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Molecular wires of the acene-family can be viewed as a physical realization of a two-rung lad-
der Hamiltonian. For acene-ladders, closed-shell ab initio calculations and elementary zone-folding
arguments predict incommensurate gap oscillations as a function of the number of repetitive ring
units, NR, exhibiting a period of about ten rings. Results employing open-shell calculations and
a mean-field treatment of interactions suggest anti-ferromagnetic correlations that could poten-
tially open a large gap and wash out the gap oscillations. Within the framework of a Hubbard
model with repulsive on-site interaction, U, we employ a Hartree-Fock analysis and the density
matrix renormalization group to investigate the interplay of gap oscillations and interactions. We
confirm the persistence of incommensurate oscillations in acene-type ladder systems for a signif-
icant fraction of parameter space spanned by U and NR. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4975319]

I. INTRODUCTION

The question how properties of a macroscopic system
emerge when more and more atoms or molecules accumulate
exhibits many different facets and, for that reason, reappears
every once in a while in different contexts. On the simplest
level of “emergence,” one could consider the appearance of
band-structures in crystal growth. A first qualitative descrip-
tion of this phenomenon can already be given within a picture
of non-interacting quasi-particles. A conceptually analogous
situation arises in mesoscopic physics: when a quantum dot
couples to an electrode, the dot states hybridize with contact
states, thereby acquiring the level broadenings, Γ, that sig-
nal finite lifetime effects. Qualitatively new physics emerges
upon accounting for interaction effects. For instance, in
quantum-dots, the Kondo phenomenon results from the inter-
play of hybridization and the Coulomb-energy. Another exam-
ple displaying the appearance of strong correlation effects
with growing system size is superconductivity.1,2 There, one
is facing a crossover scenario, where the super-conducting
gap, ∆sc, competes with the single particle level spacing,
∆0 � Γ.

In this paper, we investigate an incarnation of a sim-
ilar motif as it appears in molecular electronics: we ask
how the electronic spectral properties of a molecular wire
built out of NR repetitive units (“rings”) evolve with increas-
ing NR. Motivated by earlier experiments,3–5 our specific
example will be the acene-family such as benzene, naphtha-
lene, anthracene, and others. Due to their peculiar electronic

a)Electronic mail: peter.schmitteckert@physik.uni-wuerzburg.de

structure, oligo-acenes have received a considerable amount
of attention in organic chemistry over the past 50 years.6–8 A
recent technological interest is based on suggestions to use
them as light harvesters in organic photo-voltaic devices.9

Besides being a simple realization of nano-wires, acenes can
be viewed as the narrowest graphene nano-ribbons with zig-
zag terminated edges. Due to the recent progress in synthesis
methodology, oligoacenes up to length NR = 9 (nonacene)
have already been produced.10,11

Previously, we have found that linear (oligo)acenes exhibit
oscillations in the NR (or length) dependence of optical exci-
tation gaps.12 Oscillations of electronic properties with the
geometric size of a nano-system are per se frequently encoun-
tered. An established example is given by the threefold gap-
oscillation of zigzag carbon nanotubes (armchair-ribbons) as
a function of tube diameter (width).13–15 In this context, the
three-fold periodicity reflects the symmetry of the hexagonal
Brillouin zone, with the Dirac points located at the corners.
A remarkable aspect of the acene oscillations is that they are
incommensurate in the sense that the oscillation period is not
dictated by lattice symmetry; it can reach periods of ten times
the length of the unit cell. The oscillations come with an impor-
tant consequence, namely, a close-to closing gap for molecules
of certain (periodically repeating) finite length.

We have demonstrated that similar to the case of the
nanotubes, the acene-oscillations can likewise be described
(nearly) quantitatively by a selection rule (zone-folding) for
the wave-vectors applied to the band structure of the under-
lying extended tight-binding model (Fig. 1). The procedure
is analogous to the threefold periodicity in band-gaps of
nanotubes13 and nanoribbons;14,15 in the acene case, how-
ever, incommensurate periodicity is reached because of the
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FIG. 1. (a) Parts of the oligoacene backbone in the tight-binding representation with a nearest neighbor hopping (t, yellow), hoppings to the second neighbor
(t′, dashed blue) and third neighbor (t′′, dotted black). On the left, we draw these hoppings for the “outer” carbon site, on the right for the “inner” carbon. t′′⊥
denotes the second neighbor hooping of the outer sites, t′′× of the inner sites. In the present study, we adopt t′′ = t′′⊥ = t′′× and, in contrast to Ref. 12, t′ = 0. (b) The
tight binding band-structure corresponding to the long-wire limit for t = 1, t′ = 0, and t′′ = 0.3. The lines are the analytical result according to (2) with t′′⊥ = t′′× .
The crosses are the results from a tight binding system consisting of NR = 31 rings and periodic boundary conditions. The valence- and conduction-band are
crossing at the Γ-point kD.

