case of **4.82**-**4.93**, TFA, CH₂Cl₂, rt, 7-18 h. db = double bound. sb = single bound. Isolated yields over one or two steps are given in brackets.



^{*a*}Reagents and conditions: (a) formic acid, formaldehyde solution (37%, aq), 95 °C, 4 h. Isolated yield is given in brackets.

The synthesis of **4.102** and **4.103** followed the same alkylation principle (Scheme 4.10). *O*-Alkylation with Boc-protected 6-bromohexanamine **4.100** or Boc-protected 3-bromopropanamine **4.101** and the subsequent acidic deprotection of the Boc group yielded **4.102** and **4.103**, which were used as building blocks for further synthesis.

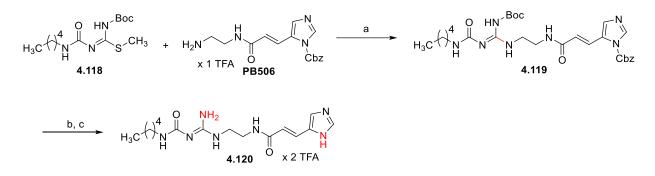
Scheme 4.10. Synthesis of 2-Arylbenzimidazoles 4.102-4.103.^a


^{*a*}Reagents and conditions: (a) HBr (48%, aq), reflux, 3 h, 83%; (b) Boc₂O, NaOH, H_2O/CH_2Cl_2 , rt, 3 h, 42%; (c) 4-(5-fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-methylphenol², Cs₂CO₃, MeCN, microwave, 130 °C, 15 min; (d) TFA, CH₂Cl₂, rt, 7 h, **4.102**: 32%, **4.103**: 51%, over 2 steps.

The amines **4.102** and **4.103** were coupled to carboxylic acids **4.32** or **4.57** using EDC/HOBt followed by Trt- or Boc deprotection using TFA to give the amides **4.104-4.107** as TFA salts (cf. Scheme 4.11).

The amine **4.102** was treated with triphosgene to give the corresponding diisocyanate, which was allowed to react with mono-Boc-protected *S*-methylisothiourea³ yielding the guanidinylating reagent **4.113** (cf. Scheme 4.11). The carbamoylguanidine-type ligands **4.114**-**4.116** were prepared by treating 3-(1-trityl-1H-imidazol-4-yl)-propylamine, **4.4** or **4.18** with the guanidinylating reagent **4.113** in the presence of HgCl₂ and NEt₃. The following acidic deprotection led to the 2-arylbenzimidazoles **4.114-4.116** as TFA salts (cf. Scheme 4.11).

The squaramides **4.108-4.110** were synthesized from the amines **4.102** or **4.103** and mixed squaramates **4.75** or **4.76** in EtOH at elevated temperature (Scheme 4.11). The reaction was very slow, so that the reaction mixture had to be stirred for up to 12 days to get the products in only acceptable yields (6-28%). **4.112** was synthesized in reverse. First, the amine **4.102** was reacted with **4.73** to the corresponding mixed squaramate **4.111**, which was then reacted with the propylamine. The reverse approach did not improve the yield over two steps (14%), and also did not shorten the reaction time.

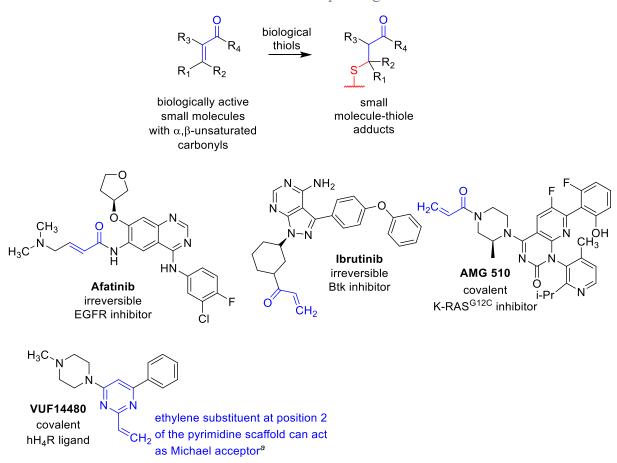


^{*a*}Reagents and conditions: (a1) **4.32** or **4.57**, EDC x HCl, HOBt x H₂O, DIPEA, DMF, 0 °C to rt, 14-18 h; (a₂) **4.75** or **4.76**, NEt₃, EtOH, 60 °C, 7-12 d; (b) TFA, CH₂Cl₂, rt, 7 h; (c) **4.73**, NEt₃, EtOH, rt, 18 d; (d) propylamine, EtOH, 70 °C, 24 h; (e) (1) triphosgene, DIPEA, CH₂Cl₂, 0 °C, 1 h; (2) *N-tert*-butoxycarbonyl-*S*-methylthiourea³, CH₂Cl₂, 0 °C to rt, 3.5 h; (f) HgCl₂, NEt₃, CH₂Cl₂, rt, 4-18 h; (g) TFA, CH₂Cl₂, rt, 7-18 h. Isolated yields over one or two steps are given in brackets.

4.2.1.8 Synthesis of the Carbamoylguanidine 4.120

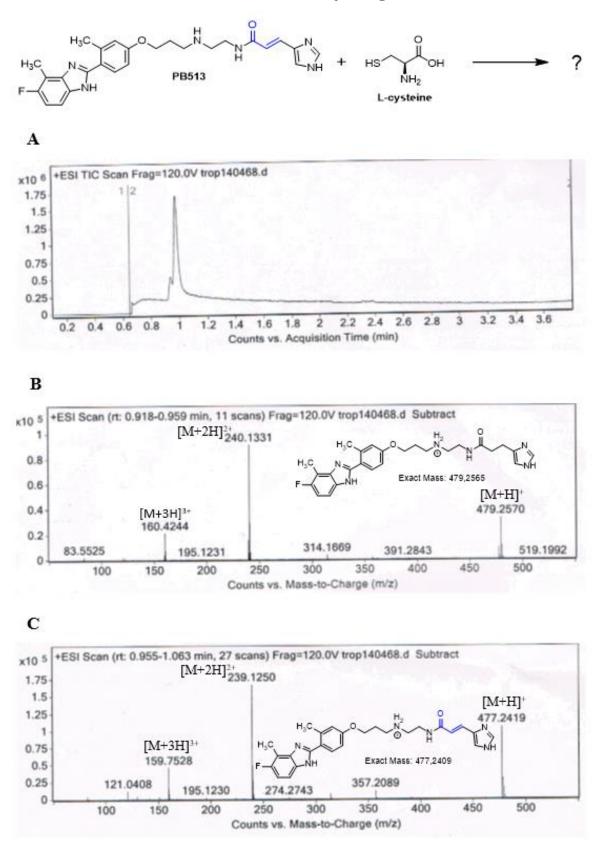
The protected carbamoylguanidine-type intermediate **4.119** was prepared by treating the building block PB506² (synthesized as described by Dr. Paul Baumeister²) with the guanidinylating reagent **4.118** (synthesized as described by Biselli et al.⁵) in the presence of HgCl₂ and NEt₃ (Scheme 4.12). Treating the protected carbamoylguanidine-type intermediate **4.119** first with H₂ and Pd/C and second with TFA gave compound **4.120**.

Scheme 4.12. Synthesis of Carbamoylguanidine-Type Ligand 4.120^a

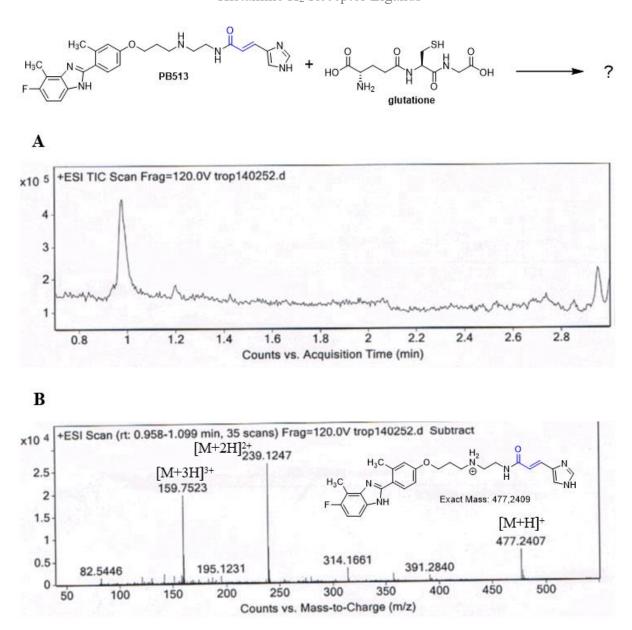

^{*a*}Reagents and conditions: (a) NEt₃, HgCl₂, CH₂Cl₂, overnight, rt, 32%; (b) H₂ (8 bar), Pd/C, THF/MeOH, rt, 2 h; (c) TFA, CH₂Cl₂, 8 h, rt, 11% over 2 steps.

4.2.2 Covalent Binding Experiments

Bioactive compounds (e.g. afatanib, ibrutinib, AMG 510, VUF14480, cf. Figure 4.4) containing Michael acceptors are known to form irreversible addition products with cysteine residues in specific proteins.²³⁻³⁰ Since PB513 also contains a Michael acceptor we wanted to investigate whether it is able to form a covalent adduct with glutathione or less sterically demanding L-cysteine in binding buffer at pH 7.4 (same conditions as in the binding assay) in a preliminary experiment. This is a literature known screening method to identify covalent modifiers.²⁵ For this purpose, PB513 was mixed with glutathione or L-cysteine in a 1:1 molar ratio and incubated for 5 h at 37 °C with shaking. Afterwards, the incubated mixtures were analyzed by LC-MS. PB513 did not react with either glutathione or L-cysteine in a covalent manner (Figures 4.5 & 4.6). Surprisingly, we observed a small peak with a mass of 479.2570 Da after the incubation of PB513 with L-cysteine, which equals the mass of the hydrogenated PB513 (cf. Figure 4.5B). This might be a side-product of the oxidation of L-cysteine to cystine (this was not investigated further). The reaction is known to occur in neutral to alkaline aqueous solution when air is admitted via a radical mechanism (thio-ene-reaction).³¹⁻³²


4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as

Histamine H₂ Receptor Ligands


Figure 4.4. Published covalent ligands containing Michael acceptors.²³⁻²⁵ *a*Karagiorguo et al.³³ & Liu et al.³⁴ EGFR: epidermal growth factor receptor. Btk: Brutons's tyrosine kinase. KRAS^{G12C}: Kirsten rat sarcoma protein p.G12C mutant.

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as

Figure 4.5. Reaction control of the L-cysteine addition to PB513 by LC-MS. A: + ESI total ion current scan. B: + ESI scan ($t_R = 0.918-0.959$ min). C: + ESI scan ($t_R = 0.955-1.063$ min).

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as Histamine H₂ Receptor Ligands

Figure 4.6. Reaction control of the glutathione addition to PB513 by LC-MS. A: + ESI total ion current scan. B: + ESI scan ($t_R = 0.958-1.099$ min).

4.2.3 Pharmacological Studies

The synthesized target compounds **4.82-4.97**, **4.104-4.110**, **4.112**, **4.114-4.117** and **4.120** (cf. Figure 4.7) were characterized with respect to binding at H₁-4 receptors (cf. Table 4.1). Moreover, functional activity of compounds having a p $K_i > 6$ was determined at the hH₂R using [³⁵S]GTP γ S binding assay as well as mini-G protein and β -arrestin2 recruitment assays (cf. Table 4.2). Not all compounds (p $K_i > 6$) could be investigated using the [³⁵S]GTP γ S binding assay, because the [³⁵S]GTP γ S reagent was no longer commercially available in sufficient purity and at an affordable price throughout the timeframe of this project.³⁵

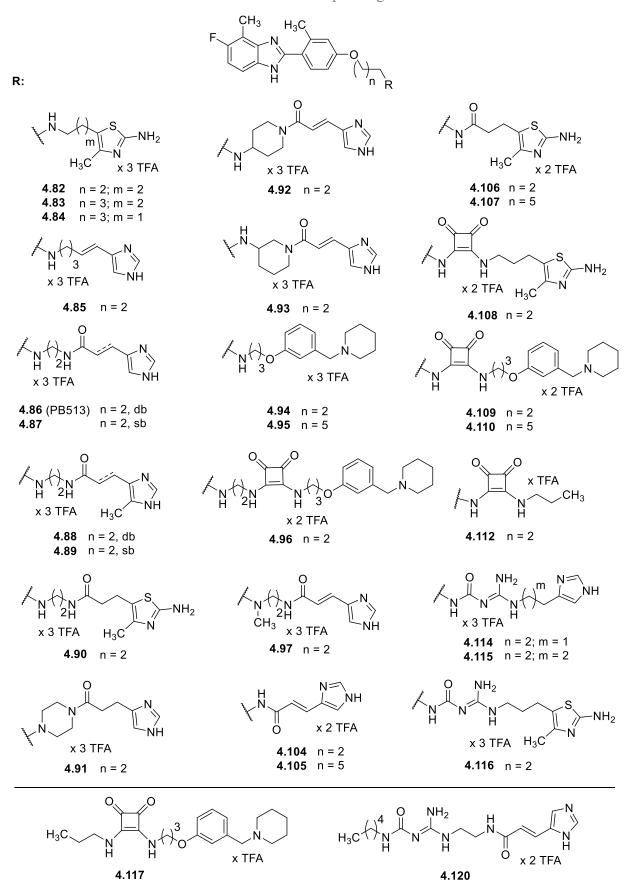


Figure 4.7. Structural overview of investigated 2-arylbenzimidazoles 4.82-4.97, 4.104-4.110, 4.112, 4.114-1.116, the squaramide 4.117, and the carbamoylguanidine 4.120.

4.2.3.1 H₂R Affinities and Receptor Subtype Selectivities

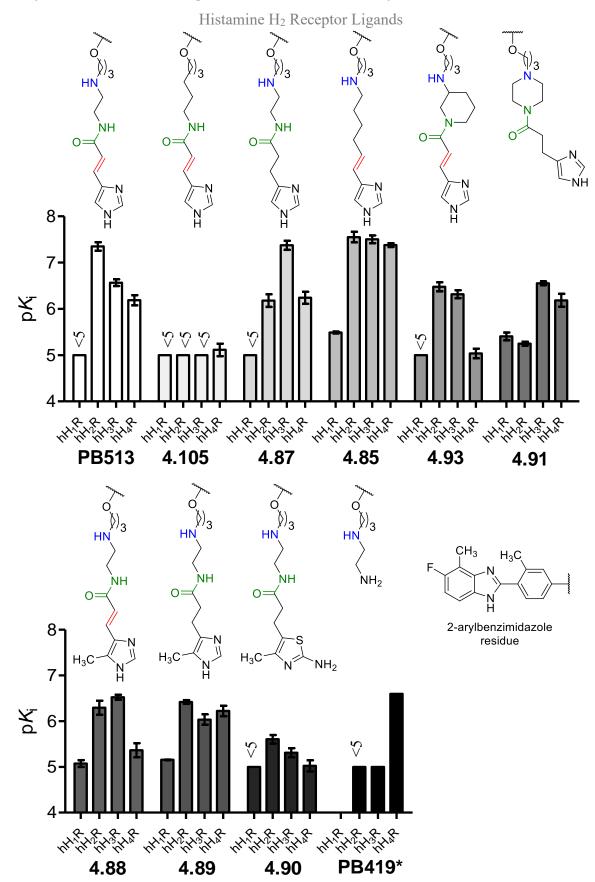
To study the subtype selectivity, the compounds **4.82-4.97**, **4.104-4.110**, **4.112**, **4.114-4.117** and **4.120** were tested at the hH₁₋₄R in competition binding studies using membrane preparations of Sf9 insect cells expressing the hH₁R + RGS4, hH₂R-G_{sαS} fusion protein, hH₃R + G_{αi2} + G_{β1}γ₂ or hH₄R + G_{αi2} + G_{β1}γ₂, respectively.⁴ The results are summarized in Table 4.1. Moreover, the resynthesized compound PB513 (H₂R-G_{sαS}: p*K*_i: 7.35, cf. Table 4.1) was investigated again in the same assays, but it was not possible to reproduce the results obtained from Dr. P. Baumeister exactly (H₂R-G_{sαS}: p*K*_i: 7.84²). The affinity of PB513 to the H₃R (p*K*_i: 6.57) and particularly to the H₄R (p*K*_i: 6.19) was higher as reported previously (H₃R p*K*_i: 6.16², H₄R p*K*_i: 5.67²). Nonetheless, due to the high H₂R-G_{sαS} affinity it was worth to further explore the SAR of 2-arylbenzimidazoles as H₂R ligands.

Removing (**4.105**, pK_i : <5) or methylation (**4.97**, pK_i : 5.98) of the secondary amine in the aliphatic chain of **4.86** (PB513, pK_i : 7.35) resulted in a dramatic affinity drop at the hH₂R-Gs_{αs} fusion protein. Therefore, the synthesis of a radioligand by methylation the secondary amine of PB513 would not be advised. The same observation regarding the H₂R-Gs_{αs} affinity was made by removing the double bound (**4.87**, pK_i : 6.18). The removal of the amide moiety (**4.85**) did not change the H₂R-Gs_{αs} affinity (pK_i : 7.55) but increased the hH₃- (pK_i : 7.50) and hH₄-(pK_i : 7.38) receptor affinities. The incorporation of the ethyl linker into an aliphatic ring **4.91** (piperazine, pK_i : 5.25), **4.92** (4-aminopiperidine, pK_i : 6.33), **4.93** (3-aminopiperidine, pK_i : 6.48) and the exchange of imidazole ring by 4-methylimidazole (**4.88** (pK_i : 6.30), **4.89** (pK_i : 6.42)) or 2-aminothiazole (**4.90**, pK_i : 5.60) had also a negative effect on the H₂R-G_{sαs} affinity. For a better visualization of the effects of the structural changes of PB513 on the H₂R-G_{sαs} affinity and subtype selectivity, the obtained results are also shown in a bar chart (Figure 4.8).

Moreover, introduction of 3-[3-(piperidin-1-ylmethyl)phenoxy)propan-1-amine (4.74, a well-known substructure of H₂R ligands, e.g. (iod)aminopotentidine³⁶, BMY25368⁶, UR-DE257⁸) resulted in compounds 4.94 (propyl-spacer, pK_i : 6.39) and 4.95 (hexyl-spacer, pK_i : 6.77) with three-digit nanomolar affinity. The introduction of the squaramide- (e.g. 4.96, 4.109, 4.110) or carbamoylguanidine-group (4.114-4.116) in the linker was well tolerated and resulted in some compounds with two-digit nanomolar affinity (pK_i : 7.07-7.76). In conclusion, squaramide 4.110 showed the best subtype selectivity profile (K_i H_{1,3,4}R/ K_i H₂R; H₁:H₃:H₄ 87:19:131), while having two-digit nanomolar H₂R-G_{sαS} affinity (pK_i : 7.30). However, since all of the compounds did not show acceptable (selectivity ratios > 100) subtype selectivity, we did not further investigate them for their binding affinity towards dopamine receptors.

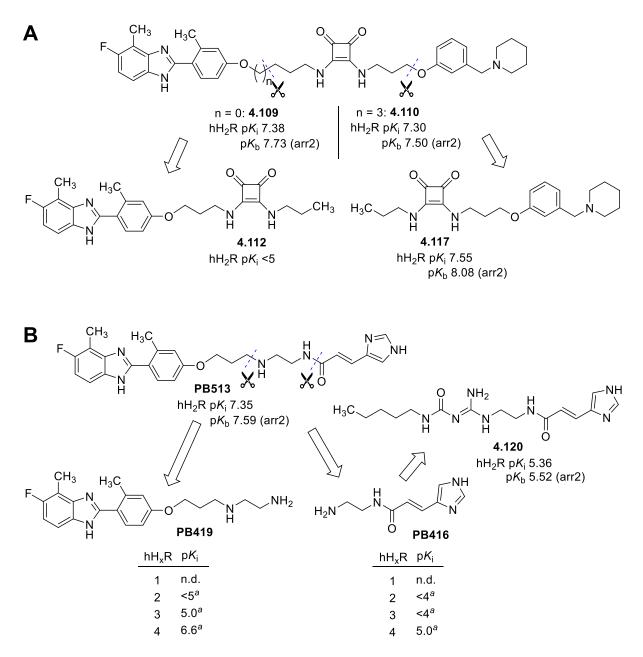
		p <i>K</i> i								H ₂ R selectivity			
His $6as^2$ 1 H ₁ H ₃ H ₄ H ₃ H ₄ His $562 \pm$ 3 $658 \pm$ 42 $7.60 \pm$ 45 9 0.1 4.82 $5.13 \pm$ 2 $6.32 \pm$ 4 $5.98 \pm$ 2 $7.32 \pm$ 3 16 2 0.1 4.83 <5 2 $6.21 \pm$ 4 $5.66 \pm$ 2 $6.06 \pm$ 3 >16 4 1 4.85 $6.99 \pm$ 2 $6.53 \pm$ 3 $6.02 \pm$ 0.07 0.13 4.85 $5.49 \pm$ 2 $7.55 \pm$ 3 $6.57 \pm$ 3 $6.19 \pm$ 3 > 223 6 14 $(PB513^3)$ 0.09 0.07 0.11 0.10 0.13 15 0.1 0.9 4.87 <5 2 $6.30 \pm$ 3 $6.61 \pm$ 3 $5.21 \pm$ 2 17 0.5 12 </th <th>compd.</th> <th>hH_1R^a</th> <th>N</th> <th></th> <th>N</th> <th>hH₂R^c</th> <th>N</th> <th>hH₄R^d</th> <th>N</th> <th colspan="3">$K_{i}(H_{1,3,4}R)/K_{i}(H_{2}R)$</th>	compd.	hH_1R^a	N		N	hH ₂ R ^c	N	hH₄R ^d	N	$K_{i}(H_{1,3,4}R)/K_{i}(H_{2}R)$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												H ₄	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	His		3		48		42		45	9	0.1		
4.83 0.16^* 0.16 0.08^* 0.13 >16 4 1 4.83 <5 2 $6.21 \pm$ 4 $5.66 \pm$ 2 $6.06 \pm$ 3 >16 4 1 4.84 $4.96 \pm$ 2 $6.53 \pm$ 3 $6.03 \pm$ 2 $6.64 \pm$ 3 37 3 0.8 0.09^* 0.12 0.02^* 0.13 0.13 0.13 115 1 1 4.85 $5.49 \pm$ 2 $7.55 \pm$ 3 $6.57 \pm$ 3 $6.19 \pm$ 3 > 223 6 14 4.86 <5 2 $7.35 \pm$ 3 $6.57 \pm$ 3 $6.19 \pm$ 3 > 223 6 14 4.87 <5 2 $6.30 \pm$ 3 $6.60 \pm$ 3 $5.21 \pm$ 2 17 0.5 12 4.87 <5 2 $6.30 \pm$ 3 $6.60 \pm$ 3 $5.21 \pm$ 2 17 0.5 12 4.88 $5.08 \pm$ 2 $6.42 \pm$ 3 $6.60 \pm$ 3 $5.21 \pm$ 2 17 0.5 12 4.89 $5.16 \pm$ 2 $6.42 \pm$ 3 $6.65 \pm$ 3 $6.19 \pm$ 3 0.7 0.1 0.1 4.90 <5 2 $5.60 \pm$ 3 $6.55 \pm$ 3 $6.19 \pm$ 3 0.7 0.1 0.1 4.91 $5.41 \pm$ 2 $5.25 \pm$ 3 $6.55 \pm$ 3 $6.19 \pm$ 3 0.7 0.1 0.1 <th>4.92</th> <th></th> <th>2</th> <th></th> <th>4</th> <th></th> <th>2</th> <th></th> <th>2</th> <th>10</th> <th>2</th> <th>0.1</th>	4.92		2		4		2		2	10	2	0.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.82		2		4		2		3	16	2	0.1	
4.84 4.96 ± 2 0.09 2.633 ± 3 0.12 0.02^* 0.02 0.07 0.13 37 0.13 37 37 3 0.13 4.85 5.49 ± 2 0.03^* $2.7.55 \pm 3$ 0.09 7.50 ± 3 0.04 7.38 ± 3 0.04 115 11 1 1 4.86 (PBS13) 5.49 ± 2 0.09 7.35 ± 3 0.09 6.19 ± 3 0.07 0.11 >2223 6 14 4.86 (PBS13) <5 0.09 2 0.14 6.57 ± 3 0.09 6.19 ± 3 0.11 >223 6.24 ± 3 >155 0.1 0.1 0.9 4.87 0.01^* <5 0.14 2 0.14 6.60 ± 3 0.04 5.21 ± 2 0.01^* 17 0.15 0.10 0.01^* 4.88 0.01^* 5.08 ± 2 0.01^* 6.60 ± 3 0.04 5.21 ± 2 0.01^* 17 0.01 0.15 0.04 0.01^* 0.11 4.89 0.01^* 5.16 ± 2 0.01^* 6.42 ± 3 0.09 6.60 ± 3 0.01^* 5.02 ± 3 0.01^* 2.4 0.02^* 4.90 0.12^* 5.52 ± 3 $0.06 + 0.02^*$ 6.19 ± 3 0.01^* 0.7 0.12^* 0.10 0.014 0.11 0.12 4.93 0.12^* 5.25 ± 3 0.10^* 6.55 ± 3 0.10^* 6.19 ± 3 0.02^* 0.22^* 0.03^* 0.11^* 1.28^* 0.03^* 4.94 0.12^* 5.66 ± 4 $0.05^* 3$ 6.77 ± 4 0.10^* 7.13 ± 3 5.35 ± 3 5.01 11^* 111^* 0.12^* 4.94 0.66 ± 4 6.39 ± 4 0.01^* $7.38 \pm$	1 92		r		1		r		2	>16	4	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.83	< 3	Z		4		Z		3	~10	4	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 91	106	r		2		r		2	27	2	0.8	
4.85 5.49 ± 2 2.755 ± 3 7.50 ± 3 7.38 ± 3 115 1 1 4.86 < 5 2 7.35 ± 3 6.57 ± 3 6.19 ± 3 >223 6 14 (PB513 ²) 0.09 0.07 0.11 3 >223 6 14 4.87 < 5 2 6.18 ± 3 7.37 ± 3 6.24 ± 3 >15 0.1 0.9 4.88 5.08 ± 2 6.30 ± 3 6.60 ± 3 5.21 ± 2 17 0.5 12 0.10^* 0.15 0.04 0.01^* 0.11 0.13 18 2 2 0.01^* 0.04 0.17^* 0.11 0.11 -1 0.12 -1 4.89 5.16 ± 2 6.42 ± 3 6.65 ± 3 6.19 ± 3 0.7 0.1 0.1 4.90 < 5 2 5.60 ± 3 5.31 ± 2 5.02 ± 3 0.7 0.1 0.1 4.91 5.41 ± 2 5.25 ± 3 6.55 ± 3 6.19 ± 3 0.7 0.1 0.1 4.92 4.98 ± 2 6.33 ± 3 5.82 ± 2 5.04 ± 3 >30 1 28 0.10 0.04 0.04 0.04 0.14 2 2 3 0.7 0.1 4.92 4.98 ± 2 6.33 ± 3 5.82 ± 2 5.04 ± 3 5.01 ± 3 1.28 0.10 0.12^* 0.04 0.02^* 0.02^* 0.12^* 2 3 0.2 13 4.93 $< 5.66 \pm 4$ 6.39 ± 4 <th< th=""><th>4.04</th><th></th><th>2</th><th></th><th>3</th><th></th><th>Z</th><th></th><th>3</th><th>57</th><th>3</th><th>0.8</th></th<>	4.04		2		3		Z		3	57	3	0.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 85		2		3		3		3	115	1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.05		2		5		5		5	115	1	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 86		2		3		3		3	>223	6	14	
4.87<5		~5	2		5		5		5	- 223	0	17	
4.88 0.14 0.10 0.13 0.04 17 0.5 12 4.89 5.16 ± 2 6.30 ± 3 6.60 ± 3 5.21 ± 2 $0.01*$ 17 0.11 $0.01*$ 4.90 <5 2 6.42 ± 3 6.04 ± 2 6.23 ± 3 $0.01*$ 18 2 2 4.90 <5 2 5.60 ± 3 0.09 5.31 ± 2 $0.14*$ 5.02 ± 3 0.12 >4 2 4 4.91 5.41 ± 2 $0.12*$ 5.25 ± 3 0.09 6.55 ± 3 $0.04*$ 6.19 ± 3 $0.02*$ 0.7 0.1 0.1 4.92 4.98 ± 2 $0.12*$ 6.33 ± 3 0.06 5.82 ± 2 $0.02*$ 5.04 ± 2 $0.03*$ 22 3 3 1 22 2 22 3 19 $0.12*$ 4.93 <5 2 6.48 ± 3 0.10 6.32 ± 3 $0.10*$ 5.04 ± 3 $0.03*$ 5 0.11 11 0.12 22 $0.03*$ 30 1 28 $0.03*$ 4.94 5.66 ± 4 6.62 ± 4 6.39 ± 4 $0.17*$ 7.38 ± 3 5.35 ± 3 5.04 ± 3 5.36 ± 2 5.01 11 11 0.12 4.95 6.62 ± 4 $0.01*$ 7.13 ± 3 0.01 5.32 ± 2 $0.10*$ 7.13 ± 3 $0.11*$ 5.30 ± 2 $0.12*$ 7.02 ± 3 $0.12*$ 4.96 5.66 ± 4 1.56 ± 4 7.13 ± 3 $0.11*$ 5.80 ± 2 $0.13*$ 7.0 ± 2 10 7.0 ± 2 10 7.0 ± 2 10 4.96 5.66 ± 4 $0.11*$ 7.5 ± 2 $0.10*$ 2.5 ± 2 2.52 ± 2 2.5 ± 2 <br< th=""><th></th><th><5</th><th>2</th><th></th><th>3</th><th></th><th>3</th><th></th><th>3</th><th>>15</th><th>0.1</th><th>09</th></br<>		<5	2		3		3		3	>15	0.1	09	
4.88 5.08 ± 2 0.10^* 26.30 ± 3 0.15 6.60 ± 3 0.04 5.11 ± 2 0.01^* 17 0.01 18 0.01^* 2 0.01^* 4.89 5.16 ± 2 0.01^* 6.42 ± 3 0.01^* 6.04 ± 2 0.17^* 6.23 ± 3 0.11 18 2 2 2 2 2 4.90 <52 0.01^* 5.60 ± 3 0.09 5.31 ± 2 0.09 5.02 ± 3 0.14^* >4 2 2 4 4 2 4.91 5.41 ± 2 0.12^* 5.25 ± 3 0.04 6.55 ± 3 0.04 6.19 ± 3 0.04 0.7 0.14 0.7 0.14 4.92 4.98 ± 2 0.12^* 6.33 ± 3 0.06 5.82 ± 2 0.02^* 5.04 ± 2 0.03^* 22 22 3 30 1 28 4.93 <52 6.66 ± 4 0.12 6.39 ± 4 0.17 7.38 ± 3 0.10 5.35 ± 3 0.10 50.1 11 4.94 5.66 ± 4 6.69 ± 4 0.17 0.10 0.09 0.12^* 30.2 13 13 0.12 $23.0 1$ 1 28 0.11 4.95 6.66 ± 4 0.01 0.17 0.01 0.10 0.03^* 0.12^* 0.01 0.11 0.03^* 0.12^* 0.11 0.12^* 0.01^* 0.12^* 0.11 0.12^* 0.11 0.01^* 0.12^* 0.11 0.011 0.12^* 0.11^* 0.12^* 0.11^* 0.12^* 0.11^* 0.12^* 0.11^* 0.12^* 0.11^* 0.12^* 0.10^* 0.12^* 0.10^* 0.12^* 0.10^* 0.12^* 0.10^* 0.12^* 0.10^* <th>1.07</th> <th></th> <th>2</th> <th></th> <th>5</th> <th></th> <th>5</th> <th></th> <th>5</th> <th>- 15</th> <th>0.1</th> <th>0.9</th>	1.07		2		5		5		5	- 15	0.1	0.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.88	5 08 +	2		3		3		2	17	0.5	12	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2		5		5		2	1,	0.2	12	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.89		2		3		2		3	18	2	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		5		-		5	10	-	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.90		2		3		2		3	>4	2	4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			-				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.91	5 41 +	2	5 25 +	3	6 55 +	3	6 19 +	3	0.7	0.1	0.1	
4.92 4.98 ± 2 6.33 ± 3 5.82 ± 2 5.04 ± 2 22 3 19 4.93 <5 2 6.48 ± 3 6.32 ± 3 5.04 ± 3 >30 1 28 0.10 0.08 0.10 0.08 0.10 0.10 0.10 111 4.94 5.66 ± 4 6.39 ± 4 7.38 ± 3 5.35 ± 3 5 0.1 11 0.12 0.17 0.10 0.19 0.12^* 3 0.2 13 4.95 6.29 ± 3 6.77 ± 4 7.45 ± 3 5.66 ± 2 3 0.2 13 0.01 0.17 0.09 0.12^* 70 2 155 0.11 0.11 0.10 0.03^* 2 >10 0.2 1.5 4.97 <5 2 5.98 ± 3 6.64 ± 3 5.80 ± 2 >10 0.2 1.5 0.10 0.11 0.10 0.03^* 2 >10 0.2 1.5 4.104 <5 2 $<5.98 \pm 3$ 6.64 ± 3 5.80 ± 2 >10 0.2 1.5 4.104 <5 2 <5.2 2 2.52 2 2 >2 2 4.105 <5 2 5.35 ± 3 4.96 ± 2 <5 2 >2 2 >2 2 4.106 <5 2 5.35 ± 3 4.96 ± 2 <5 2 >2 2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 <t< th=""><th>10/1</th><th></th><th>2</th><th></th><th>5</th><th></th><th>5</th><th></th><th>5</th><th>0.7</th><th>0.1</th><th>0.1</th></t<>	10/1		2		5		5		5	0.7	0.1	0.1	
4.93 0.12^* 0.06 0.02^* 0.03^* 0.03^* 0.03^* 0.01 0.03^* 0.01 0.03^* 0.10 0.12^* 0.10^* 0.12^* 0.01^* 0.01^* 0.02^* 0.12^* 0.2^* 10^* 0.2^* 11^* 4.96 5.66 ± 4 7.51 ± 3 7.13 ± 3 5.32 ± 2 70^* 2^* 155^* 0.11^* 0.10^* 0.10^* 0.03^* 2^* 70^* 2^* 155^* 0.11^* 0.10^* 0.11^* 0.03^* 2^* 70^* 2^* 155^* 0.10^* 0.11^* 0.03^* 2^*	4.92		2		3		2		2	2.2	3	19	
4.93 <5 2 $6.48 \pm$ 3 $6.32 \pm$ 3 $5.04 \pm$ 3 >30 1284.94 $5.66 \pm$ 4 $6.39 \pm$ 4 $7.38 \pm$ 3 $5.35 \pm$ 350.1110.120.170.100.1911114.95 $6.29 \pm$ 3 $6.77 \pm$ 4 $7.45 \pm$ 3 $5.66 \pm$ 230.2134.96 $5.66 \pm$ 4 $7.51 \pm$ 3 $7.13 \pm$ 3 $5.32 \pm$ 27021550.110.110.100.03*110.21.514.97 <5 2 $5.98 \pm$ 3 $6.64 \pm$ 3 $5.80 \pm$ 2>100.21.50.100.110.03*110.03*1114.104 <5 2 <5 2 $4.92 \pm$ 2 $5.06 \pm$ 24.105 <5 2 <5 2 <5.2 $5.12 \pm$ 24.106 <5 2 $5.35 \pm$ 3 $4.96 \pm$ 2 <5 2 >2 2 >2 $>$			-		5		-		-		2	17	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.93		2		3		3		3	>30	1	28	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
4.95 6.29 ± 3 6.77 ± 4 7.45 ± 3 5.66 ± 2 3 0.2 13 4.96 5.66 ± 4 7.51 ± 3 7.13 ± 3 5.32 ± 2 70 2 155 0.11 0.11 0.10 0.03^* 2 >10 0.2 1.5 4.97 <5 2 5.98 ± 3 6.64 ± 3 5.80 ± 2 >10 0.2 1.5 4.104 <5 2 <5.2 2 4.92 ± 2 5.06 ± 2 $ 4.104$ <5 2 <5 2 4.92 ± 2 5.06 ± 2 $ 4.105$ <5 2 <5 2 <5.2 2 2 5.06 ± 2 $ 4.106$ <5 2 $<5.35 \pm 3$ 4.96 ± 2 <5.2 2 2 2 2 2 2 2 4.107 <5 2 5.31 ± 3 4.97 ± 2 <5 2 >2 2	4.94	$5.66 \pm$	4		4		3		3	5	0.1	11	
4.96 0.01 0.17 0.09 0.12^* 70 2 155 4.96 $5.66 \pm$ 4 $7.51 \pm$ 3 $7.13 \pm$ 3 $5.32 \pm$ 2 70 2 155 4.97 <5 2 $5.98 \pm$ 3 $6.64 \pm$ 3 $5.80 \pm$ 2 >10 0.2 1.5 4.104 <5 2 <5 2 $4.92 \pm$ 2 $5.06 \pm$ 2 $ 4.104$ <5 2 <5 2 $4.92 \pm$ 2 $5.06 \pm$ 2 $ 4.105$ <5 2 <5 2 <5 2 $5.12 \pm$ 2 $ 4.106$ <5 2 $5.35 \pm$ 3 $4.96 \pm$ 2 <5 2 >2 >2 >2 4.107 <5 2 $5.31 \pm$ 3 $4.97 \pm$ 2 <5 2 >2 >2 >2 4.108 <5 2 $6.45 \pm$ 3 <5 2 <5 2 >2 >2 >2 >2 4.108 <5 2 $6.45 \pm$ 3 <5 2 <5 3 >28 >28 >28 4.109 $5.35 \pm$ 2 $7.38 \pm$ 3 $6.57 \pm$ 3 $5.48 \pm$ 2 107 6 79		0.12		0.17		0.10		0.19					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.95	$6.29 \pm$	3	$6.77 \pm$	4	$7.45 \pm$	3	$5.66\pm$	2	3	0.2	13	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.01		0.17		0.09		0.12*					
4.97<5	4.96	$5.66 \pm$	4	$7.51 \pm$	3	$7.13 \pm$	3	$5.32 \pm$	2	70	2	155	
4.104<5		0.11		0.11		0.10		0.03*					
4.104<5	4.97	<5	2		3	$6.64 \pm$	3		2	>10	0.2	1.5	
4.105 <5 2 <5 2 <5 2 <5 2 <5 2 <5 2 <5 2 <5 2 <5 2 <5 2 $< -$													
4.105<5	4.104	<5	2	<5	2		2		2	-	-	-	
4.106<5													
4.106<5	4.105	<5	2	<5	2	<5	2		2	-	-	-	
4.107 0.15 0.10^* 0.10^* 4.107 <5 2 $5.31 \pm$ 3 $4.97 \pm$ 2 <5 2 >2 >2 >2 0.12 0.20^* 0.20^* 0.13 0.13 >28 >28 >28 >28 4.109 $5.35 \pm$ 2 $7.38 \pm$ 3 $6.57 \pm$ 3 $5.48 \pm$ 2 107 6 79		_					_				_	_	
4.107<5	4.106	<5	2		3		2	<5	2	>2	2	>2	
4.108 0.12 <5 0.20^* $6.45 \pm$ 3 <5 2 <5 2 <5 28 >28 >28 >28 4.109 $5.35 \pm$ 2 $7.38 \pm$ 3 $6.57 \pm$ 3 $5.48 \pm$ 2107 679		_	-		-		-	_	-		-		
4.108<5	4.107	<5	2		3		2	<5	2	>2	2	>2	
0.13 0.13 5.35 ± 2 7.38 ± 3 6.57 ± 3 5.48 ± 2 107 6 79		_	-		-		-	_	-	• •	• •	• •	
4.109 5.35 ± 2 7.38 ± 3 6.57 ± 3 5.48 ± 2 107 6 79	4.108	<5	2		3	<5	2	<5	3	>28	>28	>28	
	1 100	5 2 5 1	~		2		2	E 40 ·	~	107	7	70	
0.12* 0.10 0.10 0.15*	4.109		2		3		3		2	107	6	79	
		0.12*		0.10		0.10		0.15*		I			

 Table 4.1. Binding Data (pKi values) at Histamine Receptor Subtypes^a


4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as

Histamine H₂ Receptor Ligands

4.110	$\begin{array}{c} 5.36 \pm \\ 0.04 * \end{array}$	2	$\begin{array}{c} 7.30 \pm \\ 0.14 \end{array}$	3	$\begin{array}{c} 6.02 \pm \\ 0.10^{*} \end{array}$	2	$\begin{array}{c} 5.18 \pm \\ 0.04 \ast \end{array}$	2	87	19	131
4.112	<5	2	<5	2	<5	2	$\begin{array}{c} 4.90 \pm \\ 0.16* \end{array}$	2	-	-	-
4.114	5.89 ± 0.13	3	7.76 ± 0.10	3	$\begin{array}{c} 8.24 \pm \\ 0.07 \end{array}$	3	$\begin{array}{c} 6.53 \pm \\ 0.16 \end{array}$	3	74	0.3	17
4.115	$\begin{array}{c} 6.06 \pm \\ 0.01 \ast \end{array}$	2	$\begin{array}{c} 7.76 \pm \\ 0.09 \end{array}$	3	$\begin{array}{c} 8.22 \pm \\ 0.01 \end{array}$	3	$\begin{array}{c} 7.34 \pm \\ 0.09 \end{array}$	3	50	0.3	3
4.116	$\begin{array}{c} 5.64 \pm \\ 0.06 \ast \end{array}$	2	$\begin{array}{c} 7.07 \pm \\ 0.09 \end{array}$	3	$\begin{array}{c} 6.02 \pm \\ 0.07 \end{array}$	3	5.97 ± 0.14*	2	26	11	13
4.117	<5	3	$\begin{array}{c} 7.55 \pm \\ 0.04 \end{array}$	3	n.d.		n.d.		>355	-	-
4.120	n.d.		5.36 ± 0.12*	2	n.d.		n.d.		-	-	-


Table 4.1. (continued)

^{*a*}Competition binding assay on membrane preparations of Sf9 insect cells expressing the hH₁R + RGS4, the hH₂R-G_{sαS}, the hH₃R + G_{αi2} + G_{β1γ2} or the hH₄R + G_{αi2} + G_{β1γ2}. ^{*b*}Displacement of [³H]mepyramine ($K_d = 4.5 \text{ nM}^4$, c = 5 nM). ^{*c*}Displacement of [³H]UR-DE257⁸ ($K_d = 12.1 \text{ nM}^{38}$, c = 20 nM). ^{*d*}Displacement of [³H]UR-PI294³⁹ ($K_d = 3 \text{ nM}^{40}$, c = 2 nM). ^{*e*}Displacement of [³H]histamine ($K_d = 47.5 \text{ nM}^{41}$, c = 30 nM). Presented are mean values ± SEM (N ≥3) or SE (N = 2, indicated with *) of N (2-3 for p K_i values ≤ 6.25 or 3-4 for p K_i values > 6.25) independent experiments (each performed in duplicate or triplicate). n.d.: not determined. Displacement curves of representative 2-arylbenzimidazoles **4.85**, **4.86** (PB513), **4.88**, **4.108**, **4.110** and **4.114** are shown in Appendix 3 (Figure App3.97).

Figure 4.8. Selectivity profiles of selected 2-arylbenzimidazoles. *Binding data from PhD thesis of Dr. P. Baumeister.

Figure 4.9. An investigation into the importance of the role of a 2-arylbenzimidazole motif for the hH₂R affinity of **4.109-4.110** (**A**) & PB513 (**B**). ^{*a*}Data from the Ph.D. thesis of Dr. P. Baumeister.²

In order to investigate whether the 2-arylbenzimidazole motif in compounds **4.109** and **4.110** has any influence on H₂R-G_{sαS} affinity and subtype-selectivity, we synthesized and tested the two control compounds **4.112** and **4.117** (Figure 4.9A). The binding data indicate that the 2-arylbenzimidazole residue does apparently not contribute to the H₂R-G_{sαS} affinity because the control substance **4.117** (p K_i : 7.55), without the 2-arylbenzimidazole, had a slightly higher

affinity at the H₂R-G_{sαS} fusion protein (cf. p K_i : **4.109**: 7.38; **4.110**: 7.30). In addition, the substance **4.112** without the 3-(piperidin-1-ylmethyl)phenol showed no affinity within the investigated concentration range at the H₂R-G_{sαS}. (p $K_i < 5$).

In contrast to these observations, the combined molecule PB513 possessed a double-digit nanomolar affinity for H₂R-G_{sas} (p*K*_i: 7.35), while the individual components PB416 and PB419 had no or only low affinity for the H₂R-G_{sas} (p*K*_i: <5) (Figure 4.9B). Moreover, the urocanic acid amide PB416 was introduced in the general structure of a typical carbamoylguanidine-type ligand (**4.120**, cf. Figure 4.9B and Scheme 4.12). The resulting antagonist **4.120** showed also only low affinity for the H₂R-G_{sas} (p*K*_i: 5.36, cf. Table 4.1 or Figure 4.9B). These results indicate that both the 2-arylbenzimidazole and the urocanic acid amide moiety are necessary for the high H₂R affinity of PB513 to the H₂R.

4.2.3.3 Functional Characterization of Selected 2-Arylbenzimidazoles at the Human H₂R in the [³⁵S]GTPγS Binding, mini-G Protein and β-Arrestin2 Recruitment Assays

The potencies (pEC₅₀), efficacies (E_{max}) and dissociation constants (p K_b , in case of antagonists or inverse agonists) of the selected 2-arylbenzimidazoles ($pK_i > 6$) are presented in Table 4.2. Most of the synthesized 2-arylbanzimidazoles were antagonists (4.85-4.86, 4.93-**4.96**, **4.109-4.110** and **4.117**) in the $[^{35}S]$ GTP γ S binding and the β -arrestin2 recruitment assays (Table 4.2). In the mini-G protein assay the same compounds showed inverse agonism. For this reason, both pEC₅₀ (agonist mode) and the p $K_{\rm b}$ (antagonist mode) values were determined for these molecules (Table 4.2). However, due to the low signal to noise (S/N) ratio of 1.5 in the [³⁵S]GTP_YS binding assay (cf. S/N 12 in the mini-G protein recruitment assay),⁴² potential inverse agonism might not be detectable. The determined pK_b values of the antagonists ($[^{35}S]GTP\gamma S$ or β -arrestin2) or inverse agonists (mGs) were in good agreement with the pK_i values obtained from the radioligand competition binding assay (cf. Table 4.1). Exceptions were the squaramide-containing compounds 4.109-4.110, which showed pK_b values (pK_b : 8.54-8.59, cf. Table 4.2) higher than the pK_i values (pK_i : 7.30-7.38, cf. Table 4.1) in the mini-G protein recruitment assay by more than one order of magnitude. It is likely that due to the abovementioned low S/N, compounds 4.82-4.84 and 4.88 are antagonists in [35S]GTPyS binding assay and at the same time show partial agonistic behavior in the mini-G protein recruitment assay. Compound 4.88 is specifically interesting since its additional methyl group in the 4⁻ position of imidazole reverses inverse agonism (cf. PB513, Table 4.2) to weak agonism in mini-G protein recruitment assay. **4.89** and **4.92** were inactive in the mini-G protein and β -arrestin2 recruitment assays. The carbamoylguanidines 4.114-4.116 were agonists. Finally, the

synthesized aryl benzimidazole series incorporates a few G-protein biased H₂R partial agonists [e.g. **4.108**: $E_{max} = 0.56$ ([³⁵S]GTP γ S), $E_{max} = 0.73$ (mGs), $E_{max} = 0.06$ at $c = 10 \mu M$ (β -arrestin2), cf. Table 4.2] which could not be exploited further due to the lack of subtype selectivity.

As a result, (inverse) agonism or antagonism seem to depend on the basic head group and not on the 2-arylbenzimidazole or the type of basic center in the spacer. This observation could be confirmed since the introduction of a head group, which already lead to agonism in a different H_2R ligand class series, also results in agonists in this ligand class (4.108, cf. Table 4.2). The same is true for antagonism (4.109 and 4.110, cf. Table 4.2).

	[³⁵ S]G	S binding	mGs recruitment ^b				β-arrestin2 recruitment ^c					
	$(\mathbf{p}K_b)$	Ν	E_{max}	N	$(\mathbf{p}K_b)$	Ν	E_{max}	Ν	$(\mathbf{p}K_b)$ or	Ν	E_{max}	N
compd.	or				or				pEC ₅₀			
	pEC ₅₀		4		pEC ₅₀		12				42	
His	5.85 ±		1.00^{4}	4	$6.94 \pm$	9	1.00^{42}	9	5.42 ±	4	1.00^{43}	4
	0.064		0		0.06^{42}				0.02^{43}			
UR-	$(7.42)^{8}$	-	0.08^{8}	-	7.28 ±	3	-0.11 ±	3	(8.03 ±	3	$0.00 \pm$	3
DE257 ⁸					0.08		0.02		0.06)		0.01^{+}	
					(7.97 ±	4						
	(=	-		_	0.10)	-		-		_		-
4.82	$(5.96 \pm$	2	$-0.03 \pm$	2	5.73 ±	3	$0.22 \pm$	3	(6.31 ± 0.17)	7	$-0.02 \pm$	3
4.02	0.29*)	~	0.17**	•	0.04	2	0.01	•	0.17)	~	0.01 [†]	2
4.83	$(5.98 \pm 0.11*)$	2	$-0.04 \pm$	2	5.51 ±	3	$0.32 \pm$	3	(6.06 ± 0.00)	5	$-0.04 \pm$	3
4.0.4	0.11*)		$0.07^{\dagger *}$		0.16	2	0.04	2	0.09)	2	0.01 [†]	2
4.84	n.d.	-	n.d.	-	6.15 ±	3	$0.14 \pm$	3	(6.34 ± 0.06)	3	$-0.02 \pm$	3
4.05	(7.05.)	2	0.12	2	0.04	2	0.02	2	0.06)	2	0.01 [†]	2
4.85	(7.95 ± 0.05)	3	$-0.12 \pm$	3	$6.55 \pm$	3	$-0.11 \pm$	3	(7.30 ± 0.05)	3	$-0.03 \pm$	3
	0.05)		0.03^{+}		0.08	2	0.02		0.05)		0.02^{+}	
					(6.95 ± 0.04)	3						
1.96	$(7,72)^2$		-0.20^{2}		0.04)	2	0.00	3	(7.50)	2		2
4.86 (PB513 ²)	$(7.73)^2$	-	-0.20-	-	$\begin{array}{c} 6.80 \pm \\ 0.09 \end{array}$	3	-0.09 ± 0.01	3	(7.59 ± 0.09)	3	$-0.00 \pm 0.01^{\dagger}$	3
(PB313)					$(6.99 \pm$	3	0.01		0.09)		0.01	
					(0.99 ± 0.09)	3						
4.87	(5.27 ±	3	-0.18 ±	2	(<5)	3	-0.03 \pm	3	(5.77±	3	$-0.02 \pm$	3
4.0/	(3.27 ± 0.14)	3	$-0.18 \pm 0.01^{\dagger}*$	2	(<3)	3	-0.03 ± 0.01 [†]	5	(3.77 ± 0.03)	3	$-0.02 \pm 0.01^{\dagger}$	3
4.88	n.d.	_	$-0.19 \pm$	2	5.76 ±	3	0.01° $0.16 \pm$	3	$(5.94 \pm$	4	n.a.	3
7.00	n.u.	-	0.10^{+}	2	0.10	5	$0.10 \pm 0.04^{\dagger}$	5	(3.94 ± 0.07)	-	11 . a.	5
4.89	n.d.	_	n.d.	-	(<5)	3	-0.03 ±	4	(<5)	3	-0.05 \pm	3
T.U/		-	11. U .	-		5	$-0.03 \pm 0.01^{\dagger}$	т	(-5)	5	-0.03 ± 0.02 [†]	5
4.92	n.d.	_	n.d.	-	(<5)	3	-0.02 ±	3	(<5)	3	$0.02 \pm 0.00 \pm$	3
1.72			11.4.		()	5	$0.02 \pm 0.02^{\dagger}$.	5		5	0.00± 0.01 [†]	5
	I				I		0.02 .		I		0.01	

Table 4.2. H₂R Agonist Potencies (pEC₅₀) and Efficacies (E_{max}) or Antagonism (pK_b)

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as

Histamine H₂ Receptor Ligands

4.93	$(6.15 \pm 0.20*)$	2	-0.14 ±	2	6.25 ±	4	$-0.13 \pm$	4	(7.06 ± 0.04)	3	-0.01 ±	3
	0.29*)		$0.05^{\dagger}*$		0.08 (6.62 ±	3	0.02		0.04)		0.02^{+}	
					(0.02 ± 0.04)	5						
4.94	(6.48 ±	3	$0.01 \pm$	2	<5	3	-0.10 ±	3	(6.25 ±	3	-0.01 ±	3
	0.06)		0.17^{+*}		$(6.18 \pm$	3	0.02^{\dagger}		0.09)		0.01^{\dagger}	
					0.02)							
4.95	$(6.78 \pm$	3	-0.05 ±	2	5.87±	4	-0.14 ±	3	$(6.56 \pm$	5	-0.04 ±	3
	0.27)		$0.08^{\dagger *}$		0.01	•	0.01		0.13)		0.02^{\dagger}	
					(6.25 ± 0.05)	3						
4.96	(7.55 ±	3	-0.03 \pm	3	0.05) 6.87 ±	4	-0.12 ±	4	(7.75 ±	3	-0.05 \pm	3
4.90	(7.33 ± 0.04)	3	$-0.03 \pm 0.01^{\dagger}$.	3	0.87 ± 0.08	4	-0.12 ± 0.02	4	(7.73 ± 0.11)	3	$-0.03 \pm 0.03^{\dagger}$	3
	0.04)		0.01		(7.77 ±	3	0.02		0.11)		0.05	
					0.06)	5						
4.108	$7.09 \pm$	3	$0.56\pm$	3	7.18 ±	3	$0.73 \pm$	3	(6.80 ±	4	$0.06 \pm$	5
	0.05		0.06		0.04		0.03		0.13)		0.02^{\dagger}	
4.109	$(7.39 \pm$	3	-0.14 \pm	2	$7.28 \pm$	3	-0.10 \pm	3	(7.73 ±	3	-0.03 \pm	3
	0.13)		$0.06^{\dagger *}$		0.17		0.01		0.11)		0.04^{\dagger}	
					$(8.59 \pm$	3						
	(= 0.0	-		-	0.05)	_		_	/ -	_		-
4.110	$(7.80 \pm$	3	-0.12 ±	2	7.03 ±	5	-0.13 ±	5	(7.50 ± 0.16)	5	$-0.02 \pm$	3
	0.10)		$0.06^{\dagger *}$		0.15	2	0.01		0.16)		0.01^{+}	
					(8.54 ± 0.00)	3						
4.114	n.d.		n.d.	_	0.09) 6.59 ±	3	$0.83 \pm$	3	$6.38 \pm$	3	$0.10 \pm$	4
4.114	n.u.	-	n.u.	-	0.09 ±	5	0.03 ± 0.03	5	0.38 ± 0.13	5	0.10 ± 0.02	4
4.115	$7.53 \pm$	4	$0.64 \pm$	4	$7.70 \pm$	3	$0.94 \pm$	3	$6.58 \pm$	5	$0.56 \pm$	5
	0.05	•	0.04	•	0.21	2	0.04	0	0.14	U	0.10	U
4.116	$7.45 \pm$	4	$0.58 \pm$	4	$7.36 \pm$	3	0.91 ±	3	$6.68 \pm$	4	$0.18 \pm$	4
	0.26		0.09		0.20		0.05		0.09		0.04	
4.117	n.d.	-	n.d.	-	$7.16 \pm$	3	-0.10 \pm	3	$(8.08 \pm$	3	-0.02 \pm	3
					0.05		0.01		0.02)		0.01^{+}	
					(8.13 ±	4						
					0.11)							

Table 4.2. (continued)

Presented are mean values \pm SEM (N \geq 3) or SE (N = 2, indicated with *) of N independent experiments (each performed in duplicate or triplicate). Data were analyzed by nonlinear regression and best fitted to sigmoidal concentration-response curves. ${}^{a}[{}^{35}S]$ GTP γ S binding assays on membrane preparations of Sf9 insect cells expressing the hH₂R-G_{saS}.^{4,44} Antagonism was determined in the presence of 1 μ M histamine. b Mini-G protein recruitment assay was performed using HEK293T NlucN-mGs/hH₂R-NlucC cell line.⁴² Antagonism was determined in the presence of 1 μ M histamine. ${}^{c}\beta$ -Arrestin2 recruitment assay was performed using HEK293T-ARRB2-hH₂R cell line.^{38, 43} Antagonism was determined in the presence of 8 μ M histamine. E_{max}: maximum response relative to histamine (E_{max} = 1.00 and buffer control (E_{max} = 0.00). †E_{max} at c = 10 μ M; four-parameter logistic fits of the data from individual experiments failed. pK_b = -logK_b. The K_b value was calculated from the corresponding IC₅₀ values by using the Cheng-Prusoff equation.⁴⁵ n.d.: not determined. Concentration-response curves of representative 2-arylbenzimidazoles **4.85**, **4.86** (PB513), **4.88**, **4.108**, **4.110** and **4.114** are shown in Appendix 3 (Figure App3.98-App3.100).

4.3 Summary and Conclusion

In search for new H₂R ligands which should not bind to dopamine receptors, we synthesized and tested 27 new 2-arylbenzimidazoles based on the recently reported high affinity H₂R antagonist PB513. The synthesized compounds showed low to high affinity to the H₂R-G_{saS} fusion protein (p*K*_i: <5-7.76), depending on their structural features. We found that the following structural motifs in PB513 are important for the H₂R affinity: 2-arylbenzimidazole, sec. amine, double bond, and the imidazole. The amide group in PB513 is not important for H₂R affinity but for the subtype selectivity. We also observed that the mode of action ((inverse) agonism / antagonism) is strongly dependent on the basic head group. The squaramide **4.110** showed the best subtype selectivity profile (H₁:H₂:H₃:H₄ 87:1:19:131), while having two-digit nanomolar H₂R affinity (p*K*_i = 7.30). However, **4.110** turned out to be an antagonist as expected from its basic head group. The synthesized series also contains some (biased) agonists, which are not subtype selective. Due to this overall lack of subtype selectivity we did not investigate these compounds for their selectivity at dopamine receptors. These results may contribute to a better understanding of the structure-activity and structure-selectivity relationships of H₂R ligands.

4.4 Experimental Section

4.4.1 General Experimental Section

Unless otherwise stated, chemicals and solvents were purchased from standard commercial suppliers (Merck, Sigma-Aldrich, Acros, Alfa, abcr) and were used as received. 3-(1-Trityl-1*H*-imidazol-4-yl)-propylamine was synthesized like published previously and kindly provided by Dr. S. Pockes.⁴⁶ *tert*-Butyl (*E*)-(2-(3-(1*H*-imidazol-4-yl)acrylamido)ethyl)carbamate was synthesized like published previously and kindly provided by Dr. M. Keller.⁴⁷ All of the solvents were of analytical grade or distilled prior to use. For column chromatography silica gel 60 (0.04-0.063 mm, Merck, Darmstadt, Germany) was used. Flash chromatography was performed on an Intelli Flash-310 workstation from Varian Deutschland GmbH (Darmstadt, Germany) with SuperFlash (SF) columns (Si50, 4-40 g) from Agilent Technologies (Santa Clara, CA, USA). Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60 F254 aluminium sheets, and spots were visualized with UV light at 254 nm or ninhydrin staining. Melting points were determined with a B-540 apparatus (BÜCHI GmbH, Essen, Germany). NMR spectra were recorded on a Bruker Avance 300 (¹H: 300 MHz, ¹³C: 75 MHz), 400 (¹H: 400 MHz, ¹³C: 101 MHz) or 600 (¹H: 600 MHz, ¹³C: 151 MHz) (Bruker,

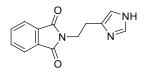
Karlsruhe, Germany) with deuterated solvents from Deutero (Kastellaun, Germany). Multiplicities are specified with the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), dd (doublet of doublet), and br (broad). The multiplicity of carbon atoms (¹³C-NMR) was determined by distortionless enhancement by polarization transfer (DEPT) 135 and DEPT 90: "+" primary and tertiary carbon atom (positive DEPT signal), "-" secondary carbon atom (negative DEPT signal), "quat" quaternary carbon atom. In certain cases 2D-NMR techniques (COSY, HSQC, and HMBC) were used to assign ¹H and ¹³C chemical shifts. The NMR spectra of target compounds are depicted in the Appendix 3, App3.1 ¹H-and/or ¹³C-NMR Spectra of **4.82-4.97**, **4.104-4.110**, **4.112**, **4.114**-4.117 and 4.120. HRMS was performed on a Q-TOF 6540 UHD LC/MS system (Agilent Technologies) using an ESI source or on an AccuTOF GCX GC/MS system (Jeol, Peabody, MA, USA) using an EI source. Preparative HPLC was performed with a system from Waters (Milford, Massachusetts, USA) consisting of a 2524 binary gradient module, a 2489 detector, a prep inject injector, fraction collector III and the column was a Phenomenex Kinetex (250 x 21 mm, 5 µm) (Phenomenex, Aschaffenburg, Germany). As mobile phase mixtures of MeCN and 0.1% aqueous TFA were used. The UV detection was carried out at 220 nm. Freezedrying was carried out using a ScanVac CoolSafe 4-15L freeze dryer from Labogene (LMS, Brigachtal, Germany), equipped with a RZ 6 rotary vane vacuum pump (Vacuubrand, Wertheim, Germany). Analytical HPLC experiments were performed on a 1100 HPLC system from Agilent Technologies equipped with Instant Pilot controller, a G1312A Bin Pump, a G1329A ALS autosampler, a G1379A vacuum degasser, a G1316A column compartment and a G1315B DAD detector. The column was a Phenomenex Kinetex XB-C18 column (250 x 4.6 mm, 5 µm) (Phenomenex, Aschaffenburg, Germany), tempered at 30 °C. As mobile phase, mixtures of MeCN and 0.05% aqueous TFA were used. Gradient mode: MeCN/TFA (0.05%) (v/v) 0 min: 10:90, 30 min: 90:10, 33 min: 95:5, 40 min: 95:5; flow rate: 0.8 mL/min, $t_0 = 3.21$ min; capacity factor $k = (t_{\rm R} - t_0)/t_0$. Absorbance was detected at 220 nm. Compounds purities were calculated as the percentage peak area of the analyzed compound by UV detection at 220 nm. The purities of the ligands used for pharmacological investigation were $\geq 95\%$ (exception: 4.117 (purity = 93%); chromatograms are shown in the Appendix 3, App3.2 RP-HPLC Chromatograms of 4.82-4.97, 4.104-4.110, 4.112, 4.114-4.117 and 4.120).

4.4.2 General Procedures

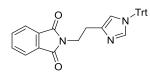
General Procedure A (Amide Coupling). The respective amine (1.2 equiv) was dissolved in anhydrous DMF (0.2-0.8 mL) and the solution was cooled to 0 °C. DIPEA (2 equiv) and

EDC x HCl (1 equiv, dissolved in 0.1-0.4 mL anhydrous DMF) as well as HOBt x H₂O (1 equiv, dissolved in 0.1-0.4 mL anhydrous DMF) were added. Subsequently, the respective carboxylic acid (1 equiv) and DIPEA (3 equiv) dissolved in anhydrous DMF (0.5-1 mL) were added in one portion. The solution was stirred for 14-18 h and was allowed to warm to rt. The solvent was evaporated under reduced pressure, the residue was purified by flash chromatography [eluent: $CH_2Cl_2/(0.5\%$ NH₃ in) MeOH] and dried under reduced pressure. If necessary, deprotection was performed by stirring with 20-40% TFA in CH_2Cl_2 at rt for 7-18 h (TLC control). After evaporation of the solvent under reduced pressure, the crude product was purified by preparative RP-HPLC.

General Procedure B (Hydrazinolysis of the Phthalimides). To a suspension of the respective phthalimide (1 equiv) in EtOH (10 mL) was added $N_2H_4 \times H_2O$ (5-6.8 equiv). After stirring at rt for 16-48 h, the mixture was cooled with an ice bath. The formed precipitate was removed by filtration and the filtrate was concentrated to dryness. If necessary, the crude product was subjected to flash chromatography (eluent: CH₂Cl₂/0.5% NH₃ in MeOH).


General Procedure C (Nucleophilic Substitution). The respective iodinated compound (1 equiv), the respective amine (1.8-3.0 equiv) and K_2CO_3 (6 equiv) in MeCN (2.5 mL) were heated under microwave irradiation at 130 °C for 20 min. Subsequently, the solvent was removed under reduced pressure. The crude, Boc- or Trt-protected intermediate was prepurified by flash chromatographie (eluent: CH₂Cl₂/MeOH) and dried under reduced pressure. The residue was dissolved in CH₂Cl₂, TFA was added and the reaction mixture was stirred until the protection group was removed (approx. 7 h, TLC control). After evaporation of the solvent under reduced pressure, the crude product was purified by preparative RP-HPLC.

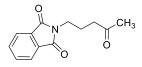
General Procedure D (Preparation of Squaramides). The respective mixed squaramate (1.0-1.1 equiv) was dissolved in EtOH (2 mL). After addition of the respective amine (1-1.1 equiv, dissolved in 3 mL EtOH), the solution was stirred at rt to 70 °C for overnight to 18 days (TLC control). The solvent was evaporated, and the residue was pre-purified by flash chromatography (eluent: $CH_2Cl_2/0.5\%$ NH₃ in MeOH). After evaporation of the solvent under reduced pressure, the crude product was purified by preparative RP-HPLC.


General Procedure E (Preparation of N^{G} -Carbamoylated Guanidines). 4.113 (1-1.1 equiv) and the respective amine (1-1.1 equiv) were dissolved in anhydrous CH₂Cl₂ (3 mL).

NEt₃ (2.5 equiv) and HgCl₂ (2 equiv) were added. The reaction mixture was stirred at rt for 4-18 h. The resulting suspension was filtered through Celite 545 in order to remove the mercury salt and the crude product was pre-purified by flash chromatography (eluent: PE/EtOAc). Removal of the solvent under reduced pressure afforded the Trt-/Boc-protected intermediate. Subsequently, the deprotection was performed by stirring the intermediate in a mixture of CH₂Cl₂ and TFA overnight at rt. The solvent was removed under reduced pressure and the product was purified by preparative HPLC.

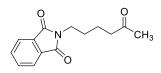
4.4.3 Preparation of 2-(1-Trityl-1*H*-imidazol-4-yl)ethan-1-amine (4.4)

2-(2-(1*H***-Imidazol-4-yl)ethyl)isoindoline-1,3-dione (4.2).^{41, 48}** Nefkens` reagent (4.3 g, 19.6 mmol, 1.2 equiv) was added to a stirred solution of histamine dihydrochloride (**4.1**, 3.0 g, 16.3 mmol, 1 equiv) and K₂CO₃ (6.8 g, 48.9 mmol, 3 equiv) in H₂O (30 mL) at rt. The resulting white suspension was stirred vigorously at rt for 2 h. The solid was filtered off and thoroughly washed with ice-cold H₂O (3 x 5 mL). The solid was collected and dried under high vacuum to give the product as white solid (3.8 g, 97%). R_f = 0.21 (CH₂Cl₂/MeOH 9:1). M. p.: 189-191 °C (lit.: 189-191 °C)⁴⁹. ¹H-NMR (300 MHz, DMSO-d₆) δ 11.88 (s, 1H), 7.89-7.76 (m, 4H), 7.50 (d, *J* = 1.2 Hz, 1H), 6.80 (s, 1H), 3.78 (t, *J* = 8.1 Hz, 2H), 2.82 (t, *J* = 7.4 Hz, 2H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 167.58 (2C), 134.79, 134.15 (2C), 133.87, 131.47 (2C), 122.81 (2C), 116.21, 37.60, 25.63. NMR data matches literature reference.⁴¹ HRMS (ESI-MS): calcd. for C₁₃H₁₂N₃O₂⁺: 242.0924, found: 242.0936. MF: C₁₃H₁₁N₃O₂. MW: 241.25.

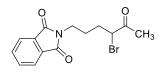

2-(2-(1-Trityl-1*H***-imidazol-4-yl)ethyl)isoindoline-1,3-dione (4.3).^{41, 48}** A mixture of **4.2** (1.75 g, 7.25 mmol, 1 equiv), NEt₃ (4.0 mL, 29.0 mmol, 4 equiv) and Trt-Cl (3.0 g, 10.9 mmol, 1.5 equiv) in MeCN (150 mL) was stirred at rt for 16 h. The solvent was removed by evaporation and the residue was purified by column chromatography (PE/EtOAc 50:50). The product was obtained as light-yellow solid (3.4 g, 97%). $R_f = 0.22$ (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.84-7.75 (m, 2H), 7.72-7.64 (m, 2H), 7.34-7.30 (m, 1H), 7.30-7.20 (m, 9H), 7.10-7.00 (m, 6H), 6.52 (d, *J* = 1.4 Hz, 1H), 3.97 (t, *J* = 7.0 Hz, 2H), 2.94 (t, *J* = 7.0 Hz, 2H)

2H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.23 (2C), 142.52 (3C), 138.79, 137.75, 133.83 (2C), 132.24 (2C), 129.83 (6C), 128.03 (6C), 128.00 (3C), 123.25 (2C), 118.74, 75.14, 38.10, 27.42. NMR data matches literature reference.⁴¹ HRMS (ESI-MS): calcd. for C₃₂H₂₆N₃O₂⁺: 484.2020, found: 484.2054. MF: C₃₂H₂₅N₃O₂. MW: 483.57.

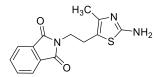
$$H_2N - N = 1$$


2-(1-Trityl-1*H***-imidazol-4-yl)ethan-1-amine (4.4).^{41, 48, 50}** A mixture of **4.3** (3.33 g, 6.9 mmol, 1 equiv) and N₂H₄ x H₂O (1.7 mL, 34.4 mmol, 5 equiv) in EtOH (70 mL) was refluxed for 2 h. After removal of insoluble material, the filtrate was evaporated giving a light-yellow solid, which was purified by column chromatography (CH₂Cl₂/MeOH 100:0-92:8) and afforded a yellow oil (2.4 g, 98%). R_f = 0.83 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (400 MHz, MeOD) δ 7.40 (d, *J* = 1.4 Hz, 1H), 7.39-7.32 (m, 9H), 7.19-7.12 (m, 6H), 6.76-6.71 (m, 1H), 2.87 (t, *J* = 7.1 Hz, 2H), 2.66 (t, *J* = 7.0 Hz, 2H). ¹³C-NMR (101 MHz, MeOD) δ 143.99 (3C), 140.06, 139.93, 131.13 (6C), 129.61 (3C), 129.53 (6C), 120.67, 77.09, 42.44, 32.12. NMR data matches literature reference.⁴¹ HRMS (ESI-MS): calcd. for C₂₄H₂₄N₃⁺: 354.1965, found: 354.1965. MF: C₂₄H₂₃N₃. MW: 353.47.

4.4.4 Preparation of the Amine Building Blocks 4.17-4.19

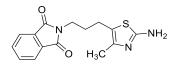

2-(4-Oxopentyl)isoindoline-1,3-dione (**4.8**).⁵¹⁻⁵² A mixture of phthalimide (**4.7**, 27.3 g, 0.186 mol, 1 equiv), 5-chloropentan-2-one (**4.5**, 22.3 g, 0.185 mol, 1 equiv), ground K₂CO₃ (25.57 g, 0.185 mol, 1 equiv) and KI (0.1 g, cat.) in DMF (200 mL) was heated while stirring for a period of 12 h at 110°C. After cooling down the inorganic solids were filtered off and the filtrate was concentrated in vacuum. The residue was dissolved in EtOAc (50 mL) and after standing overnight in refrigerator the unreacted phthalimide was filtered off, the filtrate was concentrated in vacuum and the residue was purified by column chromatography (CH₂Cl₂/MeOH 95:5) yielding a light brown solid (21.4 g, 50%). R_f = 0.63 (PE/EtOAc 1:1). M. p.: 70 °C (lit.: 68-74 °C)⁵¹⁻⁵². ¹H-NMR (300 MHz, CDCl₃) δ 7.83-7.61 (m, 4H), 3.66 (t, *J* = 6.7 Hz, 2H), 2.46 (t, *J* = 7.2 Hz, 2H), 2.10 (s, 3H), 1.91 (quint, *J* = 7.0 Hz, 2H). ¹³C-NMR (75 Hz, CDCl₃) δ 207.58, 168.48 (2C), 134.02 (2C), 132.02 (2C), 123.25 (2C), 40.55, 37.19,

29.98, 22.68. NMR data matches literature reference.⁵² HRMS (ESI-MS): calcd. for $C_{13}H_{14}NO_3^+$: 232.0968, found: 232.0973. MF: $C_{13}H_{13}NO_3$. MW: 231.25.

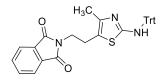


2-(5-Oxohexyl)isoindoline-1,3-dione (4.9).^{3, 12, 52} 6-Chlorohexan-2-one (5.88 g, 43.7 mmol, 1 equiv), phthalimide (**4.7**, 6.55 g, 43.7 mmol, 1 equiv), K₂CO₃ (9.24 g, 65.6 mmol, 1 equiv) and KI (0.1 g, cat.) were dissolved in DMF (100 mL). The mixture was heated at 95 °C for 24 h. After cooling to rt, the solvent was evaporated in vacuum. The residue was suspended in H₂O (500 mL) and extracted with chloroform (2 x 200 mL). The combined organic layers were dried over Na₂SO₄ and evaporated in vacuum. The crude product was purified by column chromatography (CH₂Cl₂/MeOH 100:0-95:5) yielding the product as white solid (7.93 g, 74%). R_f = 0.78 (PE/EtOAc 1:1). M. p.: 58 °C (lit. 58-59 °C). ¹H-NMR (300 MHz, CDCl₃) δ 7.81-7.57 (m, 4H), 3.62 (t, *J* = 6.8 Hz, 2H), 2.43 (t, *J* = 7.0 Hz, 2H), 2.07 (s, 3H), 1.69-1.45 (m, 4H). ¹³C-NMR (75 MHz, CDCl₃) δ 208.37, 168.35 (2C), 133.93 (2C), 132.02 (2C), 123.16 (2C), 42.82, 37.45, 29.95, 27.89, 20.74. NMR data matches literature reference. ^{3, 12, 52} HRMS (ESI-MS): calcd. for C₁₄H₁₆NO₃⁺: 246.1125, found: 246.1152. MF: C₁₄H₁₅NO₃. MW: 245.28.

2-(3-Bromo-4-oxopentyl)isoindoline-1,3-dione (**4.10**).⁵³ A solution of **4.8** (5.0 g, 21.62 mmol, 1.08 equiv) in glacial acetic acid (55 mL) was cooled to 10 °C and Br₂ (1.01 mL, 20.02 mmol, 1 equiv) was added dropwise under stirring. The reaction mixture was allowed to warm up to rt and was stirred for additional 1 h. A mixture of ice-cold water (1 L)/chloroform (333 mL) was added to the reaction mixture. The organic phase was separated and concentrated in vacuum. The crude product was obtained as a brown oil (3.55 g, 57%) and used in the next step without further purification. $R_f = 0.63$ (PE/EtOAc 1:1). M. p.: 75-79 °C (lit. 73-75 °C)⁵³. ¹H-NMR (300 MHz, CDCl₃) δ 7.82-7.75 (m, 2H), 7.71-7.63 (m, 2H), 4.30-4.22 (m, 1H), 3.76-3.70 (m, 2H), 2.53-2.38 (m, 2H), 2.33 (s, 3H). NMR data matches literature reference.⁵³ HRMS (ESI-MS): calcd. for $C_{13}H_{13}BrNO_3^+$: 310.0073, 312.0053, found: 310.0078, 312.0059. MF: $C_{13}H_{12}BrNO_3$. MW: 310.15.

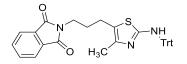


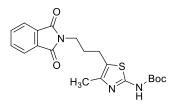
2-(4-Bromo-5-oxohexyl)-1,3-dihydro-2*H***-isoindol-1,3-dione (4.11).³** To a solution of **4.9** (10.55 g, 43.0 mmol, 1.1 equiv) in 1,4-dioxane (218 mL) and CH₂Cl₂ (141 mL), Br₂ (2.00 mL, 39.1 mmol, 1 equiv) was added so that the brown color always disappeared and then stirred for 4 h at rt. Subsequently, the mixture was washed with H₂O (2 x 300 mL) and extracted with EtOAc (3 x 200 mL). The organic layer was dried over Na₂SO₄, and the solvent was removed in vacuum. The crude product was obtained as a yellow oil (11.78 g, 93%) and used in the next step without further purification. $R_f = 0.55$ (PE/EtOAc 2:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.90-7.79 (m, 2H), 7.77-7.67 (m, 2H), 4.39-4.29 (m, 1H), 3.74 (t, *J* = 6.7 Hz, 2H), 2.37 (s, 3H), 2.09-1.54 (m, 4H). NMR data matches literature reference³. HRMS (ESI-MS): calcd. for C₁₄H₁₅BrNO₃⁺: 324.0230, 326.0209, found: 324.0233, 326.0214. MF: C₁₄H₁₄BrNO₃. MW: 324.17.



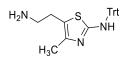
2-(2-(2-Amino-4-methylthiazol-5-yl)ethyl)isoindoline-1,3-dione (4.12).⁵⁴ To a stirred solution of 4.10 (1.5 g, 4.84 mmol, 1 equiv) in DMF (15 mL), a solution of thiourea (368 mg, 4.84 mmol, 1 equiv) in DMF (15 mL) was added and the mixture was heated at 100 °C for 3 h. After cooling and removing the solvent in vacuum, the crude product was purified by flash chromatography (gradient: 0-40 min: CH₂Cl₂/MeOH 100:0-90:10, SF 25 g) to obtain the formylated intermediate as yellow foam (1.23 g, 81%). ¹H-NMR (300 MHz, DMSO-d₆) δ 12.00 (s, 1H), 8.37 (s, 1H), 7.98-7.66 (m, 4H), 3.74 (t, *J* = 6.8 Hz, 2H), 3.02 (t, *J* = 6.8 Hz, 2H), 2.06 (s, 3H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 167.67 (q, 2C), 159.21 (+), 152.88 (q), 143.16 (q), 134.53 (+, 2C), 131.43 (q, 2C), 123.12 (+, 2C), 120.53 (q), 38.06 (-), 23.98 (-), 14.21 (+). HRMS (ESI-MS): calcd. for C₁₅H₁₄N₃O₃S⁺: 316.0750, found: 316.0755. MF: C₁₅H₁₃N₃O₃S. MW: 315.35. The formylated intermediate (1.23 g, 3.9 mmol) was suspended in MeOH (22.3 mL), 1 N HCl in MeOH (14.5 mL) was added and the mixture was stirred at rt for 72 h. The mixture was neutralized (pH 7-8) using 1 N NaOH in MeOH, filtrated and the solvent was removed in vacuum. The crude product was purified by column chromatography (CH₂Cl₂/MeOH 90:10) yielding the product as yellow oil (1.1 g, 98%). $R_f = 0.60$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR $(300 \text{ MHz}, \text{DMSO-d}_6) \delta 7.93-7.78 \text{ (m, 4H)}, 6.60 \text{ (br s, 2H)}, 3.67 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.85 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 3.67 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ Hz}, 30 \text{ (t, } J = 6.8 \text{ (t, } J = 6.8 \text{ (t, } J = 6.8 \text{ (t, } J = 6.$

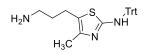
J = 6.8 Hz, 2H), 1.88 (s, 3H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 167.69 (q, 2C), 165.23 (q), 143.59 (q), 134.50 (+, 2C), 131.50 (q, 2C), 123.09 (+, 2C), 112.96 (q), 38.36 (-), 24.18 (-), 14.31 (+). NMR data matches literature reference.⁵⁴ HRMS (ESI-MS): calcd. for C₁₄H₁₄N₃O₂S⁺: 288.0801, found: 288.0818. MF: C₁₄H₁₃N₃O₂S. MW:287.34.


2-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-1,3-dihydro-2*H***-isoindol-1,3-dione (4.13).¹¹ To a stirred solution of 4.11** (11.75 g, 36.25 mmol, 1 equiv) in DMF (50 mL), a solution of thiourea (2.76 g, 36.25 mmol, 1 equiv) in DMF (50 mL) was added and the mixture was heated at 100 °C for 3 h. After cooling and removing the solvent in vacuum, a mixture of EtOAc/MeOH (1:1 (v/v), 40 mL) was added, and the suspension was stirred for 30 min. Subsequently, the precipitate was filtered off, washed with EtOAc and diethyl ether and the solid was dried in vacuum (3.2 g, 29%). $R_f = 0.45$ (PE/EtOAc 1:4). ¹H-NMR (300 MHz, CDCl₃) δ 7.84 (m, 4H), 3.61 (t, *J* = 7.0 Hz, 2H), 2.71 (t, *J* = 7.5 Hz, 2H), 2.14 (s, 3H), 1.97-1.77 (m, 2H). NMR data matches literature reference.^{11,55} HRMS (ESI-MS): calcd. for $C_{15}H_{16}N_3O_2S^+$: 302.0958, found: 302.0962. MF: $C_{15}H_{15}N_3O_2S$. MW: 301.36.


2-(2-(4-Methyl-2-(tritylamino)thiazol-5-yl)ethyl)isoindoline-1,3-dione (4.14). Trt-Cl (652 mg, 2.34 mmol, 1.2 equiv) was dissolved in MeCN (60 mL) and was added dropwise to a suspension of **4.12** (560 mg, 1.95 mmol, 1 equiv) and NEt₃ (487 µL, 3.51 mmol, 1.8 equiv) in MeCN (60 mL) at rt under stirring. After the addition, stirring was continued for 16 h. The solvent was removed in vacuum and the resulting solid was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-67:33, SF 12 g) yielding the product as yellow foam (0.64 g, 62%). $R_f = 0.50$ (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.84-7.75 (m, 2H), 7.74-7.65 (m, 2H), 7.38-7.16 (m, 15H), 6.79 (s, 1H), 3.65 (t, *J* = 7.2 Hz, 2H), 2.77 (t, *J* = 7.2 Hz, 2H), 2.08 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.02 (q, 2C), 165.74 (q), 143.68 (q, 3C), 142.76 (q), 133.97 (+, 2C), 132.08 (q, 2C), 129.31 (+, 6C), 128.18 (+, 6C), 127.46 (+, 3C), 123.35 (+, 2C), 116.21 (q), 71.77 (q), 38.65 (-), 24.85 (-), 14.28 (+). HRMS (ESI-MS): calcd. for C₃₃H₂₈N₃O₂S⁺: 530.1897, found: 530.1902. MF: C₃₃H₂₇N₃O₂S. MW: 529.66.

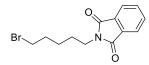
4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as


Histamine H₂ Receptor Ligands

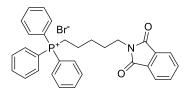

2-(3-(4-Methyl-2-(tritylamino)thiazol-5-yl)propyl)isoindoline-1,3-dione (4.15).⁵ **4.13** (4.56 g, 15.1 mmol, 1 equiv) was dissolved in MeCN (120 mL) and Trt-Cl (5.07 g, 18.2 mmol, 1.2 equiv) and NEt₃ (3.77 mL, 27.2 mmol, 1.8 equiv) were added. The mixture was stirred for 16 h at rt. The solvent was removed in vacuum. The crude product was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-75:25, 40 min: 75:25, 60 min: 30:70 SF 12 g) to obtain the product as a yellow foam (2.18 g, 27%). ¹H-NMR (300 MHz, CDCl₃) δ 7.88-7.79 (m, 2H), 7.75-7.68 (m, 2H), 7.36-7.18 (m, 15H), 3.59 (t, *J* = 7.3 Hz, 2H), 2.49-2.41 (m, 2H), 2.07 (s, 3H), 1.77-1.65 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.33 (q, 2C), 165.10 (q), 143.81 (q, 3C), 134.03 (+, 2C), 132.13 (q, 2C), 129.28 (+, 6C), 128.18 (+, 6C), 127.44 (+, 3C), 123.30 (+, 2C), 120.02 (q), 71.84 (q), 37.53 (-), 30.36 (-), 23.83 (-), 14.47 (+), 1 C signal is missing. HRMS (ESI-MS): calcd. for C₃₄H₃₀N₃O₂S⁺: 544.2053, found: 544.2082. MF: C₃₄H₂₉N₃O₂S. MW: 543.69.

tert-Butyl 4-methyl-5-[3-(1,3-dioxo-1,3-dihydro-2*H*-isoindol-2-yl)propyl]thiazol-2ylcarbamate (4.16).^{3, 12} 4.13 (3.14 g, 10.4 mmol, 1 equiv) was dissolved in chloroform (100 mL) and Boc₂O (2.45 g, 11.2 mmol, 1.08 equiv), NEt₃ (1.68 mL, 12.09 mmol, 1.16 equiv) and DMAP (0.1 g, cat.) were added. The mixture was stirred overnight at rt. The mixture was extracted with CH₂Cl₂, washed with 0.1 N HCl (2 x 50 mL), brine (50 mL) and H₂O (50 mL), dried over Na₂SO₄ and the solvent removed in vacuum. The crude product by purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-66:34, 40 min: 66:34, SF 25 g) to obtain the product as a colorless foam (2.87 g, 69%). ¹H-NMR (300 MHz, CDCl₃) δ 7.81-7.73 (m, 2H), 7.69-7.60 (m, 2H), 3.74 (t, *J* = 7.1 Hz, 2H), 2.71 (t, *J* = 7.6 Hz, 2H), 2.22 (s, 3H), 1.98 (m, 2H), 1.51 (s, 9H). NMR data matches literature reference.^{12,55} HRMS (ESI-MS): calcd. for C₂₀H₂₄N₃O₄S⁺: 402.1482, found: 402.1486. MF: C₂₀H₂₃N₃O₄S. MW: 401.48.

