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Introduction

There have been always visionaries in science. One of them was, undoubtedly, Richard
Feynman, who in December of 1959 during the annual American Physical Society meeting
at Caltech gave one of his most inspiring lectures titled �There's plenty of room at the
bottom� [1]. There, he challenged scientists to explore how to control or manipulate indi-
vidual atoms and molecules by improving the existing technology to make this endeavor
happen. Although he never mentioned the words �nanotechnology� or �nanoelectronics� in
that lecture, he envisioned some of the achievements realized only in recent decades.

Despite Feynman's motivating speech, the proposal of a molecular-based electronic
device had to wait until 1974, when Aviram and Ratner put forward the �rst theoretical
design of a single-molecule recti�er [2]. From the experimental side, advancements such
as the invention of the scanning tunneling microscope (STM) in 1981 [3] became a game
changer. The combination of this type of theoretical and experimental advances marked
the �rst successful attempt of measuring the conductance of a single molecule [4] and set
the beginning of molecular electronics. In this �eld, one of the original driving forces was
the idea of using individual molecules as functional building blocks for electronics, thus
exploiting their electronic (transport) properties to develop and integrate nanoelectronic
devices into conventional electronics following a bottom-up approach. Although this goal
has been only partially achieved, the �eld has become an excellent platform to study
quantum mechanical e�ects at the molecular scale with no counterpart in condensed matter
physics.

From an experimental perspective, wiring individual molecules between macroscopic
metallic leads has become a routinary procedure thanks mainly to three di�erent tech-
niques: electromigration [5], mechanically controlled break junction [6] and scanning tun-
neling microscope-based break junction (STM-BJ) [7]. The enormous advances in these
techniques has allowed the experimental studies to achieve fabulous control and repro-
ducibility of the conductance measurements. Thanks to this, transport associated phe-
nomena have been further studied in a reliable manner. Among them, we �nd spin-related
[8] or quantum interference (QI) e�ects [9, 10], which play a signi�cant role in this thesis.

The control and manipulation of the spin in molecules has given rise to a proli�c
research branch of molecular electronics. We refer here to �molecular spintronics� [11, 12,
13, 14]. This �eld exploits the spin and the electronic degrees of freedom in molecules to
manipulate the current. Similar to molecular electronics, the ultimate goal of this �eld is
the miniaturization of spintronics devices down to a very small magnetic unit: a molecule.
The magnetic nature of the molecule depends on its closed or open-shell electronic structure
and it can be diamagnetic or paramagnetic.

xiii



xiv Introduction

Systems which have been on the spotlight of molecular spintronics are organic-based
molecules, which may contain transition metal atoms. These atoms normally have partially
�lled d-orbitals. In the presence of the organic environment (ligand), the degeneracy of
the d-levels is lifted by the ligand �eld [15]. This results into a eg − t2g splitting, which
determines the spin density and the local distribution of magnetic moments, and thus, the
magnetic nature of the molecule. In other words, the ligand environment of the molecule
and the possibility of presenting spin-orbit (SO) coupling make the system anisotropic.

For example, double-decker carbon-based compounds containing transition metals,
such as iron, niobium or tantalum, present magnetic moments localized in the metallic
atoms. Importantly, the SO takes an important role that cannot be neglected in the
calculations. The switch of the magnetization direction of the magnetic moments has been
traditionally performed by applying external magnetic �elds. However, the spin degree of
freedom might be manipulated using a di�erent approach: exploiting SO coupling while
using conventional electronic current [16]. Therefore, an interesting question arises: can
we switch the magnetization direction of the magnetic moments in a molecule by means
of the SO coupling? And, how large the SO coupling has to be in order to manipulate
magnetic moments in molecules when a current �ows through the molecule?

Another important transport phenomenon, investigated in this thesis, is QI. This is a
purely quantum mechanical e�ect related to the wave nature of the electron. Mathemat-
ically, it comes from the simple statement that the wavefunction amplitude must be �rst
added when computing the probabilities. QI appears in many contexts in condensed mat-
ter physics, for example in the Aharanov-Bohm e�ect [17] occurring in mesoscopic metallic
rings, where the interference patterns can be tuned by applying external magnetic �elds, or
in superconducting quantum interference devices (SQUIDS). In the latter, the interference
features are extremely sensitive to magnetic �elds and can be used as �eld sensors.

QI e�ects also take place, not surprisingly, in single-molecule junctions. In experi-
ments, very low value of the conductance of the molecule sandwiched between the contacts
have been often attributed to this physical e�ect. QI is a direct manifestation of the con-
nection between structure and electronic features of the molecule, emerging as the electron
propagates through the junction. For this reason, it gives rise to strong and robust features
in transport observables which persist under thermal �uctuations. In general, the predic-
tion of the existence of quantum interference in an arbitrary molecule is a complicated
task. Over the past �fteen years di�erent methods have been developed to gain further
understanding in how the interference is produced and its consequences for observables
[18, 19, 20, 21].

For instance, a �sum over paths� approach has been applied to multibranched structures
[22], where the molecule o�ers the electron two or more possible transport paths. The
interference e�ects in this case are similar to those that can be observed in mesoscopic
rings. Another example are the so-called �orbital rules�, which are valid for molecules with
π-orbitals and sublattice symmetry, such as benzoids. However, in arbitrary molecules
with more complicated chemical structure the previous methods cannot be employed to
predict the presence of QI. This situation happens in the aforementioned double decker
compounds, which can contain a transition metal atom sandwiched between carbon-based
rings. Their chemical structure does not present sublattice symmetry and the π-system
of the carbon ring hybridizes strongly with d-orbitals of the metallic atom giving rise to
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non-trivial interference e�ect. In this case, an analysis based on the Green's function,
which describes how the electron propagates across the junction is necessary.

Since QI is commonly present in molecules, it is interesting to predict when it arises
and whether it can be manipulated in order to control the �ow of current across the
molecule. In molecular junctions, tuning of QI may be achieved by changing the overlap
of the molecular orbitals in a controlled (mechanical) manner. For instance, in double
decker structures made of π-π stacked dimers without metal atom, the displacement of
the metallic contacts produces the upper part of the π-π stack to slide with respect to
the lower part. As a consequence of the motion of the contacts, the overlap between the
two subsystems is altered and a�ects the nodal structure of the molecular orbitals involved
in the QI [23, 24]. If we now turn our attention to double decker compounds in which a
metallic atom is sandwiched between the upper part and the lower part of the stack, the
sliding of the carbon rings with respect to each other is not longer possible. What is the
nature of the QI in this compounds? Is there another mechanical degree of freedom in the
molecular structure of the double decker that can be exploited to control the interference?
What is the role of the interplay of the d-orbitals with the π-system of the carbon rings?
All of these points will be considered in this thesis.

Challenges for numerics

To answer these questions, a theoretical description of steady-state electronic transport
in molecular junctions, in particular in the presence of SO interaction, is needed. This
task is not simple and it represents a challenging problem in condensed matter physics
and quantum chemistry [21]. The employed formalism must be able to take into account
a variety of e�ects, among them non-linearities in the I-V characteristics, the variability of
molecule-electrode binding motifs etc.. The correct description of the electronic structure is
also crucial, as the molecular states are fundamental pieces of the scattering wave-function
involved in transport. The coupling to electrodes (which act as macroscopic reservoirs)
must be also taken into account.

Ab initio descriptions are useful in the endeavor of dealing with large electronic systems
and incorporate appropriate geometrical and microscopic information, as well as exchange
and correlation e�ects, into the scattering states. Although many-body methods such
as GW allow for a very precise characterization of the electronic structure of gas phase
molecules or bulk materials, at the moment of writing this thesis only DFT can deal
microscopically with open quantum systems (where energy and particles can be exchanged
between the molecule and the reservoirs). The reason is that, as opposed to many-body
techniques, DFT deals with a single-particle description of the transport problem. At
the same time, it provides a good qualitative description of weakly correlated states in
molecular junctions. Su�ciently large in this context means that the electronic structure
of the extended molecule (the molecule and part of the metal atoms that belong to the
electrodes obtained after partitioning the system) [21, 25] can be approximately obtained.
This extended molecule captures the hybridization of the orbitals from the molecule with
the leads.

The transport problem is commonly addressed using the non-equilibrium Green's func-
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tion formalism (NEGF). The Green's function of the extended molecule coupled to the
reservoirs describes how the electron propagates across the junction. It can be constructed
by employing the single-particle Hamiltonian of this system (from the DFT) and the self-
energies from the leads. The self-energy can be modeled [26] or calculated explicitly by
means of iterative approaches [27]. When employing model self-energies, the expressions
become accurate only when a su�cient number of atoms from the leads are considered.
Due to the imaginary part, the self-energy produces that the original states of the molecule
acquire a �nite lifetime (broadening). This simply describes the fact that after scattering,
the electrons can be absorbed in the macroscopic reservoirs and leave the scattering region.

This combination of DFT and NEGF has become the common workhorse used to
compute transport properties of molecular junctions in the linear response regime. NEGF
can be also employed for the calculation of transport properties outside of the linear regime
at even higher bias voltages. When a voltage is applied, there is a redistribution of the
charges in the junction. In addition, the molecule can be polarized and a molecular dipole
�eld can be created. All of these e�ects change the scattering potential, which itself is
a functional of the density matrix (and therefore the density given by its diagonal part).
The correct theoretical description requires to incorporate self-consistently the e�ects of
the bias in the density matrix. This can be achieved through a self-consistent iteration of
the DFT-NEGF cycle. In this thesis, we have �rst extended the existing transport code
AITRANSS incorporate SO coupling. Then, we have employed this module in the self-
consistent cycle to compute SO torques. This is to the best of our knowledge the only code
which can compute SO torque in a self-consistent fashion in molecular junctions.

Spin-orbit torque in molecular spintronics

As anticipated above, the control of magnetic moments in solid-state devices has tradi-
tionally been performed by applying external magnetic �elds. More recently, spin torques
(such as SO torque) have been considered for the magnetization control as they allow for
the manipulation of magnetic moments by means of conventional electric currents.

In this thesis, we embark on the investigation of SO torques in a vanadocene-based
molecular junction. This molecule has a double decker chemical structure sandwiching
a vanadium atom between two carbon rings. The metal center has localized magnetic
moments. This molecule has been recently shown to act as a spin-�lter to generate spin-
polarized current in single-molecule junctions [28]. As a �rst application of our extension
of AITRANSS with SO coupling, we study whether the SO torque at the metallic cen-
ter is su�ciently large to manipulate the local magnetic moment. Since SO torque is a
non-equilibrium phenomenon, we drive the system to a non-equilibrium state through a
voltage bias, using our module in a self-consistent DFT-NEGF cycle. The results will
be put in context with previous linear response calculations of the SO torque in metallic
heterostructures.
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Quantum interference in metallocene single-molecule junctions

Metallocenes, as the aforementioned vanadocene, are double-decker sandwich com-
pounds with a metallic unit between cyclopentadienyl (Cp) carbon rings. In the case of a
ferrocene, the metal center is iron. Ferrocenes are known to have a low energy barrier for
the rotation of the Cp rings. The fact that the rings can rotate easily opens the possibility
to mechanically change the interference properties of these junctions. This degree of free-
dom has never been used before to tune QI. Practically, the rotation can be achieved by
elongating and compressing the junction once the molecule has bound to the contacts.

Motivated by the conformational �exibility of metallocenes we embark upon the study
of QI interference in ferrocene-based single-molecule junctions using density functional
theory-based quantum transport calculations. We �nd that destructive QI of the Fano-
type is responsible for the low conductance properties of these junctions. Furthermore, we
show that the destructive QI features can be tuned mechanically by near-rotation of the Cp
rings. Rotation of the rings a�ects the hybridization between the π-system of the carbon-
based ligands and the d-orbitals of the metallic center. This way, the nodal structure of the
interfering molecular orbitals is altered and the interference can become constructive. As a
consequence, the conductance of the junction is increased substantially. We will provide a
simpli�ed model that describes this phenomenon and whose basic ideas can be applied to
the study of interference in any type of molecular junctions. Our theoretical calculations
will be compared and used to successfully interpret experimental measurements performed
at L. Venkataraman's group in Columbia University.

Molecular insulators in single-molecule junctions

In the context of our collaboration with the group of Columbia, we were also moti-
vated to investigate other molecules in the context of single-molecular junctions. This has
given rise to several side projects in this thesis related to molecular insulators. These are
molecules which fully suppress the electronic transmission. As a consequence, their con-
ductance is smaller than the conductance of a vacuum layer as wide as the length of the
molecule. Traditionally, it has been considered that carbon-based wires such as alkanes or
more recently siloxanes, which consist of repeating Si-O units, were good molecular insu-
lators. However, their conductance was always larger than the vacuum layer associated to
the length of the molecules [29]. In L. Venkataraman's group, it has been observed that
silicon-based wires with cis-con�guration for the Si-Si bond can act as ideal molecular
insulators. In them, the conductance is smaller than the conductance through the vacuum
layer due to destructive QI e�ects. Interestingly, these molecular wires behave as insula-
tors even at distances smaller than 1 nm. This is surprising, since tunneling of electrons
normally take place for tunnel barriers of this length.

Motivated by this, in one of these projects, we have studied the transport properties
of silicon-based wires in trans-con�guration, see Fig. 1. These wires present an impor-
tant technological interest as they connect the world of semiconductor electronics, where
conventional electronic devices are made from silicon, to molecular electronics [30]. The
miniaturization of silicon-components to the single-molecule level poses also fundamental
questions related to the scaling: how does charge transfer in silicon occurs at the molecular
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level? In this project, we investigate a surprising observation for these wires: their conduc-
tance is larger when attached through thiol (S) anchors to silver electrodes compared to
gold. This behavior is apparently contradictory when looking at the work function trends
(smaller in silver compared to gold). The trend is, however, reversed compared to thiol if
the linkers employed are amines (NH2). Using quantum transport calculations based on
DFT, we will explain the origin of these results.

Figure 1 � Top part: Geometry of a model molecular junction Au-S-silicon-based wire-S-Au in
trans-con�guration. Au electrodes have a prototypical pyramidal shape. The anchor groups are
thiols. The molecular bridge is the silane wire, saturated with methyl groups. Bottom part:
Representation of the potential (tunnel) barrier where an electron e− is scattered from the left
to the right reservoirs (yellow areas) through the barrier. The potential barrier has a width, L,
equivalent to the molecular length.

With an eye on bio-nanoelectronics, it is of large interest to be able to bind macro-
molecular insulators to metallic leads. Usually, these biochemical complexes are more
di�cult to bind to gold contacts. One way to overcome this situation is to use precursors,
which are part of the biomolecule and can act as linkers. With this in mind, we focus on
the imidazole anchor. It is an diazole heterocyclic organic ring part of many biochemical
compounds. In this project we investigate how the imidazole-metallic lead binding hap-
pens, how imidazole binds to other molecules and how this linker a�ects the transport
properties of the molecules.

Other molecules, which also act as linkers are metallocenes, as the ones we employ
to study SO torque and QI. Interestingly, these molecules can directly bind to electrodes
through the metallic center. Molecules employed in molecular junctions usually are termi-
nated with anchor groups of the p-block of the periodic table, such as nitrogen or sulfur.
The metal-metal bond formed with transition metals opens the possibility of controlling
the binding through the oxidation state of the metal center of the molecule in situ. In
other words, by applying speci�c bias voltage across the junction, the oxidation state of
the metal changes, binding the molecule just for speci�c voltages 1. In this project, we
focus on ferrocenes, osmocenes and ruthenocenes to answer the question of how these met-
allocenes bind to gold electrodes and how the substitution of the metallic centers a�ect the
binding and transport properties of these molecules.

1. Private communication from Dr. Michael S. Inkpen.
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Structure of this thesis

In Chapter 1 we set the scene and provide a general overview of the basic theory
needed to perform and understand ab initio electronic transport calculations. We brie�y
introduce the basic notions of DFT and do a succinct derivation of the main NEGF for-
mulae that are used in our ab initio transport calculations. We also derive the necessary
expressions later employed in the calculation of SO torque in single-molecule junctions.

In Chapter 2 we provide the details of the numerical extension of the DFT-NEGF
self-consistent cycle in the transport module AITRANSS to incorporate SO interaction.
The methodology will be explained and numerical checks shown in order to ensure the
correctness of our implementation.

In Chapter 3, the �rst calculation of SO torque in single-molecule junctions using
the methods presented in chapter 2 is shown. We discuss why vanadocene (double decker
molecule with a vanadium core) is a good candidate for this computation and we calculate
the bias-dependent SO torque at the metal center. The results obtained in this pioneering
calculation are later put in context with previous linear response calculations in the linear
response regime.

In Chapter 4, we study quantum transport properties of single-molecule ferrocene-
based junctions. We show that these junctions can have non-trivial quantum transport
characteristics due to quantum interference e�ects and demonstrate how and why destruc-
tive quantum interference can be mechanically controlled in the junction.

In Chapter 5, three transport studied on molecular insulators are presented. First,
we embark upon the investigation of the transport properties of silicon-based molecular
insulators attached to leads of di�erent metallic nature. We will see that SO coupling
and the nature of the molecular anchor groups are related to the unexpected experimental
results obtained in L. Venkataraman's group in Columbia University. Next, also in collab-
oration with L. Venkataraman's group, we explore the paradigmatic case of alkane single
molecule junctions bound to gold leads through imidazole linkers. Finally, we study the
how metal-electrode binding can occur in metallocene-based junctions of group 8 (Fe, Ru,
Os), how the di�erent metal substitutions impacts both binding and transport features.
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Chapter 1
Theoretical foundations and methods

In this chapter, we provide the theoretical framework and methods that will be used
in the rest of this thesis. In the �rst part of the chapter, we do a short and concise
review of density functional theory. In the second part of the chapter, we derive the basic
formalism of quantum transport expressed in the language of Green's functions. This
formalism allows for the calculation of transport properties of interest such as electrical
current or conductance. In the last section, we provide the basic formulae that allow for
the calculation of non-equilibrium spin-orbit torque using ab initio methods. Starting from
non-collinear density functional theory, we show how to construct the two fundamental
objects to compute the non-equilibrium spin-orbit torque: the torque operator and the
[non-collinear] non-equilibrium density matrix.

1.1 Non-relativistic density functional theory

1.1.1 Hohenberg-Kohn theorems

Although the many-body Hamiltonian of a system of N non-relativistic electrons in-
teracting through the Coulomb force [in a non-magnetic potential] created by NI ions of

3
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charge ZI is well-known 1, in practical terms it is of little use as the many-body Schrödinger
equation cannot be solved for a macroscopic number of degrees of freedom (NA ∼ 1023

atoms and / or electrons). Therefore, it is needed to reduce the number of degrees of free-
dom in systems made of hundreds or thousands of electrons and ions in order to simulate
and understand the properties of matter. Density functional theory (DFT) is an extremely
successful attempt to realize such a reduction. It provides a theoretical framework that
allows to reformulate the many-body problem, characterized by 3N degrees of freedom
of the complex scalar many-body wavefunction 2, in terms of the scalar particle density
n(r), which possesses only 3. Once the ground state density, n0(r), is known, di�erent
ground state properties can be reconstructed. This discovery, formulated on the basis of
the famous Hohenberg-Kohn theorems [31] (the proofs can be found in any standard DFT
book, see i.e. Ref. [32]), has lead to one of the most successful breakthroughs in condensed
matter theory in the last century.

First Hohenberg-Kohn theorem: Given a system of N interacting particles, the
external potential, vext(r), is uniquely determined by the ground state density, n0(r), up
to a trivial additive constant.

The theorem states a non-trivial fact: the ground state of an interacting system can be
described only by the particle density. Note that the reciprocal relation, vex(r)⇒ n0(r), is
always trivially true. Therefore, the theorem actually states that there exists a one-to-one
correspondence between the external potential and the ground state density of the system
of N interacting particles (electrons). A straightforward consequence of this theorem is
that the expectation value of any observable, Ô, in the ground state is a functional of the
exact ground state density, 〈Ô〉 = O[n0(r)]. The calculation of the ground state density
can be done, in principle, using the second Hohenberg-Kohn theorem:

1. In the Born-Oppenheimer approximation, the many-body Hamiltonian can be written as

Ĥ({r}, {R}) = T̂ ({r}) + V̂int({r}) +

N∑
i=1

v̂ext(ri, {R})︸ ︷︷ ︸
V̂ext({r},{R})

, (1.1)

where T̂ ({r}) is the electronic kinetic energy

T̂ ({r}) = − ~2

2m

N∑
i=1

∆ri , (1.2)

the term V̂int({r}) is the Coulomb interaction between electrons

V̂int({r}) =
e2

2

N∑
i=1

N∑
j 6=i

1

|ri − rj |
, (1.3)

and the third term, V̂ext(r, {R}) is the external potential which describes the interaction between the
electrons and the ions located at �xed positions {R}

v̂ext(r, {R}) = −e2
NI∑
i=1

ZI
|r−Ri|

. (1.4)

Because the ions are considered to be �frozen�, we shall drop the parametric dependence on its positions,
{R} in the rest of the chapter.

2. For simplicity, we exclude the spin degree of freedom at this point.
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Second Hohenberg-Kohn theorem Given a system of N interacting particles,
there exists a universal functional, F [n] = 〈Ψ[n]|T̂ + V̂int|Ψ[n]〉 where Ψ is the many-
body wavefunction, which is uniquely determined once T̂ and V̂int have been de�ned. The
functional

E[n] = F [n] +

∫
drn(r)vext(r), (1.5)

is minimized for the ground state density.

The universal Hohenberg-Kohn functional F only depends on the kinetic energy and
the electron-electron interaction, with all the speci�c details of the system being relegated
to vex. Note, however, that the form of F is not known, and thus the practical application
of these ideas is limited.

1.1.2 Kohn-Sham formalism

In 1965, Kohn and Sham developed the Kohn-Sham formalism which provides a prac-
tical recipe to put the Hohenberg-Kohn theorems into practice. As opposed to the more
abstract Hohenberg-Kohn theorems, the Kohn-Sham approach introduces a set of single-
particle wavefunctions (Kohn-Sham orbitals, ψl(r) = 〈r|ψl〉 with corresponding occupation
numbers fl) obtained from an e�ective single-particle Hamiltonian such that the particle
density

n(r) =
∑
l

fl|ψl(r)|2, (1.6)

is the same that the density of the interacting system.

In the Kohn-Sham formulation of DFT, the functional (1.5) is �rst rewritten as

E[n] = Ts[n] + EH[n] +

∫
drn(r)vext(r) + Exc[n], (1.7)

where

Ts[n] = − ~2

2m

∑
l

∫
drψ∗l ∆rψl(r), (1.8)

is the single-particle kinetic energy,

EH =
e2

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
, (1.9)

is the Hartree potential, the third term in Eq. (1.5) represents the contribution of the
external potential and the last term is the so-called exchange-correlation energy. Note
that all the terms except the last term are now explicitly written in terms of the single-
particle Kohn-Sham orbitals or the density (which itself is written in terms of ψl, see
Eq. (1.6)). The exchange correlation energy, Exc[n], is an unknown unique functional of
the density and must be approximated (see section 1.1.4). This is due to the fact that
it incorporates not only the electron-electron exchange (in the Hartree-Fock sense) and
correlations but also the part of kinetic energy that is due to interactions. Formally, we
can write it as Exc[n] = (Vint[n]− EH[n]) + (T [n]− Ts[n]). Note that the �exchange� part
included here implicitly should take care of the self-interaction of the charge density with
itself that occurs in the Hartree part of the functional (1.9).
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The variational problem δE[n]/δn(r) = 0 can be solved under the constraints of wave-
function orthogonality and �xed particle number

〈ψl|ψl〉 = δl,l′ and N =

∫
drn(r), (1.10)

to obtain the famous Kohn-Sham equations [33]. In real space these equations read

ĤKS(r)ψl(r) =

[
− ~2

2m
∆r + ve�(r)

]
ψl(r) = εlψl(r), (1.11)

where εl are the corresponding Lagrange multipliers (Kohn-Sham eigenenergies) and the
e�ective potential

ve�(r) =

∫
dr′

n(r′)

|r− r′|
+ vxc(r) + vext(r), (1.12)

with vxc(r) = δExc[n]/δn(r) the so-called exchange-correlation functional.

Eqs. (1.11)-(1.12) constitute the �nal result of the Kohn-Sham approach. It provides
an impressive result as it reduces the N -particle many-body Schrödinger equation (1.1)
to a set of auxiliary single-particle Schrödinger [Kohn-Sham] equation (1.11). We note
that the Kohn-Sham potential (1.12) depends on the density and as a consequence, the
Kohn-Sham equations have to be solved self-consistently. Also, we stress here that, in
general, the Kohn-Sham eigenenergies are not the �true� energy levels of the many-body
interacting system but only Lagrange multipliers resulting from the constrained variational
problem. Nevertheless, they themselves and the corresponding Kohn-Sham wavefunctions
o�er important information regarding, i.e., symmetries of the system, nodal structure of
the states. We shall make the loose identi�cation of the set {εl} with the system (single-
particle) energies.

1.1.3 Basis sets

In order to solve Kohn-Sham equations practically, we must �rst de�ne a basis to
expand the Kohn-Sham wavefunctions ψl(r). Note that, practically, the projection happens
in a �nite-dimensional space of dimension Nbasis

ψl(r) =

Nbasis∑
j=1

cjlϕj(r). (1.13)

In other words, the size of each vector is �xed by the number of basis functions. This
introduces numerical errors, which can be reduced by increasing the size of Nbasis.

In this thesis, we mostly use the FHI-aims ab initio molecular simulation package
[34] in which ϕ(r) are numeric atom-centered orbitals (NCAOs). However, we note that
the basis set is not unique and other basis functions can be used - such as contracted
Gaussian orbitals (TURBOMOLE [35, 36]) or plane-waves (Quantum Espresso or Wien2K
[37, 38]). The NCAOs used in FHI-aims are hydrogenic-like states of the form ϕ(r) =
Rnl(r)Y

m
l (Ω), where Rnl(r) = unl(r)/r correspond to a radial part and Y m

l (Ω) are the
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spherical harmonics. Note that the set of NCAOs is not an orthogonal set of vectors.
Therefore, the Kohn-Sham equation (1.11) in the orbital representation reads∑

j

[
HKS
ij − εlSij

]
cjl = 0, (1.14)

where the matrix elements are de�ned as

HKS
ij =

∫
drϕ∗i (r)HKS

ij (r)ϕj(r) and Sij =

∫
drϕ∗i (r)ϕj(r). (1.15)

Here, S is the so-called overlap matrix. If {ϕj} is an orthogonal set, then S = 11.

We �nally mention here that FHI-aims comes with prede�ned basis defaults for each
atomic species that may be used in a calculation. These defaults go under the names
light, tight or really_tight (in order of accuracy) and they possess tested parameters
for the basis functions that can be used to check for convergence of our results. These
parameters are, among others,

� Basis set size (number of orbitals per atom).
� Cut-o� radius for the tails of the radial part of the NCAO (this trick allows to

reduce the computational cost due to small �nite overlaps between the orbitals far
from nuclei).

� Integration grid used to compute the real-space integrals in Eq. (1.15).

1.1.4 Approximations for exchange-correlation functionals

We brie�y mentioned in section 1.1.2 that the exact form of the exchange-correlation
potential, vxc(r) which derives from the exchange correlation-energy, is not known and
has to be approximated. A natural �rst approximation inspired from the results of the
homogeneous electron-gas [39] is to assume that vxc(r) is a local function of the density

ELDA
xc [n] =

∫
drn(r)εLDAxc (n(r)), (1.16)

where εLDAxc (n(r)) is the exchange-correlation energy (normalized to each particle) of a
homogeneous electron gas with local density n(r). Albeit its simplicity, this approximation
is remarkably good for solids (metals, covalent insulators) although worse for molecules
where it tends to overestimate binding energies and underestimate bond lengths [40].

One can improve on LDA by including derivatives of the local density [41] to get a
semi-local exchange correlation functional

EGGA
xc [n] =

∫
drn(r)εGGAxc (n(r), |∇n(r)|,∆n(r)). (1.17)

These non-empirical approximate functionals are known by the name of generalized gra-
dient approximations (GGA). A popular GGA functional is the PBE (Perdew-Burke-
Ernzerhof) [42] which is mostly used in this thesis.

Finally, we mention that GGA functionals can also be improved empirically by re-
placing part of the exchange in GGA by a fraction of the exact Hartree-Fock exchange,
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Figure 1.1 � The metallic electrodes/leads are represented by the external shadowed boxes of the
molecular junction. Part of the atoms of the electrode at the interface between the molecule and
the lead, together with the molecule, form the extended molecule. The self-energy is only applied
to the outermost layers of the molecule-metal interface.