non-universal position of kD labelling the longitudinal momen-
tum at the acene-analogue of the Dirac point. Based on the
computational analysis of the acene-like Hubbard model, we
find that the zone-folding argument is not invalidated by inter-
actions beyond the independent quasi-particle picture; the
oscillations persist given the interaction strength U does not
exceed a threshold of the order of the bandwidth—at least as
long as interactions are screened, i.e., short-ranged.

Building upon our previous work, we intend to give a com-
prehensive study of interactions and incommensurate oscilla-
tions (IO) of acenes by contrasting Hartree-Fock (HF) mean
field treatments against microscopic numerical studies. We
model acene-type molecular wires by finite length Hubbard
ladders. A principal physical incentive is given by the poten-
tially rich phase diagram of interacting acene wires.16 In this
context, one could hope to manipulate acenes via chemical
synthesis, or engineering of the environment so as to explore
some part of this phase diagram. (Admittedly before this is
experimentally feasible, major technological difficulties have
to be overcome that are related to chemical stability. Momen-
tarily, long acene wires need to be kept within a noble-gas
matrix to prevent further reactions.11)

Further methodological incentive is provided by recent
open-shell scGW -calculations for the acene-series;17 they
indicated that in short wires the IO might disappear in the
presence of anti-ferromagnetic order in the ground state. At
first sight, this result may look very plausible. However, effects
of quantum-fluctuations are neglected in its derivation and in
quasi-one dimensional systems their effect typically is very
strong. Specifically, in the long-wire limit, quantum fluc-
tuations tend to destabilize mean-field ordered phases that
break a continuous symmetry.18 In this (quantum-disordered)
phase, the order-parameter exhibits significant short-range cor-
relations that leave a characteristic signature in local probe
measurements.

In this work, we clarify the fate of the anti-ferromagnetic
correlations in acene-type ladders in the presence of quan-
tum fluctuations, i.e., by providing a joint analysis from the

Hartree-Fock (HF) mean field and density matrix renormal-
ization group (DMRG). Within HF mean field analysis, we
reproduce the observation made in the ab initio study, Ref. 17,
for acene-molecules with Coulomb interactions: acene-ladders
with onsite Hubbard interactions exhibit anti-ferromagnetic
order on the mean field level along with a large charge gap,
thereby diminishing IO. By microscopic DMRG analysis,
however, we show that also in short ladders quantum fluctua-
tions destroy the long-range order. In particular, they signifi-
cantly reduce the HF excitation gap, restoring the IO signature
and up to intermediate interaction strengths of the order of the
bandwidth.

II. MODEL AND METHODS
A. Model definition

We study the acene Hubbard-ladder

Ĥ =
∑
i,j

tij ĉ
†

iσ ĉjσ + U
∑

i

(
n̂i↑ −

1
2

) (
n̂i↓ −

1
2

)
(1)

at half filling, where the first term describes the tight-binding
dynamics, and the second term in Eq. (1) the onsite Hubbard
repulsion with strength U. In the case of periodic boundary
conditions (PBCs), we have a linear length of L = 2NR sites,
where NR gives the number of hexagon (benzene) rings. For
hard wall boundary conditions (HWBCs), we complete the last
ring leading to L = NR + 1. The total number of sites is 2L.
The nearest neighbor hopping is characterized by an amplitude
t〈ij〉 = −t, and the longer-range hoppings accordingly by t ′, t ′′⊥ ,
and t ′′× (Fig. 1). If not stated otherwise, t will be taken as the
unit of energy and t ′′ = t ′′⊥ = t ′′× . Note that t ′′⊥ and t ′′× give rise
to a non-avoided crossing of conduction- and valence band at
non-commensurate wave-vectors kD predicted for the case U
= 0.19 For t ′′⊥ , t ′′× = 0, the system features a quadratic band
touching.16 For U = 0, the energy spectrum of (1) reduces
to

ε sb(k) = 2t ′ cos(k) +
1
2

s
(
t + t ′′⊥ + 2t ′′× cos(k)

)
+

sb
2

√(
t − t ′′⊥ + 2t ′′× cos(k)

)2
+ 8(1 + cos(k))(t + st ′)2, (2)
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where b, s = ±1 denotes a band and parity index, respectively,
yielding four bands resulting from the four-site unit cell.