5-(2-Aminoethyl)-4-methyl-*N*-tritylthiazol-2-amine (4.17). To a suspension of 4.14 (0.64 g, 1.21 mmol, 1 equiv) in *n*-BuOH (25 mL) was added N₂H₄ x H₂O (293 μL, 6.04 mmol, 5 equiv). After stirring for 16 h at rt, the mixture was cooled in an ice bath, the precipitate was removed by filtration and the filtrate concentrated to dryness. The crude product (0.48 g, 99%) was used in the next step without further purification. $R_f = 0.1$ (CH₂Cl₂/MeOH). ¹H-NMR (300 MHz, MeOD) δ 7.43-7.15 (m, 15H), 2.64-2.52 (m, 4H), 2.05 (s, 3H). ¹³C-NMR (75 MHz, MeOD) δ 167.80 (q), 145.38 (q, 3C), 143.52 (q), 130.53 (+, 6C), 129.21 (+, 6C), 128.56 (+, 3C), 118.79 (q), 73.24 (q), 43.55 (-), 29.29 (-), 14.41 (+). HRMS (ESI-MS): calcd. for $C_{25}H_{26}N_3S^+$: 400.1842, found: 400.1841. MF: $C_{25}H_{25}N_3S$. MW: 399.56.



5-(3-Aminopropyl)-4-methyl-*N***-tritylthiazol-2-amine** (**4.18**).⁵ A mixture of **4.15** (1.73 g, 3.18 mmol, 1 equiv) and N₂H₄°x°H₂O (772 μL, 15.91 mmol, 5 equiv) in EtOH/*n*-BuOH (5:2 (v/v), 35 mL) was stirred at rt for 24 h. After removal of insoluble material, the filtrate was evaporated giving a pale yellowish oil (0.90 g, 68%), which was used in the next step without further purification. $R_f = 0.33$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.39-7.18 (m, 15H), 2.70 (t, *J* = 7.6 Hz, 2H), 2.52-2.41 (m, 2H), 2.01 (s, 3H), 1.69-1.54 (m, 2H). ¹³C-NMR (75 MHz, MeOD) δ 161.18 (q), 145.23 (q, 3C), 142.44 (q), 130.34 (+, 6C), 129.04 (+, 6C), 128.38 (+, 3C), 120.82 (q), 73.03 (q), 40.47 (-), 31.97 (-), 23.87 (-), 14.26 (+). HRMS (ESI-MS): calcd. for C₂₆H₂₈N₃S⁺: 414.1998, found: 414.1995. MF: C₂₆H₂₇N₃S. MW: 413.58.


tert-Butyl 5-(3-aminopropyl)-4-methylthiazol-2-ylcarbamate (4.19).^{3, 12} To a suspension of 4.16 (2.87 g, 7.15 mmol, 1 equiv) in EtOH (35 mL) was added N₂H₄ x H₂O (1.73 mL, 35.74 mmol, 5 equiv) and the solution was stirred at rt for 16 h. The mixture was cooled by using an ice bath, the precipitate was removed by filtration and the filtrate concentrated to dryness. The crude product (1.94 g, 100%) was used in the next step without further purification. ¹H-NMR (400 MHz, MeOD) δ 2.93-2.87 (m, 2H), 2.74 (t, *J* = 7.6 Hz, 2H), 2.15 (s, 3H), 1.94-1.83 (m, 2H), 1.51 (s, 9H). ¹³C-NMR (101 MHz, MeOD) δ 159.01, 154.69,

143.52, 124.42, 83.03, 40.83, 32.17, 28.78 (3C), 24.19, 14.76. NMR data matches literature reference.^{12,55} HRMS (ESI-MS): calcd. for $C_{12}H_{22}N_3O_2S^+$: 272.1427, found: 272.1428; calcd. for $C_{24}H_{42}N_6NaO_4S_2^+$: 565.2601, found: 565.2602. MF: $C_{12}H_{21}N_3O_2S$. MW: 271.38.

4.4.5 Preparation of the Amine Building Block 4.26

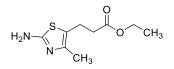
2-(5-Bromopentyl)isoindoline-1,3-dione (4.22).⁵⁶ To a solution of 1,5-dibromopentane (4.21, 5.0 mL, 36.71 mmol, 1 equiv) dissolved in DMF (50 mL) was added potassium phthalimide (4.20, 6.80 g, 36.71 mmol, 1 equiv) at rt, and the reaction mixture was stirred for 24 h. The solvent was removed in vacuum, and the residue was subjected to flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0 to 75:25, SF 80 g) to give the product as transparent oil (3.37 g, 31%). $R_f = 0.57$ (PE/EtOAc 4:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.83-7.76 (m, 2H), 7.71-7.64 (m, 2H), 3.65 (t, J = 7.2 Hz, 2H), 3.36 (t, J = 6.7 Hz, 2H), 1.95-1.80 (m, 2H), 1.76-1.60 (m, 2H), 1.55-1.39 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.38 (q, 2C), 133.95 (+, 2C), 132.10 (q, 2C), 123.22 (+, 2C), 37.67 (-), 33.47 (-), 32.22 (-), 27.76 (+), 25.42 (-). NMR data matches literature reference.⁵⁶ HRMS (ESI-MS): calcd. for C₁₃H₁₅BrNO₂+: 296.0281, found: 296.0284. MF: C₁₃H₁₄BrNO₂. MW: 296.16.

(5-(1,3-Dioxoisoindolin-2-yl)pentyl)triphenylphosphonium bromide (4.23).⁵⁷ To a solution of 4.22 (3.37 g, 11.38 mmol, 1 equiv) in MeCN (21 mL) was added PPh₃ (3.00 g, 11.42 mmol, 1 equiv). The mixture was refluxed for 48 h, and the solvent was removed at reduced pressure to give the phosphonium bromide (6.45 g, 100%) as beige foam. The product was used in the next step without further purification. $R_f = 0.47$ (CH₂Cl₂/MeOH 95:5). ¹H-NMR (300 MHz, MeOD) δ 7.94-7.69 (m, 19H), 3.63 (t, J = 6.7 Hz, 2H), 3.50–3.36 (m, 2H), 1.80-1.64 (m, 4H), 1.63-1.51 (m, 2H). ¹³C-NMR (75 MHz, MeOD) δ 169.89 (2C), 136.33 (+, d, J = 3.1 Hz, 3C), 135.49 (+, 2C), 134.89 (+, d, J = 10.0 Hz, 6C), 133.36 (q, 2C), 131.61 (+, d, J = 12.60 Hz, 6C), 124.18 (+, 2C), 120 (q, d, J = 86.26 Hz, 3C), 38.17 (-), 28.73 (-, d, J = 3.6 Hz), 28.53 (-), 23.05 (-, d, J = 3.52 Hz), 22.35 (-). NMR data matches literature

reference.⁵⁷ HRMS (ESI-MS): calcd. for C₃₁H₂₉NO₂P⁺: 478.1930, found: 478.1937. MF: C₃₁H₂₉BrNO₂P. MW: 558.46.

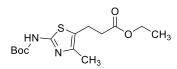
1-Trityl-1*H***-imidazole-4-carbaldehyde** (**4.24**).⁵⁸ To a solution of 1*H*-imidazole-4carbaldehyde (2.35 g, 24.5 mmol, 1.0 equiv) and Trt-Cl (7.50 g, 26.9 mmol, 1.1 equiv) in MeCN (80 mL), NEt₃ (6.11 mL, 44.1 mmol, 1.8 equiv) was added dropwise. After 20 h, *n*hexane (8 mL) and H₂O (80 mL) were added and the mixture was stirred for 30 min. The precipitated product was filtered and washed with H₂O (2 x 20 mL). Recrystallization from EtOAc/n-hexane yielded a beige solid (8.11 g, 98%). R_f = 0.68 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). M. p.: 163-168 °C (lit. 162-165)¹⁹. ¹H-NMR (300 MHz, CDCl₃) δ 7.16-7.06 (m, 6H), 7.41-7.31 (m, 9H), 7.53 (d, *J* = 1.3 Hz, 1H), 7.61 (d, *J* = 1.3 Hz, 1H), 9.88 (s, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 186.61 (q), 141.56 (q, 3C), 140.90 (q), 140.65 (+), 129.69 (+, 6C), 128.57 (+, 6C), 128.42 (+, 3C), 126.80 (+), 76.39 (q). NMR data matches literature reference.⁵⁸ HRMS (ESI-MS): calcd. for C₂₃H₁₈N₂NaO⁺: 361.1311, found: 361.1319. MF: C₂₃H₁₈N₂O. MW: 338.41.

H₂N N= N-Trt


(*E*)-6-(1-Trityl-1*H*-imidazol-4-yl)hex-5-en-1-amine (4.26). The title compound was synthesized according to the procedure of Griffith et al.¹⁶ To a stirred suspension of 4.23 (3.0 g, 5.37 mmol, 1 equiv) and 4.24 (1.82 g, 5.37 mmol, 1 equiv) in anhydrous THF (25 mL) under N₂ atmosphere at 0 °C was added *t*-BuOK (0.60 g, 5.37 mmol, 1 equiv) in one portion. The mixture was refluxed for 18 h and then filtered. The solvent was evaporated in vacuum and the residue was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/EtOAc 100:0-95:5, SF 40 g) to afford mixture of product and the aldehyde as light beige solid (1.38 g). R_f = 0.7 (CH₂Cl₂/EtOAc 85:15). HRMS (ESI-MS): calcd. for C₃₆H₃₁N₃O₂⁺: 538.2489, found: 538.2490. MF: C₃₆H₃₁N₃O₂. MW: 537.66. This mixture was dissolved in EtOH (50 mL) and N₂H₄ x H₂O (0.62 mL) was added. The reaction mixture was stirred at rt for 48 h. Then, the solvent was evaporated, and the residue was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/MeOH 100:0-95:5, 35 min: 95:5, 55 min: 90:10, SF 12 g). The product was obtained as transparent oil (160 mg, 7% over 2 steps). R_f = 0.25 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.46-7.40 (m, 1H), 7.37-7.29 (m, 9H), 7.18-7.09 (m, 7H), 6.77-6.70 (m,

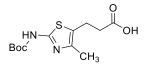
1H), 6.24-6.16 (m, 1H), 2.72-2.57 (m, 2H), 2.41-2.29 (m, 2H), 1.52-1.41 (m, 4H). ¹³C-NMR (75 MHz, CDCl₃) δ 142.27 (q, 3C), 138.71 (q), 138.50 (+), 130.53 (+), 129.77 (+, 6C), 128.08(+, 9C), 121.23 (+), 120.60 (+), 75.36 (q), 41.30 (-), 31.99 (-), 28.51 (-), 26.40 (-). HRMS (ESI-MS): calcd. for C₂₈H₃₀N₃⁺: 408.2434, found: 408.2438. MF: C₂₈H₂₉N₃. MW: 407.56.

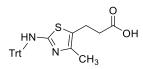
4.4.6 Preparation of the Building Blocks 4.32 and 4.35


о H₃C О CH₃

Ethyl 5-oxohexanoate (4.28).⁵⁹ Oxalyl chloride (1.98 mL, 23.1 mmol, 3 equiv) was added dropwise to a solution of 5-oxohexanoic acid (4.27, 0.92 mL, 7.7 mmol, 1 equiv), and DMF (0.2 mL, cat.) in anhydrous CH₂Cl₂ (10 mL) at 0 °C under stirring in an argon atmosphere. After a period of 2 h at rt, the solution was evaporated in vacuum, the yellowish liquid residue was taken up in CH₂Cl₂ (20 mL) and added dropwise to a mixture of EtOH (1.08 mL, 18.4 mmol, 2.4 equiv) and NEt₃ (3.20 mL, 23.1 mmol, 3 equiv) at rt. After stirring for 30 min, the mixture was concentrated in vacuum, taken up in Et₂O (100 mL) and extracted successively with aqueous HCl (2 x 70 mL), brine (50 mL). The organic layers were dried over Na₂SO₄, filtered and the filtrate was concentrated in vacuum. The residue was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-95:5, SF 12 g) yielding the product as yellow oil (0.41 g, 34%). $R_f = 0.86$ (PE/EtOAc 1:1, KMnO₄ stain). ¹H-NMR (300 MHz, CDCl₃) δ 4.07 (q, J = 6.7 Hz, 2H), 2.46 (t, J = 6.7 Hz, 2H), 2.27 (t, J = 6.7 Hz, 2H), 2.09 (s, 3H), 1.82 (quint, J = 7.7 Hz, 2H), 1.19 (t, J = 6.7 Hz, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 207.94 (q), 172.66 (q), 60.23 (+), 42.42 (+), 33.17 (+), 29.80 (-), 18.71 (+), 14.16 (-). NMR data matches literature reference.⁵⁹ HRMS (EI-MS): calcd. for $C_8H_{14}O_3^+$: 158.0937, found: 158.0942. MF: C₈H₁₄O₃. MW: 158.20.

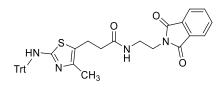
Ethyl 3-(2-amino-4-methylthiazol-5-yl)propanoate (4.29).⁶⁰ To a suspension of 4.28 (2.58 g, 16.3 mmol, 1 equiv) and thiourea (2.48 g, 32.6 mmol, 2 equiv) was added Br₂ (835 μ L, 16.3 mmol, 1 equiv) under stirring. After Br₂ was added, the mixture was warmed on the steam bath for 3 h under stirring. The reaction mixture was cooled at rt and purified using flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0 to 50:50, 40 min: 40:60, 60 min: 40:60, SF 12 g) yielding the product as greenish oil (0.45 g, 13%). R_f = 0.51 (CH₂Cl₂/0.5% NH₃ in


MeOH) ¹H-NMR (300 MHz, CDCl₃) δ 8.21 (br s, 2H), 4.07 (q, J = 6.9 Hz, 2H), 2.79 (t, J = 6.9 Hz, 2H), 2.47 (t, J = 7.0 Hz, 2H), 2.13 (s, 3H), 1.19 (t, J = 7.6 Hz, 3H). HRMS (ESI-MS): calcd. for C₉H₁₅N₂O₂S⁺: 215.0849, found: 215.0881. MF: C₉H₁₄N₂O₂S. MW: 214.28.

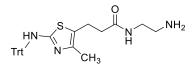

Ethyl 3-(2-((*tert*-butoxycarbonyl)amino)-4-methylthiazol-5-yl)propanoate (4.30). 4.29 (0.29 g, 1.35 mmol, 1 equiv) was dissolved in CH₂Cl₂ (10 mL). NEt₃ (218 μL, 1.56 mmol, 1.16 equiv), DMAP (25 mg, cat.) and Boc₂O (319 mg, 1.46 mmol, 1.08 equiv) were added. The reaction mixture was stirred at rt for 16 h. The solvent was removed in vacuum and the residue was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0 to 75:25, SF 8 g) yielding the product as yellow oil (270 mg, 63%). R_f = 0.89 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 10.55 (br s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.02-2.93 (m, 2H), 2.61-2.52 (m, 2H), 2.25 (s, 3H), 1.51 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H).¹³C-NMR (75 MHz, CDCl₃) δ 172.35 (q), 158.00 (q), 152.84 (q), 142.43 (q), 122.43 (q), 82.35 (q), 60.75 (-), 35.94 (-), 28.40 (+, 3C), 21.62 (-), 14.61 (+), 14.33 (+). HRMS (ESI-MS): calcd. for C₁₄H₂₃N₂O₄S⁺: 315.1373, found: 315.1381. MF: C₁₄H₂₂N₂O₄S. MW: 314.40.

3-(4-methyl-2-(tritylamino)thiazol-5-yl)propanoate Ethyl (4.31). Trt-Cl (3.1 g, 11.2 mmol, 1.2 equiv) was dissolved in DMF (25 mL) and added dropwise to a solution of 4.29 (2.0 g, 9.3 mmol, 1 equiv) and NEt₃ (3.9 mL, 27.9 mmol, 3 equiv) in DMF (25 mL). After the addition, the mixture was stirred at rt for 16 h. The solvent was removed in vacuum and the crude product was purified by flash chromatography (gradient: 0-30 min: PE/EtOAc 100:0-80:20, 50 min: 50:50, SF 12 g) yielding the product as yellow solid (2.9 g, 68%). $R_f = 0.39$ (PE/EtOAc 3:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.36-7.22 (m, 15H), 6.51 (bs, 1H), 4.19-3.99 (m, 2H), 2.72 (t, *J* = 7.2 Hz, 2H), 2.37-2.29 (m, 2H), 2.10 (s, 3H), 1.29-1.13 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 172.84 (q), 165.25 (q), 143.90 (q, 3C), 142.11 (q), 129.36 (+, 6C), 128.24 (+, 6C), 127.51 (+, 3C), 119.29 (q), 71.81 (q), 60.63 (-), 51.80 (+), 35.84 (-), 21.76 (-), 14.52 (+). HRMS (ESI-MS): calcd. for C₂₈H₂₉N₂O₂S⁺: 457.1944, found: 457.1945. MF: C₂₈H₂₈N₂O₂S. MW: 456.60.

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as Histamine H₂ Receptor Ligands



3-(2-((*tert***-Butoxycarbonyl)amino)-4-methylthiazol-5-yl)propanoic acid (4.32).** To an ice-cold solution of KOH (145 mg, 2.58 mmol, 3 equiv) in EtOH/H₂O (95:5 (v/v), 7 mL) was added **4.30** (270 mg, 0.86 mmol, 1 equiv). The reaction mixture was stirred for 16 h during which it warmed to rt. The mixture was neutralized with 1 M HCl in MeOH. The solvent was removed in vacuum. The residue was taken up in H₂O (20 mL) and the solution was acidified to pH 3-4 with 1 M HCl in H₂O. The aqueous solution was extracted with EtOAc (2 x 20 mL) and CH₂Cl₂ (2 x 20 mL), the combined organic phases were dried over MgSO₄ and evaporated to dryness yielding the product as while solid (220 mg, 89%). ¹H-NMR (300 MHz, MeOD) δ 2.96 (t, *J* = 7.2 Hz, 2H), 2.56 (t, *J* = 7.3 Hz, 2H), 2.19 (s, 3H), 1.52 (s, 9H). ¹³C-NMR (75 MHz, MeOD) δ 175.96 (q), 158.90 (q), 154.34 (q), 143.31 (q), 124.10 (q), 82.73 (q), 36.53 (-), 28.47 (+, 3C), 22.37 (-), 14.40 (+). HRMS (ESI-MS): calcd. for C₁₂H₁₉N₂O₄S⁺: 287.1060; found: 287.1080. MF: C₁₂H₁₈N₂O₄S. MW: 286.35.

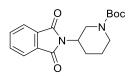

3-(4-Methyl-2-(tritylamino)thiazol-5-yl)propanoic acid (4.33). To an ice-cold solution of KOH (320 mg, 5.72 mmol, 3 equiv) in EtOH/H₂O (95:5 (v/v), 21 mL) was added **4.31** (870 mg, 1.91 mmol, 1 equiv). The reaction mixture was stirred for 16 h during which it warmed to rt. The mixture was neutralized with 1 M HCl in MeOH. The solvent was removed in vacuum. The residue was taken up in H₂O (20 mL) and the solution was acidified to pH 3-4 with 1 M HCl in H₂O. The precipitated white solid was filtered off, washed with H₂O (5 mL) and dried in vacuum (820 mg, 100%). R_f = 0.60 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, DMSO-d₆) δ 12.14 (br s, 1H), 8.42 (br s, 1H), 7.34-7.18 (m, 15H), 2.61 (t, *J* = 7.3 Hz, 2H), 2.26 (t, *J* = 7.3 Hz, 2H), 1.85 (s, 3H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 173.29 (q), 163.69 (q), 144.29 (q, 4C), 128.90 (+, 6C), 127.64 (+, 6C), 126.71 (+, 3C), 118.15 (q), 71.52 (q), 35.40 (-), 20.95 (-), 14.17 (+). HRMS (ESI-MS): calcd. for C₂₆H₂₅N₂O₂S⁺: 429.1631; found: 429.1662. MF: C₂₆H₂₄N₂O₂S. MW: 428.55.

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as Histamine H₂ Receptor Ligands

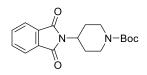
N-(2-(1,3-Dioxoisoindolin-2-yl)ethyl)-3-(4-methyl-2-(tritylamino)thiazol-5-

yl)propenamide (4.34). The title compound was prepared from **4.33** (235 mg, 0.55 mmol), **4.49** (200 mg, 0.66 mmol), EDC x HCl (126 mg, 0.66 mmol), HOBt x H₂O (101 mg, 0.66 mmol) and DIPEA (466 μ L, 2.74 mmol) in DMF (2.6 mL) according to the general procedure A. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0 to 95:5, 40 min: 95:5, SF 8 g) yielding the product as yellow oil (70 mg, 21%). R_f = 0.12 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.77-7.57 (m, 4H), 7.30-7.11 (m, 15H), 3.74-3.65 (m, 2H), 3.41-3.29 (m, 2H), 2.61-2.54 (m, 2H), 2.07-2.01 (m, 2H), 1.96 (s, 3H). HRMS (ESI-MS): calcd. for C₃₆H₃₃N₄O₃S⁺: 601.2268, found: 601.2277. MF: C₃₆H₃₂N₄O₃S. MW: 600.74.

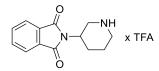
N-(2-Aminoethyl)-3-(4-methyl-2-(tritylamino)thiazol-5-yl)propenamide (4.35). 4.34 (70 mg, 0.12 mmol, 1 equiv) was dissolved in EtOH (5 mL) and N₂H₄ x H₂O (28 μ L, 0.59 mmol, 5 equiv) was added. The mixture was stirred at rt for 16 h and then heated at 60 °C for 2 h. The mixture was cooled with an ice-bath, the precipitate was removed by filtration and the filtrate was concentrated to dryness yielding 4.35 as a yellow oil (50 mg, 89%). R_f = 0.12 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). The crude product was used in the next step without further purification. ¹H-NMR (400 MHz, MeOD) δ 7.41-7.23 (m, 15H), 3.29 (t, *J* = 6.2 Hz, 2H), 2.87-2.83 (m, 2H), 2.74 (t, *J* = 7.4 Hz, 2H), 2.26 (t, *J* = 7.4 Hz, 2H), 2.07 (s, 3H). HRMS (ESI-MS): calcd. for C₂₈H₃₁N₄OS⁺: 471.6425, found: 471.2210. MF: C₂₈H₃₀N₄OS. MW: 470.64.

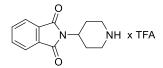

4.4.7 Preparation of the Cbz- or Phthalimide-Protected Amines 4.42-4.43, 4.46 and 4.49

tert-Butyl 3-((methylsulfonyl)oxy)piperidine-1-carboxylate (4.38).⁶¹ Piperidin-3-ol (4.36, 2 g, 19.8 mmol, 1 equiv) was dissolved in CH₂Cl₂ (25 mL). NEt₃ (2.74 mL, 19.8 mmol, 1 equiv) was added and the mixture was cooled to 0 °C by using an ice-bath. Boc₂O (4.15 g,


19.0 mmol, 0.96 equiv) was dissolved in CH₂Cl₂ (15 mL) and added dropwise to the ice-cold piperidin-3-ol/NEt₃ mixture while stirring. The resulting mixture was stirred at 0 °C for 2 h. After 2 h, NEt₃ (3.27 mL, 24.0 mmol, 1.19 equiv) and mesityl chloride (2.31 g, 20.0 mmol, 1.02 equiv) were added. The ice-bath was removed, and the reaction mixture was stirred at rt for 3 h. After 3 h, the mixture was diluted with EtOAc/PE (1:1, 200 mL) and washed successively with aqueous citric acid (100 mL), saturated, aqueous NaHCO₃ (100 mL) and brine (100 mL). The combined organic phases were dried over Na₂SO₄. Na₂SO₄ was filtered off and the filtrate was evaporated. The product was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0 to 80:20, 40 min: 60:40, SF 12 g). The product was obtained as a white solid (4.0 g, 75%). $R_f = 0.76$ (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃) δ 4.80-4.63 (m, 1H), 3.78-3.25 (m, 4H), 3.04 (s, 3H), 2.00-1.67 (m, 3H), 1.61-1.38 (m, 10H). ¹³C-NMR (75 MHz, CDCl₃) δ 154.87 (q), 80.36 (q), 75.58 (+), 47.9 (-), 43.5 (-), 38.96 (+), 30.61 (-), 28.50 (+, 3C), 21.81 (-). NMR data matches literature reference.⁶² HRMS (ESI-MS): calcd. for C₂₂H₄₂N₂NaO₁₀S₂⁺: 581.2173, found: 581.2176. MF: C₁₁H₂₁NO₅S. MW: 279.35.

tert-Butyl 4-((methylsulfonyl)oxy)piperidine-1-carboxylate (4.39).⁶¹ Piperidin-4-ol (4.37, 2 g, 19.8 mmol, 1 equiv) was dissolved in CH₂Cl₂ (25 mL). NEt₃ (2.74 mL, 19.8 mmol, 1 equiv) was added and the mixture was cooled to 0 °C by using an ice-bath. Boc₂O (4.15 g, 19.0 mmol, 0.96 equiv) was dissolved in CH₂Cl₂ (15 mL) and added dropwise to the ice-cold piperidin-4ol/NEt₃ mixture while stirring. The resulting mixture was stirred at 0 °C for 2 h. After 2 h, NEt₃ (3.27 mL, 24.0 mmol, 1.19 equiv) and mesityl chloride (2.31 g, 20.0 mmol, 1.02 equiv) were added. The ice-bath was removed, and the reaction mixture was stirred at rt for 3 h. After 3 h, the mixture was diluted with EA/PE 1:1 (200 mL) and washed successively with aqueous citric acid (100 mL), saturated, aqueous NaHCO₃ (100 mL) and brine (100 mL). The combined organic phases were dried over Na₂SO₄. Na₂SO₄ was filtered off and the filtrate was evaporated. The product was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0 to 80:20, 40 min: 60:40, SF 12 g). The product was obtained as a white solid (3.93 g, 74%). $R_f = 0.54$ (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃) δ 4.91-4.81 (m, 1H), 3.76-3.61 (m, 2H), 3.34-3.22 (m, 2H), 3.02 (s, 3H), 2.00-1.73 (m, 4H), 1.44 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃) δ 154.69 (q), 80.11 (q), 60.51 (-), 40.61 (-, 2C), 38.96 (+), 31.77 (-, 2C), 28.51 (+, 3C). NMR data matches literature reference.⁶³⁻⁶⁴ HRMS (ESI-MS): calcd. for C₂₂H₄₂N₂NaO₁₀S₂⁺: 581.2173, found: 581.2172. MF: C₁₁H₂₁NO₅S. MW: 279.35.

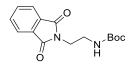

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as Histamine H₂ Receptor Ligands


tert-Butyl 3-(1,3-dioxoisoindolin-2-yl)piperidine-1-carboxylate (4.40). 4.38 (3.9 g, 14.0 mmol, 1 equiv) and potassium phthalimide (3.1 g, 16.52 mmol, 1.18 equiv) were dissolved in DMF (70 mL). The mixture was stirred at 75 °C for 24 h. After 24 h, the mixture was diluted with H₂O (300 mL) and extracted with EtOAc (3 x 150 mL). The combines organic phases were extracted successively with H₂O (2 x 100 mL), brine (100 mL) and dried over Na₂SO₄. Na₂SO₄ was filtered off and the filtrate was evaporated. The product was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-90:10, SF 12 g) to give the product as oily solid (465 mg, 10%). R_f = 0.85 (PE/EtOAc 1:1). ¹H-NMR (400 MHz, CDCl₃) δ 7.87-7.77 (m, 2H), 7.76-7.66 (m, 2H), 4.26-3.89 (m, 3H), 3.48 (t, *J* = 12.1 Hz, 1H), 2.81-2.62 (m, 1H), 2.42-2.23 (m, 1H), 1.90-1.72 (m, 2H), 1.64-1.51 (m, 1H), 1.45 (s, 9H). ¹³C-NMR (101 MHz, CDCl₃) δ 168.08, 154.61 (2C), 133.99 (2C), 131.79 (2C), 123.21 (2C), 79.82, 47.89, 46.07, 43.24, 28.37 (3C), 27.85, 24.95. HRMS (ESI-MS): calcd. for C₁₈H₂₂N₂NaO₄⁺: 353.1472, found: 353.1472. MF: C₁₈H₂₂N₂O₄. MW: 330.38.

tert-Butyl 4-(1,3-dioxoisoindolin-2-yl)piperidine-1-carboxylate (4.41).⁶⁵ 4.39 (2.1 g, 7.52 mmol, 1 equiv) and potassium phthalimide (1.64 g, 8.87 mmol, 1.18 equiv) were dissolved in DMF (70 mL). The mixture was stirred at 75 °C for 24 h. After 24 h, the mixture was diluted with H₂O (300 mL) and extracted with EtOAc (3 x 150 mL). The combines organic phases were extracted successively with H₂O (2 x 100 mL), brine (100 mL) and dried over Na₂SO₄. Na₂SO₄ was filtered off and the filtrate was evaporated. The product was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-80:20, SF 12 g) to give the product as white solid (530 mg, 21%). R_f = 0.83 (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.86-7.65 (m, 4H), 4.36-4.14 (m, 3H), 2.77 (t, *J* = 13.4 Hz, 2H), 2.50-2.28 (m, 2H), 1.72-1.60 (m, 2H), 1.47 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.29 (q), 154.74 (q), 134.13 (+, 2C), 131.99 (q, 2C), 123.34 (+, 2C), 79.87 (q), 49.19 (+), 43.51 (-, 2C), 29.08 (-, 2C), 28.59 (+, 3C). HRMS (ESI-MS): calcd. for C₁₈H₂₂N₂NaO₄⁺: 353.1472, found: 353.1472. MF: C₁₈H₂₂N₂O₄. MW: 330.38.

2-(Piperidin-3-yl)isoindoline-1,3-dione hydrotrifluoroacetate (4.42). 4.40 (465 mg, 1.41 mmol) was dissolved in CH₂Cl₂ (4 mL) and TFA (1 mL) was added under stirring at rt. After stirring for 16 h, the solvent was removed in vacuum. The product was obtained as beige solid (485 mg, 100%). ¹H-NMR (400 MHz, MeOD) δ 7.91-7.73 (m, 4H), 4.57-4.46 (m, 1H), 3.71 (t, *J* = 11.9 Hz, 1H), 3.50-3.35 (m, 2H), 3.11-2.99 (m, 1H), 2.45-2.32 (m, 1H), 2.15-2.05 (m, 1H), 2.03-1.94 (m, 1H), 1.93-1.80 (m, 1H). ¹³C-NMR (101 MHz, MeOD) δ 169.14 (2C), 135.67 (2C), 132.94 (2C), 124.34 (2C), 46.23, 45.72, 44.83, 27.37, 22.93. HRMS (ESI-MS): calcd. for C₁₃H₁₅N₂O₂+: 231.1128, found: 231.1138. MF: C₁₃H₁₄N₂S₂ x C₂HF₃O₂. MW: (230.27 + 114.02).

2-(Piperidin-4-yl)isoindoline-1,3-dione hydrotrifluoroacetate (4.43). 4.41 (520 mg, 1.57 mmol) was dissolved in CH₂Cl₂ (4 mL) and TFA (1 mL) was added under stirring at rt. After stirring for 16 h, the solvent was removed in vacuum. The product was obtained as beige solid (540 mg, 100%). $R_f = 0.57$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.89-7.73 (m, 4H), 4.54-4.37 (m, 1H), 3.59-3.44 (m, 2H), 3.29-3.07 (m, 2H), 2.77-2.58 (m, 2H), 2.09-1.93 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 169.20 (q, 2C), 160.09 (q, *J* = 39.6 Hz, TFA), 135.48 (+, 2C), 132.98 (q, 2C), 124.19 (+, 2C), 116.64 (q, *J* = 286.4 Hz, TFA), 47.16 (+), 45.01 (-, 2C), 22.16 (-, 2C). HRMS (ESI-MS): calcd. for C₁₃H₁₅N₂O₂⁺: 231.1128, found: 231.1144. MF: C₁₃H₁₄N₂O₂ x C₂HF₃O₂. MW: (230.27 + 114.02).


Cbz-NN-Boc

1-Benzyl 4-(*tert*-butyl) piperazine-1,4-dicarboxylate (4.45). *tert*-Butyl piperazine-1carboxylate (4.44, 0.29 g, 1.02 mmol, 1 equiv) and NEt₃ (156 μ L, 1.12 mmol, 1.1 equiv) were dissolved in CH₂Cl₂ (10 mL) and cooled to 0 °C by using an ice-bath. A solution of benzyl chloroformate (147 μ L, 1.03 mmol, 1.01 equiv) in CH₂Cl₂ (5 mL) was added dropwise while stirring. After stirring the mixture overnight, the solvent was removed in vacuum and the residue was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-80:20, SF 8 g) to give the product as transparent oil (200 mg, 61%). R_f = 0.56 (PE/EtOAc 4:1). ¹H-NMR

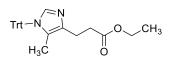
(300 MHz, CDCl₃) δ 7.44-7.28 (m, 5H), 5.13 (s, 2H), 3.54-3.28 (m, 8H), 1.46 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃) δ 155.12 (q), 154.52 (q), 136.40 (q), 128.45 (+, 2C), 128.05 (+), 127.89 (+, 2C), 80.08 (q), 67.25 (-), 43.58 (-, 4C), 28.30 (+, 3C). HRMS (ESI-MS): calcd. for C₁₇H₂₈N₃O₄⁺: 338.2074, found: 338.2076. MF: C₁₇H₂₄N₂O₄. MW: 320.39.

Cbz-N NH x TFA

Benzyl piperazine-1-carboxylate hydrotrifluoroacetate (4.46). 4.45 (200 mg, 0.63 mmol) was dissolved in CH₂Cl₂ (3 mL) and TFA (2 mL) was added. The mixture was stirred for 7 h at rt. The solvent was evaporated to give the product as brown oil (208 mg, 99%.). $R_f = 0.54$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.44-7.19 (m, 5H), 5.14 (s, 2H), 3.73 (t, J = 4.3 Hz, 4H), 3.20 (t, J = 5.5 Hz, 4H). ¹³C-NMR (75 MHz, MeOD) δ 156.30 (q), 137.59 (q), 129.59 (+, 2C), 129.33 (+), 129.16 (+, 2C), 68.92 (-), 44.22 (-, 2C), 41.78 (-, 2C). HRMS (ESI-MS): calcd. for C₁₂H₁₇N₂O₂⁺: 221.1285, found: 221.1288. MF: C₁₂H₁₆N₂O₂ x C₂HF₃O₂. MW: (220.27 + 114.02).

tert-Butyl (2-(1,3-dioxoisoindolin-2-yl)ethyl)carbamate (4.48). A mixture of *tert*-butyl (2aminoethyl)carbamate (4.47, 0.8 g, 5.0 mmol, 1 equiv), Nefkens` reagent (1.32 g, 6.0 mmol, 1.2 mmol) and K₂CO₃ (2.07 g, 15 mmol, 3 equiv) in H₂O (30 mL) was stirred at rt for 16 h. The precipitate was filtered off, washed with H₂O, and dried in vacuum (0.33 g, 22%). R_f = 0.22 (PE/EtOAc 3:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.88-7.80 (m, 2H), 7.75-7.67 (m, 2H), 3.88-3.77 (m, 2H), 3.42 (q, *J* = 5.8 Hz, 2H), 1.33 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.61 (q, 2C), 156.09 (q), 134.10 (+, 2C), 132.19 (q, 2C), 123.44 (+, 2C), 79.55 (q), 39.70 (-), 38.21 (-), 28.36 (+, 3C). HRMS (ESI-MS): calcd. for C₁₅H₁₈N₂NaO₄⁺: 313.1159, found: 313.1157. MF: C₁₅H₁₈N₂O₄. MW: 290.32.

2-(2-Aminoethyl)isoindoline-1,3-dione hydrotrifluoroacetate (4.49). To a solution of 4.48 (1.93 g, 6.6 mmol) in CH₂Cl₂ (10 mL) was added TFA (5 mL) and the mixture was stirred at rt for 48 h. Subsequently, the solvent was removed in vacuum yielding a yellow oil (2.0 g, 100%). $R_f = 0.55$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.94-7.78 (m, 4H),

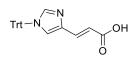

4.05-3.95 (m, 2H), 3.30-3.21 (m, 2H). ¹³C-NMR (75 MHz, MeOD) δ 169.76 (q, 2C), 135.53 (+, 2C), 133.36 (q, 2C), 124.34 (+, 2C), 39.85 (-), 36.46 (-). HRMS (ESI-MS): calcd. for C₁₀H₁₁N₂O₂⁺: 191.0815, found: 191.0820. MF: C₁₀H₁₀N₂O₂ x C₂HF₃O₂. MW: (190.20 + 114.02).

4.4.8 Preparation of the Amine Building Blocks 4.66-4.72

5-Methyl-1-trityl-1*H***-imidazole-4-carbaldehyde** (**4.51**).^{19, 66} To a solution of 5-methyl-1trityl-1*H*-imidazole-4-carbaldehyde (**4.50**, 2.0 g, 18.2 mmol, 1 equiv) and Trt-Cl (5.6 g, 19.98 mmol, 1.1 equiv) in MeCN (80 mL), NEt₃ (4.54 mL, 32.8 mmol, 1.8 equiv) was added dropwise. After stirring at rt for 16 h, n-hexane (8 mL) and H₂O (80 mL) were added and the mixture was stirred for 30 min. The precipitated product was filtered and washed with H₂O. Recrystallization from EtOAc/n-hexane yielded a beige solid (2.75 g, 43%). R_f = 0.63 (PE/EtOAc 1:1). M. p.: 162-165 °C. ¹H-NMR (300 MHz, CDCl₃) δ 9.11 (s, 1H), 7.39-7.30 (m, 10H), 7.21-7.12 (m, 6H), 2.55 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 181.17 (q), 151.86 (q, 3C), 141.58 (q), 141.53 (+), 129.59 (+, 6C), 128.58 (q), 128.47 (+, 6C), 128.43 (+, 3C), 76.19 (q), 15.77 (+). NMR data matches literature reference.¹⁹ HRMS (ESI-MS): calcd. for C₂₄H₂₁N₂O⁺: 353.1648, found: 353.1681. MF: C₂₄H₂₀N₂O. MW: 352.44.

(*E*)-Ethyl 3-(5-methyl-1-trityl-1*H*-imidazol-4-yl)acrylate (4.52).¹⁸⁻¹⁹ To a solution of triethyl phosphonoacetate (1.69 mL, 8.51 mmol, 1.5 equiv) in anhydrous THF (35 mL), NaH (60% dispersion in mineral oil, 204 mg, 8.51 mmol, 1.5 equiv) was added in portions. After stirring for 1 h at rt, a solution of 4.51 (2.0 g, 5.67 mmol, 1 equiv) in anhydrous THF (20 mL) was added dropwise. The mixture was refluxed for 16 h. The solvent was evaporated, and the crude product was dissolved in EtOAc (100 mL) and washed with water (3 x 100 mL). The organic layer was dried over Na₂SO₄, evaporated and the crude product purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-90:10; 40 min: 90:10, SF 12 g) yielding the product as white solid (0.43 g, 18%). $R_f = 0.24$ (PE/EtOAc 4:1). M. p.: 175-176 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.56 (d, *J* = 15.4 Hz, 1H), 7.41-7.28 (m, 10H), 7.19-7.09 (m, 6H), 6.58 (d, *J* = 15.4 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 1.57 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C-

NMR (75 MHz, CDCl₃) δ 167.95 (q), 141.38 (q, 3C), 139.43 (+), 136.40 (q), 135.11 (+), 132.90 (q), 129.99 (+, 6C), 128.21 (+, 6C), 128.15 (+, 3C), 115.36 (+), 75.40 (q), 60.12 (-), 14.44 (+), 11.99 (+). NMR data matches literature reference.¹⁹ HRMS (ESI-MS): calcd. for C₂₈H₂₇N₂O₂⁺: 423.2067, found: 423.2072. MF: C₂₈H₂₆N₂O₂. MW: 422.53.

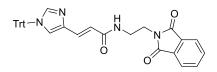


Ethyl 3-(5-methyl-1-trityl-1*H***-imidazol-4-yl)propanoate (4.53).¹⁹ To a solution of 4.52** (430 mg, 1.02 mmol) in EtOH (10 mL), Pd/C (10 wt%, 50 mg) was added. After stirring overnight at rt under a hydrogen atmosphere (1 atm), the catalyst was removed by filtration over Celite 545 and the solvent was evaporated. The product was obtained as a white solid (350 mg, 81%). The crude product was used in the next reaction without further purification. $R_f = 0.38$ (PE/EtOAc 3:1). M. p.: 94-95 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.37-7.28 (m, 9H), 7.22 (s, 1H), 7.17-7.08 (m, 6H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.79 (t, *J* = 7.4 Hz, 2H), 2.68 (t, *J* = 7.4 Hz, 2H), 1.39 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 173.45 (q), 142.04 (q, 3C), 138.54 (q), 137.42 (+), 130.11 (+, 6C), 127.95 (+, 6C), 127.81 (+, 3C), 125.22 (q), 74.78 (q), 60.22 (-), 34.25 (-), 22.73 (-), 14.31 (+), 11.63 (+). NMR data matches literature reference.¹⁹ HRMS (ESI-MS): calcd. for C₂₈H₂₉N₂O₂+: 425.2224, found: 425.2224. MF: C₂₈H₂₈N₂O₂. MW: 424.54.

(*E*)-3-(5-Methyl-1-trityl-1*H*-imidazol-4-yl)acrylic acid (4.54). To an ice-cold solution of KOH (120 mg, 2.13 mmol, 3 equiv) in EtOH/H₂O (95:5 (v/v), 7 mL) was added 4.52 (300 mg, 0.71 mmol, 1 equiv). The resulting mixture was stirred for 48 h, meanwhile the mixture was allowed to warm up to rt. The mixture was neutralized with 1 M HCl in MeOH. The solvent was removed in vacuum. The residue was taken up in H₂O (20 mL) and the solution was acidified to pH 3-4 with 1 M HCl in H₂O. The precipitated white solid was filtered off, washed with H₂O (5 mL), and dried in vacuum (220 mg, 79%). R_f = 0.80 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.60 (d, *J* = 15.4 Hz, 1H), 7.47 (s, 1H), 7.38-7.30 (m, 9H), 7.19-7.09 (m, 6H), 6.62 (d, *J* = 15.5 Hz, 1H), 1.57 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 171.83 (q), 141.11 (q, 3C), 139.46 (+), 135.94 (+), 135.77 (q), 133.32 (q), 129.90 (+, 6C), 128.20 (+, 6C),

128.17 (+, 3C), 115.48 (+), 75.56 (q), 11.98 (+). HRMS (ESI-MS): calcd. for C₂₆H₂₃N₂O₂⁺: 395.1754, found: 395.1751. MF: C₂₆H₂₂N₂O₂. MW: 394.47.

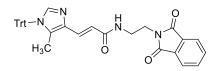
3-(5-Methyl-1-trityl-1*H***-imidazol-4-yl)propanoic acid (4.55).** To an ice-cold solution of KOH (190 mg, 3.39 mmol, 3 equiv) in EtOH/H₂O (95:5 (v/v), 11.7 mL) was added **4.53** (480 mg, 1.13 mmol, 1 equiv) and stirred for 16 h and the reaction mixture was allowed to warm up to rt. The mixture was neutralized with 1 M HCl in MeOH. The solvent was removed in vacuum. The residue was taken up in H₂O (20 mL) and the solution was acidified to pH 3-4 with 1 M HCl in H₂O. The precipitated white solid was filtered off, washed with H₂O (5 mL), and dried in vacuum (240 mg, 54%). $R_f = 0.44$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.39-7.32 (m, 10H), 7.16-7.07 (m, 6H), 2.86-2.68 (m, 4H), 1.38 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 175.37 (q), 141.06 (q), 137.21 (q), 135.83 (+), 129.91 (+, 6C), 128.26 (+), 128.20 (+, 9C), 125.37 (q), 75.56 (q), 35.17 (-), 21.13 (-), 11.48 (+). HRMS (ESI-MS): calcd. for C₂₆H₂₅N₂O₂⁺: 397.1911, found: 397.1920. MF: C₂₆H₂₄N₂O₂. MW: 396.49.



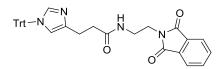
(*E*)-3-(1-Trityl-1*H*-imidazol-4-yl)acrylic acid (4.57). Trt-Cl (2.0 g, 7.17 mmol, 1 equiv) was dissolved in DMF (25 mL) and added dropwise to a mixture of urocanic acid (4.56, 1.0 g, 7.17 mmol, 1 equiv) and NEt₃ (2.97 mL, 21.7 mmol, 3 equiv) in DMF (25 mL). After the addition, the mixture was stirred for 14 h at rt. The solvent was removed in vacuum and the crude product was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-50:50, 30 min: 30:70, 40 min: 30:70, 60 min: 10:90, SF 12 g) to give white solid (1.14 g, 42%). R_f = 0.44 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 12.08 (s, 1H), 7.51-7.33 (m, 12H), 7.17-7.08 (m, 6H), 6.30 (d, *J* = 15.6 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 169.70 (q), 141.88 (q, 3C), 140.29 (+), 137.03 (q), 136.42 (+), 129.66 (+, 6C), 128.30 (+, 6C), 128.22 (+, 3C), 127.07 (+), 123.85 (q), 81.74 (q). HRMS (ESI-MS): calcd. for C₂₅H₂₀N₂NaO₂⁺: 403.1417, found: 403.1412. MF: C₂₅H₂₀N₂O₂. MW: 380.45.

4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as

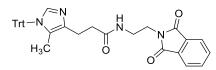
Histamine H₂ Receptor Ligands


3-(1-Trityl-1H-imidazol-4-yl)propanoic acid (4.58).⁶⁷⁻⁶⁸ Urocanic acid (4.56, 1.0 g, 7.24 mmol) was dissolved in MeOH (30 mL) and Pd/C (10 wt%, 217 mg) was added. H₂ gas was bubbled though the suspension for 5 h under stirring at rt. The mixture was filtered over Celite 545 and the solvent was evaporated to yield 3-(1*H*-imidazol-4-yl)propanoic acid (1.01 g, 100%). ¹H-NMR (300 MHz, DMSO-d₆) δ 14.70 (s, 2H), 9.02 (s, 1H), 7.39 (s, 1H), 2.84 (t, J = 7.1 Hz, 2H), 2.66 (t, J = 7.1 Hz, 2H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 172.97 (q), 133.21 (-), 132.27 (q), 115.42 (-), 32.26 (+), 19.55 (+). NMR data matches literature reference.⁶⁷ HRMS (ESI-MS): calcd. for C₆H₉N₂O₂⁺: 141.0659, found: 141.0672. MF: C₆H₈N₂O₂. MW: 140.14. Trt-Cl (2.61 g, 9.35 mmol, 1 equiv) was dissolved in DMF (25 mL) and added dropwise to a mixture of 3-(1H-imidazol-4-yl)propanoic acid (1.31 mg, 9.35 mmol, 1 equiv) and NEt₃ (3.89 mL, 28.05 mmol, 3 equiv) in DMF (50 mL). After the addition, the mixture was stirred for 14 h at rt. The solvent was removed in vacuum and the crude product was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-50:50, 30 min: 30:70, 40 min: 10:90, SF 12 g) to give the product as beige solid (1.44 g, 40%). M. p.: 185 °C (ref. 188-190 °C). $R_f = 0.77$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 11.55 (s, 1H), 7.48 (d, J = 1.43 Hz, 1H), 7.38-7.28 (m, 9H), 7.15-7.06 (m, 6H), 6.58 (s, 1H), 2.87 (t, J = 6.96 Hz, 2H), 2.67 (t, J = 7.19 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 175.6 (q), 141.89 (q, 3C), 139.25(q), 137.50 (+), 129.66 (+, 6C), 128.16 (+, 3C), 128.09 (+, 6C), 118.09 (+), 75.62 (q), 34.92 (-), 22.74 (-). NMR data matches literature reference.⁵⁵ HRMS (ESI-MS): calcd. for C₂₅H₂₃N₂O₂⁺: 383.1754, found: 383.1762 MF: C₂₅H₂₂N₂O₂. MW: 382.46.

(E) - N - (2 - (1, 3 - Dioxoisoindolin- 2 - yl) ethyl) - 3 - (1 - trityl - 1H - imidazol - 4 - yl) acrylamide

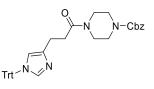

(4.59). The title compound was prepared from 4.57 (261 mg, 0.69 mmol), 4.49 (250 mg, 0.82 mmol), EDC x HCl (158 mg, 0.82 mmol), HOBt x H₂O (126 mg, 0.82 mmol) and DIPEA (699 μ L, 4.11 mmol) in DMF (2.2 mL) according to the general procedure A. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-95:5; 40 min: 95:5, SF 12 g) yielding yellow oil (130 mg, 34%). R_f = 0.87 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.97 (s, 1H), 7.80-7.73 (m, 2H), 7.69-7.62 (m, 2H), 7.45-7.18 (m, 16H), 6.91 (s, 1H), 6.49 (d, *J* = 15.2 Hz, 1H), 3.86 (t,

J = 5.4 Hz, 2H), 3.64-3.56 (m, 2H), NH signal is missing. HRMS (ESI-MS): calcd. for C₃₅H₂₉N₄O₃⁺: 553.2234, found: 553.2238. MF: C₃₅H₂₈N₄O₃. MW: 552.63.

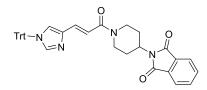


(E)-N-(2-(1,3-Dioxoisoindolin-2-yl)ethyl)-3-(5-methyl-1-trityl-1H-imidazol-4-

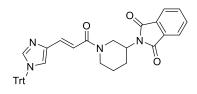
yl)acrylamide (4.60). The title compound was prepared from 4.54 (216 mg, 0.55 mmol), 4.49 (200 mg, 0.66 mmol), EDC x HCl (126 mg, 0.66 mmol), HOBt x H₂O (101 mg, 0.66 mmol) and DIPEA (466 μL, 2.74 mmol) in DMF (2.2 mL) according to the general procedure A. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-95:5; 40 min: 95:5, SF 8 g) yielding yellow oil (150 mg, 48%). R_f = 0.79 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 8.73 (br s, 1H), 7.72-7.65 (m, 2H), 7.61-7.54 (m, 2H), 7.44 (d, *J* = 15.3 Hz, 1H), 7.31 (s, 1H), 7.28-7.20 (m, 15H), 6.56-6.49 (m, 1H), 3.85-3.75 (m, 2H), 3.61-3.52 (m, 2H), 1.43 (s, 3H). HRMS (ESI-MS): calcd. for C₃₆H₃₁N₄O₃⁺: 567.2391, found: 567.2402. MF: C₃₆H₃₀N₄O₃. MW: 566.66.



N-(2-(1,3-Dioxoisoindolin-2-yl)ethyl)-3-(1-trityl-1*H*-imidazol-4-yl)propanamide (4.61). The title compound was prepared from 4.58 (346 mg, 0.90 mmol), 4.49 (330 mg, 1.09 mmol), EDC x HCl (208 mg, 1.09 mmol), HOBt x H₂O (166 mg, 1.09 mmol) and DIPEA (768 μ L, 4.52 mmol) in DMF (2.2 mL) according to the general procedure A. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-95:5; 40 min: 95:5, SF 8 g) yielding yellow oil (490 mg, 98%). R_f = 0.70 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 11.05 (br s, 1H), 7.77-7.70 (m, 2H), 7.66-7.57 (m, 2H), 7.45-7.40 (m, 1H), 7.34-7.23 (m, 9H), 7.07-6.97 (m, 6H), 6.50 (d, *J* = 1.4 Hz, 1H), 3.80-3.74 (m, 2H), 3.44-3.32 (m, 2H), 2.74 (t, *J* = 5.6 Hz, 2H), 2.44 (t, *J* = 7.2 Hz, 2H). HRMS (ESI-MS): calcd. for C₃₅H₃₁N₄O₃⁺: 555.2391, found: 555.2404. MF: C₃₅H₃₀N₄O₃. MW: 554.65.



N-(2-(1,3-Dioxoisoindolin-2-yl)ethyl)-3-(5-methyl-1-trityl-1H-imidazol-4-

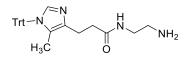

yl)propanamide (4.62). The title compound was prepared from 4.54 (217 mg, 0.55 mmol), 4.49 (200 mg, 0.66 mmol), EDC x HCl (126 mg, 0.66 mmol), HOBt x H₂O (101 mg, 0.66 mmol) and DIPEA (466 μL, 2.74 mmol) in DMF (2.2 mL) according to the general procedure A. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-95:5; 40 min: 95:5, SF 8 g) yielding yellow oil (247 mg, 79%). R_f = 0.62 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 10.97 (br s, 1H), 7.85 (s, 1H), 7.70-7.53 (m, 4H), 7.38-7.28 (m, 9H), 7.14-7.02 (m, 6H), 3.79-3.70 (m, 2H), 3.56-3.45 (m, 2H), 2.87 (t, *J* = 7.0 Hz, 2H), 2.61 (t, *J* = 7.2 Hz, 2H), 1.45 (s, 3H). HRMS (ESI-MS): calcd. for C₃₆H₃₃N₄O₃⁺: 569.2547, found: 569.2560. MF: C₃₆H₃₂N₄O₃. MW: 568.68.

Benzyl 4-(3-(1-trityl-1*H*-imidazol-4-yl)propanoyl)piperazine-1-carboxylate (4.63). The title compound was prepared from 4.58 (199 mg, 0.52 mmol), 4.46 (209 mg, 0.63 mmol), EDC x HCl (120 mg, 0.63 mmol), HOBt x H₂O (96 mg, 0.63 mmol) and DIPEA (532 μL, 3.13 mmol) in DMF (2.2 mL) according to the general procedure A. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-95:5, 40 min: 90:10, SF 8 g) yielding the product as a yellow foam (305 mg, 100%). R_f = 0.83 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.61 (s, 1H), 7.39-7.28 (m, 14H), 7.15-7.02 (m, 6H), 6.66 (s, 1H), 5.14 (s, 2H), 3.58-3.33 (m, 8H), 2.89 (t, *J* = 7.6 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 170.59 (q), 155.23 (q), 143.66 (q, 3C), 141.48 (q), 137.29 (+), 136.52 (q), 129.75 (+), 128.69 (+), 128.62 (+), 128.44 (+), 128.32 (+), 128.17 (+), 126.32 (+), 124.12 (+), 119.40 (+), 109.91 (+), 76.50 (q), 67.56 (-), 45.29 (-), 44.06 (-), 43.65 (-), 41.48 (-), 32.47 (-), 22.79 (-). HRMS (ESI-MS): calcd. for C₃₇H₃₇N₄O₃⁺: 585.2860, found: 585.2909. MF: C₃₇H₃₆N₄O₃. MW: 584.72.

(*E*)-2-(1-(3-(1-Trityl-1*H*-imidazol-4-yl)acryloyl)piperidin-4-yl)isoindoline-1,3-dione (4.64). The title compound was prepared from 4.57 (249 mg, 0.65 mmol), 4.43 (270 mg, 0.79 mmol), EDC x HCl (150 mg, 0.79 mmol), HOBt x H₂O (120 mg, 0.79 mmol) and DIPEA (556 μL, 3.27 mmol) in DMF (2.2 mL) according to the general procedure A. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-90:10, SF 8 g) yielding the product as yellowish oil (380 mg, 99%). R_f = 0.69 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.83-7.74 (m, 2H), 7.72-7.63 (m, 2H), 7.52-7.44 (m, 1H), 7.43-7.40 (m, 1H), 7.36-7.28 (m, 9H), 7.16-7.06 (m, 7H), 6.95 (d, *J* = 1.3 Hz, 1H), 4.44-4.23 (m, 2H), 3.19-3.03 (m, 1H), 2.51-2.28 (m, 2H), 1.82-1.66 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.12, 165.83, 142.03, 139.99 (+), 137.75, 134.31 (+), 134.09 (+, 2C), 131.89, 129.75 (+, 6C), 128.35 (+, 3C), 128.29 (+, 6C), 123.79 (+), 123.30 (+, 2C), 115.19 (+), 75.76, 49.05 (+), 36.58 (+), 31.51 (+). HRMS (ESI-MS): calcd. for C₃₈H₃₃N₄O₃⁺: 593.2547, found: 593.2553. MF: C₃₈H₃₂N₄O₃. MW: 592.70.

(*E*)-2-(1-(3-(1-Trityl-1*H*-imidazol-4-yl)acryloyl)piperidin-3-yl)isoindoline-1,3-dione (4.65). The title compound was prepared from 4.57 (223 mg, 0.59 mmol), 4.42 (162 mg, 0.70 mmol), EDC x HCl (135 mg, 0.70 mmol), HOBt x H₂O (108 mg, 0.70 mmol) and DIPEA (498 μL, 2.93 mmol) in DMF (2.2 mL) according to the general procedure A. The crude product was purified by flash chromatography (gradient: 0-40 min: CH₂Cl₂/MeOH 100:0-90:10, SF 8 g) yielding 4.65 as yellowish oil (190 mg, 55%). $R_f = 0.71$ (CH₂Cl₂/MeOH 95:5). ¹H-NMR (400 MHz, CDCl₃) δ 7.87-7.65 (m, 4H), 7.52-7.30 (m, 10H), 7.29-7.28 (m, 1H), 7.26-7.25 (m, 1H), 7.18-7.03 (m, 6H), 6.96 (s, 1H), 4.84-4.65 (m, 1H), 4.30-4.07 (m, 2H), 3.58-3.34 (m, 1H), 3.17-3.00 (m, 1H), 2.46-2.28 (m, 1H), 1.97-1.78 (m, 2H), 1.68-1.52 (m, 1H). ¹³C-NMR (101 MHz, CDCl₃) δ 167.97 (2C), 165.84, 141.89 (3C), 137.54, 134.18, 133.99 (2C), 131.76 (2C), 129.64 (6C), 128.69, 128.16 (6C), 127.81 (3C), 126.85, 123.72, 123.22 (2C), 81.90, 48.61, 45.66, 43.91, 28.21, 25.90. HRMS (ESI-MS): calcd. for C₃₈H₃₃N₄O₃⁺: 593.2547, found: 593.2562. MF: C₃₈H₃₂N₄O₃. MW: 592.70. 4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as

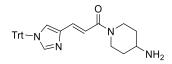
Histamine H₂ Receptor Ligands

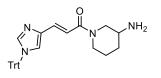

(*E*)-*N*-(2-Aminoethyl)-3-(1-trityl-1*H*-imidazol-4-yl)acrylamide (4.66). The title compound was prepared from 4.59 (180 mg, 0.33 mmol) and N₂H₄ x H₂O (79 µL, 1.63 mmol) in EtOH (10 mL) according to the general procedure B. The crude product was purified by flash chromatography (gradient: 0-40 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-80:20, SF 12 g) yielding 4.66 as a white solid (70 mg, 50%). R_f = 0.21 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.58 (d, *J* = 1.3 Hz, 1H), 7.46-7.36 (m, 12H), 7.26 (d, *J* = 1.3 Hz, 1H), 7.23-7.13 (m, 7H), 6.60 (d, *J* = 15.5 Hz, 1H), 3.50 (t, *J* = 6.1 Hz, 2H), 2.99 (t, *J* = 6.1 Hz, 2H). HRMS (ESI-MS): calcd. for C₂₇H₂₇N₄O⁺: 423.2179, found: 423.2190. MF: C₂₇H₂₆N₄O. MW: 422.53.

$$\begin{array}{c} \xrightarrow{N} \\ \text{Trt} - N \\ H_3 C \\ \end{array} \\ \begin{array}{c} H_3 \\ O \\ \end{array} \\ \begin{array}{c} H_1 \\ H_2 \\ H_3 \\ \end{array} \\ \begin{array}{c} H_1 \\ H_2 \\ H_2 \\ H_3 \\ \end{array} \\ \begin{array}{c} H_1 \\ H_2 \\ H_2 \\ H_3 \\ \end{array} \\ \begin{array}{c} H_1 \\ H_2 \\$$

(*E*)-*N*-(2-Aminoethyl)-3-(5-methyl-1-trityl-1*H*-imidazol-4-yl)acrylamide (4.67). The title compound was prepared from 4.60 (150 mg, 0.27 mmol) and N₂H₄ x H₂O (64 µL, 1.32 mmol) in EtOH (10 mL) according to the general procedure B yielding 4.67 as a yellow oil (71 mg, 60%). The crude product was used in the next step without further purification. $R_f = 0.11$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (400 MHz, MeOD) δ 8.03-8.00 (m, 1H), 7.50 (d, J = 15.3 Hz, 1H), 7.44-7.35 (m, 9H), 7.20-7.12 (m, 6H), 6.62 (d, J = 15.3 Hz, 1H), 3.59 (t, J = 6.0 Hz, 2H), 3.13 (t, J = 5.9 Hz, 2H), 1.59 (s, 3H). HRMS (ESI-MS): calcd. for C₂₈H₂₉N₄O⁺: 437.2336, found: 437.2348. MF: C₂₈H₂₈N₄O. MW: 436.56.

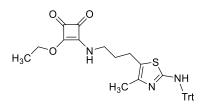
N-(2-Aminoethyl)-3-(1-trityl-1*H*-imidazol-4-yl)propanamide (4.68). The title compound was prepared from 4.61 (460 mg, 0.83 mmol) and N₂H₄ x H₂O (202 μL, 4.15 mmol) in EtOH (10 mL) according to the general procedure B. The crude product was purified by flash chromatography (gradient: 0-30 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-90:10, 50 min: 80:20, SF 4 g) yielding 4.68 as a yellow oil (150 mg, 43%). R_f = 0.22 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (400 MHz, MeOD) δ 7.40 (d, *J* = 1.4 Hz, 1H), 7.37-7.30 (m, 9H), 7.16-7.07 (m, 6H), 6.68 (d, *J* = 1.4 Hz, 1H), 3.38-3.33 (m, 2H), 2.89 (t, *J* = 6.0 Hz, 2H), 2.83 (t, *J* = 7.2 Hz, 2H), 2.48 (t, *J* = 7.2 Hz, 2H). ¹³C-NMR (101 MHz, MeOD) δ 176.10 (q), 143.61 (q, 3C), 140.93


(q), 139.36 (+), 130.80 (+, 6C), 129.31 (+, 3C), 129.22 (+, 6C), 119.80 (+), 76.74 (q), 41.49 (-), 39.99 (-), 36.76 (-), 24.94 (-). HRMS (ESI-MS): calcd. for C₂₇H₂₉N₄O⁺: 425.2336, found: 425.2340. MF: C₂₇H₂₈N₄O. MW: 424.55.

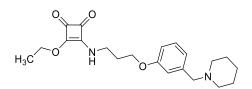

N-(2-Aminoethyl)-3-(5-methyl-1-trityl-1*H*-imidazol-4-yl)propanamide (4.69). The title compound was prepared from 4.62 (247 mg, 0.43 mmol) and N₂H₄ x H₂O (144 μL, 2.97 mmol) in EtOH (10 mL) according to the general procedure B. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-90:10, SF 8 g) yielding 4.69 as a yellow oil (167 mg, 88%). R_f = 0.19 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (400 MHz, MeOD) δ 7.44-7.37 (m, 9H), 7.35 (s, 1H), 7.21-7.12 (m, 6H), 3.53 (t, J = 5.7 Hz, 2H), 3.13 (t, J = 5.7 Hz, 2H), 2.85 (t, J = 7.1 Hz, 2H), 2.54 (t, J = 7.1 Hz, 2H), 1.45 (s, 3H). ¹³C-NMR (101 MHz, MeOD) δ 176.96 (q), 143.16 (q, 3C), 139.27 (q), 138.36 (+), 131.40 (+, 6C), 129.55 (+, 9C), 127.62 (q), 76.86 (q), 41.46 (-), 38.27 (-), 37.14 (-), 23.98 (-), 12.25 (+). HRMS (ESI-MS): calcd. for C₂₈H₃₁N₄O⁺: 439.2492, found: 439.2494. MF: C₂₈H₃₀N₄O. MW: 438.58.

1-(Piperazin-1-yl)-3-(1-trityl-1*H***-imidazol-4-yl)propan-1-one (4.70).** Pd/C (10 wt%, 60 mg) was added to a solution of **4.63** (280 mg, 0.48 mmol) in THF/MeOH (1 mL:1.5 mL), and the mixture was stirred under a H₂ atmosphere (1 amt) at rt for 6 h. The mixture was filtered through Celite 545, the filtrate was evaporated, and the residue was purified by flash chromatography (gradient: 0-40 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-90:10, SF 4 g) to give the product as a yellow oil (134 mg, 62%). R_f = 0.35 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.35 (d, J = 1.4 Hz, 1H), 7.34-7.25 (m, 9H), 7.14-7.05 (m, 6H), 6.67 (d, J = 1.4 Hz, 1H), 3.56-3.39 (m, 4H), 2.83-2.61 (m, 8H). ¹³C-NMR (75 MHz, MeOD) δ 172.99 (q), 143.75 (q, 3C), 141.12 (q), 139.36 (+), 130.96 (+, 6C), 129.43 (+, 3C), 129.37 (+, 6C), 120.03 (+), 76.84 (q), 47.60 (-), 46.82 (-), 46.38 (-), 43.50 (-), 33.51 (-), 24.96 (-). HRMS (ESI-MS): calcd. for C₂₉H₃₁N₄O⁺: 451.2492, found: 451.2498. MF: C₂₉H₃₀N₄O. MW: 450.59.

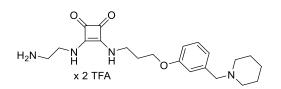
4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as Histamine H₂ Receptor Ligands



(*E*)-1-(4-Aminopiperidin-1-yl)-3-(1-trityl-1*H*-imidazol-4-yl)prop-2-en-1-one (4.71). The title compound was prepared from 4.64 (321 mg, 0.54 mmol) and N₂H₄ x H₂O (180 µL, 3.71 mmol) in EtOH (10 mL) according to the general procedure B. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-90:10, 25 min: 90:10, 40 min: 80:20, SF 4 g) yielding 4.71 as a yellow oil (220 mg, 80%). R_f = 0.21 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.56-7.53 (m, 1H), 7.42 (s, 1H), 7.40-7.30 (m, 9H), 7.26 (d, *J* = 1.3 Hz, 1H), 7.20-7.07 (m, 6H), 6.71 (d, *J* = 1.4 Hz, 1H), 4.65-4.51 (m, 2H), 4.32-4.12 (m, 2H), 3.13-3.03 (m, 1H), 2.07-1.83 (m, 2H), 1.50-1.21 (m, 2H). HRMS (ESI-MS): calcd. for C₃₀H₃₁N₄O⁺: 463.2492, found: 463.2488. MF: C₃₀H₃₀N₄O. MW: 462.60.

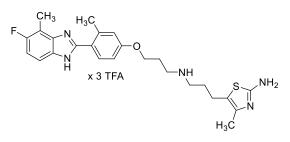


(*E*)-1-(3-Aminopiperidin-1-yl)-3-(1-trityl-1*H*-imidazol-4-yl)prop-2-en-1-one (4.72). The title compound was prepared from 4.65 (190 mg, 0.32 mmol) and N₂H₄ x H₂O (82 µL, 1.69 mmol) in EtOH (10 mL) according to the general procedure B. The crude product was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/0.5% NH₃ in MeOH 100:0-90:10, SF 8 g) yielding 4.72 as a white solid (50 mg, 34%). R_f = 0.55 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (400 MHz, MeOD) δ 7.55 (s, 1H), 7.44-7.32 (m, 10H), 7.26 s (1H), 7.20-7.05 (7H), 4.53-3.79 (m, 4H), 3.02-2.76 (m, 1H), 2.14-1.35 (m, 4H). HRMS (ESI-MS): calcd. for C₃₀H₃₁N₄O⁺: 463.2492, found: 463.2495. MF: C₃₀H₃₀N₄O. MW: 462.60.


4.4.9 Preparation of the Mixed Squaramate Building Blocks 4.75 and 4.76 as well as the Amine Building Block 4.78

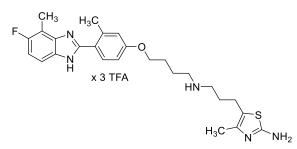
3-Ethoxy-4-((3-(4-methyl-2-(tritylamino)thiazol-5-yl)propyl)amino)cyclobut-3-ene-1,2dione (4.75). The title compound was synthetized according to the procedure of Dr. D. Erdmann.²⁰ Diethoxycyclobut-3-ene-1,2-dione (**4.73**, 187 mg, 1.1 mmol, 1.1 equiv) was dissolved in EtOH (10 mL) and slowly added to a solution of **4.18** (414 mg, 1.0 mmol, 1 equiv) in EtOH (10 mL). The yellow solution was stirred at rt overnight. The solvent was evaporated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and washed with H₂O (3 x 20 mL). After drying over Na₂SO₄, EtOAc was evaporated and the product dried in vacuum to give brown foam (484 mg, 90%). R_f = 0.86 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.36-7.21 (m, 15H), 4.77-4.67 (m, 2H), 3.41-3.14 (m, 2H), 2.45 (t, *J* = 7.5 Hz, 2H), 2.06 (s, 3H), 1.65 (quint, *J* = 7.2 Hz, 2H), 1.47 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 184.40 (q, 2C), 172.50 (q), 171.39 (q), 165.37 (q), 143.86 (q, 3C), 141.68 (q), 129.41 (+, 6C), 128.32 (+, 6C), 127.62 (+, 3C), 119.51 (q), 71.97 (q), 69.91 (-), 60.62 (-), 44.01 (-), 23.02 (-), 15.82 (+), 14.57 (+). HRMS (ESI-MS): calcd. for C₃₂H₃₂N₃O₃S⁺: 538.2159, found: 538.2186. MF: C₃₂H₃₁N₃O₃S. MW: 537.68.

3-Ethoxy-4-((3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)amino)cyclobut-3-ene-1,2dione (4.76).²⁰ The title compound was synthetized according to the procedure of Dr. D. Erdmann.²⁰ 3,4-Diethoxycyclobut-3-ene-1,2-dione (**4.73**, 0.24 g, 0.97 mmol, 1 equiv), dissolved in EtOH (10 mL), was slowly added to a solution of **4.74** (0.18 g, 1.1 mmol, 1.1 equiv) in EtOH (10 mL). The yellow solution was stirred at rt for 3 h before the solvent was evaporated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and washed with H₂O (3 x 20 mL). After drying over Na₂SO₄, the EtOAc phase was evaporated and dried in vacuum to give the product as sticky yellow oil (0.36 g, 100%). R_f = 0.66 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.21 (t, *J* = 8.0 Hz, 1H), 6.95-6.86 (m, 2H), 6.806.73 (m, 1H), 4.72 (q, J = 7.1 Hz, 2H), 4.12-4.01 (m, 2H), 3.98-3.80 (m, 1H), 3.75-3.62 (m, 1H), 3.47 (s, 2H), 2.49-2.33 (m, 4H), 2.10 (quint, J = 6.06 Hz, 2H), 1.59 (quint, J = 5.5 Hz, 4H), 1.50-1.36 (m, 5H). ¹³C-NMR (101 MHz, CDCl₃) δ 188.52, 182.03, 176.66, 171.67, 157.60, 139.59, 128.31, 121.23, 114.13, 112.11, 68.83, 64.13, 62.86, 53.69 (2C), 41.63, 29.20, 25.08 (2C), 23.49, 14.97. NMR data matches literature reference.²⁰ HRMS (ESI-MS): calcd. for C₂₁H₂₉N₂O₄⁺: 373.2122, found: 373.2136. MF: C₂₁H₂₈N₂O₄. MW: 372.47.

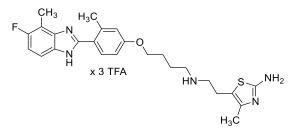


3-((2-Aminoethyl)amino)-4-((3-(3-(piperidin-1-

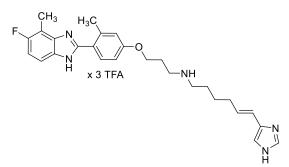
vlmethyl)phenoxy)propyl)amino)cyclobut-3-ene-1,2-dione dihydrotrifluoroacetate (4.78). ²⁰ The title compound was synthetized according to the procedure of Dr. D. Erdmann.²⁰ **4.76** (0.23 g, 0.62 mmol, 1 equiv) and tert-butyl 2-aminoethylcarbamate (0.12 g, 0.73 mmol, 1.1 equiv) were dissolved in EtOH (30 mL) and stirred at rt overnight. After evaporation of the solvent the product was purified by flash chromatography (eluent CH₂Cl₂/0.5% NH₃ in MeOH; gradient: 0-20 min: CH₂Cl₂/MeOH 100:0 to 97:3, 40 min: 95:5, 60 min: 95:5; 80 min: 90:10, SF 8 g) leading to a yellow foam (4.77, 184 mg, 61%). $R_f = 0.49$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.17 (t, J = 7.8 Hz, 1H), 6.95-6.81 (m, 2H), 6.74 (dd, J = 8.2, 2.5 Hz, 1H), 4.04 (t, J = 5.9 Hz, 2H), 3.92-3.75 (m, 2H), 3.73-3.52 (m, 1H), 3.40 (s, 2H), 3.34-3.22 (m, 2H), 2.44-2.26 (m, 4H), 2.20-2.04 (m, 2H), 1.55 (quint, J = 5.4 Hz, 4H), 1.48-1.33 (m, 11H). ¹³C-NMR (75 MHz, CDCl₃) δ 167.86, 158.66, 140.10, 129.06, 121.91, 115.42, 112.81, 64.86, 63.80, 54.52 (2C), 41.66, 30.71 (2C), 28.36 (3C), 25.86, 24.30, 2 C`s not detected. NMR data matches literature reference.²⁰ HRMS (ESI-MS): calcd. for C₂₆H₃₉N₄O₅⁺: 487.2915, found: 487.2927. MF: C₂₆H₃₈N₄O₅. MW: 486.61. The Boc-protected intermediate (180 mg, 0.37 mmol) was dissolved in CH₂Cl₂ (4 mL) and TFA (1 mL) was added. The solution was stirred at rt overnight. The solvent was evaporated to give the product as yellow solid (230 mg, 100%). $R_f = 0.18$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). ¹H-NMR $(300 \text{ MHz}, \text{ MeOD}) \delta 7.37 \text{ (dd, } J = 8.4, 7.2 \text{ Hz}, 1\text{H}), 7.09-7.00 \text{ (m, 3H)}, 4.23 \text{ (s, 2H)}, 4.13 \text{ (t, a)}$ *J* = 5.9 Hz, 2H), 3.85 (t, *J* = 6.0 Hz, 4H), 3.49-3.38 (m, 3H), 3.18 (t, *J* = 6.0 Hz, 2H), 3.03-2.87 (m, 2H), 2.11 (quint, J = 6.4 Hz, 2H), 2.00-1.65 (m, 4H), 1.59-1.45 (m, 2H). ¹³C-NMR (75 MHz, MeOD) δ 161.27 (2C), 132.21, 131.92 (2C), 124.95, 120.66, 118.91, 117.62, 115.75, 66.64, 62.21, 54.57 (2C), 42.95, 41.99, 32.13, 28.23, 24.61 (2C), 23.24. NMR data matches


literature reference.²⁰ HRMS (ESI-MS): calcd. for $C_{21}H_{31}N_4O_3^+$: 387.2391, found: 387.2396. MF: $C_{21}H_{30}N_4O_3 \ge C_4H_2F_6O_4$. MW: (386.50 + 228.05).

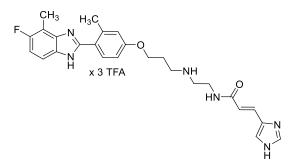
4.4.10 Preparation of the 2-Arylbenzimidazoles 4.82-4.97, 4.104-4.110, 4.112 and 4.114-4.116, the Squaramide 4.117 as well as Carbamoylguanidine 4.120


5-(3-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-

methylphenoxy)propyl)amino)propyl)-4-methylthiazol-2-amine trihydrotrifluoroacetate (4.82). The title compound was synthesized from 4.79 (50 mg, 0.115 mmol), K₂CO₃ (95 mg, 0.684 mmol) and 4.18 (109 mg, 0.264 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (5.34 mg, 5.8%). $R_f = 0.10$ $(CH_2Cl_2/MeOH 9:1)$. RP-HPLC (220 nm): 100% ($t_R = 9.3 \text{ min}, k = 1.90$). ¹H-NMR (300 MHz, MeOD) δ 7.76-7.54 (m, 2H), 7.33 (dd, J = 10.1, 9.0 Hz, 1H), 7.16-7.01 (m, 2H), 4.22 (t, J = 5.8 Hz, 2H), 3.30-3.23 (m, 2H, overlapped with MeOH signal), 3.18-3.01 (m, 2H), 2.74 (t, J = 7.7 Hz, 2H), 2.64-2.48 (m, 6H), 2.34-2.13 (m, 5H), 1.96 (quint, J = 8.1 Hz, 2H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.04 (s, 2H), 8.64 (s, 2H), 7.72 (d, *J* = 8.3 Hz, 1H), 7.51-7.43 (m, 1H), 7.14 (t, J = 9.6 Hz, 1H), 7.02-6.95 (m, 2H), 4.15 (t, J = 6.1 Hz, 2H), 3.14-3.07 (m, 2H), 3.00-2.93 (m, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.57 (s, 3H), 2.49 (d, J = 1.7 Hz, 3H, overlapped with DMSO signal), 2.12–2.07 (m, 5H), 1.80 (quint, J = 7.7 Hz, 2H). ¹³C-NMR (151 MHz, DMSOd₆) δ 167.75, 159.63 (HMBC), 159.0 (q, J = 32.8 Hz, TFA), 156.90 (HMBC), 152.11, 141.24, 139.30, 134.65 (HMBC), 131.60, 126.31, 120.46 (HMBC), 117.03, 116.68 (q, J = 296.7 Hz, TFA), 115.93, 112.01, 111.31 (HSQC), 110.75 (HMBC), 64.80, 45.92, 44.27, 26.74, 25.53, 21.97, 20.75, 11.55, 9.38, 1 C signal is missing. HRMS (ESI-MS): calcd. for C₂₅H₃₁FN₅OS⁺: 468.2228, found: 468.2227. MF: C₂₅H₃₀FN₅OS x C₆H₃F₉O₆. MW: (467.61 + 342.07).

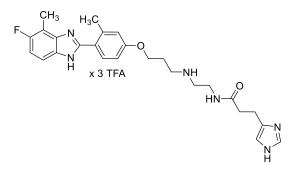

5-(3-((4-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-

methylphenoxy)butyl)amino)propyl)-4-methylthiazol-2-amine trihydrotrifluoroacetate (4.83). The title compound was synthesized from 4.80 (50 mg, 0.114 mmol), K₂CO₃ (95 mg, 0.684 mmol) and 4.18 (141 mg, 0.341 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (2.0 mg, 2.2%). $R_f = 0.10$ (CH₂Cl₂/MeOH 9:1). RP-HPLC (220 nm): 97% ($t_R = 9.9$ min, k = 2.08). ¹H-NMR (300 MHz, MeOD) δ 7.67 (d, J = 8.5 Hz, 1H), 7.60 (dd, J = 8.9, 4.2 Hz, 1H), 7.40-7.29 (m, 1H), 7.11-7.00 (m, 2H), 4.19-4.12 (m, 2H), 3.16-3.05 (m, 4H), 2.74 (t, J = 7.7 Hz, 2H), 2.56 (d, J = 1.8 Hz, 3H), 2.51 (s, 3H), 2.19 (s, 3H), 2.01-1.88 (m, 6H). HRMS (ESI-MS): calcd. for C₂₆H₃₃FN₅OS⁺: 482.2384, found: 482.2386. MF: C₂₆H₃₂FN₅OS x C₆H₃F₉O₆. MW: (481.63 + 342.07).

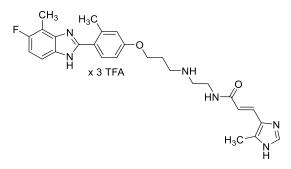


5-(2-((4-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-

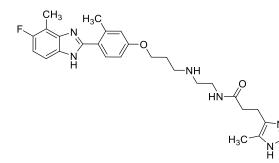
methylphenoxy)butyl)amino)ethyl)-4-methylthiazol-2-amine trihydrotrifluoroacetate (4.84). The title compound was synthesized from 4.80 (50 mg, 0.114 mmol), K₂CO₃ (95 mg, 0.684 mmol) and 4.17 (137 mg, 0.342 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (2.4 mg, 2.6%). R_f = 0.13 (CH₂Cl₂/MeOH 9:1). RP-HPLC (220 nm): 96% (t_R = 10.5 min, k = 2.27). ¹H-NMR (300 MHz, MeOD) δ 7.71-7.58 (m, 2H), 7.35 (dd, J = 10.1, 9.0 Hz, 1H), 7.11-7.00 (m, 2H), 4.19-4.11 (m, 2H), 3.28-3.21 (m, 2H), 3.19-3.11 (m, 2H), 3.06-2.97 (m, 2H), 2.57 (d, J = 1.8 Hz, 3H), 2.50 (s, 3H), 2.25-2.20 (m, 3H), 2.00-1.89 (m, 4H). HRMS (ESI-MS): calcd. for C₂₅H₃₁FN₅OS⁺: 468.2228, found: 468.2228. MF: C₂₅H₃₀FN₅OS x C₆H₄F₉O₆. MW: 467.61 + 342.07.



(E)-N-(3-(4-(5-Fluoro-4-methyl-1H-benzo[d]imidazol-2-yl)-3-methylphenoxy)propyl)-6-(1H-imidazol-4-yl)hex-5-en-1-amine trihydrotrifluoroacetate (4.85). The title compound was synthesized from 4.79 (40 mg, 0.094 mmol), K₂CO₃ (78 mg, 0.57 mmol) and 4.26 (115 mg, 0.28 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (27.3 mg, 34%). $R_f = 0.21$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 98% ($t_{\rm R}$ = 10.7 min, k = 2.33). ¹H-NMR (300 MHz, MeOD) δ 8.87 (d, J = 1.3 Hz, 1H), 7.74-7.54 (m, 3H), 7.34 (dd, *J* = 10.2, 9.0 Hz, 1H), 7.14-6.99 (m, 2H), 6.44-6.28 (m, 1H), 6.10-5.96 (m, 1H), 4.22 (t, J = 5.8 Hz, 2H), 3.30-3.19 (m, 2H, overlapped with MeOH signal), 3.15-3.03 (m, 2H), 2.56 (d, J = 1.8 Hz, 3H), 2.51 (s, 3H), 2.48-2.34 (m, 2H), 2.30-2.15 (m, 2H), 2.30-2.151.89-1.71 (m, 2H), 1.71-1.55 (m, 2H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.06 (d, J = 1.2 Hz, 1H), 8.77 (br s, 2H), 7.75-7.70 (m, 2H), 7.56 (dd, *J* = 8.9, 4.3 Hz, 1H), 7.23 (t, *J* = 9.5 Hz, 1H), 7.05-6.98 (m, 2H), 6.34-6.30 (m, 1H), 5.95-5.88 (m, 1H), 4.17 (t, J = 6.1 Hz, 2H), 3.17-3.06 (m, 2H), 3.03-2.95 (m, 2H), 2.55 (s, 3H), 2.50 (s, 3H, overlapped with DMSO signal), 2.34-2.28 (m, 2H), 2.14-2.08 (m, 2H), 1.67 (quint, J = 7.7 Hz, 2H), 1.53 (quint, J = 7.4 Hz, 2H), 2 H signals missing. ¹³C-NMR (151 MHz, DMSO-d₆) δ 160.20, 158.63 (q, J = 32.9 Hz, TFA), 157.23 (d, *J* = 236.0 Hz), 151.69, 139.55, 136.29, 135.55, 133.78, 132.05, 131.07, 129.27, 118.90, 117.06, 116.70 (q, J = 296.3 Hz, TFA), 116.69, 114.60, 112.52–111.77 (m, 3C), 110.75 (d, *J* = 22.8 Hz), 64.95, 46.68, 44.16, 28.35, 25.48, 25.42, 25.21, 20.41, 9.35. HRMS (ESI-MS): calcd. for C₂₇H₃₃FN₅O⁺: 462.2664, found: 462.2665. MF: C₂₇H₃₂FN₅O x C₆H₃F₉O₆. MW: (461.59 + 342.06).