Exc(α) = αEHF
x + (1 − α)EGGA

x + EGGA
c . This fraction of Hartree-Fock exchange can be

altered to �t to experimental results. These functionals are called hybrid functionals and
they are very widespread in molecular electronics and quantum chemistry. Although in the
context of this thesis they have not been employed, we just want to mention that one is
B3LYP [43, 44] (Becke-3-parameter-Lee-Yang and-Parr functional), in which the fraction
of exact exchange is �xed to be 20%.

1.2 Quantum transport

1.2.1 Green's function approach to quantum transport

In this section, we provide a short overview of the theory of quantum transport based
on Green's functions. Most of the results can be found on standard literature [45, 46].
Our typical transport setup consists of a point contact or molecular junction with some
arbitrary geometry in the stationary limit (steady state). Three parts can be distinguished
in the system: a central region (C) where scattering takes place and two semi-in�nite leads -
left (L) and right (R). The leads act as reservoirs in which the electrons are at equilibrium
[which are de�ned by a temperature Tα and chemical potential µα (α ∈ {L,R})]. A
schematic of this type of two-terminal transport setup is provided in Fig. 1.1. Note that
the separation into these three subsystems (called partitioning) is somewhat arbitrary.
Normally, some of the atoms of the metallic electrodes forming the interface with the
molecule are included into the central region. They, together with the molecule, form the
so-called extended molecule, see Fig. 1.1. The usefulness of this concept will be explained
in section 1.2.2.

The (time-independent) Schrödinger equation for a system partitioned like in Fig. 1.1
adopts a block form ĤL t̂LC 0

t̂†LC ĤC t̂†RC
0 t̂RC ĤR


|ψL〉|ψC〉
|ψR〉

 = E

|ψL〉|ψC〉
|ψR〉

 , (1.18)

where |ψL〉, |ψC〉, |ψR〉 are single-particle states that belong to the left, central and right
subsystems respectively and we denote the couplings between left-center and center-right
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parts by t̂RC = t̂†CR and t̂CL = t̂†LC . Introducing the bare [retarded] Green's function

Ĝα(E) = (E − Ĥα + i0+)−1, (1.19)

where 0+ is an in�nitesimal positive quantity. By de�ning the self-energy operators by
Σ̂α(E) := t̂CαĜα(E)t̂αC , it is a straightforward task to rearrange Eq. (1.18) into a sin-
gle equation for an e�ective energy-dependent Hamiltonian Ĥe�(E)|ψC〉 = E|ψC〉 where
Ĥe�(E) = ĤC + Σ̂L(E) + Σ̂R(E). Using the e�ective Hamiltonian, we can de�ne the
Green's function of the coupled system as

Ĝ(E) = [E − ĤC + Σ̂(E)]−1, (1.20)

with Σ̂(E) =
∑

α Σ̂α(E). This [self-energy dressed] Green's function describes electron
propagation in the molecular system in the presence of the electrodes.

The self-energies, Σ̂α := Σ̂α(E), describe the in�uence (due to coupling) of the leads on
the central (scattering) region. They thus contain information about the electronic struc-
ture of the reservoirs. Note that the self-energy operator is not Hermitian: the Hermitian
part contains information about shifts in the energies of ĤC while the anti-Hermitian part,

Γ̂α := i
[
Σ̂α − Σ̂†α

]
, (1.21)

broadens the resonances produced by the [molecular] energy levels. In the time-domain,
this is equivalent to introducing a �nite lifetime (or decay rate) for the electron in the
system which can therefore leave the central region as it is absorbed by the electrodes in
the scattering process.

1.2.2 Absorbing boundary conditions

The precise form that Σ̂α takes depends on the speci�c coupling of the central device to
the reservoirs, and the calculation can be computationally demanding for large electrodes.
We thus consider here the absorbing boundary conditions (ABC) scheme introduced in
Refs. [47, 48] and again considered in [49]. This approach considers the self-energy of the
reservoirs to be energy-independent (Markovian) and characterized by a local but spatially
varying leakage rate

Σα(r, r′) := 〈r|Σ̂α|r′〉 = iη(r)δ(r− r′). (1.22)

In the orbital basis we have

Σ̂α = i
∑
p∈Sα

∑
j∈Oα,p

ηp|p, j〉〈p, j|, (1.23)

where Sα is the atomic subspace (of lead α) where the electrons can be absorbed, with
basis functions Oα,p associated to the atoms in Sα. The leakage rate η(r) acquires non-
zero values only at the �surface regions� of the extended molecule; in this way one takes
into account that in a realistic situation absorption can only occur far from the molecule.
For our speci�c self-energy model, we choose a value η for the outermost metallic layer of
atoms between η ∈ [0.05, 0.1] Hartree. The next layer is given the value η/2, if there is an
eventual third layer, η/4 etc. The value of the leakage has to be adjusted in such a way
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that the transmission curves are (largely) invariant under smooth moderate changes of η.
In other words, tuning slightly η must not in�uence the transport properties of the system.
Therefore, it is clear that the choice of η is not arbitrary but should adequately describe
the smooth and �nite density of states of the metallic leads close to the Fermi energy.

Finally, let us mention the important advantages of the Markovian approximation
employed in the ABC framework. First, and most importantly, transport properties can
be computed as if in�nite leads were used in the calculation. Second, this approach leads
to an important reduction of the computational e�ort as only ab initio calculations in
�nite systems have to be performed. And third, substantial simpli�cation of the numerical
calculations can be done as described, i.e. for the transmission function or the density
matrix (see Secs. 1.3.2 and 1.5).

1.2.3 Transmission function

We come now to the transport problem in which an isolated system (the molecule) is
connected across a junction to two metal contacts (acting as a �battery� with an electron
�source� and a �sink�). The complicated system is modeled as an open system where the
central part of the junction is connected to two reservoirs. Each of the reservoirs is assumed
to be in equilibrium [characterized by a chemical potential µ and inverse temperature
β = 1/(kBT )] and with occupation numbers given by Fermi-Dirac distributions f(E −
µα) = {exp[βα(E − µα)] + 1}−1 where we recall that α ∈ {L,R}. The non-equilibrium
phenomenae can be introduced by considering that each reservoir has di�erent chemical
potentials while assuming the electrodes to be roughly at the same temperature T ; the
di�erence µL−µR = eVbias yields the voltage bias across the whole junction 3. For example,
if Vbias > 0 (µL > µR), electrons enter the molecule from the left lead into the junction
and leave it at the right lead where they are absorbed.

Within the Landauer-Büttiker approach [46, 50, 51, 52], the total stationary current
can be expressed by an integral

I(Vbias) =
2e

h

∫ +∞

−∞
dE [f(E − µL)− f(E − µR)]T (E, Vbias), (1.24)

where the factor of 2 comes from the spin-degeneracy and we have introduced the bias-
dependent transmission function T (E, Vbias). The transmission function is a central object
in the interpretation of transport in nanoscale systems. It can be understood as the proba-
bility for an electron that is injected with energy E at Vbias to propagate from one contact
to the other. It therefore contains information about the occupied states from the source
electrode, the empty states on the drain electrode and the available transport channels
in the molecule [53]. Due to this, transport can be ballistic, enhanced or suppressed due
to interference 4 or backscattering. The transmission function can be computed from the
self-energy dressed Green's function of the central subsystem by a trace formula

T (E) = Tr
[
Γ̂LĜC Γ̂RĜ

†
C

]
, (1.25)

3. Thermoelectrics e�ects would result if the temperatures of the reservoirs are di�erent.
4. Destructive quantum interference on ferrocene-based molecular junctions will be the subject of

chapter 4 of this thesis.
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where Γ̂L/R is given by Eq. (1.21), the Green's function is given by Eq. (1.20) and, impor-
tantly, the trace is taken over the degrees of freedom of the central part only. For small bias
compared to the energy barrier across the molecular junction (i.e. HOMO-LUMO gap),
the transmission function is largely independent of the bias voltage, T (E, Vbias) ' T (E).
Furthermore, considering the limit of zero temperature for which f(E − µα) = θ(E − µα)
with µL = EF + eVbias and µR = EF, it can be easily checked that Eq. (1.24) reduces to

I →︸︷︷︸
T→0

2e

h

∫ µL

µR

dET (E) →︸︷︷︸
Vbias→0

G0T (EF)Vbias, (1.26)

where G0 = 2e2/h is the quantum of conductance. We therefore obtain as an important
result that the conductance G = dI/dVbias = G0T (EF) is given by the value of the trans-
mission function at the Fermi energy, a result that is very commonly used in molecular
electronics.

1.3 Quantum transport with spin-orbit coupling

1.3.1 Origin of spin-orbit coupling

As this thesis is partially devoted to investigate the impact of spin-orbit (SO) coupling
into electronic and spin properties of molecular junctions, we provide here a short discussion
of its origin. A full description of the relativistic dynamics of a single electron of mass m
and spin s = 1/2 in vacuum was done in the early days of quantum mechanics by P. A.
Dirac [54], who derived his well-known equation,

[cγ · p̂ +mc211]Ψ = i~γ0∂tΨ. (1.27)

Here, the vector γ = (γ1, γ2, γ3) and γ0 correspond to the Dirac [gamma] matrices, p
the linear momentum, c the velocity of light, 11 the 4 × 4 identity matrix and Ψ a four-
component spinor. The Dirac matrices are 4 × 4 matrices whose form depend on the
particular representation. For example, in the so-called Pauli representation they read

γ0 =

(
σ0 0
0 −σ0

)
, and γj =

(
0 σj
−σj 0

)
, (1.28)

where j = 1, 2, 3, σ0 is the 2× 2 identity matrix and σ = (σ1, σ2, σ3) = (σx, σy, σz) are the
Pauli matrices 5. The block form of the matrices (1.28) suggests that we can decouple this
equation into two coupled equations for [two-component] spinors. We therefore write the
4-component spinor as

Ψ =

[
ψ1

ψ2

]
, (1.30)

where ψ1 is sometimes called the �large� component (describing electronic-like solutions at
low energies), and ψ2 is the �small�, component (describing the positronic-like solutions).

5. We recall the de�nition of the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.29)
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We further consider in what follows the stationary problem by doing the usual replacement
i~∂t → E and assume that the electron interacts with an external electromagnetic �eld
incorporated via the minimal coupling rule, p→ π = p + eA(r) and E → E − V (r). We
�nd the coupled equations

cσ · π̂ψ1 = [E −mc2 − V (r)]σ0ψ2, (1.31a)

cσ · π̂ψ2 = [E +mc2 − V (r)]σ0ψ1. (1.31b)

If V (r) is a self-consistent scalar potential Eqs. (1.31a)-(1.31b) are known as the �Dirac-
Kohn-Sham equations� [55]. From Eq. (1.31b), we have ψ2 = σ · πK̂ψ1 (this relation is
sometimes called �kinetic balance� [55]) where

K̂ :=
c

E + 2mc2 − V (r)
, (1.32)

so that we can easily �nd an equation involving only the two-component spinor ψ1

cσ · π̂K̂σ · π̂ψ1 = [E − V (r)]σ0ψ1. (1.33)

Here, we have also shifted the energy E −mc2 → E so that E gives the di�erence to the
energy of the particle in the rest frame. Note that Eq. (1.33) is not a usual eigenvalue
equation and that ψ1 is also not a normalized spinor.

The non-relativistic limit of Eq. (1.27), known as Pauli equation, can be obtained by
expanding Eq. (1.32) in Taylor series for the small parameter [E − V (r)]/2mc2 under the
assumptions E, |V (r)| � mc2. Note that because at low energies we have E ' mv2/2 +
V (r) this Taylor expansion is in reality an expansion in powers of v/c� 1.

At lowest order, K̂ ' 11/(2mc), and using the relation 6

(σ · π̂)2 = π̂2σ0 +
e~
c
σ ·B, (1.34)

we straightforwardly obtain the well-known non-relativistic Schrödinger equation with Zee-
man term [

π2

2m
+
e~
2m

σ ·B + V (r)

]
ψ1 = Eψ1. (1.35)

This important result shows that the electron has an intrinsic magnetic moment given by
the Bohr's magneton, µB = e~/2m, that can couple to an external magnetic �eld by a
term of the form µBσ ·B.

Keeping terms up to order (v/c)2 in the expansion of K̂ we �nd, after some rearrange-
ments, the Pauli equation in its full glory [56][

π̂2

2m∗
+ V (r)︸ ︷︷ ︸

NR Hamiltonian

+
e~

2mc
σ ·B︸ ︷︷ ︸

Zeeman term

− p̂4

8m3c2︸ ︷︷ ︸
KE corr.

+
e~2

8(mc)2
∇rÊ(r)︸ ︷︷ ︸

Darwin term

− e~
4(mc)2

σ · [p̂× Ê(r)]︸ ︷︷ ︸
Spin-orbit coupling

]
ψ = Eψ,

(1.36)

6. Here we employed the following vector identity (a · σ)(b · σ) = (a · b)11 + iσ · [a× b] as well as the
constitutive relation between the magnetic �eld and the vector potential, B = ∇r ×A(r).
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where E(r) = ∇rV (r), we have identi�ed the �large� component with the well-known two-
component Schrödinger-like spinor 7, ψ1 ' ψ, and neglected corrections to the Zeeman
interaction term. In Eq. (1.36), we obtain three corrections to Eq. (1.35): the scalar
kinetic energy (mass-velocity) corrections, the Darwin term and the SO interaction. The
corrections to the kinetic energy and the Darwing term (the latter mostly important only
close to atomic nuclei) are characterized by an energy scale of ∼ 0.01 meV, substantially
smaller than the SO coupling with typical energies ∼ 1 − 100 meV [56]. We note that
the Darwin correction and the SO interaction are terms that appear due to the non-
commutativity of the canonical momentum p̂ and the scalar potential operator V̂ , in a
similar way as the Zeeman coupling arises from the non-commutativity of the kinetic
momentum and the vector potential.

The SO interaction term, which plays a crucial role in this thesis, can be written for a
spherical hydrogenic potential V (r) = V (r) = −Z/r

ĤSOC = − e~
4m2c2

∂V (r)

r∂r
σ · (r× p̂) =

Ze

2m2c2r3
L̂ · Ŝ, (1.39)

where L = r × p is the orbital angular momentum and Ŝ = ~σ/2 the spin operator.
It is therefore immediately clear that the SO interaction has to be large in heavy atoms
(in particular for core electrons) and smaller in the case of lighter elements. Note that,
nevertheless, there might be situations where SO coupling becomes unexpectedly large and
does not follow this rule, for example graphene ribbons with defects or ad-atoms [58, 59].

Spin-orbit interaction in density functional theory

We now focus on how SO interaction is dealt with in DFT and brie�y discuss how the
correction is treated in FHI-aims and TURBOMOLE codes.

FHI-aims. The FHI-aims code [34] (version 171221) uses the so-called non-self con-
sistent second-variational method to deal with SO interaction. This technique essentially
starts from a converged self-consistent calculation where scalar relativistic corrections have
been included at the atomic ZORA level [60] and rebuilds explicitly the Hamiltonian with
a SO interaction term [55]. Therefore, the spin blocks of the Hamiltonian read

Hσσ′
ij = 〈σ, ϕi|ĤSR[n] + ĤSOC|σ′, ϕj〉, (1.40)

where |σ, ϕj〉 = |σ〉 ⊗ |ϕj〉. The SO-corrected eigenenergies and spinors are obtained from
exact diagonalization of this Hamiltonian, a matrix of dimension 2N×2N with N being the

7. Note that because the conservation of probability applies to the full four-dimensional spinor only

〈Ψ|Ψ〉 = 〈ψ1|ψ1〉+ 〈ψ2|ψ2〉 = 1, (1.37)

one has to be careful when identifying the �large� component ψ1 with the non-relativistic spinor if higher
order corrections in (v/c)2 are considered [57]. Indeed, to avoid some probability being �lost� into ψ2, we
need to rede�ne ψ1 according to

ψ1 →
[
1 +

1

8m2c2

(
π̂2 +

e~
c
σ ·B

)]
ψ1. (1.38)

This normalization enters to correct prefactors the SO term in Eq. (1.36)
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number of spinless orbitals. This method has been claimed to o�er performance advantages
with respect to full self-consistent two-component or four-components implementations as
it is similarly precise (in terms of accuracy) and diagonalization of the Hamiltonian with
SO interaction occurs only once.

TURBOMOLE. Unlike FHI-aims, TURBOMOLE (version 7.1) [35, 36, 61, 62]
aims to explicitly deal with the full four-component spinor using an exact decoupling of
the �large� and �small� two-component spinors parts. This can by done by �nding a suitable
representation of the operator K̂ and a proper unitary transformation that decouples the
Dirac equation into the two Dirac-Kohn-Sham equations (1.31a)-(1.31b) in an exact way.
In a nutshell, one calculates exactly a matrix, dubbed W, with matrix elements given by
Wij = 〈ψi|σ · pv̂σ · p|ψj〉 where {ψi} are two-component spinors and v̂ the single-particle
potential operator. This matrix can be written in terms of four real matrices {W i}3i=0 as

W =

(
W 0 + iW 3 iW 1 +W 2

iW 1 −W 2 W 0 − iW 3

)
, (1.41)

where W 0
ij = 〈ψi|pxv̂px + pyv̂py + pz v̂pz|ψj〉 contains information about scalar-relativistic

corrections and the o�-diagonal blocks, W l = εlmn〈ψi|pmv̂pn − pnv̂pm|ψj〉 where εlmn is
the antisymmetric tensor, deal with the coupling of the �↑� and �↓� spins. The eigenvalue
problem for the four component spinor is then reduced, by a so-called X2C transformation,
into an e�ective problem Ĥe�(W,S, v)C = SC (here S is the overlap matrix and C is the
matrix of coe�cients) for the electronic-like two-component spinor.

1.3.2 Transmission function in the presence of spin-orbit coupling

We describe now how to calculate in an e�cient way the zero-bias transmission function
in the presence of SO interaction. We again consider the standard setup for electron
transport in molecular electronics where a �device� region (molecule) is coupled to two
(semi-in�nite) leads as presented in section 1.2. If the system has broken spin rotation
symmetry, the spin-dependent zero-bias generalized transmission function at energy E,
noted Tσ,σ′(E) can be expressed as [50]

Tσ,σ′(E) = Tr
[
Γ̂σL Ĝ

σ,σ′
Γ̂σ

′
R [Ĝ†]σ

′,σ
]
. (1.42)

Here, we remind that Ĝ ≡ Ĝ(E) is the Green's function of the �nite cluster (extended

molecule) with spin-blocks σ, σ′ and Γ̂σα = i
[
Σ̂σ
α − (Σ̂σ

α)†
]
is the anti-Hermitian part of the

self-energy at lead α ∈ {L,R} with spin projection σ. Note that in Eq. (1.42) the trace is
taken over orbital degrees of freedom only.

The total transmission function is given by the sum over the spin-resolved transmis-
sion components, i.e. the sum over the spin-conserved, Tσ,σ(E), and spin-�ip, Tσ,σ̄(E),
transmission functions

T (E) =
∑
σ,σ′

Tσ,σ′(E). (1.43)

The spin-�ip transmission, Tσ,σ̄(E) can be non-zero due to the presence of spin-orbit in-
teraction or due to exchange coupling between local spins in the device region [58].
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For simplicity, we now assume spin-unpolarized closed shell leads, with vanishing SO
coupling, the extension to spin-polarized electrodes being trivial. This implies that spin,
σ, is a good quantum number in the leads and therefore:

� the self-energy is spin-block diagonal;
� the self-energy is spin-independent, i.e. Σ̂σ

α = Σ̂σ̄
α ≡ Σ̂α (so that Γ̂σα = Γ̂σ̄α ≡ Γ̂α).

The single-particle retarded Green's function of the extended molecule given by Eq.
(1.20) is written as

Ĝ(E) = (E11− ĤKS − 112 ⊗ Σ̂)−1, (1.44)

with 11 and 112 being respectively the 2N × 2N and 2 × 2 identity matrices, ĤKS the
Kohn-Sham Hamiltonian. Due to SO coupling, the Kohn-Sham Hamiltonian and therefore
the Green's function (1.44) have non-zero entries in the o�-diagonal blocks labeled by the
spin indices σ, σ̄. The matrix elements of the Kohn-Sham Hamiltonian are expressed in
the basis |σ, ϕj〉 with j = 1, . . . , N (here, we recall that N is the number of spin resolved
orbitals as well as the number of the spin-resolved basis functions). We further assume
that the set of atom-centered real basis functions {ϕj(r)}Nj=1 are orthogonal, obtained
after Löwdin orthogonalization [63] of the basis functions used in the underlying density-
functional theory calculation. The matrix elements of the Hamiltonian read 8

(HKS)σσ
′

ij = 〈σ, ϕi|ĤKS|σ′, ϕj〉 =

∫
dxϕi(r)(ĤKS)σ,σ

′
(r)ϕj(r). (1.47)

We take advantage of the Markovian approximation for the self-energies (see section
1.2.2) and perform a change of basis into the basis that diagonalizes the complex-valued
non-Hermitian matrix ĤΣ = ĤKS + 112 ⊗ Σ̂. The advantage of using this basis, is that
the retarded Green's function (1.44) is also diagonal. Indeed, if the (right) solution to
the complex eigenvalue problem ĤΣB = BZ is known [where Z = diag(z1, . . . , z2N ) with
zi ∈ C is the eigenvalue matrix and B is a matrix whose columns correspond to the right
eigenvectors], then it is straightforward to show that the Green's function can be expressed
as

Ĝ(E) = B
1

E11− Z︸ ︷︷ ︸
Ĝ(E)

B−1. (1.48)

Note that because the self-energy given in Eq. (1.22) is energy-independent, there is no
need to invert a large matrix for each value of E, but the eigenvalue problem is solved once
and the matrix inversion becomes trivial.

We now perform the block-matrix multiplication to obtain the relevant matrix blocks
in spin-space

Ĝσσ
′
(E) = BσĜ(E)([B−T ]σ)T , (1.49)

with B−T = (B−1)T . Here, we noted by Bσ the N × 2N matrix extracted from B which
results from projecting each eigenvector into the spin subspace labeled by σ. Inserting

8. Here we used the orthonormality and completeness of the basis |σ, r〉 ≡ |σ〉 ⊗ |r〉, i.e.

〈σ|σ′〉 = δσ,σ′ and 〈x|x′〉 = δ(x− x′), (1.45)

112 ⊗ 11 =
∑
σ

|σ〉 〈σ| ⊗
∫

dx |x〉 〈x| , (1.46)

as well as the locality of the Hamiltonian in real space.
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(1.49) into Eq. (1.42) we �nd

Tσ,σ′(E) = Tr[Γ̃σLĜΓ̃σ
′
R Ĝ∗], (1.50)

where we have introduced the following matrices

Γ̃σL = (Bσ)† ΓLBσ, (1.51a)

Γ̃σR =
(
[B−T ]σ

)T
ΓσR[(B−1)†]σ. (1.51b)

where
(
[B−T ]σ

)T denotes the last N columns of the matrix B.

It is straightforward to check that in the limit of vanishing SO interaction we recover
the standard expression for the open-shell transmission function. Indeed, if the Kohn-Sham
Hamiltonian does not contain any o�-diagonal blocks, (ĤKS)σ,σ̄ = 0, and the inverse of a
block-diagonal matrix is given by the inverse of the diagonal blocks, the propagator of the
extended molecule is Ĝσ,σ̄(E) = 0. Similarly, it is easy to be convinced that the matrix ĤΣ

is given by the direct sum of the matrix with the σ = σ′ blocks so that the eigenvectors are
the eigenvectors of the blocks correspondingly �lled by zeros. In other words, the sectors
labeled by σ decouple and we recover the expression given in Ref. [49].

1.4 Ab initio spin-orbit torque

We now provide a simple derivation of our main observable: the (SO) torque operator.
Within the framework of non-collinear DFT, the single-particle Kohn-Sham Hamiltonian
can be written as [64, 65, 66, 67]

ĤKS(r) = Ĥ(0)(r)⊗ 112 + σ · B̂xc(r), (1.52)

where σ is a vector whose components are the Pauli matrices , σ = (σx, σy, σz); 112 is the
2× 2 identity matrix, Bxc is the exchange-correlation �eld and

Ĥ(0)(r) = T̂ + v̂H(r) + v̂xc(r) + v̂ext(r), (1.53)

represents the spin-diagonal part of the Hamiltonian. Here, T̂ is the single-particle kinetic
energy operator, v̂H(r), v̂ext(r), v̂xc(r) are respectively the Hartree, external and diagonal
parts of the exchange-correlation potential. The latter has been formally de�ned as the
functional derivative of the exchange correlation energy with respect to the density n(r)

vxc(r) =
δExc[n(r),m(r)]

δn(r)
. (1.54)

The exchange-correlation �eld is therefore obtained as the functional derivative of the
exchange-correlation energy with respect to the magnetization (or spin) density m(r) (the
direction of m̂ = m/|m| de�nes the local spin quantization axis)

Bxc(r) =
δExc[n(r),m(r)]

δm(r)
. (1.55)

This quantity plays the role of an internal �magnetic� �eld that couples to the electronic
spin degree of freedom formally similar to the Zeeman coupling introduced in section 1.3.1.
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Each of the components of the exchange-correlation �eld is readily obtained from the full
Kohn-Sham Hamiltonian

Bx
xc = (ĤKS)↑↓ + (ĤKS)↓↑ (1.56a)

By
xc = i[(ĤKS)↑↓ − (ĤKS)↓↑] (1.56b)

Bz
xc = (ĤKS)↑↑ − (ĤKS)↓↓. (1.56c)

The non-collinear density matrix can be decomposed in spin-space in a similar way as
the Hamiltonian potential

ρ(r) =
1

2
[n(r)⊗ 112 + σ ·m(r)] =

1

2

[
n(r) +mz(r) mx(r)− imy(r)
mx(r) + imy(r) n(r)−mz(r)

]
, (1.57)

where the non-collinear components of the magnetization density enters directly in the o�-
diagonal elements of the density matrix. We note that, in collinear DFT, the o�-diagonal
elements vanish, and when SO interaction is not very large they are expected to be small.

The SO-induced torque operator [65] can be obtained from its de�nition as the rate of
change of the spin density due to the local exchange �eld, T̂ = dŜ/dt where Ŝ = (~/2)σ.
Using the Heisenberg's equation of motion, we �nd

T̂ =
1

2i
[σ, ĤKS] =

1

2i
[σ,σ ·Bxc] = σ ×Bxc. (1.58)

As with any other observable, both at equilibrium and non-equilibrium, we can obtain
the expectation value of the torque through a trace of the operator with the density matrix
(respectively at equilibrium or non-equilibrium), O ≡ 〈Ô〉 = Tr[ρ̂ Ô]. Therefore, we have

T ≡ 〈T̂〉 = Tr [ρ̂(σ ×Bxc)] . (1.59)

The explict components of this vector in terms of the blocks of the density matrix and the
exchange �eld are given by

Tx = Tr[(ρ↓↓ − ρ↑↑)By
xc + i(ρ↑↓ − ρ↓↑)Bz

xc], (1.60a)

Ty = Tr[(ρ↑↑ − ρ↓↓)Bx
xc − (ρ↑↓ + ρ↓↑)Bz

xc], (1.60b)

Tz = Tr[(ρ↑↓ + ρ↓↑)By
xc − i(−ρ↓↑ + ρ↑↓)Bx

xc]. (1.60c)

Some important observations are now in order. First, if the exchange-correlation �eld
is smooth at the scale of variation of magnetization the SO torque would follow from the
magnetization, 〈T〉 ' 〈σ〉 ×Bxc. This is however not the case neither for the heterostruc-
tures nor the single-molecule junctions, which are the objects of interest in this thesis,
since the exchange-correlation �eld is not smooth at the atomic scale. In this situation,
we must use Eq. (1.59). Second, it is also straightforward to show from Eq. (1.59) that
we can decompose in a unique way the total torque as sum over the components at each
atomic site

T =

Nat∑
p=1

Tp. (1.61)

This expression can be used to analyze locally the origin of the torque in a molecular
junction, in which the current exerts a torque at the local spin for a given atom through
the SO interaction.
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1.5 Density matrix

As already mentioned above, the second fundamental object that participates in our
calculations is the density matrix. We need to distinguish two di�erent scenarios: on the
one hand, we have the density matrix at equilibrium (DFT-density matrix); on the other
hand, the non-equilibrium density matrix which appears due to the coupling of the cen-
tral system (molecule) to the reservoirs. The equilibrium density matrix is associated to
an isolated system (no exchange of energy or particles) and can be constructed from the
Kohn-Sham states obtained in DFT. When the isolated system is connected to reservoirs
(characterized by a temperature T and chemical potential µ), due to exchange of particles
and energy we need to make use of the non-equilibrium Green's function (NEGF) formal-
ism. Once the non-equilibrium density matrix for a steady-state is known, it can be used to
compute the expectation value of any observable, as mentioned in section 1.4. We provide
the derivation of the non-equilibrium density matrix in the presence of SO interaction and
ABC in this section, extending the results from Refs. [49, 68] for cluster calculations.