In the following, we exclude next-nearest neighbor hop-
ping, t ′ = 0, so there is no hopping between sites sharing the
same sublattice; the model becomes bipartite and a chiral sym-
metry is imposed connected to the particle-hole symmetry of
the spectrum (Fig. 1). This choice can be made without loss
of generality regarding IO, as the main effect of breaking the
chiral symmetry in more general models with non-vanishing
t ′ would be to shift the position of the Dirac point kD. The
corresponding analytical calculations are given in Appendix A.

General comments on Hubbard-models. We briefly com-
ment about the applicability of Hubbard models to real sys-
tems. Indeed, models along the lines of (1) have been inves-
tigated intensively over the last fifty years in physics and
in chemistry. They provide substantial simplifications by (a)
ignoring the coupling to molecular vibrations, (b) including
only one orbital per atom, and (c) including all other degrees of
freedom in terms of effective parameters, only, such as a short
range interaction that mimics screening. In fact, information
about the molecular geometry (e.g., the relative position of
the atoms) is absorbed in hopping parameters and interaction
matrix elements. These parameters span a multi-dimensional
space which has a hyperplane that features those particular
combination of parameters that can be reached in realistic
situations.

In return, because Hubbard models are in a certain sense
minimal, they allow for a numerically exact treatment of the
many-body problem, with a size of the computational Hilbert
space that is much larger as compared to most other many-
body treatments that attempt to be more “first principles” on
the Hamiltonian level.

Keeping this in mind, Hubbard models like (1) are by
no means as oversimplistic as they may appear at first sight.
First, if properly parametrized such models have a good chance
to give a realistic, sometimes even a quantitative descrip-
tion of low-energy excitations also in those situations where
quantum-fluctuations are dominant, so that most competing
methods fail. Second, one often is interested in the system
behavior under varying external conditions, i.e., in the phase
diagram of the model; one would like to figure out what phases
exist, what are their properties and, ideally, also where are the
phase-boundaries located at. Since the qualitative aspects of
phase diagrams tend to be very robust under a change of the
Hamiltonian, one often adopts convenient choices for the
model parametrization, even though they are sometimes far
from realistic.

Once the phase-diagram has been mapped out, it may be
possible to predict the qualitative behavior for a given exper-
iment, even though the actual parameters representative for
this situation may not be known with high accuracy, at least in
those situations where very stable phases have been identified.

B. Computational details

In this spirit, we continue our analysis and treat the model
Hamiltonian (1) numerically within DMRG.20,21 Similar to
previous authors,22,23 we also observe that the ground state
is a spin singlet independent of the wire length. Thereby, we
track the many-body Hamiltonian at a fixed particle number

(equal to the number of lattice sites) and in the Sz
tot = 0 spin

sector. By targeting not only the ground state but also excited
states, we obtain the optical gap by taking the energy dif-
ference between the first excited and the ground state. For
non-interacting systems, the optical gap corresponds to the
gap between the highest occupied molecular orbital (HoMO)
and the lowest unoccupied molecular orbital (LuMO), as it
is given by the lowest particle-hole excitation. Due to spin-
rotational invariance, the excited states of the model in (1)
come in spin-multiplets according to irreducible representa-
tions of SU(2). By performing reference calculations in the
spin-sectors Sz

tot = 1, 2, we have ascertained that the lowest
excitation is a triplet state, and that the ground state is indeed a
singlet state. Details of the DMRG implementation are given in
Appendix C. To investigate the effect of quantum fluctuations
and to link with previous mean field treatments, it is useful to
compare the DMRG results to a HF description. We have also
implemented a self-consistent HF cycle to obtain mean field
estimates for the energy gaps, ground state, and magnetization
(Appendix C). In the HF theory, we look for the lowest lying
(charge-neutral) excitation energy to determine the energy gap,
for which we compute the difference in energy between the
lowest unoccupied and the highest occupied eigenvalue of the
Fock operator.

III. RESULTS AND DISCUSSION
A. Hartree-Fock analysis

Before investigating finite size features of the spectrum,
we analyze the infinite wire limit. In Fig. 2(a), we display
the evolution of the HF gap for repulsive interaction strength
U. We extract the bulk gap from finite-size calculations by
extrapolating the finite size gap vs. the inverse linear length
of the system (Appendix B). While the non-interacting wire
exhibits a band crossing at the Fermi-energy and therefore is
metallic, the repulsive interaction U opens up a correlation
gap.