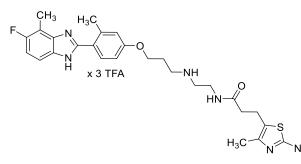

(*E*)-*N*-(2-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3methylphenoxy)propyl)amino)ethyl)-3-(1*H*-imidazol-4-yl)acrylamide

trihydrotrifluoroacetate (4.86, PB513). The title compound was synthesized from 4.79 (35 mg, 0.083 mmol), K₂CO₃ (69 mg, 0.50 mmol) and **4.66** (70 mg, 0.17 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (17.5 mg, 26%). $R_f = 0.3$ (CH₂Cl₂/0.5% NH₃ in MeOH 8:2). RP-HPLC (220 nm): 97% ($t_R = 10.0 \text{ min}$, k = 2.12). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.03-8.93 (m, 1H), 8.87-8.69 (m, 2H), 8.57 (t, J = 5.8 Hz, 1H), 7.91 (s, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.55 (dd, J = 8.8, 4.3 Hz, 1H), 7.40 (d, J = 15.9 Hz, 1H), 7.25-7.18 (m, 1H), 7.08-6.97 (m, 2H), 6.66 (d, J = 15.8 Hz, 1H), 4.17 (t, J = 6.1 Hz, 2H), 3.51 (q, J = 6.2 Hz, 2H), 3.23–3.07 (m, 4H), 2.54 (s, 3H), 2.50 (3H, overlapped with DMSO signal), 2.15–2.07 (m, 2H), 1 NH signal is missing. ¹³C-NMR (151 MHz, DMSOd₆) δ 165.14, 160.12, 158.55 (q, *J* = 32.7 Hz, TFA), 157.18 (d, *J* = 236.0 Hz), 151.73, 139.50, 136.36, 135.78, 131.98, 131.22, 129.93, 125.58, 123.01, 120.39, 119.09, 117.09, 116.69 (q, J = 297.3 Hz, TFA), 110.66 (d, J = 21.9 Hz), 112.41–112.09 (m, 2C), 111.88 (d, J = 26.4 Hz), 65.00, 46.52, 44.46, 35.64, 25.47, 20.45, 9.37. HRMS (ESI-MS): calcd. for C₂₆H₃₀FN₆O₂⁺: 477.2409, found: 477.2405; calcd. for C₂₆H₃₁FN₆O₂²⁺: 239.1241, found: 239.1247; calcd. for $C_{26}H_{32}FN_6O_2^{3+}$: 159.7518, found: 159.7522. MF: $C_{26}H_{29}FN_6O_2 \ge C_6H_3F_9O_6$. MW: (476.56 + 342.06).

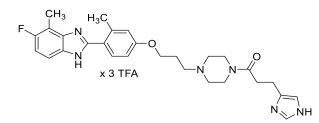


 $\label{eq:N-(2-((3-(4-(5-Fluoro-4-methyl-1H-benzo[d]imidazol-2-yl)-3-methylphenoxy) propyl) amino) ethyl)-3-(1H-imidazol-4-yl) propanamide$

trihydrotrifluoroacetate (4.87). The title compound was synthesized from 4.79 (50 mg, 0.118 mmol), K₂CO₃ (98 mg, 0.71 mmol) and 4.68 (150 mg, 0.35 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (9.8 mg, 10%). $R_f = 0.20$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 99% ($t_R = 9.9 \text{ min}, k = 2.08$). ¹H-NMR (300 MHz, MeOD) δ 8.78 (d, J = 1.4 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.58 (dd, J = 8.9, 4.1 Hz, 1H), 7.40-7.23 (m, 2H), 7.19-6.97 (m, 2H), 4.23 (t, J = 5.7 Hz, 2H), 3.53 (t, J = 5.9 Hz, 2H), 3.30-3.24 (m, 2H), 3.21 (t, J = 5.9 Hz, 2H), 3.03 (t, J = 7.3 Hz, 2H), 2.66 (t, J = 7.3 Hz, 2H), 2.56 (d, J = 1.8 Hz, 3H), 2.51 (s, 3H), 2.24 (quint, J = 6.1 Hz, 2H). ¹H-NMR $(600 \text{ MHz}, \text{DMSO-d}_6) \delta 14.39 \text{ (s, 1H)}, 8.97 \text{ (d, } J = 1.4 \text{ Hz}, 1\text{H}), 8.79-8.64 \text{ (m, 2H)}, 8.26 \text{ (t, } 1.4 \text{ Hz}, 1\text{H}), 8.79-8.64 \text{ (m, 2H)}, 8.26 \text{ (t, } 1.4 \text{ Hz}, 1\text{H}), 8.79-8.64 \text{ (m, 2H)}, 8.26 \text{ (t, } 1.4 \text{ Hz}, 1\text{H}), 8.79-8.64 \text{ (m, 2H)}, 8.26 \text{ (t, } 1.4 \text{ Hz}, 1\text{H}), 8.79-8.64 \text{ (m, 2H)}, 8.26 \text{ (t, } 1.4 \text{ Hz}, 1\text{Hz}), 8.79-8.64 \text{ (m, 2H)}, 8.26 \text{ (t, } 1.4 \text{ Hz}, 1\text{Hz}), 8.79-8.64 \text{ (m, 2H)}, 8.26 \text{ (t, } 1.4 \text{ Hz}, 1\text{Hz}), 8.79-8.64 \text{ (m, 2H)}, 8.26 \text{ (t, } 1.4 \text{ Hz}), 8.10 \text{ (t, } 1.4 \text{$ J = 5.7 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.56-7.48 (m, 1H), 7.37 (s, 1H), 7.18 (t, J = 9.6 Hz, 1H), 7.05-6.97 (m, 2H), 4.15 (t, J = 6.0 Hz, 2H), 3.37 (q, J = 6.2 Hz, 2H), 3.13 (quint, J = 6.1 Hz, 2H), 3.04 (t, J = 5.9 Hz, 2H), 2.89 (t, J = 7.5 Hz, 2H), 2.56 (s, 3H), 2.51-2.53 (m, 2H, overlapped with DMSO signal), 2.50 (s, 3H, overlapped with DMSO signal), 2.14-2.05 (m, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 171.35, 159.85, 158.34 (q, *J* = 32.8 Hz, TFA), 157.02 (d, J = 237.2 Hz), 151.92, 139.38, 133.68, 132.70, 131.77, 119.94 (HMBC), 117.06, 116.63 (q, J = 296.5 Hz, TFA), 115.50, 112.08 (2C, HSQC), 111.46 (2C, HSQC), 110.73, 64.92, 46.43, 44.34, 35.22, 33.46, 25.47, 20.61, 19.83, 9.38, 1 C signal is missing. HRMS (ESI-MS): calcd. for C₂₆H₃₂FN₆O₂⁺: 479.2565, found: 479.2563. MF: C₂₆H₃₁FN₆O₂ x C₆H₃F₉O₆. MW: (478.57 + 342.06).

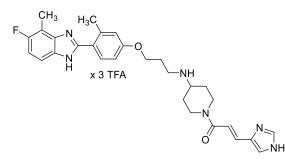


(*E*)-*N*-(2-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3methylphenoxy)propyl)amino)ethyl)-3-(5-methyl-1*H*-imidazol-4-yl)acrylamide trihydrotrifluoroacetate (4.88). The title compound was synthesized from 4.79 (17 mg, 0.039 mmol), K₂CO₃ (32 mg, 0.23 mmol) and 4.67 (31 mg, 0.071 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (3.6 mg, 11%). $R_f = 0.10$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 99% ($t_R = 9.9$ min, k = 2.08). ¹H-NMR (600 MHz, DMSO-d₆) δ 8.90 (s, 1H), 8.63 (s, 2H), 8.51 (t, J = 5.8 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.50-7.43 (m, 1H), 7.36 (d, J = 5.8 Hz, 1H), 7.13 (t, J = 9.6 Hz, 1H), 7.02-6.97 (m, 2H), 6.56 (d, J = 15.8 Hz, 1H), 4.16 (t, J = 6.0 Hz, 2H), 3.50 (q, J = 6.2 Hz, 2H), 3.21-3.07 (m, 4H), 2.57 (s, 3H), 2.48 (d, J = 1.6 Hz, 3H), 2.38 (s, 3H), 2.14-2.07 (m, 2H), 1 NH signal is missing. HRMS (ESI-MS): calcd. for C₂₇H₃₂FN₆O₂⁺: 491.2565, found: 491.2561; calcd. for C₂₇H₃₃FN₆O₂²⁺: 246.1319, found: 246.1326; calcd. for C₂₇H₃₄FN₆O₂³⁺: 164.4237, found: 164.4244. MF: C₂₇H₃₁FN₆O₂ x C₆H₃F₉O₆. MW: (490.58 + 342.06).


N-(2-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3methylphenoxy)propyl)amino)ethyl)-3-(5-methyl-1*H*-imidazol-4-yl)propanamide trihydrotrifluoroacetate (4.89). The title compound was synthesized from 4.79 (70 mg, 0.166 mmol), K₂CO₃ (138 mg, 0.996 mmol) and 4.69 (167 mg, 0.381 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (22.5 mg, 16%). R_f = 0.1 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 97% (t_R = 10.1 min,

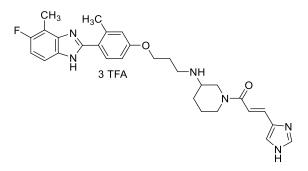
k = 2.15). ¹H-NMR (300 MHz, MeOD) δ 8.66 (s, 1H), 7.75-7.57 (m, 2H), 7.36 (dd, *J* = 10.1, 9.0 Hz, 1H), 7.16-7.04 (m, 2H), 4.23 (t, *J* = 5.8 Hz, 2H), 3.52 (t, *J* = 5.8 Hz, 2H), 3.33-3.25 (m, 2H, overlapped with MeOH signal), 3.20 (t, *J* = 5.9 Hz, 2H), 2.97 (t, *J* = 7.2 Hz, 2H), 2.64-2.55 (m, 5H), 2.52 (s, 3H), 2.33-2.17 (m, 5H). ¹H-NMR (600 MHz, DMSO-d₆) δ 14.29 (s, 2H), 8.89-8.76 (m, 3H), 8.27 (t, *J* = 5.7 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.56 (dd, *J* = 8.9, 4.3 Hz, 1H), 7.22 (t, *J* = 9.5 Hz, 1H), 7.05-6.99 (m, 2H), 4.16 (t, *J* = 6.1 Hz, 2H), 3.36 (q, *J* = 6.2 Hz, 2H), 3.17-3.09 (m, 2H), 3.05-2.99 (m, 2H), 2.83 (t, *J* = 7.4 Hz, 2H), 2.55 (s, 3H), 2.50 (s, 3H), 2.45 (t, *J* = 7.4 Hz, 2H), 2.21 (s, 3H), 2.14-2.06 (m, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 171.45, 160.16, 158.60 (q, *J* = 32.5 Hz, TFA), 157.21 (d, *J* = 236.3 Hz), 151.72, 139.52, 135.81, 132.08, 132.00, 131.13, 127.57, 124.62, 119.03, 117.08, 116.76 (q, *J* = 296.4 Hz, TFA), 112.61–111.74 (m, 3C), 110.70 (d, *J* = 16.7 Hz), 64.98, 46.39, 44.31, 35.22, 34.05, 25.46, 20.44, 18.88, 9.36, 8.51. HRMS (ESI-MS): calcd. for C₂₇H₃₄FN₆O₂⁺: 493.2722, found: 493.2728; calcd. for C₂₇H₃₅FN₆O₂²⁺: 247.1397, found: 247.1407; calcd. for C₂₇H₃₆FN₆O₂³⁺: 165.0956, found: 165.0967. MF: C₂₇H₃₃FN₆O₂ x C₆H₃F₉O₆. MW: (492.60 + 342.06).

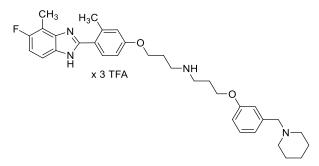
3-(2-Amino-4-methylthiazol-5-yl)-*N*-(**2-((3-(4-(5-fluoro-4-methyl-1***H*-benzo[*d*]imidazol-**2-yl)**-**3-methylphenoxy)propyl)amino)ethyl)propanamide trihydrotrifluoroacetate (4.90).** The title compound was synthesized from **4.79** (24 mg, 0.056 mmol), K₂CO₃ (46 mg, 0.336 mmol) and **4.35** (50 mg, 0.106 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (6.0 mg, 12%). R_f = 0.10 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 95% (t_R = 10.4 min, k = 2.24). ¹H-NMR (300 MHz, MeOD) δ 7.68 (d, J = 8.5 Hz, 1H), 7.60 (dd, J = 8.9, 4.1 Hz, 1H), 7.33 (dd, J = 10.1, 8.9 Hz, 1H), 7.15-7.04 (m, 2H), 4.23 (t, J = 5.7 Hz, 2H), 3.52 (t, J = 5.8 Hz, 2H), 3.30-3.25 (m, 2H, overlapped with MeOH signal), 3.20 (t, J = 5.9 Hz, 2H), 2.91 (t, J = 7.0 Hz, 2H), 2.61-2.46 (m, 7H), 2.24 (quint, J = 6.3 Hz, 2H), 2.17 (s, 3H). ¹H-NMR (600 MHz, DMSO-d₆) δ 8.95 (s, 2H), 8.57 (s, 2H), 8.21 (t, J = 5.6 Hz, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.45 (s, 1H), 7.17-7.06 (m, 1H), 7.03-6.95 (m, 2H), 4.15 (t, J = 6.0 Hz, 2H), 3.36 (q, J = 6.3 Hz, 2H), 3.13 (quint,


J = 6.8 Hz, 2H), 3.02 (quint, J = 6.3 Hz, 2H), 2.78 (t, J = 7.0 Hz, 2H), 2.58 (s, 3H), 2.48 (d, J = 1.6 Hz, 3H), 2.37 (q, J = 7.0 Hz, 2H), 2.08 (d, J = 7.6 Hz, 5H). HRMS (ESI-MS): calcd. for C₂₇H₃₄FN₆O₂S⁺: 525.2442, found: 525.2441; calcd. for C₂₇H₃₅FN₆O₂S²⁺: 263.1258, found: 263.1266; calcd. for C₂₇H₃₆FN₆O₂S³⁺: 175.7529, found: 175.7538. MF: C₂₇H₃₃FN₆O₂S x C₆H₃F₉O₆. MW: (524.66 + 342.06).

1-(4-(3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-

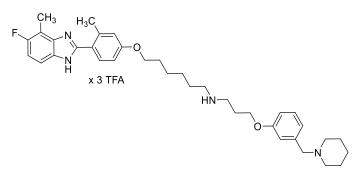
methylphenoxy)propyl)piperazin-1-yl)-3-(1*H*-imidazol-4-yl)propan-1-one


trihydrotrifluoroacetate (4.91). The title compound was prepared from 4.79 (50 mg, 0.12 mmol), K₂CO₃ (98 mg, 0.71 mmol) and **4.70** (134 mg, 0.30 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (4 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded the product as a white, foamlike and hygroscopic solid (22.2 mg, 22%). $R_f = 0.18$ (CH₂Cl₂/1.75°N NH₃ in MeOH 9:1). RP-HPLC (220 nm): 99%, $(t_{\rm R} = 10.1 \text{ min}, k = 2.15)$. ¹H-NMR (300 MHz, MeOD) δ 8.77 (d, J = 1.5 Hz, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.60 (dd, J = 8.9, 4.1 Hz, 1H), 7.38-7.29 (m, 2H), 7.11-6.99 (m, 2H), 4.23 (t, J = 5.7 Hz, 2H), 4.14-3.55 (br s, 4H), 3.46-3.36 (m, 4H), 3.35-3.28 (m, 2H, overlapped with MeOH signal), 3.04 (t, J = 7.0 Hz, 2H), 2.88 (t, J = 7.0 Hz, 2H), 2.56 (d, J = 1.9 Hz, 3H), 2.52 (s, 3H), 2.38-2.26 (m, 2H). ¹H-NMR (400 MHz, DMSO-d₆) δ 14.40 (br s, 2H), 10.39 (br s, 1H), 8.96 (d, J = 1.2 Hz, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.52 (dd, J = 8.7, 4.1 Hz, 1H), 7.42 (s, 1H),7.26-7.13 (m, 1H), 7.06-6.95 (m, 2H), 4.69-2.69 (m, 16H), 2.54 (s, 3H), 2.49 (s, 3H, overlapped with DMSO signal), 2.24-2.12 (m, 2H). ¹³C-NMR (101 MHz, DMSO-d₆) δ 169.89, 160.39, 157.57 (d, J = 248.4 Hz, HMBC), 152.27, 139.94, 136.54 (HMBC), 133.93, 133.68 (HMBC), 133.34, 132.36, 119.96 (HMBC), 117.53, 116.15, 112.59, 112.07 (HSQC), 111.28 (HMBC), 65.48, 53.60, 51.44, 51.22, 42.18, 38.66, 31.05, 23.84, 21.00, 20.00, 9.83 (d, *J* = 3.2 Hz), 1 C signal is missing. HRMS (ESI-MS): calcd. for C₂₈H₃₄FN₆O₂⁺: 505.2722, found: 479.2563; calcd. for C₂₈H₃₅FN₆O₂²⁺: 253.1397, found: 253.1406; calcd. for C₂₈H₃₆FN₆O₂³⁺: 169.0956, found: 169.0961. MF: C₂₈H₃₃FN₆O₂ x C₆H₃F₉O₆. MW: (504.61 + 342.06).

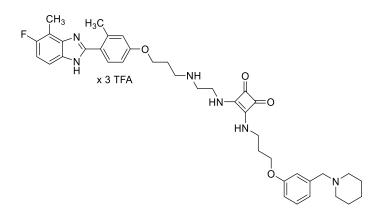

(*E*)-1-(4-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-

methylphenoxy)propyl)amino)piperidin-1-yl)-3-(1H-imidazol-4-yl)prop-2-en-1-one

trihydrotrifluoroacetate (4.92). The title compound was synthesized from 4.79 (67 mg, 0.159 mmol), K₂CO₃ (131 mg, 0.951 mmol) and 4.71 (220 mg, 0.476 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (4 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (12.3 mg, 9%). $R_f = 0.20$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 99% ($t_R = 10.2 \text{ min}$, k = 2.18). ¹H-NMR (300 MHz, MeOD) δ 8.88 (d, J = 1.0 Hz, 2H), 7.83 (d, J = 1.0 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.62 (dd, J = 8.6, 3.8 Hz, 1H), 7.55-7.47 (m, 1H), 7.40-7.29 (m, 2H), 7.13-7.03 (m, 2H), 4.83-4.68 (m, 1H), 4.45-4.33 (m, 1H), 4.24 (t, J = 5.8 Hz, 3H), 3.58-3.45 (m, 1H), 3.37-3.13 (m, 3H), 2.92-2.75 (m, 1H), 2.56 (d, *J* = 1.6 Hz, 3H), 2.52 (s, 3H), 2.34-2.15 (m, 4H), 1.72-1.49 (m, 2H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.08 (s, 1H), 8.93-8.79 (br s, 2H), 7.97 (s, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.55-7.50 (m, 1H), 7.45-7.35 (m, 2H), 7.20 (t, J = 9.5 Hz, 1H), 7.04-6.97 (m, 2H), 4.60-4.50 (m, 1H), 4.29-4.14 (m, 3H), 3.47-3.38 (m, 1H), 3.24-3.12 (m, 3H), 2.79-2.68 (m, 1H), 2.50 (s, 3H, overlapped with DMSO signal), 2.18-2.04 (m, 4H), 1.56-1.38 (m, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 163.38, 159.99, 158.48 (q, *J* = 32.4 Hz, TFA), 157.15 (d, *J* = 235.8 Hz), 151.83, 139.47, 136.16, 131.89, 131.54 (HMBC), 129.97, 127.13, 120.58, 119.78, 119.53, 117.06, 116.72 (q, J = 298.2 Hz, TFA), 112.11 (2C, HSQC), 111.67 (d, J = 28.7 Hz), 110.60, 64.88, 53.97, 43.18, 41.18, 39.92 (HSQC), 28.90, 27.83, 25.62, 20.53, 9.37, 1 C signal is missing. HRMS (ESI-MS): calcd. for C₂₉H₃₄FN₆O₂⁺: 517.2722, found: 517.2721. MF: C₂₉H₃₃FN₆O₂ x C₆H₃F₉O₆. MW: (516.62 + 342.06).



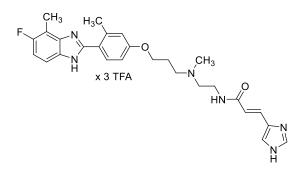
(E)-1-(3-((3-(4-(5-Fluoro-4-methyl-1H-benzo[d]imidazol-2-yl)-3methylphenoxy)propyl)amino)piperidin-1-yl)-3-(1H-imidazol-4-yl)prop-2-en-1-one trihydrotrifluoroacetate (4.93). The title compound was synthesized from 4.79 (19 mg, 0.057 mmol), K₂CO₃ (50 mg, 0.36 mmol) and 4.72 (50 mg, 0.11 mmol) in MeCN (2.5 mL) according to the general procedure C. Deprotection in CH₂Cl₂ (4 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (3.8 mg, 8%). $R_f = 0.1$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 98% ($t_R = 10.3 \text{ min}, k = 2.21$). ¹H-NMR (300 MHz, MeOD) δ 8.72 (s, 1H), 7.78 (s, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.64-7.47 (m, 2H), 7.40-7.30 (m, 1H), 7.31-7.23 (m, 1H), 7.15-7.03 (m, 2H), 4.51-4.41 (m, 1H), 4.25 (t, J = 5.7 Hz, 2H), 4.03-3.91 (m, 1H), 3.59-3.34 (m, 5H), 2.57 (d, J = 1.9 Hz, 3H), 2.52 (s, 3H), 2.35-2.19 (m, 3H), 2.01-1.59 (m, 3H). ¹H-NMR (600 MHz, DMSO-d₆) δ 8.92 (s, 1H), 8.77-8.58 (m, 2H), 7.90 (s, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.50-7.38 (m, 2H), 7.29 (d, J = 15.5 Hz, 1H), 7.10 (t, J = 9.6 Hz, 1H), 7.04-6.90 (m, 2H), 4.39 (d, J = 12.3 Hz, 1H), 4.16 (t, J = 6.0 Hz, 2H), 3.88 (d, J = 13.5 Hz, 1H), 3.38-3.29 (m, 1H), 3.28-3.11 (m, 4H), 2.57 (s, 3H), 2.47 (d, J = 1.5 Hz, 3H), 2.15-2.04 (m, 3H), 1.91-1.80 (m, 1H), 1.71-1.62 (m, 1H), 1.55-1.40 (m, 1H), 1 NH signal is missing. HRMS (ESI-MS): calcd. for C₂₉H₃₄FN₆O₂⁺: 517.2722, found: 517.2720; calcd. for C₂₉H₃₅FN₆O₂²⁺: 259.1397, found: 259.1404; calcd. for C₂₉H₃₆FN₆O₂³⁺: 173.0956, found: 173.0963. MF: C₂₉H₃₃FN₆O₂ x C₆H₃F₉O₆. MW: (516.62 + 342.06).


3-(4-(5-Fluoro-4-methyl-1*H***-benzo**[*d*]**imidazol-2-yl)-3-methylphenoxy**)-*N*-(**3-(3-(piperidin-1-ylmethyl)phenoxy**)**propyl**)**propan-1-amine** trihydrotrifluoroacetate (4.94). The title compound was prepared from **4.79** (50 mg, 0.12 mmol), K₂CO₃ (100 mg, 0.72 mmol)

and **4.76** (90 mg, 0.36 mmol) in MeCN (2.5 mL) according to the general procedure C. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (3.4 mg, 3.2%). $R_f = 0.23$ (CH₂Cl₂/MeOH 95:5). RP-HPLC (220 nm): 99% ($t_R = 12.4 \text{ min}, k = 2.86$). ¹H-NMR (300 MHz, MeOD) δ 7.69 (d, J = 8.5 Hz, 1H), 7.61 (dd, J = 8.9, 4.2 Hz, 1H), 7.48-7.30 (m, 2H), 7.21-7.03 (m, 5H), 4.38-4.10 (m, 6H), 3.52-3.38 (m, 2H), 2.95 (t, J = 12.1 Hz, 2H), 2.69-2.47 (m, 6H), 2.40-2.17 (m, 4H), 2.02-1.41 (m, 6H), 4 H's are overlapped with MeOH signal. ¹H-NMR (600 MHz, DMSO-d₆) δ 9.69 (s, 1H), 8.71 (s, 2H), 7.72 (d, J = 8.2 Hz, 1H), 7.50–7.35 (m, 2H), 7.15–7.07 (m, 3H), 7.06–7.02 (m, 1H), 7.00–6.95 (m, 2H), 4.24 (d, J = 4.6 Hz, 2H), 4.17 (t, J = 6.0 Hz, 2H), 4.10 (t, J = 6.0 Hz, 2H), 3.30 (d, J = 12.2 Hz, 2H), 3.18–3.12 (m, 4H), 2.91–2.81 (m, 2H), 2.58 (s, 3H), 2.48 (d, J = 1.6 Hz, 3H, overlapped with DMSO signal), 2.15–2.08 (m, 4H), 1.85–1.76 (m, 2H), 1.72-1.60 (m, 3H). HRMS (ESI-MS): calcd. for C₃₃H₄₃FN₄O₂²⁺: 273.1680, found: 273.1688; calcd. for C₃₃H₄₄FN₆O₂³⁺: 182.4477, found: 182.4485. MF: C₃₃H₄₁FN₄O₂ x C₆H₃F₉O₆. MW: (544.72 + 342.07).

6-(4-(5-Fluoro-4-methyl-1*H***-benzo[***d***]imidazol-2-yl)-3-methylphenoxy)-***N***-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)hexan-1-amine trihydrotrifluoroacetate (4.95). The title compound was prepared from 4.81** (50 mg, 0.11 mmol), K₂CO₃ (89 mg, 0.64 mmol) and **4.76** (80 mg, 0.32 mmol) in MeCN (2.5 mL) according to the general procedure C. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (44.9 mg, 44%). R_f = 0.21 (CH₂Cl₂/MeOH 9:1). RP-HPLC (220 nm): 99% (t_R = 13.1 min, k = 3.08). ¹H-NMR (300 MHz, MeOD) δ 7.71-7.58 (m, 2H), 7.43-7.31 (m, 2H), 7.14-6.98 (m, 5H), 4.25 (s, 2H), 4.18-4.06 (m, 4H), 3.50-3.38 (m, 2H), 3.24 (t, *J* = 7.6 Hz, 2H), 3.13-3.02 (m, 2H), 3.01-2.86 (m, 2H), 2.57 (d, *J* = 1.8 Hz, 3H), 2.52 (s, 3H), 2.27-2.14 (m, 2H), 2.01-1.68 (m, 9H), 1.65-1.37 (m, 5H). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.02 (s, 1H), 8.80 (quint, *J* = 6.1 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 1H), 7.57 (dd, *J* = 8.8, 4.3 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.27-7.22 (m, 1H), 7.11 (t, *J* = 2.0 Hz, 1H), 7.09-7.05 (m, 1H), 7.04-6.98 (m, 3H), 4.24 (d, *J* = 4.2 Hz, 2H), 4.07 (t, *J* = 6.3 Hz, 4H), 3.30 (d, *J* = 12.0 Hz, 2H), 3.12-3.06 (m,

2H), 2.99–2.93 (m, 2H), 2.90-2.81 (m, 2H), 2.53 (s, 3H), 2.13-2.05 (m, 2H), 1.84-1.72 (m, 4H), 1.70-1.60 (m, 5H), 1.50-1.31 (m, 5H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 160.72, 158.56 (q, J = 33.1 Hz, TFA), 158.42, 157.29 (d, J = 236.5 Hz), 151.71, 139.56, 135.42, 132.10, 131.20, 130.82, 129.96, 123.49, 117.10, 117.05, 116.74 (q, J = 297.5 Hz, TFA), 115.45, 112.54–111.83 (m, 3C), 110.67 (d, J = 19.61 Hz), 67.59, 64.70, 58.91, 51.76 (2C), 46.79, 44.17, 28.35, 25.66, 25.50, 25.46, 25.01, 22.28 (2C), 21.34, 20.33, 9.34. HRMS (ESI-MS): calcd. for C₃₆H₄₈FN₄O₂+: 587.3756, found: 587.3758. MF: C₃₆H₄₇FN₄O₂ x C₆H₃F₉O₆. MW: (586.80 + 342.06).



3-((2-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-

methylphenoxy)propyl)amino)ethyl)amino)-4-((3-(3-(piperidin-1-

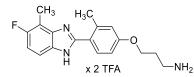
ylmethyl)phenoxy)propyl)amino)cyclobut-3-ene-1,2-dione trihydrotrifluoroacetate (4.96). The title compound was prepared from 4.79 (40 mg, 0.094 mmol), K₂CO₃ (78 mg, 0.566 mmol) and 4.78 (174 mg, 0.283 mmol) in MeCN (2.5 mL) according to the general procedure C. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (13.8 mg, 14%). $R_f = 0.20$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 98% ($t_{\rm R}$ = 11.9 min, k = 2.71). ¹H-NMR (300 MHz, MeOD) δ 7.68 (d, J = 8.5 Hz, 1H), 7.64-7.56 (m, 1H), 7.43-7.30 (m, 2H), 7.15-6.98 (m, 5H), 4.32-4.18 (m, 4H), 4.12 (t, J = 5.9 Hz, 2H), 3.95 (t, J = 5.9 Hz, 2H), 3.89-3.74 (m, 2H), 3.50-3.38 (m, 2H), 3.37-3.30 (m, 4H, overlapped with MeOH signal), 2.94 (t, J = 12.2 Hz, 2H), 2.56 (d, J = 1.8 Hz, 3H), 2.52 (s, 3H), 2.25 (quint, J = 6.3 Hz, 2H), 2.11 (quint, J = 6.4 Hz, 2H), 2.02-1.43 (m, 6H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.63 (s, 1H), 8.82 (s, 2H), 8.18-7.90 (m, 2H), 7.72 (d, J = 8.5 Hz, 1H), 7.54 (dd, J = 8.7, 4.3 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.21 (t, J = 9.5 Hz, 1H), 7.09 (t, J = 2.0 Hz, 1H), 7.06-6.97 (m, 4H), 4.23 (d, J = 4.5 Hz, 2H), 4.16 (t, J = 6.1 Hz, 2H), 4.06 (t, J = 6.2 Hz, 2H), 3.81 (q, J = 6.2 Hz, 2H), 3.75-3.63 (m, 2H), 3.34-3.26 (m, 2H), 3.24-3.13 (m, 4H), 2.91-2.79 (m, 2H), 2.55 (s, 3H), 2.50 (s, 3H, overlapped with DMSO signal), 2.15-2.08 (m, 2H), 2.01 (quint, J = 6.5 Hz, 2H), 1.86-1.76 (m, 2H), 1.71-1.56 (m, 3H), 1.40-1.29 (m, 1H).

¹³C-NMR (151 MHz, DMSO-d₆) δ 182.78, 182.44, 168.50, 167.81, 160.05, 158.59, 158.49 (q, J = 33.0 Hz, TFA), 157.12 (d, J = 237.8 Hz), 151.78, 139.49, 135.66 (HMBC), 131.92, 131.05, 129.95, 123.33, 119.40 (HMBC), 117.34, 117.07, 116.64 (q, J = 296.6 Hz, TFA), 115.31, 112.13 (2C), 111.90 (HSQC), 110.80 (HMBC), 64.92, 64.75, 58.96, 51.81 (2C), 47.48, 44.38, 40.49, 39.71 (overlapped with DMSO signal, HSQC), 30.32, 25.44, 22.32 (2C), 21.31, 20.48, 9.37, 1 C signal is missing. HRMS (ESI-MS): calcd. for C₃₉H₄₈FN₆O₄⁺: 683.3716, found: 683.3718. MF: C₃₉H₄₇FN₆O₄ x C₆H₃F₉O₆. MW: (682.84 + 342.06).

(E)-N-(2-((3-(4-(5-Fluoro-4-methyl-1H-benzo[d]imidazol-2-yl)-3-

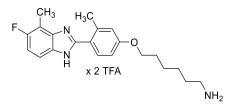
methylphenoxy)propyl)(methyl)amino)ethyl)-3-(1H-imidazol-4-yl)acrylamide

trihydrotrifluoroacetate (4.97). Formic acid (100 μL) and formaldehyde solution (37% aq, 100 μL) were added to 4.86 (15.29 mg, 18.7 μmol) and the resulting mixture was stirred at 95 °C for 4 h. Then, 1 mL MeCN/1% aq TFA (95:5, 1 mL) was added and the resulting solution was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (7.3 mg, 47%). RP-HPLC (220 nm): 98% (t_R = 9.6 min, k = 1.99). ¹H-NMR (300 MHz, MeOD) δ 8.86 (d, J = 1.3 Hz, 1H), 7.80 (d, J = 1.2 Hz, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.63 (dd, J = 9.0, 4.1 Hz, 1H), 7.49 (d, J = 15.9 Hz, 1H), 7.37 (dd, J = 10.1, 9.0 Hz, 1H), 7.15-7.04 (m, 2H), 6.72 (d, J = 15.9 Hz, 1H), 4.24 (t, J = 5.8 Hz, 2H), 3.75 (t, J = 5.9 Hz, 2H), 3.57-3.38 (m, 4H), 3.04 (s, 3H), 2.57 (d, J = 1.8 Hz, 3H), 2.52 (s, 3H), 2.32 (quint, J = 7.3 Hz, 2H). HRMS (ESI-MS): calcd. for C₂₇H₃₂FN₆O₂⁺: 491.2565, found: 491.2560; calcd. for C₂₇H₃₃FN₆O₂²⁺: 246.1319, found: 246.1322; calcd. for C₂₇H₃₄FN₆O₂³⁺: 164.4237, found: 164.4241. MF: C₂₇H₃₁FN₆O₂ x C₆H₃F₉O₆. MW: (490.58 + 342.06).

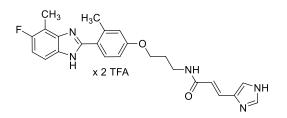

Br_____NH₂ x HBr

6-Bromohexan-1-amine hydrobromide (**4.99**).⁶⁹ The mixture of 6-aminohexan-1-ol (**4.98**, 599 μ L, 4.65 mmol) and 48% HBr, aq (5 mL) was refluxed for 3 h with stirring. Evaporating of the mixture gave the product (1.0 g, 83%) as a brown oil. R_f = 0.46 (CH₂Cl₂/MeOH 9:1). ¹H-

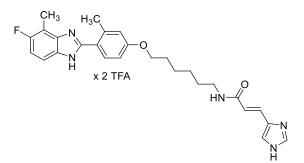
NMR (300 MHz, MeOD) δ 3.47 (t, J = 6.7 Hz, 2H), 2.94 (t, J = 7.5 Hz, 2H), 1.97-1.81 (m, 2H), 1.75-1.61 (m, 2H), 1.59-1.34 (m, 4H). ¹³C-NMR (75 MHz, MeOD) δ 40.64 (-), 34.22 (-), 33.60 (-), 28.61 (-), 28.35 (-), 26.56 (-). NMR data matches literature reference.⁶⁹ HRMS (ESI-MS): calcd. for C₆H₁₅BrN⁺: 180.0382, found: 180.0391. MF: C₆H₁₄BrN x HBr. MW: 180.09 + 80.91.


Br_____N_Boc

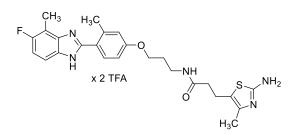
tert-Butyl (6-bromohexyl)carbamate (4.100).⁷⁰ A solution of NaOH (306 mg, 7.66 mmol, 2 equiv) in H₂O (15 mL), was added dropwise to a vigorously stirring biphasic mixture consisting of 4.99 (1.0 g, 3.83 mmol, 1 equiv) in H₂O (25 mL) and Boc₂O (585 mg, 2.68 mmol, 0.7 mmol) in CH₂Cl₂ (50 mL). After 3 h, the organic phase was separated and washed with 2 N HCl, aqueous (50 mL) and brine (50 mL). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The solvent was removed in vacuum to give the product as yellow oil (450 mg, 42%). R_f = 0.95 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 3.38 (t, *J* = 6.8 Hz, 2H), 3.09 (q, *J* = 6.6 Hz, 2H), 1.93-1.73 (m, 2H), 1.53-1.27 (m, 15H). ¹³C-NMR (75 MHz, CDCl₃) δ 156.07 (q), 79.15 (q), 40.53 (-), 33.88 (-), 32.75 (-), 30.04 (-), 28.52 (+, 3C), 27.92 (-), 26.04 (-). NMR data matches literature reference.⁷⁰ HRMS (ESI-MS): calcd. for C₁₁H₂₂BrNNaO₂⁺: 302.0726, found: 302.0724. MF: C₁₁H₂₂BrNO₂. MW: 280.21.


3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-methylphenoxy)propan-1-amine dihydrotrifluoroacetate $(4.102).^2$ А suspension of 4-(5-fluoro-4-methyl-1Hbenzo[d]imidazol-2-yl)-3-methylphenol (807 mg, 3.15 mmol, 1.5 equiv), and Cs₂CO₃ (889 mg, 2.73 mmol, 1.3 equiv) in MeCN (16 mL) was treated with tert-butyl (3-bromopropyl)carbamate (4.101, 500 mg, 2.10 mmol, 1 equiv) and heated under microwave irradiation at 130 °C for 15 min. The reaction mixture was cooled to rt, diluted with chloroform, and filtered through a glass fritted funnel to remove inorganic solid. The filtrate was concentrated under reduced pressure and purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-67:33, 30 min: 67:33) yielding yellow oil (590 mg, 68%). $R_f = 0.27$ (PE/EtOAc 2:1). ¹H-NMR (300 MHz, CDCl₃) & 7.24-7.18 (m, 1H), 6.97-6.89 (m, 1H), 6.65-6.55 (m, 1H), 6.51-6.34 (m, 2H), 3.87 (t, J = 5.9 Hz, 2H), 3.22 (q, J = 6.6 Hz, 2H), 2.52-2.46 (m, 3H), 2.35 (s, 3H), 1.95-1.77 (m, 2H), 1.41 (s, 9H). HRMS (ESI-MS): calcd. for C₂₃H₂₉FN₃O₃⁺: 414.2187, found:

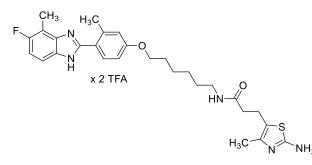
414.2210. MF: C₂₃H₂₈FN₃O₃. MW: 413.49. The Boc-protected intermediate (560 mg, 1.35 mmol) was dissolved in CH₂Cl₂ (3 mL), TFA (1 mL) was added and the reaction mixture was stirred at rt until the protection group was removed (7 h, TLC control). After evaporation of the solvent in vacuum, the crude product was recrystallized from isopropyl alcohol/diethyl ether yielding a beige solid (0.35 g, 48%). $R_f = 0.13$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.74-7.60 (m, 2H), 7.37 (dd, J = 10.1, 8.9 Hz, 1H), 7.15-7.04 (m, 2H), 4.24 (t, J = 5.8 Hz, 2H), 3.20 (t, J = 7.4 Hz, 2H), 2.58 (d, J = 1.8 Hz, 3H), 2.53 (s, 3H), 2.29-2.14 (m, 2H). ¹³C-NMR (75 MHz, MeOD) δ 163.43, 152.62, 141.52, 133.61, 129.45, 118.44, 117.05, 115.73 (d, J = 27.6 Hz), 113.96, 113.30 (d, J = 10.0 Hz), 112.37 (d, J = 23.7 Hz), 66.57, 38.37, 28.26, 20.11, 9.36 (d, J = 3.8 Hz), 2C's are missing. NMR data matches literature reference.² (ESI-MS): calcd. for $C_{18}H_{21}FN_3O^+$: 314.1663, HRMS found: 314.1663. MF: $C_{18}H_{20}FN_{3}O \ge C_{4}H_{2}F_{6}O_{4}$. MW: (313.38 + 228.05).



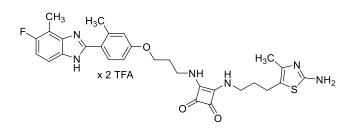
6-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-methylphenoxy)hexan-1-amine **dihydrotrifluoroacetate** (4.103). A suspension of 4-(5-fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-methylphenol (516 mg, 2.01 mmol, 1.5 equiv), and Cs₂CO₃ (568 mg, 1.74 mmol, 1.3 equiv) in MeCN (12 mL) was treated with 4.100 (376 mg, 1.34 mmol, 1 equiv) and heated under microwave irradiation at 130 °C for 15 min. The reaction mixture was cooled to rt, diluted with CHCl₃, and filtered through a glass fritted funnel to remove inorganic solid. The filtrate was concentrated under reduced pressure and purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-75:25, 30 min: 75:25) yielding yellow oil (410 mg, 67%). $R_f = 0.42$ (PE/EtOAc 2:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 8.5 Hz, 1H), 6.95 (dd, J = 10.2, 8.7 Hz, 1H), 6.76 (d, J = 2.5 Hz, 1H), 6.67 (dd, J = 8.5, 2.5 Hz, 2H), 3.94 (t, J = 6.4 Hz, 2H), 3.16-3.01 (m, 2H), 2.49 (s, 3H), 2.03 (s, 3H), 1.76 (quint, J = 6.5 Hz, 2H), 1.55-1.29 (m, 15H).¹³C-NMR (75 MHz, CDCl₃) δ 159.88, 154.72 (d, J = 225.7 Hz), 138.94, 130.95, 122.53, 116.98, 111.82, 110.39 (d, *J* = 27.1 Hz), 79.17, 67.75, 60.44, 30.00, 29.09, 28.43 (3C), 26.51, 25.71, 21.00, 14.20, 6C`s are missing. HRMS (ESI-MS): calcd. for C₂₆H₃₅FN₃O₃⁺: 456.2657, found: 456.2659. MF: C₂₆H₃₄FN₃O₃. MW: 455.57. The Boc-protected intermediate (410 mg, 0.90 mmol) was dissolved in CH₂Cl₂ (4 mL). TFA (1 mL) was added and the reaction mixture was stirred at rt until the protection group was removed (7 h, TLC control). After evaporation


of the solvent in vacuum, the crude product was recrystallized from isopropyl alcohol/diethyl ether yielding a beige solid (0.40 g, 76%). $R_f = 0.21$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 7.72-7.58 (m, 2H), 7.41-7.32 (m, 1H), 7.09-6.98 (m, 2H), 4.11 (t, J = 6.3 Hz, 2H), 2.95 (t, J = 7.6 Hz, 2H), 2.58 (d, J = 1.9 Hz, 3H), 2.52 (s, 3H), 1.93-1.81 (m, 2H), 1.78-1.66 (m, 2H), 1.63-1.41 (m, 4H). ¹³C-NMR (75 MHz, MeOD) δ 164.11, 152.75, 141.42, 133.58, 129.31, 118.42, 116.31, 115.76 (d, J = 27.3 Hz), 113.93, 113.25 (d, J = 10.2 Hz), 112.33 (d, J = 23.6 Hz), 69.24, 40.65, 29.98, 28.53, 27.21, 26.66, 20.11, 9.35 (d, J = 3.9 Hz), 2C`s are missing. HRMS (ESI-MS): calcd. for C₂₁H₂₇FN₃O⁺: 356.2133, found: 356.2131. MF: C₂₁H₂₆FN₃O x C₄H₂F₆O₄. MW: (355.46 + 228.05).

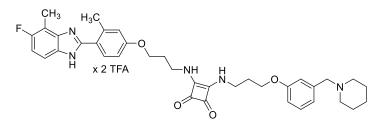
(E)-N-(3-(4-(5-Fluoro-4-methyl-1H-benzo[d]imidazol-2-yl)-3-methylphenoxy)propyl)-3-(1H-imidazol-4-yl)acrylamide dihydrotrifluoroacetate (4.104). The title compound was prepared from 4.102 (65 mg, 0.12 mmol), 4.57 (38 mg, 0.10 mmol), EDC x HCl (23 mg, 0.12 mmol), HOBt x H₂O (18 mg, 0.12 mmol) and DIPEA (85 µL, 0.50 mmol) in DMF (0.9 mL) according to the general procedure A. Deprotection in CH₂Cl₂ (4 mL) and TFA (1 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (35.4 mg, 54%). $R_f = 0.42$ (CH₂Cl₂/MeOH 9:1). RP-HPLC (220 nm): 99% ($t_R = 12.2 \text{ min}, k = 2.80$). ¹H-NMR (300 MHz, MeOD) δ 8.86 (d, J = 1.2 Hz, 1H), 7.79 (d, J = 1.2 Hz, 1H), 7.74–7.58 (m, 2H), 7.52–7.32 (m, 2H), 7.19–7.02 (m, 2H), 6.68 (d, J = 15.8 Hz, 1H), 4.17 (t, J = 6.1 Hz, 2H), 3.53 (t, J = 6.9 Hz, 2H), 2.67–2.48 (m, 6H), 2.10 (quint, J = 6.4 Hz, 2H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.05 (s, 1H), 8.44 (t, J = 5.7 Hz, 1H), 7.92 (d, J = 1.6 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 1.6 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H) 1H), 7.59 (dd, *J* = 8.8, 4.2 Hz, 1H), 7.36 (d, *J* = 15.9 Hz, 1H), 7.27 (dd, *J* = 10.3, 8.8 Hz, 1H), 7.06–6.99 (m, 2H), 6.67 (d, J = 15.9 Hz, 1H), 4.16–4.10 (m, 2H), 3.37 (q, J = 6.5 Hz, 2H), 2.52 (s, 3H), 2.50 (s, 3H), 1.96 (quint, J = 6.6 Hz, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 164.20, 160.81, 158.62 (q, J = 33.3 Hz, TFA), 157.40 (d, J = 236.9 Hz), 151.57, 139.64, 136.10, 134.79, 132.23, 130.41, 129.72, 124.50, 124.16, 119.91, 117.93, 117.11, 116.68 (q, J = 297.0 Hz, TFA), 112.45 (d, J = 26.7 Hz), 112.27 (2C), 110.68 (d, J = 22.5 Hz), 65.61, 35.92, 28.76, 20.25, 9.36. HRMS (ESI-MS): calcd. for C₂₄H₂₅FN₅O₂⁺: 434.1987, found: 434.1995. MF: C₂₄H₂₄FN₅O₂ x C₄H₂F₆O₄. MW: (433.49 + 228.05).



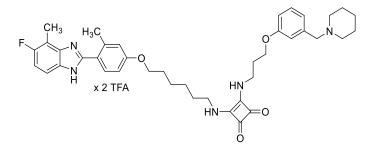
(E)-N-(6-(4-(5-Fluoro-4-methyl-1H-benzo[d]imidazol-2-yl)-3-methylphenoxy)hexyl)-3-(1H-imidazol-4-yl)acrylamide dihydrotrifluoroacetate (4.105). The title compound was prepared from 4.103 (74 mg, 0.13 mmol), 4.57 (40 mg, 0.10 mmol), EDC x HCl (24 mg, 0.13 mmol), HOBt x H₂O (19 mg, 0.13 mmol) and DIPEA (90 µL, 0.53 mmol) in DMF (0.9 mL) according to the general procedure A. Deprotection in CH₂Cl₂ (4 mL) and TFA (1 mL) followed by preparative RP-HPLC afforded a white, foamlike and hygroscopic solid (14.9 mg, 21%). $R_f = 0.21$ (CH₂Cl₂/MeOH 9:1). RP-HPLC (220 nm): 98% ($t_R = 14.1 \text{ min}, k = 3.39$). ¹H-NMR (300 MHz, MeOD) δ 8.82 (d, J = 1.3 Hz, 1H), 7.77 (d, J = 1.4 Hz, 1H), 7.72–7.56 (m, 2H), 7.50–7.30 (m, 2H), 7.14–6.99 (m, 2H), 6.64 (d, J = 15.9 Hz, 1H), 4.10 (t, J = 6.3 Hz, 2H), 3.37-3.32 (m, 2H, overlapped with MeOH signal), 2.64-2.47 (m, 6H), 1.94-1.78 (m, 2H), 1.71–1.41 (m, 6H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.02 (s, 1H), 8.29 (t, J = 5.7 Hz, 1H), 7.90 (s, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.56 (dd, J = 8.8, 4.3 Hz, 1H), 7.34 (d, J = 15.9 Hz, 1H), 7.28–7.22 (m, 1H), 7.05–6.97 (m, 2H), 6.64 (d, J = 15.9 Hz, 1H), 4.07 (t, J = 6.5 Hz, 2H), 3.19 (q, J = 6.6 Hz, 2H), 2.52 (s, 3H), 2.50 (s, 3H), 1.75 (quint, J = 6.8 Hz, 2H), 1.55-1.42 (m, 4H),1.41–1.32 (m, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 163.95, 160.73, 158.40 (q, *J* = 33.1 Hz, TFA), 158.06, 156.49, 151.73, 139.53, 136.06, 135.29, 132.07, 130.83, 129.85, 124.41, 124.22, 119.79, 118.26, 117.07, 116.78 (q, J = 298.0 Hz, TFA), 112.65–111.73 (m, 3C), 110.64 (d, J = 22.5 Hz), 67.71, 38.80, 29.04, 28.55, 26.23, 25.23, 20.34, 9.37. HRMS (ESI-MS): calcd. for C₂₇H₃₁FN₅O₂⁺: 476.2456, found: 476.2462. MF: C₂₇H₃₀FN₅O₂ x C₄H₂F₆O₄. MW: (475.57 + 228.05).


3-(2-Amino-4-methylthiazol-5-yl)-*N*-(3-(4-(5-fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2yl)-3-methylphenoxy)propyl)propanamide dihydrotrifluoroacetate (4.106). The title

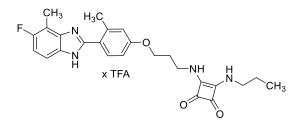
compound was prepared from **4.102** (72 mg, 0.17 mmol), **4.32** (40 mg, 0.14 mmol), EDC x HCl (32 mg, 0.17 mmol), HOBt x H₂O (26 mg, 0.17 mmol) and DIPEA (134 µL, 0.78 mmol) in DMF (1.1 mL) according to the general procedure A. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (65.5 mg, 65%). $R_f = 0.36$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 95% ($t_R = 12.0 \text{ min}, k = 2.74$). ¹H-NMR (300 MHz, MeOD) δ 7.71–7.60 (m, 2H), 7.37 (dd, J = 10.2, 9.0 Hz, 1H), 7.12–7.00 (m, 2H), 4.12 (t, J = 6.1 Hz, 2H), 3.44-3.36 (d, J = 6.7 Hz, 3H), 2.91 (t, J = 6.8 Hz, 2H), 2.63–2.42 (m, 8H), 2.18 (s, 3H), 2.08–1.96 (m, 2H). ¹³C-NMR (101 MHz, MeOD) δ 172.45, 168.99, 162.53, 161.25 (q, J = 34.6 Hz, TFA), 158.80 (d, J = 141.7 Hz), 151.29 (d, J = 1.6 Hz), 140.07, 132.21, 132.13 (d, J = 9.7 Hz), 131.20, 127.87, 117.09, 116.97, 116.42 (q, J = 296.5 Hz, TFA), 115.07, 114.43 (d, J = 27.4 Hz), 112.53, 111.87, (d, J = 10.1 Hz), 10.98 (d, J = 23.7 Hz), 65.58, 36.05, 35.38, 28.70, 21.01, 18.70, 10.03, 7.95 (d, J = 3.8 Hz). HRMS (ESI-MS): calcd. for C₂₅H₂₉FN₅O₂S⁺: 482.2021, found: 482.2027. MF: C₂₅H₂₈FN₅O₂S x C₄H₂F₆O₄. MW: (481.59 + 228.05).


3-(2-Amino-4-methylthiazol-5-yl)-*N*-(6-(4-(5-fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2yl)-3-methylphenoxy)hexyl)propenamide dihydrotrifluoroacetate (4.107). The title compound was prepared from 4.103 (89 mg, 0.15 mmol), 4.32 (36 mg, 0.127 mmol), HOBt x H₂O (23 mg, 0.153 mmol), EDC x HCl (29 mg, 0.153 mmol) and DIPEA (108 μ L, 0.638 mmol) in DMF (1.1 mL) according to the general procedure A. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (33.0 mg, 35%). R_f = 0.32 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 95% (t_R = 14.3 min, k = 3.45). ¹H-NMR (300 MHz, MeOD) δ 7.71-7.59 (m, 2H), 7.37 (dd, J = 10.1, 9.0 Hz, 1H), 7.08-7.00 (m, 2H), 4.10 (t, J = 6.3 Hz, 2H), 3.19 (t, J = 6.9 Hz, 2H), 2.90 (t, J = 6.8 Hz, 2H), 2.57 (d, J = 1.8 Hz, 3H), 2.52 (s, 3H), 2.48-2.42 (m, 2H), 2.18 (s, 3H), 1.83 (quint, J = 7.2 Hz, 2H), 1.61-1.46 (m, 4H), 1.45-1.34 (m, 2H). ¹³C-NMR (101 MHz, MeOD) δ 172.18, 168.97, 162.64, 158.66 (d, J = 248.9 Hz), 151.48 (HMBC), 139.95, 132.07 (2C, HMBC), 131.27, 128.30, 117.09, 117.01, 115.34, 114.15 (d, J = 28.1 Hz), 112.50, 111.83 (d,

J = 10.3 Hz), 110.92 (d, J = 23.3 Hz), 67.99, 39.00, 35.37, 28.93, 28.78, 26.33, 25.41, 21.06, 18.71, 10.06, 7.94 (d, J = 3.9 Hz). HRMS (ESI-MS): calcd. for C₂₈H₃₅FN₅O₂S⁺: 524.2490, found: 524.2498. MF: C₂₈H₃₄FN₅O₂S x C₄H₂F₆O₄ MW: (523.67 + 228.05).


3-((3-(2-Amino-4-methylthiazol-5-yl)propyl)amino)-4-((3-(4-(5-fluoro-4-methyl-1Hbenzo[d]imidazol-2-yl)-3-methylphenoxy)propyl)amino)cyclobut-3-ene-1,2-dione dihydrotrifluoroacetate (4.108). The title compound was prepared from 4.102 (84 mg, 0.155 mmol), 4.75 (100 mg, 0.186 mmol) and NEt₃ (43 µL, 0.31 mmol) in EtOH (5 mL) according to the general procedure D. Deprotection in CH₂Cl₂ (3 mL) and TFA (2 mL) followed by preparative RP-HPLC afforded the product as a white, foamlike and hygroscopic solid (7.18 mg, 6%). $R_f = 0.17$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). HPLC: 97% ($t_R = 12.1$ min, k = 2.77). ¹H-NMR (300 MHz, MeOD) δ 7.69-7.56 (m, 2H), 7.34 (dd, J = 10.1, 8.9 Hz, 1H), 7.11-6.99 (m, 2H), 4.21 (t, J = 5.8 Hz, 2H), 3.93-3.78 (m, 2H), 3.65 (t, J = 6.8 Hz, 2H), 2.70 (t, J = 7.4 Hz, 2H), 2.57 (d, J = 1.8 Hz, 3H), 2.50 (s, 3H), 2.22-2.07 (m, 4H), 1.99-1.80 (m, 2H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.09 (s, 2H), 7.75-7.48 (m, 4H), 7.21 (t, J = 9.6 Hz, 1H), 7.04-6.97 (m, 2H), 4.14 (t, J = 6.1 Hz, 2H), 3.75-3.64 (m, 2H), 3.57-3.46 (m, 2H), 2.63-2.59 (m, 2H), 2.53 (s, 3H), 2.07-2.00 (m, 5H), 1.75 (quint, J = 7.1 Hz, 2H), 2 NH signals are missing.¹³C-NMR (151 MHz, DMSO-d₆) δ 182.40 (2C), 167.74, 160.31, 158.34 (q, J = 33.6 Hz, TFA), 157.13 (d, J = 236.1 Hz), 151.83, 139.42, 135.88 (HMBC), 131.88, 131.12, 119.23 (HMBC), 117.05, 116.69, 112.15 (2C), 111.80 (HSQC), 110.68 (HMBC), 65.03, 42.30, 40.41, 31.26, 30.32, 21.82, 20.48, 11.33, 9.38, 3 C signals are missing. HRMS (ESI-MS): calcd. for C₂₉H₃₂FN₆O₃S⁺: 563.2235, found: 563.2237; calcd. for C₂₉H₃₃FN₆O₃S²⁺: 282.1154, found: 282.1162. MF: C₂₉H₃₁FN₆O₃S x C₄H₂F₆O₄. MW: (562.66 + 228.05).

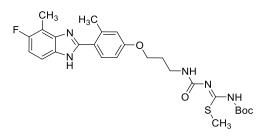
4 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as Histamine H₂ Receptor Ligands


3-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3methylphenoxy)propyl)amino)-4-((3-(3-(piperidin-1-

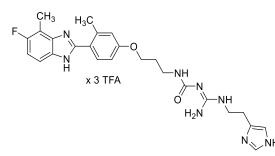
vlmethyl)phenoxy)propyl)amino)cyclobut-3-ene-1,2-dione dihydrotrifluoroacetate (4.109). The title compound was prepared from 4.102 (25 mg, 0.067 mmol), 4.76 (30 mg, 0.055 mmol) and NEt₃ (15.4 µL, 0.111 mmol) in EtOH (5 mL) according to the general procedure D. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (11.4 mg, 24%). $R_f = 0.42$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 100% ($t_{\rm R}$ = 14.1 min, k = 3.39). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.50 (s, 1H), 7.86-7.65 (m, 3H), 7.54 (dd, J = 8.9, 4.3 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.23 (t, J = 9.6 Hz, 1H), 7.11-7.08 (m, 1H), 7.06-6.98 (m, 4H), 4.22 (d, J = 3.8 Hz, 2H), 4.14 (t, J = 6.2 Hz, 2H), 4.06 (t, J = 6.1 Hz, 2H), 3.69 (s, 4H), 3.30 (d, J = 12.0 Hz, 2H), 2.85 (q, J = 11.5, 10.9 Hz, 2H), 2.53 (s, 3H), 2.06-1.98 (m, 4H), 1.85-1.77 (m, 2H), 1.71-1.57 (m, 3H), 1.42-1.30 (m, 1H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 182.43 (2C), 167.97 (2C), 160.39, 158.58, 158.25 (q, J = 33.2 Hz, TFA), 157.17 (d, J = 236.6 Hz), 151.78, 139.46, 135.53, 131.95, 131.02, 129.95, 123.31, 119.36, 117.31, 117.06, 116.65 (q, J = 297.9 Hz, TFA), 115.36, 112.18 (3C), 100.59, 65.06, 64.81, 58.99, 51.83 (2C), 40.46, 40.41, 30.36, 30.30, 22.33 (2C), 21.29, 20.43, 9.37. HRMS (ESI-MS): calcd. for C₃₇H₄₃FN₅O₄⁺: 640.3294, found: 640.3294; calcd. for C₃₇H₄₄FN₅O₄²⁺: 320.6689, found: 320.6683. MF: C₃₇H₄₂FN₅O₄x C₄H₂F₆O₄. MW: (639.77 + 228.05).

3-((6-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3methylphenoxy)hexyl)amino)-4-((3-(3-(piperidin-1ylmethyl)phenoxy)propyl)amino)cyclobut-3-ene-1,2-dione dihydrotrifluoroacetate (4.110). The title compound was prepared from 4.103 (38 mg, 0.103 mmol), 4.76 (50 mg,

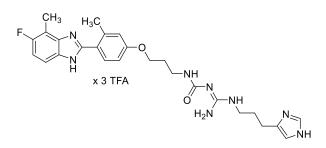
0.086 mmol) and NEt₃ (23.8 µL, 0.171 mmol) in EtOH (7 mL) according to the general procedure D The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (21.8 mg, 28%). $R_f = 0.40$ (CH₂Cl₂/0.5% NH₃ in MeOH 95:5). RP-HPLC (220 nm): 100% ($t_{\rm R}$ = 15.9 min, k = 3.95). ¹H-NMR (300 MHz, MeOD) δ 7.70-7.58 (m, 2H), 7.42-7.35 (m, 2H), 7.10-6.99 (m, 5H), 4.23 (s, 2H), 4.19-4.05 (m, 4H), 3.91-3.77 (m, 2H), 3.68-3.53 (m, 2H), 3.50-3.39 (m, 2H), 2.94 (t, J = 12.6 Hz, 2H), 2.61-2.48 (m, 6H), 2.10 (quint, J = 6.3 Hz, 2H), 2.02-1.40 (m, 14H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.64 (s, 1H), 7.84-7.67 (m, 3H), 7.60 (dd, J = 8.8, 4.2 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.29 (t, J = 9.5 Hz, 1H), 7.10 (t, J = 2.0 Hz, 1H), 7.06-7.00 (m, 4H), 4.23 (d, J = 4.2 Hz, 2H), 4.06 (q, J = 6.3 Hz, 4H), 3.74-3.64 (m, 2H), 3.59-3.45 (m, 2H), 3.30 (d, *J* = 12.0 Hz, 2H), 2.91-2.80 (m, 2H), 2.52 (s, 3H), 2.50 (s, 3H), 2.01 (quint, J = 6.5 Hz, 2H), 1.84-1.78 (m, 2H), 1.75 (quint, J = 6.7 Hz, 2H), 1.71-1.51 (m, 5H), 1.49-1.30 (m, 5H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 182.44, 182.24, 167.98, 167.83, 160.98, 158.60, 158.46 (q, J = 33.2 Hz, TFA), 156.66 (d, J = 238.0 Hz), 151.51, 139.65, 134.64, 132.27, 131.04, 130.14, 129.93, 123.31, 117.28, 117.08, 116.48 (q, J = 296.8 Hz, TFA), 115.39, 112.77–112.05 (m, 3C), 110.60 (d, J = 22.1 Hz), 67.73, 64.80, 58.99, 51.82 (2C), 43.21, 40.42, 30.73, 30.35, 28.48, 25.60, 25.10, 22.33 (2C), 21.31, 20.18, 9.36. HRMS (ESI-MS): calcd. for C₄₀H₄₉FN₅O₄⁺: 682.3763, found: 682.3769. MF: $C_{40}H_{48}FN_5O_4 \ge C_4H_2F_6O_4$. MW: (681.85 + 228.05).



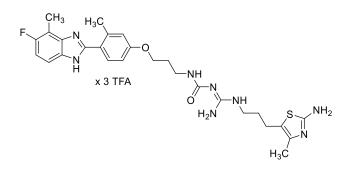
3-((3-(4-(5-Fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-


methylphenoxy)propyl)amino)-4-(propylamino)cyclobut-3-ene-1,2-dione

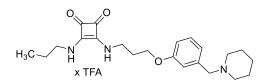
hydrotrifluoroacetate (4.112). The title compound was synthetized according to the procedure of D. Erdmann.²⁰ Diethoxycyclobut-3-ene-1,2-dione (4.73, 30 µL, 0.203 mmol, 1.1 equiv) was dissolved in EtOH (5 mL) and slowly added to a solution of 4.102 (100 mg, 0.185 mmol, 1 equiv) and NEt₃ (28 µL, 0.203 mmol, 1.1 equiv) in EtOH (5 mL). The yellow solution was stirred overnight at rt. The solvent was evaporated in vacuum. The residue was purified by flash chromatography (gradient: 0-20 min: CH₂Cl₂/MeOH 100:0-95:5) yielding the mixed squaramate 4.111 as a yellow oil (30 mg, 37%). R_f = 0.61 (CH₂Cl₂/MeOH 9:1). HRMS (ESI-MS): calcd. for C₂₄H₂₅FN₃O₄⁺: 438.1824, found: 438.1861; calcd. for C₄₈H₄₉F₂N₆O₈⁺:


875.3574, found: 875.3585. MF: C₂₄H₂₄FN₃O₄. MW: 437.47. The mixed squaramate 4.111 (30 mg, 0.069 mmol, 1 equiv) was dissolved in EtOH (1 mL). After addition of propan-1-amine (28 µL, 0.34 mmol, 5 equiv), the solution was stirred at 70 °C for 24 h. The solvent was evaporated, and the residue was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (15.1 mg, 39%). $R_f = 0.67$ (CH₂Cl₂/0.5% NH₃ in MeOH 95:5). RP-HPLC (220 nm): 99% ($t_{\rm R}$ = 14.1 min, k = 3.39). ¹H-NMR (300 MHz, MeOD) δ 7.71-7.59 (m, 2H), 7.44-7.34 (m, 1H), 7.10-7.00 (m, 2H), 4.23 (t, J = 5.8 Hz, 2H), 3.86 (t, J = 6.5 Hz, 2H), 3.62-3.47 (m, 2H), 2.58 (d, J = 1.8 Hz, 3H), 2.51 (s, 3H), 2.24-2.09 (m, 2H), 1.73-1.55 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). HRMS (ESI-MS): calcd. for C₂₅H₂₈FN₄O₃⁺: 451.2140, found: $C_{25}H_{29}FN_4O_3^{2+}$: 451.2149; calcd. for 226.1106, found: 226.1113. MF: C₂₅H₂₇FN₄O₃ x C₂HF₃O₂. MW: (450.51 + 114.02).

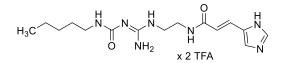
N-tert-Butoxycarbonyl-N'-[N-(3-(4-(5-fluoro-4-methyl-1H-benzo[d]imidazol-2-yl)-3methylphenoxy)propyl)aminocarbonyl]-S-methylisothiourea (4.113). The reaction was performed under argon atmosphere. Triphosgene (55 mg, 0.185 mmol, 1 equiv) was dissolved in CH₂Cl₂ (1 mL) and the solution was cooled to 0 °C by using an ice-bath. A solution of 4.102 (100 mg, 0.185 mmol, 1 equiv) and DIPEA (245 µL, 1.403 mmol, 7.6 equiv) in CH₂Cl₂ (2 mL) was added dropwise to the triphosgene solution over a period of 30 min. Then, the reaction mixture was stirred at 0 °C for additional 30 min. After 30 min, N-tert-butoxycarbonyl-Smethylthiourea (39 mg, 0.204 mmol, 1.1 equiv) was added, the ice-bath was removed, and the reaction mixture was stirred at rt for 3.5 h. The solvent was removed in vacuum and the residue was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-50:50) yielding yellow oil (70 mg, 71%). $R_f = 0.66$ (PE/EtOAc 1:2). ¹H-NMR (300 MHz, CDCl₃) δ 12.20 (s, 1H), 7.34-7.21 (m, 3H), 6.93 (dd, J = 10.2, 8.8 Hz, 1H), 6.68 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 10.2, 8.8 Hz, 1H), 6.68 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 10.2, 8.8 Hz, 1H), 6.68 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 10.2, 8.8 Hz, 1H), 6.68 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 10.2, 8.8 Hz, 1H), 6.68 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 10.2, 8.8 Hz, 1H), 6.68 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 10.2, 8.8 Hz, 1H), 6.68 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 10.2, 8.8 Hz, 1H), 8.8 8.5, 2.6 Hz, 1H), 6.02 (t, J = 6.0 Hz, 1H), 4.02-3.91 (m, 2H), 3.44-3.36 (m, 2H), 2.47 (d, J =1.8 Hz, 3H), 2.39 (s, 3H), 2.26 (s, 3H), 2.05–1.95 (m, 2H), 1.44 (s, 9H). HRMS (ESI-MS): calcd. for C₂₆H₃₃FN₅O₄S⁺: 530.2232, found: 530.2271; calcd. for C₂₆H₃₄FN₅O₂S²⁺: 215.5890, found: 215.5890. MF: C₂₆H₃₂FN₅O₄S. MW: 529.63.



1-(Amino{[2-(1H-imidazol-4-yl)ethyl]amino}methylene)-3-(3-(4-(5-fluoro-4-methyl-1*H*-benzo[*d*]imidazol-2-yl)-3-methylphenoxy)propyl)urea trihydrotrifluoroacetate (4.114). The title compound was prepared from 4.113 (117 mg, 0.22 mmol), 4.4 (71 mg, 0.20 mmol), NEt₃ (69 µL, 0.50 mmol) and HgCl₂ (109 mg, 0.40 mmol) in CH₂Cl₂ (3 mL) according to the general procedure E. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (24.1 mg, 14%). $R_f = 0.26$ (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). HPLC: 100% ($t_{\rm R} = 10.8$ min, k = 2.36). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.75 (s, 1H), 9.14 (s, 1H), 9.01 (s, 1H), 8.67 (s, 2H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.66 (s, 1H), 7.58 (dd, J = 8.9, 4.3 Hz, 1H), 7.51-7.46 (m, 1H), 7.25 (t, J = 9.5 Hz, 1H), 7.05-6.99 (m, 2H), 4.12 (t, J = 6.1 Hz, 2H), 3.58 (q, J = 6.7 Hz, 2H), 3.31 (q, J = 6.5 Hz, 2H), 2.93 (t, J = 6.8 Hz, 2H), 2.53 (s, 3H), 2.50 (s, 3H, overlapped with DMSO signal), 1.95 (quint, J = 6.5 Hz, 2H), 1 NH is missing. ¹³C-NMR (151 MHz, DMSO-d₆) δ 160.60, 158.99 (q, J = 33.1 Hz, TFA), 157.33 (d, J = 236.9 Hz), 154.04, 153.84, 151.66, 139.58, 135.22 (HMBC), 134.03, 132.12, 130.72, 129.93, 118.39, 117.06, 116.66 (q, J = 296.2 Hz, TFA), 116.62, 112.03–112.51 (m, 3C), 110.69 (d, *J* = 19.1 Hz), 65.51, 40.06, 36.49, 28.65, 23.49, 20.31, 9.37 (d, *J* = 3.4 Hz). HRMS (ESI-MS): calcd. for C₂₅H₃₀FN₈O₂⁺: 493.2470, found: 493.2471. MF: C₂₅H₂₉FN₈O₂ x C₆H₃F₉O₆. MW: (492.24 + 342.06).


1-(Amino{[3-(1*H*-imidazol-4-yl)propyl]amino}methylene)-3-(3-(4-(5-fluoro-4-methyl-
1*H*-benzo[*d*]imidazol-2-yl)-3-methylphenoxy)propyl)ureatrihydrotrifluoroacetate(4.115). The title compound was prepared from 4.113 (35 mg, 0.066 mmol), 3-(1-trityl-1*H*-
imidazol-4-yl)-propylamine (27 mg, 0.073 mmol), NEt₃ (23 μ L, 0.165 mmol) and HgCl₂
(36 mg, 0.132 mmol) in CH₂Cl₂ (3 mL) according to the general procedure E. The crude

product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (21.3 mg, 38%). RP-HPLC (220 nm): 100% ($t_R = 11.2 \text{ min}$, k = 2.49). ¹H-NMR (300 MHz, MeOD) δ 8.80 (d, J = 1.4 Hz, 1H), 7.73-7.56 (m, 2H), 7.4-7.27 (m, 2H), 7.15-6.99 (m, 2H), 4.16 (t, J = 6.0 Hz, 2H), 3.44 (t, J = 6.7 Hz, 2H), 3.37 (t, J = 6.9 Hz, 2H), 2.84 (t, J = 7.7 Hz, 2H), 2.57 (d, J = 1.8 Hz, 3H), 2.51 (s, 3H), 2.13-1.92 (m, 4H). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.74 (s, 1H), 9.14 (s, 1H), 8.99 (d, J = 1.4 Hz, 1H), 8.57 (s, 2H), 7.73-7.61 (m, 2H), 7.55 (dd, J = 8.9, 4.3 Hz, 1H), 7.44 (d, J = 1.3 Hz, 1H), 7.26-7.19 (m, 1H), 7.05-6.97 (m, 2H), 4.11 (t, J = 6.1 Hz, 2H), 3.36-3.26 (m, 4H), 2.69 (t, J = 7.6 Hz, 2H), 2.53 (s, 3H), 1.95 (quint, J = 6.5 Hz, 2H), 1.87 (quint, J = 7.3 Hz, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 160.42, 158.91 (q, J = 32.7 Hz, TFA), 157.20 (d, J = 236.3 Hz), 153.91, 151.80, 139.50, 135.83, 133.89, 132.39, 131.97, 131.18, 118.82, 117.06, 116.74 (q, J = 297.4 Hz, TFA), 115.70, 112.56–111.66 (m, 3C), 110.67 (d, J = 22.0 Hz), 65.49, 40.06, 36.50, 28.67, 26.73, 21.08, 20.42, 9.38, 1 C signal is missing. HRMS (ESI-MS): calcd. for C₂₆H₃₂FN₈O₂⁺: 507.2627, found: 507.2630. MF: C₂₆H₃₁FN₈O₂ x C₆H₃F₉O₆. MW: (506.59 + 342.06).



1-(Amino{[3-(2-amino-4-methylthiazol-5-yl)propyl]amino}methylene)-3-(3-(4-(5-fluoro-4-methyl-1*H***-benzo[***d***]imidazol-2-yl)-3-methylphenoxy)propyl)urea trihydrotrifluoroacetate (4.116). The title compound was prepared from 4.113 (92 mg, 0.174 mmol), 4.18 (65 mg, 0.158 mmol), NEt₃ (55 μL, 0.395 mmol) and HgCl₂ (86 mg, 0.316 mmol) in CH₂Cl₂ (3 mL) according to the general procedure E. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (18.5 mg, 13%). R_f = 0.19 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 96% (t_R = 11.7 \text{ min}, k = 2.64). ¹H-NMR (300 MHz, MeOD) δ 7.72-7.59 (m, 2H), 7.37 (dd, J = 10.1, 9.0 Hz, 1H), 7.12-7.01 (m, 2H), 4.17 (t, J = 6.0 \text{ Hz}, 2H), 3.44 (t, J = 6.7 \text{ Hz}, 2H), 3.37-3.31 (m, 2H), 2.72 (t, J = 7.6 \text{ Hz}, 2H), 2.57 (d, J = 1.8 \text{ Hz}, 3H), 2.51 (s, 3H), 2.18 (s, 3H), 2.06 (d, J = 6.3 \text{ Hz}, 2H), 1.90 (quint, J = 7.1 \text{ Hz}, 2H). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.68 (s, 1H), 9.26 (s, 2H), 9.06 (s, 1H), 8.57 (s, 2H), 7.70 (d, J = 8.4 \text{ Hz}, 1H), 7.63 (s, 1H), 7.57 (dd, J = 8.8, 4.2 Hz, 1H), 7.25 (t, J = 9.5 \text{ Hz}, 1H), 7.04-7.00 (m, 2H), 4.12 (t, J = 6.1 \text{ Hz}, 2H), 3.31 (q,**

J = 6.5 Hz, 2H), 3.25 (q, J = 6.7 Hz, 2H), 2.60 (t, J = 7.5 Hz, 2H), 2.53 (s, 3H), 2.50 (s, 3H, overlapped with DMSO signal), 2.09 (s, 3H), 1.95 (quint, J = 6.5 Hz, 2H), 1.73 (quint, J = 7.3 Hz, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 168.05, 160.58, 159.08 (q, J = 33.5 Hz, TFA), 157.31 (d, J = 237.0 Hz), 153.87 (2C), 151.65, 139.56, 135.21 (HMBC), 132.10, 131.23, 130.76, 118.41, 117.06, 116.55 (q, J = 295.9 Hz, TFA), 116.28, 112.22 (3C), 110.66 (d, J = 20.7 Hz), 65.51, 40.06, 36.48, 28.76, 28.65, 21.96, 20.32, 11.24, 9.36 (d, J = 3.3 Hz). HRMS (ESI-MS): calcd. for C₂₇H₃₄FN₈O₂S⁺: 553.2504, found: 553.2507. MF: C₂₇H₃₃FN₈O₂S x C₆H₃F₉O₆. MW: (552.67 + 342.06).

3-((3-(Piperidin-1-ylmethyl)phenoxy)propyl)amino)-4-(propylamino)cyclobut-3ene-1,2-dione hydrotrifluoroacetate (4.117). The title compound was prepared from **4.76** (130 mg, 0.297 mmol) and propylamine (122 μ L, 1.49 mmol) in EtOH (5 mL) according to the general procedure D. The crude product was purified by preparative RP-HPLC and afforded a white, foamlike and hygroscopic solid (102 mg, 69%). R_f = 0.45 (CH₂Cl₂/0.5% NH₃ in MeOH 9:1). RP-HPLC (220 nm): 93% (t_R = 11.1 min, k = 2.46). ¹H-NMR (400 MHz, MeOD) δ 7.42-7.32 (m, 1H), 7.09-6.97 (m, 3H), 4.22 (s, 2H), 4.11 (t, J = 5.9 Hz, 2H), 3.83 (t, J = 6.4 Hz, 2H), 3.64-3.48 (m, 2H), 3.48-3.40 (m, 2H), 3.04-2.86 (m, 2H), 2.09 (quint, J = 6.3 Hz, 2H), 2.01-1.37 (m, 8H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C-NMR (101 MHz, MeOD) δ 183.61, 183.55, 169.76, 169.56, 162.28 (q, J = 33.7 Hz, TFA), 160.84, 131.86, 131.47, 124.60, 118.36, 117.84 (q, J = 290.9 Hz, TFA), 117.35, 66.39, 61.81, 54.18 (2C), 47.08, 42.58, 31.76, 25.61, 24.21 (2C), 22.85, 11.28. HRMS (ESI-MS): calcd. for C₂₂H₃₂N₃O₃⁺: 386.2438, found: 386.2451. MF: C₂₂H₃₁N₃O₃ x C₂HF₃O₂. MW: (385.51 + 114.02).

(*E*)-3-(1*H*-Imidazol-5-yl)-*N*-(2-((*E*)-2-(pentylcarbamoyl)guanidino)ethyl)acrylamide dihydrotrifluoroacetate (4.120). The guanidinylating reagent 4.118 (50 mg, 0.165 mmol, 1.0 equiv) and the amine PB506 (53 mg, 0.18 mmol, 1.1 equiv) were dissolved in CH₂Cl₂ (2 mL). NEt₃ (57 μ L, 0.41 mmol, 2.5 equiv) and HgCl₂ (90 mg, 0.33 mmol, 2 equiv) were assess to the mixture. The mixture was stirred at rt overnight. The reaction mixture was diluted with

CH₂Cl₂ (10 mL). The precipitate was removed by filtration through Celite 545 and washed with CH₂Cl₂ (20 mL) and EtOAc (20 mL). The filtrate was concentrated in vacuum and the crude product was purified by column chromatography on silica gel (gradient: 0-20 min: CH₂Cl₂/MeOH 100:0-94:6) to obtain the fully protected intermediate 4.119 as yellow oil (30 mg, 32%). R_f = 0.56 (CH₂Cl₂/MeOH 9:1). HRMS (ESI-MS): calcd. for C₂₈H₄₀N₇O₂⁺: 570.3035, found: 570.3038. MF: C₂₈H₃₉N₇O₆. MW: 569.66. To a stirred solution of the fully protected intermediate (4.119, 30 mg, 0.053 mmol) in THF/MeOH (1:1 (v/v), 5 mL) was added Pd/C (10 wt%, 10 mg). The mixture was stirred in a steel autoclave under a hydrogen atmosphere of 8 bar for 2 h at rt. The mixture was diluted with MeOH (10 mL). Pd/C was removed by filtration through Celite 545 and washed with MeOH (10 mL) and THF (10 mL). The filtrate was concentrated in vacuum. The residue was dissolved in CH₂Cl₂ (4 mL), TFA (1 mL) was added and the mixture was stirred at rt for 8 h. The solvent was removed in vacuum and the residue was purified by preparative HPLC to get white, foamlike and hygroscopic solid (3.15 mg, 11%). RP-HPLC (220 nm): 96% ($t_{\rm R} = 10.1 \text{ min}, k = 2.15$). ¹H-NMR (300 MHz, MeOD) δ 8.77 (s, 1H), 7.76 (d, J = 1.4 Hz, 1H), 7.48 (d, J = 15.9 Hz, 1H), 6.65 (d, J = 15.8 Hz, 1H), 3.61-3.41 (m, 4H), 3.18 (t, J = 7.1 Hz, 2H), 1.52 (quint, J = 7.1 Hz, 2H), 1.43-1.21 (m, 4H), 0.97-0.84 (m, 3H). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.89 (s, 1H), 9.13-8.91 (m, 1H), 8.82-8.44 (m, 3H), 8.41 (t, J = 5.4 Hz, 1H), 7.78 (s, 1H), 7.47 (s, 1H), 7.36 (d, J = 15.7 Hz, 1H), 6.58 (d, J = 15.8 Hz, 1H), 3.42-3.32 (m, 4H), 3.08 (q, J = 6.6 Hz, 2H), 1.43 (quint, J = 7.2 Hz, 2H), 1.32-1.19 (m, 4H), 0.86 (t, J = 7.1 Hz, 3H). HRMS (ESI-MS): calcd. for C₁₅H₂₆N₇O₂⁺: 336.2142, found: 336.2144; calcd. for $C_{15}H_{27}N_7O_2^{2+}$: 168.6108, found: 168.6111. MF: $C_{15}H_{25}N_7O_2 \ge C_4H_2F_6O_4$. MW: (335.21 + 228.05).

4.4.11 Radioligand Binding Experiments

Competition binding experiments were performed using membrane preparations of Sf9 insect cells expressing the hH₁R + RGS4⁷¹, hH₂R-G_{sαS} fusion protein⁷², hH₃R + G_{αi2} + G_{β1γ2}⁷³ or the hH₄R + G_{αi2} + G_{β1γ2}⁷⁴. General procedures for the generation of recombinant baculoviruses, culture of Sf9 cells and membrane preparations have been described elsewhere.⁷⁵ The competition binding experiments were performed as previously described in detail^{4, 13} with one minor modification: PBS (8 g NaCl, 0.2 g KCl, 1.0 g Na₂HPO₄ x 2 H₂O, 0.15 g NaH₂PO₄ x H₂O, 0.1 g KH₂PO₄ in 1 L Millipore H₂O; pH 7.4; 4 °C) was used as washing buffer while harvesting instead of the previously used binding buffer^{4, 13}. [³H]mepyramine (specific activity: 20.0 or 87 Ci/mmol) was from Hartmann analytics (Braunschweig, Germany) or Novandi Chemistry AB (Södertälje, Sweden), [³H]histamine (specific activity: 25.0 Ci/mmol)

and $[{}^{3}H]N^{\alpha}$ -methylhistamine (specific activity: 85.3 Ci/mmol) were from Hartmann analytics (Braunschweig, Germany). $[{}^{3}H]UR$ -DE257⁸ (specific activity: 63.0 Ci/mmol) and $[{}^{3}H]UR$ -PI294³⁹ (specific activity: 41.8 Ci/mmol) were synthesized and characterized in our laboratories.

4.4.12 Functional Assays

The $[^{35}S]GTP\gamma S$ assay was performed on Sf9 membranes expressing the hH₂R-G_{saS} fusion protein as previously described^{4, 44} with one minor modification: PBS (8 g NaCl, 0.2 g KCl, 1.0 g Na₂HPO₄ x 2 H₂O, 0.15 g NaH₂PO₄ x H₂O, 0.1 g KH₂PO₄ in 1 L Millipore H₂O; pH 7.4; 4 °C) was used as washing buffer while harvesting instead of the previously used binding buffer. The $[^{35}S]$ GTP γ S binding assay was evaluated as described in detail by Biselli et al.⁴⁴

Functional studies in the mini-G protein or β -arrestin2 recruitment assays using HEK293T NlucN-mGs/hH₂R-NlucC⁴²-, HEK293T-ARRB2-H₂R^{38, 43}-, HEK293T-ARRB1-H₂R⁴³ cells were performed as previously described.

4.5 References

1. Lee-Dutra, A.; Arienti, K.; Buzard, D. J.; Hack, M. D.; Khatuya, H.; Desai, P. J.; Nguyen, R. L.; Thurmond, R. L.; Karlsson, L.; Edwards, J.; Breitenbucher, J. G., Identification of 2-arylbenzimidazoles as potet human histamine H₄ receptor ligand. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 6043-6048.

2. Baumeister, P. Molecular Tools for G-Protein Coupled Receptors: Synthesis, Pharmacological Characterization and [³H]-Labeling of Subtype-Selective Ligands for Histamine H₄ and NPY Y₂ Receptors. Ph. D. Thesis. University of Regensburg, 2014.

3. Kraus, A.; Ghorai, P.; Birnkammer, T.; Schnell, D.; Elz, S.; Seifert, R.; Dove, S.; Bernhardt, G.; Buschauer, A., N^{G} -Acylated aminothiazolylpropylguanidines as potent and selective histamine H₂ receptor agonists. *ChemMedChem* **2009**, *4*, 232-240.

4. Kagermeier, N.; Werner, K.; Keller, M.; Baumeister, P.; Bernhardt, G.; Seifert, R.; Buschauer, A., Dimeric carbamoylguanidine-type histamine H₂ receptor ligands: a new class of potent and selective agonists. *Bioorg. Med. Chem.* **2015**, *23*, 3957-3969.

5. Biselli, S.; Bresinsky, M.; Tropmann, K.; Forster, L.; Honisch, C.; Buschauer, A.; Bernhardt, G.; Pockes, S., Pharmacological characterization of a new series of carbamoylguanidines reveals potent agonism at the H₂R and D₃R. *Eur. J. Med. Chem.* **2021**, *214*, 113190.

6. Cavanagh, R. L.; Buyniski, J. P., Effect of BMY-25368, a potent and long-acting histamine H₂-receptor antagonist, on gastric secretion and aspirin-induced gastric lesions in the dog. *Aliment. Pharmacol. Ther.* **1989**, *3*, 299-313.

7. Savall, B. M.; Edwards, J. P.; Venable, J. D.; Buzard, D. J.; Thurmond, R.; Hack, M. D.; McGovern, P., Agonist/antagonist modulation in a series of 2-aryl benzimidazole H₄ receptor ligands. *Bioorg. Med. Chem. Lett.* **2010** *20*, 3367-3371.

8. Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A., $[{}^{3}H]UR$ -DE257: development of a tritium-labeled squaramide-type selective histamine H₂ receptor antagonist. *ChemMedChem* **2015**, *10*, 83-93.

9. Black, J. W.; Duncan, W. A. M.; Durant, G. J.; Ganellin, C. R.; Parsons, M. E., Definition and antagonism of histamine H₂-receptors. *Nature* **1972**, *236*, 385-390.

10. von Angerer, E.; Prekajac, J.; Strohmeier, J., 2-Phenylindoles. Relationship between structure, estrogen receptor affinity, and mammary tumor inhibiting activity in the rat. *J. Med. Chem.* **1984**, *27*, 1439-1447.

11. Eriks, J. C.; van der Goot, H.; Sterk, G. J.; Timmerman, H., Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4- and 5-(2-aminoethyl)thiazoles. *J. Med. Chem.* **1992**, *35*, 3239-3246.