1.5.1 Equilibrium density matrix with spin-orbit coupling

The density operator ρ̂ for a given quantum system in a �nite-dimensional Hilbert
space can be written as

ρ̂ =
∑
l

fl |Ψl〉 〈Ψl| , (1.62)

where 0 ≤ fl ≤ 1 and l = 1, . . . Nstates. The numbers fl are the occupation of the energy
level El associated to the quantum state |Ψl〉, therefore at zero-temperature

fl =

{
1 if occupied state,

0 if empty state.
(1.63)

When SO interaction is present in a non-collinear magnetic system, the single-particle
states |Ψl〉 forming the basis of the Kohn-Sham system can be represented by two-component
spinors

|Ψl〉 =
∑
σ

|σ〉 ⊗ |Ψσ
l 〉 ≡

[
|Ψ↑l 〉
|Ψ↓l 〉

]
, (1.64)

where |Ψσ
l 〉 =

∑N
k=1 c

σ
kl|ϕl〉 can be expanded basis of spinless states (Nstates = 2N).

Using Eqs. (1.62) and (1.64), the equilibrium density matrix with SO interaction can
be written in block form, with blocks given by

ρσσ
′

= cσf(cσ
′
)†. (1.65)

Here, f is a diagonal matrix of dimension 2N × 2N with the occupation numbers in the
diagonal and zero elsewhere, i.e. fµν = fµδµν . The matrix elements of each block of the
density matrix at equilibrium can be explicitly written as

ρσσ
′

ij =
∑
µ

fµc
σ
iµ(cσ

′
)∗jµ, (1.66)
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that is

ρij =
∑
µ

fµ

(
c↑iµ(c↑)∗jµ c↑iµ(c↓)∗jµ
c↓iµ(c↑)∗jµ c↓iµ(c↓)∗jµ

)
. (1.67)

The total particle number can be easily determined by a trace over the density matrix

N = Tr(ρ̂) =
∑
i

∑
σ

ρσσii =
∑
iµ

∑
σ

fµ|(cσ)iµ|2, (1.68)

while the magnetization (spin density) of the system can be obtained through a trace of
the density matrix with each of the Pauli matrices, m = Tr(ρ̂σ), i.e.

mx =
∑
iµ

fµ

[
c↓iµ(c↑)∗iµ + c↑iµ(c↓)∗iµ

]
, (1.69a)

my = i
∑
iµ

fµ

[
c↓iµ(c↑)∗iµ − c

↑
iµ(c↓)∗iµ

]
, (1.69b)

mz =
∑
iµ

fµ

[
c↑iµ(c↑)∗iµ − c↓µ(c↓)∗iµ

]
. (1.69c)

1.5.2 Non-equilibrium density matrix with spin-orbit coupling

We now turn to the non-equilibrium case in which the isolated (central) system is
connected to macroscopic reservoirs and therefore, we deal with an open quantum system.
As a consequence of the di�erences in the chemical potentials of the source and drain, the
voltage drop across the junction produces an electrical current and a redistribution of the
electronic density in the scattering region. We focus on the steady-state regime and not
on transient states (which require to deal with a time-dependent problem).

The non-equilibrium density matrix calculated in this section will enter in our calcu-
lations in two ways. First, as we discussed in section 1.4, we compute expectation values
of observables such as the torque or the magnetization by tracing the density matrix with
the corresponding density operator. Second, we will use this density matrix to update our
Kohn-Sham Hamiltonian and obtain self-consistency during the non-equilibrium cycle in
chapter 2. Because we are employing the NEGF, we can apply any voltage bias in the
junction - not being limited to a narrow voltage window. This would be the case in the
linear response regime [69, 70]. Finally, the use of absorbing boundary conditions in our
formulation provides us with enormous �exibility in the consideration of the geometry of
our single-molecule junction (not being restricted geometries with special symmetries, as
it is the case for some self-consistent implementations of DFT-NEGF cycles [68]).

Within the NEGF, our object of interest is the non-equilibrium density matrix ρ̂, which
can be obtained from energy integration of the lesser Green's function, Ĝ< := Ĝ<(E),

ρ̂ =
1

2πi

∫ +∞

−∞
dEĜ<(E). (1.70)

The particle density is readily obtained from ρ̂ by a trace; for example, in real space
representation using the basis |σ, r〉, the density is given as

n(r) =
∑
σ

ρσσ(r, r), (1.71)
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where ρσσ(r, r′) = 〈σ, r|ρ̂|σ′, r′〉.

The lesser Green's function can be computed using Keldysh equation,

Ĝ<(E) = Ĝ(E)Σ̂<(E)Ĝ†(E), (1.72)

where Ĝ(E) is the retarded Green's function and Σ̂< := Σ̂<(E) is the lesser self-energy
operator

Σ̂<(E) = i
∑
α

f(E − µα)Γ̂α(E). (1.73)

Here, we recall that f(E −µα) is the Fermi-Dirac distribution function of lead α ∈ {L,R}
with chemical potential µα and Γ̂(E) is the anti-Hermitian piece of the self-energy, see Eq.
1.21. In the presence of SO interaction, the spin is not a good quantum number. However,
in what follows, we shall consider that the leads are made from a material which has
small SO interaction compared to the central region and assume that the lesser self-energy
is diagonal in spin space. We will still keep in the general derivation the self-energy of
the reservoirs labeled by a spin index σ, i.e. Σ̂σ,σ′

(E) = Σ̂σ(E)δσ,σ′ [and therefore, in Eq.
(1.73) the lesser self-energy is also diagonal in spin space], and thus allowing the possibility
of having spin polarized currents in our expressions.

From Eq. (1.72), we compute explicitly the block-matrix product

Ĝ< =

(
G↑↑ G↑↓

G↓↑ G↓↓

)(
Σ<,↑ 0

0 Σ<,↓

)(
[G†]↑↑ [G†]↑↓

[G†]↓↑ [G†]↓↑

)
(1.74a)

=

(
G↑↑Σ<,↑[G†]↑↑ +G↑↓Σ<,↓[G†]↓↑ G↑↑Σ<,↑[G†]↑↓ +G↑↓Σ<,↓[G†]↓↓

G↓↑Σ<,↑[G†]↑↑ +G↓↓Σ<,↓[G†]↓↑ G↓↑Σ<,↑[G†]↑↓ +G↓↓Σ<,↓[G†]↓↓

)
. (1.74b)

which can be recast into compact form as

G<,σ,σ
′

=
∑
σ1

Gσσ1Σ<,σ1 [G†]σ1σ
′
, (1.75)

where the energy dependence is kept implicit.

Now, and in the context of absorbing boundary conditions presented in 1.2.2, we as-
sume that the self-energy is Markovian (energy-independent) and parametrized by a local
function in real space. As it happens with the transmission function, this allows us to trans-
form the (retarded) Green's function into the basis that diagonalizes the non-Hermitian
Hamiltonian incorporating the open boundary conditions in the extended molecule, ĤΣ =
ĤKS + Σ,

G<,σ,σ
′

=
∑
σ1

BσĜ([B−T ]σ1)T Σ̂<,σ1 [(B−1)†]σ1 Ĝ∗(Bσ′
)†, (1.76)

where we recall that Ĝ := Ĝ(E) is a complex-valued diagonal matrix of dimension 2N×2N
with matrix elements Gµν(E) = δµν(E − Zµ)−1, Zµ = ReZµ + iImZµ are the eigenvalues
of ĤΣ and B the matrix whose columns are its right-eigenvectors, see also section 1.3.2.
Substituting Eq. (1.76) into (1.70), using Eq. (1.73) and assuming the zero-temperature
limit in which the Fermi-Dirac distribution function reduces to the Heaviside function

f(E − µα)→ θ(E − µα) =

{
1 if E ≤ µα,
0 if E > µα,

(1.77)
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we �nd

ρσσ
′

=
∑
α

Bσ

{
1

2π

∫ µα

−∞
dE Ĝ(E)

∑
σ1

[
([B−T ]σ1)T Γ̂σ1α ([B−1]†)σ1

]
Ĝ∗(E)

}
(Bσ′

)†. (1.78)

Note that the integral in the brackets does not depend on the spin index.

In order to recast Eq. (1.78) into a more familiar expression that can be related to the

equilibrium density matrix, we de�ne ˆ̃Γα :=
∑

σ([B−T ]σ)T Γ̂σα([B−1]†)σ so that each of the
spin-blocks of the non-equilibrium density matrix is written as

ρσσ
′

= BσJ(Bσ′
)†. (1.79)

Here, the matrix Ĵ :=
∑

α Ĵα, where Ĵα is given by the integral

Ĵα =
1

2π

∫ µα

−∞
dE Ĝ(E)ˆ̃ΓαĜ∗(E), (1.80)

which can be evaluated analytically using contour integration taking advantage of the
Markovian approximation for the self-energy. We do not enter into the details of this
calculation, as it is identical to the case without SO interaction and we refer the reader to
Ref. [49] for details. The �nal result for the matrix elements is

(Jα)µν = (Γ̃α)µνFµν(µα) µ, ν = 1, . . . , 2N, (1.81)

with

Fµν(µ) =
1

2π

1

(εµ − εµ) + i(ηµ − ην)

[
− 2πi+

1

2
ln

(
ε2µ + η2

µ

ε2ν + η2
ν

)

− iarctan
(
ηµ
εµ

)
− iarctan

(
ην
εν

)]
, (1.82)

and εµ = µ− ReZµ and ηµ = ImZµ.

Comparison of Eq. (1.79) to Eq. (1.65) allows us to give an interpretation of the
matrix Ĵ : this matrix is the non-equilibrium equivalent of the occupation numbers. Note
that J is no longer diagonal unlike the matrix f that contains the occupation numbers at
equilibrium.
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Chapter 2
Self-consistent calculations at �nite bias

with spin-orbit coupling: Methodology

and validation

In this chapter, we explain the numerical methodology later employed in the cal-
culation of SO torques in single-molecule junctions. We explain how the self-consistent
DFT-NEGF cycle is implemented in the AITRANSS module for a two-terminal junction
setup. We detail how self-consistent calculations that take into account the dependence of
the potential on the density are performed, allowing us to go beyond the linear response
regime in the calculation of electronic or spin related observables. The numerical validation
of the methodology for di�erent testbed systems is provided in great detail.

Calculations in Figures 2.2, 2.3 and 2.6 were done in collaboration with Dr. Vladislav
Pokorný of Dr. Richard Korytár's group at Charles University, who obtained the TUR-
BOMOLE data shown in those Figures. The numerical data shown in subsection 2.2.2
corresponding to the pre-existing AITRANSS code were obtained by Dr. Alexej Bagrets
and Paul Schnaebele of Prof. Ferdinand Evers' group.

2.1 DFT-NEGF self-consistent cycle with spin-orbit coupling

2.1.1 How the DFT-NEGF cycle works

In chapter 1, we introduced the two fundamental quantities needed for the calcula-
tion of SO torque. On the one hand, the Kohn-Sham Hamiltonian in the presence of
SO interaction which contains the information about the exchange-�eld. On the other
hand, the non-equilibrium density matrix. The latter contains all the information of the
non-equilibrium redistribution of the charge density in the junction once the molecule is
connected to the leads and a bias voltage is subsequently applied. The two quantities are
obtained within a DFT-NEGF self-consistent (SC) loop in which the density calculated
from the non-equilibrium density matrix is used to update the Kohn-Sham Hamiltonian in
the DFT. In turn, the DFT code provides the updated Kohn-Sham states, which are used
in the construction of a new density matrix. Once the cycle is converged, observables can
be computed from the non-equilibrium density matrix. The fundamental reason why this

23
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cycle is necessary for �nite-bias calculations is simple to understand: the scattering poten-
tial in the junction when a bias is applied is itself a functional of the density matrix. Under
�nite bias, a �xed amount of charge moves from one side of the junction to the other. The
bias-induced charge reorganization has to be fed back to the scattering potential through
the density matrix, so that the capacitor-like �elds are well-incorporated into the scattering
potential. We mention here that this idea of a SC procedure has been already used before
(see, for instance, Refs. [26, 48, 49, 71]) and the purpose of this chapter is to validate
the extension to systems with SO coupling. The method will be later employed for the
calculation of SO torques in single-molecule junctions.

We give in Fig. 2.1 the general scheme of the SC DFT-NEGF cycle. In any SC DFT-
NEGF calculation, we �rst start from an optimized geometry for the molecular junction
obtained by the usual procedures 1. Hence, once a given optimized geometry is given, we
perform a �rst SC DFT-NEGF cycle. In this cycle, we make use of two di�erent codes
that have been interfaced for this purpose: FHI-aims is used as DFT-workhorse code, while
the quantum transport package AITRANSS [26] takes care of the construction of the non-
equilibrium density matrix, as detailed in section 1.5.2. The usage of two independent codes
allows for greater versatility of our method, since our quantum tranport package can also
be straightforwardly interfaced with other DFT codes using localized orbital basis sets (e.g.
TURBOMOLE). As brie�y mentioned above, the general idea is as follows: the DFT code
provides the Kohn-Sham states |Ψµ〉 and energies εµ where µ = 1, . . . 2N obtained from the
diagonalization of the single-particle Kohn-Sham Hamiltonian (1.52). These states are �rst
used to reconstruct the Kohn-Sham Hamiltonian in AITRANSS. Together with the model
self-energies that introduce the coupling to the semi-in�nite leads, the non-equilibrium
density matrix of the extended molecule is then obtained. We take care that at each
step of the cycle the total number of electrons N is �xed when the extended molecule is
connected to reservoirs by appropriately shifting the energy levels (see section 1.5.2 for
speci�c details). The density matrix at step n is linearly admixed with the density matrix
at step n−1 to improve convergence. At each step, we check for convergence by calculating
the Schur's norm of the matrix δρ̂ = ρ̂n − ρ̂n−1 and the cycle stops if the condition

1

N

√√√√ N∑
i,j=1

|δρij |2 ≤ ξ (2.1)

is satis�ed for a given ξ. In the next phase of the cycle, the density matrix is fedback to the
DFT code and used to update the density (and the Kohn-Sham Hamiltonian). This way,
the redistribution of the charge due to the coupling to the contacts is self-consistently taken
into account while preserving charge neutrality. The whole iterative process is controlled
by a shell script. In a second step, a bias voltage can be applied to the junction, which
requires a new SC cycle similar to the �rst one (also controlled by a shell script and with
convergence determined by the parameter ξ). Finally, after achieving convergence of the
second cycle, any observable can be computed in a post-processing step by tracing the
density matrix with the corresponding Hermitian operator.

1. We note that for the speci�c calculation of SO torque we need to ensure that the magnetic single-
molecule junction presents broken inversion symmetry, see also chapter 3. In order to ensure this condition,
we can choose a molecule with unpaired electrons and relax the junction minimizing the forces so that no
inversion symmetry is present. In that system, SO interaction then appears and the coupling of the spin
to the orbital degrees of freedom from the electrical current leads to the emergence of SO torques on the
localized spins.
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Figure 2.1 � Scheme of the SC DFT-NEGF cycle with SO interaction. The calculation procedure
consists in four steps during which two SC loops between FHI-aims and AITRANSS take place.
Once the self-energy is parametrized and a voltage bias Vbias is applied, we obtain the SC non-
equilibrium density matrix to be used in the forthcoming calculation of physical observables of
interest (such as SO torque) or in the calculation of transmission characteristics at �nite bias,
T (E, Vbias).
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2.1.2 Reconstruction of the Kohn-Sham Hamiltonian

We now brie�y describe the (technical) details in the reconstruction of the Kohn-
Sham Hamiltonian in our transport package extension, necessary for the computation of the
Green's function and the non-equilibrium density matrix. In our simulation tool, we read as
the output of FHI-aims the Kohn-Sham states (molecular orbitals), ψµ(r) = 〈r|ψµ〉 := 〈r|µ〉
with µ = 1, · · · 2N , given by the spinor

ψµ(r) =

[
ψ↑µ(r)

ψ↓µ(r)

]
=

N∑
j=1

(
c↑µj
c↓µj

)
ϕj(r), (2.2)

where ϕj(r) = 〈r|ϕj〉 := 〈r|j〉 are the basis functions and cσµj the Kohn-Sham coe�cients
projected on each spin component. In general, the distinction between spin up and down
in the matrix of coe�cients is not necessary, so we typically write the Kohn-Sham states
as

ψµ(r) =
2N∑
ν=1

Bνµϕν(r), (2.3)

with B a complex quadratic matrix of dimension 2N × 2N .

Once the molecular orbitals have been read out from a �le, we construct the Kohn-
Sham Hamiltonian as

HKS =

2N∑
µ=1

|ψµ〉εµ〈ψµ| =
2N∑
µ=1

2N∑
ν,ν′=1

|ν〉Bνµεµ[B∗]µν′〈ν ′|. (2.4)

Because the atomic basis ϕj(r, σ) = |σ〉 ⊗ 〈r|ϕj〉 is non-orthogonal in real space, we also
construct the real-valued overlap matrix, S, with matrix elements

Sνν′ = 〈ν|ν ′〉 =

{
〈ϕν |ϕν′〉 if ν, ν ′ ≤ N and σ = σ′ =↑,
〈ϕν−N |ϕν′−N 〉 if ν, ν ′ ≥ N and σ = σ′ =↓ .

(2.5)

This is a symmetric matrix diagonal in spin space

S =

[
Sϕ 0
0 Sϕ

]
, (2.6)

with Sϕ the overlap matrix of the basis {ϕj(r)}Nj=1.

Using Eq. (2.6), we perform a Löwdin orthogonalization [63] from the non-orthogonal
atomic basis into an orthonormal one so that every basis relates mostly to one, and only
one, atom

|ν̃〉 =

2N∑
ν′=1

S
−1/2
ν′,ν |ν

′〉, (2.7)

or

|ν ′〉 =

2N∑
ν′=1

S
1/2
ν′,ν |ν̃

′〉. (2.8)
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Combining Eqs. (2.4) and (2.7) we obtain the Hamiltonian in the orthonormal basis by a
simple product

ĤKS =

2N∑
µ=1

2N∑
ν,ν′=1

2N∑
ν̃,ν̃′=1

|ν̃〉S1/2
ν̃ν Bνµεµ[M∗]µν′S

1/2
ν′ν̃′〈ν̃

′|, (2.9)

or, in matrix form, ĤKS = S1/2BεB†S1/2, where ε is a diagonal matrix with the Kohn-
Sham energies in the diagonal.

2.1.3 Self-energy parametrization and charge neutrality condition

In order to perform ab initio transport calculations in single-molecule junctions we
must take into account the size of the metallic clusters that form part of the extended
molecule. If there is enough number of metallic atoms in the leads, we add the self-energy
using the absorbing boundary condition (ABC) scheme introduced in section 1.2.2. Since
the Fermi energy provided by the DFT calculation is already close the Fermi energy of the
bulk metal, it is not necessary to introduce a real part of the self-energy to shift the orbital
energies in the system (and therefore �x the Fermi energy of the lead). If the number
of metal atoms included is large enough, the results (for the transport properties) should
coincide with those obtained using semi-in�nite leads in the thermodynamic limit. We
note that this type of calculation is limited to Vbias = 0.

Under �nite bias Vbias 6= 0 or if the number of lead atoms included in the extended
molecule is not large enough (so that the bulk electronic structure is not properly captured),
the Fermi energy needs to be adjusted. Note that this is the case in the presence of SO
interaction. For them, due to the computational costs, the non-equilibrium calculations
will always be performed with a reduced number of metal atoms in the contact clusters.

As for the closed-shell calculations without SO interaction [49], there is no a priori
knowledge of the value of the Fermi energy, EF. The initial value for EF is taken to be
(close to) its value for the DFT solution of the isolated system. Given a value for the Fermi
energy and �xed the imaginary part of the self-energy (according to the ABC independent
parametrization for the chosen metal), we compute the real part of the self-energy by
adjusting its value in a SC calculation. This is done by employing a local self-energy of
the general form [49]

Σσ
α =

∑
i,j∈Sα

|i〉 [δεσ − iη]δij 〈j| , (2.10)

where, in general, δεσ = δε + σ∆. In our case, the leads are non-magnetic so we have
that the exchange splitting vanishes, ∆ = 0. An extension to account for ferro- or antifer-
romagnetic contacts in the presence of SO interaction can be done trivially. The density
matrix for the open system is constructed using Eq. (1.79) and Eq. (1.78). It, therefore,
depends parametrically on δε via the self-energy Σ̂. At each step, n, we ensure that the
charge neutrality condition in the extended molecule is satis�ed (in the grand-canonical
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sense 2 ), N = Tr[ρ̂(δεn)], within some user-de�ned tolerance, i.e.

|N −
N∑
i=1

∑
σ

ρσσii (δεn)| ≤ ζN. (2.11)

A safe value for the tolerance is ζ = 10−4. After convergence of the SC calculation, we
�nd ρ̂(δε∞), re�ecting the energy level shifts due to the coupling of the extended molecule
to the contacts.

Next, we take into account that due to the small size of the metal clusters that belong
to the extended molecule the excess charge at the boundaries is not properly screened.
Indeed, unphysical charge can accumulate at the outermost layers of the metal leads. For
that reason, we �rst obtain for each SC calculation (with EF and associated shift δε∞) the
excess charge at the interface

δQouter =
∑
i∈Sα

∑
σ

ρσσii −Qref, (2.12)

where Qref = NSαZSα with NSα the number of atoms at the contact region and ZSα the
charge per atom. These charges are computed by a standard Löwdin population analysis.
The excess charge δQouter is a function of EF (and therefore δε∞) and, for a general δε∞,
we have δQouter 6= 0. It has been shown in previous works [49] that the optimal value of
the self-energy occurs when such parameters minimize the excess charge at the boundaries
of the extendend molecule interfacing with the left/right reservoirs, δQouter(δε∗) = 0. We,
therefore, choose δε∗ and the corresponding Fermi energy E∗F(δε∗) for the subsequent non-
equilibrium calculations 2.8.

Finally, once the Fermi energy is obtained, we perform a SC calculation in which the
values of δε∗∞ and E∗F are �ne tuned. This �nal calculation leads to very small changes in
both quantities (of the order of 10−4 eV for the Fermi energy) but in our experience they
have proved to be crucial in the computation of sensitive observables such as SO torques.

2.1.4 Application of an external bias voltage

After the self-energies have been parametrized, their values δε∗ and η are �xed and a
bias voltage, Vbias, can be applied in the junction.The voltage is given by the di�erence
between the chemical potentials of the left/right reservoirs, µL − µR = Vbias such that,
by de�nition, µL > µR. Note that the individual values of the chemical potentials are
not kept �xed, so that we have the freedom to change µ̄ = (µL + µR)/2 such that the
charge neutrality condition is satis�ed within a given precision Nζ . Here, as a di�erence to
section 2.1.3, the convergence |Tr[ρ̂(µ̄)]−N | < Nζ is achieved faster for a strong convergence
criteria of Nζ = 10−7 electrons.

2. We remind the reader that once the isolated central system is connected to semi-in�nite leads, the
stationary quantum system is open and the number of electrons present in the extended molecule is only
known in average for a given chemical potential (Fermi energy).
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2.1.5 Calculation of observables: spin-orbit torque

Once the non-equilibrium density matrix is known at a given bias voltage, we can
proceed with the calculations of di�erent (non-equilibrium) observables by a simple trace 3.
In this thesis, we focus on the change of magnetic properties induced by currents in matter
with SO coupling and will be mostly interested in SO torque (1.59). Note that, because we
are interested in the response of an observable to an external perturbation (in the form of a
current density), the computation of the proper quantity that does not contain equilibrium
(spurious) contributions requires the substraction of the density matrix at zero-bias from
the total one calculated at a given bias, δρ̂(Vbias) = ρ̂(Vbias)− ρ̂(0). Using the change in the
density matrix, we compute the response in the torque to application of a bias voltage Vbias,
δT(Vbias), using Eq. (1.59) with Bxc obtained from a calculation at Vbias. Alternatively,
following Ref. [69] we can compute the change in the exchange-�eld δBxc(Vbias) due to
the current and trace the operator with the density matrix at zero-bias. The response of
the system given by δT(Vbias) has to be the same. In general, we stress that any quantity
that has a non-zero expectation value in equilibrium must always be subtracted from the
�nal result since it will be not observed in a transport experiment. Typical examples of
this phenomenon are spin currents in time-reversal invariant systems [72].

2.1.6 Approximations for the self-consistent cycle

Although the basic expressions presented in chapter 1 and the methodology shown here
are fully general, we are forced to take certain approximations in our SC cycle due to the
characteristics of the software used in this thesis. Here, we use as the main DFT package
FHI-aims. As discussed in 1.3.1, it can only perform non-self consistent calculations with
SO interaction. In other words, during the update of the density matrix, the Kohn-Sham
Hamiltonian which is a functional of the density matrix, is only updated by using the real
part of the diagonal blocks. One of the main achievement of this thesis is to show that,
given this approximation, one is able to compute non-equilibrium SO-induced properties
(magnetization, torques).

Another important point speci�c for SO torque is related to the fact that the magne-
tization needs to be able to point in any spatial direction. With the SO treatment o�ered
by FHI-aims this is not a problem since in every step of the SC cycle the SO interaction
is incorporated into the Hamiltonian, even though the update only takes into account the
particle density. We shall see in chapter 3 that this scheme provides for the right order of
magnitude of the SO interaction in a molecular junction.

2.2 Validation: Test calculations

As an appetizer, we �rst benchmark the implementation of SO coupling in FHI-aims
against the full self-consistent non-collinear TURBOMOLE code. Next, we turn to the val-
idation of the implementation of SO interaction in the extended module of AITRANSS. To

3. In the case of the transmission function, an additional trivial step is necessary (extraction of the
eigenvalues from a last diagonalization of the Kohn-Sham Hamiltonian) in order to reconstruct the retarded
Green's function that appears in the transmission formula (1.42).
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begin with, we compare the zero-bias SC transmission function of a bipyridine-gold molecu-
lar junction with previous results obtained with AITRANSS in absence of SO interaction.
Next, we compare SC calculations performed with the extended module of AITRANSS
interfaced against FHI-aims with results where the same transport module has been in-
terfaced with TURBOMOLE. Finally, we compute a self-consistent transmission function
of benzenedithiol (BDT) connected to gold and copper leads, both in the presence and
absence of SO interaction, and conclude the correctness of the AITRANSS extension to be
used in chapter 3.

2.2.1 Spin-orbit coupling in FHI-aims

As we mentioned in section 1.3.1, SO coupling is implemented in FHI-aims as a post-
processing step once the convergence of density is achieved. This is di�erent to TURBO-
MOLE, which performs non-collinear self-consistent calculations in the presence of SO in-
teraction. Here, we provide a benchmark for the SO implementation and compare between
results from these two codes in order to evaluate the accuracy of the SO implementation
in FHI-aims against a non-collinear self-consistent scheme.

Figure 2.2 � Eigenenergies di�erences with and without SO coupling for FHI-aims and TURBO-
MOLE in gold clusters. (a) Di�erence for a gold dimer (inset) for equivalent light and double-ζ
basis sets of FHI-aims (blue square dots) and TURBOMOLE (red triangle dots), respectively, in
an all-electron fashion. HOMO and LUMO energies are indicated by dashed lines. (b) Same as in
(a) but for a pyramidal gold cluster grown in (111) direction, see inset. The trend of the energies
is similar in both panels except for energy values of the gold dimer above the LUMO orbitals.
However, in general, deviations up to ∼ 0.4 eV are observed for eigenenergies below the HOMO
orbital.

In Fig. 2.2 we show the cluster geometries employed: (a) a gold dimer and (b) a
gold pyramid made of 11 atoms and cut from a gold (111) surface. We plot for each code
(FHI-aims, blue squares and TURBOMOLE, red triangles) the energy di�erence of the
Kohn-Sham eigenvalues between a closed-shell calculation and a SO coupling calculation.
We employ for FHI-aims the �light� settings for the basis set while for TURBOMOLE
we use the double-ζ in a full electron calculation. The HOMO and LUMO energies are
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indicated by dashed vertical lines (−1 for HOMO, 1 for LUMO) 4.

For each code, we �nd that the di�erences between the energies in the closed shell
and SO coupling calculations can be as big as 1.0 eV, the impact of SO interaction is not
negligible. Comparing both codes, the eigenvalue series follow the same trend, especially
for the occupied states. The deviations can be as big as 0.1 eV for the gold dimer and
even 0.4 eV in the case of the pyramid, the latter having larger number of gold atoms.
We show the di�erence between the FHI-aims and TURBOMOLE Kohn-Sham energies
with SO interaction in Fig. 2.3. Observe that for the non-occupied states, the di�erences
become smaller as the number of gold atoms in the cluster increases. Based on this, we
might expect that in transport calculations the SO interaction might have a quantitative
e�ect in the position of the transport resonances but not a qualitative e�ect. Qualitative
e�ects can occur if di�erent metallic species are compared, as it was seen in chapter 5.