Within the HF theory, the ground state is found to be
unstable against antiferromagnetic order; the corresponding
staggered magnetization is shown in Fig. 2(b). As we will see
in our DMRG-calculations below, this order will be destroyed
by quantum fluctuations. We here witness the established fact
that mean-field theories overestimate the tendency for sym-
metry breaking, at least if the interactions are short ranged.
In passing, we mention that broken symmetries refer to the
long-distance properties of a quantum state, which are not
well described on the HF-level. In contrast, the total energy
is predominantly dictated by the pair-correlation function at
short-distances. The latter is largely insensitive to the global
symmetries. Therefore, with respect to total energy calcula-
tions, HF can often give useful answers even though the long-
range physics is described qualitatively incorrect (Löwdin’s
“symmetry breaking dilemma” of HF24).

In the perturbative limit of weak repulsion, U� 1, we
can restrict ourselves to states with anti-ferromagnetic (AF)
ordering on top of the non-interacting ground state. In this
situation, the gap opens in long (but finite-length) wires as

∆
HF
1,NR
=

√
∆2

0 + (MHFU)2, (3)
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FIG. 2. (a): Evolution of the excitation gaps ∆HF
1,∞(U) (+) and ∆DMRG

1,∞ (U) (×)
in units of the interaction U vs. the increasing strength of the repulsive Hubbard
interaction U. For large U, we recover the expected asymptotic behavior. For
U → 0, the numerical extrapolation is impaired by the IO; the asymptotic
behavior is indicated by the (yellow) dashed line; see text and for comparison
Fig. 9. (b) Corresponding staggered magnetization MHF (◦) over the band-gap
∆HF

1,∞(U) in units of U displaying a linear dependence in the complete regime.

where ∆0 is the finite size gap of the non-interacting wire,
∆0 ≡ ∆

U=0
1,NR

; MHF denotes the staggered magnetization ampli-
tude. We recall that at U� 1 the response of energies to the
staggered field is linear in U, implying a quadratic gap opening
∆HF

1,∞(U) ∼ U2 in the thermodynamic limit (where ∆0 → 0).
At intermediate interactions, the HF values for the gap

opening allow for a phenomenological two-parameter fit,

∆
HF
1,∞(U) ≈ 0.5Ue

−D
U2+D1U , (4)

where D is of the order of the non-interacting bandwidth; we
obtain D ≈ 5.5 ± 0.4 and D1 ≈ 1.0 ± 0.1, provided U is not
too small. As expected, in the large U limit, the HF particle-
hole gap is set by U. Its evolution follows closely one of the
anti-ferromagnetic order parameters MHF(U), Fig. 2(b).

We now turn to the HF analysis of acene wires with finite
length. In this case, one expects that the opening of the HF gap
∆HF

1,NR
decreases the ground-state energy only if ∆HF

1,NR
exceeds

the non-interacting (“native”) level-spacing ∆0 at the Fermi
energy significantly. Hence, for shorter wires, the gap open-
ing is most effective at particular values of NR that have an
anomalously small single-particle gap—and ineffective at the
others. In other words, only at NR-values situated close to a
minimum of the IO an AF-order develops and at the others
the non-interacting ground-state prevails. In this situation, IO
remain visible even in ∆HF

1,NR
.

For longer wires, however, the IO fade away because the
native band-gap is suppressed as ∼1/NR and eventually no

FIG. 3. Evolution of the HF-magnetization MHF and HF-gap ∆HF
1,NR

with
increasing number of rings NR at U = 0.8 and HWBC. As is seen, the HF mag-
netization MHF of the acene-wire (×) is non-vanishing whenever the HF-gap
(◦) exceeds the non-interacting gap (+). For this reason, even the mean-field
magnetization exhibits the IO, in principle. They fade away only for large sys-
tem sizes, when the non-interacting finite site gap falls below the interaction
induced HF gap.

longer overcomes ∆HF
1,NR

. As soon as ∆HF
1,NR

exceeds the max-
ima of the native band gaps, the IO disappear from the HF
spectra. Indeed, the IO in ∆HF

1,NR
are seen to become weaker

with increasing NR (and U) (Fig. 3). This explains why large
system sizes NR � 1 are needed in order to obtain the HF gap
in the small U regime: the finite size induced gap has to fall
below the HF gap.

As the magnetization closely follows ∆HF
1,NR

, it emerges
preferably in acene wires that exhibit a relatively small (native)
band-gap (Fig. 3). Vice versa, the HF-ground state remains
non-magnetized at wire-lengths, such as NR = 11, 19, 28, . . .,
where the native gap is particularly large; there mean-field
magnetism only appears at larger interaction values. In con-
trast, for large interaction values, the HF gap surpasses the
non-interacting gap already for a small system size (Fig. 4),
and the IO disappear in that regime.