12. Ghorai, P. Arpromidine-related acylguanidines: synthesis and structure activity relationships of a new class of guanidine-type histamine H_2 receptor agonists with reduced basicity. Ph.D. Thesis. University of Regensburg, 2005.

13. Pockes, S.; Wifling, D.; Keller, M.; Buschauer, A.; Elz, S., Highly potent, stable, and selective dimeric hetarylpropylguanidine-type histamine H₂ receptor agonists. *ACS Omega* **2018**, *3*, 2865-2882.

14. Pockes, S.; Wifling, D.; Buschauer, A.; Elz, S., Structure-activity relationship of hetarylpropylguanidines aiming at the development of selective histamine receptor ligands. *ChemistryOpen* **2019**, *8*, 285-297.

15. Green, T. W.; Wuts, P. G. M., Protection for the Amino Group. In *Protective Groups in Organic Synthesis*, Green, T. W.; Wuts, P. G. M., Eds. 1999; pp 494-653.

16. Griffith, R. K.; Dipietro, A. D., Improved syntheses of vinylimidazoles. *Synth. Commun.* **1986**, *16*, 1761-1770.

17. Dodson, R. M.; King, L. C., The reaction of ketones with halogens and thiourea1. *J. Am. Chem. Soc.* **1945**, *67*, 2242-2243.

18. Bermudez, J.; King, F. D.; Sanger, G. J., Indazole and indoline as aromatic bioisosteres in the imidazole class of serotonin 5-HT₃ receptor antagonists. *Bioorg. Med. Chem. Lett.* **1992**, *2*, 1509-1512.

19. Igel, P. Synthesis and Structure-Activity Relationships of N^{G} -Acylated Arylalkylguanidines and Related Compounds as Histamine Receptor Ligands: Searching for Selective H₄R Agonists. Ph. D. Thesis. University of Regensburg, 2008.

20. Erdmann, D. Histamine H_2 and H_3 - Receptor Antagonists Synthesis and Characterization of Radiolabelled and Fluorescent Pharmacological Tools. Ph. D. Thesis. University of Regensburg, 2010.

21. Buschauer, A.; Postius, S.; Szelenyi, I.; Schunack, W., Isohistamine und Homologe als Bausteine von H₂-Antagonisten. *Arzneim.-Forsch.* **1985**, *35*, 1025-1029.

22. Savall, B. M.; Fontimayor, J. R.; Edwards, J. P., Selective phenol alkylation for an improved synthesis of 2-arylbenzimidazole H₄ receptor ligands. *Tetrahedron Lett.* **2009**, *50*, 2490-2492.

23. Jackson, P. A.; Widen, J. C.; Harki, D. A.; Brummond, K. M., Covalent modifiers: a chemical perspective on the reactivity of α , β -unsaturated carbonyls with thiols via hetero-Michael addition reactions. *J. Med. Chem.* **2017**, *60*, 839-885.

24. Lanman, B. A.; Allen, J. R.; Allen, J. G.; Amegadzie, A. K.; Ashton, K. S.; Booker, S. K.; Chen, J. J.; Chen, N.; Frohn, M. J.; Goodman, G.; Kopecky, D. J.; Liu, L.; Lopez, P.; Low, J. D.; Ma, V.; Minatti, A. E.; Nguyen, T. T.; Nishimura, N.; Pickrell, A. J.; Reed, A. B.; Shin, Y.; Siegmund, A. C.; Tamayo, N. A.; Tegley, C. M.; Walton, M. C.; Wang, H.-L.; Wurz, R. P.; Xue, M.; Yang, K. C.; Achanta, P.; Bartberger, M. D.; Canon, J.; Hollis, L. S.; McCarter, J. D.; Mohr, C.; Rex, K.; Saiki, A. Y.; San Miguel, T.; Volak, L. P.; Wang, K. H.; Whittington, D. A.; Zech, S. G.; Lipford, J. R.; Cee, V. J., Discovery of a covalent inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. *J. Med. Chem.* **2020**, *63*, 52-65.

25. Nijmeijer, S.; Engelhardt, H.; Schultes, S.; van de Stolpe, A. C.; Lusink, V.; de Graaf, C.; Wijtmans, M.; Haaksma, E. E. J.; de Esch, I. J. P.; Stachurski, K.; Vischer, H. F.; Leurs, R., Design and pharmacological characterization of VUF14480, a covalent partial agonist that

Histamine H₂ Receptor Ligands

interacts with cysteine 98(3.36) of the human histamine H₄ receptor. *Br. J. Pharmacol.* 2013, *170*, 89-100.

26. Ekici, Ö. D.; Götz, M. G.; James, K. E.; Li, Z. Z.; Rukamp, B. J.; Asgian, J. L.; Caffrey, C. R.; Hansell, E.; Dvořák, J.; McKerrow, J. H.; Potempa, J.; Travis, J.; Mikolajczyk, J.; Salvesen, G. S.; Powers, J. C., Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases. *J. Med. Chem.* **2004**, *47*, 1889-1892.

27. Tsou, H.-R.; Overbeek-Klumpers, E. G.; Hallett, W. A.; Reich, M. F.; Floyd, M. B.; Johnson, B. D.; Michalak, R. S.; Nilakantan, R.; Discafani, C.; Golas, J.; Rabindran, S. K.; Shen, R.; Shi, X.; Wang, Y.-F.; Upeslacis, J.; Wissner, A., Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. *J. Med. Chem.* **2005**, *48*, 1107-1131.

28. Klutchko, S. R.; Zhou, H.; Winters, R. T.; Tran, T. P.; Bridges, A. J.; Althaus, I. W.; Amato, D. M.; Elliott, W. L.; Ellis, P. A.; Meade, M. A.; Roberts, B. J.; Fry, D. W.; Gonzales, A. J.; Harvey, P. J.; Nelson, J. M.; Sherwood, V.; Han, H.-K.; Pace, G.; Smaill, J. B.; Denny, W. A.; Showalter, H. D. H., Tyrosine kinase inhibitors. 19. 6-Alkynamides of 4-anilinoquinazolines and 4-anilinopyrido[3,4-d]pyrimidines as irreversible inhibitors of the erbB family of tyrosine kinase receptors. *J. Med. Chem.* **2006**, *49*, 1475-1485.

29. Pan, Z.; Scheerens, H.; Li, S. J.; Schultz, B. E.; Sprengeler, P. A.; Burrill, L. C.; Mendonca, R. V.; Sweeney, M. D.; Scott, K. C.; Grothaus, P. G.; Jeffery, D. A.; Spoerke, J. M.; Honigberg, L. A.; Young, P. R.; Dalrymple, S. A.; Palmer, J. T., Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. *ChemMedChem* **2007**, *2*, 58-61.

30. Garuti, L.; Roberti, M.; Bottegoni, G., Irreversible protein kinase inhibitors. *Curr. Med. Chem.* **2011**, *18*, 2981-2994.

31. Williams, M., *The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 15th Edition.* Royal Society of Chemistry, Cambridge, UK: Royal Society of Chemistry: 2013.

32. Hoyle, C. E.; Bowman, C. N., Thiol–ene click chemistry. *Angew. Chem. Int. Ed. Engl.* **2010**, *49*, 1540-1573.

33. Karagiorgou, O.; Patsis, G.; Pelecanou, M.; Raptopoulou, C. P.; Terzis, A.; Siatra-Papastaikoudi, T.; Alberto, R.; Pirmettis, I.; Papadopoulos, M., (S)-(2-(2'-Pyridyl)ethyl)cysteamine and (S)-(2-(2'-pyridyl)ethyl)-D,L-homocysteine as ligands for the "fac-[M(CO)₃]⁺" (M = Re, ^{99m}Tc) core. *Inorg. Chem.* **2005**, *44*, 4118-4120.

34. Liu, F.; Dalhus, B.; L.-L., G.; Rise, F., Addition and cycloaddition to 2- and 8- vinylpurines. *Acta Chem. Scand.* **1999**, *53*, 269-279.

35. In the [35 S]GTP γ S binding assay GTP γ S labelled with 35 S is used. The half-life of this sulfur isotope is 87.37 d, so that the reagent can only be used for a limited time. Therefore, several batches have to be ordered in the course of a project. At the beginning of the project, our supplier still delivered the reagent in good quality, so we were able to perform this assay without any problems. However, the batches ordered towards the end of the project were of inadequate quality (was self-tested in our radiology lab with inadequate purity results). Since we did not find an alternative supplier with sufficient reagent quality, we could not perform this assay anymore. Thus, not all compounds could be characterized in the [35 S]GTP γ S batches of high quality.

36. Ruat, M.; Traiffort, E.; Bouthenet, M. L.; Schwartz, J. C.; Hirschfeld, J.; Buschauer, A.; Schunack, W., Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H₂ receptor using [¹²⁵I]iodinated probes. *Proc. Natl. Acad. Sci. USA* **1990**, *87*, 1658-1662.

37. Pertz, H. H.; Görnemann, T.; Schurad, B.; Seifert, R.; Straßer, A., Striking differences of action of lisuride stereoisomers at histamine H₁ receptors. *N.-S. Arch. Pharmacol.* **2006**, *374*, 215-222.

Histamine H₂ Receptor Ligands

38. Grätz, L.; Tropmann, K.; Bresinsky, M.; Müller, C.; Bernhardt, G.; Pockes, S., NanoBRET binding assay for histamine H₂ receptor ligands using live recombinant HEK293T cells. *Sci. Rep.* **2020**, *10*, *e13288*.

39. Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A., Tritium-labeled N^1 -[3-(1H-imidazol-4-yl)propyl]- N^2 -propionylguanidine ([³H]UR-PI294), a high-affinity histamine H₃ and H₄ receptor radioligand. *ChemMedChem* **2009**, *4*, 225-231.

40. Tropmann, K.; Höring, C.; Plank, N.; Pockes, S., Discovery of a G protein biased radioligand for the histamine H_2 receptor with reversible binding properties. *J. Med. Chem.* **2020**, *63*, 13090-13102.

41. Bartole, E.; Littmann, T.; Tanaka, M.; Ozawa, T.; Buschauer, A.; Bernhardt, G., [³H]UR-DEBa176: a 2,4-diaminopyrimidine-type radioligand enabling binding studies at the human, mouse, and rat histamine H₄ receptors. *J. Med. Chem.* **2019**, *62*, 8338-8356.

42. Höring, C.; Seibel, U.; Tropmann, K.; Grätz, L.; Mönnich, D.; Pitzl, S.; Bernhardt, G.; Pockes, S.; Strasser, A., A dynamic, split-luciferase-based mini-G protein sensor to functionally characterize ligands at all four histamine receptor subtypes. *Int. J. Mol. Sci.* **2020**, *21*, 8440.

43. Felixberger, J. Luciferase Complementation for the Determination of Arrestin Recruitment: Investigation of Histamine and NPY receptors. Ph.D. Thesis. University of Regensburg, 2014.

44. Biselli, S.; Alencastre, I.; Tropmann, K.; Erdmann, D.; Chen, M.; Littmann, T.; Maia, A. F.; Gomez-Lazaro, M.; Tanaka, M.; Ozawa, T.; Keller, M.; Lamghari, M.; Buschauer, A.; Bernhardt, G., Fluorescent H₂ receptor squaramide-type antagonists: synthesis, characterization and applications. *ACS Med. Chem. Lett.* **2020**, *11*, 1521-1528.

45. Yung-Chi, C.; Prusoff, W. H., Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099-3108.

46. Ghorai, P.; Kraus, A.; Birnkammer, T.; Geyer, R.; Bernhardt, G.; Dove, S.; Seifert, R.; Elz, S.; Buschauer, A., Chiral N^{G} -acylated hetarylpropylguanidine-type histamine H₂ receptor agonists do not show significant stereoselectivity. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3173-3176.

47. Keller, M.; Tränkle, C.; She, X.; Pegoli, A.; Bernhardt, G.; Buschauer, A.; Read, R. W., M2 Subtype preferring dibenzodiazepinone-type muscarinic receptor ligands: Effect of chemical homo-dimerization on orthosteric (and allosteric?) binding. *Bioorg. Med. Chem.* **2015**, *23*, 3970-3990.

48. Lee, Y.; Park, G. Y.; Lucas, H. R.; Vajda, P. L.; Kamaraj, K.; Vance, M. A.; Milligan, A. E.; Woertink, J. S.; Siegler, M. A.; Narducci Sarjeant, A. A.; Zakharov, L. N.; Rheingold, A. L.; Solomon, E. I.; Karlin, K. D., Copper(I)/O₂ chemistry with imidazole containing tripodal tetradentate ligands leading to μ -1,2-peroxo-dicopper(II) species. *Inorg Chem* **2009**, *48*, 11297-11309.

49. Windsor, W. T.; Weber, P. C.; Wang, J. H.-S.; Strickland, C.; Njoroge, F.; George, G.; Timothy, J.; Girijavallabhan, V. M.; Ferreira, J. A.; Cooper, A. B.; Gelb, M. Treatment of malaria with farnesyl protein transferase inhibitors and preparation of tricyclic compounds for said treatment. WO 2002/056884, Jul 25, 2002, *Chem. Abstr.* **2002**, *137*, 125178.

50. Ghorai, P.; Kraus, A.; Keller, M.; Götte, C.; Igel, P.; Schneider, E.; Schnell, D.; Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer, A., Acylguanidines as bioisosteres of guanidines: N^{G} -acylated imidazolylpropylguanidines, a new class of histamine H₂ receptor agonists. *J. Med. Chem.* **2008**, *51*, 7193-7204.

51. Price, C. C.; Kabas, G.; Nakata, I., Some Amino and Ammonio Nitrogen Mustard Analogs. *J. Med. Chem.* **1965**, *8* (5), 650-655.

52. Geyer, R.; Kaske, M.; Baumeister, P.; Buschauer, A., Synthesis and functional characterization of imbutamine analogs as histamine H_3 and H_4 receptor ligands. *Arch. Pharm.* **2014**, *347*, 77-88.

Histamine H₂ Receptor Ligands

53. Elz, S., An Alternative Synthesis of Homohistamine and Structurally Related (Imidazole-4-yl)alkylamines. Z. Naturforsch. **1987**, 42b, 238-241.

54. Eriks, J. C.; van der Goot, H.; Sterk, G. J.; Timmerman, H., Histamine H₂-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4- and 5-(2-aminoethyl)thiazoles. *J. Med. Chem.* **1992**, *35*, 3239-3246.

55. Kraus, A. Highly Potent, Selective Acylguanidine-Type Histamine H₂ Receptor Agonists: Synthesis and Structure-Activity Relationships. PhD Thesis. University of Regensburg, 2007.

56. Lee, J. Y.; Choo, D. J.; Kim, Y. D.; Oh, C. R. Preparation of 3,4-dihydroquinazolines as T-type calcium channel blockers and anticancer drugs. WO 2008/136631, Nov 13, 2008, *Chem. Abstr.* **2008**, *135*, 9943.

57. Yoneyama, H.; Magata, T.; Uemura, K.; Usami, Y.; Tanaka, S.; Takaoka, M.; Harusawa, S., Efficient synthesis of *N*-[4-(4-chlorophenyl)butyl]-*S*-(3piperidinopropyl)isothiourea (OUP-186) and its analogues using 2-nitrophenylacetyl isothiocyanate: application to novel histamine H₃R antagonists. *Synthesis* **2015**, *47*, 1291-1302. 58. Chen, B.-C.; Skoumbourdis, A. P.; Sundeen, J. E.; Rovnyak, G. C.; Traeger, S. C., Efficient molar-scale synthesis of 1-methyl-5-acylimidazole triflic acid salts. *Org. Process Res. Dev.* **2000**, *4*, 613-614.

59. Lin, Z.; Li, J.; Huang, Q.; Huang, Q.; Wang, Q.; Tang, L.; Gong, D.; Yang, J.; Zhu, J.; Deng, J., Chiral surfactant-type catalyst: enantioselective reduction of long-chain aliphatic ketoesters in water. *J. Org. Chem.* **2015**, *80*, 4419-4429.

60. Albertson, N. F., Alkylation with non-ketonic Mannich bases. Aminothiazoles and pyrrole *J. Am. Chem. Soc.* **1948**, *70*, 669-670.

61. Nakao, A.; Suzuki, H.; Tatsumi, R.; Seki, M.; Tanaka, M.; Setsuta, T.; Iwasaki, H. Preparation of N²-(aryl or heteroaryl)-N²-(carbamoylmethyl)glycinamides as homocysteine synthase inhibitors. WO 2009/125853, Oct 15, 2009, *Chem. Abst.* **2009**, *126*, 3140.

62. Kovačková, S.; Dračínský, M.; Rejman, D., The synthesis of piperidine nucleoside analogs—a comparison of several methods to access the introduction of nucleobases. *Tetrahedron* **2011**, *67* (7), 1485-1500.

63. Sangshetti, J. N.; Nagawade, R. R.; Shinde, D. B., Synthesis of novel 3-(1-(1-substituted piperidin-4-yl)-1H-1,2,3-triazol-4-yl)-1,2,4-oxadiazol-5(4H)-one as antifungal agents. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 3564-3567.

64. Mühlhausen, U.; Sihver, W.; Ermert, J.; Coenen, H. H., Synthesis, radiofluorination and first evaluation of [¹⁸F]fluorophenylsulfonyl- and [¹⁸F]fluorophenylsulfinyl-piperidines as serotonin 5-HT_{2A} receptor antagonists for PET. *Nucl. Med. Biol.* **2010**, *37*, 605-614.

65. Ding, Z.; Lai, G.; Chen, S.; Yan, X. Preparation of hydrazine compounds as blood coagulation factor Xa inhibitor. CN 105085515, Nov 25, 2015, *Chem. Abstr.* **2015**, *190*, 9909, 2014.

66. Geerts, J.-P.; Motte, G.; Differding, E.; Henichart, J.-P. Preparation of substituted 4- (1,2,3,4-tetrahydro-1-naphthalenyl)-1H-imidazoles and 4-(2,3-dihydro-1H-inden-1-yl)-1H-imidazoles and their formulations as antiischemics and antihypertensives. EP 717037, Jun 19, 1996, *Chem. Abstr.* **1996**, *125*, 114632.

67. Higuchi, T.; Omiya, H.; Umezawa, N.; Kim, H.-S.; Wataya, Y. Preparation of azoles as antimalarial drugs. WO 2007/097450, Aug 30, 2007, *Chem. Abstr.* **2007**, *147*, 322987.

68. Menghin, S.; Pertz, H. H.; Kramer, K.; Seifert, R.; Schunack, W.; Elz, S., N_{α} -Imidazolylalkyl and pyridylalkyl derivatives of histaprodifen: synthesis and in vitro evaluation of highly potent histamine H₁-receptor agonists. *J. Med. Chem.* **2003**, *46*, 5458-5470.

69. Kai, K.; Fujii, H.; Ikenaka, R.; Akagawa, M.; Hayashi, H., An acyl-SAM analog as an affinity ligand for identifying quorum sensing signal synthases. *Chem. Comm.* **2014**, *50*, 8586-8589.

Histamine H₂ Receptor Ligands

70. Mamedov, I.; Canals, S.; Henig, J.; Beyerlein, M.; Murayama, Y.; Mayer, H. A.; Logothetis, N. K.; Angelovski, G., In vivo characterization of a smart MRI agent that displays an inverse response to calcium concentration. *ACS Chem. Neurosci.* **2010**, *1*, 819-828.

71. Houston, C.; Wenzel-Seifert, K.; Bürckstümmer, T.; Seifert, R., The human histamine H₂-receptor couples more efficiently to Sf9 insect cell G_s -proteins than to insect cell G_q -proteins: limitations of Sf9 cells for the analysis of receptor/ G_q -protein coupling. *J. Neurochem.* **2002**, *80*, 678-696.

72. Kelley, M. T.; Bürckstürmmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R., Distinct interaction of human and guinea pig histamine H₂-receptor with guanidine-type agonists. *Mol. Pharmacol.* **2001**, *60*, 1210-1225.

73. Schnell, D.; Strasser, A.; Seifert, R., Comparison of the pharmacological properties of human and rat histamine H₃-receptors. *Biochem. Pharmacol.* **2010**, *80*, 1437-1449.

74. Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R., High constitutive activity and a Gprotein-independent high-affinity state of the human histamine H_4 -receptor. *Biochemistry* **2009**, *48*, 1424-1438.

75. Pop, N.; Igel, P.; Brennauer, A.; Cabrele, C.; Bernhardt, G.; Seifert, R.; Buschauer, A., Functional reconstitution of human neuropeptide Y (NPY) Y_2 and Y_4 receptors in Sf9 insect cells. *J. Recept. Signal Transduct.* **2011**, *31*, 271-285.

Appendix 3 Synthesis and Pharmacological Characterization of 2-Arylbenzimidazole Derivatives as Histamine H₂ Receptor Ligands

App3.1 ¹H- and/or ¹³C-NMR Spectra of 4.82-4.97, 4.104-4.110, 4.112, 4.114-4.117 and 4.120

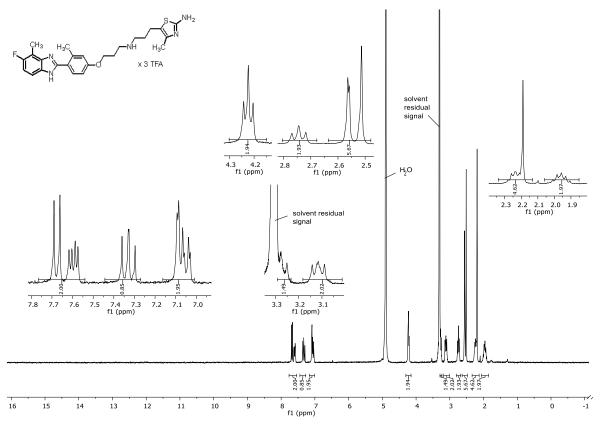


Figure App3.1. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.82.

Appendix 3

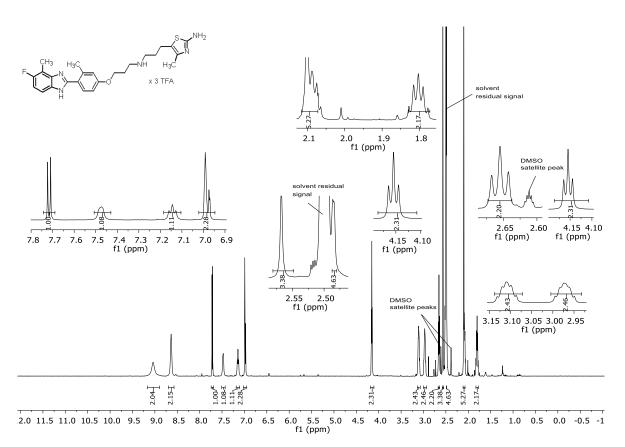


Figure App3.2. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.82.

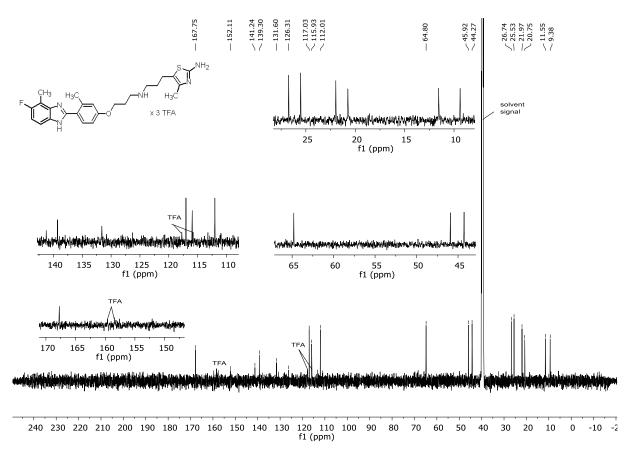


Figure App3.3. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.82.

Appendix 3

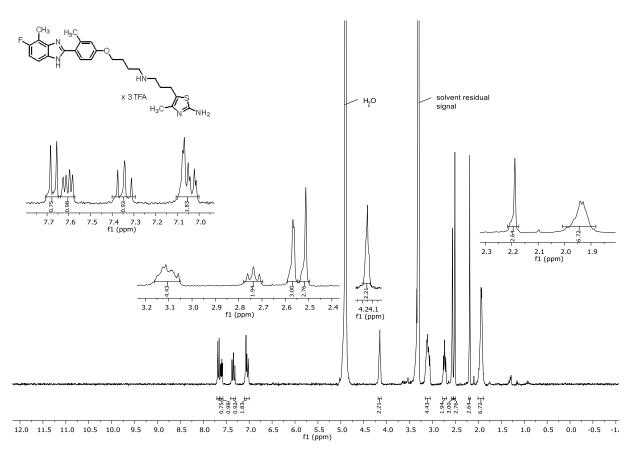


Figure App3.4. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.83.

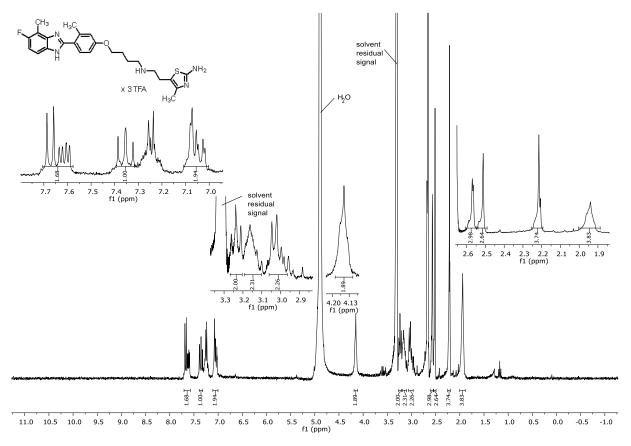


Figure App3.5. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.84.

Appendix 3

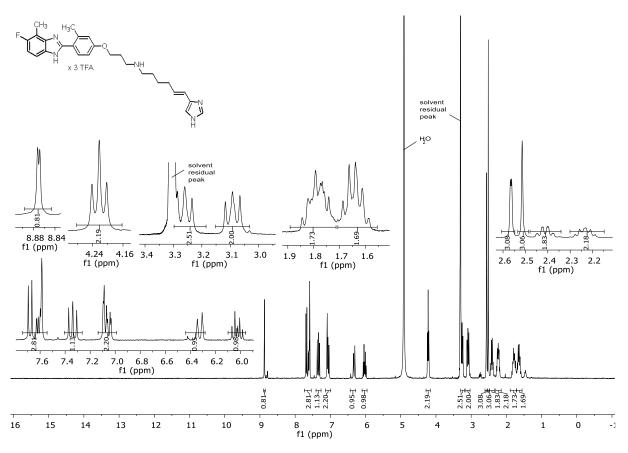


Figure App3.6. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.85.

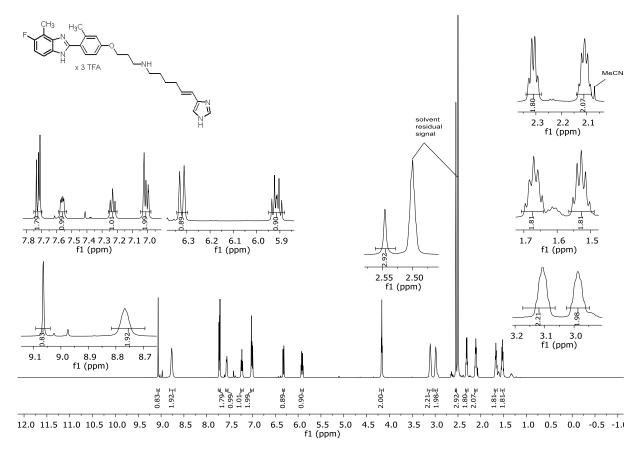
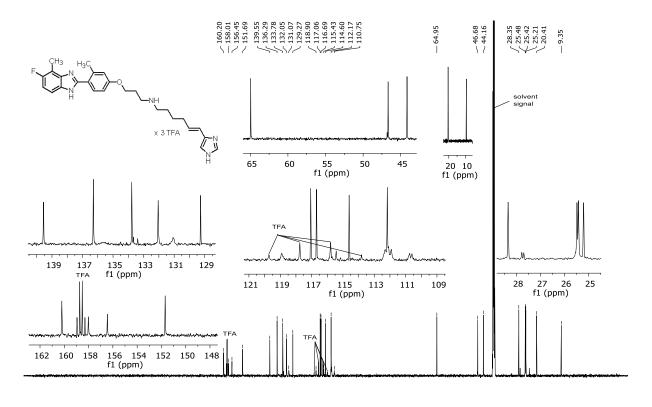



Figure App3.7. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.85.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Figure App3.8. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.85.

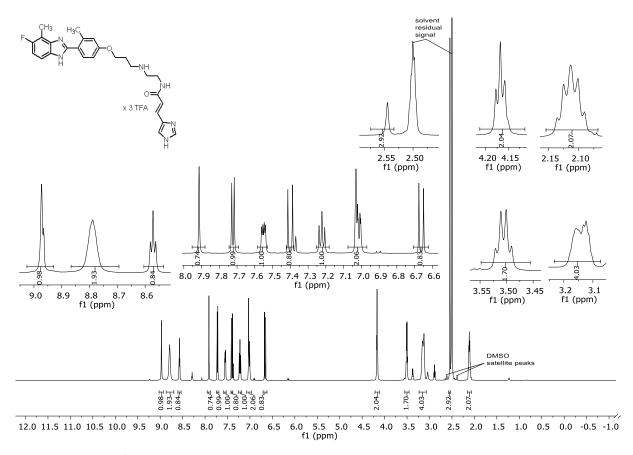


Figure App3.9. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.86, PB513.

Appendix 3

Figure App3.10. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.86, PB513.

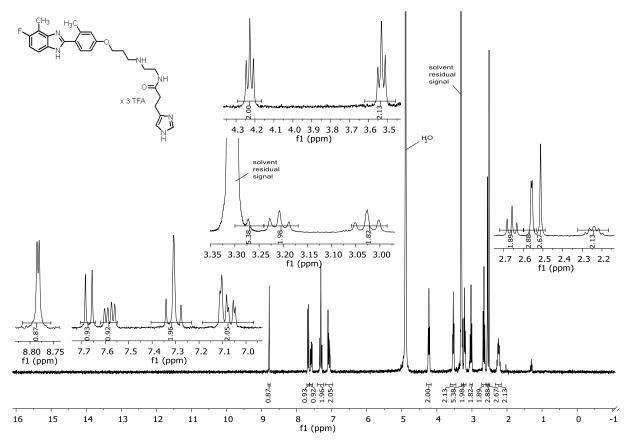


Figure App3.11. ¹H-NMR spectrum (300 MHz, DMSO-d₆) of compound 4.87.

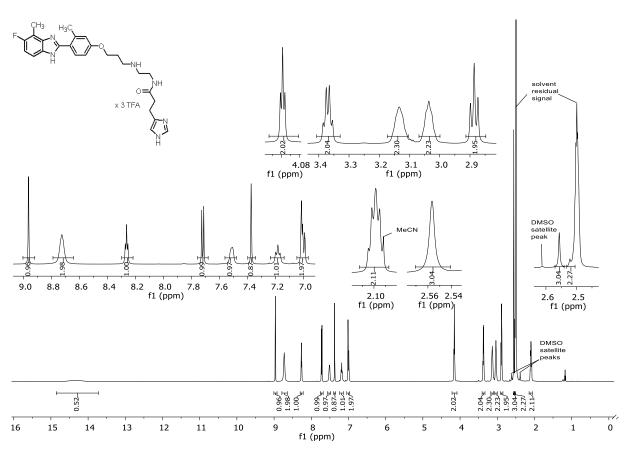


Figure App3.12. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.87.

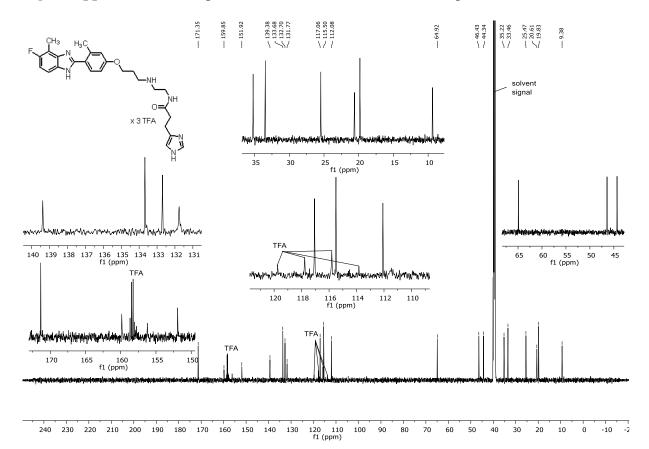


Figure App3.13. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.87.

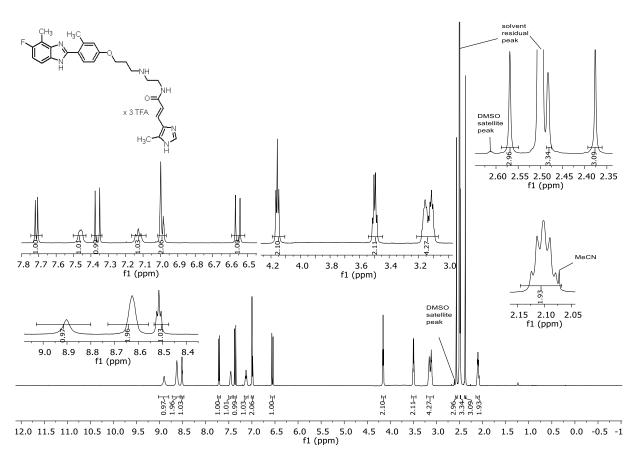


Figure App3.14. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.88.

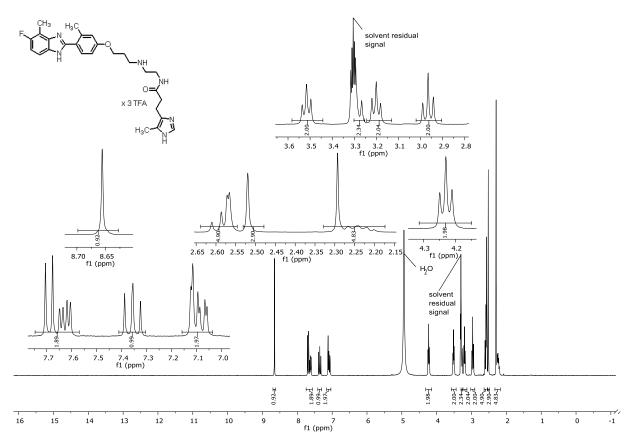


Figure App3.15. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.89.

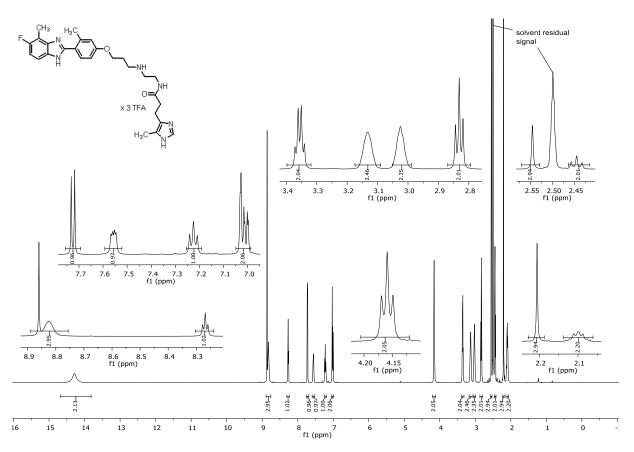


Figure App3.16. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.89.

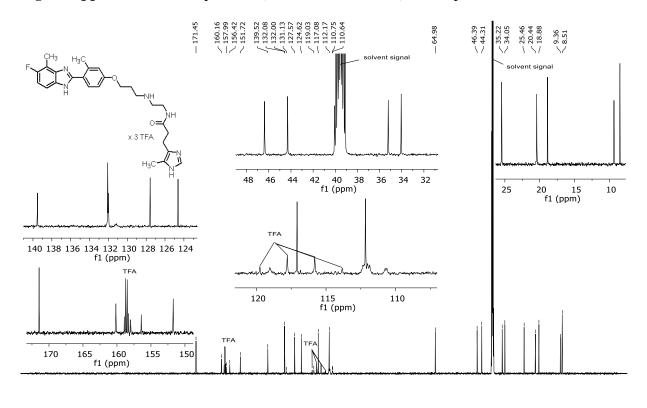


Figure App3.17. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.89.

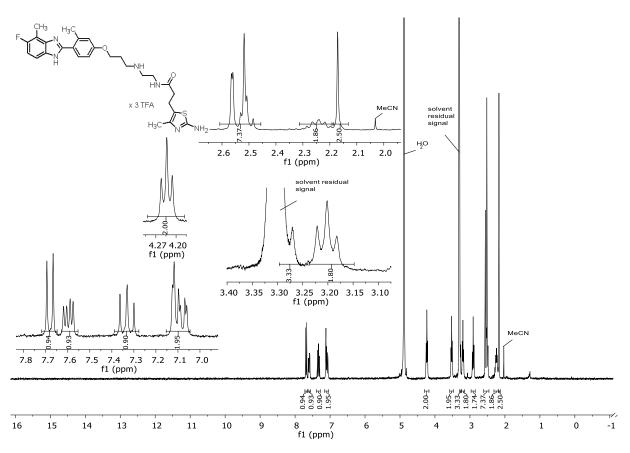


Figure App3.18. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.90.

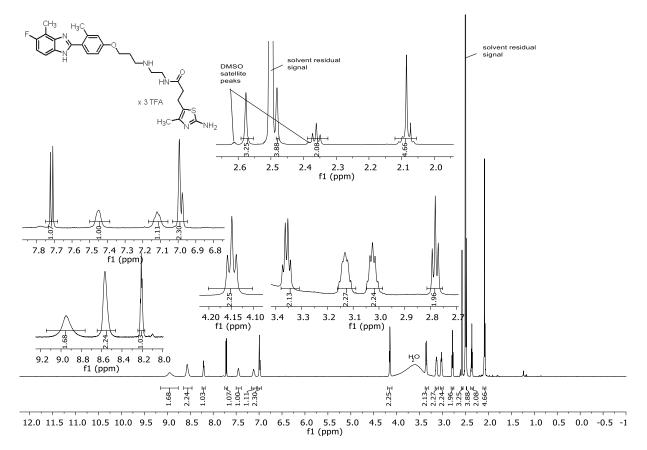


Figure App3.19. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.90.

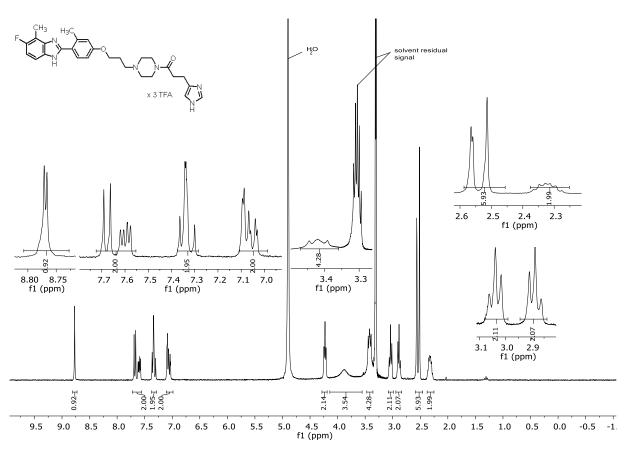


Figure App3.20. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.91.

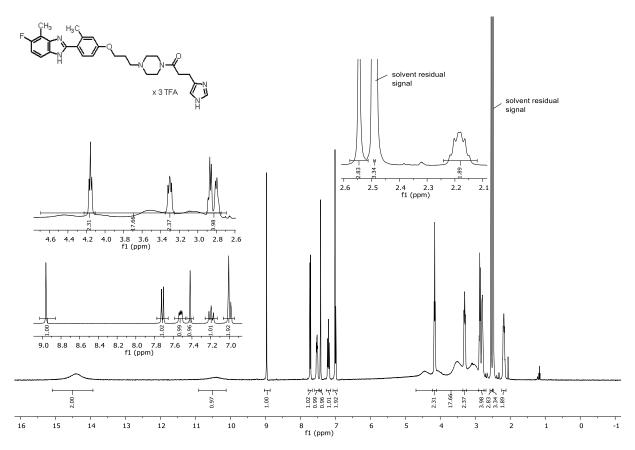


Figure App3.21. ¹H-NMR spectrum (400 MHz, DMSO-d₆) of compound 4.91.

Appendix 3

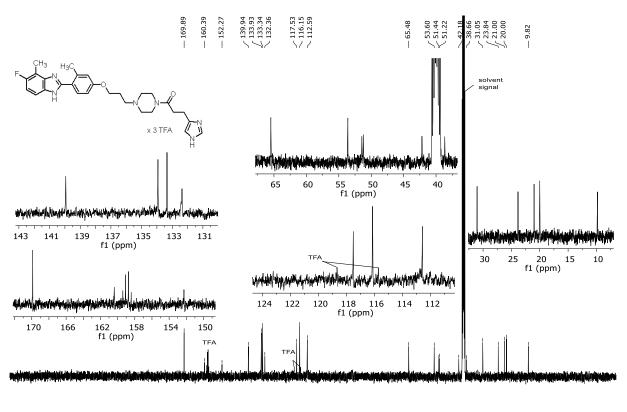


Figure App3.22. ¹³C-NMR spectrum (101 MHz, DMSO-d₆) of compound 4.91.

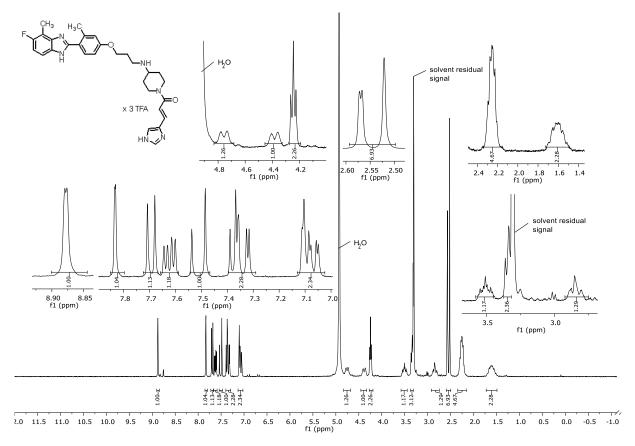
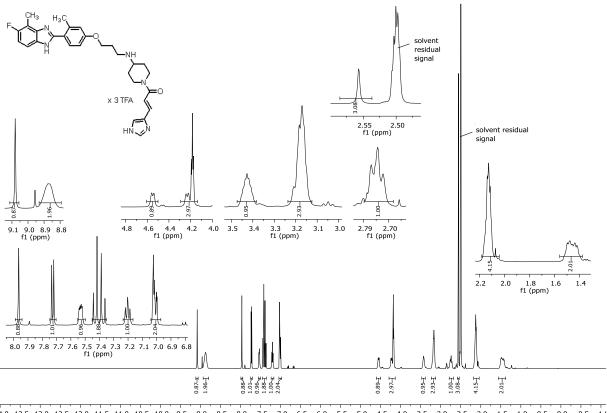



Figure App3.23. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.92.

4.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.(f1 (ppm)

Figure App3.24. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.92.

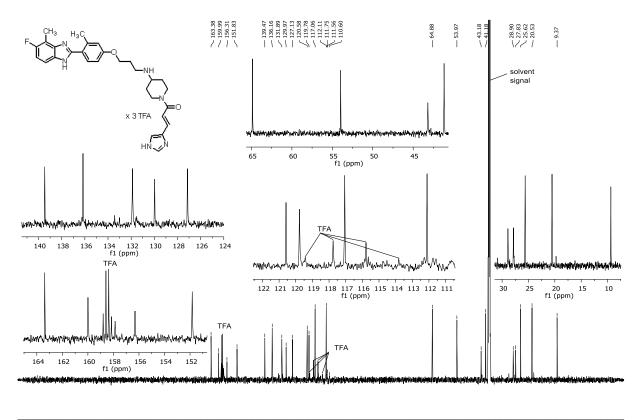


Figure App3.25. ¹H-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.92.

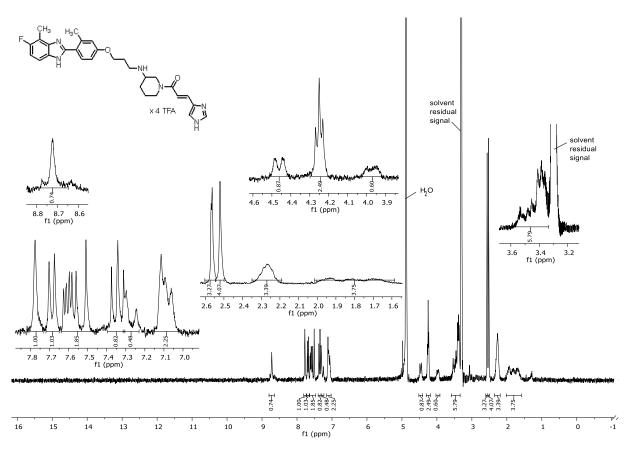


Figure App3.26. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.93.

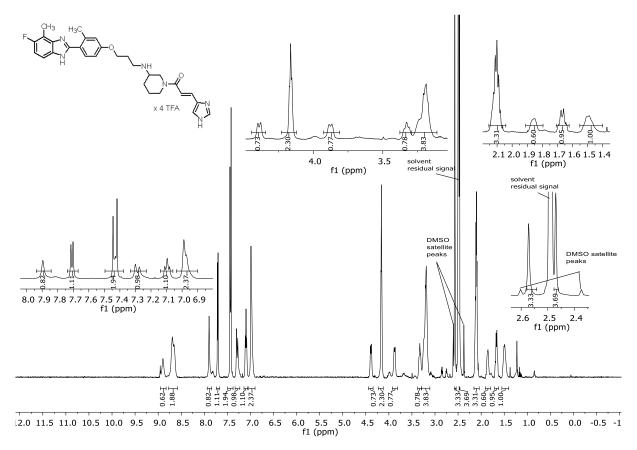


Figure App3.27. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.93.

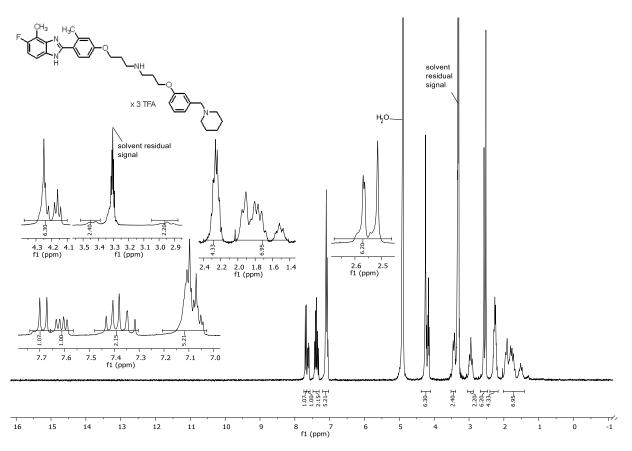


Figure App3.28. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.94.

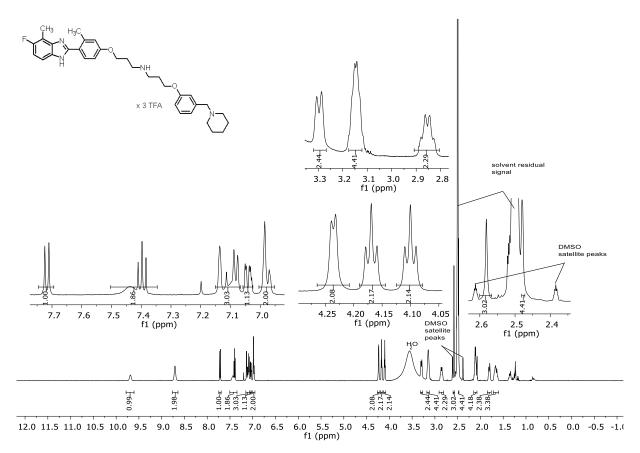


Figure App3.29. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.94.

Appendix 3

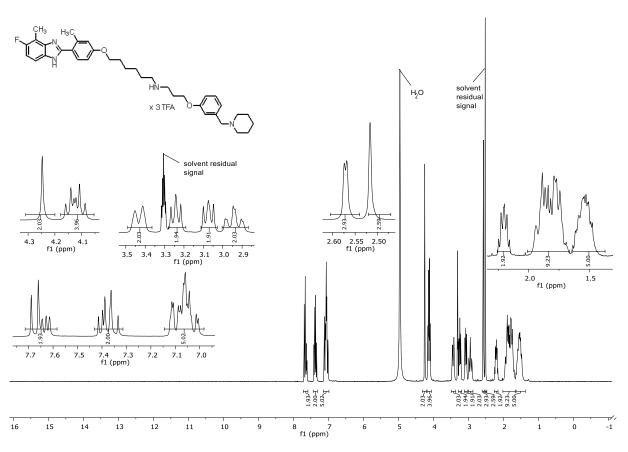


Figure App3.30. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.95.

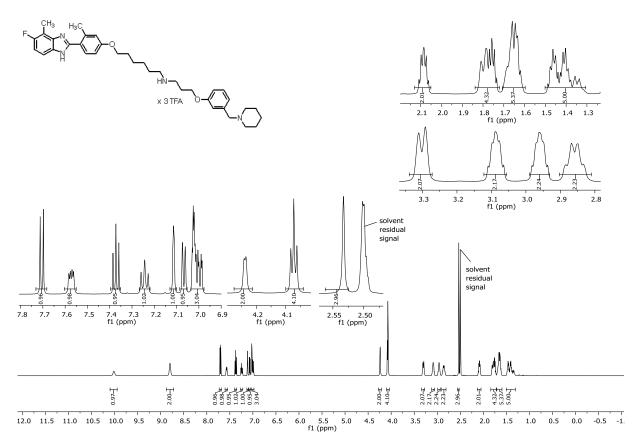


Figure App3.31. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.95.

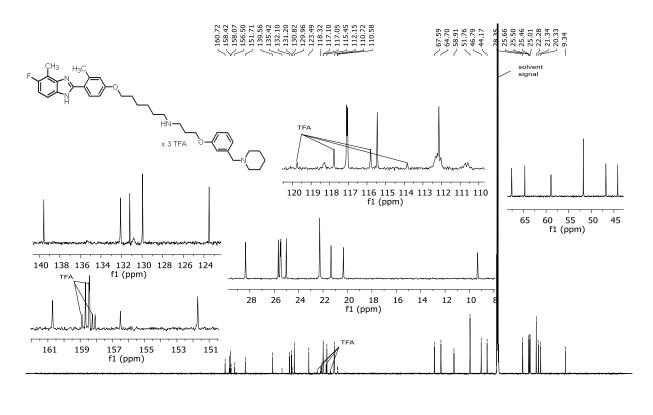


Figure App3.32. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.95.

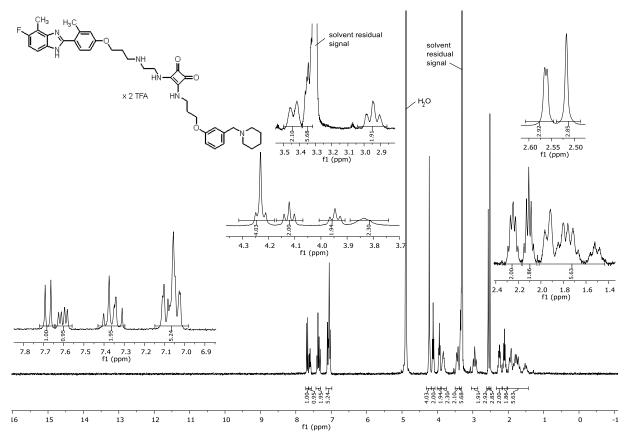


Figure App3.33. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.96.

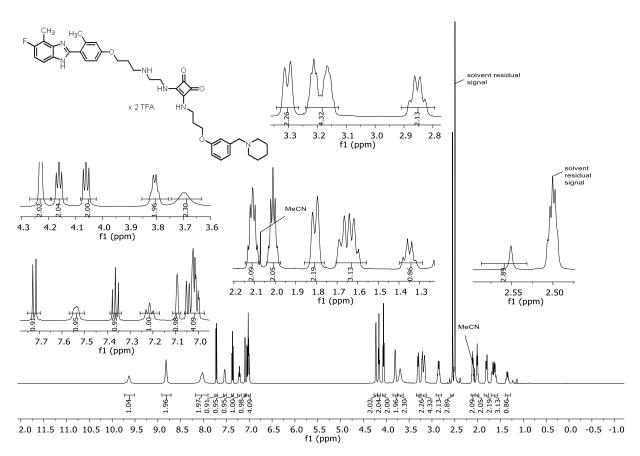


Figure App3.34. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.96.

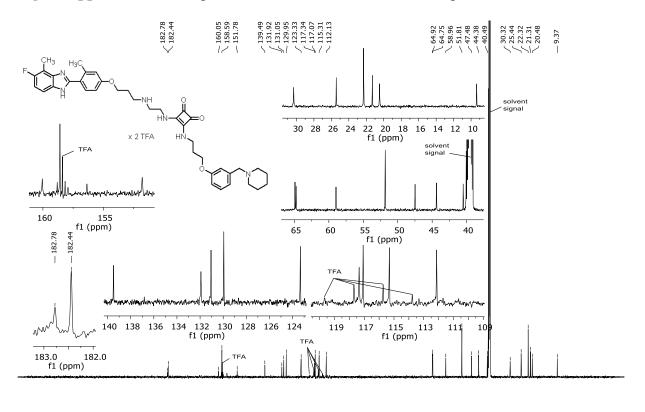


Figure App3.35. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.95.

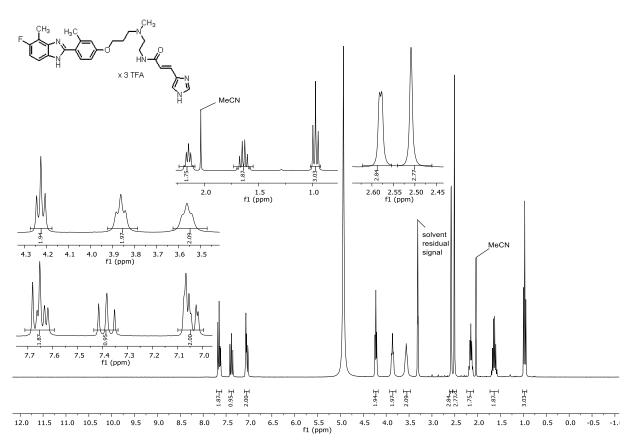


Figure App3.36. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.98.

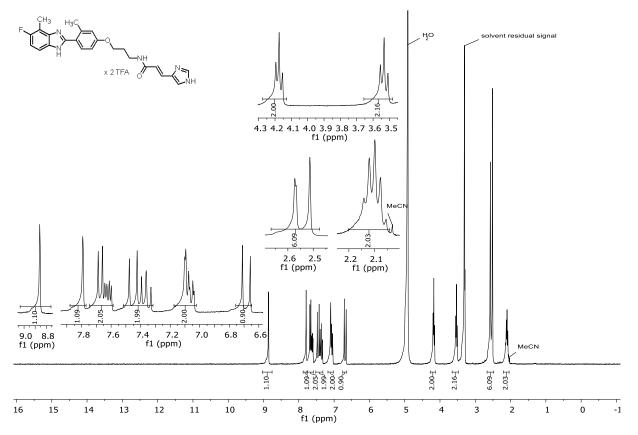


Figure App3.37. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.104.

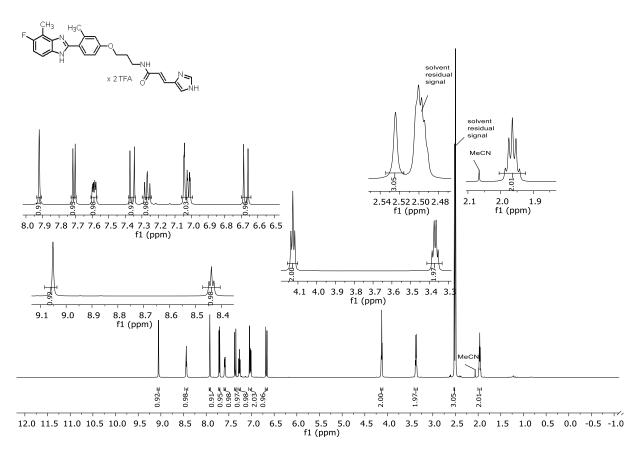


Figure App3.38. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.104.

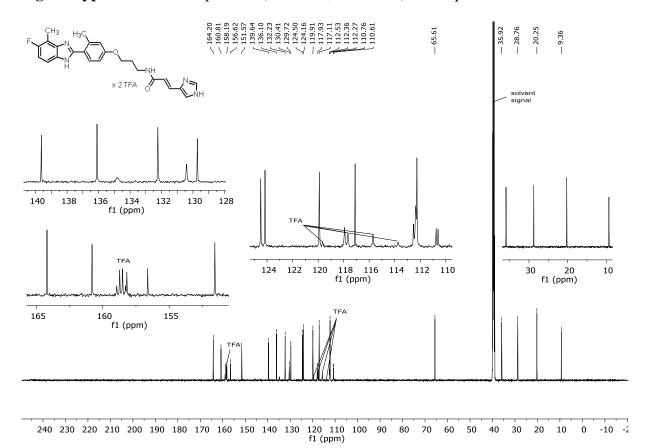


Figure App3.39. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.104.

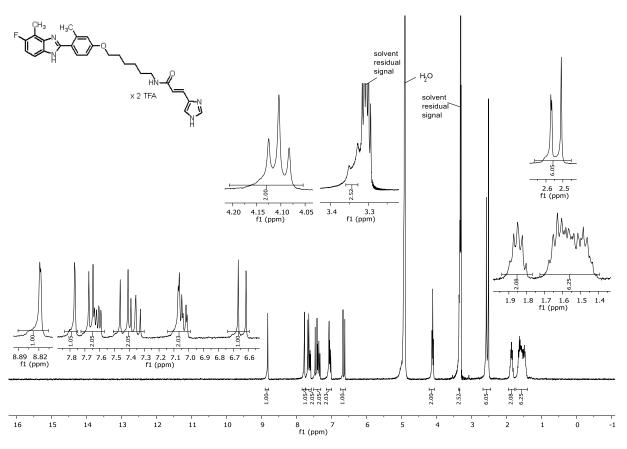


Figure App3.40. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.105.

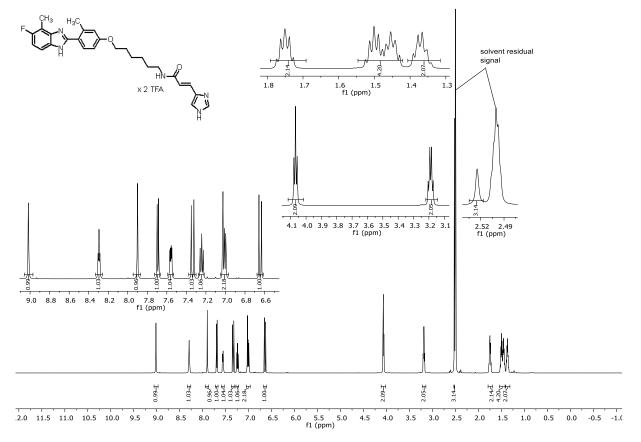


Figure App3.41. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.105.

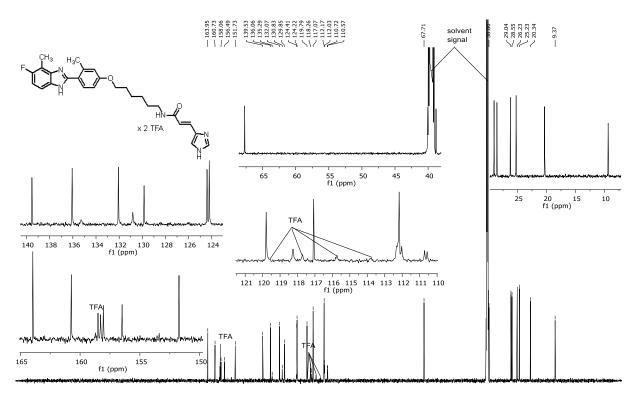


Figure App3.42. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.105.

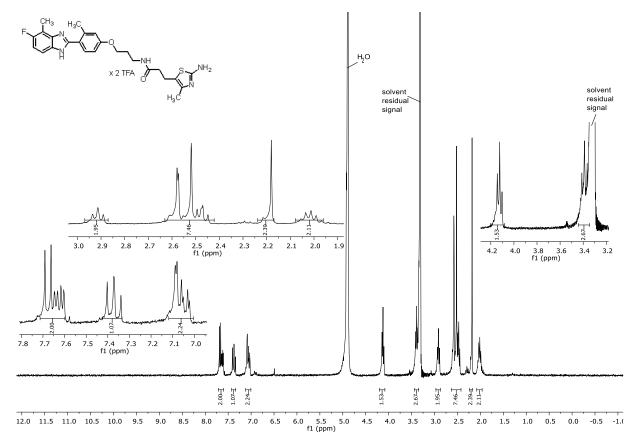


Figure App3.43. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.106.

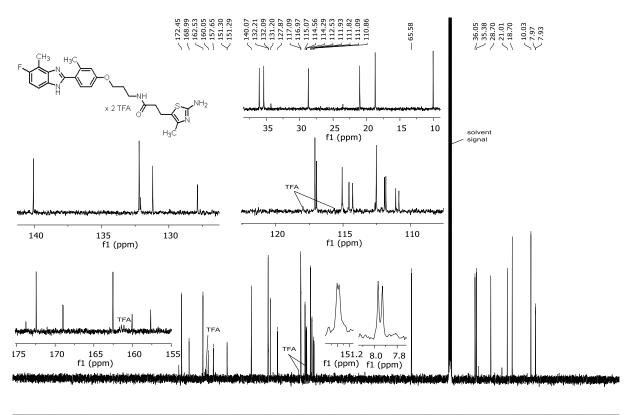


Figure App3.44. ¹³C-NMR spectrum (101 MHz, MeOD) of compound 4.106.

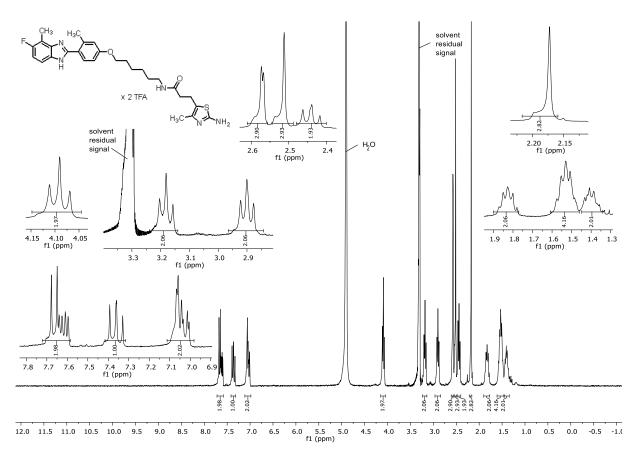


Figure App3.45. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.107.

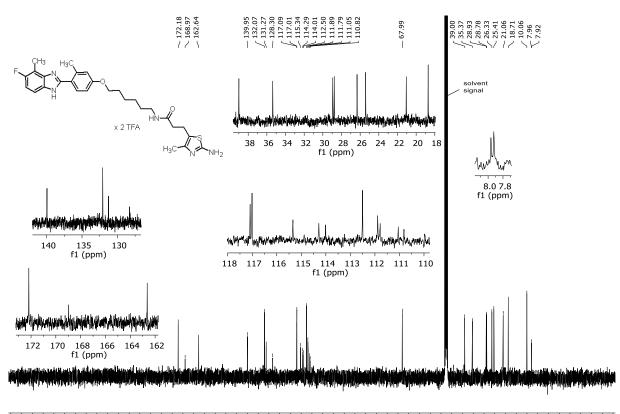


Figure App3.46. ¹³C-NMR spectrum (101 MHz, MeOD) of compound 4.107.

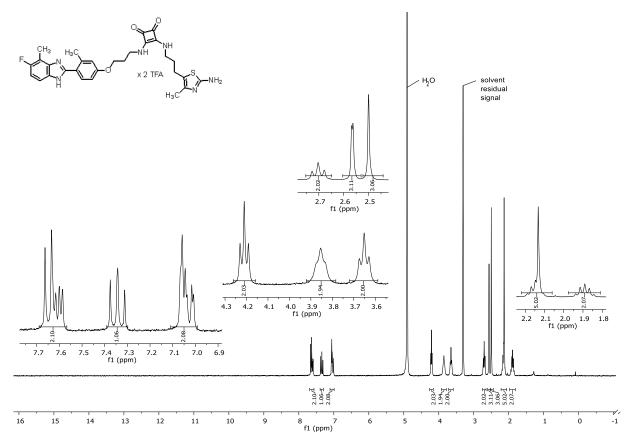


Figure App3.47. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.108.

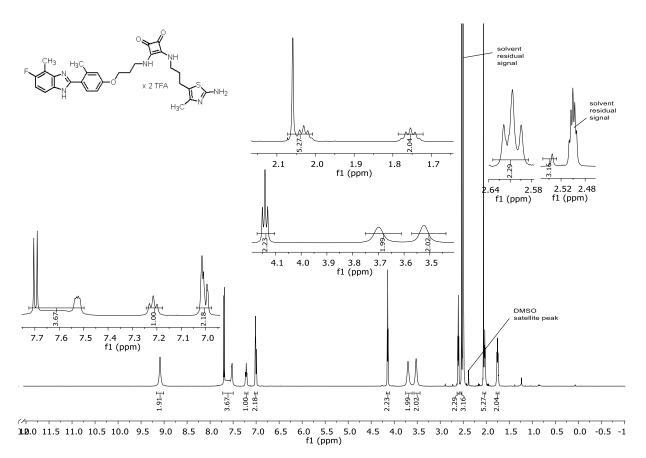


Figure App3.48. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.108.

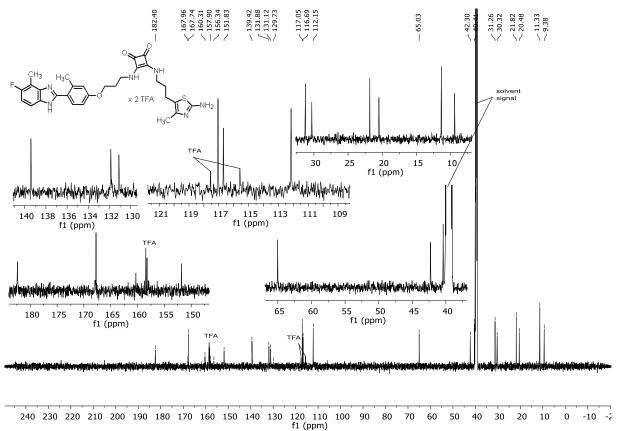


Figure App3.49. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.108.

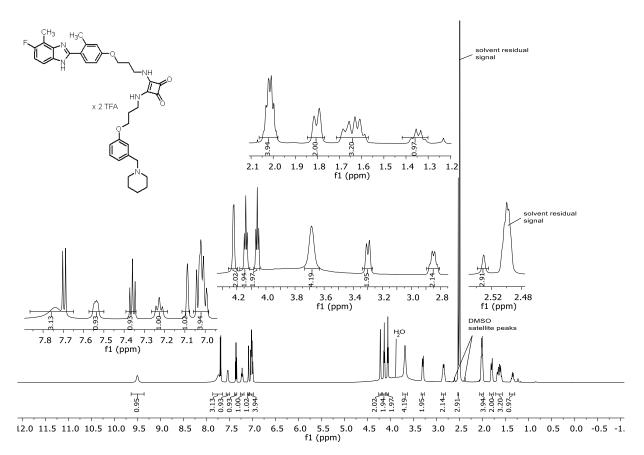


Figure App3.50. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.109.

Figure App3.51. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.109.

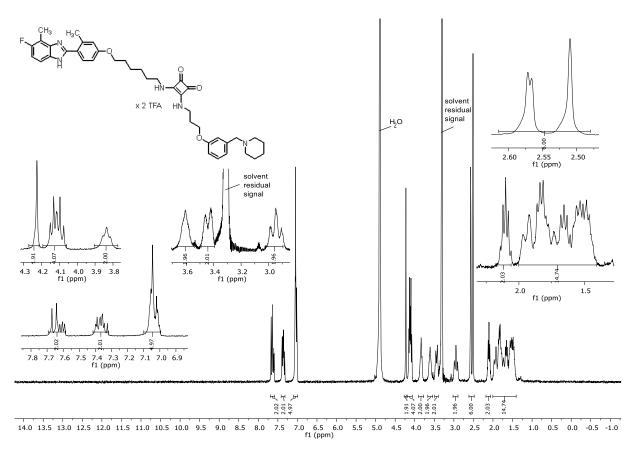


Figure App3.52. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.110.

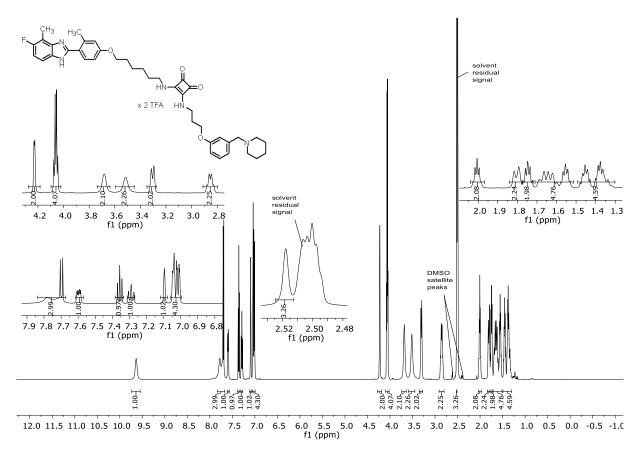


Figure App3.53. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.110.

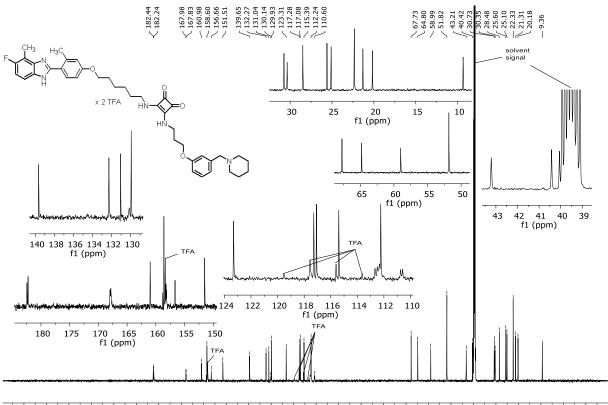


Figure App3.54. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.110.

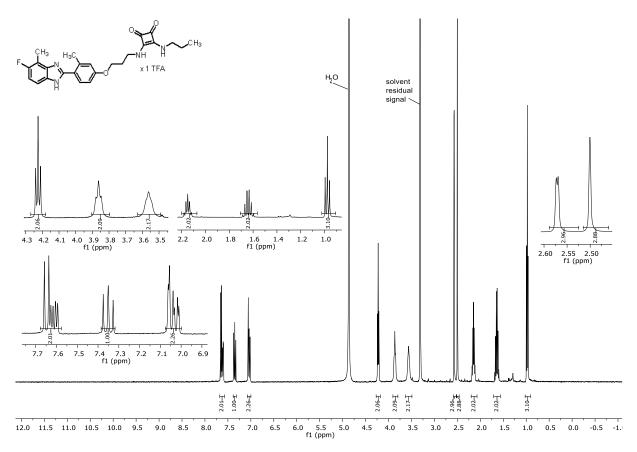


Figure App3.55. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.112.

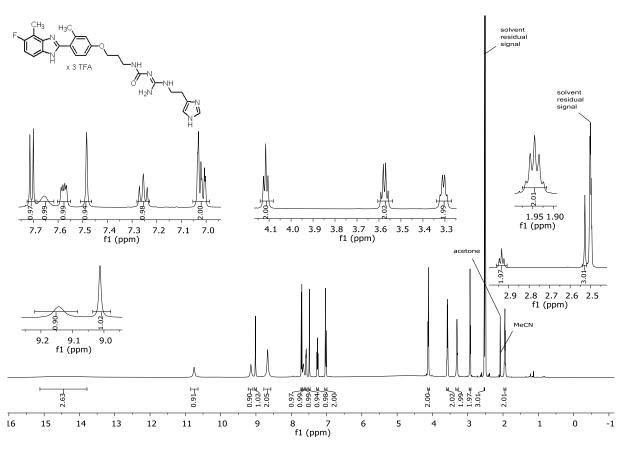


Figure App3.56. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.114.

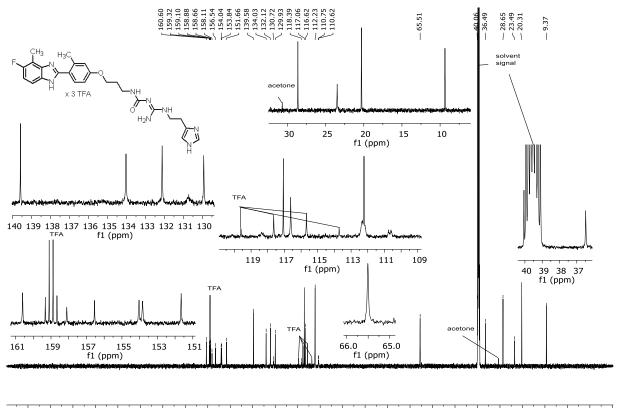


Figure App3.57. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.114.

Appendix 3

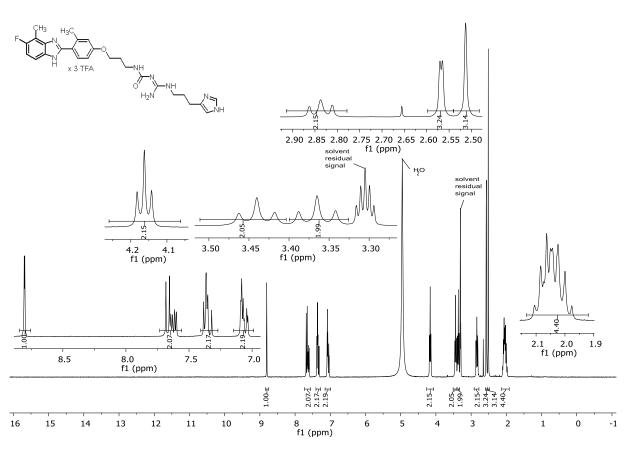


Figure App3.58. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.115.

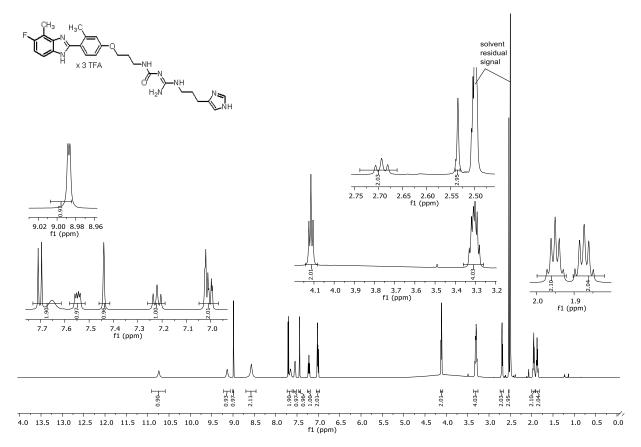


Figure App3.59. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.115.

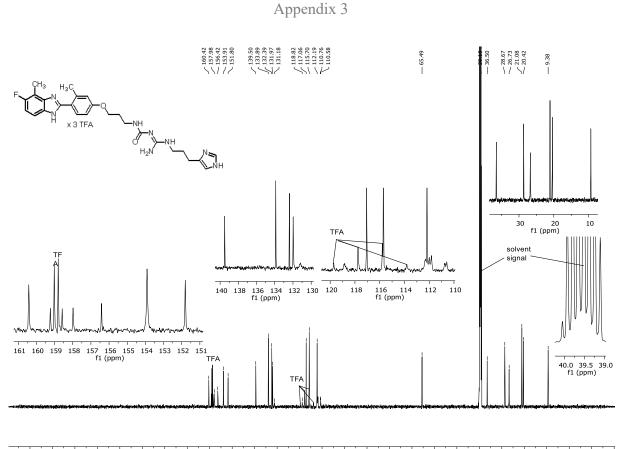


Figure App3.60. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.115.

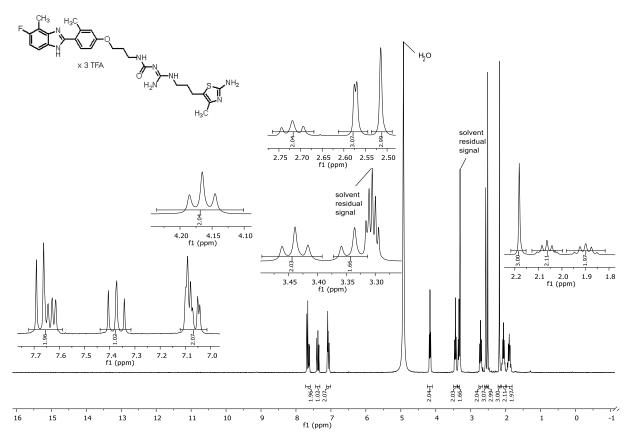


Figure App3.61. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.116.

Appendix 3

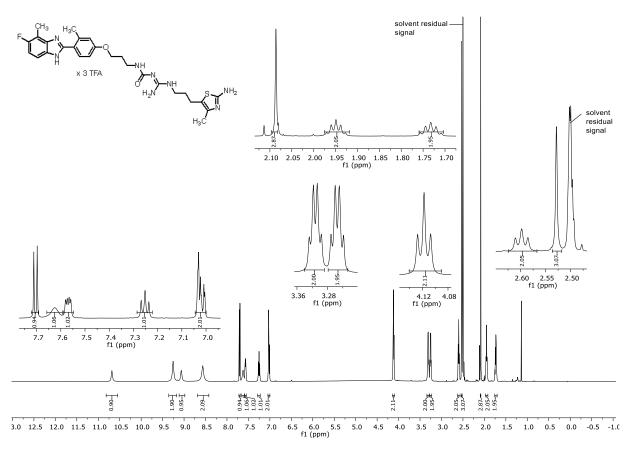


Figure App3.62. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.116.

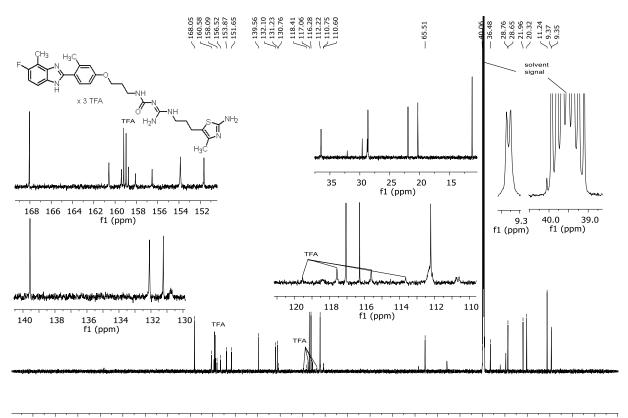


Figure App3.63. ¹³C-NMR spectrum (151 MHz, DMSO-d₆) of compound 4.116.

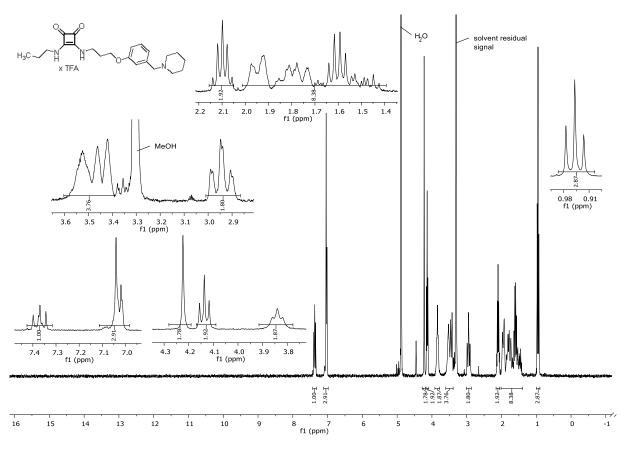
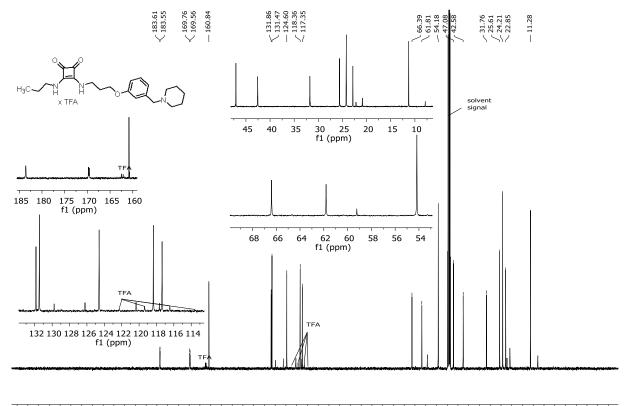



Figure App3.64. ¹H-NMR spectrum (400 MHz, MeOD) of compound 4.117.

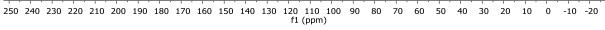


Figure App3.65. ¹³C-NMR spectrum (101 MHz, MeOD) of compound 4.117.

Appendix 3

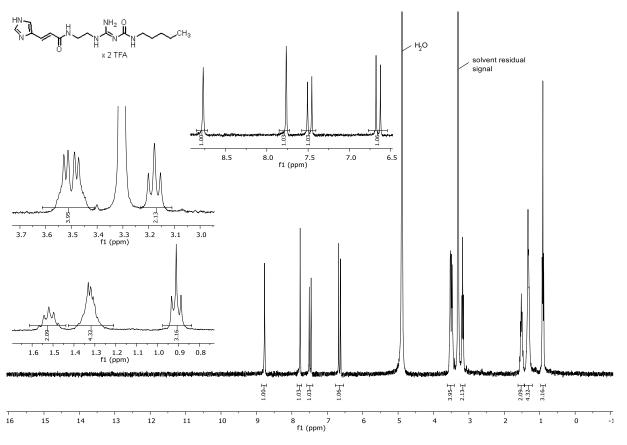


Figure App3.66. ¹H-NMR spectrum (300 MHz, MeOD) of compound 4.120.

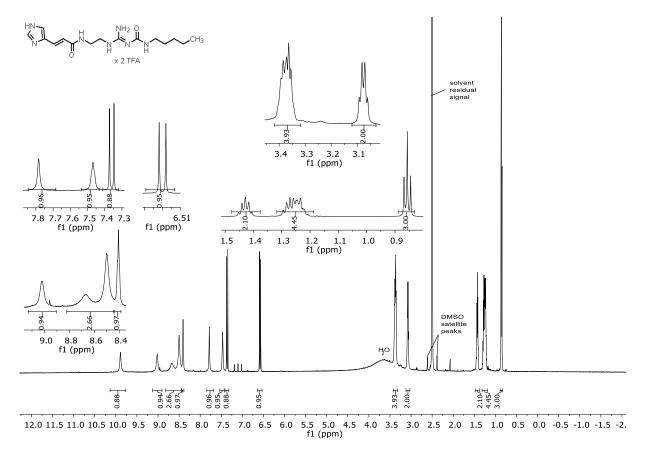
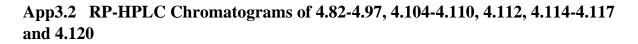



Figure App3.67. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of compound 4.120.

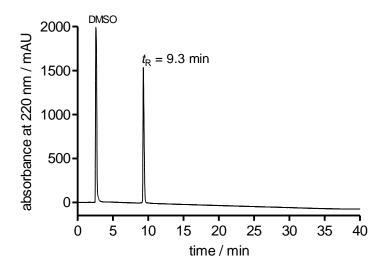


Figure App3.68. RP-HPLC analysis (purity control) of 4.82 (100%, 220 nm).

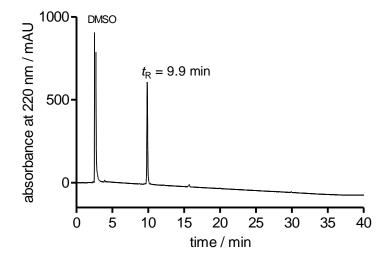


Figure App3.69. RP-HPLC analysis (purity control) of 4.83 (97%, 220 nm).

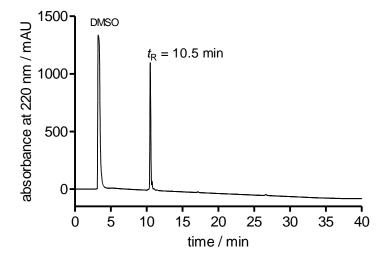


Figure App3.70. RP-HPLC analysis (purity control) of 4.84 (96%, 220 nm).

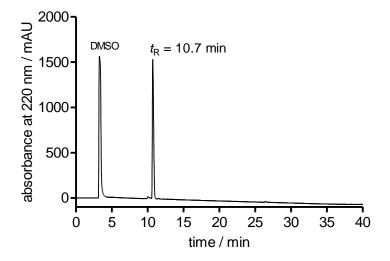


Figure App3.71. RP-HPLC analysis (purity control) of 4.85 (98%, 220 nm).

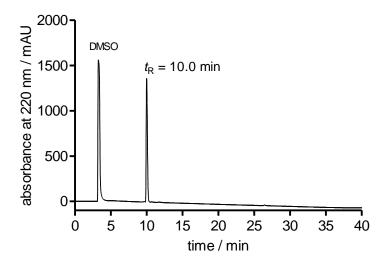


Figure App3.72. RP-HPLC analysis (purity control) of 4.86 (97%, 220 nm).

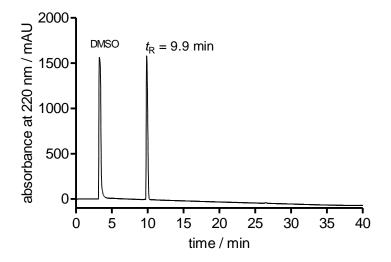


Figure App3.73. RP-HPLC analysis (purity control) of 4.87 (99%, 220 nm).