Figure 2.3 � Eigenenergy di�erence of all-electron calculations performed with SO coupling using
light and double-ζ basis sets for FHI-aims and TURBOMOLE, correspondingly. Di�erences up
to 0.4 eV are observed for the pyramidal cluster. For energies lower than the HOMO energy, the
di�erences for the dimer are smaller than for the pyramid. The situation changes drastically for
the empty states.

2.2.2 First test case: Bipyridine-gold without spin-orbit coupling

For our �rst test, we check the implementation of the SC cycle in the extended
AITRANSS module by computing the transport characteristics of a bipyridine-gold molec-
ular junction in the absence of SO interaction. We compare with previous results for the
same system 5. The extended molecule consist of the bipyridine molecule attached to two
pyramidal gold clusters of 11 atoms. The gold pyramids are cut from a gold surface grown
in the (111) direction.

Starting from a previously optimized geometry (see inset in Fig. 2.4), we �rst check
the convergence during the SC cycle. This is done by direct inspection of the Kohn-Sham

4. Note that in the SO coupling calculation we have twice as many eigenvalues compared to the closed-
shell calculation. Due to time-reversal symmetry, these eigenenergies come in pairs (Kramers' degeneracy)
and for the comparison half of them are not necessary.

5. These results were obtained by P. Schnäbele and A. Bagrets at F. Evers' group.
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Figure 2.4 � (a) Evolution of the Kohn-Sham eigenvalues closest to the Fermi energy as a function
of the number of iterations for the SC cycle adjusting the real part of the self-energy. The horizontal
red line marks the value of the Fermi energy, EF. The vertical line corresponds to the iteration
for which the convergence criteria ξ ≤ 3 · 10−4 has been satis�ed. Inset: bipyridine-gold geometry
used in our calculation. (b) Comparison between the zero-bias transmission functions obtained
using the pre-existing AITRANSS in the SC cycle and the present module which accounts for SO
interaction.

eigenvalues in each iteration step. In Fig. 2.4 (a), we show the evolution of the Kohn-
Sham energies closest to the Fermi energy in the SC cycle that adjusts the real part of the
self-energy (step 1 in Fig. 2.1). These energies are obtained from exact diagonalization
of the Kohn-Sham Hamiltonian, after the reconstruction following Eq. (2.9). After ∼ 400
iterations, we �nd that the �ow of the eigenenergies becomes stable, with the di�erence
for each of them (between consecutive cycles) smaller than 0.01 meV. We note, however,
that a typical value for the convergence criteria, ξ ≤ 3 · 10−4, is not strict enough in this
system to achieve converged eigenenergies. Indeed, the iteration for which this criteria is
satis�ed is shown in Fig. 2.4 by a vertical line at around 90 iterations. Therefore, smaller
values for the convergence parameters ξ will be used in our calculations to ensure totally
converged values for the Kohn-Sham energies (for ∼ 500 iterations we have used the very
strict value ξ = 10−6).

In table 2.1 we give the comparison between the self-energies obtained with new
AITRANSS module, which incorporates SO coupling, and the pre-existing AITRANSS
package. In both cases, a leaking rate of η = 0.5 · 10−1 Ha was used. We �nd for the
real part of the self-energy that the results are qualitatively consistent. The di�erence is
attributed to the improvement in the basis sets used in di�erent versions of the DFT code.
For a Fermi energy of EF = −4.75 eV, we �nd a value of δε∞ = 1.68 eV, which is com-
parable to 1.67 eV for the �rst layer obtained with the pre-existing AITRANSS package.
Respectively, for the second layer, we get δε∞ = 0.814 eV with the new module and 0.838
eV with the pre-existing one. The deviation between both values is around ∼ 10−2 eV.
The control �le used in order to obtain the plot is given in appendix C.

As explained above, we compute the transmission function using Eq. (1.42) employing
the a converged Kohn-Sham Hamiltonian to reconstruct the retarded Green's function.
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Parameters New module Pre-existing AITRANSS

Re(Σ1) (Ha) 0.0597 0.0616

Im(Σ1) (Ha) 0.0500 0.0500

Re(Σ2) (Ha) 0.0299 0.0308

Im(Σ2) (Ha) 0.0250 0.0250

Table 2.1 � Benchmark of the self-energies (closed shell, no SO coupling): new module compared
to pre-existing AITRANSS. Re(Σi) with i ∈ {1, 2} stands for the real part of the self-energy for
layer i, while Im(Σi), is the imaginary part.

We show the resulting transmission function in Fig. 2.4 (b) comparing to a previously
obtained transmission function with the pre-existing AITRANSS package. As expected,
we �nd excellent agreement between both results. This could already be expected due to
the very good quantitative agreement between the values of the real part of the self-energy.
The tiny discrepancies in the height of the resonances are attributed to small di�erences in
the basis functions for the metallic atoms existing between di�erent versions of the DFT
package and the slightly tighter convergence criteria used in our calculations.

Figure 2.5 � (a) Evolution of the Kohn-Sham eigenvalues closest to the Fermi energy as a function
of the number of iterations for the SC cycle adjusting chemical potential. The horizontal red line
marks the value of the average chemical potential, µ̄. The vertical line corresponds to the iteration
for which the criteria ξ ≤ 3 · 10−4 has been satis�ed. Inset: geometry used in the calculation. (b)
Comparison between the zero-bias transmission functions obtained using a previous implementation
of this SC cycle and the present implementation for di�erent values of the bias voltage.

We now turn to the calculation of a transmission function at �nite bias, T (E, Vbias)
by performing a SC that adjusts the chemical potential while keeping the system charge
neutral. As in Fig. 2.4, Fig. 2.5 (a) shows the evolution of the Kohn-Sham energies
as a function of the number of iterations in the SC cycle when adjusting the chemical
potential for Vbias = 1 V.Comparing with Fig. 2.4 (a), we observe that the convergence
of the individual Kohn-Sham energies with the number of iterations occurs faster than
in the process of adjusting the real part of the self-energy. Note that, nevertheless, the
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strict criteria for ξ leads to a large number of iterations. We mark with a grey vertical
line the iteration for ξ = 3 · 10−4. The value for the chemical potentials obtained after
the SC calculation, using the parameters indicated in appendix C and a sample input �le
described in appendix B are given in table 2.2.

Vbias(V) New module, EF (Ha) Pre-existing AITRANSS, EF (Ha)

0.0 −0.17559 −0.17457

0.25 −0.17499 −0.17501

0.50 −0.17571 −0.17571

0.75 −0.17649 −0.17650

1.0 −0.17731 −0.17731

Table 2.2 � Benchmark of the chemical potential without SO coupling: new module compared to
pre-existing AITRANSS.

In Fig. 2.5 (b), we compare the resulting transmission functions for di�erent bias
voltages (0.0 V, 0.25 V, 0.5 V, 0.75 V and 1.0 V). As above, we have employed the new
module (that can account for SO coupling) and compared with pre-existing AITRANSS
results. The agreement is excellent and we quantitatively recover the previous transmission
function for the di�erent voltages. We also �nd the expected behavior for the transmis-
sion function under bias voltages: shift of resonances together with appearance and/or
suppressions of the existing resonances present at zero bias due to the Stark e�ect [26].

2.2.3 Second test case: bipyridine-gold crosscheck with TURBOMOLE

As a second test example for the AITRANSS module with SO interaction, we compare
the transmission functions obtained using as DFT codes FHI-aims and TURBOMOLE 6.
Although we use the full implementation detailed in section 2.1, we still consider only
scalar relativistic e�ects (whose e�ect in the transmission have been shown to be almost
equivalent between both codes, see chapter 1) and neglect SO interaction. The comparison
between the transmission characteristics is shown in Fig. 2.6: (a) for Vbias = 0 V and (b)
for Vbias = 0.5 V. We use in both cases the geometry, convergence criteria characterized by
ζ,Nζ and ξ, and Fermi energy employed in section 2.2.2. Both transmission curves show
a high degree of overlap with small quantitative deviations in the position and width of
the resonances. We attribute the discrepancies to the di�erences between the basis sets in
each code.

2.2.4 Third test case: BDT-copper and -gold with spin-orbit coupling

In this last section, we �nally perform a calculation in which SO interaction is taken
into account. For simplicity, we choose a system in which the SO coupling is small in

6. We remind the reader that both codes use localized basis sets; FHI-aims employs NCAOs while
TURBOMOLE uses contracted Gaussians.
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Figure 2.6 � (a) Transmission function for the bipyridine-gold molecular junction at zero bias. We
compare both FHI-aims (blue-continuous line) and the TURBOMOLE results (red dashed line).
(b) Same as in panel (a) but at Vbias = 0.5 V.

the molecular bridge and essentially only relevant in the atoms at the interface with the
reservoirs.

To begin with, we consider a non-self consistent calculation of the zero-bias trans-
mission function for benzenedithiol attached to copper and gold leads. These two lead
materials are considered as they give us important information about the role of SO inter-
action. Both should have similar electronic structure since they are located in the same
column of the periodic table but the impact of the relativistic e�ects can be very di�erent
(gold, with Z = 79 being substantially heavier than copper, Z = 29). We also note that
both materials are relevant from the point of view of molecular electronics, being typically
used as contacts in realistic experimental setups.

We show the results for the transmission function 7 in Fig. 2.7 (a) for copper (b)
for gold leads grown in the (100) crystal direction (see geometry in the inset). We com-
pare three di�erent scenarios obtained with our implementation of the transport code with
SO interaction: closed shell (dashed blue line), open-shell (or spin-polarized, dubbed here
two-component no SO coupling) and SO coupling. First, we realize for both metals that
the closed shell and two-component transmissions (spin-polarized calculation) overlap per-
fectly. This is expected because benzene is a non-magnetic molecule. In both situations,
we �nd that the molecule is HOMO conducting, as it is well known [49]. Much more inter-
esting is the trace for the SO interacting case obtained by adding all spin-conserved and
spin-�ip components, as de�ned in Eq. (1.43). For the BDT-copper, the SO interaction has
a reduced impact; the resonances that can be attributed to the frontier orbitals are barely
a�ected (deviations being smaller than 0.1 meV). We �nd that, only at energies around
2 eV below the Fermi energy, the trace with SO interaction deviates from the transmis-
sion characteristic obtained in the closed-shell calculation. This deviation is due to the
d-orbitals of copper whose electrons might be more a�ected by the SO coupling compared
to the s- and p-orbitals, since the orbital angular momentum L is larger compared to the

7. Observe that because here the objective is to monitor the impact of SO interaction in the transmis-
sion, the calculation need not to be converged with respect to the size of the metallic clusters.
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Figure 2.7 � (a) Transmission function obtained for BDT-copper junction for three non-
selfconsistent calculations: closed shell (no SO coupling, dashed blue line), open-shell (two-
component no SO coupling, solid violet line) and SO (SO coupling, dotted pink line). (b) Same as
in (a) but for a BDT-gold junction where the metallic cluster have the same lattice spacing as in
copper.

former electrons. For the BDT-gold junction, the situation is drastically di�erent because
SO coupling is stronger. Indeed, all the resonances are shifted to lower energies due to the
large value of the SO interaction by ∼ 100 meV. Note that the e�ect of SO interaction
manifests even with a small number of gold atoms included in the extended molecule. In
table 2.3 we provide the energy values close to the Fermi energy, EF, of the spectrum with
and without SO interaction, for gold and copper. In these calculations we have considered
just one layer with imaginary part of the self-energy η = 2.72 eV. We observe that for
values close to the Fermi energy EF, the impact of the SO coupling for gold is larger than
copper. For the former, the splitting in energy is noticeable at the second decimal place in
the energies, while in the case of gold, we observe the di�erence in the energy spectrum at
the level of the �rst decimal place. The parameters used for the calculations are given in
appendix C and the transmission curves were obtained as indicated in appendix B.

Cu Au

States E (eV) no SO E (eV) SOC E (eV) no SOC E (eV) SOC

HOMO−2 −4.5399 −4.5390 −5.2679 −5.2868

HOMO−1 −4.5302 −4.5361 −5.2546 −5.1864

HOMO −4.5175 −4.5021 −5.2186 −5.0017

LUMO −4.3381 −4.3351 −4.9310 −4.8434

Table 2.3 � Energy spectrum of the BDT molecular junction with Au and Cu. For Au, the impact
of the energy value is larger than for Cu, since for the �rst one the impact of SO coupling (SOC) is
notorious already at the �rst decimal place compared to values without SOC. For Cu, the impact
of the SOC is noticeable at the second decimal place.
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We therefore conclude that to minimize the e�ect of SO interaction in the junction
properties, copper contacts are the material of choice. We therefore stick to this material
for the calculation of the SO torque in single-molecule junctions.

We now proceed as �nal check of our code with a self-consistent calculation of the
transmission function for the copper(111)-BDT molecular junction. We show the geometry,
convergence checks and �nal results in Fig. 2.8. For the geometry given in Fig. 2.8 (a),
we �rst perform step one of our methodology as given in Fig. 2.1. This consists on a SC
search of the real part of the self-energy, δε. The evolution of the Kohn-Sham energies
for a sample of states close to the frontier orbitals is shown in Fig. 2.8 (b), together with
the Fermi energy (dashed red line kept �xed in the calculation). We observe that for a
small number of metal layers in the cluster, the shift due to the real part of the self-energy
is substantial. Indeed, after 600 iterations (which are needed to satisfy the convergence
criteria given by ζ = 1.5 · 10−4) we �nd that δε∞ = 0.378 eV ∼ 0.4 eV. This value is
consistent with the shift of the Kohn-Sham energies after convergence.

The calculation is done for several Fermi energies EF = −4.35,−4.40,−4.45,−4.50
eV and we monitor the excess (Löwdin) charge accumulated at the boundaries of the
extended molecule. As anticipated above in section 2.1.3, we �nd that the excess charge
is almost a linear function of the Fermi energy, see Fig. 2.8 (c). By performing a linear �t
δQouter = aEF + b, being a = −0.0706 ± 0.0001|e| and b = −0.3102 ± 0.0006(1/V ), and
setting δQouter = 0 we �nd the value of the Fermi energy that minimizes the excess charge
at the boundaries. We obtain EF = −4.40 eV.

Next, we proceed with the second step of the calculation as explained in Fig. 2.1. We
choose δε and EF to be the optimized values and introduce a bias voltage as the chemical
potential di�erence between left and right electrodes. After proceeding as indicated in Fig.
2.1 we �nd the self-energies given in table 2.4 8.

Vbias = 50 meV SC closed-shell SC open-shell SC SOC no SC closed-shell

Re(Σ1) (Ha) -0.013903 -0.013904 -0.013889 0.0

Im(Σ1) (Ha) 0.01 0.01 0.01 0.01

EF (Ha) -0.161694 -0.161698 -0.161697 -0.142700

Table 2.4 � Values of the real and the imaginary part of the self-energy, as well as the chemical
potential, obtained for self-consistent and no self-consistent calculations when Vbias = 50 meV
is applied through a three-layered Cu-BDT-Cu molecular junction. We study the system under
three di�erent treatments: closed-shell and open-shell in the absence of SOC, and BDT with self-
consistent SOC. The values of real part-part of the self energy di�er at the order of 10 µeV. The
chemical potential obtained once the bias voltage is applied also di�ers at the order of 10 µeV. In
the case of the closed-shell non-self-consistent calculation, the chemical potential is not adjusted
and, as a consequence, the chemical potential shifts by ∼ 550 meV. This is expected, since the
copper cluster is small.

As an example, we show in Fig. 2.8 (d) the evolution of the Kohn-Sham energies and
the average chemical potential (which can also be adjusted to satisfy charge neutrality) as

8. For additional technical information on how the transmission has been obtained see appendix B for
the detailed steps and appendix C for parameters and sample input �les.
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a function of the number of iterations in the SC cycle for eVbias = µL − µR = 50 meV.
We note that, compared to panel (b), the convergence occurs much faster, as only ∼ 170
iterations are now needed to achieve convergence for the parameter Nζ = 10−7 electrons.
Finally, in Fig. 2.8 (e) the zero-bias transmission function for the copper-BDT junction is
represented. We compare between non-self-consistent closed shell (dashed-dotted orange
line), self-consistent closed shell (continuous pink line), self-consistent open-shell (dotted
blue line) and self-consistent SO coupling (dashed-dotted green line) transmission char-
acteristics. The non-selfconsistent calculation does not make the correction for the value
of the Fermi energy while the other self-consistent calculation does. For the size of the
clusters considered here, this correction leads to a shift of the Fermi energy of ∼ 0.5 eV,
which does not manifest in Fig. 2.8 (e) because the Fermi energy is chosen as reference
value. As expected, we �nd small deviations between the non-selfconsistent and the self-
consistent traces and a good overlap for the three self-consistent transmission functions.
Similarly to Fig. 2.7 (a), we also �nd that the e�ect of SO interaction manifests in the
transmission function at around −2 eV. Observe that due to the fact that the cavity is
symmetric, spurious modes appear in the HOMO-LUMO gap region. This e�ect has no
importance for the benchmark between the di�erent implementations for the calculation
of the transmission function which is of interest in this section.

2.3 Summary of this chapter

In this chapter, we have presented the methodology necessary to perform self-consistent
calculations in molecular junctions at �nite-bias. We have discussed in detail the practical
steps and benchmarked the new AITRANSS module, which incorporates SO interaction,
against previous results obtained for simple testbed systems.
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Figure 2.8 � (a) Optimized geometry for the BDT-copper junction. (b) Evolution of the Kohn-
Sham energies as a function of the number of iterations in the SC cycle that searches for δε∞ for
a �xed Fermi energy (dashed red line). (c) Excess of charge, δQouter in the contact region as a
function of the Fermi energy. The value δQouter(E∗F) = 0 and the corresponding δε∗ are chosen for
the subsequent calculations at �nite bias. The coe�cients of the �t are a = −0.0706 ± 0.0001|e|
and b = −0.3102± 0.0006(1/V )(d) Evolution of Kohn-Sham energies closer to the frontier orbitals
as a function of the number of iterations for the SC cycle with an applied voltage Vbias = 50
meV. (e) Comparison between the transmission functions for BDT-copper. Non-self-consistent
closed shell (dashed-dotted orange line), self-consistent closed shell (continuous pink line), self-
consistent open-shell (dotted blue line) and self-consistent SO coupling (dashed-dotted green line)
transmission functions are shown.
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Chapter 3
Spin-orbit torque in vanadocene

single-molecule junctions

In this chapter, we show our results for the spin-orbit (SO) torque (SOT) obtained
from �rst principles in a single-molecule junction (Cu-NH2-vanadocene-NH2-Cu junction).
These results are, to the best of our knowledge, the �rst calculation of this observable in
a single-molecule junction context. Following the formalism detailed in previous chapters
1 and 2, we provide an estimation of the order of magnitude of this quantity. The cal-
culated value of SOT is compared to the torque values that can be obtained in extended
heterostructures.

3.1 Why is spin-orbit torque interesting?

The calculation of spin torques has been a very active sub-�eld of spintronics over the
past years [64, 65, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 16]. There
the magnetization of extended heterostructures is controlled by (spin-polarized) electrical
currents without applying external magnetic �elds. Typically, spin-transfer torque (STT)
mechanisms occur when spin-polarized current transfers angular momentum to a ferromag-
netic layer to change the direction of the magnetization. Recently, the attention turned
into SO-induced torques in heterostructures, [16] which can be used to induce a change in
the magnetization direction of a material exploiting the intrinsic SO interaction. In other
words, we can produce magnetization switching with non-polarized currents without ex-
ternal magnetic �elds. An additional practical advantage of SOT is that the high current
density (and electrical power) needed in STT schemes is no longer necessary. This reduces
the deterioration of the heterostructures and opens the door for their usage as memory
storage devices [89, 90, 91, 92, 93, 94].

We also remind that miniaturization has become increasingly important for modern
technological applications. As presented in the introduction of the thesis, this was the driv-
ing force of molecular electronics when the �eld was founded by [2]. Nowadays, molecular
junctions form the perfect testbed to study and understand quantum-mechanical phenom-

43
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ena at the nanoscale. Combination of spintronics ideas and molecular electronics led to the
�eld of molecular spintronics [13, 14, 95], paving a way to downscale spintronics devices
to the single molecule level. We here propose and present a calculation from �rst princi-
ples in which we would like to investigate whether the SOT is large enough to change the
magnetization direction of single molecules.

3.2 Brief overview of spin torque in spintronics

In spintronics, spin torques have been extensively studied since J. C. Slonczewski [96]
and L. Berger [97] independently predicted the change in the magnetization direction of a
ferromagnet placed in a heterostructure by means of spin polarized electric currents. STT
in heterostructures became a popular e�ect studied both theoretically and experimentally
[74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. This e�ect has been studied especially
in ferromagnetic-normal metal heterostructures in order to control their magnetization in
such a way that no external magnetic �elds are needed.

The possibility of switching magnetic moments in heterostructures using conventional
electric currents without external magnetic �elds has thus allowed for a miniaturization
of components in which the switching is required; for example, in memory storage devices
(STT-magnetic random access memories). Unfortunately, the necessary high currents pro-
duce the fatigue of the materials used in such memories. Thus, STT-MRAMs currently
still require an important compromise between magnetoresistance, heterostructure cross
section and current density. For this reason, much attention has been devoted to �nd
alternative solutions, a natural one being SOT as the source of magnetization dynamics.
The former has come with additional advantages. First, non-polarized currents can also
be employed. Second, it requires smaller current densities, allowing for a more e�ective
miniaturization of the components.

The �rst experimental observation of magnetization switching due to SOT was in Refs.
[98, 99]. Since then, it has led to a considerable amount of theoretical and experimental
research, mostly in periodic and asymmetrically layered heterostructures [16, 100]. More
recent studies have considered topological systems (for instance, surface currents of topo-
logical insulators where the torque is induced at the interface of the hybrid heterostructure,
see Ref. [16]) or light-induced SO-related switch [101]. Microscopic calculations of spin
torques normally require the use of a non-collinear formulation of the transport prob-
lem applied to heterostructures [16, 102], while the macroscopic formulation is mostly
based on e�ective dynamical equations for the (macroscopic) spin density [known as the
Landau-Lifschitz-Gilbert (LLG) equation]. From the ab initio perspective, the theoretical
calculation of SOT in heterostructures has been reviewed in Ref. [16]. Most notably, in
Ref. [73] a density-matrix based formalism was developed for STT and applied to metals;
later, Refs. [69, 70] apply these ideas to compute ab initio SOT in the linear response
regime in ferromagnetic structures. Only very recently, the non-equilibrium Green's func-
tion formalism and ab initio have been combined to compute STT and SOT in multilayer
periodic systems [65]. This approach has been used to obtain SOT in a Van der Waals
heterostructures; the result being later employed in the LLG to study the spin dynamics
[100].
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3.3 Vanadocenes: a test case study of spin-orbit torque

3.3.1 Choice of the system

We begin by discussing previous considerations about the system in which the SOTs
are going to be calculated. This is an important point, as we �rst need to carefully choose
a molecule able of forming stable junctions with metallic leads and with the appropriate
electronic (and spin) structure. We will see through this thesis that many organic molecules
ful�ll the stability requirement, and speci�cally we will later focus our attention onto
carbon-based and silicon-based molecules with a variety of anchor groups (thiols, diamines
or even molecules, see chapters 5 and 4). To overcome the small SO interaction of carbon
and silicon, we look for molecules with an organic backbone that also contain (heavy)
metallic atoms. These atoms will also provide for the localized magnetic moments. An
archetypical molecular system of this kind is transition-metal phthalocyanines, which have
been widely studied in the last years, both theoretical and experimentally [103, 104, 105,
106, 107, 108, 109, 110, 111]. Unfortunately, they are big molecules and, as a result, have
too many degrees of freedom. Therefore, we turn our attention to smaller systems, for
example, metal-organic double-decker molecules (metallocenes).

Metallocenes contain a metallic atom �sandwiched� between the carbon-based rings
(Cp). The metal atom can be from di�erent transition metals. This characteristic enables
the possibility of obtaining a large set of candidate molecules within this family of molecular
stacks. They can form multidecker structures which enhance the magnetization of the
molecular compounds [112, 113, 114, 115, 116, 117, 118, 119]. A well-known metallocene
is ferrocene which has two di�erent electronic structures depending on the oxidation state
of the iron atom: Fe2+ gives rise to a closed-shell con�guration as seen in 4.1, while Fe3+

is open-shell. Unfortunately, none are suitable candidates because Cp2Fe with Fe2+ does
not present any magnetic moment and Cp2Fe with Fe3+ is charged 1. By considering these
requirements, natural choices for the transition metal in the metallocene are found, for
instance, in the �fth column of the periodic table (V, Nb, Ta).

The three metallocenes derived V, Nb, Ta (vanadocene, niobiocene and tantalocene)
have magnetic moments localized at the metal atom. All the candidate molecules have
uniaxial anisotropy (they have only one easy axis) with the easy magnetization axis located
in the ẑ-direction, as indicated in Fig. 3.1 (perpendicular to the plane of the Cp rings).
The hard axis is located in a plane perpendicular to the easy axis. The magnitude that
determines how stable is the magnetization is the so-called magnetoanisotropy energy
(MAE). SO interaction is the main source of the MAE. It thus quanti�es the cost of
changing the magnetization direction from the easy to a hard axis and therefore large
MAE means that a device is di�cult to demagnetize.

We have computed with TURBOMOLE [35, 36] the MAEs 2 of vanadocene, niobiocene
and tantalocene by �xing the spin quantization axis in the ẑ (easy axis) and x̂ (hard axis)
directions (see the coordinate system in Fig. 3.1) and substracting both total energies.
We �nd that the MAEs are 21 meV, 1.77 meV and almost 0 meV, for tantalocene, nio-

1. Here, we would like to study neutral molecules in order to prevent from additional e�ects that may
impact the SOT in a non-controlled way.

2. Obtained in collaboration with Dr. Jan Wilhelm from Prof. F. Evers'group.
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Figure 3.1 � Geometry of vanadocene in its staggered con�guration. (a) Side-view of the molecule.
The molecule is oriented with the axis perpendicular to the Cp rings oriented in the ẑ−direction.
(b) Top view of the vanadocene molecule showing the staggered rings in the x− y plane.

biocene and vanadocene, respectively. These values qualitatively agree with values found
in literature [117] and are consistent with MAEs calculated for other sandwich compounds
[112, 118]. Based on this quantities we conclude that, in principle, the most suitable
candidates to study SOT in a metallocene single-molecule junction are niobiocene and
tantalocene, as the spin density will change smoothly under a small enough bias voltage.

We would like now to remind the reader of the approximations that were performed in
chapter 2 in the SC cycle. In this case, the DFT code includes SOC non-self consistently
and, therefore, the o�-diagonal blocks as well as the imaginary part of the diagonal blocks of
the density matrix are not used to update the Kohn-Sham Hamiltonian. The approximation
needs to be treated carefully if the order of magnitude of the neglected matrix elements
becomes comparable to those kept in this step of the SC cycle. This happens if the SO
interaction is su�cently large. We have found that for Schur's norm computed for the o�-
diagonal blocks of the density matrix larger than 10−3 - as it happens for niobiocene and
tantalocene - the SC calculation becomes challenging to be converged. For vanadocene, the
SC converges smoothly and we �nd a Schur's norm of the order of ∼ 10−3. Consistently
with the Schur's norm, the level splitting induced by the SOC is of the order of ∼ 10−3

eV for vanadocene. For niobiocene and tantalocene the level splitting is of the order of
∼ 10−2 − 10−3 eV and ∼ 10−1 − 10−2 eV, respectively, for the eigenenergies close to the
Fermi energy EF.

Finally, as we have pointed out above, the MAE is a relevant factor, which indicates
how di�cult is to demagnetize a system. A non-zero value of the MAE (which is small
and close to zero for vanadocene) may prevent oscillations in the direction of the spin
density when the electric current goes across the molecule in the calculation of the SOT.
For vanadocene, MAE is almost negligible and the spin density direction rotates very easily.
We overcome this situation by using the following �trick�: we add a local Zeeman term at
the vanadium atom in order to ensure the stability of the spin density direction in the SOT
calculations. The local Zeeman �eld is simply added to the Hamiltonian of the isolated
molecule, ĤKS, which is replaced by Ĥ = ĤKS + Σ̂Z . The value of the Zeeman term
is considered to be small so that is acts as a perturbation to the molecular part of the
Hamiltonian, shifting the eigenenergies of the Hamiltonian. In the MO basis, this term is
easily written as

Σσσ′
Z = σδσ,σ′∆Z

∑
p∈A

∑
j∈OA

|p, j〉 〈p, j| , (3.1)

where A is the set of atoms in which the Zeeman term is applied, O the set of corresponding
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orbitals and ∆Z is referred to as the Zeeman energy. The physical e�ect of the Zeeman
term is to align the spins along the easy axis (set to be the ẑ direction) of the paramagnetic
vanadocene molecule. We point out that, although the Zeeman term is introduced locally
in the vanadium atom, it a�ects the whole junction. For the rest of this chapter we will
consider only vanadocene molecular junctions.