B. DMRG calculations

We reignite the discussion from the viewpoint of DMRG
by the infinite wire limit. Within our DMRG-implementation,
this limit can only be achieved through finite size extrapo-
lation: for every value of U, the extrapolation is performed
to yield one data point of the blue line for the excitation

FIG. 4. Evolution of the HF-magnetization (×) and HF-gap ∆HF
1,NR

(◦) with
increasing number of rings NR, L = 2NR + 1, at U = 1.0, 1.5, 2.0. As in Fig. 3,
the IO vanish if the HF gap is larger than the non-interacting gap. Accordingly,
at these instances the staggered magnetization MHF stays finite.
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FIG. 5. Evolution of the lowest lying excitation gap ∆1,NR for acene-ladders
with increasing number of rings NR, L = 2NR + 1, for varying interaction
strengths U (+ : 0.2,× : 1.0;O : 1.5). For comparison also the HF-result (◦)
is shown. In contrast to the strongly reduced IO on HF-level, they survive for
not too large U in the DMRG calculations.

gap in Fig. 2(a), where it is compared against the HF result.
We mention that at small values of U numerical calcula-
tions are more challenging to converge in DMRG, so that
the low U asymptotics is not fully resolved in Fig. 2(a). The
difficulty is that due to the metallic character of the wire,
the entanglement content is spread over a large manifold of
modes that have non-negligible weight in the reduced density
matrix.

By comparing to the HF result, one directly observes
the effect of strong quantum fluctuations in the DMRG trace
shown in Fig. 2(a). Fluctuation effects are visible by a reduc-
tion of the excitation gap but also by a modified gap evolution
with U as compared to the HF trajectory. The asymptotic
power-law at large U seen in Fig. 2 is readily understood in
terms of the mapping to the Heisenberg spin-chain. It pro-
ceeds via the effective coupling constant J(U) = 4t2/U that
sets the scale for ∆DMRG

1,∞ in this limit.25–28 As is seen in
Fig. 2(a), the Heisenberg limit is reached at values of U
exceeding the bandwidth, D, by about a factor of two.33

Fig. 5 displays the most important result of our work. It
confronts the mean-field data for the excitation gaps with the
results obtained from the DMRG-calculations for finite-length
wires. Specifically, the evolution of their DMRG-excitation
gaps, ∆DMRG

1,NR
, is shown for the increasing length of the wire

NR at different U. It is clearly seen there, that the DMRG traces
exhibit pronounced IO even for those values of U at which the
residual oscillations in ∆HF

1,NR
have almost faded away, already.

Very much in the spirit of the long-wire limit, we understand
this result as a manifestation of quantum-fluctuations in finite-
size wires. They destroy the tendency of mean-field theories to
open up excitation gaps, thereby restoring the IO as a hallmark
of the symmetry-unbroken phase.

IV. CONCLUSIONS

We have studied the acene Hubbard model for a large
range of on-site repulsion U. The gap oscillations, that are
the characteristics of the weakly correlated phase, survive as
a periodic modulation also in the strongly correlated phase.
The latter still persist for a sizable interaction strength, as
quantum fluctuations significantly reduce the formation of the
correlation gap.

With an eye on acene-molecules, we expect that our results
have the following implications. We have performed model-
calculations employing short-range interactions. They may
apply to acenes in the presence of a screening environment,
such as substrates or electrochemical solutions. With screened
Coulomb-interactions, the effective value of U should be sig-
nificantly smaller than the molecular bandwidth, implying that
our weakly correlated scenario should apply. In contrast, for
gas-phase molecules screening is very weak and the applica-
bility of our model-calculation is not immediately guaranteed.
This is the situation investigated in Refs. 7, 8, and 17; we
conclude with a brief overview.

Concerning Ref. 17, it remains to be seen if quantum-
fluctuations can restore the spin-rotational symmetry also
in the presence of a long-range Coulomb interaction. Very
recent quantum-chemistry calculations on the level of density
-functional multi-reference theory (DFT/MRCI) for oligoa-
cenes (up to NR = 9) and pp-RPA (up to NR = 12) may give
an indication that this indeed could be the case.7,8

The authors of Ref. 7 confirm earlier findings29 that best
agreement between DFT/MRCI results and experimental IR-
excitation energies is achieved for closed-shell reference states
(with B3LYP functional) even though spin-unrestricted calcu-
lations may produce a lower total energy. It is thus suggested
that quantum-fluctuations are indeed strong in long acene-
wires so that single-determinant approximations of the ground-
state are not representative. In agreement with this interpreta-
tion, these authors observe that the weight of the reference state
in the DFT/MRCI ground state is progressively decreasing with
growing wire length, so that more and more Slater determinants
have to be included to accurately represent this state.