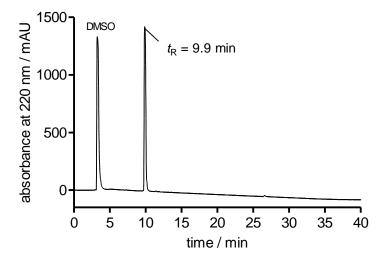


Figure App3.74. RP-HPLC analysis (purity control) of 4.88 (99%, 220 nm).

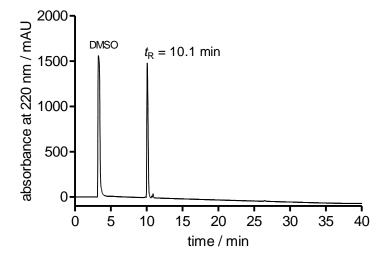


Figure App3.75. RP-HPLC analysis (purity control) of 4.89 (97%, 220 nm).

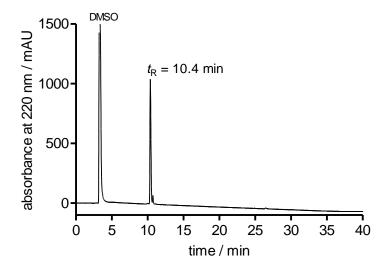


Figure App3.76. RP-HPLC analysis (purity control) of 4.90 (95%, 220 nm).

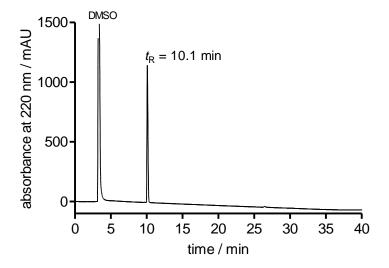


Figure App3.77. RP-HPLC analysis (purity control) of 4.91 (99%, 220 nm).

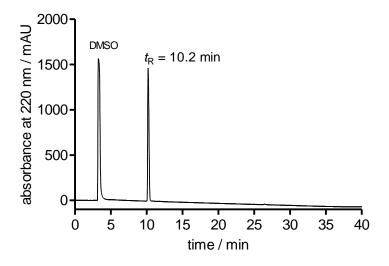


Figure App3.78. RP-HPLC analysis (purity control) of 4.92 (99%, 220 nm).

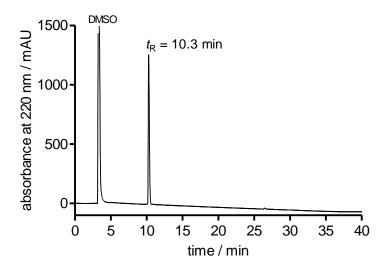


Figure App3.79. RP-HPLC analysis (purity control) of 4.93 (98%, 220 nm).

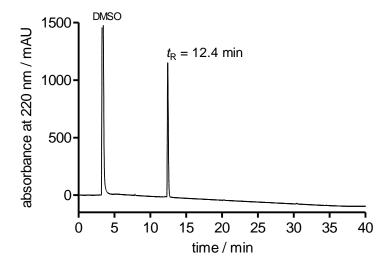


Figure App3.80. RP-HPLC analysis (purity control) of 4.94 (99%, 220 nm).

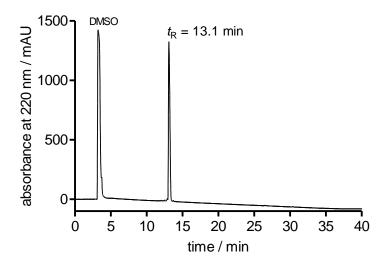


Figure App3.81. RP-HPLC analysis (purity control) of 4.95 (99%, 220 nm).

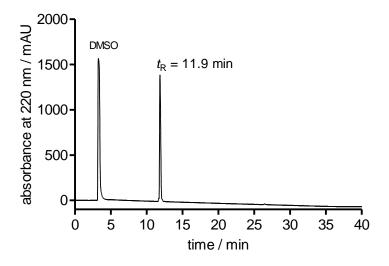


Figure App3.82. RP-HPLC analysis (purity control) of 4.96 (98%, 220 nm).

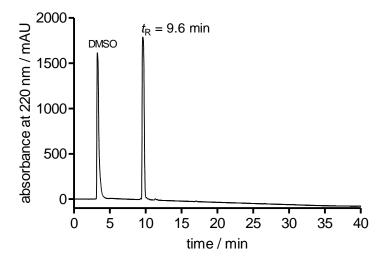


Figure App3.83. RP-HPLC analysis (purity control) of 4.98 (98%, 220 nm).

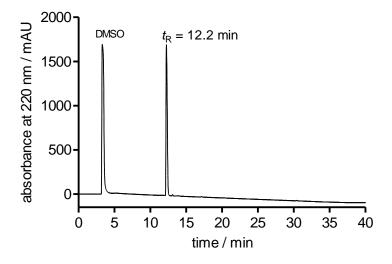


Figure App3.84. RP-HPLC analysis (purity control) of 4.104 (99%, 220 nm).

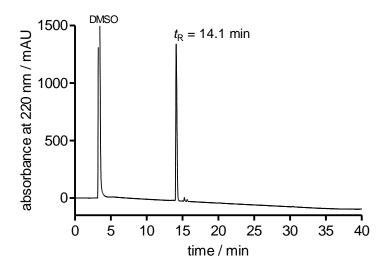


Figure App3.85. RP-HPLC analysis (purity control) of 4.105 (98%, 220 nm).

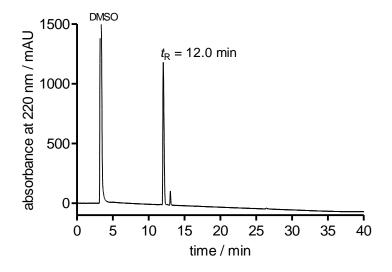


Figure App3.86. RP-HPLC analysis (purity control) of 4.106 (95%, 220 nm).

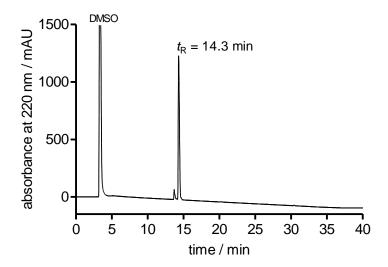


Figure App3.87. RP-HPLC analysis (purity control) of 4.107 (95%, 220 nm).

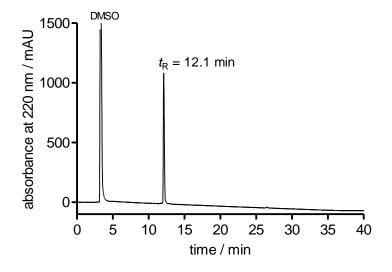


Figure App3.88. RP-HPLC analysis (purity control) of 4.108 (97%, 220 nm).

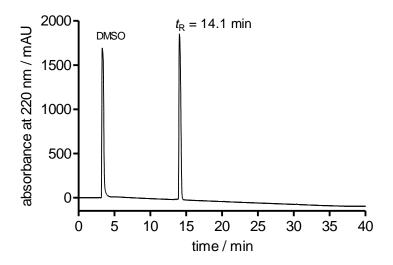


Figure App3.89. RP-HPLC analysis (purity control) of 4.109 (100%, 220 nm).

Appendix 3

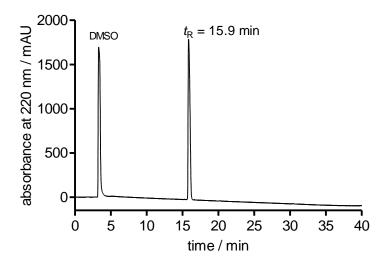


Figure App3.90. RP-HPLC analysis (purity control) of 4.110 (100%, 220 nm).

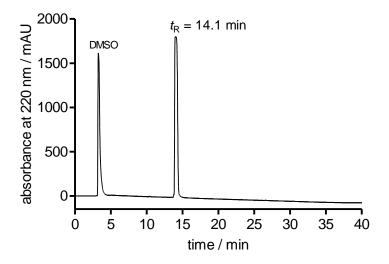


Figure App3.91. RP-HPLC analysis (purity control) of 4.112 (99%, 220 nm).

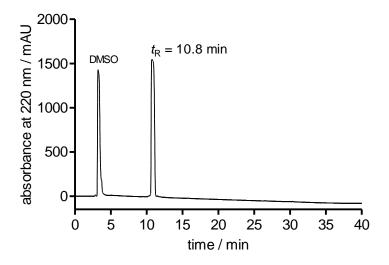


Figure App3.92. RP-HPLC analysis (purity control) of 4.114 (100%, 220 nm).

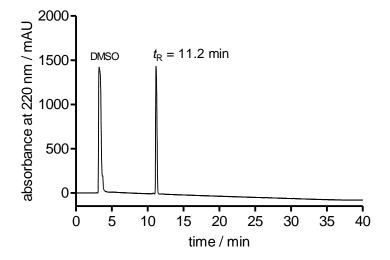


Figure App3.93. RP-HPLC analysis (purity control) of 4.115 (100%, 220 nm).

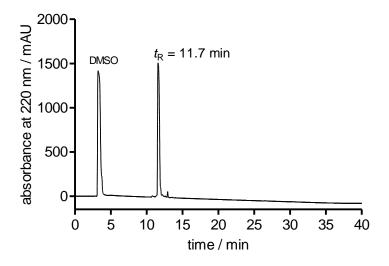


Figure App3.94. RP-HPLC analysis (purity control) of 4.116 (96%, 220 nm).

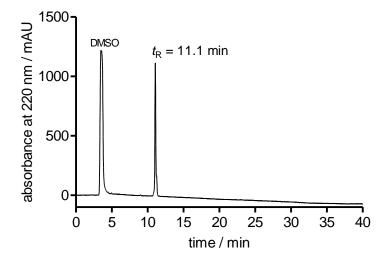


Figure App3.95. RP-HPLC analysis (purity control) of 4.117 (93%, 220 nm).

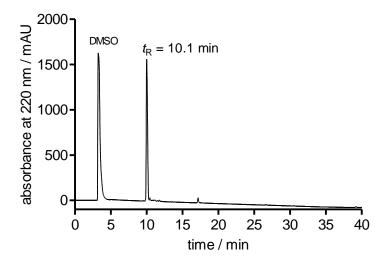
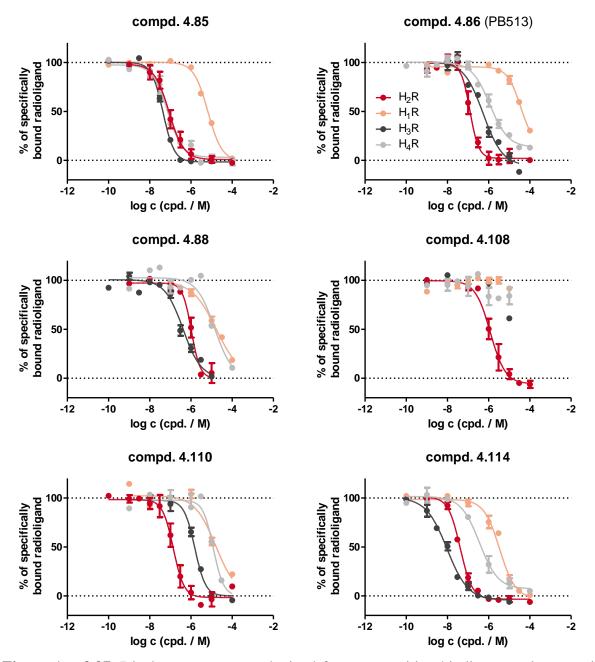
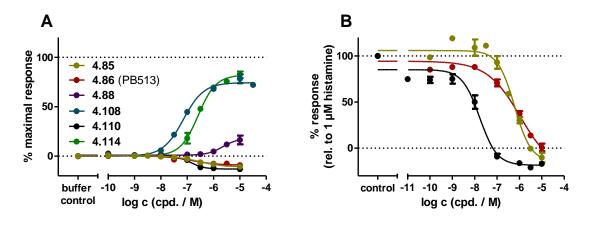
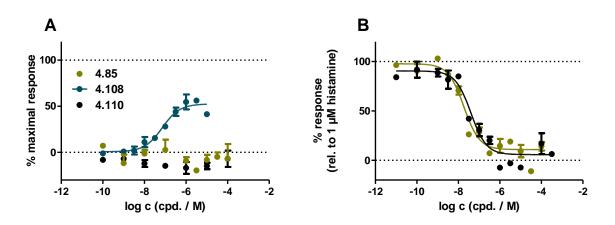




Figure App3.96. RP-HPLC analysis (purity control) of 4.120 (96%, 220 nm).



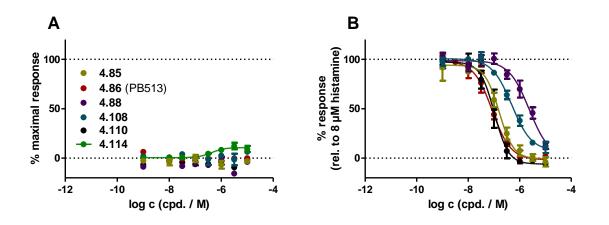

Figure App3.97. Displacement curves obtained from competition binding experiments with [³H]mepyramine (hH₁R, c = 5 nM, $K_d = 4.5 \text{ nM}^1$), [³H]UR-DE257² (hH₂R, c = 20 nM, $K_d = 11.2 \text{ nM}^3$), [³H]UR-PI294⁴ (hH₃R, c = 2 nM, $K_d = 3 \text{ nM}^5$) or [³H]histamine (hH₄R, c = 30 nM, $K_d = 47.5 \text{ nM}^6$) and **4.85**, **4.86** (PB513), **4.88**, **4.108**, **4.110** and **4.114** at membranes of Sf9 cells expressing the hH₁R + RGS4, the hH₂R-G_{sαS}, the hH₃R + G_{αi2} + G_{β1γ2} or the hH₄R + G_{αi2} + G_{β1γ2}. Data represent mean values ± SEM from at least three independent experiments (performed in triplicate).

Figure App3.98. Concentration-response curves of representative 2-arylbenzimidazoles **4.85**, **4.86** (PB513⁷), **4.88**, **4.108**, **4.110** and **4.114** on hH₂R determined by mini-G protein recruitment assay using HEK293T NlucN-mGs/hH₂R-NlucC cells. **A**: The response was normalized to the maximum effect induced by 100 μ M histamine (maximum response: 100%) and buffer control (maximum response: 0%). **B**: The response was normalized to the effect induced by 1 μ M histamine (response: 100%) and buffer control (response: 0%). Data are presented as means \pm SEM from at least three independent experiments, each performed in duplicate or triplicate.

Figure App3.99. Concentration-response curves of representative 2-arylbenzimidazoles **4.85**, **4.108**, **4.110** and **4.114** on hH₂R determined by [35 S]GTP_YS binding assay using membrane preparations of Sf9 insect cells expressing the hH₂R-G_{sαS} fusion protein. **A**: The response was normalized to the maximum effect induced by histamine (maximum response: 100%) and buffer control (maximum response: 0%). **B**: The response was normalized to the effect induced by 1 µM histamine (response: 100%) and buffer control (response: 0%). Data are presented as means ± SEM from at least three independent experiments, each performed in triplicate.

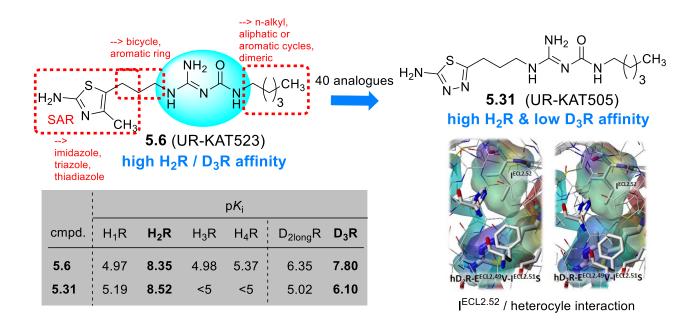
Figure App3.100. Concentration-response curves of representative 2-arylbenzimidazoles **4.85**, **4.86** (PB513⁷), **4.88**, **4.108**, **4.110** and **4.114** on hH₂R determined by β -arrestin2 recruitment assay using HEK293T-ARRB2-hH₂R cells. **A**: The response was normalized to the maximum effect induced by 100 μ M histamine (maximum response: 100%) and buffer control (maximum response: 0%). **B**: The response was normalized to the effect induced by 8 μ M histamine (response: 100%) and buffer control (response: 0%). Data are presented as means ± SEM from at least three independent experiments, each performed in duplicate or triplicate.

App3.4 References

1. Kagermeier, N.; Werner, K.; Keller, M.; Baumeister, P.; Bernhardt, G.; Seifert, R.; Buschauer, A., Dimeric carbamoylguanidine-type histamine H₂ receptor ligands: a new class of potent and selective agonists. *Bioorg. Med. Chem.* **2015**, *23*, 3957-3969.

2. Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A., $[{}^{3}H]$ UR-DE257: development of a tritium-labeled squaramide-type selective histamine H₂ receptor antagonist. *ChemMedChem* **2015**, *10*, 83-93.

3. Grätz, L.; Tropmann, K.; Bresinsky, M.; Müller, C.; Bernhardt, G.; Pockes, S., NanoBRET binding assay for histamine H_2 receptor ligands using live recombinant HEK293T cells. *Sci. Rep.* **2020**, *10*, *e13288*.


4. Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A., Tritium-labeled N^1 -[3-(1H-imidazol-4-yl)propyl]- N^2 -propionylguanidine ([³H]UR-PI294), a high-affinity histamine H₃ and H₄ receptor radioligand. *ChemMedChem* **2009**, *4*, 225-231.

5. Tropmann, K.; Höring, C.; Plank, N.; Pockes, S., Discovery of a G protein biased radioligand for the histamine H_2 receptor with reversible binding properties. *J. Med. Chem.* **2020**, *63*, 13090-13102.

6. Bartole, E.; Littmann, T.; Tanaka, M.; Ozawa, T.; Buschauer, A.; Bernhardt, G., [³H]UR-DEBa176: a 2,4-diaminopyrimidine-type radioligand enabling binding studies at the human, mouse, and rat histamine H₄ receptors. *J. Med. Chem.* **2019**, *62*, 8338-8356.

7. Baumeister, P. Molecular Tools for G-Protein Coupled Receptors: Synthesis, Pharmacological Characterization and $[^{3}H]$ -Labeling of Subtype-Selective Ligands for Histamine H₄ and NPY Y₂ Receptors. Ph. D. Thesis. University of Regensburg, 2014.

5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-Type Histamine H₂ Receptor Agonists

3-(2-Amino-4-methylthiazol-5-yl)propyl substituted carbamoylguanidines are potent, subtypeselective histamine H₂ receptor (H₂R) agonists, but their applicability as pharmacological tools to elucidate the largely unknown H₂R functions in the central nervous system (CNS) is compromised by their concomitantly high affinity towards dopamine D₂-like receptors (especially dopamine D₃ receptor (D₃R)). To improve the selectivity, a series of carbamoylguanidine-type ligands containing various heterocycles, spacers and side residues was rationally designed, synthesized, and tested in binding and/or functional assays at histamine H₁₋₄ and dopamine D_{2long/3} receptors. We observed that the selectivity of the ligands mainly depended on the heterocycle and on the type of the side residue which eventually led to the discovery of two promising candidate molecules (UR-KAT505 (**5.31**) and UR-KAT533 (**5.47**)). Docking studies suggest that the amino acid residues (3.28, 3.32, ECL2.49, ECL2.51, 5.42 and 7.35) are responsible for the different affinities at the H₂- and D_{2long/3}-receptors. These results provide a solid base for the exploration of the H₂R functions in the brain in further studies.

Prior to the submission of this thesis, this chapter has been submitted for publication: K. Tropmann, M. Bresinsky, L. Forster, A. Buschauer, H.-J. Wittmann, S. Pockes, and A. Strasser, Abolishing dopamine D_{2long}/D_3 receptor affinity of subtype-selective carbamoylguanidine-type histamine H₂ receptor agonists. *J. Med. Chem.* **2021**, submitted for publication.

Author contributions:

K.T. (5.9-5.10, 5.11 (Procedure A), 5.12, 5.15-5.23, 5.26-5.51 and 5.57-5.70) and M.B. (5.8, 5.11 (Procedure B), 5.13-5.14, 5.24-5.25 and 5.52-5.56) performed the synthesis and analytical characterization of chemical compounds. K.T. performed the investigation of the chemical stability. M.B. determined the pK_a value for the 2-aminothiadiazole. K.T. (5.30-5.51 and 5.57-5.70) and M.B. (5.52-5.56) performed radioligand competition binding experiments at H₁₋₄Rs and analyzed the data. L.F. performed radioligand competition binding experiments at D_{2long/3}Rs and analyzed the data. K.T. performed the functional studies at H₂R and analyzed the data, with exception of guinea right atrium experiments, which were performed and analyzed by M.B. L.F. (5.52-5.56) and K.T. (5.30-5.51 and 5.57-5.70) performed and analyzed the data. A.B. and A.S. initiated and planned the project. S.P. and A.S. supervised the research. K.T., S.P. and A.S. wrote the manuscript.

5.1 Introduction

The histamine H₂ receptor (H₂R) has been subject of many research studies due to its versatile physiological properties.⁵⁻⁶ The H₂R belongs to the class A G-protein-coupled receptors (GPCRs) and is expressed throughout the whole human body, most importantly in the stomach, heart, and central nervous system (CNS).⁵⁻⁸ Activation of the H₂R by its endogenous ligand histamine (**5.1**, Figure 5.1A) leads to adenylyl cyclase activation by coupling to the Gs protein.⁶ The central role of the H₂R in the stimulation of gastric acid secretion^{6,9} is the basis for the therapeutic use of H₂R antagonists to treat the gastroesophageal reflux disease and gastroduodenal ulcers.^{5,10} The function of the H₂R in the CNS is largely unknown, but includes, e.g. modulation of cognitive processes and circadian rhythm.¹¹ Furthermore, positive effects of the H₂-antagonist famotidine (**5.2**, Figure 5.1A) in schizophrenia and an improvement in L-DOPA-induced dyskinesia are reported in the literature.¹¹⁻¹⁹

Starting from the H₂R agonists of the arpromidine (**5.3**, Figure 5.1A) series, several highly potent (up to 3000 times the potency of histamine) monomeric and dimeric H₂R agonists with acylguanidine or carbamoylguanidine partial structure were developed (**5.4-5.6**, Figure 5.1A).^{2, 20-24} In contrast to acylguanidines, the carbamoylguanidines are chemically stable and possess an excellent selectivity over the other three histamine receptors (H_{1,3,4}) if a 2-aminothiazole ring is used for bioisosteric replacement of the imidazole ring (**5.5-5.6**, Figure 5.1A).^{1, 22-23} Based on the existing knowledge about the physicochemical and/or pharmacokinetic properties of acyl- and carbamoylguanidines, we assume that carbamoylguanidines are also able to overcome the bloodbrain barrier.^{2, 20, 23, 25} This advantage over previously reported H₂R agonists (cf. guanidines, e.g. **5.3**, Figure 5.1A) should enable access to the H₂R in the CNS.^{2, 20}

However, the 2-aminothiazole structural motif is also part of the dopamine receptor agonist pramipexole (5.7, Figure 5.1A), which is employed as a drug for the treatment of Parkinson's disease.²⁶⁻²⁷ Due to these similarities, we assumed that H_2R agonists containing the 2-aminothiazole motif, might also bind to dopamine receptors. Indeed, we could prove this assumption during previous studies with radioligand binding experiments and we found that such H_2R agonists revealed a considerable affinity to dopamine receptors of the D₂-like family, in particular to the D₃ receptor.²³⁻²⁴

In order to use carbamoylguanidines as pharmacological tools to elucidate the H_2R functions in the CNS, we addressed the need to develop improved molecules which bind exclusively selective to the H_2 receptor. Thus, we herein report the synthesis and pharmacological characterization of these novel, subtype-selective H_2R ligands by variation of the carbamoylguanidine-based scaffold with different heterocycles, spacers, and side residues (Figure 5.1B).

The synthesized compounds were investigated for their functional activity at the H₂R and/or $D_{2long/3}R$ in minimal G (mini-G) protein- and/or β -arrestin2-recruitment assays as well as on the isolated spontaneously beating guinea pig (gp) right atrium in a more complex, but well-established standard model for the characterization of H₂R ligands.^{5, 28} The selectivity for the human (h) H₂R over hH_{1/3/4}R and hD_{2long/3}R was evaluated in radioligand competition binding experiments. To support our investigations in silico, molecular docking studies were performed. We compared the binding of selected (4-methyl)thiazolyl- or thiadiazolyl-containing carbamoylguanidines to identify the amino acid residues that might be responsible for the different binding affinities of these ligands at the H₂- and D_{2long/3}-receptors.

5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-

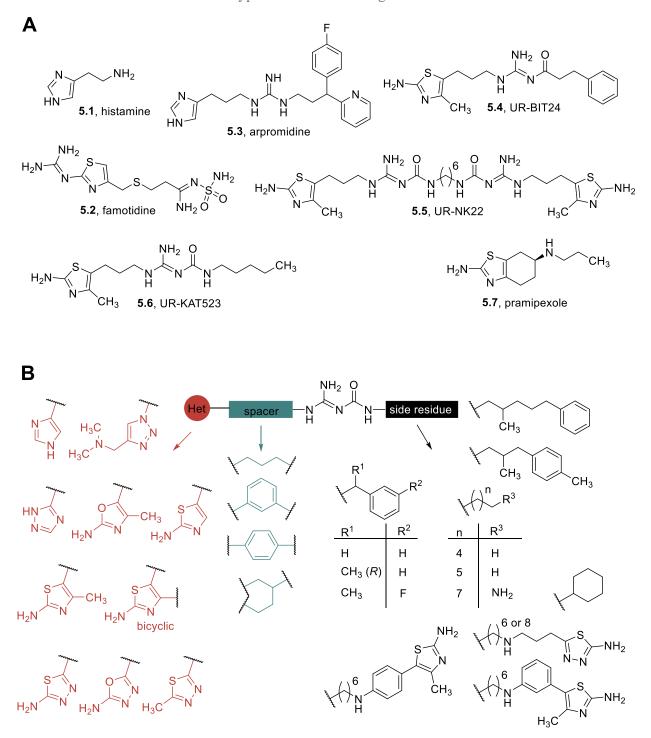
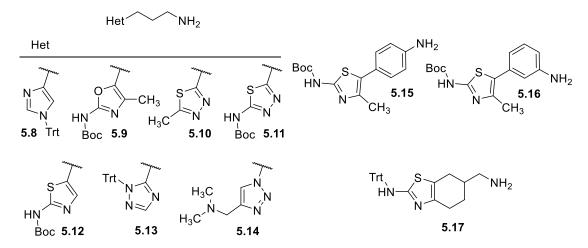


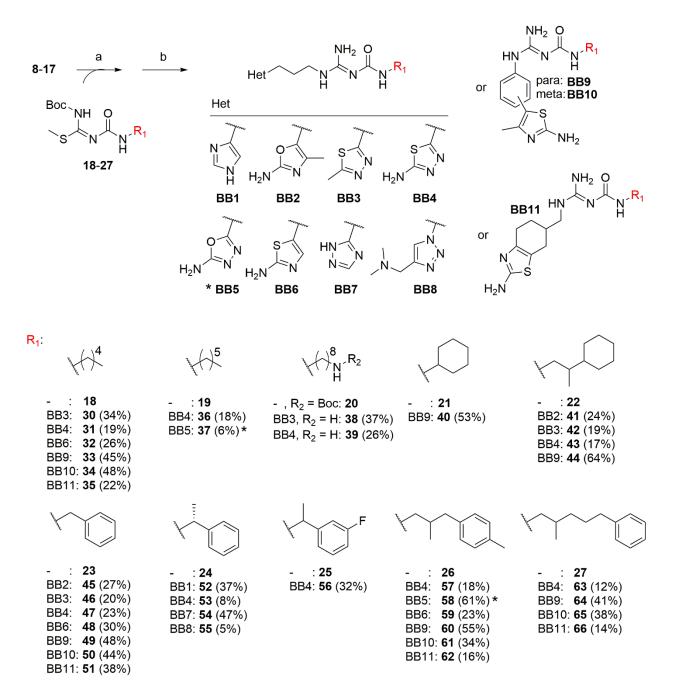
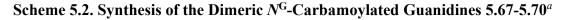
Figure 5.1. A: Structures of histamine (5.1), famotidine (5.2), arpromidine (5.3) and related prototypical acylguanidine-type (5.4) and carbamoylguanidine-type (5.5-5.6) H₂R agonists, as well as the D₂-like receptor agonist pramipexole (5.7). B: Structural modifications of N^{G} -carbamoylated guanidines resulting in the title compounds. Het: heterocycle.

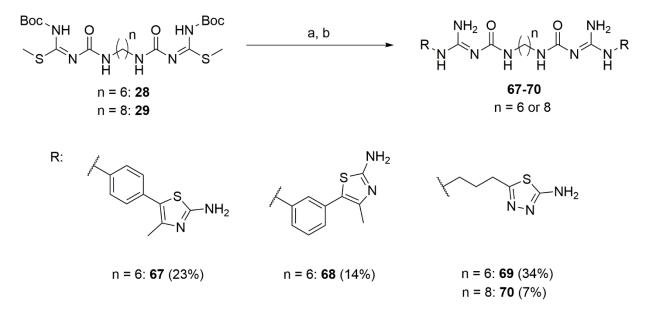
5.2 Results and Discussion

5.2.1 Chemistry

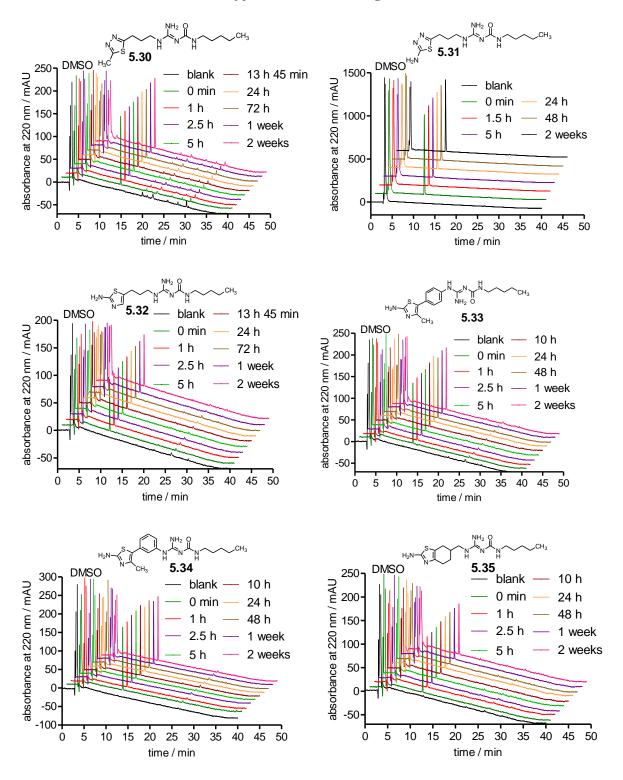
The amines **5.8-5.17**^{2, 20, 29-31} (Figure 5.2) and the guanidinylating reagents **5.18-5.29**²²⁻²⁵ (Schemes 5.1 and 5.2) were synthesized as reported in the Appendix 4, App4.1 Experimental Details for the Amines **5.8-5.17** and the Guanidinylating Reagent **5.18-5.29** or in the literature. We chose several different side residues for the guanidinylating reagents **5.18-5.29**, which performed well in our recent studies about 2-aminothiazoles.^{2, 20-25} The monomeric (Scheme 5.1) or dimeric (Scheme 5.2) carbamoylguanidine-type ligands were prepared by reacting the amines **5.8-5.17** with the guanidinylating reagents **5.18-5.29** in the presence of HgCl₂ and triethylamine (NEt₃).³² Finally, the protected carbamoylguanidine-type intermediates were treated with TFA giving compounds **5.30-5.36**, **5.38-5.57** and **5.59-5.70** (Schemes 5.1 and 5.2), which were purified by preparative HPLC (acetonitrile (MeCN)/0.1% TFA in H₂O) or column chromatography (CH₂Cl₂/7 N NH₃ in MeOH) and subsequent recrystallization into the corresponding HCl salts. **5.37** and **5.58** were synthesized using a modified synthetic procedure (for details see the Experimental Section & the Appendix 4, Scheme App4.11).



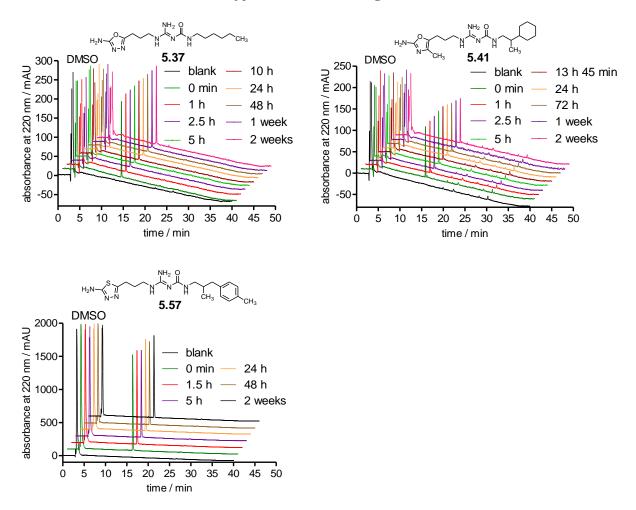

Figure 5.2. Structures of amines 5.8-5.17 used for the synthesis of monomeric (5.30-5.36, 5.38-5.57 and 5.59-5.66) and dimeric (5.67-5.70) carbamoylguanidines. Het: heterocycle. For more details regarding 5.8-5.17 see Appendix 4, App4.1 Experimental Details for the Amines 5.8-5.17 and the Guanidinylating Reagent 5.18-5.29.

^{*a*}Reagents and conditions: a) NEt₃, HgCl₂, CH₂Cl₂, rt, 4-48 h; (b) 30-70% TFA, CH₂Cl₂, rt, 7-18 h, 4-64% over two steps. Isolated yields over two steps are given in brackets. For more details regarding **5.8-5.27** see Appendix 4, App4.1 Experimental Details for the Amines **5.8-5.17** and the Guanidinylating Reagent **5.18-5.29**. *Modified synthetic procedure (see Experimental Section and Appendix 4, Scheme App4.11). BB: building block. Het: heterocycle. The target compounds **5.30**-**5.52**, **5.55** and **5.57-5.66** were obtained as TFA salts and **5.53-5.54** and **5.56** as HCl salts.



^{*a*}Reagents and conditions: a) **5.11**, **5.15** or **5.16**, NEt₃, HgCl₂, CH₂Cl₂, rt, 8 h; (b) TFA, CH₂Cl₂, rt, 6-16 h, 7-23% over two steps. Isolated yields over two steps are given in brackets. For more details regarding **5.11**, **5.15**, **5.16** and **5.28-5.29** see Appendix 4, App4.1 Experimental Details for the Amines **5.8-5.17** and the Guanidinylating Reagent **5.18-5.29**.

5.2.2 Chemical Stability of Carbamoylguanidines


The chemical stability of selected compounds (5.30-5.35, 5.37, 5.41 and 5.57) was investigated in binding buffer²² (pH 7.4) at room temperature (rt) over a time period of two weeks. Under these conditions, the investigated N^{G} -carbamoylated guanidines proved to be stable (for graphs see Figures 5.3 & 5.4, for details see Experimental Section).

5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-

Figure 5.3. RP-HPLC chromatograms (chemical stability at room temperature in binding buffer) of **5.30-5.35** at 220 nm.

5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-

Figure 5.4. RP-HPLC chromatograms (chemical stability at room temperature in binding buffer) of **5.37**, **5.41** and **5.57** at 220 nm.

5.2.3 H₂R Affinity and Receptor Subtype Selectivity

The p K_i values of all target compounds were determined in competition binding studies on membrane preparations of Sf9 cells expressing the hH₂R-G_{sαS} fusion protein using the radioligand [³H]UR-DE257³³ (Table 5.1). At first, we investigated the influence of the linker on the binding affinity. The conformationally restricted compounds (e.g. **5.33** (para, p $K_i = 6.34$), **5.34** (meta, p $K_i = 6.72$) and **5.35** (bicyclic, p $K_i = 6.81$), Table 5.1) bind well to the hH₂R albeit with lower affinities compared to their flexible (propyl linker) counterparts (e.g. **5.6**²³ (p $K_i = 8.32^{23}$), Table 5.1).

5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-

Type Histamine H₂R Agonists

Next, we investigated the influence of the heterocycle. The replacement of the sulfur atom in the 2-amino-4-methylthiazole by an oxygen atom resulted in decreased hH₂R affinity (e.g. oxazole: **5.45** ($pK_i = 6.41$) vs. thiazole UR-CH22²³⁻²⁴ ($pK_i = 7.16^{23-24}$), Table 5.1). The omission of the methyl group in position 4 of the heterocyclic ring did not cause a significant change in hH₂R affinity (5.32, 5.48 and 5.59 vs. 5.6²³, UR-CH22²³⁻²⁴ and UR-SB257²³⁻²⁴, Table 5.1). However, the replacement of the amino(methyl)thiazole by a 2-amino-1,3,4-thiadiazole was favorable: the K_i values of compounds 5.31 ($pK_i = 8.52$), 5.36 ($pK_i = 8.29$), 5.47 ($pK_i = 8.30$), 5.56 ($pK_i = 8.09$), and 5.57 ($pK_i = 8.19$) were in the single-digit nanomolar range (cf. Table 5.1). Also in case of the diazoles the substitution of the sulfur atom by an oxygen atom resulted in decreased hH₂R affinity (e.g. oxadiazole: 5.58 ($pK_i = 6.17$) vs. thiadiazole 5.57 ($pK_i = 8.19$), Table 5.1). The replacement of the free amine group in the 2-amino-1,3,4-thiadiazole by a methyl group (5.30, 5.38, 5.42 and 5.46) resulted in a dramatic decrease of hH₂R affinity (cf. Table 5.1), indicating that the heteroaromatic amine group is extremely important for high affinity. This observation was also supported by docking experiments (see molecular docking studies). Finally, using the reported 1H-1,2,4-triazole³¹ or a more explorative 4-(dimethylamino)methyl-1,2,3-triazole instead of the 2amino-4-methylthiazole resulted in decreased hH₂R affinities (1,2,4-triazole 5.54 ($pK_i = 7.27$) and 1,2,3-triazole 5.55 ($pK_i = 5.35$) vs. thiazole UR-Po563²³ ($pK_i = 7.75^{23}$), Table 5.1).

It is literature known that dimeric ligands possess a significantly increased H₂R affinity (human or guinea pig).^{1, 22} Therefore, we also synthesized several dimeric compounds, e.g. the 2-amino-1,3,4-thiadiazole heterocycle containing ligands **5.69** (hexyl-spacer, $pK_i = 8.28$, Table 5.1) and **5.70** (octyl-spacer, $pK_i = 8.32$, Table 5.1). However, no further increase in affinity could be achieved compared to the monomeric compounds **5.31** (pentyl, $pK_i = 8.52$, Table 5.1) and **5.36** (hexyl, $pK_i = 8.29$, Table 5.1).

The p K_i values of all synthesized compounds were also determined at the hH₁, hH₃ and hH₄ receptors on membranes of Sf9 cells expressing the respective histamine receptor using the radioligands [³H]mepyramine (hH₁R), [³H] N^{α} -methylhistamine or [³H]UR-PI294³⁴ (hH₃R) and [³H]**5.1** (hH₄R, cf. Table 5.1). The imidazole-containing ligand **5.52** was synthesized as control compound to showcase that the subtype selectivity is largely influenced by the heterocycle. Unsurprisingly, despite a high affinity at the H₂R, it bound similarly well or even better to the H₃R and H₄R. In contrast, neither of the 2-amino-1,3,4-thiadiazoles (**5.31**, **5.36**, **5.43**, **5.47**, **5.53**, **5.56**, **5.57**, **5.63**, **5.69** and **5.70**) displayed remarkable affinity to the hH₁, hH₃, or hH₄ receptors leading

to at least 100-fold selectivity for the hH₂R (cf. Table 5.1). The only exception among the thiadiazoles was observed for compound **5.39**, which contains the 8-aminooctyl side chain. Within the synthesized series, compound **5.31** showed the highest affinity ($pK_i = 8.52$, Table 5.1) and subtype selectivity (ratio of K_i H₁R/H₃R/H₄R of 2138 : >3311 : >3311, Table 5.1).

 Table 5.1. Binding Data of the Compounds 5.30-5.70 on Human Histamine Receptor

 Subtypes^a

Het			Het	∕∕_N H			$HN H_2 O HN H HN H H H H H H H H H H H H H H H$						
	Сн		S N S	N N		s _{2N}		I ₃ C	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	pai me S	ra: BB9 or eta: BB10 or NH ₂ H ₂ N	-S	
BB1a B	B1b	BB2	BB3 E	3B4	BB5	BB6		B	B8		- ת דד	aalaatiy	4
compd.	st	ructure				t	oK _i				$K_{i}(H_{x}R)/I$	selectivi	•
•ompu:	BB	R	hH_1R^b	Ν	hH ₂ R ^c	N	hH ₃ R ^{d,e}	Ν	hH4R ^f	Ν	H ₁	H ₃	H ₄
5.1	-	-	${\begin{array}{c} 5.62 \pm \\ 0.03^{35} \end{array}}$	4	$\begin{array}{c} 6.58 \pm \\ 0.04^{36} \end{array}$	48	$\begin{array}{c} 7.59 \pm \\ 0.01^{35} \end{array}$	42	$\begin{array}{c} 7.60 \pm \\ 0.01^{35} \end{array}$	45	9	0.1	0.1
5.7	-	-	n.d.	-	$\begin{array}{c} 4.86 \pm \\ 0.07^{23} \end{array}$	-	n.d.	-	n.d.	-	-	-	-
5.6 ²³	1b		$\begin{array}{c} 4.97 \pm \\ 0.10^{23} \end{array}$	3	$\begin{array}{c} 8.35 \pm \\ 0.08^{23} \end{array}$	3	$\begin{array}{r} 4.98 \pm \\ 0.17^{23} \end{array}$	3	$\begin{array}{c} 5.37 \pm \\ 0.09^{23} \end{array}$	3	2399	2344	955
5.30	3		<5	3	5.66 ± 0.15	3	<5°	3	<5	3	>5	>5	>5
5.31 (UR- KAT505)	4		5.19±0.05	3	8.52± 0.16	3	<5 ^e	3	<5	3	2138	>3311	>3311
5.32 (UR- KAT583)	6		$\begin{array}{c} 5.02 \pm \\ 0.03 \end{array}$	3	7.64 ± 0.07	3	<5 ^e	3	<5	3	417	>437	>437
5.33	9		$\begin{array}{c} 5.43 \pm \\ 0.09 \end{array}$	3	$\begin{array}{c} 6.34 \pm \\ 0.06 \end{array}$	3	$4.94 \pm 0.06^{d,e}$	3	5.11 ± 0.04	3	8	25	17
5.34	10		5.18 ± 0.09	3	$\begin{array}{c} 6.72 \pm \\ 0.03 \end{array}$	3	5.02 ± 0.07^{e}	3	5.13 ± 0.05	3	35	50	39
5.35	11		5.28 ± 0.10	3	$\begin{array}{c} 6.81 \pm \\ 0.07 \end{array}$	3	$5.18 \pm 0.15^{d,e}$	3	5.23 ± 0.04	3	34	43	38
UR- CH20 ²³⁻ 24	1b		$5.11 \pm \\ 0.03^{23} \\ _{-24}$	3	$7.54 \pm \\ 0.07^{23} \\ _{-24}$	4	$5.25 \pm \\ 0.02^{23} \\ _{24}$	3	$5.09 \pm \\ 0.02^{23} \\ _{-24}$	2	269	195	282
5.36	4	∿(+) ⁵ CH ₃	$\begin{array}{c} 5.30 \pm \\ 0.09 \end{array}$	3	8.29 ± 0.20	3	<5 ^e	3	<5	3	977	>1950	>1950
5.37	5		$\begin{array}{c} 5.05 \pm \\ 0.06 \end{array}$	3	6.41 ± 0.01	3	<5 ^e	3	<5	3	23	>26	>26

Table 5.1. (continued)

5.38	3	/ \8	6.51 ± 0.19	3	5.74 ± 0.14	3	$\begin{array}{c} 4.93 \pm \\ 0.18^e \end{array}$	3	<5	3	0.2	7	>5
5.39	4	×(+) ⁸ NH₂	6.28 ± 0.09	3	7.48 ± 0.14	3	<5 ^e	3	<5	3	16	>302	>302
5.40	9	$\sqrt{\mathbf{O}}$	5.26 ± 0.17	3	$\begin{array}{c} 6.26 \pm \\ 0.14 \end{array}$	3	$4.91 \pm 0.09^{d,e}$	3	5.16 ± 0.07	3	10	22	13
UR- SB291 ²³⁻ 24	1b		$5.63 \pm \\ 0.06^{23} \\ _{-24}$	3	$7.40 \pm \\ 0.01^{23} \\ _{-24}$	2	$5.00 \pm \\ 0.08^{23} \\ _{24}$	3	$5.72 \pm \\ 0.05^{23} \\ _{-24}$	3	59	251	48
5.41	2	\sim	5.22 ± 0.04	3	$\begin{array}{c} 6.61 \pm \\ 0.08 \end{array}$	3	5.08 ± 0.11^{e}	3	5.12 ± 0.07	3	25	34	31
5.42	3	CH3	5.15 ± 0.01	3	5.98 ± 0.12	3	$\begin{array}{c} 4.94 \pm \\ 0.06 \end{array}$	3	<5	3	7	11	>10
5.43	4		5.13 ± 0.06	3	7.71 ± 0.14	4	$5.56 \pm 0.10^{\rm e}$	3	4.90 ± 0.12	3	380	141	646
5.44	9		$\begin{array}{c} 5.54 \pm \\ 0.13 \end{array}$	3	6.51 ± 0.10	3	5.25 ± 0.05^{e}	3	5.11 ± 0.04	3	9	18	25
UR- CH22 ²³⁻ 24	1b		$5.21 \pm \\ 0.02^{23} \\ _{-24}$	3	$7.16 \pm \\ 0.05^{23} \\ _{-24}$	3	$\begin{array}{c} 4.71 \pm \\ 0.05^{23} \\ _{24} \end{array}$	3	$\begin{array}{c} 4.72 \pm \\ 0.09^{23} \\ _{-24} \end{array}$	2	89	282	275
5.45	2		$\begin{array}{c} 5.05 \pm \\ 0.06 \end{array}$	3	6.41 ± 0.11	3	<5 ^e	3	<5	3	23	>26	>26
5.46	3		$\begin{array}{c} 4.97 \pm \\ 0.08 \end{array}$	3	5.25 ± 0.15	3	<5 ^e	3	<5	3	2	>2	>2
5.47 (UR- KAT533)	4	$\bigvee \bigcirc$	5.27 ± 0.12	3	$\begin{array}{c} 8.30 \pm \\ 0.07 \end{array}$	3	<5 ^e	3	<5	3	1072	>1995	>1995
5.48	6		$\begin{array}{c} 5.25 \pm \\ 0.01 \end{array}$	3	$\begin{array}{c} 7.57 \pm \\ 0.07 \end{array}$	3	<5 ^e	3	<5	3	209	>372	>372
5.49	9		$\begin{array}{c} 5.89 \pm \\ 0.03 \end{array}$	3	$\begin{array}{c} 6.67 \pm \\ 0.05 \end{array}$	3	$5.07 \pm 0.10^{d,e}$	3	$\begin{array}{c} 4.92 \pm \\ 0.14 \end{array}$	3	6	40	56
5.50	10		5.14 ± 0.14	3	6.52 ± 0.13	3	<5 ^e	3	<5	3	24	>33	>33
5.51	11		5.41 ± 0.12	3	$\begin{array}{c} 6.52 \pm \\ 0.02 \end{array}$	3	$\begin{array}{c} 4.95 \pm \\ 0.06^d \end{array}$	3	5.23 ± 0.02	3	13	37	19
UR- Po563 ²³	1b		$\begin{array}{c} 5.06 \pm \\ 0.05^{23} \end{array}$	3	$\begin{array}{c} 7.75 \pm \\ 0.05^{23} \end{array}$	3	$\begin{array}{c} 4.36 \pm \\ 0.04^{23} \end{array}$	3	$\begin{array}{c} 4.87 \pm \\ 0.01^{23} \end{array}$	3	490	2455	759
5.52	la	CH3	5.40 ± 0.04	3	8.21 ± 0.09	3	8.77 ± 0.02^{e}	3	8.07 ± 0.06	3	646	0.3	1
5.53	4	\sim	<5	3	7.89 ± 0.06	3	<5 ^e	3	<5	3	>776	>776	>776
5.54	7		$\begin{array}{c} 5.10 \pm \\ 0.05 \end{array}$	3	7.27 ± 0.07	3	<5 ^e	3	<5	3	148	>186	>186

Table 5.1.	(continued)
------------	-------------

5.55	8	CH3	<5	3	5.35 ± 0.02	3	4.99 ± 0.02^{e}	3	<5	3	>2	2	>2
UR-MB- 69 ²³	1b		5.11 ± 0.10^{23}	3	8.69 ± 0.10^{23}	3	$\begin{array}{c} 4.41 \pm \\ 0.06^{23} \end{array}$	3	$\begin{array}{c} 4.88 \pm \\ 0.01^{23} \end{array}$	3	3802	19055	6457
5.56 (UR- MB-165)	4	Y C	4.98 ± 0.02	3	8.09 ± 0.03	3	<5 ^e	3	<5	3	1288	>1230	>1230
UR- SB257 ²³⁻ 24	1b		$5.78 \pm \\ 0.13^{23} \\ _{-24}$	3	$7.14 \pm \\ 0.08^{23} \\ _{-24}$	2	$5.49 \pm \\ 0.01^{23} \\ _{24}$	3	$5.44 \pm \\ 0.02^{23} \\ _{-24}$	3	23	45	50
5.57	4		5.87 ± 0.12	3	8.19 ± 0.11	3	5.63 ± 0.11^{e}	3	5.16±0.11	3	209	363	1072
5.58	5		5.57 ± 0.09	3	6.17 ± 0.08	3	5.04 ± 0.03^{e}	3	<5	3	4	13	>15
5.59	6	CH3 CH	5.60 ± 0.05	3	7.19 ± 0.14	3	$5.32 \pm 0.11^{\circ}$	3	5.35 ± 0.11	3	39	74	69
5.60	9		5.74 ± 0.14	4	6.48 ± 0.04	3	$5.08 \pm 0.07^{d,e}$	3	5.20 ± 0.03	3	5	25	19
5.61	10		$\begin{array}{c} 5.28 \pm \\ 0.18 \end{array}$	3	$\begin{array}{c} 6.63 \pm \\ 0.06 \end{array}$	3	4.89 ± 0.13^{e}	3	5.13 ± 0.06	3	22	45	32
5.62	11		6.74 ± 0.12	3	6.97 ± 0.03	3	5.71 ± 0.10^{d}	3	5.47 ± 0.10	3	2	18	32
UR- KAT527 ² ³⁻²⁴	1b		$5.15 \pm \\ 0.07^{23} \\ _{-24}$	3	$7.22 \pm \\ 0.05^{23} \\ _{-24}$	3	$5.64 \pm \\ 0.08^{23} \\ _{24}^{23}$	3	$\begin{array}{c} 6.11 \pm \\ 0.13^{23} \\ _{-24} \end{array}$	3	117	38	13
5.63	4		$\begin{array}{c} 5.29 \pm \\ 0.08 \end{array}$	3	7.82 ± 0.11	3	5.40 ± 0.13^{e}	3	5.31 ± 0.16	3	339	263	324
5.64	9		5.12 ± 0.11	3	$\begin{array}{c} 6.50 \pm \\ 0.05 \end{array}$	3	$5.10 \pm 0.11^{d,e}$	3	$\begin{array}{c} 5.22 \pm \\ 0.03 \end{array}$	3	24	25	19
5.65	10		4.88 ± 0.15	3	6.63 ± 0.07	3	4.97 ± 0.10^{e}	3	5.15 ± 0.03	3	56	46	30
5.66	11		5.41 ± 0.08	3	$\begin{array}{c} 6.96 \pm \\ 0.19 \end{array}$	3	$5.76 \pm 0.13^{d,e}$	3	5.39 ± 0.11	3	35	16	37
5.5 ²²	1b		$\begin{array}{c} 6.06 \pm \\ 0.05^{22} \end{array}$	-	$\begin{array}{c} 8.07 \pm \\ 0.05^{22} \end{array}$	-	$\begin{array}{c} 5.94 \pm \\ 0.16^{22} \end{array}$	-	$\begin{array}{c} 5.69 \pm \\ 0.07^{22} \end{array}$	-	102	135	240
5.67	9	dimeric	5.67 ± 0.14	3	$\begin{array}{c} 6.46 \pm \\ 0.18 \end{array}$	3	5.71 ± 0.09^{e}	3	$\begin{array}{c} 5.67 \pm \\ 0.10 \end{array}$	3	6	6	6
5.68	10	$\langle () \rangle^6$	5.84 ± 0.03	3	6.42 ± 0.02	3	6.15 ± 0.04^{e}	3	5.63 ± 0.04	3	4	2	6
5.69	4		5.45 ± 0.08	3	8.28 ± 0.13	3	5.00 ± 0.06^{e}	3	<5	3	676	1905	>1905
5.70	4	dimeric	5.74 ± 0.08	3	8.32 ± 0.11	3	$5.16 \pm 0.06^{\circ}$	3	$\begin{array}{c} 5.05 \pm \\ 0.07 \end{array}$	3	380	1445	1862

Table 5.1. (continued)

^{*a*}Radioligand competition binding assay using membrane preparations of Sf9 cells expressing the hH₁R + RGS4, the hH₂R-G_{sαS}, the hH₃R + G_{αi2} + G_{β1γ2} or the hH₄R + G_{αi2} + G_{β1γ2}. Data represent mean values ± SEM of N independent experiments, each performed in triplicate. ^{*b*}Displacement of 5 nM [³H]mepyramine ($K_d = 4.5 \text{ nM}^{22}$). ^{*c*}Displacement of 20 nM [³H]UR-DE257³³ ($K_d = 12.1 \text{ nM}^{37}$). ^{*d*}Displacement of 8.6 nM [³H]N^α-methylhistamine ($K_d = 3 \text{ nM}^{35}$). ^{*e*}Displacement of 2 nM [³H]UR-PI294³⁴ ($K_d = 3 \text{ nM}^{25}$). ^{*f*}Displacement of 15 nM [³H]**5.1** ($K_d = 16 \text{ nM}^{35}$). n.d.: not determined.

5.2.4 D_{2long}R and D₃R Affinities of N^G-Carbamoylated Guanidines

 N^{G} -carbamoylated guanidines with a pK_i value >7.0 at the hH₂R were investigated for their affinities to the hD_{2long}- and hD₃ receptors in radioligand binding assays on homogenates of HEK293T-CRE-Luc cells co-expressing the respective receptor (Table 5.2). Compounds containing the 2-aminothiazole heterocycle without a methyl group in position 4 (5.32, 5.48 and **5.59**) still showed high to moderate affinities to the $hD_{2long/3}$ receptors, especially to the $hD_{3}R$ (cf. Table 5.2). The determined hD_{2long/3} receptor affinities were comparable to affinities published for 2-amino(4-methyl)thiazoles.²³ Fortunately, compounds containing the 2-amino-1,3,4-thiadiazole or the 1*H*-1,2,4-triazole heterocycle displayed only low affinity to the hD_{2long}- and hD₃ receptors. We observed that some of them (5.31, 5.36, 5.47, 5.53-5.54 and 5.57) showed even more than a 100-fold selectivity for the hH₂R over the hD_{2long} and hD₃ receptors (cf. Table 5.2). This trend indicates that the nitrogen in the 4 position might be responsible for the lower affinity to the hD_3R (for more details see docking results; Figure 5.6D). In addition to the effect of the heterocycle, the side residue played an important role for the dopamine hD_{2long/3} receptor affinities. For example, thiadiazoles 5.43 (2-cyclohexylpropyl side residue) and 5.63 (2-methyl-5-phenylpentyl side residue) still had a moderate affinity for the hD_{2long/3} receptors, which might indicate an additional (hydrophobic) interaction in the binding pocket of D_{2long/3} receptors (not further investigated). Finally, the dimeric ligand 5.69 also possessed a high hD_{2long}- and hD₃ receptor affinity compared to the corresponding monomeric ligands 5.31 and 5.36 (cf. Table 5.2). Therefore, 5.70, being also a dimeric ligand, was not further investigated. 5.39 and 5.52 were, despite their high H₂R affinity, also excluded from additional experiments due to their low subtype selectivity (cf. Table 5.1).

In summary, although many ligands (5.31, 5.36, 5.47, 5.53-5.54 and 5.57) showed a decent selectivity for the hH₂R over the hD_{2long}- and hD₃ receptors (ratios of $K_i > 100$), 5.31 and 5.47 turned out to be the most promising candidates due to their excellent selectivity profiles.

Table 5.2. Binding Data of the Selected NG-Carbamoylated Guanidines on Human DopamineD2long and D3 Receptors^a

			Het				_			
				CH ₃ H ₂ N	S = N $H_2 N$ $H_2 N$		n. N			
			BB1b	I	BB4 BB6	BB7		1		
								electivity		
1		4			V			$/K_{i}(H_{2}R)$		
compd.		tructure		pl		NT		x = 2 long, 3		
	BB	R	$hD_{2long}R^b$	N	hD ₃ R ^c	N	D _{2long} R	D ₃ R		
pramipexole (5.7)	-	-		3	9.18 ± 0.06^{38}	3	0.002*	0.00005		
5.6 ²³	1b	4	6.35 ± 0.01^{23}	3	7.80 ± 0.09^{23}	3	100	4		
5.31	4	λ () ⁴ CH ₂	5.02 ± 0.15	3	6.10 ± 0.05	4	3162	263		
5.32	6	ų <u>1</u> .	5.46 ± 0.07	3	7.50 ± 0.02	3	151	1		
5.36	4	<pre>\+ CH₃</pre>	<5	3	6.23 ± 0.02	3	>1950	115		
5.43	4	V→CH ₃	5.79 ± 0.01	3	6.63 ± 0.08	3	83	12		
5.47	4	\sim	5.20 ± 0.04	3	5.58 ± 0.17	3	1259	525		
5.48	6	\checkmark	5.34 ± 0.07	3	7.13 ± 0.04	3	170	3		
5.53	4	CH ₃	<5	3	5.49 ± 0.10	3	>776	251		
5.54	7	`	<5	3	<5	3	>186	>186		
5.56	4	KH3 F	<5	3	6.18 ± 0.10	3	>1230	81		
5.57	4	$\langle \gamma \gamma$	5.97 ± 0.07	3	5.69 ± 0.11	4	166	316		
5.59	6	СН3 СН3	6.31 ± 0.07	3	6.64 ± 0.01	3	8	4		
5.63	4		6.35 ± 0.06	3	6.49 ± 0.02	3	30	21		
5.5 ²²	1b	dimeric	7.09 ± 0.07	3	8.70 ± 0.04	3	10	0.2		
5.69	4	$\langle h \rangle^6$	6.02 ± 0.10	3	7.22 ± 0.07	3	182	12		

^{*a*}Data represent mean values \pm SEM from N independent experiments, each performed in triplicate. Radioligand competition binding assay with [³H]*N*-methylspiperone (^{*b*}hD_{2long}R: $K_d = 0.0149$ nM, c = 0.05 nM or ^{*c*}hD₃R: $K_d = 0.0258$ nM, c = 0.05 nM) using homogenates of ^{*b*}HEK293T-CRE-Luc-hD_{2long}R or ^{*c*}HEK293T-CRE-Luc-hD₃R cells.³⁸ *Calculated using p K_i high value.

5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-

Type Histamine H₂R Agonists

5.2.5 Functional Studies at the Human H₂R

To get further insights into the general structure activity relationship of the N^{G} -carbamoylated guanidines, all target compounds (**30-70**) and the reference compounds (only mini-G) were investigated for hH₂R agonism and antagonism in the β -arrestin2- and mini-G protein-recruitment assays using genetically engineered HEK293T cells, respectively. The results are presented in Table 5.3. The responses in both assays were normalized to the maximum effect induced by 100 μ M histamine (**5.1**, E_{max} = 1.00) and buffer control (E_{max} = 0). Thus, **5.1** is defined as a full, unbiased agonist in either readouts. **5.1** exhibits a significantly lower potency in the β -arrestin2 recruitment assay compared to the mini-G protein recruitment assay (pEC₅₀ (β -arrestin2) = 5.42³⁹; pEC₅₀ (mGs (minimal G_{as} protein)) = 6.94⁴⁰; cf. Table 5.3). Similarly, the potencies of the investigated N^{G} -carbamoylated guanidines were also lower in the β -arrestin2 recruitment assay (cf. Table 5.3). A possible explanation for this trend could be the use of the mGs protein, since it is known that mG proteins stabilize active states of GPCRs, which favors the binding of agonists.⁴⁰

The most interesting compounds (5.31-5.32, 5.36, 5.43, 5.47-5.48, 5.53-5.54, 5.56-5.57, 5.59, 5.63 and 5.69) proved to be strong partial agonists ($E_{max} = 0.83$ to 0.95, cf. Table 5.3) in the mini-G protein recruitment assay with pEC_{50} values >7.0. The determined pEC_{50} values agree in most cases very well with the pK_i values from the radioligand binding assay. Compound 5.47, containing the benzyl side residue, showed the highest hH₂R potency with a pEC₅₀ of 8.48, but also 5.31 (pentyl side residue, $pEC_{50} = 8.22$) showed an excellent potency in the single-digit nanomolar range (cf. Table 5.3). The incorporation of a ring system (cf. Scheme 5.1, BB9-11) in the spacer resulted in either antagonists or partial agonists depending on the side residue (for details see Table 5.3). Surprisingly, some of the tested compounds revealed a completely different functional profile in the β-arrestin2 recruitment assay (cf. Table 5.3). Almost all tested 2-aminothiazoles 5.6²³, UR-CH20²³⁻²⁴, UR-CH22²³⁻²⁴, UR-Po563²³, UR-MB-69²³, UR-SB257²³⁻²⁴, UR-KAT527²³, 5.32, 5.48 and 5.59 and some thiadiazoles 5.57 and 5.63, containing a propyl spacer, as well as triazole-containing 5.54 exhibited a certain degree of efficacy bias towards G-protein activation. The compounds acted as strong partial agonists ($E_{max} = 0.73$ to 0.94, cf. Table 5.3) in the mini-G protein recruitment assay but were only partial agonists in the β -arrestin2 recruitment assay $(E_{max} = 0.10 \text{ to } 0.73, \text{ cf. Table 5.3})$. The efficacy bias was confirmed by the determination of efficacy bias factors (eBF, for details see in the Appendix 4, App4.4 Bias Analysis). The dimeric

ligands (e.g. thiazole: **5.5**²², thiadiazole: **5.69**) exhibited similar characteristics as their monomeric counterparts. All compounds containing a rigidized spacer (cf. Scheme 5.1, BB9-11) acted as antagonists in the β -arrestin2 recruitment assay (see Table 5.3).

Table 5.3. Potencies and Efficacies of the Selected N^{G} -Carbamoylated Guanidines in the β -Arrestin2 and Mini-G Protein Recruitment Assays at the hH₂R^{*a*}

Het		He	$h H_2 O H_$			$HNH_2 O HN H_2 N H_2 N H_1 N H_2 N H_2 N H_1 N H_2 N H_1 N$.R			
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$											
compd.		structure		$12 \text{ recruitment}^{b}$	660	mGs re	cruitment ^c				
•omp a	BB	R	$ \begin{array}{c} $	E_{max}^{e}	N	pEC ₅₀ or $(pK_b)^d$	E_{max}^{e}	Ν			
5.1	-	_	5.42 ± 0.02^{39}	1.00^{39}	3	6.94 ± 0.06^{40}	1.00^{40}	9			
5.7	_	-	$\begin{array}{c} 3.12 \pm 0.02 \\ 4.40 \pm 0.10^{23} \end{array}$	0.35 ± 0.03^{23}	3	6.78 ± 0.01	0.95 ± 0.01	,			
5.6 ²³	1b		6.75 ± 0.12^{23}	0.15 ± 0.02^{23}	4	8.34 ± 0.05	0.88 ± 0.01	3			
5.30	3		(5.70 ± 0.18)	$0.01 \pm 0.02^{\ddagger}$	4	5.61 ± 0.02	0.62 ± 0.01	3			
5.31**	4		6.63 ± 0.08	0.94 ± 0.06	6	8.24 ± 0.22	0.93 ± 0.01	3			
5.32	6	х, (-) ⁴ СН3	7.25 ± 0.04	0.64 ± 0.04	4	8.22 ± 0.04	0.89 ± 0.01	3			
5.33	9		(7.27 ± 0.05)	$0.00 \pm 0.01^{\ddagger}$	3	(6.96 ± 0.03)	$0.00\pm0.01^{\ddagger}$	3			
5.34	10		(7.27 ± 0.11)	$0.00\pm0.13^{\ddagger}$	3	7.25 ± 0.10	0.43 ± 0.01	3			
5.35**	11		(7.81 ± 0.13)	$0.01\pm0.03^{\ddagger}$	3	7.24 ± 0.05	0.74 ± 0.04	3			
UR- CH20 ²³⁻²⁴	1b	(\5	7.07 ± 0.02^{23}	$\underset{24}{0.28} \pm 0.03^{23}$	3	8.04 ± 0.04	0.87 ± 0.01	3			
5.36	4	∿ () ⁵ CH ₃	5.97 ± 0.04	1.16 ± 0.05	5	8.22 ± 0.06	0.95 ± 0.02	3			
5.37	5		5.78 ± 0.05	0.61 ± 0.02	5	7.00 ± 0.04	0.93 ± 0.02	3			
5.38	3	™, () ⁸ NH ₂	(5.51 ± 0.10)	$-0.03 \pm 0.01^{\ddagger}$	4	<5	$0.34\pm0.06\text{*}$	4			
5.39	4	[™] NH ²	6.70 ± 0.14	0.87 ± 0.04	5	8.13 ± 0.05	0.93 ± 0.01	3			
5.40	9	$\sqrt{2}$	(6.65 ± 0.08)	$-0.02 \pm 0.01^{\ddagger}$	3	(6.79 ± 0.02)	$-0.04 \pm 0.01^{\ddagger}$	3			
UR- SB291 ²³⁻²⁴	1b	X	$\begin{array}{c} 6.65 \pm 0.09^{23} \\ _{24} \end{array}$	$\underset{24}{0.40} \pm 0.06^{23}$	3	7.52 ± 0.11	0.84 ± 0.01	3			
5.41	2	\bigcap	(7.05 ± 0.04)	$0.03\pm0.02^{\ddagger}$	3	7.08 ± 0.05	0.49 ± 0.02	3			
5.42	3	CH ₃	(6.13 ± 0.12)	$0.01\pm0.01^{\ddagger}$	4	5.97 ± 0.02	0.19 ± 0.01	3			
5.43**	4		6.87 ± 0.09	0.90 ± 0.04	6	7.97 ± 0.03	0.88 ± 0.03	3			
5.44	9		(6.87 ± 0.10)	$-0.02 \pm 0.01^{\ddagger}$	4	(6.79 ± 0.03)	$-0.12 \pm 0.02^{\ddagger}$	3			
UR- CH22 ²³⁻²⁴	1b		7.00 ± 0.08^{23}	$0.33 \pm 0.03^{23} - _{24}$	3	8.14 ± 0.03	0.89 ± 0.01	3			
5.45	2	\sim	(6.89 ± 0.20)	$\textbf{-0.02}\pm0.01^\ddagger$	4	7.24 ± 0.07	0.86 ± 0.02	3			
5.46	3	~	(5.43 ± 0.14)	$0.01\pm0.01^\ddagger$	4	5.63 ± 0.07	0.71 ± 0.02	3			
5.47	4		6.86 ± 0.13	0.94 ± 0.06	5	8.48 ± 0.07	0.92 ± 0.01	4			

Table 5.3. (continued)

5.48 5.49 5.50 5.51**	6 9 10 11		7.31 ± 0.05 (7.81 ± 0.11) (7.13 ± 0.10) (7.35 ± 0.08) 7.24 + 0.11 ²³	$\begin{array}{c} 0.73 \pm 0.03 \\ 0.01 \pm 0.01^{\ddagger} \\ -0.10 \pm 0.09^{\ddagger} \\ 0.03 \pm 0.04^{\ddagger} \end{array}$	4 5 3 3	$\begin{array}{c} 8.31 \pm 0.14 \\ 7.30 \pm 0.04 \\ 7.16 \pm 0.10 \\ 7.19 \pm 0.05 \end{array}$	$\begin{array}{c} 0.94 \pm 0.03 \\ 0.08 \pm 0.01 \\ 0.67 \pm 0.02 \\ 0.73 \pm 0.02 \end{array}$	4 3 4 3
UR- Po563 ²³ 5.52*** 5.53 5.54 5.55***	1b 1a 4 7 8	CH3	7.34 ± 0.11^{23} 7.13 \pm 0.04 6.55 \pm 0.09 6.49 \pm 0.10 (<5)	$\begin{array}{c} 0.34 \pm 0.03^{23} \\ 0.72 \pm 0.06 \\ 0.87 \pm 0.02 \\ 0.37 \pm 0.02 \\ -0.02 \pm 0.01^{\ddagger} \end{array}$	4 3 5 4 3	$\begin{array}{l} 8.04 \pm 0.01 \\ \\ 8.17 \pm 0.01 \\ \\ 7.70 \pm 0.04 \\ \\ 7.59 \pm 0.04 \\ \\ <5" \end{array}$	$\begin{array}{c} 0.88 \pm 0.01 \\ 0.93 \pm 0.01 \\ 0.91 \pm 0.02 \\ 0.90 \pm 0.02 \\ 0.03 \pm 0.01^{\ddagger} \end{array}$	3 3 3 3 3
UR-MB- 69 ²³	1b	F	7.19 ± 0.11^{23}	0.30 ± 0.01^{23}	4	8.07 ± 0.01	0.89 ± 0.01	3
5.56 UR- SB257 ²³⁻²⁴	4 1b		$\begin{array}{c} 7.12 \pm 0.05 \\ 6.9 \pm 0.1^{23\text{-}24} \end{array}$	$\begin{array}{c} 1.04 \pm 0.03 \\ 0.10 \pm 0.01^{23} \\ _{24} \end{array}$	6 3	$\begin{array}{c} 8.09 \pm 0.04 \\ 7.43 \pm 0.02 \end{array}$	$\begin{array}{c} 0.95 \pm 0.01 \\ 0.73 \pm 0.02 \end{array}$	3 3
5.57** 5.58 5.59 5.60 5.61	4 5 6 9 10	CH3 CCH3	6.89 ± 0.17 (6.31 ± 0.14) 6.63 ± 0.08 (6.80 ± 0.06) (7.32 ± 0.10)	$\begin{array}{c} 0.53 \pm 0.04 \\ 0.04 \pm 0.05^{\ddagger} \\ 0.16 \pm 0.01 \\ -0.03 \pm 0.02^{\ddagger} \\ 0.01 \pm 0.02^{\ddagger} \end{array}$	5 4 4 4 4	$7.21 \pm 0.09 \\ 6.58 \pm 0.05 \\ 7.11 \pm 0.04 \\ (6.73 \pm 0.05) \\ (7.09 \pm 0.01) \\ \end{cases}$	$\begin{array}{c} 0.91 \pm 0.01 \\ 0.74 \pm 0.02 \\ 0.83 \pm 0.01 \\ -0.07 \pm 0.01^{\ddagger} \\ -0.08 \pm 0.01^{\ddagger} \end{array}$	4 3 4 3 3
5.62** UR- KAT527 ²³	11 1b		$ \begin{array}{c} (7.39 \pm 0.07) \\ 5.60 \pm 0.11^{23} \end{array} $	$\begin{array}{l} -0.01 \pm 0.02^{\ddagger} \\ 0.13 \pm 0.02^{23} \end{array}$	4 4	$ \begin{array}{c} (6.96 \pm 0.03) \\ 7.28 \pm 0.09 \end{array} $	$\begin{array}{c} 0.02 \pm 0.01^{\ddagger} \\ 0.76 \pm 0.04 \end{array}$	3 3
5.63 5.64 5.65 5.66**	4 9 10 11	CH ₃	$\begin{array}{c} 6.54 \pm 0.17 \\ (6.57 \pm 0.03) \\ (7.02 \pm 0.11) \\ (7.30 \pm 0.11) \end{array}$	$\begin{array}{c} 0.38 \pm 0.04 \\ \text{-}0.00 \pm 0.01^{\ddagger} \\ \text{-}0.08 \pm 0.11^{\ddagger} \\ \text{-}0.01 \pm 0.01^{\ddagger} \end{array}$	5 3 3 3	7.62 ± 0.09 (6.86 ± 0.03) (7.31 ± 0.01) 6.69 ± 0.04 (6.96 ± 0.03)	$\begin{array}{c} 0.84 \pm 0.02 \\ \text{-}0.08 \pm 0.01^{\ddagger} \\ \text{-}0.05 \pm 0.01^{\ddagger} \\ \text{-}0.04 \pm 0.01 \end{array}$	4 3 3 3
5.5 ²² 5.67 5.68 5.69**	1b 9 10 4	dimeric <th>$\begin{array}{c} 6.80 \pm 0.14 \\ (7.86 \pm 0.12) \\ (7.10 \pm 0.04) \\ 6.39 \pm 0.07 \end{array}$</th> <th>$\begin{array}{c} 0.30 \pm 0.04 \\ -0.03 \pm 0.07^{\ddagger} \\ -0.05 \pm 0.13^{\ddagger} \\ 0.82 \pm 0.06 \end{array}$</th> <th>6 4 3 4</th> <th>$7.62 \pm 0.02 \\ 6.13 \pm 0.12 \\ 6.59 \pm 0.12 \\ 7.70 \pm 0.12$</th> <th>$\begin{array}{c} 0.89 \pm 0.01 \\ 0.44 \pm 0.05 \\ 0.19 \pm 0.02 \\ 0.94 \pm 0.01 \end{array}$</th> <th>3 4 3 3</th>	$\begin{array}{c} 6.80 \pm 0.14 \\ (7.86 \pm 0.12) \\ (7.10 \pm 0.04) \\ 6.39 \pm 0.07 \end{array}$	$\begin{array}{c} 0.30 \pm 0.04 \\ -0.03 \pm 0.07^{\ddagger} \\ -0.05 \pm 0.13^{\ddagger} \\ 0.82 \pm 0.06 \end{array}$	6 4 3 4	$7.62 \pm 0.02 \\ 6.13 \pm 0.12 \\ 6.59 \pm 0.12 \\ 7.70 \pm 0.12$	$\begin{array}{c} 0.89 \pm 0.01 \\ 0.44 \pm 0.05 \\ 0.19 \pm 0.02 \\ 0.94 \pm 0.01 \end{array}$	3 4 3 3
5.70	4	dimeric $\sqrt{6}^{8}$	6.66 ± 0.03	0.81 ± 0.07	4	8.06 ± 0.02	0.94 ± 0.01	3

Table 5.3. (continued)

^aData represent mean values \pm SEM from N independent experiments, each performed in triplicate. ^bβ-arrestin2 recruitment assay was performed using HEK293T-ARRB2-H₂R cells.^{37, 39} ^cMini-G protein recruitment assay was performed using HEK293T NlucN-mGs/hH₂R-NlucC cells.⁴⁰ $^{d}pK_{b} = -\log K_{b}$. K_{b} values were calculated from the IC₅₀ values according to the Cheng-Prusoff equation.⁴⁴ The K_b values of antagonists or inverse agonists were determined in the antagonist mode versus 5.1 (8 μ M 5.1 for the β -arrestin2 recruitment assay or 1 μ M 5.1 for the mini-G protein recruitment assay). ^eThe response in both assays was normalized to the maximal effect induced by 100 μ M 5.1 (E_{max} = 1.00) and buffer control (E_{max} = 0.00). n.a.: not applicable, silent antagonist. ": inactive as agonist as well as antagonist. E_{max} at $c = 10 \mu M$. **Selected compounds were investigated for functional activity in the $[^{35}S]GTP\gamma S$ binding assay at the hH₂R- $G_{s\alpha S}$ fusion protein.¹²² The response was normalized to the maximal effect induced by 5.1 $(E_{max} = 1.00)$ and buffer control $(E_{max} = 0.00)$. The pIC₅₀ values of antagonists or inverse agonists were determined in the antagonist mode versus 5.1 (c = 1 μ M, EC₅₀ = 5.85 \pm 0.06) and converted to the corresponding K_b values by using the Cheng-Prusoff equation⁴⁴, $pK_b = -\log K_b$. The obtained results were in good agreement with the results from the mini-G protein recruitment assay. 5.31: $pEC_{50} = 7.59 \pm 0.11$, $E_{max} = 0.84 \pm 0.04$ (N = 3); **5.35**: $pEC_{50} = 7.23 \pm 0.10$, $E_{max} = 0.31 \pm 0.05$ (N = 3); **5.43**: pEC₅₀ = 7.88 ± 0.09, E_{max} = 0.78 ± 0.07 (N = 3); **5.51**: pEC₅₀ = 6.91 ± 0.07, $E_{max} = 0.26 \pm 0.03$ (N = 3); 5.57: pEC₅₀ = 7.89 ± 0.11, $E_{max} = 0.88 \pm 0.06$ (N = 4); 5.62: $pK_b = 6.79 \pm 0.18$ (N = 2, \pm SE); $E_{max} = -0.06 \pm 0.06^{\ddagger}$ (N = 2, \pm SE); **5.66**: $pK_b = 6.96 \pm 0.04$ $(N = 2, \pm SE); E_{max} = -0.07 \pm 0.04^{\ddagger} (N = 2, \pm SE).$ 5.69: $pEC_{50} = 7.46 \pm 0.09, E_{max} = 0.71 \pm 0.06$ (N = 3). ***Compounds 5.52 and 5.55 were also investigated on isolated spontaneously beating guinea pig right atrium ³⁵: **5.52**: pEC₅₀ = 8.88 ± 0.12 , E_{max} = 1.14 ± 0.17 (N = 3); **5.55**: not active, $E_{max} = 0$ (N = 3).

5.2.6 Functional Studies at the Guinea Pig H₂R

Furthermore, a selection of compounds (with a $pK_i > 7.0$ at the hH₂R and a selectivity over the hD_{2long/3} receptors) was investigated on the isolated spontaneously beating guinea pig right atrium as a more complex, well established standard model for the characterization of H₂R ligands (Table 5.4).^{5, 28} All compounds turned out to be full agonists in this assay ($E_{max} = 0.98$ to 1.15, cf. Table 5.4). The obtained data are generally comparable with the results from the gpH₂R mini-G protein recruitment assay in terms of potency and efficacy (Table 5.4). Noteworthily, **5.53**, **5.56** and **5.57** showed the highest discrepancies regarding the potency in both assays. While **5.53** and **5.56** showed higher potencies by about one logarithmic unit on the guinea pig right atrium, **5.57** behaved exactly the opposite (Table 5.4). The thiadiazole **5.56** (pEC₅₀ = 9.04) showed the highest potency on the guinea pig right atrium whereas **5.47** was the most potent compound in the mini-G protein recruitment assay data at the guinea pig and human H₂Rs showed that the potencies at the gpH₂R were slightly better for all substances tested, while the efficacies were pretty much the same. A similar observation was already published for the [³⁵S]GTPγS assay and the steady state GTPase assay.¹⁻⁴

Table 5.4. Potencies and Efficacies of the Tested N^G-Carbamoylated Guanidines Determined in the Mini-G Protein Recruitment Assay at the gpH₂R or by Organ Bath Studies at the Spontaneously Beating Guinea Pig Right Atrium^{*a*}

			H	et			_				
		Het	$ \begin{array}{c} NH_2 & O \\ N & N & N \\ H & N & H \\ H & H & H_2 \end{array} $	S N CH ₃ H ₂ N	N N						
			1	BB1b BB	4	BB6 BB7	1				
compd.	S	tructure	mGs red	cruitment ^b		atrium ^d					
	BB	R	pEC ₅₀	E_{max}^{c}	Ν	pEC_{50}^{e}	E_{max}^{f}	Ν			
5.1	-	-	6.60 ± 0.07^{25}	1.00^{25}	3	6.16 ± 0.01^{35}	1.00^{35}	225			
5.6 ²³	1b	$(a)^4$	n.d.	n.d.	-	8.24 ± 0.03^{23}	0.78 ± 0.03^{23}	3			
5.31	4	X CH3	8.36 ± 0.07	0.94 ± 0.01	3	8.25 ± 0.11	1.09 ± 0.02	3			
5.36	4	™, (-) ⁵ CH ₃	8.64 ± 0.05	0.96 ± 0.01	3	8.32 ± 0.06	1.06 ± 0.05	3			
5.47	4	$\checkmark \bigcirc$	8.66 ± 0.04	0.94 ± 0.01	3	8.88 ± 0.03	1.05 ± 0.01	3			
5.53	4		7.60 ± 0.03	0.90 ± 0.02	3	8.54 ± 0.09	0.98 ± 0.04	3			
5.54	7		7.79 ± 0.02	0.86 ± 0.03	3	7.42 ± 0.10	1.15 ± 0.11	3			
5.56	4	CH3 F	8.16 ± 0.03	0.93 ± 0.02	3	9.04 ± 0.10	1.10 ± 0.05	3			
5.57	4	CH3 CH3	7.83 ± 0.09	0.92 ± 0.01	3	7.02 ± 0.08	1.02 ± 0.10	3			

^{*a*}Data represent mean values \pm SEM from N independent experiments, each performed in triplicate. ^{*b*}Mini-G protein recruitment assay was performed using HEK293T NlucN-mGs/gpH₂R-NlucC cells.²⁵ ^{*c*}The response was normalized to the maximal effect induced by 100 μ M **5.1** (E_{max} = 1.00) and buffer control (E_{max} = 0.00). ^{*d*}Organ bath studies using the isolated, spontaneously beating guinea pig right atrium.³⁵ ^{*e*}pEC₅₀ was calculated from the mean corrected shift Δ EC₅₀ of the agonist curve relative to the histamine reference curve by equation: pEC₅₀ = 6.16 + Δ pEC₅₀. ^{*f*}E_{max}: maximal response relative to the maximal increase in heart rate induced by 30 μ M **5.1** (E_{max} = 1.00). n.d.: not determined.

5.2.7 Functional Studies at the Human D_{2long/3} Receptors

Although the relevant N^{G} -carbamoylated guanidines (5.31-5.32, 5.36, 5.47, 5.53-5.54 and 5.56-5.57) bind to the hD_{2long/3} receptors only with low affinity (p $K_i < 6.5$ (only 5.32 has a p $K_i > 6.5$ at the D₃R), see Table 5.2), we decided to characterize these ligands in the β -arrestin2 assay which is already established in our lab.³⁸ In addition, the data of 5.5²², 5.43, 5.48, 5.59, 5.63 and 5.69 were collected for a broader comparison of the compounds. The measured potencies and efficacies are presented in Table 5.5. All tested compounds showed agonistic activities in the β -arrestin2 recruitment assay at the hD₃R. In the β -arrestin2 recruitment assay at the hD_{2long}R, 5.47 and 5.54 were inactive (up to a tested concentration of 10 μ M, cf. Table 5.5). The remaining compounds

(5.5²², 5.31-5.32, 5.36, 5.43, 5.48, 5.53, 5.56, 5.59 and 5.69) acted as agonists with exception of 5.57 and 5.63, which were antagonists. Some compounds (5.31, 5.36, 5.43, 5.53 and 5.56 at the $hD_{2long}R$ and 5.54 and 5.57 at the $hD_{3}R$) showed only very weak partial agonism at the highest tested concentration of 10 μ M, which could not be fitted. In general, thiadiazoles showed lower potencies and efficacies at the $hD_{2long/3}$ receptors than their thiazole counterparts (cf. Table 5.5).