3.3.2 Electronic structure of vanadocene

Figure 3.2 � Qualitative molecular or-
bital (MO) diagram of vanadocene.
Here, the left column represents the
energy levels of the Cp-rings while
the right column corresponds to the
(atomic) energy levels of the V2+

cation. The combined MO of
vanadocene are given in the central col-
umn. Here, a stands for non-degenerate
orbitals while e is used for doubly de-
generate orbitals. The subindex g in-
dicates an even (or inversion symmet-
ric, gerade) orbital while u stands for
odd (non-inversion symmetric, unger-

ade) orbital. The symbol ∗ refers to
the antibonding nature of the MO. The
energy levels of the di�erent MOs are
arranged from bottom (lower energy)
to top (higher energy). The resulting
vanadocene molecule is an octahedral
complex. Vanadocene presents neutral
open-shell metallocene with d-electrons
distributed as marked in the blue area
of the diagram due to the corresponding
ligand �eld.

We now want to brie�y discuss the electronic structure of pristine vanadocene in more
detail and analyze the e�ect of SOC and the Zeeman term. As stated before, vanadocene
is an open-shell metallocene with a single vanadium atom sandwiched in a double-decker
structure. We show its qualitative molecular orbital (MO) diagram in Fig. 3.2. The
distribution of the energy levels results from the combination of the left part of the diagram,
that presents the distribution of the energy levels corresponding to the Cp rings, and the
right part, where the energy levels of the isolated vanadium V2+ cation are shown. The
levels are arranged for increasing energy value from bottom to top. In the center of the
diagram, the resulting distribution of the MO and the electronic con�guration of pristine
vanadocene is given. The blue shaded area indicates the MO that derive from atomic d
orbitals.

The electronic con�guration and the distribution of the energy levels of vanadocene can
be explained using ligand �eld theory [120]. In vanadocene, the role of the ligands is taken
by the Cp rings, and together with the vanadium, the molecule conforms an octahedral
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complex that lifts the �ve-fold degeneracy of the d shell from the isolated metallic cation.
The occupied d-derived levels appear in a e2g+a1g con�guration with Ee2g < Ea1g and they
are occupied according to Hund's rule since the splitting between e2g and a1g is small. The
molecule therefore presents three unpaired electrons with expected total magnetic moment
of 3.0 a.u. con�rmed by DFT calculations, using PBE functional.

In table 3.1, we reproduce the DFT energy values of the relevant MOs of vanadocene.
The �rst two columns correspond to the Zeeman-�eld free case, with and without SOC. In
the absence of SO interaction, the occupied HOMO, HOMO−1 and HOMO−2 levels follow
the expected distribution from Fig. 3.2, with the degeneracy between the pair of levels e2g

weakly lifted. Adding SOC shifts the Kohn-Sham energies by 0.1 − 1 meV, thus the SO
coupling is small but not negligible. We also present in table 3.1 the impact of adding a
local Zeeman �eld in the vanadium atom 3. This Zeeman term has been incorporated in a
SC cycle in which the equilibrium density matrix, in Eqs. (1.67), is constructed to add the
e�ect of Σ̂Z into the Hamiltonian. We observe that for ∆Z = 1.0 eV (resp. ∆Z = −1.0 eV)
the energy levels are shifted downwards (resp. upwards) in energy. This result is consistent
with our implementation of the Zeeman term, as ĤKS for vanadocene and Σ̂Z have each
of them a ground state with opposite spin density.

∆Z = 0.0 eV ∆Z = −1.0 eV ∆Z = −1.0 eV

No SOC (eV) SOC (eV) No SOC (eV) SOC (eV) No SOC (eV) SOC (eV)

HOMO−4 −4.8809 −4.8808 −4.8361 −4.8360 −4.9322 −4.9322

HOMO−3 −4.7445 −4.7444 −4.7539 −4.7538 −4.7272 −4.7271

HOMO−2 −3.7618 −3.7625 −3.5449 −3.5454 −3.8665 −3.8688

HOMO−1 −3.7168 −3.7187 −3.4979 −3.4997 −3.8471 −3.8473

HOMO −3.5860 −3.5837 −3.3572 −3.3552 −3.7214 −3.7191

LUMO −1.8668 −1.8676 −1.6289 −1.6294 −2.1145 −2.1155

LUMO+1 −1.6314 −1.6311 −1.3698 −1.3696 −1.9012 −1.9006

Table 3.1 � Energy levels of the relevant MO orbitals of vanadocene marked by a blue rectangle
in Fig. 3.2. We show the energy values with and without SO interaction for three relevant local
Zeeman energies ∆Z = 0.0,±1.0 eV. These values are obtained from a SC calculation at equilibrium
using (1.62). We also include the values of the deeper energy levels HOMO−3 and HOMO−4 which
should be slightly more sensitive to the SO interaction. The level splitting observed is of the order
of meV. This is qualitatively consistent with the typical SOC energy splitting of the hydrogenic-like
atom of Z = 23 electrons [121], which is 10 times larger. The energies of the d-derived MO change
(increasing or decreasing for negative and positive ∆Z , respectively) by roughly 100 meV due to
the Zeeman �eld.

3.3.3 Choice of the electrodes and geometry of the molecular junction

We now consider the junction that will be used for the single-molecule calculation of
SOT. First, we add anchor groups to our metallocene. We consider diamine (NH2) linkers

3. Clearly, even if the Zeeman term is added locally all the MO are a�ected due to hybridization
between the orbitals of vanadium and the molecular junction.
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as thiol anchor groups can be magnetic due to the presence of non-bonding electrons pairs.
In order to ensure that the system always lacks inversion symmetry, we always perform
a pre-optimization of the geometry under strict criteria for the residual force per atom
(below 10−2 eV/Å). The resulting structure is attached to pyramidal copper leads growth
in (111) direction.

The reader might be tempted to ask why copper has been chosen as electrode material.
There are several reasons: �rst, copper is a material with weak SO interaction [121, 122];
second, the empirical model for the absorbing boundary conditions used for the self-energy
has been well-tested 4 with a known value of the parameter η, and, �nally, copper is a
realistic metal for experiments. This way we consider a setup which can pave the way for
possible future experiments in realistic scenarios.

Figure 3.3 � Molecular geometry of the
vanadocene-copper molecular junction used in
our self-consistent calculations. Here, L and R
stands for left and right electrodes, characterized
by the chemical potential µL and µR, respectively,
such that µL − µR = eVbias. The main molecular
axis and the magnetization, m, of the molecule
is mostly oriented in the ẑ−direction perpendic-
ular to the plane containing the Cp rings. In
contact with the copper leads, the junction Cu-
NH2-vanadocene-NH2-Cu presents a magnetiza-
tion carried by the 3 unpaired electrons from the
vanadocene a1g and e2g levels with d orbital sym-
metry z2, xy and x2 − y2 (see Fig. 3.2).

In Fig. 3.3 we display the geometry of the full vanadocene-based molecular junction
used for the study of the magnetic properties and SOT in vanadocene. We have checked by
using DFT calculations that, when the molecule is brought in contact with copper leads, it
still has 3 unpaired spins (total magnetization 3.0 a.u.) as observed in the bare molecule.
After chosing the system, we now proceed with the calculation of the spin density and the
SOT following the details given in Chapt. 2 and summarized in Fig. 2.1. We provide
the numerical parameters used in the calculations in Appendix C. As a side remark, as a
di�erence to what happens in other DFT codes, such as TURBOMOLE [36] and SIESTA
[123], FHI-aims does not allow to change the spin quantization axis in the calculation [55].
This axis is set by default to be ẑ as indicated in Fig. 3.3. Consequently, we also choose
to orient the easy magnetization axis of vanadocene along that axis.

3.3.4 Non-equilibrium electronic transport

Before diving into the magnetic properties of the vanadocene-copper junction we �rst
inspect the I-V characteristic. We show the results in Fig. 3.4 for di�erent values of
the Zeeman �eld. We �nd that except for ∆Z = ±5.0 eV, the current-voltage curve

4. This is the reason why another metal such as sodium, with smaller SO coupling than copper has
been discarded as investigation and parametrization of semi-empirical self-energies is not the main goal of
this thesis.
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present a linear response regime in a wide range of voltage. This is consistent with the
large HOMO-LUMO gap, ∼ 2 eV, of vanadocene. The only exception is ∆Z = ±5.0 eV
for which the redistribution of the energy levels due to the Zeeman term has strongly
altered the electronic structure of the molecular junction and therefore, the voltage range
characterizing the linear response regime is reduced.

Figure 3.4 � Current-voltage characteristics of the vanadocene-copper molecular junction for dif-
ferent Zeeman �elds, ∆Z . A linear response regime is clearly visible. The range of bias voltage
for which the junction is in this regime is a function of the Zeeman �eld. Notably, the I-V curve
for ∆Z = ±5.0 eV shows much stronger nonlinearities due to the dramatic changes in the energy
spectrum of the molecule for large local Zeeman �elds in the vanadium atom.

3.4 Magnetic properties of copper-vanadocene junctions

3.4.1 Total magnetization

We now proceed with the study of the magnetization properties of the vanadocene
molecular junction when a bias voltage is applied across the junction. Recall that we have
a molecular structure characterized by three unpaired electrons strongly localized in the
vanadium atom in which we introduce a local Zeeman �eld. We show the results of the
total magnetization in Fig. 3.5. Panels (a), (b) and (c) correspond to the components
Mx, My and Mz of the magnetization of the full junction (as indicated by the molecular
junction geometry and reference system at the bottom right side of each panel). Each set
of data corresponds to a di�erent value of the Zeeman �eld (ranging from −5 eV to 5 eV)
and we plot the evolution of Mα with the voltage bias from −0.3 V to 0.3 V. We also
show, as reference, the dashed black line at 3 a.u. that indicates the spin density of the
junction at zero bias as given by the initial DFT without self-energies when no Zeeman
�eld is applied. The inset in each panel corresponds to a zoom for the grey shaded area.

The �rst observation, already anticipated, is that the magnetic moment of vanadocene
mainly points in the ẑ direction, as the components of the magnetization in x̂ and ŷ



3.4. Magnetic properties of copper-vanadocene junctions 51

Figure 3.5 � Magnetization of the vanadocene-copper molecular junction for Zeeman �elds ∆Z ∈
[−5.0, 5.0] eV as a function of the bias voltage Vbias ∈ [−0.30, 0.30]V. Each panel corresponds to a
di�erent spatial direction: (a) x̂, (b) ŷ, (c) ẑ, as indicated in red in the reference system close to the
molecular junction geometry in the bottom right corner. The inset shows a zoom of the grey area.
The horizontal dashed black lines at Mα = 3.0 a.u. correspond to the total magnetic moment of
reference for the isolated cluster. We �nd that the magnetization is oriented preferentially on the ẑ
direction, as Mz is several orders of magnitude larger than Mx,My. For Mz, a small curvature of
∼ 1% is found for di�erent Zeeman �elds larger than 0.25 eV; larger local negative Zeeman �elds
can even invert the magnetization of the whole junction.
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directions are 4 and 5 orders of magnitude smaller than Mz. Next, we observe that Mx

and My respond very weakly to the applied bias voltage and remain almost �at; on the
contrary we see that Mz presents a small curvature of ∼ 1% when the current �ows
through the junction. We attribute this curvature to the transfer of angular momentum
of the itinerant electrons from the current to the spins (located mainly at the vanadium
atom) mediated by the SO coupling. Note also that, even though the Zeeman term is
applied locally in space, the whole junction magnetic properties can be a�ected due to the
hybridization of the metallic orbitals (on which ΣZ has non-zero value) with the rest of
the atomic orbitals in the vanadocene molecule.

Now, we analyze the change of value of the magnetization due to the local Zeeman �eld
and focus on the trends that can be observed in panel (c). We also �nd that the sign of the
magnetization changes from large values of ∆Z > 0 (∆Z ∈ [1.0, 5.0] eV for which Mz < 0)
to ∆Z < 0 (for which Mz > 0). This is easily understood from our implementation of the
Zeeman Hamiltonian, whose ground state has opposite spin density direction compared to
the ground state of the Kohn-Sham Hamiltonian of the molecular junction. Observe that
for ∆Z = −5.0 eV, the magnetization in the ẑ direction is larger than 3.0 a.u.. This can
occur if, for example, the large Zeeman energy produces strong shifts in the energy levels
of the junction and paired electrons from inner shells promote to empty energy levels. The
overall e�ect is an increase of the magnetization in the direction of the Zeeman �eld. The
spin-�ip transition occurs for values between ∆Z = 0.5 eV and ∆Z = 1.0 eV; this change
starts to be anticipated in the inset of panel (c), where we can appreciate that the curvature
of the magnetization with the bias voltage has a negative sign.

3.4.2 Projected magnetization per atomic species

We now proceed to analyze the contribution to the magnetization of each atomic
species. In Fig. 3.6 we show the magnetization mx, panel (a); my, panel (b) and mZ ,
panel (c) projected on each of the atomic species in the junction. For simplicity, only
the Zeeman energies close to the spin-�ip transition, ∆Z ∈ [0.5, 1.0] eV, are given in the
voltage window Vbias ∈ [−0.3, 0.3]V. The color code for the atomic species is grey (for
carbon), copper (for copper), light-blue (for hydrogen), dark blue (for nitrogen) and green
(for vanadium).

As seen in Fig. 3.5, all the atomic species present a magnetization in the x̂ and ŷ
directions of a factor 4 − 5 smaller than the magnetization in the ẑ direction. In the
directions perpendicular to the easy magnetization axis, all the atomic species show a
similar value for the magnetic moment and, except vanadium and copper, react very weakly
to the applied voltage bias. For mz, as seen in panel (c), the magnetization of vanadium is
substantially bigger than the magnetization of any other atomic species, although non-zero
magnetization is also carried by the carbon atoms that form the Cp rings. In these case,
the magnetization response to the bias is also weak but smooth in Vbias, in agreement with
Fig. 3.5. For ∆Z = 0.5 eV, mz(V ) ∼ 2.5 a.u., not so close to 3 a.u.. This is understood
from the fact that the relevant MOs occupied by the 3 unpaired electrons in the junction
are shifted by the Zeeman �eld. When ∆Z = 1.0 eV, the sign of the magnetization of
vanadium is reversed (and points downwards in the ẑ direction), while the spin density in
carbon is also reduced so that the value of mz becomes −3.0 a.u.
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Figure 3.6 � Projected magnetization per atomic species of the vanadocene-copper molecular junc-
tion for Zeeman �elds ∆Z ∈ [0.5, 1.0] eV as a function of the bias voltage Vbias ∈ [−0.3, 0.3]V.
These values of the Zeeman �eld correspond to those in which a spin-�ip transition occurs at the
molecular junction. Each panel corresponds to a di�erent spatial direction; (a) x̂, (b) ŷ, (c) ẑ as
indicated in red in the reference system close to the molecular junction geometry in the bottom
right corner. The di�erent symbols and colors correspond to the atomic species present in the
junction (black circles, carbon; copper squared, copper; light blue triangles, hydrogen; dark blue
pentagons, nitrogen and green triangles, vanadium). While the magnetization in the x̂ and ŷ di-
rections is small for all atomic species [panels (a) and (b)], the magnetization in the ẑ directions is
mostly dominated by the vanadium atom [panel (c)]. In general, the value of the magnetization is
reasonably stable as a function of the applied bias, the exception being the vanadium and copper
for ∆Z = 0.5 eV in the directions perpendicular to the easy magnetization axis. These instabilities
are attributed to the spin-�ip transition that occurs close to that value of the Zeeman �eld.
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We show in Fig. 3.7 the same observable as in Fig. 3.6 but with smaller Zeeman �eld,
∆Z = −5.0 · 10−4, 5.0 · 10−4 eV and voltage window Vbias ∈ [−0.01, 0.01]V. The window
of bias voltage is correlated to the Zeeman �eld, as for larger voltages the magnetization
density no longer is a smooth function of Vbias because the energy pumped into the system
by the current overcomes the stability produced by the local Zeeman �eld. For small
Zeeman �elds, no inversion in the magnetization at the vanadium atom is longer obtained.

3.4.3 Local magnetization at the metallic center

Finally, we check in detail the behavior of the magnetization at the vanadium atom in
Fig. 3.8. The color code, Zeeman �elds and voltage window is the same as the one used in
Fig. 3.5; so that immediate comparison can be made. As stated before, the magnetization
of the junction in the direction of the easy axis is carried by the vanadium atom and the
spin density is reduced after application of a bias voltage across the junction for not small
values of ∆Z . We interpret this smooth change in mz with Vbias as being the consequence
of a SOT induced by the SO interaction at the vanadium atom. We focus on its analysis
in the next section.

3.5 Spin-orbit torque in vanadocene single-molecule junctions

3.5.1 Spin-orbit torque from ab initio

In this last section, we �nally present the �rst calculation of SOT in single-molecule
junctions from �rst principles. This calculation compares to the existing ab initio calcu-
lations of SOT in the literature [69, 65], which are all of them performed for multilayered
magnetic heterostructures. Our approach based on a self-consistent DFT-NEGF scheme
allows us to go beyond linear response formulations [69] and is applied to atomic non-
periodic clusters under a bias voltage. As introduced in Sec. 1.4, we are interested in the
response of the magnetization dynamics given by the change of the torque vector, T = Ṡ,
to the applied bias voltage across the junction. In real space, this quantity is expressed by
[69]

δT =

∫
drM(r)× δBxc(r) =

∫
drBxc(r)× δM(r), (3.2)

so that the torque emerges from the component of M perpendicular to the exchange �eld
Bxc(r). Note that Eq. (3.2) suggests a trivial decomposition of the torque into a sum of
local torque contributions.

Our results for the local SOT at the vanadium atom after applying a bias voltage
across the vanadocene-based molecular junction are given in Fig. 3.9. Each panel (a),
(b) and (c), corresponds to each of the torque components δtx, δty and δtz expressed in
eV. In (a) and (b) δtx and δty are the so-called out-of-plane components with respect to
the magnetization direction, mz, where most of the local spin density of the vanadium
atom is oriented, while δtz corresponds to the so-called in-plane component. As in Sec.
3.4, the inset displays the geometry employed in our calculations and we highlight by red
arrows and boxes the direction of the component as well as the local position at which the
SOT has been computed. We �nd that the torque appearing due to the presence of SO
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Figure 3.7 � Same as in Fig. 3.6 but for smaller Zeeman �elds, ∆Z = −5.0·10−4eV, 5.0·10−4 eV, and
di�erent voltage window Vbias ∈ [−0.01, 0.01] V. For small Zeeman �elds applied at the vanadium
atom, the projected magnetization is very stable with the bias voltage and no spin-�ip transition
at the vanadium atom is observed for the ẑ component.
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Figure 3.8 � Local magnetization at the vanadium atom for Zeeman �elds ∆Z = [−5.0, 5.0] eV as
a function of the voltage bias Vbias = [−0.30, 0.30] V. Each panel corresponds to a di�erent spatial
direction; (a) x̂, (b) ŷ, (c) ẑ as indicated in red in the reference system close to the molecular
junction geometry in the bottom right corner. The position of the vanadium atom is marked
with a red box. The reference value of the magnetization in the ẑ direction, 3.0 a.u., is marked
by a horizontal black dashed line. Comparison to Fig. 3.5 shows that the magnetization of the
full junction (both the order of magnitude and the behavior with the applied Zeeman �eld) is
essentially dominated by the magnetization at the vanadium atom. We therefore recover that the
magnetization mz � mx,my by several orders of magnitude and that a spin-�ip transition occurs
in the vicinity of ∆Z ∼ 0.5 eV with almost total inversion for ∆Z ∼ 1.0 eV.
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interaction is mostly dominated by the out-of-plane components. Both have typical order
of magnitude of 10−6 eV for δtx and similarly 10−6 eV for δty. The in-plane component is
approximately two orders of magnitude smaller compared to δtx. Under the assumption
that the exchange �eld is not strongly anisotropic, this result is consistent with the fact that
the magnetization in the easy axis has much larger value compared to any magnetization
component on a hard axis.

The response of the torque to the bias voltage is, in general, odd under bias rever-
sal. This behavior is similar to the current voltage traces (see Fig. 3.4) and it can be
understood considering the junction similar to a heterostructure. In this scenario, we draw
the attention to a simple Rashba model with magnetization employed in Ref. [88]. There
it has been shown that the torque induced by the SO interaction is proportional to the
current �owing in the system. We therefore would expect a similar behavior here. For
values of the voltage Vbias . 0.1 V, the torque presents an approximately linear relation
with the applied voltage, while for Vbias > 0.1 V non-linearities start to appear. Note that
the range of voltages for which the torque vector changes linearly with the bias voltage
does not necessary coincide with the voltage interval for which current and voltage also
have a linear dependence.

3.5.2 Comparison to torkance calculations

We now compare our results with previous works to get an intuition of the correctness
of our calculations of the SOT. We note that the available physical systems that we can
use for the comparison are heterostructures, while our calculations are in single-molecule
junctions. Nevertheless we can get a feeling of how well the impact of SO interaction is
taken into account in the non-equilibrium spin properties. Therefore, we turn our attention
to the SOT calculation in magnetic layers of Co/Pt(111) performed in Ref. [69]. These
are linear response calculations, using the Kubo formalism, where the torque emerges
from the application of a weak external electric �eld E, T = ¯̄tE, and it is characterized
by the linear response tensor ¯̄t (�torkance�). In their case, it can be shown that due to
symmetry considerations some of the components of the torkance tensor vanish. Here
we will assume for simplicity that the tensor can be replaced by an scalar (the direction
of the torque coincides with that of the applied electric �eld). In our junction, we can
estimate the electric �eld for small bias Vbias by considering the structure to be a capacitor
with the insulating layer corresponding to the molecule. Within this picture, the constant
electric �eld, E, is generated from the voltage drop across the junction length. Therefore,
E ∼ Vbias/L, where Vbias is the external bias voltage applied and L ∼ 0.68Å ∼ 13a0 (a0 is
the Bohr's radius) is the NH2-Cp2V-NH2 length of the molecule measured between the two
anchor groups. From Fig. 3.9, we estimate the linear response regime to be characterized
by the voltage window with Vbias ∼ 0.04V, the associated electric �eld is E ∼ 3 ·10−3V/a0.
Therefore, the torkance estimated from t = T/E with δtx is t ∼ 3 · 10−4 ea0. From Fig. 3
of Ref. [69], we observe that the typical values of the torkance is t ∼ 0.1 ea0.

We now assume that, at lowest order, the SOT has a linear relation with the SO
interaction strength 5. The typical energy splitting associated to the SO interaction of

5. This relation is exact for certain model Hamiltonians [88, 16] such as the Rashba model. Here, since
there is only a single atom with relevant SO interaction at the metal-insulator interface (vanadium), the
torque has to be linear with the SO interaction strength at lowest order, similar to the isolated atom.
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Figure 3.9 � Components of the local SOT exerted at the vanadium atom in the three relevant
spatial directions [(a) δtx, (b)δty and (c) δtz]. The inset for each panel shows the geometry of
the full junction as well as the position and direction for which the local SOT has been calculated
marked by the red box and the red arrow respectively. The SOT is an odd function of the voltage
with a small window of linear regime in the range Vbias ∈ [−0.04, 0.04] V. The torque exerted in
the x̂ and ŷ directions is at least an order of magnitude larger compared to the torque exerted in
the ẑ direction, δtz � δtx, δty in agreement with the fact that mz shows the biggest changes as a
function of Vbias.
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a hydrogen-like atom [121, 122] is ζ ∼ 0.123 eV (Co). For the vanadocene molecule,
we consider as an analogous quantity the typical level splitting due to SO interaction
∆E ∼ 0.001 eV (see Table 3.1). We now de�ne the following ratios, ξCo = tCo/ζ and
ξV = tV/∆E, which normalize the torque to the SO interaction strength of each system. We
�nd ξCo ∼ 1.25a0/V while ξV ∼ 0.3a0/V . The qualitative comparison is actually very good
(factor of 4). We attribute the quantitative di�erence in the ratios to interface e�ects, not
accounted in this estimation, functional dependencies and the approximations performed
in the SC calculations indicated in chapter 2. We also observe that SOT in the vanadocene-
based junction is not su�ciently large to produce a switch in the magnetization direction
of the spin-density in the vanadium atom for a range of voltages between Vbias ∈ [−0.3, 0.3]
V.

Finally, we also estimate the coercitive magnetic �eld, Bc, which is the magnetic �eld
that has to be applied in order to generate an e�ect equivalent to that torque in the
magnetization M, similarly as in Ref. [69]. It can be calculated as Bc = (T × M̂)/µs,
where M̂ is the direction of the initial magnetization and µs denotes the total spin magnetic
moment in the cluster or unit cell. For a typical value of the torque ∼ 10−6 eV found in
our molecular junction, we estimate Bc ∼ 0.001 mT, oriented in the XY-plane of the
vanadocene (parallel to the Cp rings) because its magnetization is oriented mainly in the ẑ
direction. This quantity, Bc, gives the magnetic �eld necessary to generate the same e�ect
on the magnetization of this molecular junction as the SOT. The number obtained is very
small (of the order of the Earth magnetic �eld [124]), in agreement with the small torques
calculated.

3.6 Summary of this chapter

In this chapter, we have shown the �rst calculation of SOT in a single-molecule junc-
tions. As a test case, we have presented the vanadocene molecular junction connected
to copper leads. By introducing a local Zeeman �eld that sets a preferential magnetiza-
tion axis, we show that the magnetization at the vanadium atom can be controlled by
application of an external voltage bias in the junction. The changes of the magnetization
are attributed to the SOT, which is exerted on the spin density through the exchange of
angular momentum with the current by means of SOC. The SOT computed by following
the method introduced in chapter 2 has also been compared to the SOT obtained in mag-
netic heterostructures. We �nd that, in spite of the strong approximations taken here in
the SC cycle, the normalized ratios of the torkance to the SO interaction strength are in
qualitatively good agreement. Discrepancies are attributed to geometrical details at the
interface, functional dependencies or, also, to the methodology approximations. In addi-
tion, we provide an estimation of the magnetic �eld that would be needed to produce an
equivalent local torque in the vanadocene junctions. We �nd that for tx ∼ 10−6eV, we
need a magnetic �eld of ∼ 0.001 mT (smaller than the Earth magnetic �eld). We also
conclude that, under the conditions in which the calculation has been performed, SOT is
not su�ciently large to produce a switch in the magnetization direction of the spin density
in the vanadium atom.
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Chapter 4
Mechanically-tunable quantum

interference in ferrocene-based molecular

junctions

A part of the material covered in this chapter can be found in the preprint:

M. Camarasa�Gómez†, D. Hernangómez�Pérez†, M. S. Inkpen, G. Lovat, E�Dean Fung,
X. Roy, L. Venkataraman, and F. Evers, Mechanically-tunable quantum interference in
ferrocene-based molecular junctions, chemRxiv.12252059.v1, 2020. [†: equally contribut-
ing authors]. Ref. [125]. Adapted with permission from Nano Letters, submitted for
publication. Unpublished work copyright 2020 American Chemical Society.

In this chapter, we perform a theoretical study of quantum transport properties of
ferrocene-based single-molecule junctions. We analyze the charge transfer mechanism and
discuss the origin of the low conductance properties of these junctions (two orders of
magnitude smaller than the conductance of molecules of comparable length). The low
conductance is explained in terms of destructive quantum interference, which manifest in
the transmission function by Fano-like anti-resonances close to the Fermi energy. These
antiresonances are consequence of the hybridization of the localized d-orbitals of the metal-
lic atom with the extended π-systems of the carbon-based ligand groups. The low energy
cost of rotation of the organic rings against each other allows for mechanical control of
the hybridization (and therefore the quantum interference). Consequently, the conduc-
tance can change upon rotation in the junction by orders of magnitude in a controlled
manner. Our theoretical calculations con�rmed experimental observations performed in L.
Venkataraman's group.