The authors of Ref. 8 come to a qualitatively similar
conclusion. The pp-RPA method is an interesting variant of
RPA-type approaches, since it incorporates vertex-corrections
that are missed, e.g., in standard RPA bubble-summations.
Thus, it allows to include a certain amount of quantum fluc-
tuations when treating unscreened wires (i.e., with Coulomb-
interactions) that would otherwise be too long for more accu-
rate approaches. A certain drawback of the method is that it
is uncontrolled: while it can signalize qualitatively that quan-
tum fluctuations are likely to be important, there is no way
of telling with confidence what they actually do in that case,
quantitatively.

On the qualitative level, the conclusions of Refs. 7 and 8
are consistent. In particular, also the authors of Ref. 8 empha-
size that the multi-determinant character of the ground state
increases rapidly with growing wire length. It hinders the
formation of long-range magnetic order and implies that mean-
field results (i.e., unrestricted open-shell calculations) are to
be interpreted with a grain of salt.

It remains to be seen, however, if restoring the spin-
symmetry in the ground state is enough to also restore the
IO. Namely, even assuming that long-range and short-range
models of molecular wires share the same phases, it is still
unclear whether the effective value of U in the gas-phase cal-
culations is small or large as compared to the (non-interacting)
bandwidth.

Interestingly, the authors of Ref. 8 propose an exponential
decay of the lowest lying spin-triplet gap with increasing NR
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saturating near NR = 11 at roughly 0.13 eV without a trace
of IO. If indeed correct, this finding could still be interpreted
within the short-range model. It could be taken as a hint that the
effective interaction U as it appears in the study, Ref. 8, should
be considered large. However, the authors’ data underlying
their exponential fit (Table 1 in Ref. 8) appear to be inconsistent
with an exponential asymptotics. In fact, the data for the spin-
restricted cases exhibit even non-monotonic behaviour (upturn
at large wire length), which is qualitatively consistent with the
onset of IO as predicted by us.
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APPENDIX A: NON-INTERACTING
BAND-STRUCTURE AND AN EFFECTIVE MODEL

We consider a non-interacting (U = 0) polyacene wire
with the lattice and single particle Hamiltonian of (1) explained
in Fig. 1. For this model, we derive analytic expressions for
the wave number of the nodal point kD, Fermi velocity 3F,
and the oscillation period of gaps of finite chains. The ladder-
like lattice features a symmetry with a line group D∞h. An
important member of the group is a mirror symmetry with
respect to the interchange of stringers which we call parity.
The third-neighbor hoppings can be divided into two groups:
a hopping that connects atoms related by the parity and the two
hoppings that connect different rungs (Fig. 1). We denote the
former by t ′′⊥ and the latter by t ′′× . We label the 4 Bloch bands
ε sb(k) by the wave-number in units of a�1 (the inverse lattice
spacing), a parity s = ±1 and a remaining band index b = ±1.
The explicit expression for the band dispersions is given in (2).
The bands are particle-hole symmetric only if t ′ = 0, whence
ε sb(k) = −ε−sb(k).

The two bands with b = �1 give rise to a linear dispersion
b3F(k � kD) at the Fermi level if the condition tt ′′⊥ > 0 is met,
as we will show below. We derive analytic expressions for kD

and 3F under the condition t ′ = 0. The nodal (“Dirac”) point
kD for t ′ = 0 is the solution of the equation

cos(π − kD) =
t2 − 1

2 t t ′′⊥
t2 − t ′′⊥ t ′′×

. (A1)

In the limit of (π − kD) small, the nodal (Dirac) point and the
Fermi velocity are expressed by

π − kD =

√
t ′′⊥
t

(
1 −

t ′′×
t

)
·

[
1 +O(t ′′/t)2

]
, (A2)

vF = 2
√

t t ′′⊥ ·

[
1 −

t ′′×
t
−

9
8

t ′′⊥
t
+O(t ′′/t)2

]
(A3)

For oligoacenes within the tight-binding approximation
parameterized as above, the band crossing implies gap oscil-
lations with the unit cell period of

(1 − kD/π)−1 = π
√

t t ′′⊥

(
1 +

t ′′×
t
+O(t ′′/t)2

)
(A4)

In Equations (A2) and (A3), the symbol O(t ′′/t)2 denotes
all terms that are of second order in t ′′⊥ and t ′′× . We see that the
band crossing sets in with