Table 5.5. Potencies and Efficacies of Selected N^{G} -Carbamoylated Guanidines Determined in the β -Arrestin2 Recruitment Assay at the hD_{2long}R or hD₃R^a

			Het					
		Het	$ \begin{array}{c} NH_2 & O \\ N & N \\ H & N \\ H & H \\ H_2 N \\ N \\ H \\ H_2 N \\ H $	CH ₃ N H ₂ N N	: H₂N			
1			BB		В	B6 BB7		
compd.		tructure		$P_{2long} \mathbf{R}^b$			$D_3 R^c$	
	BB	R	$pEC_{50}/(pK_b)^d$	E _{max} ^e	Ν	pEC ₅₀	E _{max} ^e	N
quinpirole	-	-	7.55 ± 0.07^{38}	1.00 ³⁸	5	8.75 ± 0.07^{38}	1.00 ³⁸	6
5.7	-	-	8.19 ± 0.05^{38}	0.86 ± 0.04^{38}	4	9.09 ± 0.06^{38}	0.99 ± 0.04^{38}	4
5.6 ²³	1b		5.98 ± 0.02^{23}	0.41 ± 0.05^{23}	4	7.80 ± 0.05^{23}	0.96 ± 0.05^{23}	3
5.31	4	³ √() ⁴ CH ₃	<5	$0.11 \pm 0.01^{\ddagger}$	3	5.55 ± 0.18	0.74 ± 0.08	3
5.32	6	ζ, - · · · Ο	5.85 ± 0.07	0.56 ± 0.05	4	7.40 ± 0.01	0.87 ± 0.01	3
5.36	4	∿ (-) ⁵ CH ₃	<5	$0.15\pm0.01^{\ddagger}$	3	6.09 ± 0.09	0.73 ± 0.07	4
5.43	4		<5	$0.17\pm0.05^\ddagger$	3	5.87 ± 0.10	0.26 ± 0.05	3
5.47	4	$\sim\sim$	<5	$0.05\pm0.02^{\ddagger}$	5	5.92 ± 0.14	0.43 ± 0.02	4
5.48	6	` U	5.47 ± 0.08	0.23 ± 0.04	3	7.17 ± 0.03	0.87 ± 0.04	3
5.53	4	CH3	<5	$0.06\pm0.01^{\ddagger}$	3	5.97 ± 0.16	0.71 ± 0.04	3
5.54	7	Y Y	<5	$0.00\pm0.01^\ddagger$	3	<5	$0.18\pm0.05^{\ddagger}$	3
5.56	4	F	<5	$0.07 \pm 0.01^{\ddagger}$	3	5.72 ± 0.07	0.73 ± 0.11	3
5.57	4	$\langle \gamma \gamma$	(5.69 ± 0.01)	$0.06\pm0.03^{\ddagger}$	3	<5	$0.12 \pm 0.01^{\ddagger}$	3
5.59	6	сн ₃ сн ₃	5.35 ± 0.06	0.31 ± 0.04	3	5.98 ± 0.02	0.71 ± 0.02	4
5.63	4		(5.42 ± 0.01)	$\textbf{-0.02}\pm0.02^\ddagger$	4	6.33 ± 0.07	0.56 ± 0.05	3
5.5 ²²	1b	dimeric	6.67 ± 0.09	0.88 ± 0.07	4	7.70 ± 0.08	1.01 ± 0.06	6
5.69	4	$\sqrt{6}$	5.95 ± 0.05	0.32 ± 0.05	3	6.53 ± 0.12	0.80 ± 0.03	3

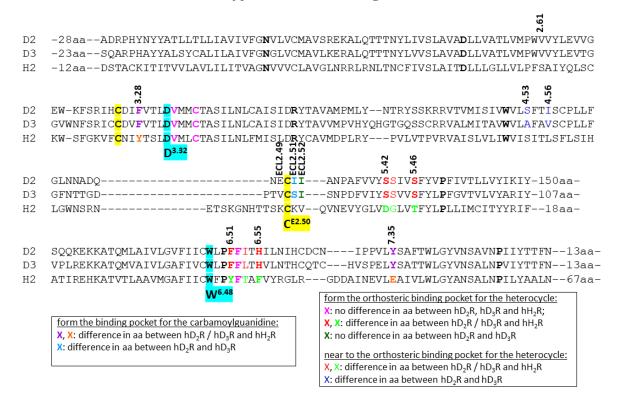
^{*a*}Data represent mean values \pm SEM from N independent experiments, each performed in triplicate. β -arrestin2 recruitment assay was performed using HEK293T ElucN- β arr2 hD_{2long}R-ElucC^{*b*} or HEK293T ElucN- β arr2 hD₃R-ElucC^{*c*} cells.³⁸ ^{*d*}pK_b = -logK_b. K_b values were calculated according to the Cheng-Prusoff equation.⁴⁴ The IC₅₀ values of antagonists were determined in the antagonist mode versus quinpirole (50 nM, D_{2long}R). ^{*e*}The response in both assays was normalized to the maximal effect induced by 10 μ M (E_{max} = 1.00) and buffer control (E_{max} = 0.00). [‡]E_{max} at c = 10 μ M.

5.2.8 Molecular Docking Studies

To shed light on the binding modes of the amino(methyl)thiazole- and the aminothiadiazolecontaining carbamoylguanidines and to get insight into the specific molecular interactions leading to the differences in hH₂R, hD₂R and hD₃R affinities, we performed molecular docking studies (Figure 5.6). We chose to investigate compounds **5.6** (2-amino-4-methylthiazole), **5.31** (2aminothiadiazole) and **5.32** (2-aminothiazole) on the active-state receptor models of the hH₂R (homology model based on the β_2 adrenergic receptor-Gs protein complex crystal structure $3SN6^{45}$; sequence identity of about $37\%^{20}$) and the hD₂R (based on the D₂R-G protein complex crystal structure $6VMS^{46}$). Since **5.6**, **5.31** and **5.32** act as agonists at the hD₃-receptor (β -arrestin2 assay, Table 5.5), they should be docked into its active-state receptor model. However, to the best of our knowledge, an active-state model of the D₃R has not been reported yet. To investigate the binding mode at the hD₃R despite this drawback, we decided to create mutants of the active-state hD₂R model, containing amino acid(s) (aa(s)) of hD₃R.

First of all, we studied and analyzed literature data regarding mutagenesis studies at aminergic GPCRs (primarily histamine and dopamine receptors) focusing onto the different amino acids of the orthosteric binding pocket at the hH_2R , the hD_2R and hD_3R .

At the hD₂R, the V^{2.61}F mutation led to an approx. 50-fold decrease in K_i of clozapine, compared to the human dopamine D₄ receptor (hD₄R).⁴⁷ Furthermore, multiple mutations at the hD₂R and hD₄R suggest that the amino acid at position 2.61 is part of a microdomain (including the amino acids at 3.28, 3.29, 7.35), which is partially accountable for the selectivity between hD₂R and hD₄R.⁴⁷ At the hH₁R, the mutation N^{2.61}S (hH₁R \rightarrow gpH₁R) had no or only a small influence onto the binding affinities of small compounds, like mepyramine, cetirizine or histamine, while the p K_i of more voluminous partial agonists (e.g. suprahistaprodifen and dimeric histaprodifen) increased towards gpH₁R.⁴⁸ However, another study indicates that this amino acid is not the only responsible amino acid for the observed species differences between hH₁R and gpH₁R.⁴⁹ Besides, the influence of distinct amino acids (ECL2.49, ECL2.51 and ECL2.52, Figure 5.5) of the extracellular loop 2 (ECL2) onto binding affinity of ligands at the hD₂R and hD₃R was shown by mutagenesis.⁵⁰⁻⁵³ The position 5.42 is highly important for ligand binding at several aminergic GPCRs: for example, the S^{5.42}A mutation at the hD₁R⁵⁴, mouse D₂R, hD₂R⁵⁵⁻⁵⁶ or hD₃R⁵⁷ led to a ≥10-fold alteration of the affinity of different ligands. Additionally, also the S^{5.46}A mutant at several aminergic GPCRs, e.g. 5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-


Type Histamine H₂R Agonists

at the hD₁R, led to a \geq 10-fold alteration of affinity for selected ligands^{54, 58-59} and the amino acid at 5.46 is suggested to influence the subtype selectivity.⁶⁰ Moreover, for other mutants, e.g. N^{5.46}A at gpH_1R^{61-62} or $E^{5.46}D_{,Q}$ at hH_4R^{63-64} a ≥ 10 -fold alteration of ligand-affinity was reported. Although the single mutations $S^{5.42}A$ and $S^{5.46}A$ did not significantly reduce the binding affinity for e.g. (-)-epinephrine, the double mutation $S^{5.42}A/S^{5.46}A$ led to an approx. 100-fold reduced affinity compared to the wild-type rat (r) α_1 -adrenergic receptor⁶⁵, indicating that both amino acids affect each other. Furthermore, it was shown that the mutation of the amino acid at position 6.51 may affect the affinity up to 1000-fold, e.g. for the F^{6.51}A,L,Y mutants at the hD₂R.⁶⁶ The mutation $I^{6.53}V$ at hH₁R was described to increase the K_d of $[^{3}H]$ mepyramine by approx. 10-fold⁶⁷, while in another study a slight decrease was reported.⁴⁸ Several further studies showed that mutations of the amino acid at position 6.55 may lead to an up to 25-fold alteration of the binding affinity, e.g. for the gpH_1R - $F^{6.55}A^{68}$, rD_2R - $H^{6.55}L^{69}$, hD_3R - $H^{6.55}L^{70}$ and rD_2R - $H^{6.55}N^{71}$. However, these studies also suggest that the amino acid at position 6.55 may affect the binding affinity not only by a direct interaction with the ligand, but also by changing the interaction network within the receptor. Also the amino acid 7.35 was described to affect ligand affinity, as shown by the W^{7.35}A,F mutants of the human muscarinic receptor M_1 .⁷²

The docking studies of 5.31 and 5.32 suggest that the heterocyclic 5-membered ring (BB4 or BB6, respectively), particularly if surrounded by the amino acids C^{3.36}, T^{3.37}, D^{5.42}, T^{5.46} and F^{6.55}, fits well into the orthosteric binding pocket of the hH₂R (Figure 5.6A, shown for **5.31**). However, both heterocycles are suggested to bind in a conformation with the sulfur being located near to $C^{3.36}$ and $T^{3.37}$. Additionally, 5.31 and 5.32 are stabilized by an electrostatic interaction between the aspartate of the D^{5.42}-T^{5.46} motif and the NH₂-group of the heterocycle (Figure 5.6A, shown for 5.31). The carbamoylguanidine moiety of both 5.31 and 5.32 forms an electrostatic interaction network with the amino acids $Y^{3.28}$, $D^{3.32}$ and $E^{7.35}$ (Figure 5.6A, shown for 5.31). 5.31 and 5.32 could also be docked into the analog binding pocket of the hD₂R. In contrast to the hH₂R, there is a serine instead of an aspartate at position 5.42, which results in a reduced electrostatic interaction of the hD₂R and the NH₂ moiety of the heterocycle (BB4 or BB6, respectively) (Figure 5.6B, shown for 5.31). As roughly estimated by calculation of the docking energy between the hH₂R or the hH₂R-D^{5.42}S mutant and 5.31 or 5.32, respectively, the interaction energy is considerably reduced for the hH₂R-D^{5.42}S mutant. Thus, this missing interaction is probably one reason for the reduced affinity of 5.31 or 5.32 at hD₂R and hD₃R, compared to hH₂R. For the hD₂R, no compensating interaction between the heterocycle (BB4 or BB6, respectively) and the receptor could be identified.

5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-

Type Histamine H₂R Agonists

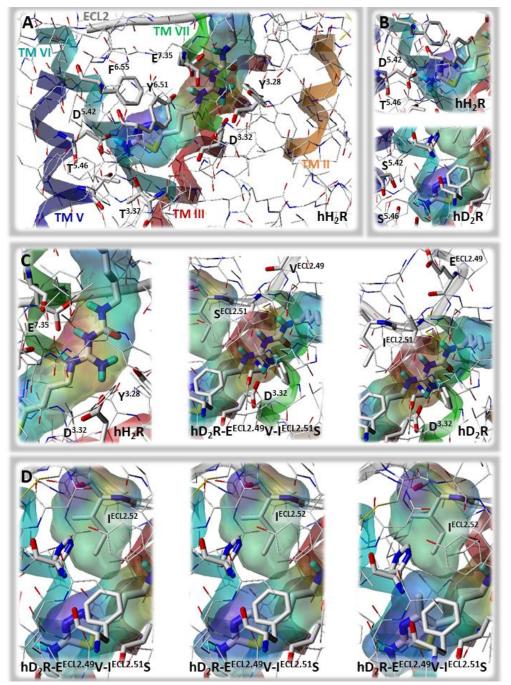


Figure 5.5. Comparison of the amino acid sequence of hH_2R , hD_2R and hD_3R . The amino acid sequences are given in the one-letter code. Colored and/or bold letters were used to indicate the amino acids, which form and/or are in close proximity to the binding pockets for the heterocycle and the carbamoylguanidine.

Next, we performed further investigations to elucidate why the compounds **5.31** and **5.32** have a higher affinity to hD₃R than to hD₂R. Concerning the 5.42-5.46 motif, the situation at the hD₃R is identical compared to the hD₂R. Although a comparison of the amino acid sequence between hD₂R and hD₃R revealed two differences at the positions 4.53 and 4.56 (hD₂R: S^{4.53}, I^{4.56}; hD₃R: $A^{4.53}$, V^{4.56}), which are in close proximity to the 5.42-5.46 motif, subsequent docking studies at the hD₂R-S^{4.53}A-I^{4.56}V mutant suggested that these amino acids are not responsible for the subtype selectivity between hD₂R and hD₃R. Therefore, we performed an analysis of the interaction between the carbamoylguanidine moiety and the hD₂R or hD₃R. We observed that at position 7.35 the glutamate (hH₂R) is exchanged into a tyrosine, which is not able to establish an as strong electrostatic interaction as the glutamate. Furthermore, the Y^{3.28}, which also interacts at the hH₂R with the carbamoylguanidine by an electrostatic interaction, is a phenylalanine at the hD₂R and

hD₃R, resulting in a deficit in electrostatic interaction. These two reduced interactions between hD₂R and the carbamoylguanidine constitute probably another reason for the reduced affinity of 5.31 or 5.32 at hD_2R or hD_3R compared to hH_2R . An advanced comparison of the amino acid sequence between hD₂R and hD₃R revealed another two differences in the ECL2 in neighborhood to the highly conserved cysteine (hD₂R: E^{ECL2.49}C^{ECL2.50}I^{ECL2.51}; hD₃R: V^{ECL2.49}C^{ECL2.50}S^{ECL2.51}) (for amino-acid alignment see Figure 5.5). In case of the hD_2R , the $E^{ECL2.49}$ is too far away from the carbamoylguanidine moiety of the ligand and is not able to establish an electrostatic interaction (Figure 5.6C, right). In contrast, at the hD_3R , the $S^{ECL2.51}$ is able to form a hydrogen bond with the carbamovlguanidine (cf. hD₂R-E^{ECL2.49}V-I^{ECL2.51}S, Figure 5.6C, center). Thus, the reduced interaction between the receptor and the carbamoylguanidine moiety in the series $hH_2R \rightarrow hD_3R$ \rightarrow hD₂R will explain the reduced affinity, obtained by competition binding studies, within the same sequence. However, this effect could only be observed for the double mutant hD₂R- $E^{ECL2.49}V$ -I^{ECL2.51}S, not for the single mutant hD₂R-I^{ECL2.51}S. As suggested by the modelling studies, in case of the single mutant, the S^{ECL2.51} interacts with E^{ECL2.49} and not with the carbamoylguanidine moiety of the ligand. Thus, the double mutation is suggested to be essential for the reduced affinity of the compounds at the hD_2R compared to the hD_3R . Furthermore, the experimental studies show a decrease in affinity to the hD₃R in the series $5.6 \rightarrow 5.32 \rightarrow 5.31$. Here, the docking studies suggest that an isoleucine of the ECL2 (I^{ECL2.52}) is responsible for that trend (Figure 5.6D). This isoleucine is in close contact with the methyl group of the heterocycle of compound 6 establishing an additional van-der-Waals interaction between 6 and the receptor (Figure 5.6D, right). For 5.32, this contact, and therefore the van-der-Waals interaction, is reduced due to the replacement of the methyl group with a proton at the heterocycle (Figure 5.6D, center). For **5.31**, this interaction is completely missing due to the presence of an additional nitrogen atom in the ring (Figure 5.6D, left). In summary, the docking studies at the active state models of the hH₂R and the hD₂R suggest, that the amino acids at the positions 3.28, 3.32, ECL2.49, ECL2.51, 5.42 and 7.35 are responsible for different affinities of 5.6, 5.31 and 5.32 at hH₂R, hD₂R and hD₃R. However, this participation has to be verified in detail by the corresponding mutagenesis experiments in futures studies.

5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-

Figure 5.6. A: Active-state model of the hH₂R with **5.31** in the binding pocket. The most important amino acids interacting with **5.31** are highlighted. **B**: Differences between the interaction sites of the aminothiadiazole moiety of **5.31** and the hH₂R or the hD₂R, respectively. **C**: The most important amino acids of hH₂R (left), hD₂R-E^{ECL2.49}V-I^{ECL2.51}S (center) and hD₂R (right), interacting with the carbamoylguanidine moiety of **5.31**. **D**: The influence of the isoleucine at position ECL2.52 of the ECL2 onto the interaction with the heterocycle of **5.31** (left), **5.32** (center) and **5.6** (right).

Type Histamine H₂R Agonists

5.3 Summary and Conclusion

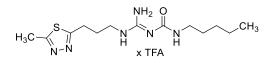
In summary, we aimed for the development of novel, subtype-selective H₂R ligands, which also have a selectivity over dopamine $D_{2long/3}$ receptors. To achieve this goal, we synthesized and characterized a series of 40 compounds containing a carbamoylguanidine as key motif, as well as varying heterocycles, spacers, and side residues. We observed that the replacement of the thiazole by a thiadiazole ring in N^{G} -carbamovlated thiazolylpropylguanidines resulted in potent H₂R agonists with affinities in the low one-digit nanomolar range. Furthermore, ligands containing this modification possess a significantly increased selectivity for the hH₂R over dopamine hD_{2long/3} receptors. To identify the molecular interactions leading to this selectivity towards the hD_{2long/3} receptors, molecular docking studies with 5.6²³, 5.31 (UR-KAT505) and 5.32 (UR-KAT583) on the active state models of the hH₂R and the hD₂R were performed. We found that 3.28, 3.32, ECL2.49, ECL2.51, 5.42 and 7.35 are most likely the responsible amino acids, which will be confirmed in future receptor mutagenesis experiments. Within the synthesized thiadiazolecontaining ligand series, compounds 5.31 and 5.47 (UR-KAT533) turned out to be the most promising candidates reaching up to 1000-fold selectivity over the other three receptor subtypes (hH_{1,3,4}R). **5.31** showed the highest selectivity for hH₂R over hD_{2long}R (>2000-fold) and 260-fold selectivity for hH₂R over hD₃R. **5.47** on the other hand, showed a very good selectivity for hH₂R over hD_{2long}R (>1000-fold) and the highest selectivity for hH₂R over hD₃R (>520-fold). These key characteristics render 5.31 and 5.47 the most affine and selective monomeric carbamovlguanidinetype agonists known so far. Therefore, we plan to employ them as pharmacological tools for further investigations on the physiological and pathophysiological role of the H₂R and hope that those studies can contribute to clarify the largely unknown function of H₂ receptors in the CNS.

5.4 Experimental Section

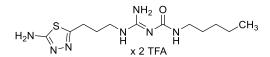
5.4.1 General Experimental Section

Unless otherwise stated, chemicals and solvents were from commercial suppliers and were used as received. All the solvents were of analytical grade or were distilled prior to use. For column chromatography silica gel 60 (0.04-0.063 mm, Merck, Darmstadt, Germany) was used. Flash chromatography was performed on an Intelli Flash-310 workstation from Varian Deutschland GmbH (Darmstadt, Germany) with SuperFlash (SF) columns (Si50, 4-40 g) from Agilent Technologies (Santa Clara, CA, USA). Reactions were monitored by thin layer chromatography

(TLC) on Merck silica gel 60 F254 aluminium sheets, and spots were visualized with UV light at 254 nm or ninhydrin staining. NMR spectra were recorded on a Bruker Avance 300 (¹H: 300 MHz, ¹³C: 76 MHz), a Bruker Avance 400 (¹H: 400 MHz, ¹³C: 101 MHz) and a Bruker Avance 600 (¹H: 600 MHz, ¹³C: 151 MHz) (Bruker, Karlsruhe, Germany) NMR spectrometer with deuterated solvents from Deutero (Kastellaun, Germany). All chemical shifts are reported in δ -scale as parts per million (ppm, multiplicity, coupling constant (J), number of protons) relative to the solvent residual peaks as the internal standard.⁷³⁻⁷⁴ The spectra were analyzed by first order and coupling constants are given in Hertz (Hz). Abbreviations for the multiplicities of the signals are s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), dd (double of doublets), br s (broad singlet). HRMS was performed on a Q-TOF 6540 UHD LC/MS system (Agilent Technologies) using an ESI source or on an AccuTOF GCX GC/MS system (Jeol, Peabody, MA, USA) using an EI source. Preparative HPLC was performed with a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps, a K-2001 detector and the column was a Phenomenex Kinetex (250 x 21 mm, 5 µm) (Phenomenex, Aschaffenburg, Germany). As mobile phase mixtures of MeCN and 0.1% aqueous TFA were used. The UV detection was carried out at 220 nm. Prior to lyophilization (ScanVac CoolSafe 4-15L freeze dryer from Labogene (LMS, Brigachtal, Germany), equipped with a RZ 6 rotary vane vacuum pump (Vacuubrand, Wertheim, Germany)), MeCN was removed under reduced pressure. Analytical HPLC experiments were performed on a 1100 HPLC system from Agilent Technologies equipped with Instant Pilot controller, a G1312A binary pump, a G1329A ALS autosampler, a G1379A vacuum degasser, a G1316A column compartment and a G1315B DAD detector. The column was a Phenomenex Kinetex XB-C18 column (250 x 4.6 mm, 5 µm) (Phenomenex, Aschaffenburg, Germany), tempered at 30 °C. As mobile phase, mixtures of MeCN/aqueous TFA were used. The following linear gradients were applied. Compounds 5.30-5.51 and 5.57-5.70: MeCN/TFA (0.05 %) (v/v) 0 min: 10:90, 30 min: 90:10, 33 min: 95:5, 40 min: 95:5; flow rate: 0.8 mL/min, t₀ = 3.21 min. Compounds 5.52-5.56: MeCN/TFA (0.05 %) (v/v) 0 min: 10:90, 25 min: 95:5, 35 min: 95:5; flow rate: 1.0 mL/min, $t_0 = 2.67$ min. The injection volume was 5-50 µL. Absorbance was detected at 220 nm. Compound concentration was between 100-1000 µM.

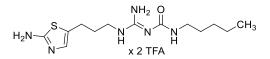

5.4.2 Compound Characterization

Target compounds (5.30-5.70) were characterized by ¹H-NMR, ¹³C-NMR, and 2D NMR (COSY, HSQC, HMBC) spectroscopy, HRMS, and RP-HPLC analysis. The corresponding ¹H- and ¹³C-NMR spectra as well as RP-HPLC chromatograms are shown in the Supporting Information of the published manuscript (submitted for publication). The purities of the H₂R ligands used for pharmacological investigation were \geq 95%. All stock solutions were prepared in DMSO or water/DMSO 1:1 (v/v) or 20 mM HCl/DMSO 1:1 (v/v).

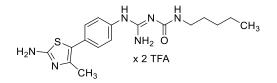

5.4.3 Synthesis and Analytical Data

General procedure for the synthesis of the carbamovlguanidine-type ligands (5.30-5.36, 5.38-5.57 and 5.59-5.70). The reaction was performed in analogy to the published procedure for bivalent carbamoylguanidine-type ligands.²² In this general procedure, mercuric chloride (HgCl₂) is used as a reagent, which is very toxic and potentially carcinogenic. It should be used only in a well-ventilated fume hood after reading the safety precautions and wearing proper lab safety equipment (gloves, safety googles and lab coat). Future synthetic work should consider replacements for HgCl₂. The guanidinylating reagents 5.18-5.29 (1-1.1 equiv) and 1-2 equiv of the respective amines 5.8-5.17 were dissolved in CH₂Cl₂ (3-20 mL). NEt₃ (2.5-3 equiv) and HgCl₂ (1.1-2 equiv) were added to the mixture and stirring was continued for 4-48 h. The precipitate was removed by filtration through Celite 545 or centrifugation (4000 x g, 5 min). In the case of 5.52-5.56 the reaction was quenched with 7 N NH₃ (5 mL) in MeOH prior to filtration. The solvent was removed in vacuum. The crude product was purified by flash or column chromatography on silica gel (gradient: 0-20 min: petroleum ether/ethyl acetate (PE/EtOAc) 100:0-50:50, SF 8-12 g, gradient: CH₂Cl₂/MeOH 90:10 to CH₂Cl₂/MeOH/25% NH₃ in H₂O 50:50:1, or isocratic: CH₂Cl₂/7 N NH₃ in MeOH 99:1) and dried in vacuum. The Trt- and/or Boc-protected intermediates were analyzed using LC-MS (data not shown). Subsequently, the deprotection was performed by stirring the respective compound with 30-70% TFA in CH₂Cl₂ (5-14 mL) for 7-18 h. The obtained carbamoylguanidines (cf. 5.30-5.36, 5.38-52, 55, 57 and 59-70) were purified by preparative HPLC. In case of 5.53-5.54 and 5.56, the HCl salts were synthesized according to the following procedure. After deprotection with TFA, the ligands were purified by column chromatography (isocratic: CH₂Cl₂/7 N NH₃ in MeOH 90:10) yielding the free base. The free base was dissolved in 1,4-dioxane (10 mL) and 1-2 N HCl (5 mL) in diethyl ether (Et₂O) was added

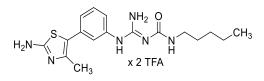
dropwise, so that the HCl salt precipitated. The suspension was concentrated in vacuum and the solid was washed with Et_2O (3 x 15 mL). After removing of the solvent in vacuum, compounds **5.53-5.54** and **5.56** were obtained as HCl salts.


1-(Amino{[3-(5-methyl-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(pentyl)urea hydrotrifluoroacetate (5.30) was prepared from amine **5.10** (29 mg, 0.19 mmol, 1.1 equiv), **5.18** (51 mg, 0.17 mmol, 1 equiv), NEt₃ (58 μL, 0.42 mmol, 2.5 equiv) and HgCl₂ (91 mg, 0.34 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (25 mg, 34%). $R_f = 0.01$ (PE/EtOAc 3:7). RP-HPLC: 98%, ($t_R = 13.5$ min, k = 3.21). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.46 (br s, 1H), 9.06 (br s, 1H), 8.54 (br s, 2H), 7.51 (br s, 1H), 3.37-3.29 (m, 2H), 3.12-3.04 (m, 4H), 2.68 (s, 3H), 1.96 (quint, J = 7.4 Hz, 2H), 1.44 (quint, J = 7.2 Hz, 2H), 1.32-1.20 (m, 4H), 0.86 (t, J = 7.1 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 169.15, 165.01, 159.81 (q, J = 31.9 Hz, TFA), 153.89, 153.69, 117.36 (q, J = 299.5 Hz, TFA), 40.02, 19.11, 28.61, 28.39, 27.94, 26.31, 21.75, 15.10, 13.85. HRMS (ESI-MS): calcd. for C₁₃H₂₅NOS⁺: 313.1805; found: 313.1827. MF: C₁₃H₂₄N₆OS x C₂HF₃O₂. MW: (312.44 + 114.02).

1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(pentyl)urea dihydrotrifluoroacetate (5.31) was prepared from amine **5.11** (53 mg, 0.18 mmol, 1 equiv), **5.18** (50 mg, 0.19 mmol, 1.1 equiv), NEt₃ (61 μL, 0.44 mmol, 2.5 equiv) and HgCl₂ (96 mg, 0.35 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (19 mg, 19%). $R_f = 0.49$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 99%, ($t_R = 11.4 \text{ min}, k = 2.55$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.37 (br s, 1H), 9.04 (br s, 1H), 8.52 (br s, 2H), 8.10-7.34 (m, 4H), 3.30 (q, J = 6.7 Hz, 2H), 3.09 (q, J = 6.6 Hz, 2H), 2.86 (t, J = 7.5 Hz, 2H), 1.89 (quint, J = 7.4 Hz, 2H), 1.44 (quint, J = 7.1 Hz, 2H), 1.31-1.22 (m, 4H), 0.86 (t, J = 7.0 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 168.77, 158.93 (q, J = 34.3 Hz, TFA), 157.42, 153.86, 153.68, 116.45 (q, J = 297.7 Hz, TFA), 40.05, 39.21, 28.60, 28.39, 27.34, 26.52, 21.75,


Type Histamine H₂R Agonists

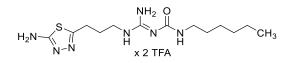
13.86. HRMS (ESI-MS): calcd. for $C_{12}H_{24}N_7OS^+$: 314.1758; found: 314.1761. MF: $C_{12}H_{23}N_7OS \ge C_4H_2F_6O_4$. MW: (313.42 + 228.05).


1-(Amino{[3-(2-aminothiazol-5-yl)propyl]amino}methylene)-3-(pentyl)urea

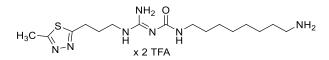
dihydrotrifluoroacetate (5.32) was prepared from amine **5.12** (30 mg, 0.12 mmol, 1 equiv), **5.18** (39 mg, 0.13 mmol, 1.1 equiv), NEt₃ (41 µL, 0.29 mmol, 2.5 equiv) and HgCl₂ (64 mg, 0.23 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (16.9 mg, 26%). $R_f = 0.56$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 99%, ($t_R = 11.0 \text{ min}, k = 2.43$). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.45 (br s, 1H), 9.41-8.85 (m, 3H), 8.50 (br s, 2H), 7.48 (br s, 1H), 7.07 (s, 1H), 3.26 (q, J = 6.6 Hz, 2H), 3.08 (q, J = 6.6 Hz, 2H), 2.63 (t, J = 7.5 Hz, 2H), 1.77 (quint, J = 7.3 Hz, 2H), 1.42 (quint, J = 7.2 Hz, 2H), 1.32-1.18 (m, 4H), 0.85 (t, J = 7.0 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 169.37, 159.06 (q, J = 33.2 Hz, TFA), 153.82, 153.68, 123.95, 123.48, 116.62 (q, J = 296.7 Hz, TFA), 39.87, 39.10, 28.60, 28.46, 28.38, 23.29, 21.75, 13.86. HRMS (ESI-MS): calcd. for C₁₃H₂₅N₆OS⁺: 313.1805; found: 313.1807. MF: C₁₃H₂₄N₆OS x C₄H₂F₆O₄. MW: (312.44 + 228.05).

1-(Amino{[4-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(pentyl)urea dihydrotrifluoroacetate (5.33) was prepared from amine **5.15** (60 mg, 0.20 mmol, 1 equiv), **5.18** (66 mg, 0.22 mmol, 1.1 equiv), NEt₃ (68 μL, 0.49 mmol, 2.5 equiv) and HgCl₂ (107 mg, 0.39 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (55 mg, 45%). $R_f = 0.45$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 11.8 \text{ min}, k = 2.68$). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.72 (br s, 1H), 10.13 (br s, 1H), 9.33-7.91 (m, 4H), 7.59 (t, J = 5.6 Hz, 1H), 7.51-7.45 (m, 2H), 7.41-7.35 (m, 2H), 3.11 (t, J = 7.0 Hz, 2H), 2.25 (s, 3H), 1.44 (quint, J = 7.1 Hz, 2H), 1.33-1.19 (m, 4H), 0.86 (t, J = 7.1 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 166.94, 159.14 (q, J = 33.1 Hz, TFA), 153.48, 153.36,

138.18, 137.69, 132.72, 130.37, 129.35, 126.20, 116.55 (q, J = 298.0 Hz, TFA), 115.92, 39.20, 28.53, 28.39, 21.75, 14.43, 13.87. HRMS (ESI-MS): calcd. for C₁₇H₂₅N₆OS⁺: 361.1805; found: 361.1806. MF: C₁₇H₂₄N₆OS x C₄H₂F₆O₄. MW: (380.48 + 228.05).

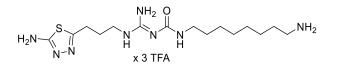


1-(Amino{[3-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(pentyl)urea dihydrotrifluoroacetate (5.34) was prepared from amine 5.16 (30 mg, 0.10 mmol, 1 equiv), 5.18 (33 mg, 0.11 mmol, 1.1 equiv), NEt₃ (33 µL, 0.25 mmol, 2.5 equiv) and HgCl₂ (53 mg, 0.20 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (28 mg, 48%). $R_f = 0.55$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, $(t_{\rm R} = 12.0 \text{ min}, k = 2.74)$. ¹H-NMR (600 MHz, DMSO-d₆) δ 10.64 (br s, 1H), 10.00 (br s, 1H), 9.30-7.78 (m, 4H), 7.57 (t, J=5.6 Hz, 1H), 7.52 (t, J = 7.9 Hz, 1H), 7.39-7.35 (m, 1H), 7.34 (t, J = 2.0 Hz, 1H), 7.29-7.24 (m, 1H), 3.11 (t, J = 7.0 Hz, 2H), 2.25 (s, 3H), 1.44 (quint, J = 7.1 Hz, 2H), 1.34-1.19 (m, 4H), 0.86 (t, J = 7.1 Hz, 3H).¹³C-NMR (151 MHz, DMSO-d₆) δ 166.86, 159.00 (q, J = 32.8 Hz, TFA), 153.52, 153.34, 134.31, 133.13, 130.40, 127.21, 125.21, 124.28, 116.66 (q, J = 296.3 Hz, TFA), 115.89, 39.17, 28.54, 28.38, 21.74, 14.82, 13.88. HRMS (ESI-MS): calcd. for $C_{17}H_{25}N_6OS^+$: 361.1805; found: 361.1811. MF: $C_{17}H_{24}N_6OS \ge C_4H_2F_6O_4.$ MW: (360.48 + 228.05).

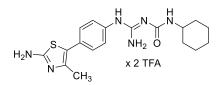

$$H_2N \xrightarrow{N} H_2 \xrightarrow{N} H_2 \xrightarrow{N} H_2 \xrightarrow{N} H_3 \xrightarrow{N} H_4 \xrightarrow{N}$$

1-(Amino{[(2-amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl]amino}methylene)-3-(pentyl)urea dihydrotrifluoroacetate (5.35) was prepared from amine 5.17 (77 mg, 0.18 mmol, 1.1 equiv), 5.18 (50 mg, 0.17 mmol, 1 equiv), NEt₃ (57 μL, 0.41 mmol, 2.5 equiv) and HgCl₂ (90 mg, 0.33 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (21 mg, 22%). $R_f = 0.59$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 10.6 \text{ min}, k = 2.30$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.56 (br s, 1H), 9.28-8.81 (m, 3H), 8.56 (br s, 2H), 7.51 (br s, 1H), 3.36-3.22 (m, 2H), 3.08 (q, J = 6.6 Hz, 2H), 2.67-2.58 (m, 1H), 2.56-2.50 (m, 1H), 2.47-2.36 (m, 1H), 2.23-2.16 (m, 1H), 2.10-2.00 (m, 1H), 1.92-1.83 (m, 1H),

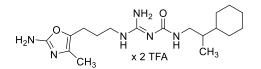
1.50-1.38 (m, 3H), 1.31-1.17 (m, 4H), 0.85 (t, J = 7.1 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 168.63, 159.46 (q, J = 32.8 Hz, TFA), 154.08, 153.83, 134.60, 116.85 (q, J = 296.5 Hz, TFA), 113.20, 44.62, 40.05, 39.16, 33.22, 28.63, 28.42, 25.52, 24.53, 22.00, 21.78, 13.88. HRMS (ESI-MS): calcd. for C₁₅H₂₇N₆OS⁺: 399.1962; found: 399.1964. MF: C₁₅H₂₆N₆OS x C₄H₂F₆O₄. MW: (338.47 + 228.05).


1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(hexyl)urea dihydrotrifluoroacetate (5.36) was prepared from amine 5.11 (22 mg, 0.086 mmol, 1 equiv), 5.19 (30 mg, 0.095 mmol, 1.1 equiv), NEt₃ (30 µL, 0.215 mmol, 2.5 equiv) and HgCl₂ (47 mg, 0.172 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (8.44 mg, 18%). RP-HPLC: 96%, ($t_{\rm R} = 12.9$ min, k = 3.02). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.15 (br s, 1H), 9.01 (br s, 1H), 8.50 (br s, 2H), 8.03-7.24 (m, 3H), 3.30 (q, J = 6.7 Hz, 2H), 3.09 (q, J = 6.6 Hz, 2H), 2.86 (t, J = 7.5 Hz, 2H), 1.89 (quint, J = 7.4 Hz, 2H), 1.43 (quint, J = 6.9 Hz, 2H), 1.31-1.21 (m, 6H), 0.89-0.83 (m, 2H). ¹³C-NMR (151 MHz, DMSOd₆) δ 168.77, 157.42, 158.59 (q, J = 34.2 Hz, TFA), 153.79, 153.60, 116.18 (q, J = 293.6 Hz, TFA), 39.97, 39.14, 30.87, 28.87, 27.29, 26.52, 25.86, 22.01, 13.87. HRMS (ESI-MS): calcd. for 328.1914; found: 328.1917. MF: $C_{13}H_{25}N_7OS \ge C_4H_2F_6O_4.$ $C_{13}H_{26}N_7OS^+$: MW: (327.45 + 228.05).

1-(Amino{[3-(5-methyl-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(8-

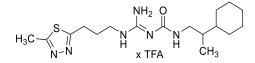

aminooctyl)urea dihydrotrifluoroacetate (5.38) was prepared from amine 5.10 (17 mg, 0.11 mmol, 1.1 equiv), 5.20 (46 mg, 0.1 mmol, 1 equiv), NEt₃ (35 µL, 0.25 mmol, 2.5 equiv) and HgCl₂ (54 mg, 0.2 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (22 mg, 37%). $R_f = 0.48$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 97%, ($t_R = 9.1 \text{ min}, k = 1.83$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.54 (br s, 1H), 9.05 (br s, 1H), 8.53 (br s, 2H), 7.77 (br s, 3H), 7.52 (br s, 1H), 3.40-3.29 (m, 4H), 3.11-3.05 (m, 4H), 2.76 (t,

J = 6.7 Hz, 2H), 2.67 (s, 3H), 1.96 (quint, J = 7.3 Hz, 2H), 1.51 (quint, J = 7.3 Hz, 2H), 1.46-1.39 (m, 2H), 1.32-1.21 (m, 8H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 169.62, 165.49, 159.38 (q, J = 31.3 Hz, TFA), 154.36, 154.18, 117.44 (q, J = 297.3 Hz, TFA), 40.48, 40.52, 39.26, 29.37, 28.91, 28.89, 28.40, 27.42, 26.77, 26.55, 26.19, 15.57. HRMS (ESI-MS): calcd. for C₁₆H₃₂N₇OS⁺: 370.2384; found: 370.2388 MF: C₁₆H₃₁N₇OS x C₄H₂F₆O₄. MW: (369.53 + 228.05).



1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(8-

aminooctyl)urea trihydrotrifluoroacetate (5.39) was prepared from amine **5.11** (15 mg, 0.054 mmol, 1 equiv), **5.20** (25 mg, 0.05 mmol, 1.1 equiv), NEt₃ (19 µL, 0.14 mmol, 2.5 equiv) and HgCl₂ (29 mg, 0.11 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (10 mg, 26%). RP-HPLC: 96%, (t_R = 7.9 min, k = 1.46). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.39 (br s, 1H), 9.05 (br s, 1H), 8.54 (br s, 2H), 7.88-7.29 (m, 6H), 3.32 (q, J = 6.7 Hz, 2H), 3.11 (q, J = 6.6 Hz, 2H), 2.87 (t, J = 7.5 Hz, 2H), 2.82-2.74 (m, 2H), 1.91 (quint, J = 7.4 Hz, 2H), 1.53 (quint, J = 7.4 Hz, 2H), 1.45 (q, J = 6.7 Hz, 2H), 1.28 (s, 8H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 168.65, 158.58 (q, J = 33.5 Hz, TFA), 157.35, 153.84, 153.67, 116.53 (q, J = 296.1 Hz, TFA), 39.94, 39.16, 38.80, 28.90, 28.44, 27.38, 26.96, 26.49, 26.10, 25.72. HRMS (ESI-MS): calcd. for C₁₅H₃₁N₈OS⁺: 370.2384; found: 370.2388. MF: C₁₅H₃₀N₈OS x C₆H₃F₉O₆. MW: (369.53 + 342.07).

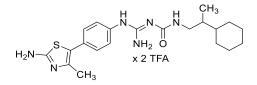


1-(Amino{[4-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(cyclohexyl)urea dihydrotrifluoroacetate (5.40) was prepared from amine 5.15 (50 mg, 0.16 mmol, 1 equiv), 5.21 (57 mg, 0.18 mmol, 1.1 equiv), NEt₃ (57 μ L, 0.41 mmol, 2.5 equiv) and HgCl₂ (89 mg, 0.33 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (51 mg, 53%). R_f = 0.54 (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, (t_R = 11.6 min, k = 2.61). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.87 (br s, 1H), 10.18 (br s, 1H), 9.39-8.20 (m, 4H), 7.64 (d, J = 7.6 Hz, 1H), 7.54-7.48 (m, 2H), 7.43-7.37 (m, 2H), 3.55-3.44 (m, 1H), 2.27 (s, 3H), 1.86-1.73 (m, 2H), 1.71-1.60 (m, 2H), 1.58-1.48 (m, 1H), 1.36-1.12 (m, 5H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 167.25, 159.13 (q, J = 33.7 Hz, TFA), 153.55, 152.60, 136.24, 133.04, 129.92, 129.45, 126.26, 116.57 (q, J = 297.3 Hz, TFA), 115.79, 48.40, 32.05, 24.96, 24.12, 13.95. HRMS (ESI-MS): calcd. for C₁₈H₂₅N₆OS⁺: 373.1805; found: 373.1804. MF: C₁₈H₂₄N₆OS x C₄H₂F₆O₄. MW: (372.49 + 228.05).

1-(Amino{[3-(2-amino4-methyloxazol-5-yl)propyl]amino}methylene)-3-(2-

cyclohexylpropyl)urea dihydrotrifluoroacetate (5.41) was prepared from amine **5.9** (35 mg, 0.1 mmol, 1 equiv), **5.22** (36 mg, 0.1. mmol, 1 equiv), NEt₃ (35 μL, 0.25 mmol, 2.5 equiv) and HgCl₂ (54 mg, 0.2 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (14.1 mg, 24%). $R_f = 0.52$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 97%, ($t_R = 15.0 \text{ min}, k = 3.67$). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.38 (br s, 1H), 9.00 (br s, 3H), 8.51 (br s, 2H), 7.48 (br s, 1H), 3.28 (q, J = 6.7 Hz, 2H), 3.19-3.12 (m, 1H), 2.99-2.92 (m, 1H), 2.59 (t, J = 7.3 Hz, 2H), 2.01 (s, 3H), 1.80-1.69 (m, 4H), 1.66-1.56 (m, 4H), 1.51-1.44 (m, 1H), 1.26-0.91 (m, 7H), 0.81 (d, J = 6.9 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 158.83 (q, J = 32.5 Hz, TFA), 157.40, 153.84, 153.74, 139.03, 120.74, 116.81 (q, J = 295.7 Hz, TFA), 42.87, 40.06, 39.24, 37.79, 30.29, 27.92, 26.24, 26.17, 26.07, 25.93, 20.21, 14.04, 7.95. HRMS (ESI-MS): calcd. for C₁₈H₃₃N₆O₂⁺: 365.2660; found: 365.2660. MF: C₁₈H₃₂N₆O₂ x C₄H₂F₆O₄. MW: (364.26 + 228.05).

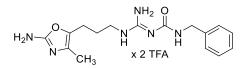
1-(Amino{[3-(5-methyl-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(2-


cyclohexylpropyl)urea hydrotrifluoroacetate (5.42) was prepared from amine 5.10 (22 mg, 0.14 mmol, 1.1 equiv), 5.22 (46 mg, 0.13 mmol, 1 equiv), NEt₃ (43 μ L, 0.32 mmol, 2.5 equiv) and HgCl₂ (70 mg, 0.26 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (12 mg, 19%). R_f = 0.54 (CH₂Cl₂/MeOH 9:1). RP-HPLC:

97%, ($t_{\rm R} = 17.9 \text{ min}$, k = 4.58). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.19 (br s, 1H), 9.02 (br s, 1H), 8.51 (br s, 2H), 7.47 (br s, 1H), 3.35-3.31 (m, 2H), 3.17-3.04 (m, 3H), 2.97-2.89 (m, 1H), 2.68 (s, 3H), 1.97 (quint, J = 7.4 Hz, 2H), 1.75-1.66 (m, 2H), 1.64-1.53 (m, 3H), 1.51-1.42 (m, 1H), 1.25-0.90 (m, 6H), 0.80 (d, J = 6.9 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 169.62, 165.49, 159.43 (q, J = 32.2 Hz, TFA), 154.23, 154.15, 117.50 (q, J = 296.6 Hz, TFA), 43.35, 40.51, 38.25, 30.76, 28.38, 26.78, 26.71, 26.64, 26.54, 15.58, 14.52. HRMS (ESI-MS): calcd. for C₁₇H₃₁N₆OS⁺: 367.2275; found: 367.2301. MF: C₁₇H₃₀N₆OS x C₂HF₃O₂. MW: (366.53 + 114.02).

$$H_2N \xrightarrow{N-N} N \xrightarrow{NH_2 O} N \xrightarrow{NH_2 O} N \xrightarrow{N+2} N$$

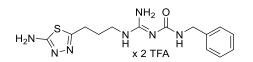
1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(2-


cyclohexylpropyl)urea dihydrotrifluoroacetate (5.43) was prepared from amine **5.11** (20 mg, 0.08 mmol, 1 equiv), **5.22** (31 mg, 0.09 mmol, 1.1 equiv), NEt₃ (27 μL, 0.20 mmol, 2.5 equiv) and HgCl₂ (43 mg, 0.16 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (8 mg, 17%). RP-HPLC: 99%, ($t_R = 15.5 \text{ min}$, k = 3.83). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.01 (br s, 1H), 8.98 (br s, 1H), 8.48 (br s, 2H), 7.46 (br s, 3H), 3.29 (q, J = 6.7 Hz, 2H), 3.16-3.09 (m, 1H), 2.96-2.89 (m, 1H), 2.84 (t, J = 7.5 Hz, 2H), 1.88 (quint, J = 7.3 Hz, 2H), 1.72-1.66 (m, 2H), 1.63-1.53 (m, 3H), 1.50-1.41 (m, 1H), 1.25-0.88 (m, 6H), 0.79 (d, J = 6.9 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 168.60, 158.58 (q, J = 33.5 Hz, TFA), 157.33, 153.90, 153.68, 116.46 (q, J = 296.2 Hz, TFA), 42.88, 40.01, 39.45, 37.77, 30.28, 27.91, 27.37, 26.49, 26.24, 26.17, 26.07, 14.06. HRMS (ESI-MS): calcd. for C₁₆H₃₀N₇OS⁺: 368.2227; found: 368.2230. MF: C₁₆H₂₉N₇OS x C₄H₂F₆O₄. MW: (367.52 + 228.05).

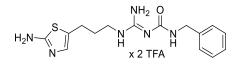
1-(Amino{[4-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(2-

cyclohexylpropyl)urea dihydrotrifluoroacetate (5.44) was prepared from amine 5.15 (32 mg, 0.11 mmol, 1.1 equiv), 5.22 (34 mg, 0.10 mmol, 1 equiv), NEt₃ (33 μ L, 0.24 mmol, 2.5 equiv) and HgCl₂ (52 mg, 0.19 mmol, 2 equiv) according to the general procedure yielding the product as a

white, foamlike and hygroscopic solid (41 mg, 64%). $R_f = 0.50$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 15.6 \text{ min}, k = 3.86$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.86 (br s, 1H), 10.42 (br s, 1H), 9.48-8.14 (m, 4H), 7.61 (t, J = 5.8 Hz, 1H), 7.54-7.47 (m, 2H), 7.43-7.37 (m, 2H), 3.21-3.12 (m, 1H), 3.01-2.92 (m, 1H), 2.27 (s, 3H), 1.75-1.66 (m, 2H), 1.65-1.55 (m, 3H), 1.52-1.44 (m, 1H), 1.28-0.90 (m, 6H), 0.81 (d, J = 6.9 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 167.22, 159.16 (q, J = 33.8 Hz, TFA), 153.50, 136.35, 133.09, 129.90, 129.43, 126.13, 116.56 (q, J = 297.3 Hz, TFA), 115.82, 42.99, 39.71, 37.75, 30.29, 27.92, 26.23, 26.17, 26.06, 14.07, 13.99. HRMS (ESI-MS): calcd. for C₂₁H₃₁N₆OS⁺: 415.2275; found: 415.2275. MF: C₂₁H₃₀N₆OS x C₄H₂F₆O₄. MW: (414.57 + 228.05).

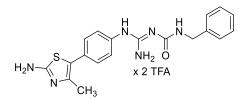


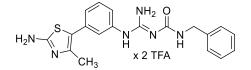
1-(Amino{[3-(2-amino-4-methyloxazol-5-yl)propyl]amino}methylene)-3-(benzyl)urea dihydrotrifluoroacetate (5.45) was prepared from amine **5.9** (35 mg, 0.1 mmol, 1 equiv), **5.23** (32 mg, 0.1 mmol, 1 equiv), NEt₃ (35 μL, 0.25 mmol, 2.5 equiv) and HgCl₂ (54 mg, 0.2 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (14.9 mg, 27%). $R_f = 0.52$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 96%, ($t_R = 10.4 \text{ min}, k = 2.24$). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.51 (br s, 1H), 9.14-8.85 (m, 3H), 8.55 (br s, 2H), 8.00 (br s, 1H), 7.39-7.19 (m, 5H), 4.31 (d, J = 5.8 Hz, 2H), 3.27 (q, J = 6.7 Hz, 2H), 2.57 (t, J = 7.3 Hz, 2H), 1.99 (s, 3H), 1.75 (quint, J = 7.2 Hz, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 158.79 (q, J = 32.4 Hz, TFA), 157.42, 153.82, 153.77, 139.01, 138.68, 128.40, 127.22, 127.11, 120.81, 116.87 (q, J = 298.7 Hz, TFA), 42.77, 40.06, 25.92, 20.22, 7.98. HRMS (ESI-MS): calcd. for C₁₆H₂₃N₆O₂⁺: 331.1877; found: 331.1882. MF: C₁₆H₂₂N₆O₂ x C₄H₂F₆O₄. MW: (330.39 + 228.05).


$$H_{3}C \xrightarrow{S} H_{2} O \\ H_{3}C \xrightarrow{N-N} H X TFA H H X TTA H X TTA$$

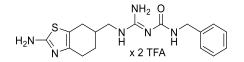
1-(Amino{[3-(5-methyl-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(benzyl)urea hydrotrifluoroacetate (5.46) was prepared from amine **5.10** (25 mg, 0.16 mmol, 1.1 equiv), **5.23** (47 mg, 0.15 mmol, 1 equiv), NEt₃ (50 μL, 0.36 mmol, 2.5 equiv) and HgCl₂ (79 mg, 0.29 mmol,

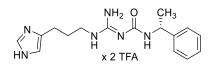
2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (13.5 mg, 20%). $R_f = 0.54$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 98%, ($t_R = 12.6 \text{ min}, k = 2.93$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.40-10.08 (m, 1H), 9.03 (br s, 1H), 8.54 (br s, 2H), 8.05-7.95 (m, 1H), 7.38-7.22 (m, 5H), 4.31 (d, J = 5.8 Hz, 2H), 3.39-3.28 (m, 2H), 3.07 (t, J = 7.6 Hz, 2H), 2.67 (s, 3H), 1.96 (quint, J = 7.2 Hz, 2H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 169.62, 165.50, 159.42 (q, J = 30.9 Hz, TFA), 154.24, 139.13, 128.88, 127.70, 127.58, 117.47 (q, J = 296.9 Hz, TFA), 43.24, 40.55, 28.35, 26.79, 15.58. HRMS (ESI-MS): calcd. for C₁₅H₂₁N₆OS⁺: 333.1492; found: 333.1501. MF: C₁₅H₂₀N₆OS x C₂HF₃O₂. MW: (332.43 + 114.02).


1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(benzyl)urea dihydrotrifluoroacetate (5.47) was prepared from amine **5.11** (48 mg, 0.19 mmol, 1.2 equiv), **5.23** (50 mg, 0.16 mmol, 1 equiv), NEt₃ (54 μL, 0.39 mmol, 2.5 equiv) and HgCl₂ (84 mg, 0.31 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (20.8 mg, 23%). RP-HPLC: 98%, ($t_R = 10.4 \text{ min}, k = 2.24$). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.46 (br s, 1H), 9.06 (br s, 1H), 8.56 (br s, 2H), 8.35-7.51 (m, 2H), 7.36-7.22 (m, 5H), 4.31 (d, J = 5.8 Hz, 2H), 3.30 (q, J = 6.7 Hz, 2H), 2.86 (t, J = 7.6 Hz, 2H), 1.89 (quint, J = 7.3 Hz, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 169.07, 158.95 (q, J = 34.7 Hz, TFA), 157.58, 153.84 (2C), 138.70, 128.41 (2C), 127.24 (2C), 127.10, 116.14 (q, J = 295.1 Hz, TFA) 42.78, 40.00, 27.16, 26.59. HRMS (ESI-MS): calcd. for C₁₄H₂₀N₇OS⁺: 334.1445; found: 334.1447. MF: C₁₄H₁₉N₇OS x C₄H₂F₆O₄. MW: (333.41 + 228.05).

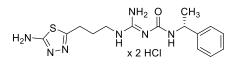

1-(Amino{[3-(2-aminothiazol-5-yl)propyl]amino}methylene)-3-(benzyl)urea

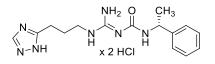
dihydrotrifluoroacetate (5.48) was prepared from amine **5.12** (30 mg, 0.12 mmol, 1 equiv), **5.23** (41 mg, 0.13 mmol, 1.1 equiv), NEt₃ (41 μ L, 0.29 mmol, 2.5 equiv) and HgCl₂ (64 mg, 0.23 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (20.4 mg, 30%). R_f = 0.56 (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%,


 $(t_{\rm R} = 10.2 \text{ min}, k = 2.18)$. ¹H-NMR (600 MHz, DMSO-d₆) δ 10.68 (br s, 1H), 9.10 (br s, 3H), 8.57 (br s, 2H), 8.01 (br s, 1H), 7.43-7.20 (m, 5H), 7.06 (s, 1H), 4.32 (d, J = 5.9 Hz, 2H), 3.27 (q, J = 6.6 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 1.79 (quint, J = 7.3 Hz, 2H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 169.35, 159.24 (q, J = 32.7 Hz, TFA), 153.88, 153.83, 138.72, 128.40 (2C), 127.22 (2C), 127.09, 123.96, 123.88, 116.7 (q, J = 298.4 Hz, TFA), 42.76, 39.94, 28.49, 23.30. HRMS (ESI-MS): calcd. for C₁₅H₂₁N₆OS⁺: 333.1492; found: 333.1495. MF: C₁₅H₂₀N₆OS x C₄H₂F₆O₄. MW: (332.43 + 228.05).


1-(Amino{[4-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(benzyl)urea dihydrotrifluoroacetate (5.49) was prepared from amine **5.15** (60 mg, 0.20 mmol, 1 equiv), **5.23** (70 mg, 0.22 mmol, 1.1 equiv), NEt₃ (68 μL, 0.49 mmol, 2.5 equiv) and HgCl₂ (107 mg, 0.39 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (58 mg, 48%). $R_f = 0.46$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 99%, ($t_R = 10.9 \text{ min}, k = 2.40$). ¹H-NMR (600 MHz, DMSO-d₆) δ 11.69-10.16 (m, 2H), 9.42-8.58 (m, 4H), 8.15 (t, J = 5.9 Hz, 1H), 7.54-7.49 (m, 2H), 7.45-7.39 (m, 2H), 7.38-7.25 (m, 5H), 4.35 (d, J = 5.8 Hz, 2H), 2.27 (s, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 167.46, 159.52 (q, J = 33.6 Hz, TFA), 153.62, 138.52, 135.20, 133.36, 129.52, 128.43, 127.33, 127.17, 126.19, 116.55 (q, J = 295.9 Hz, TFA), 115.73, 42.88, 13.63. HRMS (ESI-MS): calcd. for C₁₉H₂₁N₆OS⁺: 381.1492; found: 381.1491. MF: C₁₉H₂₀N₆OS x C₄H₂F₆O₄. MW: (380.47 + 228.05).

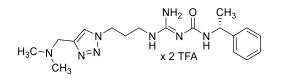
1-(Amino{[3-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(benzyl)urea dihydrotrifluoroacetate (5.50) was prepared from amine 5.16 (30 mg, 0.10 mmol, 1 equiv), 5.23 (35 mg, 0.22 mmol, 1.1 equiv), NEt₃ (33 μ L, 0.25 mmol, 2.5 equiv) and HgCl₂ (53 mg, 0.20 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (27 mg, 44%). $R_f = 0.52$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 11.1 \text{ min}, k = 2.46$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.90 (br s, 1H), 10.54 (br s, 1H), 8.42-9.20 (m, 4H), 8.11 (t, J = 5.9 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.42-7.23 (m, 8H), 4.34 (d, J = 5.8 Hz, 2H), 2.26 (s, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 167.32, 159.14 (q, J = 33.5 Hz, TFA), 153.64, 153.60, 138.50, 136.81, 134.48, 132.36, 130.47, 128.42, 127.30, 127.16, 125.36, 124.75, 116.52 (q, J = 295.6 Hz, TFA), 115.65, 42.85, 14.04. HRMS (ESI-MS): calcd. for C₁₉H₂₁N₆OS⁺: 381.1492; found: 381.1498. MF: C₁₉H₂₀N₆OS x C₄H₂F₆O₄. MW: (380.47 + 228.05).


1-(Amino{[(2-amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl]amino}methylene)-3-(benzyl)urea dihydrotrifluoroacetate (5.51) was prepared from amine 5.17 (85 mg, 0.20 mmol, 1 equiv), 5.23 (71 mg, 0.22 mmol, 1.1 equiv), NEt₃ (76 μL, 0.55 mmol, 2.5 equiv) and HgCl₂ (119 mg, 0.44 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (45 mg, 38%). $R_f = 0.48$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 9.8$ min, k = 2.05). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.65 (br s, 1H), 9.27-8.84 (m, 3H), 8.61 (br s, 2H), 8.03 (br s, 1H), 7.35-7.30 (m, 2H), 7.30-7.23 (m, 3H), 4.31 (d, J = 5.8 Hz, 2H), 3.28 (q, J = 6.8 Hz, 2H), 2.63 (dd, J = 16.2, 5.0 Hz, 1H), 2.55-2.50 (m, 1H), 2.47-2.36 (m, 1H), 2.23-2.15 (m, 1H), 2.10-2.01 (m, 1H), 1.91-1.83 (m, 1H), 1.50-1.40 (m, 1H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 168.60, 159.33 (q, J = 32.7 Hz, TFA), 154.04, 153.98, 138.73, 134.64, 128.44, 127.26, 127.14, 116.82 (q, J = 299.9 Hz, TFA), 113.21, 44.67, 42.80, 33.20, 25.53, 24.54, 22.01. HRMS (ESI-MS): calcd. for C₁₇H₂₃N₆OS⁺: 359.1649; found: 359.1645. MF: C₁₇H₂₂N₆OS x C₄H₂F₆O₄. MW: (358.46 + 228.05).

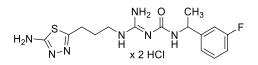

1-(Amino{[3-(1*H*-imidazol-4-yl)propyl]amino}methylene)-3-((*R*)-(1-phenylethyl))urea dihydrotrifluoroacetate (5.52) was prepared from 5.8 (327 mg, 0.89 mmol, 1 equiv), 5.24 (300 mg, 0.89 mmol, 1 equiv), HgCl₂ (265 mg, 0.98 mmol, 1.1 equiv) and NEt₃ (372 μ L,

Type Histamine H₂R Agonists

2.67 mmol, 3 equiv) according to the general procedure yielding 429.1 mg (73%) of Trt-/Bocprotected intermediate. 306 mg thereof were deprotected in the next step yielding **5.52** as a white, foamlike and hygroscopic solid after purification by preparative HPLC (129.7 mg, 51%). RP-HPLC: 100%, ($t_R = 8.3 \text{ min}$, k = 2.11). ¹H-NMR (300 MHz, MeOD) δ 8.75 (d, J = 1.4 Hz, 1H), 7.35-7.18 (m, 6H), 4.94-4.85 (m, 1H), 3.38-3.29 (m, 2H), 2.81 (t, J = 7.3 Hz, 2H), 2.00 (quint, J = 7.4 Hz, 2H), 1.47 (d, J = 7.0 Hz, 3H). ¹³C-NMR (75 MHz, MeOD) δ 161.87 (q, J = 34.4 Hz, TFA), 154.56, 153.29, 143.49, 133.46, 132.86, 128.72 (2C), 126.89, 125.56 (2C), 116.7 (q, J = 288.2 Hz, TFA), 114.97, 49.71, 39.99, 26.73, 21.29, 21.10. HRMS (ESI-MS): calcd. for C₁₆H₂₃N₆O⁺: 315.1928, found: 315.1932. MF: C₁₆H₂₂N₆O x C₄H₂F₆O₄. MW: (314.39 + 228.05).



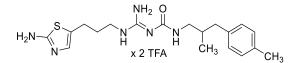
1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-((*R***)-(1-phenylethyl))urea dihydrochloride (5.53)** was prepared from **5.11** (407 mg, 1.47 mmol, 1 equiv), **5.24** (494 mg, 1.47 mmol, 1 equiv), HgCl₂ (438 mg, 1.61 mmol, 1.1 equiv) and NEt₃ (613 μL, 4.40 mmol, 3 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (50 mg, 8%). RP-HPLC: 100%, ($t_R = 9.3 \text{ min}, k = 2.48$). ¹H-NMR (300 MHz, MeOD) δ 7.37-7.20 (m, 5H), 4.89-4.85 (m, 1H), 3.49-3.35 (m, 2H), 3.02 (t, J = 7.2 Hz, 2H), 2.09 (quint, J = 6.8 Hz, 2H), 1.47 (d, J = 6.9 Hz, 3H). ¹³C-NMR (75 MHz, MeOD) δ 143.33, 128.26 (2C), 126.97, 125.65 (2C), 49.80, 40.08, 26.80, 26.63, 21.44, 4 C-signals are missing due to the low concentration of the sample. HRMS (ESI-MS): calcd. for C₁₅H₂₂N₇OS⁺: 348.1601, found: 348.1605. MF: C₁₅H₂₁N₇OS x H₂Cl₂. MW: (347.44 + 72.92).



1-(Amino{[3-(1*H*-1,2,4-triazol-5-yl)propyl]amino}methylene)-3-((*R*)-(1-phenylethyl))urea dihydrochloride (5.54) was prepared from 5.13 (420 mg, 1.14 mmol, 1 equiv), 5.24 (423 mg, 1.25 mmol, 1.1 equiv), HgCl₂ (340 mg, 1.25 mmol, 1.1 equiv) and NEt₃ (474 μ L, 3.42 mmol, 3 equiv) according to the general procedure yielding 560 mg (75%) of Trt-/Boc-protected intermediate. 540 mg thereof were deprotected in the next step yielding 5.54 as a white, foamlike

and hygroscopic solid after purification by preparative HPLC (200 mg, 63%). RP-HPLC: 100%, ($t_{\rm R} = 9.1 \text{ min}, k = 2.41$). ¹H NMR (300 MHz, MeOD) δ 9.27 (s, 1H), 7.41-7.19 (m, 5H), 4.88 (q, J = 6.8 Hz, 1H), 3.56-3.37 (m, 2H), 3.21-3.01 (m, 2H), 2.15 (quint, J = 7.3 Hz, 2H), 1.46 (d, J = 7.0 Hz, 3H). ¹³C-NMR (75 MHz, MeOD) δ 155.98, 155.71, 154.19, 144.64, 143.46, 129.56 (2C), 128.27, 126.95 (2C), 51.11, 41.42, 26.36, 22.97, 22.84. HRMS (ESI-MS): calcd. for C₁₅H₂₂N₇O⁺: 316,1880, found: 316.1883. MF: C₁₅H₂₁N₇O x H₂Cl₂. MW: (315.38 + 72.92).

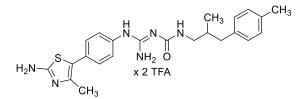
1-(Amino{[3-(4-((dimethylamino)methyl)-1*H***-1,2,3-triazol-1-yl)propyl]amino}methylene)-3-((***R***)-(1-phenylethyl))urea trihydrotrifluoroacetate (5.55) was prepared from 5.14 (298 mg, 1.63 mmol, 1 equiv), 5.24 (549 mg, 1.63 mmol, 1 equiv), HgCl₂ (486 mg, 1.79 mmol, 1.1 equiv) and NEt₃ (680 μL, 4.88 mmol, 3 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (50 mg, 5%). RP-HPLC: 98%, (t_R = 8.3 \text{ min}, k = 2.11). ¹H-NMR (300 MHz, MeOD) δ 8.22 (s, 1H), 7.36-7.20 (m, 5H), 4.90-4.85 (m, 1H), 4.55 (t, J = 6.7 \text{ Hz}, 2\text{H}), 4.42 (s, 2H), 3.34 (t, J = 6.7 \text{ Hz}, 2\text{H}), 2.88 (s, 6H), 2.25 (p, J = 6.9 \text{ Hz}, 2\text{H}), 1.47 (d, J = 7.0 \text{ Hz}, 3\text{H}). ¹³C-NMR (75 MHz, MeOD) δ 156.03, 144.86, 138.09, 129.63 (2C), 128.33, 128.05, 126.97 (2C), 52.42, 51.09, 48.65, 42.92 (2C), 39.51, 29.69, 22.70, 1 C signal is missing due to the low concentration of the sample. HRMS (ESI-MS): calcd. for C₁₈H₂₉N₈O⁺: 373.2459, found: 373.2463. MF: C₁₈H₂₈N₈O x C₄H₂F₆O₄. MW: (372.48 + 228.05).**


1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(1-(3-

fluorophenyl)ethyl)urea dihydrochloride (5.56) was prepared from **5.11** (130 mg, 0.50 mmol, 1 equiv), **5.25** (179 mg, 0.50 mmol, 1 equiv), HgCl₂ (150 mg, 0.55 mmol, 1.1 equiv) and NEt₃ (211 μ L, 1.51 mmol, 3 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (70 mg, 32%). RP-HPLC: 100%, ($t_R = 9.8 \text{ min}$, k = 2.67). ¹H-NMR (300 MHz, MeOD) δ 7.40-7.29 (m, 1H), 7.20-7.06 (m, 2H), 7.02-6.92 (m, 1H), 4.91-4.86 (m, 1H), 3.46-3.38 (m, 2H), 3.03 (t, J = 7.4 Hz, 2H), 2.08 (p, J = 7.1 Hz, 2H), 1.47 (d, J = 7.0 Hz,

3H). ¹³C-NMR (75 MHz, MeOD) δ 172.03, 164.29 (d, J = 244.2 Hz), 159.72, 155.61, 154.34, 147.72 (d, J = 7.0 Hz), 131.41 (d, J = 8.2 Hz), 122.88 (d, J = 2.7 Hz), 114.92 (d, J = 21.3 Hz), 113.81 (d, J = 22.2 Hz), 50.76, 41.44, 28.22, 27.50, 22.63. HRMS (ESI-MS): calcd. for C₁₅H₂₁FN₇OS⁺: 366.1507, found: 366.1509. MF: C₁₅H₂₀FN₇OS x H₂Cl₂. MW: (365.43 + 72.92).

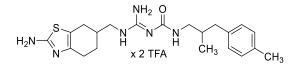
$$H_2N \xrightarrow{S}_{N-N} N \xrightarrow{NH_2 O}_{N-N} N \xrightarrow{N}_{N} N \xrightarrow{N}_{H} O \xrightarrow{N}_{$$


1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(2-methyl-3-(p-tolyl)propyl)urea dihydrotrifluoroacetate (5.57) was prepared from amine **5.11** (66 mg, 0.26 mmol, 1.1 equiv), **5.26** (85 mg, 0.22 mmol, 1 equiv), NEt₃ (78 μL, 0.56 mmol, 2.5 equiv) and HgCl₂ (121 mg, 0.45 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (24 mg, 18%). RP-HPLC: 98%, ($t_R = 15.0 \text{ min}, k = 3.67$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.28 (br s, 1H), 9.01 (br s, 1H), 8.50 (br s, 2H), 7.40-8.03 (s, 3H), 7.11-6.99 (m, 4H), 3.29 (q, J = 6.7 Hz, 2H), 3.12-3.02 (m, 1H), 2.96-2.89 (m, 1H), 2.85 (t, J = 7.5 Hz, 2H), 2.62-2.54 (m, 1H), 2.36-2.27 (m, 1H), 2.25 (s, 3H), 1.93-1.82 (m, 3H), 0.78 (d, J = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 168.81, 158.87 (q, J = 34.7 Hz, TFA), 157.45, 153.77, 136.97, 134.72, 128.81, 128.78, 116.33 (q, J = 294.0 Hz, TFA), 44.05, 40.06, 39.98, 34.86, 27.30, 26.53, 20.61, 17.08. HRMS (ESI-MS): calcd. for C₁₈H₂₈N₇OS⁺: 390.2071; found: 390.2077. MF: C₁₈H₂₇N₇OS x C₄H₂F₆O₄. MW: (389.52 + 228.05).

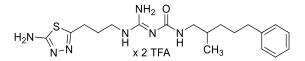

1-(Amino{[3-(2-aminothiazol-5-yl)propyl]amino}methylene)-3-(2-methyl-3-(p-

tolyl)propyl)urea dihydrotrifluoroacetate (5.59) was prepared from amine **5.12** (37 mg, 0.15 mmol, 1.1 equiv), **5.26** (50 mg, 0.13 mmol, 1 equiv), NEt₃ (46 μ L, 0.33 mmol, 2.5 equiv) and HgCl₂ (72 mg, 0.26 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (18.2 mg, 23%). R_f = 0.55 (CH₂Cl₂/MeOH 9:1). RP-HPLC: 99%, (t_R = 14.5 min, k = 3.52). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.51 (br s, 1H), 9.46-8.69 (m, 3H), 8.51 (br s, 2H), 7.56 (br s, 1H), 7.13-6.97 (m, 5H), 3.27 (q, J = 6.6 Hz, 2H), 3.13-3.03 (m, 1H), 2.98-2.87 (m, 1H), 2.64 (t, J = 7.5 Hz, 2H), 2.60-2.55 (m, 1H), 2.35-2.28 (m, 1H), 2.25 (s,

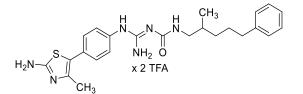
3H), 1.92-1.82 (m, 1H), 1.78 (quint, J = 7.3 Hz, 2H), 0.79 (d, J = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 169.30, 159.18 (q, J = 32.9 Hz, TFA) 153.81, 153.77, 136.97, 134.72, 128.81 (2C), 128.77 (2C), 123.96 (2C), 116.69 (q, J = 297.1 Hz, TFA), 44.64, 40.06, 39.90, 34.87, 28.52, 23.30, 20.61, 17.07. HRMS (ESI-MS): calcd. for C₁₉H₂₉N₆OS⁺: 389.2118; found: 389.2122. MF: C₁₉H₂₈N₆OS x C₄H₂F₆O₄. MW: (388.53 + 228.05).



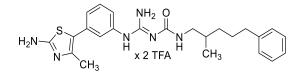
1-(Amino{[4-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(2-methyl-3-(p-tolyl)propyl)urea dihydrotrifluoroacetate (5.60) was prepared from amine **5.15** (50 mg, 0.16 mmol, 1 equiv), **5.26** (68 mg, 0.18 mmol, 1.1 equiv), NEt₃ (57 μL, 0.41 mmol, 2.5 equiv) and HgCl₂ (89 mg, 0.33 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (58 mg, 55%). $R_f = 0.64$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 15.2 \text{ min}$, k = 3.74). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.88 (br s, 1H), 10.47 (br s, 1H), 9.29-8.29 (m, 4H), 7.70 (t, J = 5.8 Hz, 1H), 7.55-7.48 (m, 2H), 7.44-7.38 (m, 2H), 7.12-7.02 (m, 4H), 3.15-3.08 (m, 1H), 3.00-2.93 (m, 1H), 2.60 (dd, J = 13.5, 6.1 Hz, 1H), 2.32 (dd, J = 13.5, 8.2 Hz, 1H), 2.29-2.24 (m, 6H), 1.93-1.83 (m, 1H), 0.81 (d, J = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 167.31, 159.20 (q, J = 33.5 Hz, TFA), 153.55, 153.50, 136.94, 134.75, 133.23, 129.70, 129.47, 128.81, 128.79, 126.11, 116.59 (q, J = 295.9 Hz, TFA), 115.77, 44.74, 39.60, 34.83, 20.62, 17.09, 13.82. HRMS (ESI-MS): calcd. for C₂₃H₂₉N₆OS⁺: 437.2118; found: 437.2118. MF: C₂₃H₂₈N₆OS x C₄H₂F₆O₄. MW: (436.58 + 228.05).

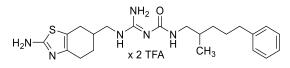


1-(Amino{[3-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(2-methyl-3-(p-tolyl)propyl)urea dihydrotrifluoroacetate (5.61) was prepared from amine 5.16 (20 mg, 0.07 mmol, 1 equiv), 5.26 (28 mg, 0.073 mmol, 1.1 equiv), NEt₃ (23 μ L, 0.17 mmol, 2.5 equiv) and HgCl₂ (36 mg, 0.13 mmol, 2 equiv) according to the general procedure yielding the product


as a white, foamlike and hygroscopic solid (16 mg, 34%). $R_f = 0.58$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 15.4 \text{ min}, k = 3.80$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.81 (br s, 1H), 10.37 (br s, 1H), 9.30-8.53 (m, 4H), 7.68 (t, J = 5.8 Hz, 1H), 7.59-7.53 (m, 1H), 7.43-7.38 (m, 2H), 7.35-7.30 (m, 1H), 3.15-3.06 (m, 1H), 3.00-2.91 (m, 1H), 2.63-2.55 (m, 1H), 2.35-2.20 (m, 7H), 1.93-1.82 (m, 1H), 0.80 (d, J = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 167.56, 158.84 (q, J = 34.5 Hz, TFA), 153.56, 136.92, 134.76, 134.56, 131.80, 130.57, 128.81, 128.79, 127.35, 125.47, 125.10, 116.83 (q, J = 295.7 Hz, TFA), 115.54, 44.71, 40.06, 34.85, 20.61, 17.07, 13.50. HRMS (ESI-MS): calcd. for C₂₃H₂₉N₆OS⁺: 437.2118; found: 437.2116. MF: C₂₃H₂₈N₆OS x C₄H₂F₆O₄. MW: (436.58 + 228.05).

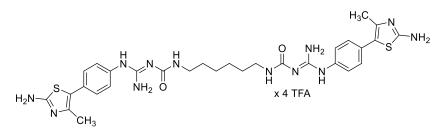
1-(Amino{[(2-amino-4,5,6,7-tetrahydrobenzo[*d***]thiazol-6-yl)methyl]amino}methylene)-3-(2-methyl-3-(p-tolyl)propyl)urea dihydrotrifluoroacetate (5.62)** was prepared from amine 5.17 (82 mg, 0.19 mmol, 1.1 equiv), **5.26** (80 mg, 0.21 mmol, 1 equiv), NEt₃ (67 μL, 0.48 mmol, 2.5 equiv) and HgCl₂ (104 mg, 0.38 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (22 mg, 16%). $R_f = 0.49$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 99%, ($t_R = 14.1 \text{ min}$, k = 3.39). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.36 (br s, 1H), 9.10 (br s, 1H), 8.90-8.32 (m, 4H), 7.58 (br s, 1H), 7.12-7.02 (m, 4H), 3.33-3.26 (m, 2H), 3.14-3.03 (m, 1H), 2.97-2.86 (m, 1H), 2.67-2.56 (m, 2H), 2.48-2.36 (m, 2H), 2.34-2.28 (m, 1H), 2.26 (s, 3H), 2.24-2.15 (m, 1H), 2.10-2.01 (m, 1H), 1.93-1.82 (m, 2H), 1.51-1.41 (m, 1H), 0.79 (d, J = 6.6 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 168.13, 158.75 (q, J = 31.4 Hz, TFA), 153.94, 153.71, 136.95, 134.73, 128.81, 128.77, 117.06 (q, J = 297.8 Hz, TFA), 113.15, 44.66, 40.06, 34.86, 33.27, 25.59, 24.70, 22.44, 20.61, 17.08. HRMS (ESI-MS): calcd. for C₂₁H₃₁N₆OS⁺: 415.2275; found: 415.2278. MF: C₂₁H₃₀N₆OS x C₄H₂F₆O₄. MW: (414.57 + 228.05).


1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-(2-methyl-5phenylpentyl)urea dihydrotrifluoroacetate (5.63) was prepared from amine 5.11 (20 mg, 0.077 mmol, 1 equiv), **5.27** (33.5 mg, 0.085 mmol, 1.1 equiv), NEt₃ (27 µL, 0.19 mmol, 2.5 equiv) and HgCl₂ (42 mg, 0.15 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (5.94 mg, 12%). RP-HPLC: 97%, ($t_{\rm R}$ = 16.4 min, k = 4.11). ¹H-NMR (600 MHz, DMSO-d₆) δ 9.92 (br s, 1H), 8.98 (br s, 1H), 8.49 (br s, 2H), 7.62-7.29 (m, 3H), 7.27-7.22 (m, 2H), 7.16 (d, J = 25.0 Hz, 3H), 3.29 (g, J = 6.7 Hz, 2H), 3.07-3.00 (m, 1H), 2.95-2.87 (m, 1H), 2.84 (t, J = 7.5 Hz, 2H), 2.58-2.52 (m, 2H), 1.88 (quint, J = 7.4 Hz, 2H), 1.66-1.48 (m, 3H), 1.36-1.27 (m, 1H), 1.13-1.05 (m, 1H), 0.83 (d, J = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 168.58, 158.46 (q, J = 33.9 Hz, TFA), 157.32, 153.69 (2C), 142.12, 128.23 (2C), 128.20 (2C), 125.62, 44.92, 40.00, 35.31, 33.21, 32.61, 28.31, 27.38, 26.48, 17.41, second TFA quartet at approx. 116 ppm was not visible. HRMS (ESI-MS): calcd. for $C_{19}H_{30}N_7OS^+$: 404.2227; found: 404.2232. MF: $C_{19}H_{29}N_7OS \ge C_4H_2F_6O_4.$ MW: (403.55 + 228.05).

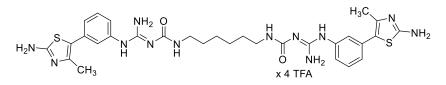

1-(Amino{[4-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(2-methyl-5-

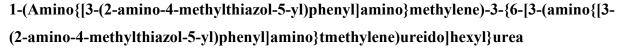
phenylpentyl)urea dihydrotrifluoroacetate (5.64) was prepared from amine **5.15** (50 mg, 0.16 mmol, 1 equiv), **5.27** (71 mg, 0.18 mmol, 1.1 equiv), NEt₃ (57 μL, 0.41 mmol, 2.5 equiv) and HgCl₂ (89 mg, 0.33 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (45 mg, 41%). $R_f = 0.64$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 16.2 \text{ min}, k = 4.05$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.84 (br s, 1H), 10.33 (br s, 1H), 9.15-8.40 (m, 2H), 7.64 (t, J = 5.8 Hz, 1H), 7.55-7.47 (m, 2H), 7.42-7.38 (m, 2H), 7.30-7.23 (m, 2H), 7.21-7.14 (m, 3H), 3.11-3.04 (m, 1H), 2.99-2.91 (m, 1H), 2.60-2.52 (m, 2H), 2.27 (s, 3H), 1.69-1.50 (m, 3H), 1.38-1.29 (m, 1H), 1.17-1.06 (m, 1H), 0.85 (d, J = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 167.14, 158.99 (q, J = 34.7 Hz, TFA), 153.54, 153.49, 142.13, 132.98, 130.03, 129.41, 128.23, 126.16, 125.63, 116.47 (q, J = 295.5 Hz, TFA), 115.83, 45.00, 35.32, 33.22, 32.58, 28.33, 17.41, 14.10. HRMS (ESI-MS): calcd. for C₂₄H₃₁N₆OS⁺: 451.2275; found: 451.2274. MF: C₂₄H₃₀N₆OS x C₄H₂F₆O₄. MW: (450.61 + 228.05).

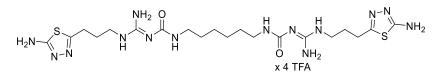
5 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-Type Histamine H₂R Agonists



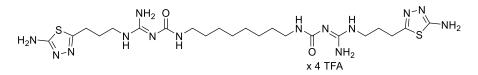
1-(Amino{[3-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-(2-methyl-5-phenylpentyl)urea dihydrotrifluoroacetate (5.65) was prepared from amine **5.16** (20 mg, 0.07 mmol, 1 equiv), **5.27** (29 mg, 0.073 mmol, 1.1 equiv), NEt₃ (23 μL, 0.17 mmol, 2.5 equiv) and HgCl₂ (36 mg, 0.13 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (18 mg, 38%). $R_f = 0.58$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 99%, ($t_R = 16.3 \text{ min}, k = 4.08$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.80 (br s, 1H), 10.29 (br s, 1H), 9.17-8.26 (m, 2H), 7.63 (t, J = 5.8 Hz, 1H), 7.55 (t, J = 7.9 Hz, 1H), 7.42-7.36 (m, 2H), 7.32-7.24 (m, 3H), 7.21-7.14 (m, 3H), 3.12-3.04 (m, 1H), 2.99-2.92 (m, 1H), 2.62-2.51 (m, 2H), 2.27 (s, 3H), 1.68-1.50 (m, 3H), 1.37-1.29 (m, 1H), 1.16-1.08 (m, 1H), 0.85 (d, J = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 167.20, 158.53 (q, J = 32.7 Hz, TFA), 153.55, 142.13, 134.43, 132.54, 130.47, 128.23, 127.25, 125.63, 125.30, 124.61, 116.53 (q, J = 297.6 Hz, TFA), 115.73, 44.98, 35.33, 33.21, 32.59, 28.33, 17.40, 14.22. HRMS (ESI-MS): calcd. for C₂₄H₃₁N₆OS⁺: 451.2275; found: 451.2283. MF: C₂₄H₃₀N₆OS x C₄H₂F₆O₄. MW: (450.61 + 228.05).


1-(Amino{[(2-amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl]amino}methylene)-3-(2-methyl-5-phenylpentyl)urea dihydrotrifluoroacetate (5.66) was prepared from amine 5.17 (81 mg, 0.19 mmol, 1 equiv), 5.27 (83 mg, 0.21 mmol, 1.1 equiv), NEt₃ (66 μL, 0.48 mmol, 2.5 equiv) and HgCl₂ (104 mg, 0.38 mmol, 2 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (18 mg, 14%). $R_f = 0.62$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 100%, ($t_R = 15.2 \text{ min}, k = 3.74$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.39 (br s, 1H), 9.12 (br s, 1H), 8.88 (br s, 2H), 8.54 (br s, 2H), 7.52 (br s, 1H), 7.29-7.21 (m, 2H), 7.20-7.11 (m, 3H), 3.31-3.25 (m, 2H), 3.08-3.00 (m, 1H), 2.95-2.87 (m, 1H), 2.57-2.50 (m, 2H), 2.47-2.37 (m, 1H), 2.24-2.14 (m, 1H), 2.10-2.01 (m, 1H), 1.92-1.83 (m, 1H), 1.65-1.40 (m, 4H), 1.36-1.26 (m, 1H), 1.14-1.05 (m, 1H), 0.83 (d, J = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 168.85, 159.44 (q, J = 30.5 Hz, TFA), 154.38, 142.61, 135.59, 128.70, 128.66, 126.08, 117.35 (q,


J = 297.5 Hz, TFA), 113.63, 45.39, 45.10, 40.50, 35.79, 33.67, 33.08, 28.79, 26.00, 25.04, 22.62, 17.87. HRMS (ESI-MS): calcd. for $C_{22}H_{33}N_6OS^+$: 429.2431; found: 429.2433. MF: $C_{22}H_{32}N_6OS \ge C_4H_2F_6O_4$. MW: (428.60 + 228.05).


1-(Amino{[4-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)-3-{6-[3-(amino{[4-(2-amino-4-methylthiazol-5-yl)phenyl]amino}methylene)ureido]hexyl}urea

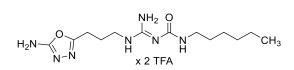
tetrahydrotrifluoroacetate (5.67) was prepared from amine 5.15 (22 mg, 0.073 mmol, 2 equiv), 5.28 (20 mg, 0.036 mmol, 1 equiv), NEt₃ (25 μL, 0.18 mmol, 5 equiv) and HgCl₂ (40 mg, 0.144 mmol, 4 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (9.3 mg, 23%). $R_f = 0.21$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 98%, ($t_R = 10.3 \text{ min}, k = 2.21$). ¹H-NMR (600 MHz, DMSO-d₆): δ 11.70-10.09 (m, 4H), 9.54-8.44 (m, 8H), 7.65 (t, J = 5.7 Hz, 2H), 7.53-7.45 (m, 4H), 7.42-7.33 (m, 4H), 3.12 (q, J = 6.6 Hz, 4H), 2.26 (s, 6H), 1.46 (t, J = 7.0 Hz, 4H), 1.34-1.25 (m, 4H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 167.93 (2C), 160.05 (q, J = 33.2 Hz, TFA), 154.07 (2C), 153.96 (2C), 135.55 (2C), 133.83 (2C), 129.97 (4C), 129.92 (2C), 126.56 (4C), 117.01 (q, J = 294.0 Hz, TFA), 116.17 (2C), 39.65 (2C), 29.26 (2C), 26.31 (2C), 14.03 (2C). HRMS (ESI-MS): calcd. for C₃₀H₃₉N₁₂O₂S₂⁺: 663.2755; found: 663.2752. MF: C₃₀H₃₈N₁₂O₂S₂ x C₈H₄F₁₂O₈. MW: (662.84 + 456.09).



tetrahydrotrifluoroacetate (5.68) was prepared from amine **5.16** (22 mg, 0.073 mmol, 2 equiv), **5.28** (20 mg, 0.036 mmol, 1 equiv), NEt₃ (25 μ L, 0.18 mmol, 5 equiv) and HgCl₂ (40 mg, 0.144 mmol, 4 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (5.8 mg, 14%). $R_f = 0.23$ (CH₂Cl₂/MeOH 9:1). RP-HPLC: 98%, ($t_R = 10.2 \text{ min}, k = 2.18$). ¹H-NMR (600 MHz, DMSO-d₆): δ 10.72 (br s, 2H), 10.26 (br s, 2H), 9.08-8.53 (m, 1H), 8.10 (br s, 3H), 7.62 (t, J = 5.7 Hz, 2H), 7.52 (t, J = 7.9 Hz, 2H), 7.39-7.35 (m, 2H), 7.33 (t, J = 2.0 Hz, 2H), 7.28-7.23 (m, 2H), 3.11 (q, J = 6.1 Hz, 4H), 2.25 (s, 6H), 1.44 (quint, J = 6.9 Hz, 5H), 1.32-1.24 (m, 4H). HRMS (ESI-MS): calcd. for C₃₀H₃₉N₁₂O₂S₂⁺: 663.2755; found: 663.2747. MF: C₃₀H₃₈N₁₂O₂S₂ x C₈H₄F₁₂O₈. MW: (662.84 + 456.09).