4.1 Why quantum interference in ferrocene?

As introduced in section 3.3, metallocenes are organometallic compounds that consist
of a dimer made of two �ve-member carbon rings (cyclopentadienyl, Cp) that �sandwich� a
transition metal atom. When the metal is iron, the molecule is called ferrocene. Ferrocene
is a very interesting compound, both from the chemical (see molecular orbital diagram in
Fig. 4.1) and structural point of view [126]. Indeed, it was discovered only a few years
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Figure 4.1 � Qualitative molecular or-
bital (MO) diagram of the pristine fer-
rocene molecule. The nomenclature
and d-orbital symmetry being the same
as in Fig. 3.2. On the left hand
side, the energy levels and chemical
structure of the two naked cyclopen-
tadienyl rings (Cp) is shown.On the
right hand side, the energy levels of the
Fe2+ are also represented. As a re-
sult of hybridization, we �nd the elec-
tronic structure of the (staggered) pris-
tine ferrocene molecule detailed in the
central column. Ferrocene is an octa-
hedral closed-shell organometallic com-
plex whose d-electrons are distributed
as shown in the red shaded area of the
MO diagram.

after its synthesis [127] that ferrocenes could be employed as a molecular conformational
switch, since the two Cp rings can easily rotate against each other thanks to a low energy
barrier (of the order of tens of meV) [127, 128]. The easy mechanical degree of freedom
given by the near rotation of the Cp rings against each other (the �scissor mode�) may allow
for adsorption of di�erent conformations of metallocenes close to a metal surface. These
di�erent geometries come from having several local energy minima in the conformational
space. Therefore, the metallocene can have di�erent adsorption geometries to local defects,
steps or islands. This can occur either for self-assembled monolayers [129, 130] or at the
single-molecule [131, 132].

Even though single metallocenes moieties have been employed, since the pioneering
work of Getty et al. [133], as key pieces for molecular devices (such as spin-�lters [116],
recti�ers [134, 135, 136] or switches [137, 138] )for already a decade, the possible role of
the scissor mode on charge transport was not fully understood. Only some works have
studied the impact of the rotational �exibility on charge-transfer properties of metallocene
single-molecule junctions. Recent computational studies [131, 139, 140, 141, 142] have tried
to give an explanation to the large variations of the conductance that can be measured
in metallocene-based molecular junctions. In particular, the conductance does not decay
monotonically with the system length and the values are low compared to molecules of
similar length. This behavior was attributed to the variation in the Fermi level alignment
[142] for di�erent conformations of the molecule in the junction or to the sensitivity of the
conductance to the binding geometry [140].

In this chapter, we propose that the origin of the low conductance features (compared
to cross- or linearly-conjugated molecules of similar length) appearing in ferrocene-based
single-molecule junctions is quantum interference. We perform a detailed investigation of
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the quantum transport properties and show that the soft rotational degree of freedom can
be employed to manipulate the degree of destructive quantum interference (DQI) - and
therefore the conductance - in these junctions by mechanical means. The origin of this
phenomenon lies on the peculiarities of the hybridization of the metallic d-states with the
delocalized π-orbitals of the Cp rings. Our theoretical predictions were key to interpret
experimental measurements performed in L. Venkataraman's group.

4.2 Transport simulations in ferrocene-based junctions

4.2.1 Ab initio-based transport characteristics

The chemical structure of the molecules studied in this chapter are shown in Fig.
4.2 (a). We consider the 1, 1'-Fe and 1, 3-Fe derivatives. Both molecules have the same
ferrocene core in which the iron unit has oxidation state Fe2+. The di�erence between
them lies on the position of the substituent phenyl ligands: for 1,1' each phenyl ligand
is attached to a di�erent Cp ring while for 1,3 both phenyl ligands are attached to the
same Cp ring. For comparison, due to its similar length, we also consider 1, 4 phenylene
or terphenyl (P3). The main di�erence is that the central phenyl does not have a �side
group� as it can be considered the metallic unit and one of the Cp rings in the ferrocene
derivatives. The phenyl rings in P3 can also rotate along the main molecular symmetry
axis but the molecule is more rigid, it does not bend easily.

To analyze the transport properties of our molecular junctions, we calculate the non-
self-consistent transmission functions employing the non-equilibrium Green's function for-
malism. For technical details, we refer the reader to appendix D. The transmission func-
tions of the DFT-optimized geometries Fig. 4.2 (b) are shown in Fig. 4.2 (c). First, we
observe that the transmission for P3 is dominated by Breit-Wigner resonances produced
by the HOMO and LUMO orbitals of the molecule. The curve also shows evident signs of
constructive quantum interference (QI). This can be attributed to the con�guration of the
phenyl ligands connected to the benzene ring [143] and it is also understood from selection
rules valid for planar cross-conjugated aromatic molecules [21, 144]. In comparison, the
transmission functions of the ferrocene-based derivatives 1, 1'-Fe and 1, 3-Fe present deep
and sharp anti-resonances of the Fano-type. These anti-resonances are clear indication of
DQI. The anti-resonances are located close to the Fermi energy, therefore, they lead to
the suppression of zero-bias conductance and can explain the low conductance values that
these molecules have in the single-molecule junction context.

4.2.2 Conductance control by ferrocene ring rotation

We now focus on the study of the DQIs features of 1, 1'-Fe (our basic conclusions carry
over to 1, 3-Fe as well as the other metallocenes studied in chapter 5) and analyze the
impact of the �scissor mode� in the interference properties.
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Figure 4.2 � (a) Scheme of STM-BJ setup and chemical structure of 1, 1'-Fe, 1, 3-Fe and P3 (b)
DFT-optimized molecular geometries. (c) Non-self-consistent transmission spectra for the single-
molecule junctions 1, 1'-Fe, 1, 3-Fe and P3. The curves for 1, 1'-Fe, 1, 3-Fe present strong DQI
e�ects close to the Fermi energy compared to P3. Adapted with permission from [125].
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Energetics of ring rotation of gas-phase 1,1'-Fe

As we mentioned in section 4.1, metallocenes have a rotational degree of freedom,
with rotation taking place at low energy cost for the pristine ferrocene [127, 128, 132]. The
rotation is parametrized with the angle ϕ, see Fig. 4.3.

Figure 4.3 � Sketch that represents the rotation of the Cp rings against each other in 1,1'-Fe
(�scissor mode�). We denote by ϕ the rotation angle. Adapted with permission from [125].

We examine now the energy landscape related to rotation of the gas-phase 1,1'-Fe
molecule at zero temperature. In Fig. 4.4, we show the energy of the molecule (normalized
to the energy of the relaxed gas-phase molecule) for di�erent rotation angles ϕ. The
landscape possesses several local minima and maxima: the minima correspond to the
so-called eclipsed con�guration of the ferrocene moiety (characterized by mirror symmetry
with respect to a plane parallel to the Cp rings containing the iron atom) while the maxima
correspond to the so-called staggered conformation (characterized by inversion symmetry
with respect to the iron atom). The energy barrier between both conformations of 1,1'-Fe
is around ∆ ' 33.5meV. When the anchor groups, SMe, are close to each other, the height
of the energy barrier increases ∼ 10 times due to the electrostatic repulsion between lone
electron pairs at the thiol groups. In view of the low energy cost for the 1,1'-Fe, the �scissor
mode� can produce several geometries, which can be explored in a realistic setup in the
formation of the junction.

Evolution of transmission under ring rotation

We now investigate the transport features associated to the di�erent rotation angles
ϕ in order to elucidate the impact of the �scissor mode� on the charge transfer properties.
In Fig. 4.5 (a) we show several geometry con�gurations of the 1,1'-Fe molecule obtained
after applying a rigid rotation to the relaxed structure of ϕ ∈ {π/6, π/2, 2π/3}. Note that
here ϕ = 0 is chosen as reference for the relaxed conformation and does not correspond to
the angle between the phenyl arms (which is closer to 5π/6) 1.

For each ϕ, we perform a NEGF transport calculation. The result is shown in Fig. 4.5
(b) in the form of a two-dimensional plot in which the variation of the non-self-consistent

1. The molecular geometries have been obtained starting from a fully-relaxed optimized geometry.
As our goal here is to study the e�ect of the rotational degree of freedom in the interference features, we
choose to constrain the phenyl linker and the SMe anchor group to be in the same plane. We have also
performed additional calculations given in appendix D, where the impact on transmission of relaxing this
constraint is analyzed and seen to be quantitatively small.
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Figure 4.4 � (a) Energy landscape for the scissor mode in 1, 1'-Fe. The energy is normalized
with respect to the energy of the optimized gas-phase molecule. (b) Selection of the molecular
structures for the energies marked with dashed lines in panel (a). 1© corresponds to the so-called
eclipsed con�guration, 2© shows a so-called staggered con�guration and 3© represents the extreme
case where the SMe anchor groups are on top of each other. The energy barrier created by the
minimization of the SMe-SMe distance is ∆1→3 ' 365.0meV, this large barrier arises due to
Coulomb repulsion of the lone electron pairs in the S atoms. The energy landscape shows that
transitions between con�gurations due to rotation easily occurs since ∆1→2 ' 33.5meV. Adapted
with permission from [125].
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Figure 4.5 � (a) Selection of geometries representing the scissor mode for 1, 1'-Fe molecular junction.
The optimized geometry obtained from the ab initio DFT calculation gives the reference angle,
ϕ = 0. (b) Two-dimensional transmission plot that results from the rotation applied to 1, 1'-Fe
molecular junction. (c) Selection of transmission curves corresponding to the three geometries
shown in (a) marked in the two-dimensional map, in (b) with dashed lines. The rotation of the
Cp rings against each other produces strong changes in the DQI features. For ϕ = π/6 the
antiresonance appears in the HOMO-LUMO gap, while in the case of ϕ = π/2 emerges again for
lower values (between HOMO-3 and HOMO). For ϕ = 2π/3, the dip almost disappears under the
HOMO resonance. The gas-phase orbitals, which can be identi�ed in the molecular junction, are
labeled by 1© (HOMO−3), 2© (HOMO−2), 3© (HOMO−1), 4© (HOMO) and 5© (LUMO), and
yield the yellow traces in panel (b). Adapted with permission from [125].

transmission T (E) with the rotation angle ϕ is shown. The black vertical lines correspond
to the transmission corresponding to the geometries shown in (a), which we replot for
clarity in Fig. 4.5 (c). The position of the relevant orbitals involved (derived from gas-
phase HOMO-3 to LUMO) is labeled from 1© to 5©. The associated transmission resonances
are depicted in yellow in Fig. 4.5 (b). HOMO- and LUMO-based resonances correspond
to the horizontal lines at E−EF ' −0.5 eV and E−EF ' 2 eV. Thus, the HOMO-LUMO
gap is the red band occupying the central part of the plot. The two purple areas inside
the band correspond to spectral intervals where the transmission is strongly suppressed
(between 10−4 and 10−7 G0). The sharper purple areas, also appearing at 0 < ϕ < 2π/3,
are the consequence of DQI between molecular orbitals. We also note that these areas
��ow� in the map when the Cp ring is rotated. The purple region located at ϕ > 2π/3 has
a di�erent origin: it results from the direct tunneling between the phenyl anchors when
the two are very close to each other. Direct tunneling through space (and not through the
ferrocene moiety) also reduces the transmission. As a consequence, the areas do not �ow
with the angle ϕ. The conclusion of these calculation is thus twofold: (i) DQI close to the
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Fermi energy strongly suppresses the conductance at zero-bias and (ii) the conductance can
be tuned by orders of magnitude (through tuning the interference properties) by rotation
of the Cp rings.

Orbital analysis: origin of quantum interference

We now analyze the contribution of the di�erent Kohn-Sham (scattering) states to
the quantum interference in 1, 1'-Fe. In Fig. 4.6 (a) we show the molecular orbitals
ranging HOMO−3 (top row) to LUMO (bottom row) for the geometries corresponding to
the rotation angles ϕ = π/2, π/6, 2π/3. First, we observe that HOMO−2 and HOMO−1
are mainly localized in the ferrocene moiety and they do not hybridize with the contact
atoms, independently of the rotation angle. As a consequence, in the non-self-consistent
transmission function, they manifest as very narrow Fano resonances, corresponding to 2©
and 3©.

To understand the strong localization of these two orbitals at the ferrocene moiety,
we analyze the symmetries of the d−states derived from the iron core involved. We start
with HOMO−2, which at the metal atom presents dz2 spatial symmetry, see Fig. 4.6 (b).
This orbital couples with σ-type bonding to the π-system of the carbon ring because it
has most of its weight in regions where the π-system of the Cp ring has none. Next, we
analyze the localization mechanism for HOMO−1. The symmetry of this orbital at the
iron atom is dxy and this leads to δ-type bonding with the ligand π-system. This bond
results in such a way that it locates a node at the carbon which connects with the phenyl
anchor. Consequently, the hybridization with the contacts remains weak.

We now turn to the analysis of the HOMO−3, HOMO and LUMO Kohn-Sham states,
which are signi�cantly more extended across the junction. Consequently, the corresponding
resonances in the transmission function are broader, due to larger hybridization with the
contacts. These scattering states produced the dominating transport resonances and are
labeled as 1©, 4© and 5© in Fig. 4.6 (b). We can also proceed with the analysis of the
d-state symmetries as for the localized orbitals, see Fig. 4.6 (b). Speci�cally, we observe
that the d-state symmetries are dyz (HOMO−3), dx2 − y2 (HOMO) and dxz (LUMO).
The delocalization of the HOMO is easily explained reasoning in a similar way than for
HOMO−1. Here, the dx2 − y2 orbital overlaps with the π-system of the phenyl arms when
dxy for HOMO−1 does not. For HOMO−3 and LUMO the hybridization is a consequence
of the partial overlap of the lobes which come from the dyz and dxz orbitals and the
π-system at the Cp ring.

To understand the origin of the changes in the quantum interference properties, it is
crucial the observation that the nodal structure of the orbitals depend on ϕ. This change in
the nodal structure manifests in a phase-shift of the wavefunctions at the linker groups. For
example, we see easily in Fig. 4.6 (a) that HOMO−3 alters the phase of the wavefunction
at the linkers upon rotation between ϕ = π/2 and ϕ = 2π/3. Similarly, HOMO also alters
its nodal structure upon rotation, as can be inferred from the scattering states shown in
the �rst two panels of the fourth row: the wavefunction changes a node upon rotation
from ϕ = π/6 to ϕ = π/2. These changes of the nodal structure are reproduced at
the level the isolated molecule in Fig. 4.7 for selected angles of HOMO−3, HOMO and
LUMO. Note that the underlying mechanism that produces these states, and consequently
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Figure 4.6 � (a) Isosurface plots of the relevant transport orbitals in the 1,1'-Fe junction for the
rotation angles ϕ ∈ {π/6, π/2, 2π/3}. The orbitals are labeled according to Fig. 4.5 (c), 1©
(HOMO−3), 2© (HOMO−2), 3© (HOMO−1), 4© (HOMO) and 5© (LUMO). (b) Zoom of the
states showing the d-orbital symmetry of the Kohn-Sham states of panel (a) at ϕ = π/2. Adapted
with permission from [125].
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Figure 4.7 � Change in the nodal structure of selected gas-phase Kohn-Sham states under �scissor
mode� rotation of the ferrocene core. We show only the states for which a change in the nodal
structure has occurred, marked with a rectangle in Table 4.1. Adapted with permission from [125].

the quantum interference features, is not exclusive to 1,1'-Fe. Our analysis also applies
to other metallocenes of the same family and even to the bare ferrocene molecule (see
appendix E).

4.3 Model-based analysis of quantum interference

To rationalize the quantum transport calculations, we perform an analysis of the in-
terference properties using the Meir-Wingreen trace formula. In the absence of degenerate
orbitals, the discussion is straightforward. First, we introduce the basic idea by employing
a generalization of the two-level system discussed in Ref. [145] and afterwards we apply
the concepts to the three-level model to further understand the result of our ab initio
calculations.

4.3.1 Interference terms in transmission trace formula

The transmission function, T (E), can be written using Eq. (1.42), where we recall that
the anti-Hermitian part of the self-energies is given by Γ̂α = Γ̂α(E) = −i[Σ̂α(E)−Σ̂†α(E)],
and that Ĝ = Ĝ(E) represents the (retarded) Green's function of the extended molecule
(i.e. molecule and part of the contact atoms, see section 1.2). Considering the one-
dimensional model geometry shown in Fig. 4.8 (where the contact to the leads happens at
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Figure 4.8 � Sketch of the minimal model. We consider three non-interacting molecular levels
which connect to the same single-atom of the contacts through hopping parameters tiα.

a single site), we can write the self-energy as

Σ̂α(E) = t†αgα(E)tα, (4.1)

where tα = (t1α, t2α, . . .) is a vector that contains the hopping matrix elements connecting
the central (molecular) part to the contact site and gα(E) represents the Green's function
of the reservoir evaluated at the contact site. The Green's function is related to the local
density of states at the site by the relation ρα(E) = −Im [gα(E)]/π.

For the coupled system, the Green's function is de�ned in the usual way, Ĝ(E) =
[E11−Ĥ0−Σ̂L(E)−Σ̂R(E)]−1, with Ĥ0 being the Hamiltonian of the isolated molecule.
This object can be expressed in terms of left [χ(l) = χ(l)(E)] and right eigenvectors [χ(r) =
χ(r)(E)] [146]

Ĝ(E) =
∑
i

χ
(r)
i (E) · χ(l)i

†
(E)

E − zi(E)
, (4.2)

where [
Ĥ0+Σ̂L(E)+Σ̂R(E)

]
χ
(r)
i = ziχ

(r)
i ,

χ
(l)
i

† [
Ĥ0+Σ̂L(E)+Σ̂R(E)

]
= ziχ

(l)
i

†
. (4.3)

Using this representation, we can express the transmission function as a sum over
poles, indeed it is easy to check that the transmission can be written as

T (E) = |τLR|2 , (4.4)

where τLR are the transmission coe�cients. We can write them explicitly as

ταβ(E) =
∑
i

viαv
∗
iβ

E − zi
, (4.5)

with i = 1, . . . , dim(Ĥ0). Here, the residue coe�cients, viα, and the functions, zi(E),
are energy dependent. The residues can be written as viα =

√
2πραtαχ

(r)
i , and v∗iβ =√

2πρβχ
(l)
i

†
t†β , while the poles appear as the roots of the denominator E − zi. As long as

the molecule is weakly coupled to the electrodes, zi(E) have values close to the eigenenergies
Ei of Ĥ0. In other words, the self-energies are small.
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The transmission function in Eq. (4.4) can be decomposed as the sum of two terms,

T (E) =
∑
i

Ti(E) +
∑
i<j

Tij(E). (4.6)

The �rst term represents the single-orbital contribution to the transmission function. In
the wide-band limit, since zi is independent of the energy (as the self-energy is), we can
write zi=Ei+i(γiL+γiR)/2 and Ti(E) has a Lorentzian shape

Ti(E) ' γiLγiR

(E − Ei)2 +

(
γiL + γiR

2

)2 . (4.7)

This expression corresponds to the Breit-Wigner resonances characteristic of single trans-
port levels. It is characterized by three parameters (per resonance), Ei, γiL, γiR.

The second term in (4.6) corresponds to the pairwise interference between the transport
levels. Following Ref. [145] this term can be written using the following parametrization
for the transmission coe�cients as

ταβ(E) =
∑
i

ei[ψi−θi(E)]|Ti(E)|1/2, (4.8)

where ψi := arg[viLv
∗
iR] and θi := arg[E−zi] as

Tij(E) ' 2 cos(ψij − θij)|Ti(E)|1/2|Tj(E)|1/2. (4.9)

Here ψij = ψi−ψj and θij = arg[(E−zi)/(E−zj)]. The angles ψij and θij determine the
constructive or destructive nature of the quantum interference. If the cosine is negative,
a destructive interference is produced while if the cosine is positive, we have constructive
interference. The phase-shift observed in the molecular orbitals at the contacts is the
fourth parameter per resonance and it determines the shape of T (E) shape. Note that
for weakly coupled systems, the coe�cients viα have a small imaginary part because the
anti-hermitian part of the self-energies, Γα, is also small by de�nition. This means that
the angles ψi are either close to π or to 0. Which one of these two possibilities is realized
can be seen by visual inspection of the Kohn-Sham state associated to the resonance at
Ei. For example, for HOMO-3 at ϕ = π/6 the phase-shift is π, see Fig. 4.6.

Finally, we point out that interference can be easily identi�ed in a given energy window
between two well-de�ned Lorentzian resonances. For energies E between both resonances,
Ei < E < Ej , we have, according to its de�nition, θij ' π. As a result, constructive
interference will appear if the pair of orbitals present a phase-shift of ψi−ψj = π. On the
contrary, if the phase-shift that they show is the same ψi ' ψj , destructive interference
occurs. Note that this model implies that for any pair of (extended) orbitals identi�ed in
the ab initio calculations at the gas-phase, we can determine their phase-shift and predict
the type of quantum interference that we would expect in a transport calculation performed
in the weak-coupling limit without the need of actually making this calculation.

4.3.2 E�ective three-level model for ferrocene junctions

We now develop an e�ective model to discuss the main features in the ferrocene-
based transmission functions from Fig. 4.5 (c). Because HOMO−2 and HOMO−1 are
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Table 4.1 � Phase-shifts ψi of the Kohn-Sham states at the contact points with the leads. The
phase-shift value is obtained from inspection of the orbitals in Figs. 4.7 and D.3. The boxes
indicate angles at which changes in the nodal structure have occurred. As explained in the text,
this results in switching between destructive and constructive interference induced by the rotation.

strongly localized (and therefore they lead to very narrow resonances that barely change
with ϕ), this model invokes the three states: HOMO−3, HOMO and LUMO. These are
states delocalized across the junction and dominate the transport features. A graphical
representation of this model is shown in Fig. 4.8.

In this type of models, one usually �rst �xes the model parameters Ei, tiα employing,
for instance, ab initio calculations and later computing the transmission function. Here,
however, we proceed in a di�erent way and read directly these parameters (resonance
positions, broadenings) from the ab initio transmission function. From the position and
width of the Lorentzian-shaped isolated resonances in Fig. 4.5 (c) (which are characteristic
of a weakly coupling scenario) can be employed to extract the parameters Ei, γi. We further
consider a symmetric coupling situation [see Figs. 4.5 (a)], in consistency with the fact
that the resonance acquires a maximum value close to unity.

The fourth parameter (phase-shifts) is directly obtained from the Kohn-Sham states
of the isolated molecule and not reconstructed from the ab initio transmission function.
We can summarize the shift for each angle, ψi, in a table (see Table 4.1) for a selected
number of relevant angles ϕ. This table has been constructed from Fig. D.3 provided in
the appendix.

We now proceed with the analysis of our model results. In Fig. 4.9 (a) we show the ab
initio transmission and the model result for ϕ = π/6. The position of the antiresonance
between HOMO and LUMO states is well-reproduced in the model transmission function.
Note that obtaining a quantitative agreement for the position of the antiresonance between
the model and the ab initio calculations is actually not guaranteed as small deviations
can occur here because the poles zi and the residues ταβ have been chosen to be energy
independent.

In Fig. 4.9 (b) the model-based transmission is shown for several rotational angles
ϕ ∈ {π/6, π/2, 2π/3}. We remind the reader that these angles correspond to the geome-
tries and ab initio traces shown in Fig. 4.5 (a) and (c). For each trace, the parameters
{zi(ϕ), ψi(ϕ)} are separately determined from the ab initio results 2. We �nd that the
model reproduces qualitatively the shape of the transmission functions and, importantly,

2. We provide the numerical parameters obtained by �tting the ab initio traces in Table D.1.
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Figure 4.9 � Transmission curves, T (E), obtained for di�erent rotation angles, ϕ, in the e�ective
three-level model. (a) Comparison between the e�ective three-level model transmission function
and the ab initio transmission for ϕ = π/6. (b) Model transmission function T (E) obtained for
the three rotation angles shown in Fig. 4.5. The model clearly predicts the switching between
constructive and destructive QI. (c) Comparison between the �rst term in Eq. (4.6) and the full
transmission function T (E) to highlight the importance of the quantum interference contribution.
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Figure 4.10 � (a) One-dimensional conductance histograms for molecular junctions of 1,1'-Fe, 1,3-
Fe and P3 obtained in L. Venkataraman's group. The histograms are obtained without data
selection. The bias voltages Vbias = 450mV, for 1,1'-Fe and 1,3-Fe, and Vbias = 230mV for P3

are employed. (b) Plateau length one-dimensional histogram obtained from the two-dimensional
conductance-displacement histograms for each molecular species. Adapted with permission from
[125].

the position of the antiresonances associated to DQI. From our results, we therefore arrive
to the important conclusion: the phase-shift angle di�erence, ψij(ϕ) = ψi(ϕ) − ψj(ϕ),
is the crucial parameter that controls the quantum interference between two (extended)
orbitals.

Finally, we highlight the importance of the interference terms Fig. 4.9 (c). We show,
for ϕ = π/6, the comparison of the �rst term in Eq. (4.6) and the full expression (4.6).
We �nd that in HOMO-LUMO gap region, DQI only appears if the interference term
is considered. Interestingly, the region in the energy window E1 < E < E2 also shows
interference features as the conductance increases when employing Eq. (4.6) compared to
the independent-channel transmission. This is due to constructive quantum interference,
which happens due to the fact that HOMO−3 and HOMO have di�erent phase-shift.

4.4 Relation to experimental measurements

4.4.1 Conductance and displacement measurements

We are now in a position to discuss the experimental measurements performed in L.
Venkataraman's group based on our theoretical insights. These measurements have been
obtained using the scanning tunneling microscope-based break junction technique and we
refer the curious reader to appendix F for a brief discussion of this method.

In Fig. 4.10 (a) we show the result of the room-temperature conductance measurements
of the molecules under study.

Looking at the experimental conductance values of the two ferrocene moieties, we see
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Figure 4.11 � Artistic sketch of the compression and elongation mechanism induced by ring rotation
proposed in the theoretical calculations. The compression and elongation of the full junction can
happen easily by pro�ting from the conformational �exibility of 1,1'-Fe. Adapted with permission
from [125].

that both present a low typical conductance value, G ' 2 · 10−5G0 (1, 1'-Fe) and G '
3.3 · 10−5G0 (1, 3-Fe). This values are substantially smaller compared to the conductance
a species with similar length, as it is the case for P3, for which G ' 10−3G0. We also note
that the conductance histogram peaks for the ferrocene derivatives are very broad and
show an additional �shoulder� at G ' 10−3G0. This secondary local maximum does not
show in the P3 histogram. We will discuss the physics associated to this signal in section
5.4.

By comparing at the experimental data and the ab initio calculations, we observe that
the trends in both are the same. 1, 1'-Fe has the lowest value for the conductance, followed
by 1, 3-Fe, and �nally, the largest conductance values are for P3. The experimental value of
the conductance for the ferrocene derivatives was smaller (by a factor of 26 and 48 for 1, 1'-
Fe and 1, 3-Fe, respectively) as compared to the conductance of P3. In the computational
simulations this result is in qualitative agreemeent with respect to the experiments, being
a factor of 50 for 1, 3-Fe and 28 1, 1'-Fe.

We attribute the low conductance values of ferrocene moieties to their DQIs proper-
ties. The broader histograms are explained thanks to the �exibility of the �scissor mode�,
which allows for many stable con�gurations at low energy cost. The shoulder at higher
conductance values is related to direct metal-electrode binding, see section 5.4.

Finally, we note that a crucial point in our argument is that the DQIs features have to
be located close to the Fermi energy level, EF, to have a suppression of the conductance.
The precise position of the antiresonance can change since, due to intrinsic DFT errors,
the energy level alignment is not completely accurate [21, 25]. Despite the possible DFT
artifacts, we can rely on the theoretical �ndings due to the following: First, the nodal
structure of our Kohn-Sham orbitals is robust at the DFT-level; second, the DFT sim-
ulations show that the molecule remains neutral and the Fermi energy does not change.
Even if the possible discrepancies in the level alignment can then be up to ∼ 1 eV, the



4.5. Summary of this chapter 77

transmission would be suppressed even if the DQI anti-resonances lies in a (wide) energy
window close to the Fermi energy.

4.4.2 Pull-push measurements

With the idea of mechanically tuning the quantum interference properties guided by
the theoretical calculations, the pull-push measurements were carried out in L. Venkatara-
man's group. We show an artistic representation of this experiment in Fig. 4.11, the
junction is elongated to the ϕ = π/6 geometry (full-elongation) and compressed by re-
ducing the tip-substrate distance by 2.4Å. While doing so, the conductance is recorded.
Similar experiment was carried out for P3. The experimental measurements are summa-
rized in Fig. 4.12. It is found that for 1,1'-Fe the conductance changes by a factor of
almost 7, while performing the pull-push measurements for P3, the conductance changes
just by a factor of ∼ 3. Of course, there can be many reasons why the conductance of the
junction can be modulated while moving the electrodes in this way. For example, the gold
atoms at the tip can reorganize, the SMe-electrode binding can change or the through-
space contribution to the conductance be modi�ed due to the fact that the gap between
the electrodes is modulated. Importantly, all these reasons apply both to 1,1'-Fe and P3.
Therefore, we believe that changes in the molecular conformation in 1,1'-Fe due to the soft
rotational degree of freedom, together with its impact on the interference properties, is the
predominant reason for the largest conductance modulation observed here.