√
t ′′⊥ , provided that the signs of t and

t ′′⊥ are equal.
The hopping t ′ preserves the band crossing and weakly

renormalizes kD and 3F. We remark that the low-energy behav-
ior of the non-interacting polyacene model used in the present
paper can be mapped onto a simpler effective model with
t ′ = t ′′× = 0 and t and t ′′⊥ non-zero, i.e., a ladder model with
alternating rungs. This model has been introduced originally
by Kivelson and Chapman.19

APPENDIX B: EXTRACTING THE BULK GAP
FROM FINITE-SIZE WIRES

Assuming that the gap opening only affects the band struc-
ture close to the Dirac point, one would expect that the gaps
are given by a minimal model of a type

∆
DMRG(NR) =

√
∆(NR)2 + v2

F∆k2(NR), (B1)

∆k(NR) =
π

2NR + 2
cos(kDNR + φ), (B2)

that follows the zone-folding argument of Ref. 12. The square
root term in Eq. (B1) accounts for the level crossing with
parameters ∆(NR), vF, and φ; ∆(NR) and φ are fit-parameters
that accommodate additional finite-size effects. Somewhat
unexpectedly, our calculations indicate that the band-structure
underlying Eq. (B1) does not provide a faithful description
of the true bandstructure of the infinite wire with the range
of U-values that we have been able to investigate. At values
U ∼ 1, the band-structure deviates significantly from the mas-
sive Dirac-shape and Eq. (B1) no longer applies. (For instance,
we find a stronger damping of the oscillations as expected
from Eq. (B1) indicating an interaction induced flattening of
the band.)

In the limit of large interaction U, the finite size oscilla-
tions are completely washed out and the thermodynamic limit

FIG. 6. Extraction of the DMRG gap for large interaction values U (�: 2.5,
◦: 5.0, O: 10.0, �: 50.0) via a linear fit of the finite site excitation gap ∆1,L vs.
the inverse system length 1/L, L = 2NR + 1.



092320-7 Schmitteckert et al. J. Chem. Phys. 146, 092320 (2017)

FIG. 7. Extraction of the DMRG gap∆1,∞ for not too large interaction values
U (×: 1.0, +: 1.5, O: 2.0). The extrapolation is performed using Eq. (B3) for
∆1,L vs. the inverse length 1/L, L = 2NR + 1, and displayed by lines, while the
symbols correspond to the DMRG results.

of the interaction induced gap can be extracted from a linear
fit in the inverse system size 1/L, see Fig. 6. However note
that for U = 2.5 an oscillatory part is already visible for not
too large system sizes. Therefore we take a heuristic approach
modeling the decay of the oscillations with a power law decay

∆1(L) = ∆∞ + a/L + b cos (kDL + η) /L1+α. (B3)

as shown in Fig. 7. Here, a/L describes the decay of the non-
oscillatory part, while the cosine term describes a decay of
the oscillation faster than 1/L, i.e., α > 0. b gives the ampli-
tude of the oscillations, kD gives the periodicity, and η allows
for shifting the phase of the oscillation. α is a heuristic expo-
nent modelling the damping of the oscillations. In our fits, we
always find α > 0 and α approaches zero for U → 0.

The gaps shown in Fig. 2 are obtained from the linear fits
for U > 2.0, see Fig. 6, and from fits of Eq. (B3) for U ≤ 2.0.
We mention that the fit for U = 1.0 is still sensitive to the fit
range, and the result should be taken with care. For this reason,
we refrained from including results for U < 1.0. In addition,
in that regime, it is not sufficient to fit a single cosine, as the
results are getting close to the saw tooth like behavior as in the
non-interacting case. In order to fit the results for small U, we

FIG. 8. Extraction of the DMRG gap ∆1,∞ for small interaction values from
∆1,L vs. the inverse length 1/L, L = 2NR + 1. For not too large U, ◦: 0.2, �: 0.5.
The fits correspond to Eq. (B1) where the cosine is replaced by a saw tooth
equation (B4).

introduce a (truncated) saw tooth function

g(x) =

∑n
`=1,3,5,· · · , cos(`x)/`2∑n

`=1,3,5,· · · `
−2

(B4)

and use it instead of the cosine in Eq. (B1). Here we imposed
a limit of n = 17. The results for U = 0.2, 0.5 are displayed in
Fig. 8. While the fits do capture the oscillation quiet well, the
finite size oscillations are orders of magnitudes larger than the
extracted gaps. In return, we do not trust the extracted values
and did not include them in Fig. 2.