1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-{6-[3-(amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)ureido]hexyl}urea

tetrahydrotrifluoroacetate (5.69) was prepared from amine 5.11 (53.3 mg, 0.21 mmol, 2 equiv), 5.28 (57 mg, 0.10 mmol, 1 equiv), NEt₃ (71 μL, 0.52 mmol, 5 equiv) and HgCl₂ (112 mg, 0.41 mmol, 4 equiv) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (35 mg, 34%). RP-HPLC: 96%, ($t_R = 8.6 \text{ min}$, k = 1.68). ¹H-NMR (600 MHz, DMSO-d₆) δ: 10.45 (br s, 2H), 9.05 (br s, 2H), 8.53 (br s, 4H), 8.06 (br s, 4H), 7.52 (br s, 2H), 3.30 (q, J = 6.7 Hz, 4H), 3.09 (q, J = 6.6 Hz, 4H), 2.87 (t, J = 7.5 Hz, 4H), 1.89 (quint, J = 7.4 Hz, 4H), 1.43 (quint, J = 6.7 Hz, 4H), 1.31-1.22 (m, 4H). ¹³C-NMR (151 MHz, DMSO-d₆): δ 169.06, 159.16 (q, J = 34.4 Hz, TFA), 157.57, 153.90, 153.71, 39.60, 38.83, 28.88, 27.21, 26.58, 25.88. HRMS (ESI-MS): calcd. for C₂₀H₃₇N₁₄O₂S₂⁺: 569.2660; found: 569.2660. MF: C₂₀H₃₆N₁₄O₂S₂ x C₈H₄F₁₂O₈. MW: (568.26 + 456.09).



1-(Amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)-3-{8-[3-(amino{[3-(5-amino-1,3,4-thiadiazol-2-yl)propyl]amino}methylene)ureido]octyl}urea

tetrahydrotrifluoroacetate (5.70) was prepared from amine 5.11 (99 mg, 0.38 mmol, 2.2 equiv), 5.29 (100 mg, 0.17 mmol, 1 equiv), NEt₃ (118 μ L, 0.85 mmol, 5 equiv) and HgCl₂ (185 mg, 0.68 mmol, 4 equiv) according to the general procedure yielding the product as a white, foamlike

and hygroscopic solid (11.9 mg, 6.7%). RP-HPLC: 96%, ($t_R = 10.3 \text{ min}$, k = 2.21). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.26 (br s, 2H), 9.02 (br s, 2H), 8.50 (br s, 4H), 7.97 (br s, 3H), 7.49 (br s, 2H), 3.29 (q, J = 6.7 Hz, 4H), 3.07 (q, J = 6.6 Hz, 4H), 2.85 (t, J = 7.5 Hz, 4H), 1.88 (quint, J = 7.3 Hz, 4H), 1.46-1.37 (m, 4H), 1.28-1.22 (m, 8H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 168.97 (2C), 158.81 (q, J = 35.1 Hz, TFA), 157.53 (2C), 153.83 (2C), 153.64 (2C), 115.98 (q, J = 293.8 Hz, TFA), 40.06 (2C), 39.31 (2C), 28.92 (2C), 28.61 (2C), 27.20 (2C), 26.56 (2C), 26.18 (2C). HRMS (ESI-MS): calcd. for C₂₂H₄₁N₁₄O₂S₂⁺: 597.2973; found: 597.2967. MF: C₂₂H₄₀N₁₄O₂S₂ x C₈H₄F₁₂O₈. MW: (596.78 + 456.09).

General procedure for the synthesis of oxadiazole derivatives 5.37 and 5.58. The oxadiazole heterocycle was formed according to a previously published procedure.⁷⁵ Cyanogen bromine (CNBr) is used as a reagent in this procedure, which is acutely toxic and potentially carcinogenic. It should be used only in a well-ventilated fume hood after reading the safety precautions and wearing proper lab safety equipment (gloves, safety googles and lab coat). Future synthetic work should consider replacements for CNBr. The respective acylhydrazine (5.108 or 5.109, 1 equiv, for details see Appendix 4, App4.2 Experimental Details for the Acylhydrazides 5.108 and 5.109) was dissolved in a mixture of H₂O/ethanol (EtOH, 1:1 or 2:3 (v/v), 1-2 mL) and KHCO₃ (3.2 equiv) was added. After addition of BrCN (3 M in CH₂Cl₂, 1 equiv), the reaction mixture was heated at 60 °C for 2 h. The reaction mixture was cooled to rt and stirred for an additional hour. EtOH was removed in vacuum and the residue was purified by preparative HPLC.

1-(Amino{[3-(5-amino-1,3,4-oxadiazol-2-yl)propyl]amino}methylene)-3-(hexyl)urea dihydrotrifluoroacetate (5.37) was prepared from **5.108** (82 mg, 0.16 mmol, 1 equiv), KHCO₃ (51 mg, 0.51 mmol, 3.2 equiv) and BrCN (3 M in CH₂Cl₂, 53 μL, 0.16 mmol, 1 equiv) in H₂O/EtOH (1 mL:1.5 mL) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (5.25 mg, 6.1%). RP-HPLC: 99%, (t_R = 13.5 min, k = 3.21). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.03 (br s, 1H), 9.00 (br s, 1H), 8.50 (br s, 2H), 7.49 (t, J = 5.6 Hz, 1H), 6.93 (br s, 2H), 3.31 (q, J = 6.7 Hz, 2H), 3.09 (p, J = 6.4 Hz, 2H), 2.68 (t, J = 7.5 Hz, 2H),

1.87 (p, J = 7.4 Hz, 2H), 1.43 (p, J = 7.2 Hz, 2H), 1.29-1.24 (m, 6H), 0.91-0.82 (m, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 163.52, 158.59 (q, J = 34.5 Hz, TFA), 158.48, 153.76, 153.55, 39.61, 38.85, 30.86, 28.86, 25.86, 24.71, 22.01, 21.73, 13.88. HRMS (ESI-MS): calcd. for C₁₃H₂₆N₇O₂⁺: 312.2142; found: 312.2154. MF: C₁₃H₂₅N₇O₂ x C₄H₂F₆O₄. MW: (311.39 + 228.05).

$$H_2N \xrightarrow{O}_{N-N} N \xrightarrow{NH_2 O}_{N \xrightarrow{N}} N \xrightarrow{N}_{H \xrightarrow{N}} N \xrightarrow{N}_{H \xrightarrow{CH_3}} CH_3$$

1-(Amino{[3-(5-amino-1,3,4-oxadiazol-2-yl)propyl]amino}methylene)-3-(2-methyl-3-(p-tolyl)propyl)urea dihydrotrifluoroacetate (5.58) was prepared from **5.109** (22 mg, 0.038 mmol, 1 equiv), KHCO₃ (12.2 mg, 0.122 mmol, 3.2 equiv) and BrCN (3 M in CH₂Cl₂, 15.3 μL, 0.046 mmol, 1.2 equiv) in H₂O/EtOH (0.5 mL:0.5 mL) according to the general procedure yielding the product as a white, foamlike and hygroscopic solid (13.97 mg, 61%). RP-HPLC: 100%, ($t_R = 15.8 \text{ min}, k = 3.92$). ¹H-NMR (600 MHz, DMSO-d₆) δ 10.13 (br s, 1H), 9.02 (br s, 1H), 8.52 (br s, 2H), 7.57 (t, *J* = 5.8 Hz, 1H), 7.36-7.01 (m, 6H), 3.34 (q, *J* = 6.7 Hz, 2H), 3.14-2.90 (m, 2H), 2.71 (t, *J* = 7.4 Hz, 2H), 2.60 (dd, *J* = 13.5, 6.1 Hz, 1H), 2.36-2.30 (m, 1H), 2.28 (s, 3H), 1.95-1.83 (m, 3H), 0.81 (d, *J* = 6.7 Hz, 3H). ¹³C-NMR (151 MHz, DMSO-d₆) δ 163.17, 158.59 (q, *J* = 34.7 Hz, TFA), 158.52, 153.72, 153.68, 136.95, 134.72, 128.80, 128.77, 116.05 (q, *J* = 293.9 Hz, TFA), 44.64, 39.59, 39.39, 34.85, 24.65, 21.73, 20.60, 17.08. HRMS (ESI-MS): calcd. for C₁₈H₂₈N₇O₂⁺: 374.2299; found: 374.2300. MF: C₁₈H₂₇N₇O₂ x C₄H₂F₆O₄. MW: (373.22 + 228.05).

5.4.4 Control of the Chemical Stability of 5.30-5.35, 5.37, 5.41 and 5.57

The chemical stability of selected hH₂R ligands **5.30-5.35**, **5.37**, **5.41** and **5.57** was investigated at physiological pH in binding buffer²² (12.5 mM MgCl₂, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4). Incubation was started by addition of 50 μ L of a 1 mM (**5.30**, **5.32-5.35**, **5.37** or **5.41**) or of a 2 mM (**5.31** or **5.57**) solution of the compounds in DMSO/H₂O 1:1, which were freshly prepared from a 10 mM stock solution in DMSO, to 950 μ L of binding buffer to give a final concentration of 50 μ M (**5.30**, **5.32-5.35**, **5.37** or **5.41**) or 100 μ M (**5.31** or **5.57**). The samples were shaken for 2 weeks at 700 rpm. After 0 min, 60 min or 90 min, 2.5 h, 5 h, 10 h or 13 h 45 min, 24 h, 48 h, 1 week and 2 weeks a 50 μ L aliquot was taken and diluted with 50 μ L of a mixture of

MeCN, H₂O and 10% aq. TFA (60:90:1). Prior to HPLC analysis the samples were stored at - 24 °C. 50 μ L of the resulting solution were analyzed by HPLC as described before. The absorption was detected at 220 nm. The blank HPLC run was performed under identical conditions without any ligand.

5.4.5 Cell Culture

Cells were maintained in 25 or 75 cm² flasks (Sarstedt, Nümbrecht, Germany) in a humidified atmosphere (95% air, 5% CO₂) at 37 °C. HEK293T-CRE-Luc-hD_{2long}R cells³⁸, HEK293T-CRE-Luc-hD₃R cells³⁸, HEK293T NlucN-mGs/hH₂R-NlucC cells⁴⁰, HEK293T NlucN-mGs/gpH₂R-NlucC cells²⁵, HEK293T-ARRB2-H₂R cells³⁹, HEK293T ElucN-βarr2 hD_{2long}R-ElucC cells³⁸, and HEK293T ElucN-βarr2 hD₃R-ElucC cells³⁸ were cultured as described previously.

5.4.6 Radioligand Binding Experiments

<u>Histamine H₁₋₄ receptors^{22, 35}</u>: Competition binding experiments were performed with membrane preparations of Sf9 insect cells expressing the hH₁R + RGS4⁷⁶, hH₂R-G_{saS} fusion protein⁴, hH₃R + G_{ai2} + G_{β1γ2}⁷⁷ or the hH₄R + G_{ai2} + G_{β1γ2}⁷⁸. General procedures for the generation of recombinant baculoviruses, culture of Sf9 cells and membrane preparations have been described elsewhere.⁷⁹ The competition binding experiments were performed as previously described in detail^{22, 35} with one minor modification: PBS (8 g NaCl, 0.2 g KCl, 1.0 g Na₂HPO₄ x 2 H₂O, 0.15 g NaH₂PO₄ x H₂O, 0.1 g KH₂PO₄ in 1 L Millipore H₂O; pH 7.4; 4 °C) was used as washing buffer while harvesting instead of the previously used binding buffer^{22, 35}. [³H]mepyramine (specific activity: 20.0 or 87 Ci/mmol) was from Hartmann analytics (Braunschweig, Germany) or Novandi Chemistry AB (Södertälje, Sweden), [³H]**1** (specific activity: 25.0 Ci/mmol) and [³H]N^u-methylhistamine (specific activity: 85.3 Ci/mmol) were from Hartmann analytics (Braunschweig, Germany). [³H]UR-DE257³³ (specific activity: 63.0 Ci/mmol) and [³H]UR-PI294³⁴ (specific activity: 41.8 Ci/mmol) were synthesized and characterized in our laboratories. Histamine dihydrochloride and diphenhydramine hydrochloride were from TCI Deutschland GmbH (Eschborn, Germany). Famotidine was from Alfa Aesar (Karlsruhe, Germany).

<u>Dopamine D_{2long/3} receptors</u>: The competition binding experiments were performed on homogenates of HEK293T-CRE-Luc-hD_{2long}R or HEK293T-CRE-Luc-hD₃R cells using [³H]*N*-methylspiperone (specific activity: 77 Ci/mmol, Novandi Chemistry AB, Södertälje, Sweden) as

published previously in detail.³⁸ (+)-Butaclamol was from Sigma (Taufkirchen, Germany). General procedure for the homogenate preparation has been described in the same publication.³⁸

5.4.7 Functional Assays

The $[^{35}S]GTP\gamma S$ assay was performed on Sf9 membranes expressing the hH₂R-G_{saS} fusion protein as described previously^{22, 80} with one minor modification: PBS (8 g NaCl, 0.2 g KCl, 1.0 g Na₂HPO₄ x 2 H₂O, 0.15 g NaH₂PO₄ x H₂O, 0.1 g KH₂PO₄ in 1 L Millipore H₂O; pH 7.4; 4 °C) was used as washing buffer while harvesting instead of the previously used binding buffer.

Functional studies in the mini-G protein or β -arrestin2 recruitment assays using HEK293T NlucN-mGs/hH₂R-NlucC⁴⁰-, HEK293T NlucN-mGs/gpH₂R-NlucC²⁵-, HEK293T-ARRB2-H₂R^{37, 39}-, HEK293T ElucN- β arr2 hD_{2long}R-ElucC³⁸- or HEK293T ElucN- β arr2 hD₃R-ElucC³⁸ cells were performed as described previously.

5.4.8 Docking

<u>Models of the active-state hH₂R and active-state hD₂R:</u> For the receptor modelling, docking studies and presentation of the results, the software Sybyl 7.3 (Tripos Inc., St. Louis, MO, USA) was used. Since the compounds, for which the interaction with the hH₂R should be analyzed, were experimentally identified as partial agonists at the hH₂R, an active-state model of the hH₂R was generated by homology modelling, using the crystal structure of the β_2 adrenergic receptor-Gs protein complex (protein databank code: 3SN6) as template.⁴⁵ The Gaβγ-subunits (chain A, B, G), the endolysin and the camelid antibody VHH fragment (chain N) were deleted. According to an appropriate sequence alignment between $h\beta_2$ R and hH₂R, the homology model was generated by exchange of amino acids (tool: "Mutate Monomers" of Sybyl) into the corresponding amino acid of the hH₂R, where necessary. N-Terminus and loops (tool: "Loop Search" of Sybyl) were modelled, according to procedures, as described elsewhere.⁸¹ The resulting active-state hH₂R was minimized with the Amber 7 FF99 force field.

Since the compounds, for which the interaction with the hD_2R should be analyzed, were also identified as partial agonists at the hD_2R by functional studies, an active-state model of the hD_2R was used. For this purpose, the crystal structure of the dopamine D_2 receptor-G protein complex (protein databank code: 6VMS) was used as template.⁴⁶ The G $\alpha\beta\gamma$ -subunits (chain A, B, C) and

the scFv16 (chain E) were deleted. This model was refined by exchanging amino acids into the corresponding amino acid of the hD_2R (tool: "Mutate Monomers" of Sybyl), where necessary. The resulting active-state hD_2R was minimized with the Amber 7 FF99 force field. The model of the hD_2R was used to generate the receptor mutant hD_2R -E^{ECL2.49}V-I^{ECL2.51}S, using the same procedures, as described above.

The compounds **5.6**, **5.31** and **5.32**, provided with the Gasteiger-Hueckel charges, were docked manually into the orthosteric binding pocket of the respective receptor. The net charge for **5.6**, **5.31** and **5.32** was 1, with the positive charge being located on the carbamoylguanidine group. The resulting ligand-receptor complexes were minimized with the Amber7 FF99 force field.

5.4.9 Data Processing

Compound purities were calculated as the percentage peak area of the analyzed compound by UV detection at 220 nm. Retention (capacity) factors (*k*) were calculated from retention times (t_R) according to $k = (t_R - t_0)/t_0$, $t_0 =$ dead time. Data from radioligand competition binding assays (hH₁-4³⁵ and hD_{2long/3}³⁸ receptors), from [³⁵S]GTPγS binding assay³⁵, from mini-G protein (hH₂R⁴⁰, gpH₂R²⁵) or β-arrestin2 (hH₂^{37, 39} and hD_{2long/3}³⁸ receptors) recruitment assays, and from H₂R assay on isolated guinea pig right atrium³⁵ were processed as reported previously. K_i values for the calculation of relative affinities (H₂R selectivity, Tables 5.1 and 5.2) were obtained by transforming the p K_i mean value to K_i ($K_i = 10^{-pK_i}$).

5.5 References

1. Birnkammer, T.; Spickenreither, A.; Brunskole, I.; Lopuch, M.; Kagermeier, N.; Bernhardt, G.; Dove, S.; Seifert, R.; Elz, S.; Buschauer, A., The bivalent ligand approach leads to highly potent and selective acylguanidine-type histamine H_2 receptor agonists. *J. Med. Chem.* **2012**, *55*, 1147-1160.

2. Kraus, A.; Ghorai, P.; Birnkammer, T.; Schnell, D.; Elz, S.; Seifert, R.; Dove, S.; Bernhardt, G.; Buschauer, A., N^{G} -Acylated aminothiazolylpropylguanidines as potent and selective histamine H₂ receptor agonists. *ChemMedChem* **2009**, *4*, 232-240.

3. Xie, S.-X.; Ghorai, P.; Ye, Q.-Z.; Buschauer, A.; Seifert, R., Probing ligand-specific histamine H_1 - and H_2 -receptor conformations with N^G -acylated imidazolylpropylguanidines. *J. Pharmacol. Exp. Ther.* **2006**, *317*, 139-146.

4. Kelley, M. T.; Bürckstürmmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R., Distinct interaction of human and guinea pig histamine H₂-receptor with guanidine-type agonists. *Mol. Pharmacol.* **2001**, *60*, 1210-1225.

Type Histamine H₂R Agonists

5. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L., International union of pharmacology. XIII. Classification of histamine receptors. *Pharmacol. Rev.* **1997**, *49*, 253-278.

6. Panula, P.; Chazot, P. L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W. L.; Stark, H.; Thurmond, R. L.; Haas, H. L., International union of basic and clinical pharmacology. XCVIII. Histamine receptors. *Pharmacol. Rev.* **2015**, *67*, 601-655.

7. Dove, S.; Elz, S.; Seifert, R.; Buschauer, A., Structure-activity relationships of histamine H₂ receptor ligands. *Mini-Re. Med. Chem.* **2004**, *4*, 941-954.

8. Traiffort, E.; Pollard, H.; Moreau, J.; Ruat, M.; Schwartz, J. C.; Martinez-Mir, M. I.; Palacios, J. M., Pharmacological characterization and autoradiographic localization of histamine H₂ receptors in human brain identified with [¹²⁵I]iodoaminopotentidine. *J. Neurochem.* **1992**, *59*, 290-299.

9. Black, J. W.; Duncan, W. A. M.; Durant, G. J.; Ganellin, C. R.; Parsons, M. E., Definition and antagonism of histamine H₂-receptors. *Nature* **1972**, *236*, 385-390.

10. Yanagisawa, I.; Hirata, Y.; Ishii, A., Studies on histamine H_2 receptor antagonists. 2. Synthesis and pharmacological activities of *N*-sulfamoyl and *N*-sulfonyl amidine derivatives. *J. Med. Chem.* **1987**, *30*, 1787-1793.

11. Schneider, E. H.; Neumann, D.; Seifert, R., Modulation of behavior by the histaminergic system: lessons from H₁R-and H₂R-deficient mice. *Neurosci. Biobeh. Rev.* **2014**, *42*, 252-266.

12. Deutsch, S. I.; Rosse, R. B.; Schwartz, B. L., Histamine H₂ receptor antagonists in schizophrenia. *CNS Drugs* **1997**, *8*, 276-284.

13. Farzin, D.; Hosseini, S. H.; Shafaat, A., A randomized double blind clinical trial in famotidine adjuvant therapy in schizophrenia. *Iran. J. Med. Sci.* **2005**, *30*, 59-62.

14. Johnston, T. H.; van der Meij, A.; Brotchie, J. M.; Fox, S. H., Effect of histamine H₂ receptor antagonism on levodopa–induced dyskinesia in the MPTP-macaque model of Parkinson's disease. *Mov. Disord.* **2010**, *25*, 1379-1390.

15. Meskanen, K.; Ekelund, H.; Laitinen, J.; Neuvonen, P. J.; Haukka, J.; Panula, P.; Ekelund, J., A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia. *J. Clin. Psychopharmacol.* **2013**, *33*, 472-478.

16. Shi, H.; Yang, X.; Zhao, H.; Zhang, S.; Zu, J.; Zhang, W.; Shen, X.; Cui, G.; Hua, F.; Yan, C., Ranitidine reduced levodopa-induced dyskinesia by remodeling neurochemical changes in hemiparkinsonian model of rats. *Neuropsychiatr. Dis. Treat.* **2015**, *11*, 1331-1337.

17. Ahmed, M. R.; Jayakumar, M.; Ahmed, M. S.; Zamaleeva, A. I.; Tao, J.; Li, E. H.; Job, J. K.; Pittenger, C.; Ohtsu, H.; Rajadas, J., Pharmacological antagonism of histamine H₂R ameliorated L-DOPA-induced dyskinesia via normalization of GRK3 and by suppressing FosB and ERK in PD. *Neurobiol Aging* **2019**, *81*, 177-189.

18. Oyewumi, L. K.; Vollick, D.; Merskey, H.; Plumb, C., Famotidine as an adjunct treatment of resistant schizophrenia. *J. Psychiatry Neurosci.* **1994**, *19*, 145-150.

19. White, J. M.; Rumbold, G. R., Behavioural effects of histamine and its antagonists: a review. *Psychopharmacology* **1988**, *95*, 1-14.

20. Ghorai, P.; Kraus, A.; Keller, M.; Götte, C.; Igel, P.; Schneider, E.; Schnell, D.; Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer, A., Acylguanidines as bioisosteres of guanidines: *N*^G-acylated imidazolylpropylguanidines, a new class of histamine H₂ receptor agonists. *J. Med. Chem.* **2008**, *51*, 7193-7204.

Type Histamine H₂R Agonists

21. Ghorai, P.; Kraus, A.; Birnkammer, T.; Geyer, R.; Bernhardt, G.; Dove, S.; Seifert, R.; Elz, S.; Buschauer, A., Chiral *N*^G-acylated hetarylpropylguanidine-type histamine H₂ receptor agonists do not show significant stereoselectivity. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3173-3176.

22. Kagermeier, N.; Werner, K.; Keller, M.; Baumeister, P.; Bernhardt, G.; Seifert, R.; Buschauer, A., Dimeric carbamoylguanidine-type histamine H₂ receptor ligands: a new class of potent and selective agonists. *Bioorg. Med. Chem.* **2015**, *23*, 3957-3969.

23. Biselli, S.; Bresinsky, M.; Tropmann, K.; Forster, L.; Honisch, C.; Buschauer, A.; Bernhardt, G.; Pockes, S., Pharmacological characterization of a new series of carbamoylguanidines reveals potent agonism at the H₂R and D₃R. *Eur. J. Med. Chem.* **2021**, *214*, 113190.

24. Biselli, S. Synthesis and Pharmacological Characterization of Subtype-Selective Ligands, Including Radio- and Fluorescence Labeled Ligands, for the Histamine H₂ Receptor. Ph.D. Thesis. University of Regensburg, 2020.

25. Tropmann, K.; Höring, C.; Plank, N.; Pockes, S., Discovery of a G protein biased radioligand for the histamine H_2 receptor with reversible binding properties. *J. Med. Chem.* **2020**, *63*, 13090-13102.

26. Mierau, J., Pramipexole: a dopamine-receptor agonist for treatment of Parkinson's disease. *Clin. Neuropharmacol.* **1995**, *18*, 195-206.

27. Bennett, J. P., Jr.; Piercey, M. F., Pramipexole-a new dopamine agonist for the treatment of Parkinson's disease. *J. Neurol. Sci.* **1999**, *163*, 25-31.

28. Ganellin, C. R., *Chemistry and Structure Activity Relationships of Drugs Acting at Histamine Receptors*. Ganellin, C. R., Parson, M. E., Eds. Wright PSG: Bristil, London, Boston: 1982, 10-102.

29. Bastos, C., M.; Munoz, B.; Tait, B. Compounds, Compositions, and Methods for Increasing CFTR Activity. WO 2015/138909, Mar 13, 2015; *Chem. Abstr.* **2015**, *163*, 438650.

30. Geyer, R.; Kaske, M.; Baumeister, P.; Buschauer, A., Synthesis and functional characterization of imbutamine analogs as histamine H_3 and H_4 receptor ligands. *Arch. Pharm.* **2014**, *347*, 77-88.

31. Geyer, R.; Igel, P.; Kaske, M.; Elz, S.; Buschauer, A., Synthesis, SAR and selectivity of 2acyl- and 2-cyano-1-hetarylalkyl-guanidines at the four histamine receptor subtypes: a bioisosteric approach. *MedChemComm* **2014**, *5*, 72-81.

32. Kim, K. S.; Qian, L., Improved method for the preparation of guanidines. *Tetrahedron Lett.* **1993**, *34*, 7677-7680.

33. Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A., $[^{3}H]$ UR-DE257: development of a tritium-labeled squaramide-type selective histamine H₂ receptor antagonist. *ChemMedChem* **2015**, *10*, 83-93.

34. Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A., Tritium-labeled N^1 -[3-(1H-imidazol-4-yl)propyl]- N^2 -propionylguanidine ([³H]UR-PI294), a high-affinity histamine H₃ and H₄ receptor radioligand. *ChemMedChem* **2009**, *4*, 225-231.

35. Pockes, S.; Wifling, D.; Keller, M.; Buschauer, A.; Elz, S., Highly potent, stable, and selective dimeric hetarylpropylguanidine-type histamine H₂ receptor agonists. *ACS Omega* **2018**, *3*, 2865-2882.

36. Pertz, H. H.; Görnemann, T.; Schurad, B.; Seifert, R.; Straßer, A., Striking differences of action of lisuride stereoisomers at histamine H₁ receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **2006**, *374*, 215-222.

Type Histamine H₂R Agonists

37. Grätz, L.; Tropmann, K.; Bresinsky, M.; Müller, C.; Bernhardt, G.; Pockes, S., NanoBRET binding assay for histamine H₂ receptor ligands using live recombinant HEK293T cells. *Sci. Rep.* **2020**, *10*, *e13288*.

38. Forster, L.; Grätz, L.; Mönnich, D.; Bernhardt, G.; Pockes, S., A split luciferase complementation assay for the quantification of β -arrestin2 recruitment to dopamine D₂-like receptors. *Int. J. Mol. Sci.* **2020**, *21*, *6103*.

39. Felixberger, J. Luciferase Complementation for the Determination of Arrestin Recruitment: Investigation of Histamine and NPY receptors. Ph.D. Thesis. University of Regensburg, 2014.

40. Höring, C.; Seibel, U.; Tropmann, K.; Grätz, L.; Mönnich, D.; Pitzl, S.; Bernhardt, G.; Pockes, S.; Strasser, A., A dynamic, split-luciferase-based mini-G protein sensor to functionally characterize ligands at all four histamine receptor subtypes. *Int. J. Mol. Sci.* **2020**, *21*, 8440.

41. Carpenter, B.; Tate, C. G., Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. *Protein Eng. Des. Sel.* **2016**, *29*, 583-594.

42. Nehmé, R.; Carpenter, B.; Singhal, A.; Strege, A.; Edwards, P. C.; White, C. F.; Du, H.; Grisshammer, R.; Tate, C. G., Mini-G proteins: novel tools for studying GPCRs in their active conformation. *PLOS ONE* **2017**, *12*, e0175642.

43. Wan, Q.; Okashah, N.; Inoue, A.; Nehmé, R.; Carpenter, B.; Tate, C. G.; Lambert, N. A., Mini G protein probes for active G protein–coupled receptors (GPCRs) in live cells. *J. Biol. Chem.* **2018**, *293*, 7466-7473.

44. Yung-Chi, C.; Prusoff, W. H., Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099-3108.

45. Rasmussen, S. G. F.; DeVree, B. T.; Zou, Y.; Kruse, A. C.; Chung, K. Y.; Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D.; Mathiesen, J. M.; Shah, S. T. A.; Lyons, J. A.; Caffrey, M.; Gellman, S. H.; Steyaert, J.; Skiniotis, G.; Weis, W. I.; Sunahara, R. K.; Kobilka, B. K., Crystal structure of the β_2 adrenergic receptor–Gs protein complex. *Nature* **2011**, 477, 549-555.

46. Yin, J.; Chen, K.-Y. M.; Clark, M. J.; Hijazi, M.; Kumari, P.; Bai, X.-c.; Sunahara, R. K.; Barth, P.; Rosenbaum, D. M., Structure of a D₂ dopamine receptor–G-protein complex in a lipid membrane. *Nature* **2020**, *584*, 125-129.

47. Simpson, M. M.; Ballesteros, J. A.; Chiappa, V.; Chen, J.; Suehiro, M.; Hartman, D. S.; Godel, T.; Snyder, L. A.; Sakmar, T. P.; Javitch, J. A., Dopamine D_4/D_2 receptor selectivity is determined by a divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. *Mol. Pharmacol.* **1999**, *56*, 1116-1126.

48. Bruysters, M.; Jongejan, A.; Gillard, M.; van de Manakker, F.; Bakker, R. A.; Chatelain, P.; Leurs, R., Pharmacological differences between human and guinea pig histamine H₁ receptors: Asn⁸⁴ (2.61) as key residue within an additional binding pocket in the H₁ receptor. *Mol. Pharmacol.* **2005**, *67*, 1045-1052.

49. Strasser, A.; Striegl, B.; Wittmann, H. J.; Seifert, R., Pharmacological profile of histaprodifens at four recombinant histamine H_1 receptor species isoforms. *J. Pharmacol. Exp. Ther.* **2008**, *324*, 60-71.

50. Michino, M.; Donthamsetti, P.; Beuming, T.; Banala, A.; Duan, L.; Roux, T.; Han, Y.; Trinquet, E.; Newman, A. H.; Javitch, J. A.; Shi, L., A single glycine in extracellular loop 1 is the

Type Histamine H₂R Agonists

critical determinant for pharmacological specificity of dopamine D_2 and D_3 receptors. *Mol. Pharmacol.* **2013**, *84*, 854-864.

51. Vass, M.; Podlewska, S.; de Esch, I. J. P.; Bojarski, A. J.; Leurs, R.; Kooistra, A. J.; de Graaf, C., Aminergic GPCR-ligand interactions: a chemical and structural map of receptor mutation data. *J. Med. Chem.* **2019**, *62*, 3784-3839.

52. Ferruz, N.; Doerr, S.; Vanase-Frawley, M. A.; Zou, Y.; Chen, X.; Marr, E. S.; Nelson, R. T.; Kormos, B. L.; Wager, T. T.; Hou, X.; Villalobos, A.; Sciabola, S.; De Fabritiis, G., Dopamine D₃ receptor antagonist reveals a cryptic pocket in aminergic GPCRs. *Sci. Rep.* **2018**, *8*, 897.

53. Wang, S.; Che, T.; Levit, A.; Shoichet, B. K.; Wacker, D.; Roth, B. L., Structure of the D₂ dopamine receptor bound to the atypical antipsychotic drug risperidone. *Nature* **2018**, *555*, 269-273.

54. Chemel, B. R.; Bonner, L. A.; Watts, V. J.; Nichols, D. E., Ligand-specific roles for transmembrane 5 serine residues in the binding and efficacy of dopamine D_1 receptor catechol agonists. *Mol. Pharmacol.* **2012**, *81*, 729-738.

55. Fowler, J. C.; Bhattacharya, S.; Urban, J. D.; Vaidehi, N.; Mailman, R. B., Receptor conformations involved in dopamine D_{2L} receptor functional selectivity induced by selected transmembrane-5 serine mutations. *Mol. Pharmacol.* **2012**, *81*, 820-831.

56. Woodward, R.; Coley, C.; Daniell, S.; Naylor, L. H.; Strange, P. G., Investigation of the role of conserved serine residues in the long form of the rat D₂ dopamine receptor using sitedirected mutagenesis. *J. Neurochem.* **1996**, *66*, 394-402.

57. Sartania, N.; Strange, P. G., Role of conserved serine residues in the interaction of agonists with D₃ dopamine receptors. *J. Neurochem.* **1999**, *72*, 2621-2624.

58. Braden, M. R.; Nichols, D. E., Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT_{2A} receptor. *Mol. Pharmacol.* **2007**, *72*, 1200-1209.

59. Pollock, N. J.; Manelli, A. M.; Hutchins, C. W.; Steffey, M. E.; MacKenzie, R. G.; Frail, D. E., Serine mutations in transmembrane V of the dopamine D₁ receptor affect ligand interactions and receptor activation. *J. Biol. Chem.* **1992**, *267*, 17780-17786.

60. Almaula, N.; Ebersole, B. J.; Ballesteros, J. A.; Weinstein, H.; Sealfon, S. C., Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus. *Mol. Pharmacol.* **1996**, *50*, 34-42.

61. Leurs, R.; Smit, M. J.; Tensen, C. P.; Terlaak, A. M.; Timmerman, H., Site-directed mutagenesis of the histamine H₁-receptor reveals a selective interaction of asparagine²⁰⁷ with subclasses of H₁-receptor agonists. *Biochem. Bioph. Res. Co.* **1994**, *201*, 295-301.

62. Ohta, K.; Hayashi, H.; Mizuguchi, H.; Kagamiyama, H.; Fujimoto, K.; Fukui, H., Sitedirected mutagenesis of the histamine H₁ receptor: roles of aspartic acid¹⁰⁷, asparagine¹⁹⁸ and threonine¹⁹⁴. *Biochem. Bioph. Res. Co.* **1994**, *203*, 1096-1101.

63. Jongejan, A.; Lim, H. D.; Smits, R. A.; de Esch, I. J. P.; Haaksma, E.; Leurs, R., Delineation of agonist binding to the human histamine H₄ Receptor using mutational analysis, homology modeling, and ab initio aalculations. *J. Chem. Inf. Model.* **2008**, *48*, 1455-1463.

64. Shin, N.; Coates, E.; Murgolo, N. J.; Morse, K. L.; Bayne, M.; Strader, C. D.; Monsma, F. J., Jr., Molecular modeling and site-specific mutagenesis of the histamine-binding site of the histamine H₄ receptor. *Mol. Pharmacol.* **2002**, *62*, 38-47.

65. Hwa, J.; Perez, D. M., The unique nature of the serine interactions for α_1 -adrenergic receptor agonist binding and activation. *J. Biol. Chem.* **1996**, *271*, 6322-6327.

Type Histamine H₂R Agonists

66. Cho, W.; Taylor, L. P.; Mansour, A.; Akil, H., Hydrophobic residues of the D₂ dopamine receptor are important for binding and signal transduction. *J. Neurochem.* **1995**, *65*, 2105-2115.

67. Seifert, R.; Wenzel-Seifert, K.; Burckstummer, T.; Pertz, H. H.; Schunack, W.; Dove, S.; Buschauer, A.; Elz, S., Multiple differences in agonist and antagonist pharmacology between human and guinea pig histamine H₁-receptor. *J. Pharmacol. Exp. Ther.* **2003**, *305*, 1104-1115.

68. Wieland, K.; Laak, A. M.; Smit, M. J.; Kühne, R.; Timmerman, H.; Leurs, R., Mutational analysis of the antagonist-binding site of the histamine H₁ receptor. *J. Biol. Chem.* **1999**, *274*, 29994-30000.

69. Lan, H.; DuRand, C. J.; Teeter, M. M.; Neve, K. A., Structural determinants of pharmacological specificity between D_1 and D_2 dopamine receptors. *Mol. Pharmacol.* **2006**, *69*, 185-194.

70. Lundstrom, K.; Turpin, M. P.; Large, C.; Robertson, G.; Thomas, P.; Lewell, X. Q., Mapping of dopamine D₃ receptor binding site by pharmacological characterization of mutants expressed in CHO cells with the Semliki Forest virus system. *J. Recept. Signal Transduct.* **1998**, *18*, 133-150.

71. Woodward, R.; Daniell, S. J.; Strange, P. G.; Naylor, L. H., Structural studies on D_2 dopamine receptors: mutation of a histidine residue specifically affects the binding of a subgroup of substituted benzamide drugs. *J. Neurochem.* **1994**, *62* (5), 1664-1669.

72. Matsui, H.; Lazareno, S.; Birdsall, N. J., Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis. *Mol. Pharmacol.* **1995**, *47*, 88-98.

73. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. *Organometallics* **2010**, *29*, 2176-2179.

74. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., NMR chemical shifts of common laboratory solvents as trace impurities. *J. Org. Chem.* **1997**, *62*, 7512-7515.

75. Bleicher, K.; Mutel, V.; Vieira, E.; Wichmann, J.; Woltering, T. J. Preparation of carbamic acid derivatives and evaluation of their use as metabotropic glutamate receptor ligands. WO 2000/063166, Oct 26, 2000; *Chem. Abstr.* **2000**, *133*, 321633, 2000.

76. Houston, C.; Wenzel-Seifert, K.; Bürckstümmer, T.; Seifert, R., The human histamine H₂receptor couples more efficiently to Sf9 insect cell G_s -proteins than to insect cell G_q -proteins: limitations of Sf9 cells for the analysis of receptor/ G_q -protein coupling. *J. Neurochem.* **2002**, *80*, 678-696.

77. Schnell, D.; Strasser, A.; Seifert, R., Comparison of the pharmacological properties of human and rat histamine H₃-receptors. *Biochem. Pharmacol.* **2010**, *80*, 1437-1449.

78. Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R., High constitutive activity and a G-protein-independent high-affinity state of the human histamine H₄-receptor. *Biochemistry* **2009**, *48*, 1424-1438.

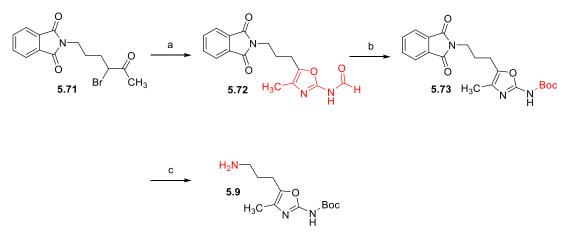
79. Pop, N.; Igel, P.; Brennauer, A.; Cabrele, C.; Bernhardt, G.; Seifert, R.; Buschauer, A., Functional reconstitution of human neuropeptide Y (NPY) Y_2 and Y_4 receptors in Sf9 insect cells. *J. Recept. Signal Transduct.* **2011**, *31*, 271-285.

80. Biselli, S.; Alencastre, I.; Tropmann, K.; Erdmann, D.; Chen, M.; Littmann, T.; Maia, A. F.; Gomez-Lazaro, M.; Tanaka, M.; Ozawa, T.; Keller, M.; Lamghari, M.; Buschauer, A.; Bernhardt, G., Fluorescent H₂ receptor squaramide-type antagonists: synthesis, characterization and applications. *ACS Med. Chem. Lett.* **2020**, *11*, 1521-1528.

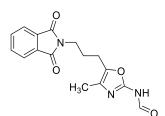
Type Histamine H₂R Agonists

81. Wifling, D.; Löffel, K.; Nordemann, U.; Strasser, A.; Bernhardt, G.; Dove, S.; Seifert, R.; Buschauer, A., Molecular determinants for the high constitutive activity of the human histamine H₄ receptor: functional studies on orthologues and mutants. *Br. J. Pharmacol.* **2015**, *172*, 785-798.

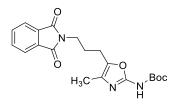
Appendix 4 Abolishing Dopamine D_{2long}/D₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-Type Histamine H₂ Receptor Agonists


App4.1 Experimental Details for the Amines 5.8-5.17 and the Guanidinylating Reagents 5.18-5.29

The amines 5.8^1 , 5.10^2 , 5.12^3 and $5.13^{4.5}$ and the guanidinylating reagents $5.18-5.19^6$, 5.20^7 , $5.21-5.27^6$ and $5.28-5.29^8$ were synthesized as published previously.

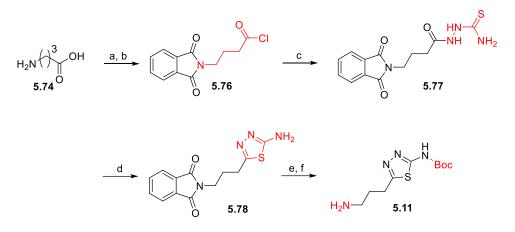

App4.1.1 Synthesis of the Amine 5.9

The oxazole building block **5.9** was synthesized from urea and *N*-protected α -bromo- ω -amino ketone (**5.71**, Scheme App4.1). The *N*-protected α -bromo- ω -amino ketone **5.71** was synthesised as published priviosly.³ The ring-closure reaction was carried out with urea in DMF (c0mpd. **5.72**). After replacement of the formyl group by a Boc-group (**5.73**), the phtahlimide residue was cleaved by hydrazinolysis to give *tert*-butyl (5-(3-aminopropyl)-4-methyloxazol-2-yl)carbamate (**5.9**).

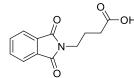

Scheme App4.1. Synthesis of *tert*-Butyl (5-(3-aminopropyl)-4-methyloxazol-2-yl)carbamate (5.9)^a

^{*a*}Reagents and conditions: (a) urea, DMF, 100 °C, 3 h, 6%; (b) Boc₂O, NEt₃, DMAP (cat.), chloroform, rt, 48 h, 43%; (c) $N_2H_4 \times H_2O$, EtOH, rt, 48 h, 80%.

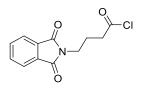
N-(5-(3-(1,3-Dioxoisoindolin-2-yl)propyl)-4-methyloxazol-2-yl)formamide (5.72). To a solution of 5.71 (2.59 g, 8.01 mmol, 1 equiv) in DMF (10 mL) a solution of urea (481 mg, 8.01 mmol, 1 equiv) in DMF (10 mL) was added and the mixture was heated at 100 °C for 3 h. After cooling and evaporation under reduced pressure, the crude product was purified by flash chromatography on silica gel (gradient: 0-20 min: PE/EtOAc 100:0-50:50, 35 min: 30:70, SF 12 g) to obtain the product as a yellow solid (150 mg, 6%). $R_f = 0.41$ (PE/EtOAc 1:4). ¹H-NMR (400 MHz, CDCl₃) δ 8.79 (br s, 1H), 7.88-7.55 (m, 4H), 3.78-3.63 (m, 2H), 2.61 (t, *J* = 7.4 Hz, 2H), 2.08-1.91 (m, 5H). ¹³C-NMR (101 MHz, CDCl₃) δ 168.28 (2C), 162.80, 151.46, 142.07, 134.07 (2C), 131.90 (2C), 130.04, 123.24 (2C), 37.33, 26.56, 22.01, 10.96. HRMS (ESI-MS): calcd. for C₁₆H₁₆N₃O₄⁺: 314.1135, found: 314.1136. MF: C₁₆H₁₅N₃O₄. MW: 313.31.

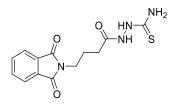

tert-Butyl (5-(3-(1,3-dioxoisoindolin-2-yl)propyl)-4-methyloxazol-2-yl)carbamate (5.73). 5.72 (150 mg, 0.48 mmol, 1 equiv) was dissolved in chloroform (10 mL) and di-*tert*-butyl dicarbonate (Boc₂O, 124 mg, 0.57 mmol, 1.2 equiv), NEt₃ (85 μ L, 0.61 mmol, 1.3 equiv) and 4-dimethylaminopyridine (DMAP, 50 mg, cat.) were added. The mixture was stirred at rt for 48 h. The solvent was removed in vacuum and the crude product was purified by flash chromatography on silica gel (gradient: 0-20 min: PE/EtOAc 100:0-50:50, 40 min: 50:50, SF 8 g) to obtain the product as a white solid (80 mg, 43%). R_f = 0.25 (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃) δ 10.01 (s, 1H), 7.84-7.74 (m, 2H), 7.71-7.61 (m, 2H), 3.70 (t, *J* = 7.0 Hz, 2H), 2.60 (t, *J* = 7.6 Hz, 2H), 2.04-1.91 (m, 5H), 1.47 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.32 (2C), 152.35, 151.18, 141.52, 134.00 (2C), 132.05 (2C), 129.12, 123.24 (2C), 81.72, 37.48, 28.26 (3C), 27.15, 22.28, 11.17. HRMS (ESI-MS): calcd. for C₂₀H₂₄N₃O₅⁺: 386.1710; found: 386.1728. MF: C₂₀H₂₃N₃O₅. MW: 385.42.

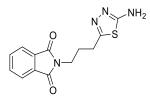
tert-Butyl (5-(3-aminopropyl)-4-methyloxazol-2-yl)carbamate (5.9). 5.73 (80 mg, 0.21 mmol, 1 equiv) was dissolved in EtOH (3 mL) and hydrazine hydrate (N₂H₄ x H₂O, 68 μ L, 1.40 mmol, 6.7 equiv) was added. The mixture was stirred at rt for 48 h. The resulting white solid was removed by filtration. The solvent was removed in vacuum to obtain the crude product as a colorless oil (43 mg, 80%). The crude product was used in the next step without further purification. R_f = 0.01 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, MeOD) δ 2.95-2.82 (m, 2H), 2.64 (t, *J* = 7.1 Hz, 2H), 2.00 (s, 3H), 1.95-1.75 (m, 2H), 1.49 (d, *J* = 3.2 Hz, 9H). ¹³C-NMR (75 MHz, MeOD) δ 153.4, 153.06, 142.59, 130.87, 82.46, 40.49, 28.83, 28.40 (3C), 22.21, 10.92. HRMS (ESI-MS): calcd. for C₁₂H₂₂N₃O₃⁺: 256.1656; found: 256.1661. MF: C₁₂H₂₁N₃O₃. MW: 255.32.

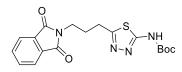

App4.1.2 Synthesis of the Amine 5.11

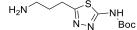
Procedure A: The preparation of amine **5.11** was accomplished by a slightly modified procedure of the original synthesis (Scheme App4.2).⁹ γ -Aminobutyric acid (GABA, **5.74**) was converted to the corresponding phthalimide derivative **5.75** with phthalic anhydride in DMF under reflux.¹⁰ The corresponding acyl chloride **5.76** was subsequently obtained by reaction of **75** with SOCl₂ in CH₂Cl₂.¹¹ Acylation of thiosemicarbazide with the acyl chloride **5.76** in the presence of pyridine afforded compound **5.77**, which was cyclized in concentrated H₂SO₄ and gave the thiadiazole **5.78**.⁹ In the next step, thiadiazole **5.78** was Boc-protected and after hydrazinolysis of intermediate **5.79** the amine **5.11** was obtained.


Scheme App4.2. Synthesis of *tert*-Butyl (5-(3-Aminopropyl)-1,3,4-thiadiazol-2-yl)carbamate (5.11)^{*a*}


^{*a*}Reagents and conditions: (a) phthalic anhydride, 170 °C, 5 h, 88%; (b) SOCl₂, CH₂Cl₂, reflux, 5 h, 100%; (c) thiosemicarbazide, pyridine, 0 °C, 3 h, 37%; (d) H₂SO₄, 100 °C, 15 min, 78%; (e) Boc₂O, NEt₃, DMAP (cat.), chloroform, rt, 16 h, 12%; (f) N₂H₄ x H₂O, EtOH, reflux, 2 h, 100%.

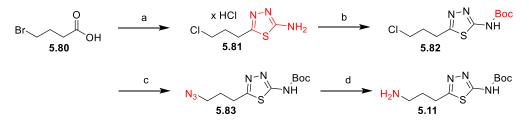

4-(1,3-Dioxoisoindolin-2-yl)butanoic acid (5.75).¹⁰ A mixture of GABA (**5.74**, 2.0 g, 19.4 mmol, 1 equiv) and phthalic anhydride (2.9 g, 19.4 mmol, 1 equiv) was stirred at 170 °C for 5 h. After cooling to rt, the resulting solid was dissolved in CH₂Cl₂ (100 mL) and washed with 0.1 M HCl (3 x 50 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuum to yield the product as a white solid (4.0 g, 88%). R_f = 0.45 (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃): δ 10.63 (s, 1H), 7.88-7.78 (m, 2H), 7.75-7.65 (m, 2H), 3.74 (t, *J* = 6.8 Hz, 2H), 2.40 (t, *J* = 7.4 Hz, 2H), 1.99 (quint, *J* = 7.1 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ 178.58, 168.40 (2C), 134.03 (2C), 131.96 (2C), 123.32 (2C), 37.07, 31.27, 23.61. NMR data matches literature reference.¹⁰ HRMS (ESI-MS): calcd. for C₁₂H₁₁NNaO₄⁺: 256.0580; found: 256.0583. MF: C₁₂H₁₁NO₄. MW: 233.22.


4-(1,3-Dioxoisoindolin-2-yl)butanoyl chloride (5.76).¹¹ **5.75** (1.0 g, 4.3 mmol, 1 equiv) was dissolved in CH₂Cl₂ (10 mL) and SOCl₂ (2.6 mL, 35.2 mmol, 8.2 equiv) was added. The mixture was refluxed for 5 h. After cooling to rt, the solvent and the excess of SOCl₂ were removed in vacuum. The residue was dissolved in *n*-hexane and evaporated in vacuum for two times to give the crude product as a yellow oil (1.08 g, 100%). The crude product was used in the next step without further purification. ¹H-NMR (300 MHz, CDCl₃): δ 7.88-7.79 (m, 2H), 7.77-7.67 (m, 2H), 3.75 (t, *J* = 6.7 Hz, 2H), 2.98 (t, *J* = 7.3 Hz, 2H), 2.08 (quint, *J* = 6.9 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ 173.30, 168.41 (2C), 134.31 (2C), 132.01 (2C), 123.55 (2C), 44.53, 36.50, 24.34. NMR data matches literature reference.¹¹ MF: C₁₂H₁₀ClNO₃. MW: 251.67.


2-(4-(1,3-Dioxoisoindolin-2-yl)butanoyl)hydrazine-1-carbothioamide (5.77).⁹ **5.76** (1.05 g, 4.17 mmol, 1 equiv) was treated with thiosemicarbazide (0.40 g, 4.38 mmol, 1.05 equiv) in pyridine (20 mL) at 0 °C for 3 h. After standing overnight, the mixture was poured into ice-water (160 mL). The aqueous phase was extracted three times with EtOAc (150 mL). The combined organic layers were washed with H₂O (50 mL) and subsequently with brine (50 mL), dried over Na₂SO₄, filtered, and evaporated in vacuum. The crude product was purified by flash chromatography (gradient: CH₂Cl₂/MeOH 100:0-95:5, 40 min: 95:5, SF 12 g) yielding the product as a white solid (0.47 g, 37%). R_f = 0.47 (PE/EtOAc 1:1). ¹H-NMR (300 MHz, DMSO-d₆): δ 9.70 (s, 1H), 9.16 (s, 2H), 7.94-7.78 (m, 4H), 7.40 (s, 1H), 3.58 (t, *J* = 6.7 Hz, 2H), 2.15 (t, *J* = 7.7 Hz, 2H), 1.84 (quint, *J* = 7.6 Hz, 2H). ¹³C-NMR (75 MHz, DMSO-d₆): δ 181.84, 170.90, 168.02 (2C), 134.40 (2C), 131.61 (2C), 123.03 (2C), 37.05, 30.46, 23.47. HRMS (ESI-MS): calcd. for C₁₃H₁₅N₄O₃S⁺: 307.0859; found: 307.0864. MF: C₁₃H₁₄N₄O₃S. MW: 306.34.

2-(3-(5-Amino-1,3,4-thiadiazol-2-yl)propyl)isoindoline-1,3-dione (5.78).⁹ 5.77 (1.6 g, 5.1 mmol) was dissolved under stirring in 98% H₂SO₄ (50 mL). The solution was heated to 100 °C for 15 min. After cooling, the solution was poured oved ice and neutralized with 30% NaOH solution to pH = 7.5. The obtained precipitate was filtered and washed with H₂O in order to remove the coprecipitated Na₂SO₄ and recrystallized from 1,4-dioxane/H₂O (1:1 (v/v)) to give the product as a white solid (1.14 g, 78%). R_f = 0.10 (PE/EtOAc 1:1).¹H-NMR (300 MHz, DMSO-d₆) δ 7.93-7.77 (m, 4H), 7.00 (s, 2H), 3.64 (t, *J* = 7.0 Hz, 2H), 2.84 (t, *J* = 7.6 Hz, 2H), 1.96 (quint, *J* = 7.4 Hz, 2H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 168.23 (2C), 167.95, 157.32, 134.29 (2C), 131.70 (2C), 122.96 (2C), 36.88, 27.58, 27.04. HRMS (ESI-MS): calcd. for C₁₃H₁₃N₄O₂S⁺: 289.0754; found: 289.0757. MF: C₁₃H₁₂N₄O₂S. MW: 288.33.

tert-Butyl (5-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1,3,4-thiadiazol-2-yl)carbamate (5.79). 5.78 (1.14 g, 3.95 mmol, 1 equiv) was dissolved in chloroform and Boc₂O (0.95 g, 4.35 mmol, 1.1 equiv), NEt₃ (0.66 mL, 4.74 mmol, 1.2 equiv) and DMAP (50 mg, cat.) were added. The mixture was stirred for 16 h at rt. The solvent was removed in vacuum and the crude product was purified by flash chromatography on silica gel (gradient: 0-20 min: PE/EtOAc 100:0-50:50, SF 8 g) to obtain the product as a white solid (190 mg, 12%). $R_f = 0.28$ (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.89-7.81 (m, 2H), 7.75-7.69 (m, 2H), 3.83 (t, *J* = 6.9 Hz, 2H), 3.05 (t, *J* = 7.6 Hz, 2H), 2.20 (quint, *J* = 8.0 Hz, 2H), 1.56-1.51 (m, 9H). ¹³C-NMR (101 MHz, CDCl₃): δ 168.26 (2C), 162.86, 161.89, 152.40, 134.01 (2C), 132.01 (2C), 123.28 (2C), 82.95, 37.22, 28.11 (3C), 28.00, 27.46. HRMS (ESI-MS): calcd. for C₁₈H₂₁N₄O₄S⁺: 389.1278; found: 389.1284. MF: C₁₈H₂₀N₄O₄S. MW: 388.44.


tert-Butyl (5-(3-aminopropyl)-1,3,4-thiadiazol-2-yl)carbamate (5.11). A mixture of 5.79 (0.19 g, 0.49 mmol, 1 equiv) and N₂H₄ x H₂O (48 μ L, 0.98 mmol, 2 equiv) in EtOH (6 mL) was

Appendix 4

refluxed for 2 h. After cooling down to rt, the resulting white solid was removed by filtration and the filtrate was evaporated in vacuum to obtain the crude product as a colorless oil (0.13 g, 100%). The crude product was used in the next step without further purification. $R_f = 0.01$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, MeOD): δ 3.16-2.96 (m, 4H), 2.13 (quint, J = 7.5 Hz, 2H), 1.54 (s, 9H); slightly different chemical shifts than in the product of method B, since some EtOAc was left in the product. ¹³C-NMR (101 MHz, MeOD): δ 163.27, 160.94, 154.52, 83.60, 40.23, 28.95, 28.46 (3C), 27.54. HRMS (ESI-MS): calcd. for C₁₀H₁₉N₄O₂S⁺: 259.1223; found: 259.1226. MF: C₁₀H₁₈N₄O₂S. MW: 258.34.

Procedure B: An alternative synthetic route B for amine **5.11** was developed (Scheme App4.3) because the synthetic route A consists of 6 steps and provides a very low overall yield (3% over 6 steps). The synthesis route B consists of 4 steps and provides an overall yield of 6%. The synthesis of the amine **5.11** started with the cyclocondensation of the 2-bromobutanoic acid **5.80** with thiosemicarbazide in fuming hydrochloric acid. This reaction occurs according to the mechanism published elsewhere.¹² In the same step, the bromide in 2-bromobutanoic acid was exchanged by chloride. After Boc-protection of the aromatic amine group (compd. **5.82**), the alkyl chloride was converted to the corresponding azide in an S_N2 reaction in DMF (compd. **5.83**). In the last step, the azide was reduced to the corresponding amine **5.11** by a Staudinger reaction.¹³

Scheme App4.3. Synthesis of *tert*-Butyl (5-(3-Aminopropyl)-1,3,4-thiadiazol-2-yl)carbamate (5.11)^{*a*}

^{*a*}Reagents and conditions: (a) thiosemicarbazide, HCl (37% in H₂O), reflux, 5 h, 83%; (b) Boc₂O, NEt₃, DMAP (cat.), CH₂Cl₂, rt, 24 h, 23%; (c) NaN₃, DMF, 75 °C, overnight; (d) PPh₃, THF, 45 °C, 5 h; H₂O, 45 °C, overnight, 34% over 2 steps.

5-(3-Chloropropyl)-1,3,4-thiadiazole-2-amine hydrochloride (5.81). To a solution of 4-bromobutanoic acid (**5.80**, 1.73 g, 10.36 mmol, 1.18 equiv) in 5 mL HCl (37% in H₂O)

Appendix 4

thiosemicarbazide (0.80 g, 8.78 mmol, 1 equiv) was added. The mixture was heated under reflux for 5 h. After cooling, the solvent was removed in vacuum. The white residue was washed with diethyl ether (3 x 20 mL) yielding 1.56 g (83%) of a white solid. The product was used without any further purification. HRMS (ESI-MS): calcd. for $C_5H_9ClN_3S^+$: 178.0200, found: 178.0199. MF: $C_5H_8ClN_3S$ x HCl. MW: (177.65 + 36.46).

CI_____S

tert-Butyl (5-(3-chloropropyl)-1,3,4-thiadiazol-2-yl)carbamate (5.82). 5.81 (1.56 g, 7.29 mmol, 1 equiv), NEt₃ (2.23 mL, 16.03 mmol, 2.2 equiv) and DMAP (40 mg, cat.) were dissolved in 150 mL CH₂Cl₂. Boc₂O (1.59 g, 7.29 mmol, 1 equiv) was slowly added to this solution over a period of 1 h. After the addition was complete, the reaction mixture was stirred at rt for 24 h. The organic phase was washed with 0.1 N HCl, brine and water. The organic layer was dried over Na₂SO₄ and the solvent was removed in vacuum. The residue was purified by column chromatography (PE/EtOAc 1:1) to give 467 mg (23%) of a white solid. R_f = 0.45 (PE/EtOAc 1:1). ¹H-NMR (400 MHz, CDCl₃) δ 3.64 (t, *J* = 6.4 Hz, 2H), 3.14 (t, *J* = 7.2 Hz, 2H), 2.29-2.22 (m, 2H), 1.54 (s, 9H). ¹³C-NMR (101 MHz, CDCl₃) δ 162.33, 162.21, 152.58, 82.98, 43.59, 31.40, 28.11 (3C), 26.81. HRMS (ESI-MS): calcd. for C₁₀H₁₇CIN₃O₂S⁺: 278.0725, found: 278.0727. MF: C₁₀H₁₆CIN₃O₂S. MW: 277.77.

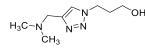
tert-Butyl (5-(3-aminopropyl)-1,3,4-thiadiazol-2-yl)carbamate (5.11). 5.82 (407 mg, 1.47 mmol, 1 equiv) was dissolved in DMF (20 mL). NaN₃ (95.3 mg, 1.47 mmol, 1 equiv, caution - NaN₃ is toxic and may explode when shocked, heated, or treated with acid) was added. The reaction mixture was heated to 75 °C and stirred overnight. The mixture was concentrated in vacuum and taken up in CH₂Cl₂ (20 mL). The organic layer was washed with water, dried over Na₂SO₄, and then concentrated in vacuum resulting in *tert*-butyl (5-(3-azidopropyl)-1,3,4-thiadiazol-2-yl) carbamate (**83**). HRMS (ESI-MS): calcd. for C₁₀H₁₇N₆O₂S⁺: 285.1128, found: 285.1131. MF: C₁₀H₁₆N₆O₂S. MW: 284.34. The residue was dissolved in THF (20 mL). Triphenylphosphine (PPh₃, 577 mg, 2.20 mmol, 1.5 equiv) was added to the solution. The mixture was heated to 45 °C. After 5 hours of continuously stirring, water (20 mL) was added to the solution and the mixture was further stirred at 45 °C overnight. The mixture was

concentrated in vacuum and the residue was purified by column chromatography (CH₂Cl₂/MeOH 90:10 \rightarrow CH₂Cl₂/MeOH/25% NH₃ in H₂O 50:50:1) yielding 130 mg (34%) of a colorless oil. R_f = 0.21 (CH₂Cl₂/MeOH/25% NH₃ in H₂O 50:50:1). ¹H-NMR (300 MHz, MeOD) δ 2.95 (t, *J* = 7.6 Hz, 2H), 2.69 (t, *J* = 7.6 Hz, 2H), 1.95-1.78 (m, 2H), 1.44 (s, 9H). ¹³C-NMR (101 MHz, MeOD): δ 164.18, 163.25, 154.49, 81.32, 39.99, 31.37, 27.11 (3C), 26.56. HRMS (ESI-MS): calcd. for C₁₀H₁₉N₄O₂S⁺: 259.1223, found: 259.1225. MF: C₁₀H₁₈N₄O₂S. MW: 258.34.

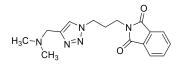
App4.1.3 Synthesis of the Amine 5.14

The preparation of the amine **5.14** (Scheme App4.4) started with 3-chloropropan-1-ol (**5.84**). In the first step, the chloride in **5.84** was replaced by azide in an S_N2 reaction. The so formed azide **5.85** was converted in the next step with *N*,*N*-dimethylpropargylamine in a copper-catalyzed click-reaction to the 1,2,3-triazole **5.86**. To transform the primary alcohol into an amine, a Mitsunobu reaction using phthalimide, PPh₃ and diisopropyl azodicarboxylate (DIAD) was performed to obtain the *N*-substituted phthalimide **5.87**.¹⁴ In the last step, the amine was liberated from the phthalimide by hydrazinolysis yielding compound **5.14**.

Scheme App4.4. Synthesis of 3-(4-((Dimethylamino)methyl)-1*H*-1,2,3-triazol-1yl)propan-1-amine (5.14)^{*a*}


^{*a*}Reagents and conditions: (a) NaN₃, DMF, 70 °C 16 h, 98%; (b) *N*,*N*-dimethylpropargylamine, sodium ascorbate, CuSO₄ x H₂O, H₂O/*tert*-butanol (1:1), rt, 16 h, 68%; (c) phthalimide, PPh₃, DIAD, THF, 0 °C to rt, overnight, 32%; (d) N₂H₄ x H₂O, *n*-butanol, rt, overnight, 100%.

№3 ОН


3-Azidopropan-1-ol (5.85).¹⁵ 3-Chloropropan-1-ol (**5.84**, 1.0 g, 10.58 mmol, 1 equiv) and NaN₃ (1.03 g, 15.86 mmol, 1.5 equiv, caution - NaN₃ is toxic and may explode when shocked,

Appendix 4

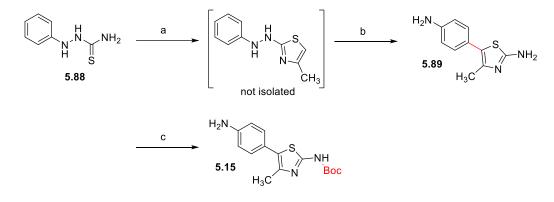
heated, or treated with acid) were dissolved in DMF (30 mL). The mixture was stirred at 70 °C for 16 h. After cooling to room temperature, water (100 mL) was added to the reaction mixture. The product was extracted with CH₂Cl₂. The organic layers were combined, washed 3-times with 0.1 M HCl, dried over Na₂SO₄ and evaporated to dryness under reduced pressure to afford the product as a yellowish liquid (1.05 g, 98%). Note for this molecule, (C+O)/N = 1.3, thus this compound should be handled with caution and stored in solution below rt and in the dark. R_f = 0.69 (PE/EtOAc 1:1). ¹H-NMR (300 MHz, CDCl₃) δ 3.72 (t, *J* = 6.0 Hz, 2H), 3.43 (t, *J* = 6.6 Hz, 2H), 2.23 (s, 1H), 1.81 (t, *J* = 6.1 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 59.79, 48.46, 31.44. NMR data matches literature reference.¹⁶⁻¹⁸ Due to its structure, low weight and volatility, no HRMS could be performed on this compound. MF: C₃H₇N₃O. MW: 101.11.

3-(4-((Dimethylamino)methyl)-1*H***-1,2,3-triazol-1-yl)propan-1-ol (5.86). 5.85** (810 mg, 8.01 mmol, 1 equiv), sodium ascorbate (159 mg, 0.80 mmol, 0.1 equiv) and *N*,*N*-dimethylpropargylamine (666 mg, 8.01 mmol, 1 equiv) were dissolved in H₂O/*tert*-butanol (1:1 (v/v), 60 mL). The flask was set under argon atmosphere and CuSO₄ x H₂O (40 mg, 0.16 mmol, 0.02 equiv) was added. After stirring the mixture at rt for 16 h, the solvent was evaporated under reduced pressure. The obtained residue was purified by column chromatography (CH₂Cl₂/MeOH/25% NH₃ in H₂O 50:50:1), which resulted in 1 g (68%) of an orange oil. R_f = 0.4 (CH₂Cl₂/MeOH/25% NH₃ in H₂O 50:50:1). ¹H-NMR (300 MHz, MeOD) δ 7.97 (s, 1H), 4.53 (t, *J* = 7.0 Hz, 2H), 3.71 (s, 2H), 3.56 (t, *J* = 6.1 Hz, 2H), 2.32 (s, 6H), 2.19-2.03 (m, 2H). ¹³C-NMR (75 MHz, MeOD) δ 142.46, 124.43, 57.87, 52.76, 46.93, 43.36 (2C), 32.67. HRMS (ESI-MS): calcd. for C₈H₁₇N₄O⁺: 185.1397, found: 185.1394. MF: C₈H₁₆N₄O. MW: 184.24.

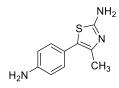
2-(3-(4-((Dimethylamino)methyl)-1*H*-1,2,3-triazol-1-yl)propyl)isoindoline-1,3-dion (5.87). 5.86 (950 mg, 5.16 mmol, 1 equiv) was dissolved in THF (70 mL). The flask was set under argon atmosphere and cooled to 0 °C by using an ice-bath. Phthalimide (1.14 g,

360

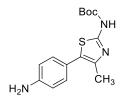
7.73 mmol, 1.5 equiv) and triphenylphosphine (2.03 g, 7.73 mmol, 1.5 equiv) were added to the mixture. Diisopropyl azodicarboxylate (DIAD, 2.23 mL, 11.34 mmol, 2.2 equiv) dissolved in THF (30 mL) was added dropwise over the period of 1.5 h to the solution. The ice-bath was removed, and the mixture was stirred overnight. The solvent was removed under reduced pressure and the residue was purified by column chromatography (CH₂Cl₂/MeOH/25% NH₃ in H₂O 50:50:1), which resulted in 510 mg (32%) of a colorless oil. R_f = 0.75 (CH₂Cl₂/MeOH/25% NH₃ in H₂O 50:50:1). ¹H-NMR (300 MHz, CDCl₃) δ 7.69-7.62 (m, 2H), 7.61-7.53 (m, 2H), 4.27 (t, *J* = 7.0 Hz, 2H), 3.57 (t, *J* = 6.6 Hz, 2H), 3.49 (d, *J* = 7.1 Hz, 2H), 2.27-2.14 (m, 2H), 2.13 (s, 6H). ¹³C-NMR (75 MHz, CDCl₃) δ 168.18 (2C), 144.11, 134.16 (2C), 131.71 (2C), 123.37 (2C), 123.24, 53.85, 47.67, 44.67 (2C), 34.91, 29.26. HRMS (ESI-MS): calcd. for C₁₆H₂₀N₅O₂⁺: 314.1612, found: 314.1617. MF: C₁₆H₁₉N₅O₂. MW: 313.36.


$$H_3C-N$$
 $N = N$ NH_2
 CH_3

3-(4-((Dimethylamino)methyl)-1*H*-1,2,3-triazol-1-yl)propan-1-amine (5.14). 5.87 (510 mg, 1.63 mmol, 1 equiv) was dissolved in *n*-butanol (30 mL), N₂H₄ x H₂O (395 µL, 8.14 mmol, 5 equiv) was added and the solution was stirred at rt overnight. The mixture was cooled to 0 °C, the produced white precipitate was removed by filtration and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (CH₂Cl₂/MeOH 100:10 \rightarrow CH₂Cl₂/MeOH/25% NH₃ in H₂O 50:50:1), which resulted in 298 mg (100%) of a white solid. R_f = 0.45 (CH₂Cl₂/MeOH 100:10). ¹H-NMR (300 MHz, MeOD) δ 8.24 (s, 1H), 4.58 (t, *J* = 6.8 Hz, 2H), 3.95 (s, 2H), 2.98-2.91 (m, 2H), 2.51 (s, 6H), 2.33 (d, *J* = 7.7 Hz, 2H). ¹³C-NMR (75 MHz, MeOD) δ 140.89, 125.65, 52.20, 47.05, 42.73 (2C), 36.55, 27.82. HRMS (ESI-MS): calcd. for C₈H₁₈N₅⁺: 184.1557, found: 184.1557. MF: C₈H₁₇N₅. MW: 183.26.


App4.1.4 Synthesis of the Amine 5.15

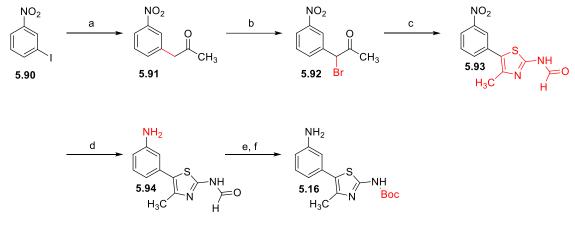
The rigidized thiazole building block **5.15** was synthesized as shown in Scheme App4.5. **5.89** could be directly obtained by refluxing *N*-anilinothiourea (**5.88**) and α -chloroacetone in MeOH under neutral conditions according to Lee et al.¹⁹ The HCl generated in the first step, acts as an acid catalyst for a [5,5]-shift of *N*-phenyl-*N*-[2-(4-methyl)thiazolyl]hydrazine.¹⁹ The subsequent selective protection of the 2-aminothiazole in **5.89** with di-*tert*-butyl dicarbonate gave amine **5.15**.


Scheme App4.5. Synthesis of *tert*-Butyl (5-(4-Aminophenyl)-4-methylthiazol-2yl)carbamate (5.15)^{*a*}

^{*a*}Reagents and conditions: (a/b) chloroacetone, MeOH, reflux, 32 h, 49%; (c) Boc₂O, NEt₃, DMAP (cat.), chloroform, 0 °C to rt, 16 h, 30%.

5-(4-Aminophenyl)-4-methylthiazol-2-amine (5.89).¹⁹ 1-Phenylhydrazine-1carbothioamide (5.88, 2.0 g, 11.96 mmol, 1 equiv) and chloroacetone (1.2 g, 13.2 mmol, 1.1 equiv) were dissolved in MeOH (50 mL) and refluxed for 32 h. After 32 h, additional MeOH (250 mL) was added. The solid was filtered off and the solvent was removed in vacuum. The residue (red-brown solid) was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 100:0-50:50, 40 min: 0:100, 50-60 min: isocratic CH₂Cl₂/MeOH 90:10, SF 24 g) yielding the product as a red-brown solid (1.2 g, 49%). R_f = 0.66 (EtOAc). ¹H-NMR (300 MHz, DMSO-d₆): δ 7.03-6.95 (m, 2H), 6.75 (s, 2H), 6.63-6.52 (m, 2H), 5.26 (br s, 2H), 2.09 (s, 3H). ¹³C-NMR (101 MHz, DMSO-d₆) δ 165.69, 147.57, 134.51, 129.13 (2C), 118.36, 118.16, 114.32 (2C), 14.24. NMR data matches literature reference.¹⁹ HRMS (ESI-MS): calcd. for C₁₀H₁₂N₃S⁺: 206.0746; found: 206.0752. MF: C₁₀H₁₁N₃S. MW: 205.28.

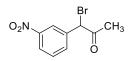
tert-Butyl (5-(4-aminophenyl)-4-methylthiazol-2-yl)carbamate (5.15). 5.89 (1.0 g, 4.87 mmol, 1 equiv), NEt₃ (783 μ L, 5.65 mmol, 1.16 equiv) and DMAP (50 mg, cat.) were dissolved in chloroform (25 mL). The solution was cooled to 0 °C (ice-bath) and a solution of


Appendix 4

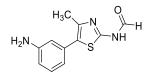
Boc₂O (1.06 g, 4.87 mmol, 4.87 mmol) in chloroform (25 mL) was added dropwise. The reaction mixture was stirred at rt for 16 h and the solvent was removed in vacuum. The residue was purified by flash chromatography (gradient: 0-20 min: PE/EtOAc 1:0-67:33, 20-40 min: isocratic 30:70, SF 4 g) yielding an orange solid (0.45 g, 30%). $R_f = 0.19$ (PE/EtOAc 2:1). ¹H-NMR (300 MHz, DMSO-d₆): δ 11.26 (s, 1H), 7.16-6.99 (m, 2H), 6.67-6.54 (m, 2H), 5.34 (br s, 2H), 2.23 (s, 3H), 1.47 (s, 9H). ¹³C-NMR (101 MHz, CDCl₃) δ 157.95, 152.57, 145.94, 140.16, 130.21 (2C), 125.36, 122.35, 115.29 (2C), 82.65, 28.44 (3C), 15.79. HRMS (ESI-MS): calcd. for C₁₅H₂₀N₃O₂S⁺: 306.1271; found: 306.1273. MF: C₁₅H₁₉N₃O₂S. MW: 305.40.

App4.1.5 Synthesis of the Amine 5.16

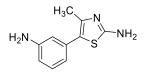
5.16 was synthesized in a multistep sequence (Scheme App4.6). In the first step 1-iodo-3nitrobenzene (**5.90**) was used as starting material in a palladium catalyzed cross-coupling to yield **5.91**. After bromination of the benzylic position (compd. **5.92**) cyclisation with thiourea in DMF yielded **5.93**. Reduction of the nitro group and the subsequent deformylation and Boc protection yielded the target amine **5.16**.


Scheme App4.6. Synthesis of *tert*-Butyl (5-(3-Aminophenyl)-4-methylthiazol-2yl)carbamate (5.16)^a

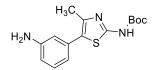
^{*a*}Reagents and conditions: (a) $Pd(OAc)_2$, PPh_3 , Cs_2CO_3 , 4-hydroxy-4-methylpentan-2-one, toluene, 120 °C, 5 h, 40%; (b) Br₂, diethyl ether, rt, overnight, 68%; (c) thiourea, DMF, 100 °C, 4 h, 79%; (d) Fe, NH₄Cl, EtOH/H₂O, 90 °C, 4 h, 70%; (e) 1 N HCl in MeOH, MeOH, rt, 48 h, 100%; (f) Boc₂O, NEt₃, DMAP (cat.), chloroform, rt, overnight, 17%.


O₂N CH₃

1-(3-Nitrophenyl)propan-2-one (5.91).²⁰ Pd(OAc)₂ (230 mg, 1.01 mmol, 0.05 equiv), PPh₃ (1.05 g, 4.02 mmol, 0.2 equiv), 1-iodo-3-nitrobenzene (5.90, 5.0 g, 20.1 mmol, 1 equiv) and Cs₂CO₃ (9.82 g, 30.2 mmol, 1.5 equiv) were added to an oven-dried Schlenk tube equipped with a stir bar. The tube was then sealed, evacuated, and backfilled with nitrogen three times using standard Schlenk techniques. Toluene (150 mL) and 4-hydroxy-4-methyl-pentan-2-one (14.9 mL, 120.5 mmol, 6 equiv) were sequentially added by syringe at rt. The resulting mixture was vigorously stirred and heated at 120 °C for 5 h. After the mixture was cooled to rt, H₂O (300 mL) was added. The resulting mixture was extracted three times with 200 mL EtOAc. The combined organic layers were then washed with 150 mL brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (gradient: 0-20 min: PE/EtOAc 100:0-67:33, SF 40 g) to provide the product as a yellow oil (1.45 g, 40%). R_f = 0.40 (PE/EtOAc 2:1). ¹H-NMR (300 MHz, CDCl₃): δ 8.11-7.97 (m, 2H), 7.56-7.37 (m, 3H), 3.83 (s, 2H), 2.21 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃): δ 204.53, 148.20, 136.01, 135.96, 129.44, 124.49, 122.03, 49.55, 29.83. NMR data matches literature reference.²⁰ HRMS (ESI-MS): calcd. for C₉H₁₃N₂O₃⁺: 197.0921; found: 197.0923. MF: C₉H₉NO₃. MW: 179.18.

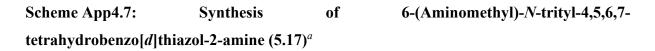


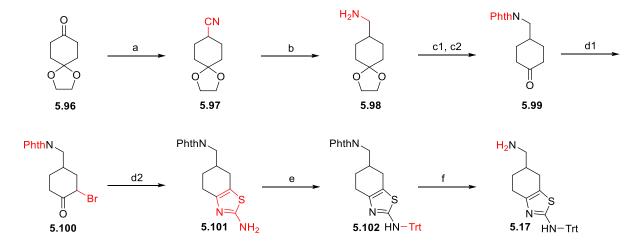
1-Bromo-1-(3-nitrophenyl)propan-2-one (5.92). To a stirred solution of **5.91** (1.45 g, 8.1 mmol, 1 equiv) in diethyl ether (50 mL) at rt a solution of Br₂ (0.42 mL, 8.1 mmol, 1 equiv) in diethyl ether (5 mL) was added dropwise in the dark. After addition, the reaction mixture was stirred overnight and then diluted with CH₂Cl₂ (100 mL) and extracted subsequently with H₂O (2 x 150 mL), brine (100 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (gradient: 0-20 min: PE/EtOAc 100:0-80:20, SF 12 g) to provide the product as a yellow oil (1.43 g, 68%). R_f = 0.70 (PE/EtOAc 2:1). ¹H-NMR (300 MHz, CDCl₃): δ 8.28-8.21 (m, 1H), 8.17-8.08 (m, 1H), 7.80-7.69 (m, 1H), 7.60-7.47 (m, 1H), 5.53 (s, 1H), 2.38 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃): δ 198.33, 148.03, 137.12, 135.22, 129.87, 124.02, 123.82, 52.59, 27.01. HRMS (ESI-MS): calcd. for C₉H₁₂BrN₂O₃⁺: 275.0026; found: 275.0011. MF: C₉H₈BrNO₃. MW: 258.07.


N-(4-Methyl-5-(3-nitrophenyl)thiazol-2-yl)formamide (5.93). To a stirred solution of 5.92 (1.43 g, 5.54 mmol, 1 equiv) in DMF (10 mL), a solution of thiourea (423 mg, 5.54 mmol, 1 equiv) in DMF (10 mL) was added and the mixture was heated at 100 °C for 4 h. After cooling and removing of the solvent in vacuum, a mixture of EtOAc/MeOH (1:1 (v/v)) was added and stirred for 30 min. Subsequently, the precipitate was filtered off, washed with EtOAc and diethyl ether and the solid was dried in vacuum yielding the product as a yellow solid (1.16 g, 79%). $R_f = 0.74$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, DMSO-d₆): δ 12.40 (s, 1H), 8.53 (s, 1H), 8.24-8.15 (m, 2H), 7.96-7.90 (m, 1H), 7.78-7.70 (m, 1H), 2.40 (s, 3H). ¹³C-NMR (101 MHz, DMSO-d₆): δ 159.78, 154.20, 148.09, 144.10, 134.85, 133.56, 130.53, 122.57, 122.22, 121.92, 15.96. HRMS (ESI-MS): calcd. for C₁₁H₁₀N₃O₃S⁺: 264.0437; found: 264.0441. MF: C₁₁H₉N₃OS. MW: 263.27.

N-(5-(3-Aminophenyl)-4-methylthiazol-2-yl)formamide (5.94).²¹ To a solution of 5.93 (230 g, 0.87 mmol, 1 equiv) in EtOH/H₂O (2:1 (v/v), 13 mL) iron (273 mg, 4.89 mmol, 5.6 equiv) and NH₄Cl (26 mg, 0.49 mmol, 0.56 equiv) were added. The reaction mixture was stirred at 90 °C for 4 h. After cooling, the reaction mixture was diluted with EtOAc (50 mL). The mixture was filtered through Celite 545 and the solvent was removed in vacuum. The crude product was purified by flash chromatography on silica gel (gradient: 0-20 min: CH₂Cl₂/MeOH 100:0-98:2, SF 4 g) to provide the product as a white solid (140 mg, 70%). R_f = 0.61 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, DMSO-d₆): δ 12.18 (s, 1H), 8.46 (s, 1H), 7.11-7.03 (m, 1H), 6.68-6.64 (m, 1H), 6.60-6.49 (m, 2H), 5.23 (s, 2H), 2.33 (s, 3H). ¹³C-NMR (75 MHz, DMSO-d₆): δ 159.41, 152.87, 149.10, 141.39, 132.24, 129.38, 125.52, 115.91, 113.73, 112.99, 16.14. HRMS (ESI-MS): calcd. for C₁₁H₁₂N₃OS⁺: 234.0696; found: 234.0709. MF: C₁₁H₁₁N₃OS. MW: 233.29.

5-(3-Aminophenyl)-4-methylthiazol-2-amine (5.95).²² A solution of 5.94 (130 mg, 0.56 mmol) in MeOH:1 N HCl in MeOH (1:1.1 (v/v), 2.1 mL) was stirred at rt for 48 h. The mixture was neutralized with an equivalent amount of 1 N NaOH in MeOH, filtered and concentrated in vacuum yielding the crude product as a light green oil (115 mg, 100%). The crude product was used in the next step without further purification. $R_f = 0.01$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, DMSO-d₆): δ 7.02-6.94 (m, 1H), 6.90-6.82 (m, 2H), 6.56-6.51 (m, 1H), 6.48-6.38 (m, 2H), 5.18-5.08 (m, 2H), 2.15 (s, 3H). ¹³C-NMR (75 MHz, MeOD): δ 168.83, 149.06, 142.88, 134.78, 130.37, 121.10, 119.62, 116.60, 115.19, 16.11. HRMS (ESI-MS): calcd. for C₁₀H₁₂N₃S⁺: 206.0746; found: 206.0745. MF: C₁₀H₁₁N₃S. MW: 205.28.

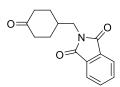



tert-Butyl (5-(3-aminophenyl)-4-methylthiazol-2-yl)carbamate (5.16).²³ 5.95 (520 mg, 2.53 mmol, 1 equiv) was dissolved in chloroform (25 mL) and Boc₂O (541 μ L, 1.53 mmol, 1 equiv), NEt₃ (407 μ L, 2.93 mmol, 1.16 equiv) and DMAP (25 mg, cat.) were added. The mixture was stirred overnight at rt. The solvent was removed in vacuum and the crude product was purified by flash chromatography on silica gel (gradient: 0-20 min: PE/EtOAc 100:0-67:33, SF 12 g) to give the product as a yellow foam (130 mg, 17%). R_f = 0.39 (CH₂Cl₂/MeOH 95:5). ¹H-NMR (300 MHz, CDCl₃): δ 7.22-7.15 (m, 1H), 6.88-6.78 (m, 1H), 6.77-6.71 (m, 1H), 6.69-6.55 (m, 1H), 2.41 (s, 3H), 1.55 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃) δ 158.75, 152.91, 146.75, 142.05, 133.60, 129.72, 125.03, 119.37, 115.51, 114.12, 82.59, 28.45 (3C), 16.23. HRMS (ESI-MS): calcd. for C₁₅H₂₀N₃O₂S⁺: 306.1271; found: 306.1273. MF: C₁₅H₁₉N₃O₂S. MW: 305.40.

App4.1.6 Synthesis of the Amine 5.17

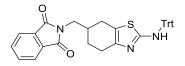
The synthesis of bromo ketone **5.100** (Scheme App4.7) started with the preparation of **5.98** by reductive cyanation of 1,4-cyclohexanedione monoethylene acetal (**5.96**) with tosylmethylisocyanide (TosMIC) and subsequent reduction of the nitrile **5.97** with lithium aluminum hydride. After protection of the amino group of **5.98** as phthalimide, cleavage of the 1,3-dioxolane ring with hydrochloric acid gave **5.99**. The ketone **5.99** was α -brominated (compd. **5.100**). The condensation of the bromo ketone **5.100** with thiourea lead to compound

5.101. Finally, 2-aminothiazole **5.101** was trityl protected and after hydrazinolysis of the intermediate **5.102** the rigid amine **5.17** was obtained.