4.5 Summary of this chapter

In this chapter, we have studied quantum transport properties of ferrocene-based
single-molecule junctions. We have shown that ferrocene-derivatives, 1, 1'-Fe and 1, 3-
Fe which have di�erent substitution patterns, present important DQI e�ects. These are
produced by the interplay of several localized and delocalized orbitals derived from d-
orbitals at the iron core. We have proposed that DQI occurring close to EF determine
the transmission characteristics and result in a reduced value for the low-bias conductance
(compared to the conductance of molecules of comparable length). We have also explained
how the �exibility of the Cp ring allows to alter the interference properties of the molecular
junction. Since rotation alters the nodal structure of the relevant transport orbitals, the
interference properties can change from destructive to constructive. If that change occurs
close to the Fermi energy, the conductance can change by orders of magnitude. Our cal-
culations have been crucial to provide explanation of transport experiments performed in
L. Venkataraman's group.
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Figure 4.12 � Data obtained in L. Vankataraman's group. (a) Modulation of the distance between
the tip and the substrate as a function of time. (b) Two-dimensional conductance histogram of
the 1,1'-Fe molecular junction obtained during the modulation. The conductance recorded in the
junction decreases when the distance between the substrate and the tip gets increases. Upon
modulation of the tip-sample distance, the conductance changes by a factor of ∼ 7. The inset
shows the number of counts collected for the conductance obtained at the maximal (dark red)
and minimal (light red) junction length. (c) Same as in (b) but for P3. Here, we �nd that the
conductance changes by a factor of ∼ 3 only. Reprinted with permission from [125].
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We present in this chapter three transport studies with molecular insulators in the
single-molecule junction context. In the �rst part of the chapter, we present a transport
study of single-molecule junctions formed with σ-conjugated silicon-based molecular wires
(silanes) attached to leads of di�erent metals. When terminated by thiol, these wires have
larger conductance for silver (Ag) contacts compared to gold (Au) (GAg > GAu). This
result contradicts the expectations based on simple arguments that rely on the metal work
functions trends. However, we recover the expected trend (GAu > GAg) when considering
amine-terminated silanes. We provide an explanation of these �ndings based on ab initio
transport calculations, taking into consideration the important role of the anchor group
in the conductance properties. In the second part of the chapter, we present a study of
the conductance properties of single-molecule junctions made of alkane wires connected
with imidazole linker groups to gold leads. We investigate how the imidazole terminations
can also form π − π stacked dimers with high through-space conductance, opening the
possibility to simultaneously bind more than one molecular wire in a molecular junction.
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In the third part of the chapter, we study how metallocenes can bind to metal leads by
metal-electrode bonds. We investigate the impact of the substitution of the metal atom in
the transport properties of these junctions.

5.1 Why molecular insulators?

In a very simpli�ed picture, a single-molecule junction can be seen as a one-dimensional
tunnel barrier, with the molecule playing the role of the insulating layer between the two
metallic contacts, as shown in Fig. 1. With this picture in mind, the electronic transport
in the single-molecule junction occurs due to transmission of electrons/holes across the
tunnel barrier [45]. The transmission probability in this model shows an exponential decay
with the barrier length and is characterized by a decay constant, β, estimated as β ∼√

2mVbarrier/~.

Carbon-based molecular wires are archetypical examples of molecular insulators [7,
21, 150, 151, 152, 153, 154, 155, 156, 157]. It has been observed that, in the coherent o�-
resonant regime, the conductance of these wires normally decreases exponentially when the
length of the wire increases by adding the new units to the molecular backbone (methylene
units in the case of alkanes) [150, 152, 153, 155]. The variation of the conductance with the
wire length [150, 152, 153, 155] can be used to extract an empirical β parameter by �tting
G = Gc exp[−βL], where L is the length of the molecule and Gc, a prefactor related to the
inverse of the contact resistance. This parameter provides information about the molecular
backbone and can be related to the electronic band-gap in the limit L → +∞ [158]. In
other words, the β parameter might be used to interpret the metallic or insulating character
of the wire 1. For alkanes 2, β = 0.8−1.01Å−1 [161, 162], so that the conductance is easily
suppressed and the wire clearly acts as a molecular insulator. For this reason, alkanes have
been considered to be the standard (molecular) insulators in molecular electronics.

It is therefore very tempting to speculate if analogue of these wires can be made
of di�erent elements. This has been achieved only recently, with silicon-based [29, 163]
and germanium-based [155, 162] wires. Although we might think that these novel wires
possess similar physical properties to alkanes, both can reveal interesting and novel physical
properties. For example, as we already mentioned in the Introduction of the thesis, it
has been reported [29] that a complete suppression of the electron transmission occurs
for silicon molecular wires when the Si-Si bonds are locked in cis-dihedral con�guration.
As a consequence, the conductance drops to a value smaller than conductance obtained
from through-space tunneling, (i.e., tunneling directly through vacuum) if the Si-Si bond
would be broken for distances smaller than 1 nm. This is interesting for obtaining ideal
insulators when electronic devices are miniaturized, as in nanogaps electron tunneling
processes normally occur.

As a result of our close collaboration with the experimental group of L. Venkataraman's
in Columbia University, we have been motivated to investigate other molecular insulators
leading to several side projects that we present in this chapter.

1. We note that this parameter must be used with care for the case of conjugated wires that possess
strong odd-even e�ects. In this case, β might lose its meaning if the wire has a complete metallic character,
β = 0 and can become even positive due to solvent interface e�ects [152].

2. For the beta values of other molecules, we refer the reader to Refs. [159] and [160].
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5.2 Silane-based single-molecule junctions

5.2.1 Motivation

As we have already mentioned in the previous section 5.1, silicon-based molecules with
cis-con�guration for the Si-Si bond act as ideal molecular insulators. These molecular
wires completely suppress the electronic transmission [29]. As a consequence, they present
a conductance value smaller than a equivalent vacuum layer of the same width as the
molecule. There are other silicon-based wires such as siloxanes, which also present good
insulating properties [163]. Silanes, with trans-con�guration, are more conductive due to
their strong σ-conjugated backbone. They present both fundamental and technological
interest as components of silicon-based molecular nanoelectronics, similar to the wires
in conventional electronics [30]. We thus ask ourselves the question of how does charge
transfer occurs in silanes at the molecular level.

  

Figure 5.1 � Sketch of the silane single-molecule junctions studied in this section. For a given
backbone length, the conductance of the thiol-terminated silanes is larger than the conductance of
the diamine-terminated ones. For the thiol-terminated wires, the conductance is larger when the
molecule is attached to Ag contacts compared to Au and Pt (GAg > GAu > GPt); the situation is
however reversed when considering amine-terminated wires (GAg < GAu). From [147]. Copyright
c© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission.

Traditionally, single-molecule junctions have been mainly formed using gold (Au) as
the primary material for the electrodes. This material presents many advantages, such
as inertness and malleability in ambient conditions, being as well able to form stable
junctions with a huge variety of molecules. Recently, some stable junctions have been
formed using as electrical contacts other materials. Speci�cally, metals like silver (Ag)
[164, 165, 166, 167], platinum (Pt) [168, 169, 170] or palladium (Pd) [170, 171, 172] have
become increasingly popular. Employing di�erent metallic electrodes in a junction allows
us to explore new physical properties of silane single-molecule junctions, as well as to obtain
a deeper understanding of the role of metal-molecule coupling through anchor groups. For
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Figure 5.2 � (a) Sketch of thiol-terminated Si6 silanes attached to Ag, Au and Pt contacts. (b)
Logarithmically binned one-dimensional (1D) conductance histograms for Au and Ag junctions for
Si6 wires with thiol linkers. (c) Logarithmically binned 1D conductance histograms for Au and
Ag junctions of Si4 wires bound with amine linkers. (d) Experimental values for the conductance
(in logarithmic scale) plotted against the number of silicon units in the molecular backbone. The
�tted exponential decay for each data set is shown by straight lines. The arrows indicate that
for SH anchor groups GAg > GAu while for NH2, GAg < GAu. From [147]. Copyright c© 2017
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission.

example, relativistic e�ects present in heavy elements, such as spin-orbit (SO) coupling
or corrections to the kinetic energy (described in section 1.3.1), can also in�uence the
metal-molecule interaction and a�ect the charge transfer properties of molecular junctions
[173, 174].

In this section, we analyze theoretically the quantum transport properties of a series
of methylthiol- (SiN-SH) and methylamino- (SiN-NH2) terminated silicon-based permethyl
wires. The experimental measurements were performed in the group of Latha Venkatara-
man in Columbia University. The experiments were carried out using Au, Ag and Pt as
contact materials, see sketch in Fig. 5.1. The experimental procedure (STM-BJ) used
to measure the conductance in these single-molecule junctions at room temperature is
described in appendix F.

The experiment has been repeated using di�erent metallic contacts (Pt) or anchor
groups between the molecule and the electrodes, see Fig. 5.2 (a), (b) and (c). The resulting
value of the conductance represented against the number of silicon atoms in the backbone
of the wire is shown in Fig. 5.2 (d). We observe that increasing the backbone length of the
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molecule yields to the exponential suppression of the conductance. This phenomenology is
typical of a (coherent) tunneling mechanism for charge transport. Fitting the data with an
exponential G = Gc exp(−βN) for the SH-SiN-SH junctions the values of the attenuation
parameter βAu = 0.64 ± 0.02 N−1, βAg = 0.60 ± 0.03 N−1 and βPt = 0.73 ± 0.02 N−1

are found (here N is the number of units in the wire). A crucial observation concerns the
dependency of the conductance trends on (i) the anchor group and (ii) the material of the
contacts. For NH2-Si4-NH2, it is found that the value of the conductance is substantially
lower compared to SH-Si4-SH. Importantly, the anchor group signi�cantly alters the charge
transport properties depending on the metal to which it connects in the electrode: for NH2-
Si4-NH2, the conductance for Ag electrodes is smaller compared to Au. This situation is
reversed for SH-SiN-SH junctions for which the conductance for Au electrodes is smaller
compared to Ag. This is a surprising result because one would expect that always GAg <
GAu looking at the trends from the metal work function of the di�erent metals (Ag: 4.64
eV; Au: 5.47 eV; Pt: 5.84 eV [175]) 3.

5.2.2 Transport calculations for silane junctions

In order to understand the non-trivial experimental results and the underlying charge
transfer properties of these single-molecule junctions, we turn to ab initio quantum trans-
port simulations based on DFT. We consider the test cases of a silane wire terminated
with thiol and amine linker groups, attached to Au and Ag contacts. For technical details
on how these calculations are performed, we refer the reader to appendix G.

The geometries and the resulting non-self-consistent transmission functions are shown
in Fig. 5.3, where we have considered silanes with backbone lengths of N = 4 (for amine)
and N = 7 (for thiol). We note that the charge transfer is dominated in both cases by the
HOMO level, with the conductance determined by its width and alignment with the Fermi
energy of the metal. Nevertheless, several di�erences are found between thiol- and amine-
terminated silanes wires, which clearly emerge from the transmission curves. In Fig. 5.3
(a), we plot the transmission function for NH2-Si4-NH2 with Au and Ag electrodes. We
observe that in both cases resonances produced by the HOMO and LUMO orbitals are
rigidly shifted by ∼ 0.4 eV. This shift can be understood from the dative (weak) chemical
nature of the lead-linker chemical bond. As such, the shift in the transmission function is
consistent with the mismatch found between the experimental values of the work function,
∼ 0.6 eV, for the metals [175, 178].

For thiol-terminated silanes the situation is drastically altered. We show the corre-
sponding transport calculations for SH-Si7-SH in Fig. 5.3 (b). First, as compared to
the diamine anchor case, we �nd that the conductance is enhanced even if the wire is
substantially longer (almost twice as long in silicon atom units). For Ag electrodes, the
enhancement is larger (by roughly a factor of 5) as compared to Au (roughly a factor of

3. In what follows, we shall focus our theoretical analysis on the Au and Ag contacts only since, as
shown in Ref. [147], the conductance plateau for Pt is not so well de�ned due to the lack of a sharp
conductance drop following the rupture of the metallic contact. It is nevertheless surprising that the
experimental results for Pt are characterized by lower conductance compared to Au or Ag since previous
theoretical studies on benzenedithiol [176, 177] and experimental measurements on alkane-dithiol junctions
[170] seem to suggest larger values of the conductance are found for Pt leads when compared to others
(Au, Ag).
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Figure 5.3 � (a) [Left] non-self-consistent transmission function, T (E), calculated for the junction
NH2-Si4-NH2 with Au and Ag contacts. [Right] corresponding relaxed geometries employed in the
calculation. (b) [Left] Non-self-consistent transmission functions, T (E), calculated for the junction
SH-Si7-SH with Au and Ag contacts. The inset shows the isosurface of the gateway states, which
produce an additional resonance for Ag and Au electrodes. The gateway state is clearly separated
from the HOMO resonance width and close to EF for the molecular junction made with Ag,
contributing to the conductance enhancement. [Right] Relaxed geometries used in the transport
calculation. From [147]. Copyright c© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reproduced with permission.

4). The overall increase in the conductance can be understood from the better alignment
of the relevant transport orbitals with the Fermi energy of the metals. We also note that
after replacing the amines with thiols, the relative shift of the HOMO and LUMO peaks
is substantially smaller (∼ 0.1 eV), and signi�cantly reduced (by a factor of 6) when com-
paring with the work function di�erence for the bulk metal. We understand this di�erence
as being a consequence of the covalent nature of the lead-linker bond.

In addition, we see an additional resonance in the transmission function appearing
for Ag at around 400 meV below the Fermi energy. This resonance is attributed to a so-
called �gateway� state: a state mainly located at the anchor group S. These states come
by pairs, see inset in Fig. 5.3. Because for Ag the (narrow) gateway resonance is placed
close of the Fermi level and outside of the width of the HOMO peak, the gateway state
can signi�cantly enhace the transmission function at the Fermi energy compared to Au.
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Note that in Au-based junctions, these states also exist but they are closer to the HOMO
resonance and therefore cannot be identi�ed as a separate resonance. Consequently, they
take a reduced role in the charge transfer properties.

Finally, a word of caution: we note that the general trends seen in experiments can be
reliably reproduced with our DFT-based transport calculations at a qualitative level but we
can not predict the relative order of the conductance as seen in the experiments (reversal
of the conductance order between amine and thiol linkers when attached to Ag and Au
leads). We attribute the discrepancy between theory and experiment to di�culties in the
description of relative level alignment of energy levels inherent to Kohn-Sham transport
calculations. Moreover, in the present situation we cannot rely upon cancelation of errors
in the exchange-correlation functionals as relativistic corrections of the kinetic energy and
SO interaction has larger contribution for the Au molecular junctions than in Ag [151].

5.2.3 Impact of relativistic kinetic energy corrections on transmission

As we mentioned in section 1.3.1, in heavy atoms, like Au, it is necessary to also
consider in the ab initio calculations relativistic corrections. These relativistic e�ects in-
volve corrections to the scalar kinetic energy or SO interaction. In this subsection, we
benchmark two implementations of the scalar corrections to the kinetic energy: (i) the so-
called zero-th order regular approximation (ZORA) as implemented in FHI-aims and (ii)
the e�ective core potential (ECP) correction as implemented in TURBOMOLE. A priori,
the ZORA has been designed to provide an e�cient relativistic description of the valence
and outer core electrons, however, it might lead to inaccuracies for deep levels of heavy
atoms [55]. To check the impact of such inaccuracies in our calculations, we have compared
non-self-consistent transmission functions obtained using FHI-aims and TURBOMOLE 4.

a b

Figure 5.4 � Transmission function for a SH-Si7-SH silane molecular junction with (a) Au and (b)
Ag contacts. In each panel, a calculation with ZORA (from FHI-aims) and ECP (TURBOMOLE)
scalar relativistic corrections to the kinetic energy in the non-self-consistent transmission function
are compared. From [147]. Reproduced with permission.

In Fig. 5.4 we show both relativistic calculations. We see that the di�erences in the
relativistic treatment do not lead to either signi�cant or systematic deviations of the trans-

4. Calculations employing TURBOMOLE have been performed in the group of Dr. Richard Korytár
at Charles University in Czech Republic.
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mission curves. In both calculations, the same geometry and exchange-correlation func-
tional are employed together with similar basis set (triple-zeta basis for TURBOMOLE,
roughly equivalent to FHI-aims �tight� settings). The embedding self-energy used in both
calculations was also identical. There is a small deviation in the height of the HOMO
resonances (about 80 meV bigger for ECP as compared to ZORA). Because of this shift,
the conductance of the Au-linked junction di�ers by 25% between ZORA and ECP. For
the Ag gateway state, the deviations between ZORA and ECP are of the order of ∼ 2%,
which is negligible once possible errors due to di�erent basis sets are taken into account.
Importantly, the order of the transmissions is not altered between both ZORA and ECP
and therefore, it con�rms our interpretation of the transport calculations as detailed above.

5.2.4 Impact of spin-orbit coupling on transmission

We now brie�y discuss the importance of considering SO interaction. In Fig. 5.5 we
show the calculations performed for the geometries provided in Fig. 5.3. The geometries
and DFT parameters are the same, the only di�erence is that SO corrections are not
considered here. Although in panel (a), the non-self-consistent transmission functions
for NH2-Si4-NH2 attached to Ag or Au in the absence of SO coupling do not present
signi�cant di�erences to the SO coupled case, this is not the case for the non-self-consistent
transmission functions of SH-Si7-SH for Ag and Au electrodes. We note that for SH-Si7-
SH, the work function mismatch in the absence of SO coupling increases and also that
the gateway states located close to chemical potential for the Ag lead do not enhance the
conductance as much as in the calculation with SO coupling. We therefore clearly see that
SO coupling can induce di�erences in the transmission and that relativistic e�ects thus
should be taken into account when comparing di�erent materials in the electrodes.

5.2.5 Summary of this section

To conclude, we have shown that the conductance of silane molecular wires depend on
di�erent electrode materials and anchor groups for the same molecular bridge on a non-
trivial way. When amine-terminated wires are attached to Au contacts, the conductance
is higher than Ag. The situation is reversed when thiol-terminated wires are considered
(higher conductance for Ag electrodes compared to Au electrodes). This di�erence in the
transport characteristics cannot be explained by looking at bulk properties of the contacts
(i.e. metal work function) only and our calculations highlight the crucial nature of the
chemical bond between the contact and the anchor on charge transfer. Our theoretical
study suggests that the level alignement and the presence of additional (and di�cult to
predict) resonances produced by gateway states are key to explain the experimental results.
We have also studied the impact of SO interaction and relativistic e�ects on the non-self-
consistent transmission. These corrections induce an enhancement on the conductance of
the molecular junction when heavy elements, such as Au, are present and produce larger
shifts of the frontier orbital resonances. Therefore, the relativistic corrections can be highly
relevant, especially when comparing di�erent materials for the electrodes with the same
molecular bridge.



5.2. Silane-based single-molecule junctions 87

Figure 5.5 � Transmission characteristics (and corresponding relaxed geometries) for the two silane-
based molecular junctions studied in this chapter. (a) Non-self-consistent transmission function,
T (E), of the junction NH2-Si4-NH2 with Au and Ag contacts, where no SO coupling has been
included in the calculation. (b) Same as in (a) but with thiol anchors and a longer wire, SH-Si7-
SH.
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5.3 Imidazole-based single- and stacked-molecular junctions

5.3.1 Imidazole as an anchor group

As we have seen in the �rst part of this chapter, the type of anchor group and the
metal-linker interaction play an important role on the charge transfer of single-molecule
junctions. With an eye on bio-nanoelectronic applications, it is interesting to bind bio-
chemical molecular wires to metallic leads. However, biochemical compounds are in general
di�cult to bind to metal electrodes. One way to solve this di�culty is the use of precursors
as linkers. Since precursors are part of other (larger) biochemical complexes it is interesting
to use them to bind the (bio)molecule to the metallic contacts. For this reason, we turn
our attention to imidazole.

Figure 5.6 � Structural formula and geometry of imidazole following the IUPAC labeling. From
[148] - Published by The Royal Society of Chemistry. Copyright CC BY-NC 3.0.

Imidazole is a heterocyclic organic compound (see Fig. 5.7) which consists of a planar
�ve-member carbon-based ring with two nitrogen substitutions. Its chemical formula is
C3N2H4. The two nitrogens have di�erent chemical nature, one is pyrrole-like (N1) and
donates electrons to the aromatic ring, while the other one is pyridine-like (N3) and has a
lone electron pair. These electrons are located in a sp2 orbital and are responsible for the
coordination with other metals (similar to the amine-metal dative bond of section 5.2.2).
Imidazole is also an electron-rich functional group, and thus, it allows for non-covalent
intermolecular interactions between π orbitals or hydrogen bonding. This gives imidazole
a broad functionality in di�erent contexts: For instance, in biochemistry, it can be used as
a precursor group of the aminoacid histidine or participate in redox reactions of superoxide
dismutases [179, 180]. Even though it has been used before in material science in some
metal-organic frameworks [181] up to now imidazole had not been considered in the context
of molecular electronics. We investigate here how the binding with the metallic lead occurs,
how imdazole binds to molecular wires made of σ-bonded carbon atoms (alkanes) and how
the transport properties of alkanes change due to the use of imidazole as linker.

To that purpose, the group of Latha Venkataraman performed conductance mea-
surements of four imidazole-terminated alkanes with di�erent backbone lengths [im-N-im,
where N = 3 − 6 is the number of carbon atoms in the backbone of the alkane wire, see
Fig. 5.7 (a)]. These measurements are done following standard procedures described in
appendix F. The resulting 1D logarithmically binned histograms are shown in Fig. 5.7
(b). We observe in these histograms a peak at ∼ 1G0, which is a clear indication of the
formation of a Au point contact between the substrate and the tip. The conductance peaks
corresponding to the molecule bridging the gap between the substrate and the tip corre-
spond to maxima at about 10−4G0 and 10−6G0, where the peak with the smallest (resp.
larger) conductance value corresponds to the im-6-im (resp. im-4-im) molecular junction.

https://creativecommons.org/licenses/by-nc/3.0/
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Figure 5.7 � (a) Chemical structure of a series of imidazole-terminated alkanes, im-N-im with
N = 3, 4, 5, 6. (b) 1D conductance histogram (logarithmically binned) for the series of im-N-im
molecules. For all wire lengths, we observe three peaks in the conductance histogram corresponding
to the low conductance (low-G) con�guration, high conductance (high-G) con�guration and the
π − π stack dimer marked by a black circle, a white circle and a black hourglass, respectively. (c)
Logarithm of the normalized conductance, G/G0, obtained from the histograms shown in (b) as a
function of the number of methylene units in the alkyl chain. We show each of the three possible
con�gurations of the molecule in the junction (straight, tilted and stack as indicated in the inset).
The attenuation parameter, β, obtained from �tting the experimental results to an exponential
function is β = 0.93 N−1 and β = 1.01 N−1 for low- and high-G junctions, respectively. From [148]
- Published by The Royal Society of Chemistry. Copyright CC BY-NC 3.0.

As expected for molecular insulators in which coherent tunneling occurs, the value of the
conductance increases while decreasing the backbone length of the alkane wire. Further-
more, there is also an additional feature (�shoulder�) in every histogram at around 10−3G0,
which point towards the formation of smaller complexes. In L. Venkataraman's group it
has been hypothesized that these are intermolecular π−π stacked complexes between two
of the imidazole linkers [182, 183, 184, 185, 186, 187].

A closer inspection of the molecular conductance peaks reveals that at each peak there
are actually two local maxima, similar to what has been observed for pyridine-based linkers
[188, 189, 190]. In L. Venkataraman's group it has been that this double peak feature is
related to imidazole linker binding to Au through the pyridine-like nitrogen so that it can
form a vertical σ-coupled junction or a tilted σ- and π-coupled junction, as shown in the
inset of 5.7 (c). These conformations correspond to a so-called low conductance (�low-G�)
and high conductance (�high-G�) binding con�gurations. The di�erences between them
have been investigated elsewhere [190, 191] and we focus our investigations primarily on

https://creativecommons.org/licenses/by-nc/3.0/
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the low-G case.

In Fig. 5.7 (c) we show the experimental conductance value for each molecule (nor-
malized to the conductance quantum) as a function of the wire length. The solid circles
correspond to the low-G con�guration, while the hollow circles corresponds to the high-G
con�guration described above. For both cases, the conductance decreases exponentially
with the addition of methylene units to the alkane backbone. To calculate the correspond-
ing attenuation parameter, β, we �t the data with the function G = Gce

−βN expected
for the tunneling transmission model. We �nd for the low-G con�guration, β = 0.93 N−1,
while for the high-G we obtain β = 1.01 N−1. These values are in quantitative agreement
wih the attenuation parameters obtained for alkyl molecules with thiol or amine linkers
[151, 192]. By extrapolation to N = 0 (no carbon bridge), we can also compute the contact
resistance of the junction which is 1/Gc ∼ 65 MΩ. This quantity serves as an indication
of the linker nature: smaller anchors have smaller values of the contact resistance 5. A
comparison to pyridine shows that imidazole is clearly comparable (the contact resistance
of pyridine is ∼ 23 MΩ, also determined experimentally [189]).

5.3.2 Transport calculations for imidazole-terminated alkanes

In order to rationalize the experimental results, we turn to quantum transport calcu-
lations performed in collaboration with the group of Latha Venkataraman. We relegate
the technical details to appendix G.2.1. A typical (relaxed) geometry used in our ab initio
calculations is shown in Fig. 5.8 (a) with the non-self-consistent transmission function for
our four im-N -im molecules shown in Fig. 5.8 (b). We see that, although the conductance
is overestimated due to intrinsic DFT artifacts [47], the calculated transmission at the
Fermi energy, EF, follows the trend seen in the experimental measurements: we �nd an
exponential decrease of the conductance with the system length as shown in the inset of
Fig. 5.8 (b). The β parameter obtained in experiments is 0.93 per methylene unit, close to
the theoretical result 1.10 (in collaboration with our experimental colleagues at Columbia
University).

To verify that the conclusions from our zero-bias calculation of the transmission func-
tion can be applied to the experiments at �nite bias, additional checks were performed mon-
itoring the shape of the conductance histogram for di�erent bias voltages. If non-linearities
are small, as expected from the fact that the molecule has a large HOMO-LUMO gap and
therefore the polarizability of the molecule is also small, then the 1D and 2D histograms
have to preserve their shape with the bias voltage. We refer the reader to the Supporting
Information of Ref. [148] for the data that supports this reasoning.

An analysis of the frontier orbitals for the low-G non-self-consistent transmission func-
tions shows that the transmission function at the Fermi energy has large contributions
from the molecular states HOMO−2 and HOMO−4. The amplitude of these states decays
along the molecular backbone as seen in the blue frame of Fig. 5.8 (c). The resonance at
E − EF = −1.6 eV is produced by a gateway state derived from the HOMO−8 molecular
orbital (green frame). As it happens with the states close to the Fermi energy, it is pri-
marily a σ-based orbital which has most of its weight at one of the anchor groups. Finally,

5. For instance, -SMe: ∼ 0.27 MΩ and -NH2: ∼ 0.37 MΩ [192].
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Figure 5.8 � (a) Geometry obtained from DFT calculations and employed for the theoretical trans-
port calculation of the non-self-consistent transmission function for im-4-im junctions. Similar
geometries for the series of alkyl chains are used with longer alkyl chain. (b) Transmission func-
tion calculated for the series of im-N-im, where N = 3, 4, 5, 6. The inset shows the value of the
non-self-consistent transmission at Fermi energy plotted against the number of methylene units in
the backbone of the alkyl chain. The continuous line together with the linear �t to extract β. (c)
Isosurface of the scattering states for im-4-im producing the resonance (gateway state) at ∼ −1.6
eV from the Fermi energy (green rectangle), LUMO-based resonance at ∼ 2 eV (orange rectangle)
as well as the resonances (gateway states) at EF (blue rectangle). From [148] - Published by The
Royal Society of Chemistry. Copyright CC BY-NC 3.0.

https://creativecommons.org/licenses/by-nc/3.0/
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at E − EF = 2.3 eV we show the resonance produced by the weakly hybridized π-based
LUMO orbital (orange frame).