APPENDIX C: METHODOLOGICAL DETAILS
1. Numerical Hartree-Fock

Due to SU(2) symmetry combined with a local on-site
interaction, we can restrict our HF equations to the Hartree
terms

HHF = Ĥ
U=0
+ U

∑
x,σ

(
n̄σ,x − 0.5

)
n̂−σ,x, (C1)

where ĤU=0 denotes the non-interacting system according to
Eq. (1), σ denotes up and down spins, −σ the opposite spin to
σ, and n̄σ, x the expectation value of the local density operator
n̂σ, x at site x with spin σ. We have checked that by breaking
the remaining Sz

tot conservation; therefore allowing for Fock
terms of the form ĉ†σ, x ĉ−σ, x, we only find solutions where the
spin quantization axis is rotated with respect to the Hartree
solution. Note that in this case the solution depends on the
initialization of the self consistency loop.

Since up and down spins do not mix in (C1), we can rep-
resent the up and down spin sectors by independent matrices.
We start the HF calculations by first diagonalizing the non-
interacting system in order to obtain the ground state energy
E0 as a reference. Note that in this case we obtain a homo-
geneous solution n̄σ,x = 0.5. We then explicitly introduce a
staggered magnetic order by setting n̄σ, x = 0.5± 0.01σ, where
we take “+” on one sublattice of the bipartite system and “−”
for the other sublattice (Fig. 1). With these initial values, we
diagonalize HHF and calculate the locate densities n̄σ,x which
we then iteratively insert into (C1). We perform at least five
iterations and continue until the ground state energy EHF′ of
HamiltonianHHF changes by less then 10�10t. In order to avoid
getting stuck in an oscillation between two solutions, we damp
the HF self consistency loop by taking an average of 0.7 times
the new density and 0.3 times the densities of the preceding
iteration.

Finally, we check whether the ground state energy EHF

including the double counting corrections

EHF = ESC −
UM

4
+ U

∑
j

n̄σ, xn̄−σ, x (C2)

is smaller than the ground state energy E0 of the non-
interacting system. Indeed we always find EHF ≤ E0. The
spin-averaged local density n̄↑, j + n̄↓, j of our HF solution is
homogenous and the total staggered magnetisation MHF is
given by the difference between the magnetization of the two
sub lattices

mj =
1
2

(
n̄↑, j − n̄↓, j

)
, (C3)



092320-8 Schmitteckert et al. J. Chem. Phys. 146, 092320 (2017)

MHF =
∑
j∈A

mj −
∑
j∈B

mj . (C4)

2. Hartree-Fock: Commensurate case

The main problem of obtaining the U � 1 HF solutions
in Fig. 2 roots in the finite size oscillations being incommen-
surable. Therefore we need very large system sizes in order to
start with an U = 0 finite size gap ∆0 being smaller than the
interaction induced gap in the HF calculations. This extraction
of the HF gap gets simplified if we switch to the case of com-
mensurate oscillations by choosing a fine-tuned t ′′ from our
solution Eq. (A1). In Fig. 9, we display the results in the case
of a periodicity of twenty rings. We obtained the correspond-
ing t ′′ = 0.13 by solving Eq. (A1) numerically.34 Since we
now always hit a minimum of the gap oscillations precisely,
i.e., a zero in the non-interacting case, we can extract the HF
gap without difficulties. As expected, the HF gap indeed opens
∆HF

1,NR
∼ U2. In addition, we see the same exponential behavior

for intermediate to large U as displayed in Fig. 2.

3. DMRG

Within our DMRG calculations, we keep up to 8000 states
per block; the dimension of the target space grows up to
4.6 · 107, the discarded entropies are considerably below 10�4

for U > 1.0, while for U ≤ 1.0 the discarded entropies reach
4.2 · 10−2 for systems with NR > 20 in each DMRG step,
typically significantly smaller. We employ at least 7 finite lat-
tice sweeps with an optimized infinite lattice warm up for the
smallest system sizes. In order to reach large system sizes, we
iteratively restart a NR simulation in order to investigate a NR

+ 1 ring. Note that for this we only have to deactivate the wave
function prediction in the initial step of a restart. In order to ini-
tialize the simulations, we apply a sliding environment block
approach that we already employed successfully to fractional
quantum hall systems.30–32 Instead of using a reflection or a
growing right block during the DMRG infinite lattice warm
up sweeps, we employ a right block of up to 5 sites, which we
can always build exactly in such a way that we always have
4NR sites for PBCs and 4NR + 2 sites for HWBCs. With this
initial warm up, we avoid running into excited states in the
initial sweep.

FIG. 9. The HF gap∆HF
1,∞ as shown in Fig.2, left, in the case of commensurate

oscillations t′′ = 0.13 where the periodicity is given by 20 rings. The gap is
obtained by HF calculations for NR = 20, 40, 60, . . . , 200.
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