^{*a*}Reagents and conditions: (a) TosMIC, *t*-BuOK, DME/EtOH, 0 °C, 1 h, then rt, 2 h, 75%; (b) LiAlH₄, THF, reflux, 2 h, then rt, 12 h, 99%; (c) 1) phthalanhydride, 135 °C, 30 min, 2) 1 M aq HCl, 135 °C, 2 h, 32% over two steps; (d) 1) Br₂, CH₂Cl₂, reflux, 1 h, 99%, 2) thiourea, EtOH, reflux, 2 h, 37%; (e) Trt-Cl, NEt₃, MeCN, rt, 16 h, 50%; (f) N₂H₄ x H₂O, EtOH, rt, 16 h, 100%.

1,4-Dioxaspiro[4,5]decane-8-carbonitrile (5.97).²⁴ To a cooled (-10 °C) suspension of 1,4cyclohexanedione monoethylene acetal (**5.96**, 5.26 g, 33.7 mmol, 1 equiv) and tosylmethylisocyanide (TosMIC, 8.55 g, 43.8 mmol, 1.3 equiv) in DME (105 mL) containing abs. EtOH (3.5 mL) was added *t*-BuOK (8.69 g, 77.5 mmol, 2.3 equiv) portionwise over the period of 30 min so that the temperature was maintained at <5 °C. After the addition was completed, the reaction mixture was stirred for 1 h at 0 °C and then for 2 h at rt. The mixture was concentrated to an orange-brown solid. H₂O (100 mL) was added to the residue and the aqueous phase was extracted with Et₂O (5 x 70 mL). The combined extracts were washed with brine (3 x 50 mL) and dried over Na₂SO₄. Concentration in vacuum gave a yellow oil which was purified by column chromatography (isocratic: PE/EtOAc 2:1) to give the product as a colorless oil (4.24 g, 75%). R_f = 0.70 (PE/EtOAc 2:1). ¹H-NMR (300 MHz, CDCl₃): δ 3.97-3.80 (m, 4H), 2.70-2.57 (m, 1H), 2.01-1.87 (m, 4H), 1.87-1.75 (m, 2H), 1.66-1.54 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 121.91, 107.13, 64.53 (2C), 32.79 (2C), 27.05 (2C), 26.73. NMR data matches literature reference.²⁴ HRMS (EI-MS): calcd. for $C_9H_{12}NO_2^+$: 166.0863; found: 166.0850. MF: $C_9H_{13}NO_2$. MW: 167.21.


1,4-Dioxaspiro[**4,5**]**dec-8-yImethanamine** (**5.98**).²⁴ To an ice-bath-cooled 1 M solution of LiAlH₄ in THF (44 mL, 44.2 mmol, 1.5 equiv), **5.97** (4.92 g, 29.4 mmol, 1 equiv) was added dropwise over 1 h. After the addition was complete, the solution was heated to reflux for 2 h and then stirred at rt for 12 h. The reaction mixture was quenched by careful sequential addition of distilled H₂O (5.6 mL), 15% NaOH (5.6 mL), and H₂O (15.7 mL). The initial H₂O portion was diluted with THF to aid addition and to reduce the exothermicity of the quench. The resulting precipitate was removed by filtration. Concentration in vacuum and purification by column chromatography (isocratic: CH₂Cl₂/MeOH 9:1) of the resulting oil gave the product as a colorless oil (5.0 g, 99%). R_f = 0.43 (CH₂Cl₂/MeOH 9:1). ¹H-NMR (400 MHz, MeOD): δ 4.00-3.89 (m, 4H), 2.50 (d, *J* = 6.5 Hz, 1H), 1.90-1.68 (m, 4H), 1.68-1.58 (m, 1H), 1.58-1.46 (m, 2H), 1.46-1.27 (m, 1H), 1.27-1.19 (m, 1H). ¹³C-NMR (101 MHz, MeOD) δ 110.28, 65.26 (2C), 48.41, 40.60, 35.37 (2C), 28.97 (2C). NMR data matches literature reference.²⁴ HRMS (ESI-MS): calcd. for C₉H₁₈NO₂⁺: 172.1259; found: 172.1332. MF: C₉H₁₇NO₂. MW: 171.24.

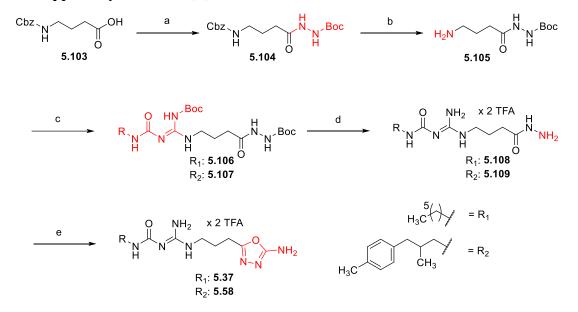
2-((4-Oxocyclohexyl)methyl)isoindoline-1,3-dione (5.99)²⁵ was prepared from 5.98 (4.00 g, 23.4 mmol, 1 equiv) and phthalanhydride (3.46 g, 23.4 mmol, 1 equiv). Both components were placed in a 20 mL microwave vial. The vial was sealed and heated (behind a safety shield) in an oil bath at 135 °C for 30 min while stirring. The vial was then allowed to cool to rt and cautiously opened, and 1 M HCl (aq, 9 mL) was added. The flask was resealed and heated (behind the safety shield) in an oil bath at 135 °C for 2 h with vigorous stirring. After this period, it was allowed to cool to rt and cautiously opened, and CH₂Cl₂ (100 mL) was added in portions. The organic layer was collected, washed with 100 mL 1 M HCl, dried over Na₂SO₄, and then concentrated in vacuum to afford the ketone as an off-white solid (1.91 g, 32%), which was used for the next reaction without further purification. $R_f = 0.37$ (PE/EtOAc 2:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.85-7.63 (m, 4H), 3.61 (d, *J* = 7.2 Hz, 2H), 2.41-2.08 (m,

5H), 2.05-1.90 (m, 2H), 1.56-1.36 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ 210.98, 168.52 (2C), 134.16 (2C), 131.89 (2C), 123.37 (2C), 42.42, 40.11 (2C), 35.44, 30.22 (2C). NMR data matches literature reference.²⁵ HRMS (ESI-MS): calcd. for C₁₅H₁₆NO₃⁺: 258.1052; found: 258.1131. MF: C₁₅H₁₅NO₃. MW: 257.29.

(±)-2-((2-Amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)methyl)isoindoline-1,3-dione (5.101). A freshly prepared solution of Br₂ (1.24 g, 7.74 mmol, 1 equiv) in CH₂Cl₂ (20 mL) was added dropwise over a period of 1 h, to a stirred solution of 5.99 (1.99 g, 7.74 mmol, 1 equiv) in CH₂Cl₂ (38 mL). After the addition was complete, the reaction mixture was refluxed for 1 h. The solvent was removed in vacuum to obtain the bromo ketone 5.100 (2.58 g, 99%) as a brown foam, which was used without further purification. HRMS (ESI-MS): calcd. for C₁₅H₁₄BrNNaO₃⁺: 358.0049; found: 358.0048. MF: C₁₅H₁₄BrNO₃. MW: 336.19. The crude bromo ketone 100 (2.58 g, 7.67 mmol) was dissolved in abs. EtOH (40 mL). To this solution, thiourea (759 mg, 10.0 mmol, 1.3 equiv) was added and the mixture was heated under reflux for 2 h. The solvent was removed in vacuum. H₂O (40 mL) was added to the residue, the solution was alkalized with 1 M NaOH to pH 10 and the mixture was extracted with EtOAc (3 x 20 mL), dried over Na₂SO₄, and evaporated in vacuum. The product was purified by column chromatography (isocratic: PE/EtOAc 1:3) to obtain the product as a yellow solid (0.9 g, 37%). R_f = 0.34 (PE/EtOAc 1:4). ¹H-NMR (300 MHz, DMSO-d₆): δ 7.92-7.79 (m, 4H), 6.72-6.54 (m, 2H), 3.68-3.49 (m, 2H), 2.64-2.08 (m, 5H, overlapped with DMSO), 1.95-1.76 (m, 1H), 1.43-1.29 (m, 1H). ¹³C-NMR (75 MHz, DMSO-d₆): δ 168.07 (2C), 165.65, 144.39, 134.36 (2C), 131.56 (2C), 122.94 (2C), 113.08, 42.11, 34.08, 26.50, 26.39, 25.17. HRMS (ESI-MS): calcd. for C₁₆H₁₆N₃O₂S⁺: 314.0885; found: 314.0976. MF: C₁₆H₁₅N₃O₂S. MW: 313.38.

(±)-2-((2-(Tritylamino)-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl)isoindoline-1,3dione (5.102). To a solution of 5.101 (0.9 mg, 2.87 mmol, 1 equiv) and NEt₃ (717 μ L, 5.17 mmol, 1.8 equiv) in MeCN (16 mL) a solution of Trt-Cl (0.96 g, 3.45 mmol, 1.2 equiv) in MeCN (10 mL) was added dropwise. After stirring the mixture at rt for 16 h, the solvent was

Appendix 4


removed in vacuum. The crude product was purified by column chromatography (isocratic: PE/EtOAc 2:1) yielding a yellow and foamlike solid (0.79 mg, 50%). $R_f = 0.72$ (PE/EtOAc 1:4). ¹H-NMR (300 MHz, CDCl₃) δ 7.90-7.62 (m, 4H), 7.39-7.16 (m, 15H), 6.54 (s, 1H), 3.76-3.55 (m, 2H), 2.71-2.09 (m, 5H), 1.95-1.83 (m, 1H), 1.39-1.63 (m, 1H). ¹³C-NMR (75 MHz, CDCl₃): δ 168.61 (2C), 166.12, 143.88 (3C), 143.84, 134.11 (2C), 132.02 (2C), 129.35 (6C), 128.19 (6C), 127.46 (3C), 123.39 (2C), 116.78, 71.59, 43.04, 34.87, 27.26, 27.18, 25.58. HRMS (ESI-MS): calcd. for C₃₅H₃₀N₃O₂S⁺: 556.1980; found: 556.2067. MF: C₃₅H₂₉N₃O₂S. MW: 555.70.

H₂N S Trt

(±)-6-(Aminomethyl)-*N*-trityl-4,5,6,7-tetrahydrobenzo[*d*]thiazol-2-amine (5.17). A mixture of 5.102 (1.14 mg, 2.05 mmol, 1 equiv) and N₂H₄ x H₂O (470 µL, 10.3 mmol, 5 equiv) in EtOH (15 mL) was stirred at rt for 16 h. After removal of insoluble material by filtration, the filtrate was evaporated in vacuum yielding a colorless and sticky oil (870 mg, 100%), which was used in the next step without further purification. $R_f = 0.01$ (PE/EtOAc 2:1). ¹H-NMR (300 MHz, MeOD): δ 7.35-7.04 (m, 15H), 2.75-2.34 (m, 6H), 2.11-1.68 (m, 2H), 1.42-1.17 (m, 1H). ¹³C-NMR (75 MHz, MeOD): δ 152.97, 145.31 (3C), 144.55, 130.47 (6C), 129.12 (6C), 128.47 (3C), 118.05, 73.01, 46.85, 37.69, 27.87, 27.62, 26.37. HRMS (ESI-MS): calcd. for C₂₇H₂₈N₃S⁺: 426.1926; found: 426.2006. MF: C₂₇H₂₇N₃S. MW: 425.59.

App4.2 Experimental Details for the Acylhydrazides 5.108 and 5.109

The 1,3,4-oxadiazole derivatives **5.37** and **5.58** were synthesized from carboxybenzyl (Cbz)protected GABA **5.103** (Scheme App4.8 or Scheme 5.2 in the chapter 5). The carboxyl group of **5.103** was activated using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC x HCl) and subsequently coupled with *tert*-butyl carbazate (compd. **5.104**). The Cbz group was removed using hydrogen and Pd/C. The exposed primary amine **5.105** was reacted with the guanidinylating reagents **5.19** or **5.26** in the presence of HgCl₂ and NEt₃ giving the N^{G} -carbamoylguanidines **5.106** or **5.107**. These were treated with TFA to remove the Bocprotecting group (compd. **5.108** and **5.109**). The formation of the heterocycle (compd. **5.37** and **5.58**) was performed using cyanogen bromide and KHCO₃ in a H₂O/EtOH mixture (for details see the Experimental Section in the chapter 5).

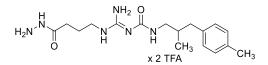
Scheme App4.8: Synthesis of 1,3,4-Oxadiazole Derivatives 5.37 and 5.58^a

^aReagents and conditions: (a) *tert*-butyl carbazate, EDC x HCl, DIPEA, CH₂Cl₂, rt, 24 h, 20%; (b) Pd/C, H₂ (10 bar), THF/MeOH, rt, 4 h, 100%; (c) **5.19** or **5.26**, HgCl₂, NEt₃, CH₂Cl₂, rt, overnight, **5.106**: 46% and **5.107**: 89%; (d) TFA, CH₂Cl₂, rt, 4-6 h, **5.108**: 94% and **5.109**: 17%; (e) BrCN, KHCO₃, H₂O/EtOH, 60 °C, 2 h, **5.37**: 6.1% and **5.58**: 61%. Experimental details for **5.37** and **5.58** are shown in the chapter 5.

HO N. Cbz

4-(((Benzyloxy)carbonyl)amino)butanoic acid (5.103).^{26,27,28} GABA (5.74, 0.77 g, 7.5 mmol, 1 equiv) was dissolved in H₂O (6 mL), and NaHCO₃ (0.69 g, 8.2 mmol, 1.1 equiv) was added. A solution of benzyl chloroformate (1.0 mL, 7.1 mmol, 0.95 equiv) in 1,4-dioxane (6 mL) was added dropwise at 0 °C. The stirring was continued for 18 h at rt. 1,4-Dioxane was removed in vacuum. The residue was extracted with diethyl ether (3 x 50 mL). The combined organic layers were washed with 1 M NaOH (3 x 50 mL). The aqueous layer was acidified with 37% HCl (pH = 2) and extracted with diethyl ether (3 x 50 mL). The organic phase was dried over Na₂SO₄, filtered, and the solvent was evaporated in vacuum to obtain 0.95 g (53%) of the product as a colorless oil, which solidified upon storage. R_f = 0.33 (PE/EtOAc 1:1). ¹H-NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 7.40-7.27 (m, 5H), 5.09 (s, 2H), 5.05-4.93 (m, 1H), 3.31-3.12 (m, 2H), 2.39 (t, *J* = 7.3 Hz, 2H), 1.83 (quint, *J* = 7.1 Hz, 2H). ¹³C-NMR (101 MHz, CDCl₃) δ 178.48, 156.62, 136.43, 128.54 (2C), 128.16 (2C), 128.13, 66.82, 40.27, 31.15, 24.95. NMR data matches literature reference.²⁸ HRMS (ESI-MS): calcd. for C₁₂H₁₆NO₄⁺: 238.1074; found: 238.1080. MF: C₁₂H₁₅NO₄. MW: 237.26.

Boc^{-N}NN^O-Cbz

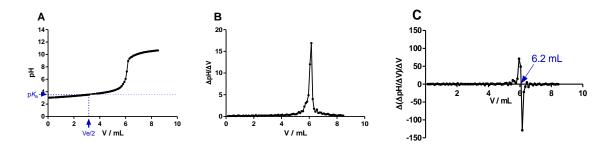

tert-Butyl 2-(4-(((benzyloxy)carbonyl)amino)butanoyl)hydrazine-1-carboxylate (5.104).²⁹ To a stirred solution of 5.103 (0.64 g, 4.94 mmol, 1 equiv) in dry CH₂Cl₂ (15 mL) DIPEA (3.65 mL, 20.9 mmol, 3.6 equiv) and EDC x HCl (1.11 g, 5.82 mmol, 1.2 equiv) were added, and the mixture was stirred for 30 min at rt. tert-Butyl carbazate (1.12 g, 8.47 mmol, 1.75 equiv) was added, and the reaction mixture was stirred for 24 h at rt. The solution was diluted with CH₂Cl₂ (100 mL) and washed with 5% aqueous HCl (2 x 50 mL), saturated NaHCO₃ (50 mL), and brine (50 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by flash chromatography on silica gel (gradient: 0-30 min: CH₂Cl₂/MeOH 100:0-90:10, 40 min: 80:20, 50 min: 80:20, SF 8 g) to obtain the product as a colorless oil (340 mg, 20%). $R_f = 0.57$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (400 MHz, CDCl₃) & 7.38-7.26 (m, 5H), 5.06 (s, 2H), 3.30-3.11 (m, 2H), 2.28-2.19 (m, 2H), 1.82 (quint, J = 6.6 Hz, 2H), 1.42 (s, 9H), 3 NH signals are missing. ¹³C-NMR (101 MHz, CDCl₃) & 176.15, 172.76 (2C), 157.13, 136.64, 128.61 (2C), 128.20 (2C), 81.68, 66.80, 40.11, 31.12, 28.26 (3C), 26.01. NMR data matches literature reference.²⁹ HRMS (ESI-MS): calcd. for C₁₇H₂₆N₃O₅⁺: 352.1867; found: 352.1869. MF: C₁₇H₂₅N₃O₅. MW: 351.40.

$$\mathsf{Boc}^{\mathsf{N}} \overset{\mathsf{O}}{\underset{\mathsf{H}}{\overset{\mathsf{O}}}} \mathsf{N}\mathsf{H}_2$$

tert-Butyl 2-(4-aminobutanoyl)hydrazine-1-carboxylate (5.105). The Cbz-protected amine 5.104 (130 mg, 0.34 mmol) was dissolved in a mixture of THF/MeOH (1:1 (v/v), 10 mL) and Pd/C (10 wt%, 50 mg) was added. The mixture was placed in a Parr bomb. The Parr bomb was filled with H₂ gas (10 bar) and the mixture was stirred at rt for 4 h. The reaction mixture was transferred in a Falkon tube (50 mL) and centrifuged (4000 x *g*, 5 min). The supernatant was decanted. The pellet was resuspended in fresh THF/MeOH 1:1 mixture and centrifuged a second time (4000 x *g*, 5 min). The supernatant was decanted. The combined supernatants were concentrated in vacuum yielding the crude product as a yellow foam (74 mg, 100%). The crude product was used in the next step without further purification. $R_f = 0.01$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 5.53 (s, 4H), 2.75-2.64 (m, 2H), 2.24 (t, *J* = 7.2 Hz, 2H), 1.83-1.65 (m, 2H), 1.46-1.28 (m, 9H). ¹³C-NMR (75 MHz, CDCl₃) δ 172.81, 155.79, 80.94, 40.61, 31.15, 28.26, 28.04 (3C). HRMS (ESI-MS): calcd. for C₉H₂₀N₃O₃⁺: 218.1499; found: 218.1499. MF: C₉H₁₉N₃O₅. MW: 217.27.

$$H_2N_N H H_2N_N H H_2 O X 2 TFA CH_3$$

1-(Amino{[4-(hydrazineyl-4-oxo)butyl]amino}methylene)-3-(hexyl)urea dihydrotrifluoroacetate (5.108). The guanidinylating reagent 5.19 (117 mg, 0.37 mmol, 1 equiv) and the amine 5.105 (80 mg, 0.37 mmol, 1 equiv) were dissolved in CH₂Cl₂ (10 mL). NEt₃ (128 µL, 0.92 mmol, 2.5 equiv) and HgCl₂ (200 mg, 0.74 mmol, 2 equiv) were added to the mixture. The mixture was stirred at rt overnight. The reaction mixture was diluted with CH₂Cl₂ (10 mL). The precipitate was removed by filtration through Celite 545 and washed with CH₂Cl₂ (20 mL) and EtOAc (20 mL). The filtrate was concentrated in vacuum and the crude product was purified by column chromatography on silica gel (gradient: 0-20 min: CH₂Cl₂/MeOH 100:0-90:10, 30 min: 90:10, SF 8 g) to obtain 5.106 as a yellow oil (82 mg, 46%). $R_f = 0.64$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (300 MHz, CDCl₃) δ 12.26 (s, 1H), 8.56 (s, 1H), 6.19 (s, 1H), 3.52 (q, J = 6.4 Hz, 2H), 3.24-3.08 (m, 2H), 2.45-2.25 (m, 2H), 2.01-1.78 (m, 2H), 1.57-1.38 (m, 20H), 1.35-1.19 (m, 6H), 0.93-0.78 (m, 3H), 2 NH signals are missing. HRMS (ESI-MS): calcd. for C₂₂H₄₃N₆O₆⁺: 487.3239; found: 487.3296. MF: C₂₂H₄₂N₆O₆. MW: 486.61. To a stirred solution of Boc-protected hydrazine derivative **5.106** (82 mg, 0.17 mmol) in CH₂Cl₂ (4 mL) TFA (1 mL) was added. The solution was stirred for 4 h at rt. The solvent was removed in vacuum to obtain the crude product (5.108) as a yellowish oil (82 mg, 94%). The crude product was used in the next step without further purification. $R_f = 0.56$ $(CH_2Cl_2/MeOH 9:1)$. ¹H-NMR (400 MHz, MeOD) δ 3.43-3.32 (m, 1H), 3.19 (t, J = 7.1 Hz, 2H), 2.47-2.35 (m, 2H), 1.97 (quint, J = 7.2 Hz, 2H), 1.58-1.45 (m, 3H), 1.41-1.22 (m, 6H), 0.97-0.84 (m, 3H). ¹³C-NMR (101 MHz, MeOD) δ 173.57, 156.00, 155.45, 41.45, 40.79, 32.59, 30.40, 29.57, 27.50, 24.53, 23.59, 14.32. HRMS (ESI-MS): calcd. for C₁₂H₂₇N₆O₂⁺: 287.2190; found: 287.2189. MF: C₁₂H₂₆N₆O₂ x C₄H₂F₆O₄. MW: (286.38+228.05).



1-(Amino{[4-(hydrazineyl-4-oxo)butyl]amino}methylene)-3-(2-methyl-3-(p-tolyl)propyl)urea dihydrotrifluoroacetate (5.109) The guanidinylating reagent 5.26 (100 mg, 0.26 mmol, 1 equiv) and the amine 5.105 (58 mg, 0.27 mmol, 1.01 equiv) were dissolved in CH_2Cl_2 (5 mL). NEt₃ (84 µL, 0.66 mmol, 2.5 equiv) and HgCl₂ (143 mg, 0.53 mmol, 2 equiv) were added to the mixture. The mixture was stirred at rt overnight. The reaction mixture was diluted with CH_2Cl_2 (10 mL). The precipitate was removed by filtration through Celite 545 and

washed with CH₂Cl₂ (20 mL) and EtOAc (20 mL). The filtrate was concentrated in vacuum and the crude product was purified by column chromatography on silica gel (gradient: 0-40 min: CH₂Cl₂/MeOH 100:0-80:20; SF 8 g) to obtain **5.107** as a yellow oil (127 mg, 89%). $R_f = 0.68$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (400 MHz, CDCl₃) δ 7.10-6.94 (m 4H), 3.46-3.38 (m, 2H), 3.15-2.93 (m, 2H), 2.70-2.58 (m, 1H), 2.33-2.20 (m, 6H), 1.89-1.81 (m, 3H), 1.40 (s, 18H), 0.80 (d, J = 6.7 Hz, 3H). MF: C₂₇H₄₄N₆O₆. MW: 548.69. To a stirred solution of Boc-protected hydrazine derivative **5.107** (127 mg, 0.23 mmol) in CH₂Cl₂ (3.5 mL) TFA (1.5 mL) was added. The solution was stirred for 6 h at rt. The solvent was removed in vacuum to obtain the crude product as a yellow oil. The crude product was purified using preparative HPLC yielding **5.109** as a white solid (22 mg, 17%). $R_f = 0.54$ (CH₂Cl₂/MeOH 9:1). ¹H-NMR (400 MHz, MeOD) δ 7.11-7.00 (m, 4H), 3.35 (t, J = 7.0 Hz, 2H), 3.22-2.98 (m, 2H), 2.68-2.59 (m, 1H), 2.44-2.33 (m, 3H), 2.29 (s, 3H), 1.96 (quint, J = 7.1 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H). ¹³C-NMR (101 MHz, MeOD) δ 173.48, 155.56, 155.43, 138.44, 136.52, 130.00 (2C), 129.92 (2C), 46.48, 41.59, 41.37, 36.64, 30.83, 24.77, 21.08, 17.71. HRMS (ESI-MS): calcd. for C₁₇H₂₉N₆O₂⁺: 349.2347; found: 349.2354. MF: C₁₇H₂₈N₆O₂ x C₄H₂F₆O₄. MW: (348.45+228.05).

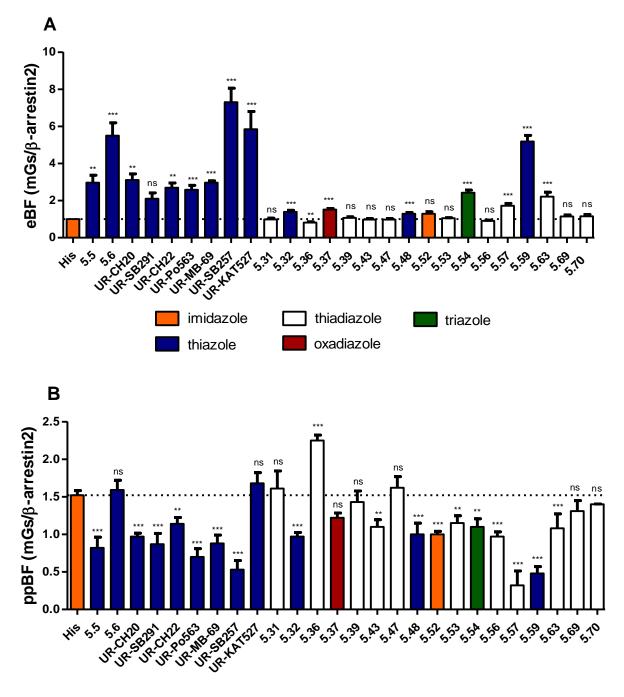
App4.3 Determination of the pK_a Value

The determination of the negative logarithm of the acid dissociation constant (p K_a) value was performed as described by Biselli et al.⁶ 2-Amino-5-methyl-1,3,4-thiadiazole hydrochloride (9.6 mg, 10.0 mg, or 10.1 mg) was dissolved in Millipore water (20 mL) and titrated with 0.01 M NaOH solution. The titration was performed using a freshly calibrated glass electrode (BlueLine, Schott Instruments, Mainz, Germany; calibration solutions: pH 4,0, 7,0, 9,0 ± 0.02, Roth, Fisher), a potentiometer (Lab 850, Schott Instruments) and a burette (10 mL). The pHvalue was recorded after each addition (0.05-0.10 mL) at room temperature. The p K_a value was determined using the half-equivalence point method (Figure App4.1) and was 3.49 ± 0.01 (mean ± SE, N = 3; reference: 3.56^{30}).

Figure App4.1. A: Representative titration curve of 2-amino-5-methyl-1,3,4-thiadiazole hydrochloride with 0.01 M NaOH. B: The first derivative, $\Delta pH/\Delta V$, of the titration curve. C: The second derivative, $\Delta(\Delta pH/\Delta V)/\Delta V$, which is the derivative of the first derivative. End point is taken as *zero crossing* of the second derivative. Ve: volume of titrant at equivalence point.

App4.4 Bias Analysis

To test for biased agonism, we calculated the bias factors (BF). To calculate the BF's we either used efficacy BF (eBF) or potency BF (pBF).³¹ Using this method, a biased agonist is defined as an agonist that has a statistically-significant different BF compared to the BF of the endogenous agonist histamine (**5.1**). The eBF for an agonist is calculated as the ratio between maximal responses (E_{max}) of two different signaling pathways (pathway₁:pathway₂).³¹ The pBF of an agonist is calculated as the ratio between EC₅₀ of two different signaling pathways (pathway₁:pathway₂).³¹ However, for analysis of statistic difference between pBF of histamine and pBF of the agonist of interest we used the negative logarithm of the pBF or: ppBF(pathway₁:pathway₂) = pEC₅₀(pathway₁) - pEC₅₀(pathway₂).³¹ This is necessary since statistic information of SEM is only available for pEC₅₀ and not for EC₅₀.


Most compounds (eBFs: 1.29-7.30) possessed significantly higher efficacy bias factors than histamine (**5.1**, eBF: 1.00), which was used as an unbiased reference compound. Only in case of UR-SB291^{6,32} this efficacy bias was not significant (cf. Table App4.1 and Figure App4.2A). Among the propyl spacer containing 2-aminothiazoles, the efficacy bias was most striking for UR-SB527^{6, 32} (eBF: 7.30 \pm 0.76; 2-methyl-3-(p-tolyl)propyl side residue, Table App4.1), which was a strong partial agonist in the mini-G protein recruitment assay (E_{max} = 0.73, cf. Table 5.3, Chapter 5), but showed only a very weak partial agonistic activity (E_{max} = 0.10, cf. Table 5.3, Chapter 5) in the β -arrestin2 recruitment assay. We also observed that the efficacy bias for 2-amino-4-methylthiazoles (UR-KAT523 (**5.6**)⁶, UR-CH22^{6,32} and UR-SB257^{6,32}) was more pronounced than for the corresponding 2-aminothiazoles (**5.32**, **5.48** and **5.39**, cf. Table App4.1).

By contrast, all 2-aminothiadiazoles exhibited no (5.31, 5.39, 5.43, 5.47, 5.53 & 5.56) or a less pronounced (5.57 & 5.63, eBF: 1.72-2.21) efficacy bias for G-protein activation. Among the 2-aminothiadiazoles, the efficacy bias was most striking for 5.63 (eBF: 2.21 ± 0.24 ; 2-methyl-5-phenylpentyl side residue). We observed that the efficacy bias was greatest within a series of compounds with the same heterocycle if bulky side residues (e.g. 2-methyl-3-(p-tolyl)propyl- or 2-methyl-5-phenylpentyl-side residues) were used (cf. Table App4.1 and Figure App4.2A).

compd.	eBF (mGs: β -arrestin2) ± SEM	ppBF (mGs: β -arrestin2) ± SEM	
5.1	1.00 ± 0.00	1.52 ± 0.06	
5.5 ⁸	2.97 ± 040	0.82 ± 0.14	
5.6 ⁶	5.50 ± 0.69	1.59 ± 0.13	
UR-CH20 ^{6, 32}	3.11 ± 0.33	0.97 ± 0.04	
UR-SB291 ^{6, 32}	2.10 ± 0.32	0.87 ± 0.14	
UR-CH22 ^{6, 32}	2.70 ± 0.25	1.14 ± 0.09	
UR-Po563 ⁶	2.59 ± 0.09	0.70 ± 0.11	
UR-MB-69 ⁶	2.97 ± 0.10	0.88 ± 0.11	
UR-SB257 ^{6, 32}	7.30 ± 0.76	0.53 ± 0.12	
UR-KAT527 ⁶	5.85 ± 0.95	1.68 ± 0.14	
5.31	0.99 ± 0.06	1.61 ± 0.23	
5.32	1.39 ± 0.09	0.97 ± 0.06	
5.36	0.82 ± 0.04	2.25 ± 0.07	
5.37	1.52 ± 0.06	1.22 ± 0.06	
5.39	1.07 ± 0.06	1.73 ± 0.15	
5.43	0.98 ± 0.05	1.10 ± 0.09	
5.47	0.98 ± 0.06	1.62 ± 0.15	
5.48	1.29 ± 0.07	1.00 ± 0.15	
5.52	1.29 ± 0.11	1.00 ± 0.04	
5.53	1.05 ± 0.03	1.15 ± 0.10	
5.54	2.43 ± 0.14	1.10 ± 0.11	
5.56	0.91 ± 0.03	0.97 ± 0.06	
5.57	1.72 ± 0.13	0.32 ± 0.19	
5.59	5.19 ± 0.33	0.48 ± 0.09	
5.63	2.21 ± 0.24	1.08 ± 0.19	
5.69	1.15 ± 0.08	1.31 ± 0.14	
5.70	1.16 ± 0.10	1.40 ± 0.00	

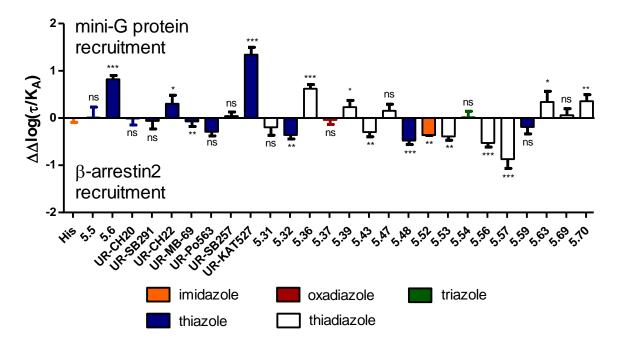
Table App4.1. Efficacy Bias Factors (eBF) and Negative Logarithm of the Potency Bias Factors (ppBF)

eBF's comparing efficacy and ppBF's comparing potency in Gs and β -arrestin2 signaling pathways. The eBF for an agonist is calculated as the ratio between maximal responses (E_{max}) of Gs pathway and β -arrestin2 pathway [eBF = E_{max} (mGs) - pEC₅₀ (β -arrestin2)]. The ppBF of an agonist is calculated as the difference between pEC₅₀ values between Gs pathway and β -arrestin2 pathway [ppBF = pEC₅₀ (mGs) - pEC₅₀ (β -arrestin2)]. The E_{max} and pEC₅₀ values used for these calculations are depicted in the Table 5.3 in the chapter 5.

Figure App4.2. Histograms comparing the efficacy bias factors (eBF, **A**) and the negative logarithm of the potency bias factors (ppBF, **B**). Statistical comparison of values was performed by using a one-way ANOVA of BF for each agonist and Dunnett's post-tests were used to compare BF for histamine (His) to BF's for all other agonists (ns: not significant, ***p <0.001, **p<0.01, *p <0.05, as described by Thomsen et al.³¹).

Appendix 4

The functional data of the H₂R agonists from either the mini-G protein or β -arrestin2 recruitment assay were also fitted to the operational model as described by van der Westhuizen et al.³³ As a result, we obtained transduction coefficients (log(τ/K_A), Table App4.2), a parameter sufficient to describe agonism for a given pathway. The transduction coefficients for the tested compounds were normalized to log(τ/K_A) of the endogenous ligand, thereby cancelling out potential systematic bias generated by the difference in the cellular background and/or signal amplification of the chosen readout systems.³³⁻³⁴ The comparison of the normalized transduction coefficients of a ligand for different signaling pathways then allow for quantification of the ligand bias.³³ An unbiased response of given ligand for the two investigated pathways would result in a bias factor $\Delta\Delta \log(\tau/K_A)$ around 0, while positive or negative values indicate a bias either for the G-protein (mGs) or β -arrestin2 pathway. Data were analyzed in a pairwise manner using a two-tailed unpaired student's t-test (on the $\Delta\Delta \log(\tau/K_A)$ ratios) to determine the significance of the ligand biases.³³


According to the present bias analysis some of the tested ligands possess a significant preference for the G protein (mGs) and some others a preference for the β -arrestin2 pathway (Figure App4.3). Unfortunately, we did not find a clear trend which could be unambiguously assigned to a specific structure-pathway bias.

compd.	$\log(\tau/K_A)^a$	$\Delta \log(\tau/K_A)^b$	$\log(\tau/K_A)^a$	$\Delta \log(\tau/K_A)^b$	$\Delta\Delta \log(\tau/K_A)^c$
	β-arr.2	β-arr.2	mGs	mGs	
5.1	5.52 ± 0.04	0.00 ± 0.06	6.95 ± 0.05	0.00 ± 0.07	0.00 ± 0.09
5.5 ⁸	$\boldsymbol{6.10\pm0.22}$	0.59 ± 0.22	7.55 ± 0.01	0.60 ± 0.04	0.01 ± 0.22
5.6 ⁶	6.00 ± 0.04	0.49 ± 0.06	8.25 ± 0.04	1.31 ± 0.06	0.82 ± 0.08
UR-CH22 ^{6, 32}	6.35 ± 0.17	0.83 ± 0.17	8.07 ± 0.02	1.13 ± 0.05	0.30 ± 0.18
UR-CH20 ^{6, 32}	6.57 ± 0.11	1.05 ± 0.12	7.99 ± 0.04	1.04 ± 0.06	$\textbf{-0.01} \pm 0.14$
UR-SB257 ^{6, 32}	5.86 ± 0.06	0.34 ± 0.07	7.32 ± 0.03	0.37 ± 0.05	0.04 ± 0.09
UR-KAT527 ⁶	4.41 ± 0.12	-1.11 ± 0.13	7.18 ± 0.08	0.24 ± 0.09	1.34 ± 0.16
UR-SB291 ^{6, 32}	6.10 ± 0.14	0.58 ± 0.15	7.47 ± 0.07	0.52 ± 0.08	-0.06 ± 0.17
UR-MB-69 ⁶	6.66 ± 0.09	1.14 ± 0.10	8.01 ± 0.01	1.07 ± 0.04	-0.07 ± 0.11
UR-Po563 ⁶	6.83 ± 0.07	1.31 ± 0.08	7.98 ± 0.02	1.03 ± 0.05	$\textbf{-0.29} \pm 0.09$
5.31	6.73 ± 0.07	1.21 ± 0.08	7.96 ± 0.14	1.01 ± 0.14	$\textbf{-0.20} \pm 0.16$
5.32	7.01 ± 0.04	1.57 ± 0.06	8.15 ± 0.04	1.21 ± 0.06	$\textbf{-0.36} \pm 0.08$
5.36	6.15 ± 0.03	0.63 ± 0.05	8.20 ± 0.06	1.25 ± 0.07	0.62 ± 0.09
5.37	5.51 ± 0.04	$\textbf{-0.01} \pm 0.06$	6.90 ± 0.06	$\textbf{-0.05} \pm 0.08$	$\textbf{-0.04} \pm 0.10$
5.39	6.44 ± 0.12	0.92 ± 0.13	8.10 ± 0.04	1.16 ± 0.06	0.23 ± 0.14
5.43	6.78 ± 0.07	1.26 ± 0.08	7.91 ± 0.05	0.96 ± 0.06	$\textbf{-0.30} \pm 0.10$
5.47	6.86 ± 0.10	1.34 ± 0.11	8.44 ± 0.07	1.49 ± 0.08	0.15 ± 0.14
5.48	7.17 ± 0.05	1.65 ± 0.06	8.12 ± 0.03	1.17 ± 0.05	$\textbf{-0.48} \pm 0.04$
5.52	7.06 ± 0.04	1.54 ± 0.06	8.12 ± 0.01	1.18 ± 0.04	$\textbf{-0.36} \pm 0.07$
5.53	6.59 ± 0.03	1.08 ± 0.05	7.63 ± 0.05	0.69 ± 0.07	$\textbf{-0.39} \pm 0.08$
5.54	6.10 ± 0.11	0.58 ± 0.11	7.55 ± 0.03	0.60 ± 0.05	0.02 ± 0.12
5.56	7.17 ± 0.05	1.65 ± 0.06	8.06 ± 0.04	1.12 ± 0.06	$\textbf{-0.53} \pm 0.09$
5.57	6.59 ± 0.17	1.07 ± 0.17	7.15 ± 0.08	0.20 ± 0.09	$\textbf{-0.87} \pm 0.20$
5.59	5.87 ± 0.11	0.35 ± 0.12	7.11 ± 0.07	0.17 ± 0.08	$\textbf{-0.19}\pm014$
5.63	5.74 ± 0.20	0.22 ± 0.21	7.50 ± 0.08	0.56 ± 0.09	0.34 ± 0.23
5.69	6.16 ± 0.03	0.64 ± 0.05	7.65 ± 0.12	0.70 ± 0.13	0.06 ± 0.14
5.70	6.27 ± 0.12	0.75 ± 0.13	8.05 ± 0.04	1.11 ± 0.06	0.35 ± 0.14

Table App4.2. Transduction Coefficients (log(τ/K_A)), Ratios Towards the mGs and β -Arrestin2 Pathways in HEK293T Cells and Bias Factors $\Delta\Delta \log(\tau/K_A)$

^{*a*}The transduction coefficients $(\log(\tau/K_A))$ were derived from functional data of 3-6 independent experiments fitted to the operational model of agonism as described by van der Westhuizen et al.³³ $^{b}\Delta \log(\tau/K_A)$ (mGs or β -arrestin2) = $\log(\tau/K_A)$ (ligand) - $\log(\tau/K_A)$ (histamine). $^{c}\Delta\Delta \log(\tau/K_A) = \Delta \log(\tau/K_A)$ (mGs) - $\Delta \log(\tau/K_A)$ (β -arrestin2). Data are given as means $\pm \text{SEM}^{a,b}$ or SE^c (calculated as described by van der Westhuizen et al.³³).

Appendix 4

Figure App4.3. Bias analysis for histamine (His), **5.5**⁸, **5.6**⁶, UR-CH20^{6, 32}, UR-SB291^{6, 32}, UR-CH22^{6, 32}, UR-MB-69⁶, UR-Po563⁶, UR-SB257^{6, 32}, UR-KAT527⁶, **5.31-5.32**, **5.36-5.37**, **5.39**, **5.43**, **5.47-5.48**, **5.52-5.54**, **5.56-5.57**, **5.59**, **5.63** and **5.69-5.79** performed as described by van der Westhuizen at al.³³, using histamine as reference agonist. A $\Delta\Delta\log(\tau/K_A)$ ratio = 0 indicate an equal activation of the G protein- and β -arrestin2 pathways, while a $\Delta\Delta\log(\tau/K_A)$ ratio $\neq 0$ indicates a preference for one signal pathway over the other. Data represent mean \pm SEM of 3-6 independent experiments performed in duplicates or triplicates. Data were analyzed in a pairwise manner using a two-tailed unpaired student's t-test to determine the significance of the ligand biases (ns: not significant, ***p <0.001; **p <0.01,*p <0.05, as described by van der Westhuizen et al.³³).

App4.5 References

1. Ghorai, P.; Kraus, A.; Keller, M.; Götte, C.; Igel, P.; Schneider, E.; Schnell, D.; Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer, A., Acylguanidines as bioisosteres of guanidines: N^{G} -acylated imidazolylpropylguanidines, a new class of histamine H₂ receptor agonists. *J. Med. Chem.* **2008**, *51*, 7193-7204.

 Bastos, C., M.; Munoz, B.; Tait, B. Compounds, Compositions, and Methods for Increasing CFTR Activity. WO 2015/138909, Mar 13, 2015; *Chem. Abstr.* 2015, *163*, 438650.
 Kraus, A.; Ghorai, P.; Birnkammer, T.; Schnell, D.; Elz, S.; Seifert, R.; Dove, S.; Bernhardt, G.; Buschauer, A., N^G-Acylated aminothiazolylpropylguanidines as potent and selective histamine H₂ receptor agonists. *ChemMedChem* 2009, *4*, 232-240.

4. Geyer, R.; Kaske, M.; Baumeister, P.; Buschauer, A., Synthesis and functional characterization of imbutamine analogs as histamine H_3 and H_4 receptor ligands. *Arch. Pharm.* **2014**, *347*, 77-88.

5. Geyer, R.; Igel, P.; Kaske, M.; Elz, S.; Buschauer, A., Synthesis, SAR and selectivity of 2-acyl- and 2-cyano-1-hetarylalkyl-guanidines at the four histamine receptor subtypes: a bioisosteric approach. *MedChemComm* **2014**, *5*, 72-81.

6. Biselli, S.; Bresinsky, M.; Tropmann, K.; Forster, L.; Honisch, C.; Buschauer, A.; Bernhardt, G.; Pockes, S., Pharmacological characterization of a new series of carbamoylguanidines reveals potent agonism at the H_2R and D_3R . *Eur. J. Med. Chem.* **2021**, *214*, 113190.

7. Tropmann, K.; Höring, C.; Plank, N.; Pockes, S., Discovery of a G protein biased radioligand for the histamine H_2 receptor with reversible binding properties. *J. Med. Chem.* **2020**, *63*, 13090-13102.

8. Kagermeier, N.; Werner, K.; Keller, M.; Baumeister, P.; Bernhardt, G.; Seifert, R.; Buschauer, A., Dimeric carbamoylguanidine-type histamine H₂ receptor ligands: a new class of potent and selective agonists. *Bioorg. Med. Chem.* **2015**, *23*, 3957-3969.

9. Supuran, C. T.; Barboiu, M.; Luca, C.; Pop, E.; Brewster, M. E.; Dinculescu, A., Carbonic anhydrase activators. Part 14. Syntheses of mono and bis pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)- and 2-amino-5-(3-aminopropyl)-1,3,4-thiadiazole and their interaction with isozyme II. *Eur. J. Med. Chem.* **1996**, *31*, 597-606.

10. Guénin, E.; Monteil, M.; Bouchemal, N.; Prangé, T.; Lecouvey, M., Syntheses of phosphonic esters of alendronate, pamidronate and neridronate. *Eur. J. Org. Chem.* **2007**, *2007*, 3380-3391.

 Mizrahi, D. M.; Waner, T.; Segall, Y., α-Amino acid derived bisphosphonates. Synthesis and anti-resorftive activity. *Phosphorus, Sulfur, Silicon Relat. Elem.* **2001**, *173*, 1-25.
 Barbosa, G. A. D.; de Aguiar, A. P., Synthesis of 1,3,4-thiadiazole derivatives and microbiological cctivities: a review. *Rev. Virtual Quim.* **2019**, *11*, 806-848.

13. Staudinger, H.; Meyer, J., Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. *Helv. Chim. Acta* **1919**, *2*, 635-646.

14. Mitsunobu, O.; Yamada, M., Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts. *J. Org. Chem.* **1967**, *40*, 2380-2382.

15. Pak, J. K.; Hesse, M., Synthesis of penta-*N*-protected homocaldopentamine and its selective acylation. *J. Org. Chem.* **1998**, *63*, 8200-8204.

16. Puodziukynaite, E.; Wang, H.-W.; Lawrence, J.; Wise, A. J.; Russell, T. P.; Barnes, M. D.; Emrick, T., Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication. *J. Am. Chem. Soc.* **2014**, *136*, 11043-11049.

17. Macerata, E.; Mossini, E.; Scaravaggi, S.; Mariani, M.; Mele, A.; Panzeri, W.; Boubals, N.; Berthon, L.; Charbonnel, M.-C.; Sansone, F.; Arduini, A.; Casnati, A., Hydrophilic clicked 2,6-bis-triazolyl-pyridines endowed with high cctinide selectivity and radiochemical stability: toward a closed nuclear fuel cycle. *J. Am. Chem. Soc.* **2016**, *138*, 7232-7235.

18. van Dongen, S. F. M.; Clerx, J.; Nørgaard, K.; Bloemberg, T. G.; Cornelissen, J. J. L. M.; Trakselis, M. A.; Nelson, S. W.; Benkovic, S. J.; Rowan, A. E.; Nolte, R. J. M., A clamp-like biohybrid catalyst for DNA oxidation. *Nat. Chem.* **2013**, *5*, 945-951.

19. Lee, B. W.; Lee, S. D., [5,5] Sigmatropic shift of *N*-phenyl-*N*'-(2-thiazolyl)hydrazines and *N*,*N*'-bis(2-thiazolyl)hydrazines into 2-amino-5-(p-aminophenyl)thiazoles and 5,5'-bis(2-aminothiazole) derivatives. *Tetrahedron Lett.* **2000**, *41*, 3883-3886.

20. Zhang, S.-L.; Yu, Z.-L., C-C activation by retro-aldol reaction of two β -hydroxy carbonyl compounds: synergy with Pd-catalyzed cross-coupling to access mono- α -arylated ketones and esters. *J. Org. Chem.* **2016**, *81*, 57-65.

21. Altman, M. D.; Andresen, B. M.; Arrington, K. L.; Burch, J.; Childers, K. K.; Cote, B.; Di Francesco, M. E.; Donofrio, A.; Dupont-Gaudet, K.; Ellis, J. M.; Fischer, C.; Guay, D.; Guerin, D. J.; Haidle, A. M.; Kattar, S.; Knowles, S. L.; Li, C.; Lim, J.; Machacek, M. R.; Northrup, A. B.; O'Boyle, B. M.; Otte, R. D.; Reutershan, M. H.; Romeo, E.; Schell, A. J.; Siu,

T.; Spencer, K. B.; Taoka, B. M.; Trotter, B. W.; Zhou, H. Aminopyrimidines as Syk Inhibitors WO 2011/075515, Dec 15, 2010; *Chem. Abstr.* **2011**, *155*, 123427, 2010.

22. Sheehan, J. C.; Yang, D.-D. H., The use of *N*-formylamino acids in peptide synthesis. *J. Am. Chem. Soc.* **1958**, *80*, 1154-1158.

23. Kraus, A. Highly Potent, Selective Acylguanidine-Type Histamine H_2 Receptor Agonists: Synthesis and Structure-Activity Relationships. PhD Thesis. University of Regensburg, 2007.

24. Peterlin-Mašič, L.; Jurca, A.; Marinko, P.; Jančar, A.; Kikelj, D., A general synthetic approach to novel conformationally resticted arginine side chain mimetics. *Tetrahedron* **2002**, *58*, 1557-1563.

25. Kelly, T. R.; Lebedev, R. L., Synthesis of some unsymmetrical bridged terpyridines. *J. Org. Chem.* **2002**, *67*, 2197-2205.

26. Hoggard, L. R.; Zhang, Y.; Zhang, M.; Panic, V.; Wisniewski, J. A.; Ji, H., Rational design of selective small-molecule inhibitors for β -catenin/B-cell lymphoma 9 protein-protein interactions. *J. Am. Chem. Soc.* **2015**, *137*, 12249-12260.

27. Cardenal, C.; Vollrath, S. B. L.; Schepers, U.; Bräse, S., Synthesis of functionalized glutamine- and asparagine-type peptoids - scope and limitations. *Helv. Chim. Acta* **2012**, *95*, 2237-2248.

28. Škalamera, Đ.; Blažek Bregović, V.; Antol, I.; Bohne, C.; Basarić, N., Hydroxymethylaniline photocages for carboxylic acids and alcohols. *J. Org. Chem.* **2017**, *82*, 12554-12568.

29. Damalanka, V. C.; Kim, Y.; Alliston, K. R.; Weerawarna, P. M.; Galasiti Kankanamalage, A. C.; Lushington, G. H.; Mehzabeen, N.; Battaile, K. P.; Lovell, S.; Chang, K.-O.; Groutas, W. C., Oxadiazole-based cell permeable macrocyclic transition state inhibitors of norovirus 3CL protease. *J. Med. Chem.* **2016**, *59*, 1899-1913.

30. Al-Attas, A. S.; Habeeb, M. M.; Al-Raimi, D. S., Spectrophotometric determination of some amino heterocyclic donors through charge transfer complex formation with chloranilic acid in acetonitrile. *J. Mol. Liq.* **2009**, *148*, 58-66.

31. Thomsen, A. R. B.; Hvidtfeldt, M.; Bräuner-Osborne, H., Biased agonism of the calcium-sensing receptor. This model is only valid for ligands which are agonists in both pathways. The model can not be applied to ligands which are e.g. agonists in G protein and antagonists in arrestin pathway. *Cell Calcium* **2012**, *51*, 107-116.

32. Biselli, S. Synthesis and Pharmacological Characterization of Subtype-Selective Ligands, Including Radio- and Fluorescence Labeled Ligands, for the Histamine H₂ Receptor. Ph.D. Thesis. University of Regensburg, 2020.

33. van der Westhuizen, E. T.; Breton, B.; Christopoulos, A.; Bouvier, M., Quantification of ligand bias for clinically relevant β_2 -adrenergic receptor ligands: implications for drug taxonomy. *Mol. Pharmacol.* **2014**, *85*, 492-509.

34. Felixberger, J. Luciferase Complementation for the Determination of Arrestin Recruitment: Investigation of Histamine and NPY receptors. Ph.D. Thesis. University of Regensburg, 2014.

6 Summary

The discovery of the histamine H_2 receptor (H_2R) happened more than 50 years ago. Although it has since been intensively studied by both the pharmaceutical industry and universities, its function in the central nervous system (CNS) is still largely unknown. One of the main reasons for this is the lack of selective ligands which ideally also have access to the CNS. Before this work started, 2-amino-4-methylthiazole-containing carbamoylguanidines were published as highly potent and subtype-selective H_2R agonists which might be able to access the CNS (shown on acylguanidines). However, their applicability to elucidate the function of the central H_2R is impaired by their high affinity for D₂-like ($D_{2/3/4}$) receptors. This affinity originates most likely from the 2-amino-4-methylthiazole motif, which is a vital element of the D₂-like receptor agonist pramipexole. In addition, the recently published pharmacological tools for the H_2R (e.g. radio and fluorescent ligands) still possess significant structure-inherent drawbacks (e.g. pseudo-irreversible binding), which hamper the correct investigation of the receptor.

Consequently, the aim of this work was the synthesis of H_2R ligands which possess a selectivity over D_2 -like receptors, and which can be used as new molecular tools with e.g. improved kinetic properties.

In the course of this doctoral thesis a new, high affinity, subtype-selective and G-proteinbiased H₂R radioligand ([³H]UR-KAT479) was synthesized and characterized. The binding of this radioligand to h/gp/mH₂R (co) expressing HEK293(T) cells was satiating and highly specific. The affinity for h- and gpH₂R was high ($K_d = 24/28$ nM; h/gp) and moderate for mH₂R ($K_d = 98$ nM). The most important property of [³H]UR-KAT479 is the complete dissociation (60-180 min) from the h/gp/mH₂ receptors in kinetic experiments after a rapid association (60 min), which is good evidence for the reversible binding of this and structurally related ligands of the carbamoylguanidine class. The reversible binding enabled the determination of p K_i values of unlabeled standard ligands on e.g. the h/gp/mH₂R in the equilibrium according to the Cheng-Prusoff equation. In addition, [³H]UR-KAT479 can be used as a model compound to investigate the pharmacokinetic properties (e.g. erythrocyte binding and protein binding) of the ligands of the carbamoylguanidine class.

In another project, fluorescence ligands with varying degrees of efficacy (E_{max}) in the β -arrestin1/2 assays were synthesized and their ability to trigger receptor internalization in hH₂R (co)expressing HEK293T cells was investigated using confocal microscopy. Indeed, no visible internalization of the H₂R could be observed for a ligand with $E_{max} = 0.09$ in the β -arrestin1 and

6 Summary

 $E_{max} = 0.12$ in the β -arrestin2 assays. However, three other fluorescent ligands showed moderate to good efficacies in the β -arrestin1/2 assays (E_{max} : 0.22-0.61) and the internalization of the H₂R could be observed. These results are a good visual indication that an adequate level of β -arrestin recruitment is crucial for the internalization process of H₂R. Similarly to the structurally related radioligand, the fluorescence ligands showed improved kinetic properties and could also be used to determine the p K_i values of unlabeled ligands. In addition, these ligands can be used in the future to elucidate the co-localization of the H₂R-ligand complex with other proteins involved in the internalization process to get a better understanding of the exact internalization of the H₂R.

Two additional projects dealt with the selectivity problem of H₂R ligands with respect to D₂like receptors. Two different strategies were applied in the investigations. In the first project, the ligand PB513 (H₂R: $pK_i = 7.84$), a 2-arylbenzimidazole derived from H₄R ligands, should be structurally optimized towards a higher subtype selectivity over the H₃R. This was because PB513 showed selectivity towards dopamine receptors in a preliminary study. In the second project, ligands of the carbamoylguanidine class were structurally modified (linker, heterocycle, and side chain variations) to generate a selectivity over the D₂-like receptors.

During the 2-arylbenzimidazole project the following elements of PB513 were identified as important for H₂R affinity: the 2-arylbenzimidazole, the secondary amine, the double bond, and the imidazole. On the other hand, the amide did not seem to be of great importance for the H₂R affinity, but mainly influenced the subtype selectivity. Although 27 analogues of PB513 were synthesized it was not possible to achieve a sufficient subtype selectivity (factor 100). In addition, PB513's previously reported selectivity for the H₄R (K_i (H₄) / K_i (H₂): reported: 148, obtained: 14) and preference for the H₃R (K_i (H₃) / K_i (H₂): reported: 47, obtained: 6) could not be reproduced. For this reason, the synthesized molecules were not examined at the dopamine receptors.

To improve the selectivity of the carbamoylguanidine class ligands, 40 analogues with different heterocycles, spacers and side residues were synthesized. Replacing the problematic 2-amino-(4-methyl)thiazole ring with a 2-aminothiadiazole led to an increase in the H₂R affinity (p*K*_i: 8.09-8.52) while maintaining the subtype selectivity (*K*_i (H_{1/3/4}) / *K*_i (H₂) > 100). In addition, these ligands showed selectivity towards the D₂-like receptors. The compounds were agonists at the h/gpH₂R (h: mini-G, [³⁵S]GTP_γS, β-arrestin; gp: mini-G, atrium) and showed no or a less pronounced G-protein bias compared with their corresponding 2-amino-(4-methyl)thiazoles. To identify the molecular interactions leading to this selectivity over D₂-like

6 Summary

receptors, molecular docking studies were carried out with selected thiazole and thiadiazolecontaining compounds. It was found that the amino acids in positions 3.28, 3.34, ELC2.49, ELC2.49, ELC2.51, 5.42 and 7.35 are most likely responsible for the selectivity.

In summary, in this work new, labeled (radioactive or fluorescent) molecular tools for the H_2R with improved kinetic properties were discovered. In addition, an exchange of thiazole with thiadiazole in ligands of the carbamoylguanidine class was found to lead to high-affinity, subtype-, and D_2 -like receptor-selective H_2R agonists. The results of this work represent a very important step for future studies of H_2R agonists of the carbamoylguanidine type in order to get a better understanding the cellular mechanisms of the H_2R in general and specifically its function in the CNS (in vivo).

7 Zusammenfassung

Obwohl die Entdeckung des Histamin H₂ Rezeptors (H₂R) bereits mehr als 50 Jahre zurückliegt und er seitdem auf intensivste Weise sowohl von der pharmazeutischen Industrie als auch an Hochschulen erforscht wurde, ist seine Funktion im zentralen Nervensystem (ZNS) noch immer weitgehend unbekannt. Eine der wesentlichen Ursachen dafür ist der Mangel an geeigneten selektiven Liganden, die idealerweise gleichzeitig ZNS-gängig sind. Die vor Beginn dieser Arbeit publizierten 2-Amino-4-methylthiazol-haltigen Carbamoylguanidine sind hoch potente, subtypselektive und vermutlich sogar ZNS-gängige (gezeigt an Acylguanidinen) H₂R Agonisten. Allerdings ist ihre Anwendbarkeit zur Aufklärung der Funktion des zentralen H₂R durch ihre hohe Affinität zu D₂-artigen (D_{2/3/4}) Rezeptoren beeinträchtigt. Diese Affinität entsteht sehr wahrscheinlich durch das 2-Amino-4-methylthiazol-Motiv, welches auch ein Bestandteil des D₂-artigen Rezeptor Agonisten Pramipexol ist. Zudem weisen die kürzlich für den H₂R publizierten pharmakologischen Werkzeuge (z.B. Radio- and Fluoreszenzliganden) immer noch strukturbedingte Nachteile auf (z.B. pseudo-irreversible Bindung), welche eine korrekte Untersuchung dieses Rezeptors behindern.

Das Ziel dieser Arbeit war deshalb die Synthese von H₂R-Liganden, welche eine Selektivität gegenüber D₂-artigen Rezeptoren aufweisen und von neuen molekularen Werkzeugen mit z.B. verbesserten kinetischen Eigenschaften.

Im Laufe dieser Doktorarbeit wurde ein neuer, hoch affiner, subtypselektiver und G-proteinbiased H₂R Radioligand ([³H]UR-KAT479) synthetisiert und charakterisiert. Die Bindung dieses Radioliganden an h/gp/mH₂R (co)exprimierende HEK293(T) Zellen war sättigend und sehr spezifisch. Die Affinität am h- und gpH₂R war hoch ($K_d = 24/28$ nM; h/gp) und moderat am mH₂R ($K_d = 98$ nM). Die wichtigste Eigenschaft von [³H]UR-KAT479 ist die vollständige Dissoziation (60-180 min) von den h/gp/mH₂ Rezeptoren in kinetischen Experimenten nach einer schnellen Assoziation (60 min), was ein Beweis für das reversible Bindungsverhalten von diesem und strukturell verwandten Liganden der Carbamoylguanidin-Klasse ist. Das reversible Bindungsverhalten ermöglichte die Bestimmung der p K_i Werte unmarkierter Standardliganden am z.B. h/gp/mH₂R im Gleichgewicht gemäß der Cheng-Prusoff Gleichung. Zudem kann [³H]UR-KAT479 als Modelverbindung zur Untersuchung der pharmakokinetischen Eigenschaften (z.B. Erythrozyten-Bindung und Protein-Bindung) der Liganden der Carbamoylguanidine-Klasse benutzt werden.

7 Zusammenfassung

In einem weiteren Projekt wurden Fluoreszenzliganden mit unterschiedlich stark ausgeprägten Wirkungsmaxima (E_{max}) in den β -arrestin1/2 Assays synthetisiert und deren Fähigkeit die Internalisierung in hH₂R (co)exprimierenden HEK293T Zellen auszulösen konfokal-mikroskopisch überprüft. Tatsächlich konnte für einen Liganden mit $E_{max} = 0.09$ im β -arrestin1 und $E_{max} = 0.12$ im β -arrestin2 Assay keine sichtbare Internalisierung des H₂R beobachtet werden. Drei weitere Fluoreszenzliganden zeigten jedoch moderate bis gute Wirkungsmaxima in den β -arrestin1/2 Assays (E_{max} : 0.22-0.61) und für diese konnte eine Internalisierung des H₂ Rezeptors beobachtet werden. Diese Ergebnisse sind ein guter visueller Hinweis, dass eine ausreichende Rekrutierung von β -arrestin für den Internalisierungsprozess des H₂R entscheidend ist. Genau wie der strukturverwandte Radioligand, zeigten die Fluoreszenzliganden verbesserte kinetische Eigenschaften und konnten zur Bestimmung von pK_i Werten unmarkierter Liganden benutzt werden. Darüber hinaus können diese Liganden in Zukunft für die Aufklärung der Co-Lokalisierung des H₂R-Ligand-Komplexes mit an der Internalisierung beteiligten Proteinen benutzt werden, um den genauen Internalisierungsprozess des H₂R besser zu verstehen.

In zwei weiteren Projekten wurde versucht das Selektivitätsproblem gegenüber D₂-artigen Rezeptoren zu beheben. Hierfür wurden zwei unterschiedliche Strategien angewendet. Im ersten Projekt wurde versucht, den Liganden PB513 (H₂R: $pK_i = 7.84$), ein von den H₄R Liganden abstammendes 2-Arylbenzimidazol, strukturell so zu optimieren, sodass es eine höhere Subtypselektivität gegenüber H₃R aufweist. Der Grund dafür war, dass PB513 in einer vorläufigen Studie eine Selektivität gegenüber Dopaminrezeptoren gezeigt hat. Im zweiten Projekt wurden an Liganden der Carbamoylguanidine-Klasse strukturelle Modifikationen vorgenommen (Linker-, Heterozyklus- und Seitenketten-Variationen), um eine Selektivität gegenüber des D₃Rs zu erzeugen.

Beim 2-Arylbenzimidazol-Projekt wurden die folgenden Elemente von PB513 als wichtig für die H₂R Affinität identifiziert: das 2-Arylbenzimidazol, das sekundäre Amin, die Doppelbindung und das Imidazol. Das Amid scheint keine große Bedeutung für die Affinität am H₂R zu haben, sondern hauptsächlich die Subtypselektivität zu beeinflussen. Trotz zahlreicher Variationen von PB513 (27 Analoga wurden synthetisiert) ist es nicht gelungen eine ausreichende Subtypselektivität (Faktor 100) zu erzielen. Zudem konnte die zuvor berichtete Selektivität zum H₄R (K_i (H₄) / K_i (H₂): berichtet: 148, erhalten: 14) und Präferenz für den H₃R (K_i (H₃) / K_i (H₂): berichtet: 47, erhalten: 6) von PB513 nicht reproduziert werden. Aus diesem Grund wurden die synthetisierten Substanzen nicht weiter an den Dopamin Rezeptoren untersucht.

Um die Selektivität der Liganden der Carbamoylguanidin-Klasse zu verbessern, wurden 40 Analoga synthetisiert. Dabei wurden der Heterozyklus, der Spacer und die Seitenkette variiert. Der Austausch des problematischen 2-Amino-(4-methyl)thiazol-Rings durch ein 2-Aminothiadiazol führte zu einer Erhöhung der H₂R Affinität (p*K*_i: 8.09-8.52), bei gleichzeitiger Erhaltung der Subtypselektivität (*K*_i (H_{1/3/4}) / *K*_i (H₂) > 100). Zudem zeigten diese Liganden eine Selektivität gegenüber den D₂-artigen Rezeptoren. Am h/gpH₂R wirkten diese Substanzen agonistisch (h: mini-G, [³⁵S]GTPγS, β-arrestin2; gp: mini-G, Atrium) und zeigten keinen oder einen weniger ausgeprägten G-protein Bias verglichen mit den entsprechenden 2-Amino-(4methyl)thiazolen. Um die molekularen Wechselwirkungen zu identifizieren, die zu dieser Selektivität gegenüber D₂-like Rezeptoren führen, wurden molekulare Docking-Studien mit ausgewählten Thiazol- und Thiadiazol-haltigen Verbindungen durchgeführt. Es wurde herausgefunden, dass wahrscheinlich die Aminosäuren in Positionen 3.28, 3.34, ECL2.49, ECL2.49, ECL2.51, 5.42 und 7.35 für die Selektivität verantwortlich sind.

Zusammenfassend wurden in dieser Arbeit neue, markierte (radioaktiv oder fluoreszierend) molekulare Werkzeuge für den H₂R mit verbesserten kinetischen Eigenschaften beschrieben. Außerdem wurde gezeigt, dass der Thiazol/Thiadiazol-Austausch in Liganden der Carbamoyguanidin-Klasse zu hochaffinen, subtyp- und D₂-like Rezeptor-selektiven H₂R Agonisten führt. Die Ergebnisse dieser Arbeit stellen einen sehr wichtigen Schritt für zukünftige Untersuchungen von H₂R Agonisten vom Carbamoyguanidin-Typ dar, um die zellulären Mechanismen des H₂R im Allgemeinen und spezifisch seine Rolle im ZNS (in-vivo) besser zu verstehen.

8 List of Abbreviations and Acronyms

	δ	abamical shift in nnm
		chemical shift in ppm
	$\beta arr(.)2$	β -arrestin2 protein
	μ	micro
	°C	degree Celsius
	2D	two-demensional
А	aa	amino acid
	abs.	absolute, purity of 100%
	AC	adenylyl cyclase
	aq	aqueous
	approx.	approximately
	ARRBx	β -arrestin protein, x = 1,2
	atm	standard atmosphere
	AU	absorption units
В	bar	metric unit of pressure
D	BB	building block
	BMY	Bristol-Myers Squibb
		• •
	Bq	becquerel
	B _{max}	maximum specific binding in the same unit as Y
	Bq	becquerel
	br	broad
	Br_2	bromine
	Boc	<i>tert</i> -butyloxycarbonyl
	Boc ₂ O	di- <i>tert</i> -butyl dicarbonate
	BODIPY	dipyrrometheneboron difluoride
	BRET	bioluminescence resonance energy transfer
	BSA	bovine serum albumin
	Btk	Bruton's tyrosine kinase
	Bu	butyl
С	с	canine, molar concentration
	calcd.	calculated
	cAMP	3`,5`-cyclic adenosine monophosphate
	cat.	catalyst
	C _b	drug concentration in whole blood
	Cbz	benzyloxycarbonyl
	CDCl ₃	deuterated chloroform
	Ce	drug concentration in RBCs
	cf.	confer/conferatur
	CH_2Cl_2	dichloromethane
	CHO	Chinese hamster ovary cell line
	Ci	curie
	CI	confidence interval
	CNBr	cyanogen bromide
	c(om)pd.	compound
	COSY	correlation spectroscopy
	cpm	counts per minute
	Ċp	drug concentration in plasma
	-	

CRE-Luc	cAMP-response element-driven transcriptional luciferase
	reporter
CREB	cAMP response element binding protein
CNS	central nervous system
CuSO ₄	copper(II) sulfate
d	day(s), doublet (spectral)
Da	Dalton
DAD	diode array detector
db	double bond
DEPT	distortionless enhancement by polarization transfer
DIAD	diisopropyl azodicarboxylate
DIPEA	N,N-diisopropylethylamine
DMAP	4-dimethylaminopyridine
DME	dimethyl ether
DMEM	Dulbecco's modified Eagle's medium
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
DMSO-d ₆	deuterated DMSO
dpm	disintegrations per minute
$D_x R$	dopamine D receptor subtype x
	exampli gratia
e.g. eBF	1 0
	efficacy bias factor half maximal effective concentration
EC ₅₀	
ECL	extracellular loop
EDC	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
EDTA	ethylenediaminetetraacetic acid
EGFR	epidermal growth factor receptor
EI	electron ionization
ELuc	Emerald luciferase
ELucC	C-terminal Eluc fragment
ELucN	N-terminal Eluc fragment
EMA	European Medicines Agency
E_{max}	maximal inducible receptor response referenced to a
	standard compound
equiv	equivalent(s)
ESI	electrospray ionization
Et_2O	diethyl ether
EtOAc	ethyl acetate
EtOH	ethanol
FCS	fetal calf serum
FDA	Food and Drug Administration
FLAG	polypeptide protein tag with sequence motif DYKDDDDK
g	gram(s) or number of times the gravitational force
G418	geneticin
$G_{\alpha i2}$	α - subunit of the G _{i2} protein that mediates the inhibition of
- 012	adenyl cyclase
$G_{\beta 1 \gamma 2}$	G protein β_1 - and γ_2 -subunits
GABA	y-aminobutyric acid
gp	guinea pig
GPCR(s)	G protein coupled receptor(s)
GRK	G protein-coupled kinase
UNIX	o proteni-coupieu killase

1	
	г,
	_

F

G

Gs	adenylyl cyclase stimulatory G protein
Gsas	α -subunit (short splice variant) of the G _s protein that
	mediates the stimulation of adenylyl cyclase
GSK	GlaxoSmithKline
$G_{s\alpha S}$	α -subunit (short splice variant) of the Gs protein that
	mediates the stimulation of adenylyl cyclase
GTPyS	guanosine 5`-O-[gamma-thio]triphosphate
h	human or hour(s)
H_2	hydrogen gas
H_2O	water
H_2SO_4	sulfuric acid
HBr	hydrogen bromide, hydrobromic acid
Hc	hematocrit
HCl	hydrogen chloride, hydrochloric acid
HCN2	potassium/sodium hyperpolarization-activated cyclic
	nucleotide-gated channel 2
HD-PE	high density polyethylene
HEK293	human embryonic kidney 293 cell line
HEK293T	human embryonic kidney 293T cell line, derived from the
	HEK293 cell line, that expresses a mutant version of the
	Simian Vacuolating Virus 40 large T antigene
HEPES	2-[4-(2-hydroxyethyl)piperazin-1-yl]-ethanesulfonic acid
Het	heterocycle
HGT-1	human gastric adenocarcinoma cell line
HgCl ₂	mercury(II) chloride
His	histamine
HMBC	heteronuclear multiple bond correlation
HOBt	hydroxybenzotriazole
HPLC	high-performance liquid chromatography
HR	histamine receptor, high-resolution
HRMS	high resolution mass spectrometry
HSQC	heteronuclear single quantum correlation
H _x R	histamine H receptor subtype x
Hz	hertz
IC ₅₀	half-maximum inhibitory concentration
IP3	inositol triphosphate
k	retention (or capacity) factor (HPLC)
Κ	clone
K_2CO_3	potassium carbonate
$K_{ m b}$	dissociation constant obtained from functional assays
KCl	potassium chloride
$K_{ m d}$	dissociation constant obtained from a saturation binding
	Experiment
KH ₂ PO ₄	monopotassium phosphate
$K_{ m i}$	dissociation constant obtained from a competition binding
	experiment
KI	potassium iodide
kin	kinetic
$k_{ m obs}$	observed association rate constant
$k_{ m off}$	dissociation constant
КОН	potassium hydroxide

K

I

	kon	association rate constant
	KRAS ^{G12C}	Kirsten rat sarcoma protein p.G12C mutant
	Kv3.2	voltage-gated potassium channel
L	L	liter(s)
2	L-DOPA	levodopa
	LC	liquid chromatography
	LiAlH ₄	lithium aluminium hydride
	$\log(\tau/K_A)$	transduction coefficient
М	m	mouse, multiplet (spectral), milli, meter(s)
	M	molar (moles per liter), mega
	MeCN	acetonitrile
	MF	molecular formula
	MeCN	acetonitrile
	MeOD	deuterated methanol
	МеОН	methanol
	mG /mini-G	engineered minimal G protein
	MgCl ₂	magnesium chloride
	mGs	engineered guanosine triphosphate hydrolase domain of
	mes	$G_{\alpha s}$ subunit (long splice variant)
	min	minute
	mol	mole(s), molecular (as in mol wt)
	MS	mass spectrometry
	MW	molecular weight
N	n	length of the linker given as the number of carbon atoms,
		nano
	Ν	sodium hydride, number of biological replicates
	n.a.	not applicable
	n.d.	not determined
	Na ₂ HPO ₄	disodium phosphate
	NaCl	sodium chloride
	NaH	sodium hydride
	NaH ₂ PO ₄	monosodium phosphate
	NaOH	sodium hydroxide
	<i>n</i> -BuOH	<i>n</i> -butanol
	NanoBRET	NanoLuc luciferase-based bioluminescence resonance
		energy transfer
	NEt ₃	triethylamine
	N_2H_4	hydrazine
	NHS	<i>N</i> -hydroxysuccinimid
	Nluc	NanoLuc luciferase
	NlucC	C-terminal NanoLuc fragment
	NlucN	N-terminal NanoLuc fragment
	NMR	nuclear magnetic resonance
	non-sp.	non-specific
Р	р	p-value (level of marginal significance within a statistical
		hypothesis test, representing the probability of the
		occurrence of a given event)
	PAINS	pan-assay interference compounds
	pBF	potency bias factor
	PBS	phosphate buffered saline
	Pd/C	palladium on carbon

PDB	protein data base
PE	petroleum ether
pEC_{50}	negative logarithm of the half-maximum activity
-	concentration in M
pН	potential or power of hydrogen
Phth	phthalimide
pK _a	acid dissociation constant
pK_b	negative logarithm of $K_{\rm b}$ in M
pK_i	negative logarithm of K_i in M
PKA	protein kinase A
PLC	phospholipase C
PPh ₃	triphenylphosphine
	negative logarithm of pBF
ppBF	
ppm	parts per million $4 ((1 = 2E)) = 4 (4 (dimethology)) = barrow but a 1 2 diag 1$
Py-5	4-((1 <i>E</i> ,3 <i>E</i>)-4-(4-(dimethylamino)phenyl)buta-1,3-dien-1-
	yl)-2,6-dimethylpyrylium tetrafluoroborate
r	rat
R	residue
RBC	red blood cell
RGS4	regulator of G protein signaling 4
R_{f}	retention factor (in chromatography)
[RL]	radioligand concentration
RP-HPLC	reversed-phase HPLC
rt	room temperature
q	quartet (spectral)
Q-TOF	quadrupole time of flight
qs5-HA	chimeric Gaq protein incorporating a hemagglutinin
-	epitope
quint	quintet
s	singlet (spectral), seconds
S0223	2-[5-[1-(5-carboxypentyl)-1,3-dihydro-3,3-dimethyl-2H-
	indol-2-ylidene]-penta-1,3-dienyl]-1,3,3-trimethyl-3H-
	indolium bromide
S0436	2-[5-[1-carboxypentyl-1,3-dihydro-3,3-dimethyl-2H-
~ ~ ~ ~ ~	indol-2-ylidene]-penta-1,3-dienyl]-3,3-dimethyl-1-(4-
	sulfobutyl)-3 <i>H</i> -indolium hydroxide, inner salt
S0387	2-[5-[1-(5-carboxypencyl)-1,3-dihydro-3,3-dimethyl-5-
20201	sulfo-2 <i>H</i> -indol-2-ylidene]-penta-1,3-dienyl]-3,3-dimethyl-
	1-(4- sulfobutyl)-3H-indolium hydroxide, inner salt,
	sodium salt
S/N	signal to noise ratio
SAR	structure-activity relationship
sb	single bound
scFv16	0
SCEVIO	single-chain variable fragment derived from mAb16
CE.	antibody
SE	standard error
SEM	standard error of the mean
SF	SuperFlash
Sf9	Spodoptera frugiperda insect cell line
SK	small-conductance calcium-activated potassium channel
SK-N-MC	human Askin's tumor cell line

R

Q

S

	SK&F	Smith, Kline & French
	SOCl ₂	thionyl chloride
	SP	signal peptide: subunit A of the murine type 3 receptor for
		5-hydroxytryptamine
Т	t	time, triplet (spectral)
	t-BuOK	potassium <i>tert</i> -butoxide
	t_0	dead time
	TFA	trifluoroacetic acid
	THF	tetrahydrofuran
	TLC	thin-layer chromatography
	TM	transmembrane
	TosMIC	toluenesulfonylmethyl isocyanide
	t _R	retention time
	Tris	tris(hydroxymethyl)aminomethane
	Trt	trityl
	Trt-Cl	triphenylmethyl chloride
U	U937	human lymphoblast cell line
	UHD	ultrahigh definition
	UV	ultraviolet
V	VHH	variable domain of heavy chain of heavy-chain antibody
	VS.	versus
W	wt%	mass fraction (percentage by weight)

9 List of Posters and Publications

Poster presentations:

Tropmann, K., Biselli, S., Plank, N., Forster, L., Felixberger, J., Hübner, H., Gmeiner, G., Bernhard, G., Buschauer, A., Strasser, A., Restoring histamine H₂R specificity versus dopamine D3/D2 receptors of carbamoylguanidine-type H₂R agonists, GRK1910 Evaluation, **2017**.

Tropmann, K., Littmann, T., Buschauer, A., Bernhardt, G., Strasser, A., G protein-biased fluorescent histamine H_2 receptor agonists failing to induce β -arrestin2 recruitment and receptor internalization, 9th Summer School "Medicinal Chemistry", University of Regensburg, September 19-21, **2018**.

Publications:

Biselli, S., Alencastre, I., <u>**Tropmann, K.**</u>, Erdmann, D., Mengya, C., Littmann, T., Maia, A. F., Gomez-Lazaro, M., Tanaka, M., Ozawa, T., Keller, M., Lamghari, M., Buschauer, A., Bernhardt, G., Fluorescent H₂ receptor squaramide-type antagonists: synthesis, characterization and applications, ACS Med. Chem. Lett., **2020**, 11, 1521-1528.

Grätz, L., <u>**Tropmann, K.</u>**, Bresinsky, M., Müller, C., Bernhardt, G., Pockes, S., NanoBRET binding assay for histamine H₂ receptor ligands using live recombinant HEK293T cells, *Sci. Rep.*, **2020**, 10, e13288.</u>

Tropmann, K., Höring, C., Plank, N., Pockes, S., Discovery of a G protein-biased radioligand for the histamine H_2 receptor with reversible binding properties, *J. Med. Chem.*, **2020**, 63, 13090-13102.

Höring, C., Seibel, U., <u>**Tropmann, K.**</u>, Grätz, L., Mönnich, D., Pitzl, S., Bernhardt, G., Pockes, S., Strasser, A., A dynamic, split-luciferase-based mini-G protein sensor to functionally characterize ligands at all four histamine receptor subtypes, *Int. J. Mol. Sci.*, **2020**, 21, 8440; Cover: *Int. J. Mol. Sci.*, (November-2 **2020**), 21, 22, - 466 articles.

Biselli, S.*, Bresinsky, M.*, <u>**Tropmann, K.***</u>, Forster, L., Honisch, C., Buschauer, A., Bernhardt, G., Pockes, S., Pharmacological characterization of a new series of carbamoylguanidines reveals potent agonism at the H₂R and D₃R, *Eur. J. Med. Chem.*, **2021**, *214*, 113190.

Pockes, S. & <u>Tropmann, K.</u>, Histamine H₂ receptor radioligands: triumphs and challenges. *Future Med. Chem.*, **2021**, *13*, 1073-1081.

Tropmann, K., Bresinsky, M., Forster, L., Mönnich, D., Buschauer, A., Wittmann, H.-J., Pockes, S., Strasser, A., Abolishing dopamine D_{2long}/D_3 receptor affinity of subtype-selective carbamoylguanidine-type histamine H₂ receptor agonists, *J. Med. Chem.*, **2021**, submitted for publication.

Tropmann, K., Seibel, U., Littmann, T., Strasser, A., Synthesis and pharmacological characterization of fluorescent histamine H_2 receptor carbamoylguanidine-type agonists, *Bioorg. Med. Chem. Lett.*, **2021**, manuscript in preparation.

*contributed equally

10 Danksagungen

Zuallererst gilt mein Dank PD Dr. Andrea Strasser für die Vergabe des interessanten und herausfordernden Promotionsthemas. Ich bedanke mich für ihre Unterstützung während der gesamten Zeit, das Vertrauen in mich, meine Projekte selbst zu entwickeln und die Erstellung des Erstgutachtens.

Ich danke auch sehr dem leider zu früh von uns gegangenen Prof. Dr. Buschauer für die Aufnahme an seinem Lehrstuhl und das Wecken meines Interesses für die Familie der Histamin Rezeptoren im Rahmen meiner Masterarbeit.

Prof. Dr. Joachim Wegener danke ich für die Erstellung des Zweitgutachtens und Prof. Dr. Frank-Michael Matysik für die Übernahme der Rolle als Drittprüfer. Außerdem danke ich Prof. Dr. Achim Göpferich für den Vorsitz in meinem Promotionskolloquium.

Für die Finanzierung meiner Promotion und wissenschaftliche Förderung danke ich dem Graduiertenkolleg (GRK) 1910 "Medizinische Chemie selektiver GPCR-Liganden".

Ich danke all meinen Kooperationspartnern: PD Dr. Andrea Strasser, Dr. Steffen Pockes, Prof. Dr. Armin Buschauer, Dr. Hans-Joachim Wittmann, Prof. Dr. Günther Bernhardt, Lisa Forster, Merlin Bresinsky, Dr. Sabrina Biselli, Lukas Grätz, Carina Höring, Dr. Nicole Plank, Claudia Honisch, Ulla Seibel und Dr. Timo Littmann für eine gute Zusammenarbeit.

Ein besonderer Dank gebührt Dr. Steffen Pockes für die hervorragende Zusammenarbeit, seine Unterstützung bei der Radiosynthese und analytischen Charakterisierung des Radioliganden, seine hilfreichen Ratschläge, seine fachliche Leitung und Betreuung und sein Fachwissen insbesondere auf dem Fachgebiet der Histamin Rezeptoren.

Ich danke Prof. Dr. Detlef Neumann (Medizinische Hochschule, Hannover, Germany) für die Bereitstellung von HEK293-m H_2R Zellen.

Ich danke Prof. Dr. Achim Göpferich für die Bereitstellung des Zeiss Axiovert 200M Mikroskops.

Ich danke Prof. Dr. Robert Schupfner für die Bestimmung der Aktivität von [³H]UR-KAT479.

Ich danke Dr. Harald Hübner (Department Chemie und Pharmazie, Lehrstuhl für Pharmazeutische Chemie (Prof. Dr. Gmeiner)) für seine aufschlussreichen Ratschläge zu Bindungstests an Dopamin D_{2long}/D_3 Rezeptoren und die Testung von einigen H₂R Liganden an D_{1-5} Rezeptoren.

Des Weiteren möchte ich mich bei Christine Braun und Kerstin Röhrl (Durchführung der organpharmakologischen Testungen), Astrid Seefeld und Franz Wiesenmayer (Blutentnahme), Elvira Schreiber (Schulung in der Durchführung der Versuche am Durchflusszytometer), Maria Beer-Krön (Bereitstellung von Sf9 Zellen, Schulung in Zellkulturtechniken und der Membranpräparation) und Denise Mönnich (Durchführung zahlreicher Radioligand- und GTPγS-Bindungstests) für die hervorragende technische Unterstützung bedanken.

Dr. Max Keller danke ich für seine aufschlussreichen Ratschläge zur Radiosynthese, für die Organisation der Mäuse für den Erythrozyten Bindungsversuch und seine Hilfe bei Problemen an der HPLC-Anlage.

Den Mitarbeitern der Abteilungen für Massenspektrometrie (Josef Kiermaier und Wolfgang Söllner) und NMR-Spektroskopie (insbesondere Fritz Kastner) gilt ein großes Dankeschön für ihre hervorragende Arbeit.

Meinen Forschungs- und Wahlpflichtpraktikanten Diana Braun, Valerie Grossegger, Stefanie Peulter, Daniela Bethge und Luisa Friebe Vasconcellos danke ich für ihre fleißige und tatkräftige Unterstützung in Labor und Mithilfe bei meinen Forschungsprojekten.

Mein Dank gilt auch allen ehemaligen (insbesondere Dr. Sabrina Biselli) und aktuellen Kollegen des AK Buschauer für die unverzichtbare Vorarbeit, die Unterstützung, die Zusammenarbeit und die Gespräche, ob nun fachlicher oder fachfremder Natur.

Meinen Eltern und meinem Bruder für ihre Geduld, Unterstützung und Hilfe in jeglicher Art und Weise in all den Jahren und vor allem meinem Lebenspartner Daniel Petzold, ohne dessen Liebe, unermessliche Geduld, Unterstützung und Rückhalt ich es wohl nicht so weit geschafft hätte. Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

Einige der experimentellen Arbeiten wurden in Zusammenarbeit mit anderen Personen durchgeführt. Vermerke zu den Beiträgen der betreffenden Personen finden sich in den jeweiligen Kapiteln.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe eines Promotionsberaters oder anderer Personen in Anspruch genommen. Niemand hat von mir, weder unmittelbar noch mittelbar, geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Diese Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer andren Prüfungsbehörde vorgelegt.

Katharina Tropmann