We turn now to the analysis of the �shoulder� peak identi�ed in the conductance
histograms at ∼ 10−3G0 in Fig. 5.7 (b) for all molecules in the series. Our experimental
colleagues suggest that this peak is created by the formation of π − π stacked dimers, as
represented in the geometries from Fig. 5.9 (a) and (b). The dimers can occur thanks to
the fact that the pyrrole nitrogen of the imidazole increases the electronic density of the π
orbitals of the aromatic ring, thus enhancing the intermolecular π − π interactions. This
is similar to what happens in aniline derivatives with pyrrole-like nitrogens [193].

a b

c d e

Figure 5.9 � (a) Geometry of the π−π dimer used in the theoretical calculations of im-1. (b) Model
of the im-4 stacked dimer. (c) 1D logarithmically binned conductance histogram of im-1 and im-
4-im molecular junctions. The peak at ∼ 10−3G0 is attributed in both cases to the formation
of the dimer structure. (d) Transmission plot of im-1 (black line) and im-4-im (blue dotted line)
molecular junctions. In order to compare the conductance to the imidazole linked alkyl wires,
the non-self-consistent transmission plot for im-4-im is also shown (blue solid line). Although the
conductance is similar for the two stacked dimers, the non-self-consistent transmission function
for the im-4-im dimer presents additional Fano resonances due to the presence of the side alkyl
chains. (e) Experimental (red, blue, green and purple diamonds) and theoretical (red, blue, green
and purple circles) values for the low-bias conductance (in units of G0) of the im-N-im junctions
as a function of the molecule length. Also shown is the conductance of the im-1 π− π stack dimer
(grey diamond and grey circle). Modi�ed from Fig. 4 (main paper) and Fig. S4 (supplementary
information) of Ref. [148] - Published by The Royal Society of Chemistry. Copyright CC BY-NC
3.0.

To corroborate this hypothesis, the single-molecule conductance of a im-1 was mea-
sured in the group of L. Venkataraman. This molecule only has an imidazole anchor group
binding to the metal electrode and, therefore, the only possibility it has is to form a π− π
stacked dimer with more each imidazole group bound to di�erent contacts. We show the
resulting 1D conductance histogram in Fig. 5.9 (c) overlaid to the histogram of im-4-im.
The peak at ∼ 10−3G0 of the im-4-im junctions overlaps with the peak at ∼ 10−3G0 of
the im-1 junctions.

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
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In order to give theoretical support to this hypothesis, in collaboration with Latha
Venkataraman's group, we have performed ab initio quantum transport calculations using
Van der Waals interaction at the Tkatchenko and Sche�er level [194]. The relaxed geom-
etry used for the calculations of im-1 is shown in Fig. 5.9 (a). From the DFT calculations,
we �nd that the molecular stack is a stable con�guration in which the distance between
the imidazole centroids is ∼ 3.3Å and that has 0.41 eV of binding energy. As comparison,
benzene π − π stacked dimers have a binding energy of 0.15 eV. The di�erence in the
binding energy is attributed to the chemical nature of the nitrogens in the imidazole. The
pyrrole-like nitrogen with an excess of local negative charge is opposed to the pyridine-like
nitrogen with excess local positive charge. Therefore, the structure tends to enhance the
binding due to electrostatic interactions. The non-self-consistent transmission function for
this single-molecule junction is given in 5.9 (d). We �nd that the transmission function
at the Fermi energy is two orders of magnitude larger than for the im-4-im junction, as
observed in the experimental results.

The conductance of im-1 (black solid trace) is found to have a similar value to the
conductance of im-4-im (blue dotted trace). This results from the fact that the additional
alkyl side chains only produce very narrow Fano resonances far from the Fermi energy.
Finally, we show in Fig. 5.9 (f) the measured and calculated conductance as a function of
the junction length (de�ned as the distance between the nitrogen atoms of the imidazole
linkers that bind to the Au leads) for im-1 and im-N-im. The conductance of the π − π
stacked dimer is found to follow the trend of the conductances of the im-N-im molecules.
This suggests that for this type of dimers, as opposed to what is found in other weakly
bound stacks [23], the conductance is similar to that of a non-stacked junction of longer
length.

5.3.3 Summary of this section

In this section, we have studied how the imidazole molecule can be used as an anchor
group in single-molecule junctions made with Au leads. Since this molecule is a precursor of
several biologically relevant molecules, this work paves the way to the study of electronic
properties of biological systems containing imidazole. Imidazole has been used to bind
alkane wires; we have found that the conductance trend as a function of the length of the
alkane is consistent with the trend found when alkane is bound to contacts by di�erent
anchor groups. Finally, we have also proven that π−π stacked imidazole dimers are robust
functional groups that can bind directly to gold electrodes.

5.4 Metallocene-based linkers in single-molecule junctions

5.4.1 Metallocenes as linkers

Other interesting group of molecules which can act as linkers are metallocenes. Di�er-
ent properties of these organometallic compounds have been already studied in chapters 3
and 4. We brie�y remind that they consist of two cyclopentadienyl (Cp) rings (�ve-member
carbon rings) �sandwiching� a metallic atom. Since the ferrocene discovery (where the
metal center is iron) seventy years ago [126, 195], many similar organometallic complexes
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Figure 5.10 � Chemical structure of the metallocenes stud-
ied in this section, where M = Fe, Ru, Os corresponds to
di�erent metallic centers. (Left) 1,1'-M structure with two
phenyl arms, each of them attached to a di�erent Cp ring.
(Right) 1-M structure with only one phenyl arm connected
to a single Cp ring. Reproduced with permission.

have been synthesized and studied [15, 196, 197], but never, to the best of our knowledge,
they have been considered as linker groups in single-molecule electronics. Normally, anchor
groups bind to the electrodes using elements from the p-block of the periodic table (N, S
or P, for instance). Metallocenes can bind to the gold electrode through the metallic cen-
ter. This fact opens the possibility of using them to connect (or disconnect) the molecular
bridge by changing the oxidation state of the metallic center of metallocene by means of a
bias voltage. In other words, for speci�c values of the bias voltage the molecular bridge is
connected to the leads, while for others do not, by using in situ reactions 6.

In this part of the chapter, we investigate how metallocenes with di�erent metallic
center of group 8 (Fe, Ru, Os) , see Fig. 5.10 bind to the electrodes. We also study how
the binding and the transport properties of these molecules change due to the substitution
of the �sandwiched� metallic atom. We show that 1-M and 1,1'-M molecular junctions
can bind directly through the metal (M = Fe, Ru, Os) atom to the contacts and study by
means of ab initio calculations, the quantum transport properties of both types of molecular
junctions. Our theoretical �ndings corroborate the experimental results obtained in Latha
Venkataraman's group in Columbia University.

The experimental conductance for the metallocene series was measured using the STM-
BJ technique (see appendix F). The resulting one-dimensional histograms are shown in Fig.
5.11. In panel (a), we see the histograms corresponding to the 1,1'-M molecular junctions.
We observe for all junctions a predominant peak at ∼ 10−5G0 and a secondary one at
∼ 10−3G0. We also �nd small di�erences between the metallocenes: the low-conductance
peak for 1,1'-Os is lower in height compared to 1,1'-Fe and 1,1'-Ru, together with a shift
to lower conductance values. For the high-conductance �shoulder�, we �nd that the 1,1'-
Fe maximum is slightly smaller compared to 1,1'-Ru and 1,1'-Os. A plausible hypothesis
proposed by our experimental colleagues for the existence of the secondary peak in the
molecular junctions is a direct metal-gold bond. For this reason, in Columbia University
the conductance of the series of alternative molecules (1-M) was also measured [see Fig.
5.11 (b)]. We �nd the conductance for this set of molecules to be ∼ 10−3G0; strengthening
our hypothesis for direct metal-gold binding. Moreover, this hypothesis is experimentally
reinforced by looking at the 2D-conductance histograms, see Fig. G.2 in appendix G, where
the corresponding maxima are related to junctions lengths that di�er by a factor 2− 4.

6. Private communication from Dr. Michael S. Inkpen.
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Figure 5.11 � (a) 1D logarithmically binned conductance histograms for metallocene-based 1, 1′-M
junctions, where the metal M = Fe (red trace), Ru (green trace), Os (grey trace). In all the
three cases the histrogram has two local maxima: a predominant peak at ∼ 10−5G0 and a less
predominant peak located ∼ 10−3G0. (b) 1D logarithmically binned conductance histograms of 1-
M junctions with M = Fe (red trace), Ru (green trace), Os (grey trace). The conductance obtained
for all 1-M molecules is ∼ 10−3G0, similar to the high-conductance maxima for the 1,1'-M junctions
in panel (a). Experimental data obtained in Prof. L. Venkataraman's group. Reproduced with
permission.

5.4.2 Theoretical analysis of binding and transport properties

In order to provide theoretical support for the proposed hypothesis of direct metal-
electrode binding, as well as to understand the low-conductance features of this family
of molecules, we perform DFT-based quantum transport calculations (see computational
details in appendix G.3.2). We show in Fig. 5.12 (a), the non-self-consistent transmission
functions for the 1,1'-M con�guration (the inset shows the relaxed geometry for the 1,1'-Fe
junction). The transmission of the three molecular species presents sharp anti-resonances
close to the Fermi energy, which are responsible of the low conductance features. An in-
depth analysis of the origin of these anti-resonances will be made in chapter 4. Despite
the fact the theoretical value for the conductance is overestimated roughly by one order of
magnitude due to well-known artifacts in the approximations of the exchange-correlation
functional [25, 47], the experimental conductance trends are in agreement with our theory
calculations GFe ∼ GRu > GOs. In fact, the conductance of 1,1'-Fe and 1,1'-Ru is ∼
2 · 104G0, roughly a factor of two larger than the conductance for Os (G ∼ 1 · 10−4G0).
The result is quantitatively in agreement with the experimental conductance ratio between
GFe/GRu and GOs for the 1,1'-M con�guration.

We analyze now the high-conductance peak at 10−3G0 present in all molecular junc-
tions in this series. As we mentioned before, the presence of the peak suggests that 1,1'-M
metallocenes bind to the metallic electrode by an additional mechanism that we hypothe-
size to be direct metal-electrode binding (see inset in the right panel of Fig. 5.11). In order
to provide theoretical support for this hypothesis, we calculate the transmission function
for a series of 1-M molecular junctions. The results are shown in Fig. 5.12 (b) with exam-
ples of relaxed geometries for 1-Fe and 1-Ru given in the inset. Our �rst observation is that
the transmission at Fermi energy reproduces the trend in the conductance obtained in the
experiment GFe > GRu > GOs, although there is a small deviation in the ratio between the
conductances of each molecular junction. Our second observation is that there is a discrep-
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Figure 5.12 � (a) Transmission functions for the 1,1'-M junctions, M = Fe (red), Ru (green), Os
(grey). The theoretical conductance trend, obtained from the non-self-consistent transmission at
Fermi level for the di�erent metallocene traces, agrees with the experimental conductance trends.
Inset: relaxed geometry used for the Fe-1,1' molecular junction.(b) Same as in (a) but for 1-M
junctions. Again, the trend that results from the value of the transmission at the Fermi energy for
di�erent metals qualitatively reproduces the experimental trend; a larger value of the conductance
also supports our interpretation of direct binding between the metal atom and the electrode.

ancy of approximately one order of magnitude between the experimental and theoretical
calculations. As before, this is attributed to well-known artifacts in the approximations of
the exchange-correlation functional [47, 25]. We also observe that the transmission for 1-Fe
system has a larger resonance at E −EF = −1 eV and an anti-resonance at E −EF = 1.8
eV, compared to Ru and Os. Note that the latter present the same features at lower ener-
gies. The presence of the stronger resonance can be explained due to a possible overbond
of the electrode apex to the Cp rings of the metallocene. This can happen because the
pitch is larger in the double decker for Os and Ru (3.64 and 3.65 Å) while smaller for the
Fe (3.29 Å).

We note that, in principle, we cannot discard alternative binding geometries where the
electrode binds to the Cp ring and not the metal center. In order to explore this possibility,
we calculate the non-self-consistent transmission function, as well as the binding energies
for the con�gurations shown in Fig. 5.13 (a) and (b). We observe that, the transmission
at EF is very similar for the three possible geometries considered here (bottom panel).
Furthermore, the binding energies for the con�gurations shown in (a), 1.17 eV, and (b),
1.25 eV, are comparable to the binding energy of the direct binding to the metallic atom
1.22 eV. Because the peak in the one-dimensional histogram in Fig. 5.11 (b) is wide, all
the possible binding con�gurations might be contributing to the high-conductance peak.

Finally, we note that transport calculations alone cannot explain the di�erence in the
height of the conductance peak at 10−3G0 between the di�erent metal centers. However,
from the chemical point of view, Lewis theory applied to transition metals [198] indicates
that for heavy atoms, such as ruthenium and osmium, there is a preference to bind to
metallic atoms such as gold and not to carbon. This argument is strengthened by looking
at the binding energies for 1-Fe, 1-Ru and 1-Os (1.22 eV, 1.43 eV, 1.57 eV, respectively).
Note that if a C-Au bond is produced, the binding energies would not be strongly a�ected
by substituting the metallic center and therefore, we would expect the high-conductance
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Figure 5.13 � Alternative binding con�gurations for the 1-Fe molecule connected to Au electrodes.
In (a) the electrodes are both connected to the upper part of the molecule while in (b) one electrode
is connected to the lower Cp ring, with the second linked to the SMe anchor at the phenyl group. In
both cases there is also one additional uncoordinated Au atom in one of the electrodes for stability
reasons. Bottom panel: Comparison between the non-self-consistent transmission functions for the
alternative geometries in (a), (b) and the transmission from Fig. 5.12.

peak in Fig. 5.12 (a) to be the same for all metals. In addition, the pitch of the double-
decker structure for osmocene (3.64Å) and ruthenocene (3.65Å) is larger compared to
ferrocene (3.29Å), Therefore, the possibility of bond formation between the metallic center
of the metallocene and the gold electrode is larger for osmocene- and ruthenocene-based
molecular junctions than for ferrocene which can explain the di�erence in the height of the
high-conductance maxima.

5.4.3 Summary of this section

In this section, we have shown that the metallocene series 1,1'-M, M = Fe, Ru, Os, can
bind to gold electrodes either through the two thiol anchor groups or by a direct metal-
electrode bond. In the �rst case, we have demonstrated that the impact of substituting
the metallic atom of the 1,1'-M metallocenes on the conductance is relatively small: the
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value of the conductance in Fe and Ru is roughly a factor of two larger (and correlated
with the larger HOMO-LUMO gap). We have seen that the metallocene can act itself as
an anchor group. Although from transport measurements/calculations we cannot discard,
in principle, direct bonding to the carbons of the Cp-ring, arguments based on Lewis
theory as well as the larger pitch of 1-Ru and 1-Os (compared to 1-Fe) support the direct
metal-electrode binding.



Summary and conclusions

This thesis has three parts: one is devoted to spin-orbit (SO) torque, another covers
quantum interference (QI) e�ects and a last one investigates molecular insulators. In the
following, we summarize the conclusions from each part.

Spin-orbit torque. An idea underlying molecular spintronics is the manipulation
and control of the spin degree of freedom of molecules for technological purposes. This
has been typically addressed by applying external magnetic �elds. An alternative idea
would be exploiting intrinsic spin-orbit (SO) coupling to achieve control of the spin in a
single-molecule device by means of SO torque (SOT).

In order to study SOT, in this thesis, we have extended the existing transport code
AITRANSS to incorporate SO interaction. In the previous versions of this code, the NEGF
was implemented, but SO was not considered. To calculate out-of-equilibrium physical ef-
fects, AITRANSS was previously interfaced with FHI-aims to perform self-consistent (SC)
calculations. These account for the redistribution of charge in the presence of large bias
voltages in non-periodic systems. We have used the AITRANSS module, which incorpo-
rates SO coupling, in the SC cycle for the calculation of the SOT. To the best of our
knowledge, this is the only code for calculating SOT self-consistently in non-periodic sys-
tems.

As a �rst application of the implementation, we have chosen a vanadocene-based single-
molecule junction (whose molecular bridge has vanadium as metallic center). Vanadocene
presents an open-shell electronic structure with magnetic moments localized at the vana-
dium atom. We investigate whether SOT is large enough to manipulate the local magnetic
moments. We �nd, for this system, that the SOT values are of the order of δtx ∼ 10−6

eV, δty ∼ 10−6 eV and δtz ∼ 10−8 eV. The small values of SOT are due to the small SO
interaction of the vanadium atom. Our results are compatible with previous calculations
of the SOT based on the Kubo formula in metallic heterostructures.Our investigations sug-
gest that a switching in the spin direction of vanadocene is not possible for bias voltages
|Vbias| ≤ 0.3 V across the junction.

We point out that these results are obtained under the following set of conditions:
First, FHI-aims is a collinear DFT code and SO coupling is applied in a post-processing step
after the SC solution of the Kohn-Sham equation is obtained. Therefore, our calculation
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is not fully SC. Because of the collinearity, we are forced to neglect the o�-diagonal blocks
and the imaginary part of the coe�cients in the density matrix during the SC cycle.
Second, the spin is easily rotated so in order to perform right SC calculations we have
introduced a local Zeeman �eld in the vanadium atom inducing a splitting in the energy
levels (∆Z ∈ [−1.0, 1.0] eV). We observe that the value of the torque components is fairly
robust with the Zeeman �eld changing by at most by a factor of 2 − 3 when the Zeeman
�eld changes sign. Ideally the Zeeman �eld has to be zero and due to the di�culty of the
calculations this work will be done in future calculations.

Quantum interference. Metallocenes, such as the aforementioned vanadocene, are
molecules with a sandwich structure where a metal atom is embedded between two carbon-
based rings, i.e. an iron atom in the case of ferrocenes. They present a molecular orbital
structure with d−states localized near the metallic center and ligand π−systems of the
carbon rings (Cp). Also, ferrocenes exhibit a low activation barrier for the rotation of
the Cp rings. Therefore, ferrocenes are very interesting candidates to study quantum
interference -induced by d−orbitals- which intriguingly might be mechanically controllable
by using the rotational degree of freedom. This degree of freedom has never been considered
as a tuning parameter to control the quantum interference properties of molecules. The
idea of this project is to explore this degree of freedom to mechanically control QI in
ferrocenes.

We have performed DFT-based transport calculations, employing the NEGF as im-
plemented in AITRANSS and FHI-aims. As it turned out, these calculations were instru-
mental to interpret experiments in L. Venkataraman's group on ferrocene-based molecular
junctions (the manuscript is currently under review in Nano Letters [125]).

We observe in the transmission function destructive quantum interference features
that strongly a�ect the electronic transport in the junction. As expected, the destructive
quantum interference of the Fano-type appears as a consequence of the hybridization of the
d-orbitals at the iron core with the delocalized π-system of the carbon-based ligands. Due
to the low energy barrier for conformational changes in the molecule, the hybridization of
the orbitals can be modi�ed at low energy cost. If the change alters the nodal structure
of the orbitals the interference properties are also altered. When the phase shift di�erence
of the two orbitals at the contact point with the leads is zero, destructive QI arises. The
current is suppressed across the junction and, accordingly, the value of the conductance
is low. When the phase shift di�erence is π, the interference is constructive and the
conductance increases. These changes in conductance can be revealed by mechanically
elongating and compressing the junction due to the deep connection between geometrical
properties and interference. We have proposed a model that generalizes previous ideas to
understand QI: we put forward a perspective according to which by inspection of any pair
of orbitals the type of QI associated with them can be predicted from just a gas phase
calculation.

Molecular-insulators. In these close collaborations with experimental groups sev-
eral side projects arose around the topic of molecular insulators. These are molecules
completely the electronic transmission and, therefore, their conductance is smaller than
the conductance expected from tunneling through a vacuum layer. Even if carbon-based
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wires, such as alkanes, or siloxanes (silicon-based wires with oxygen substituents) were
considered good molecular insulators, their conductance was always larger than the asso-
ciated conductance of the vacuum layer of the same dimension [29]. It has been observed
in L. Venkataraman's group that a silicon-based wire in a cis-dihedral silicon bond con�g-
uration acts as a molecular insulator due to quantum interference e�ects. These molecules
suppress strongly the current and can be used at the nanoscale as insulators [29].

In this thesis, we have looked at the conductance properties of linear silicon-based
molecular insulators in a trans-con�guration. They present both fundamental and techno-
logical interest since understanding the charge transport through silicon molecular wires
is crucial in the quest of miniaturization of silicon-based electronic components up to
the molecular level, as anticipated by Aviram and Ratner [2]. It has been observed in L.
Venkataraman's group that the conductance of these wires is larger when attached to silver
electrodes by thiol anchors than the conductance when they are attached to gold contacts
with the same linker. The trend is reversed to what one would expect based on the work
function di�erence. The opposite trend is observed in equivalent carbon-based wires and
in silicon wires when amine anchor groups are employed.

These contraintuitive results are explained by performing DFT-based transport calcu-
lations with FHI-aims and AITRANSS. We have shown that the trend reversal is produced
by the presence of localized molecular orbitals at the anchor groups that appear close to
the Fermi energy (in the case of silver electrodes, thus enhancing the current), the SO cou-
pling and the chemical nature of the metal-anchor bonds thiol-covalent vs. amine-dative
(this work has been published in Angewandte Chemie [147]).

Applications in bio-nanoelectronics require binding macromolecular insulators to metal-
lic leads [199]. These biochemical complexes are di�cult to bind to gold contacts. One
possibility to overcome this di�culty is to use precursors, which are naturally part of these
molecules, and that also act as anchor groups binding to the electrodes.

For this reason, we focus our attention on imidazole. This is an organic molecule
composed of a carbon ring with two nitrogen substituents. It acts as precursor of numerous
biochemical compounds, and therefore it is very attractive to use it as anchor group to bind
(biochemical) molecules to gold. Open questions are how this binding occurs, how do other
molecules bind to imidazole and how does this anchor a�ect their transport properties.

We have analyzed transport features of imidazole anchoring alkane chains to Au elec-
trodes and to alkane chains (carbon-based molecular insulators). Using FHI-aims and
AITRANSS, in collaboration with members of L. Venkataraman group, we have performed
part of the transport calculations. We have theoretically shown that in imizadole the si-
multaneously binding occurs thanks to the di�erent nature (electron-donor and acceptor)
of the two nitrogen atoms present in its chemical structure. In addition, two imidazoles can
form a π− π stacked dimer with increased through-space coupling compared to molecular
bonding. We show that this dimer can simultaneously bind more than one molecular wire
inducing Fano-type resonances in the transmission function (this work has been published
in Chemical Science [148]).

Interestingly, other molecules that might take the role of linkers in molecular junctions
are metallocenes. These can also directly bind to the metallic leads through the metal
center. This type of bonds can be found in bulk systems (alloys) but are less common in
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single-molecule junctions. Normally, single-molecules are connected to leads by bonding
between metal and atom-based groups of species belonging to the p-block of the periodic
table, such as N, S or P. It is signi�cantly interesting to extend the available library of
contact moieties because the metal-metal bonding o�ers the possibility of controlling the
binding through the oxidation state of the metal in the molecule in situ. In other words,
the oxidation state of the metallic center in metallocenes is controlled by the bias voltage
applied across the junction, binding the molecule to the lead for speci�c voltages and
remaining detached for other values of the bias voltage.

Then, we focus once more our attention on ferrocenes and also on metallocenes with
substituted metal atom by ruthenium and osmium. Open questions are how this binding
occurs and how the metal substitution a�ects both binding and transport features.

We have theoretically studied (with FHI-aims and AITRANSS) the transport proper-
ties of di�erent substitued metallocenes. We �nd that heavier metallocenes bind stronger
to gold contacts. This results from the larger distance (pitch) between the Cp rings of
osmocene and ruthenocene compared to ferrocene. Transport calculations show that the
conductance of ferrocene is larger compared to ruthenocene/osmocene due to the smaller
HOMO-LUMO gap. These calculations are key to interpret experimental results obtained
in L. Venkataraman's group (this manuscript is in preparation).



Outlook

We now discuss, in the following, the possible future directions that our work presented
here opens up.

In order to cure the limitations of the density functional theory (DFT) code for the
calculation of spin-orbit torque (SOT) (approximations at the level of the density matrix)
we plan to interface our transport code with a non-collinear DFT package. Indeed, we
collaborate with the group of Dr. Richard Korytár in Charles Prague University to build
an interface with the package TURBOMOLE. From a numerical perspective, this new
interface would come with two advantages: First, we can test our approximations made for
the vanadocene junction against a full self-consistent calculation. Second, we could also
investigate other molecules with larger SO interaction. Interesting candidates are other
sandwich compounds with heavier metal center. If one sandwich compound is considered,
this system is a voltage-controlled (through the SOT) molecular bit. As an application,
more than one sandwich molecule can be connected in a chain and we can think of molecular
logic gates in which the local magnetic moments can be manipulated by voltage.

In addition, our implementation is ready to include spin-transfer torque (STT) e�ects,
with spin-polarized currents. In this way, we can investigate which mechanism (STT vs
SOT) is better suited to produce a switch of the magnetization.

One can think about the possibility of performing SOT calculations for functionalized
carbon-based systems. For instance, graphene has attracted a lot of attention for techno-
logical applications in spintronic devices. Pristine graphene is well-known for having small
SO coupling. Distortions, defects or ad-atoms in graphene �akes and nanoribbons produce
a local enhancement of the e�ective SO coupling [58]. In the case of hydrogenic adsor-
bates, the enhancement has been attributed to a sp3 hybridization of the carbon lattice
with the hydrogen atom. Also, other adsorbates, like �uorine or metals (such as copper,
which also carries intrinsic SO coupling) can induce a local enhancement of the e�ective
SO interaction. If these adsorbates carry local magnetic moments they can be manipulated
by means of the SOT when a current is applied. It might be interesting to study SOT for
small arrays or islands of atoms which are magnetically active embedded in the graphene
�akes. The controlled manipulation of the local magnetic moments by means of SOT could
be exploited for the design of memory devices using normal metals as contacts instead of
ferromagnetic leads, as reviewed in Ref. [200]. The reading of the memory can be achieved
with the same currents used for encoding the information into the local moments but this
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time with a ferromagnetic contact.

Also interference e�ects might be studied in the context of molecular spintronics.
The introduction of impurities, both magnetic or non-magnetic (for instance, hydrogenic
adsorbates), induces complex interference patterns in graphene nanoribbons and �akes [27].
To the best of our knowledge it is unknown how these patterns a�ect the local SOT (or
STT) or how sensitive they are to the possibly large value of the local currents.

We have planned improvements of the AITRANSS module. From the computational
aspects, beyond the OpenMP thread parallelization employed through the module, we
plan to incorporate MPI parallelization. This allows for the computation of SOT in super-
computers and computer clusters distributing the tasks in several nodes, while OpenMP
restricts the computation to a single node. Depending on the availability of nodes and CPU
cores, MPI parallelization may be best suited to improve the computational speed in the
self-consistent cycle. In addition, we have taught, together with other current and former
members of F. Evers's group, AITRANSS to the experimental groups of L. Venkataraman
(Columbia University), M. Kamenetska (Boston University) and O. Tal (Weizmann Insti-
tute of Science). These teaching events have made us realize that a more-friendly user
interface of the module is desirable. For this reason, the present interface is planned to be
improved in the near future.

To conclude this thesis, we just want to state that there is still room for much investi-
gation in molecular (spin/elec)tronics. We hope that, with the results and the theoretical
tools developed in this thesis, we are a little bit closer to the ideas that Richard Feynman
had in mind when he gave his lecture in the American Physical Society meeting in 1959.
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Appendix A
Structure of the transport module and

computational performance

In this appendix we provide information of the AITRANSS module extension in which
spin-orbit (SO) interaction has been included.

A.1 Scheme of the code structure of the AITRANSS module

with spin-orbit coupling

In Fig. A.1, we present the general code structure for the module with SO coupling has
been included. The light orange modules reconstruct the Kohn-Sham Hamiltonian obtained
from density functional theory (DFT). The optional Zeeman term is also introduced in this
branch, and employed in chapter 3. The code has two main branches: In light blue, open
quantum systems are treated, while in the pink branch isolated systems are considered.
In the light branch, the self-energies are estimated. The non-equilibrium density matrix
can also be computed (and write into a text �le to be read by the DFT code), as well as
the magnetization, SO torque and the transmission function. In the pink branch, we can
reconstruct a density matrix for an isolated system and write it out into a text �le to be
read by the DFT code.

A.2 Computational performance of AITRANSS module with

spin-orbit coupling

In order to speed up the calculations, we have parallelized the AITRANSS module
using OpenMP. We point out that the DFT code in the self-consistent cycle works only
with a single thread. All the calculations have been run in the Athene cluster of the
University of Regensburg.

In Fig. A.2 we show a sample benchmark of the computational performance (CPU
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Threads Walltime (h:m:s) Σ computation Walltime (h:m:s) EF computation

8 29 : 57 : 46 09 : 01 : 11

12 23 : 54 : 03 04 : 54 : 34

16 21 : 20 : 00 04 : 23 : 34

24 17 : 47 : 22 03 : 50 : 03

Table A.1 � Benchmark of the walltime needed for the self-consistent calculations shown in Fig.
A.2 for a �xed number of threads.

time) against the number of iteration steps for 8, 12, 16 and 24 threads. We consider as
geometry the vanadocene-based single-molecule junction from chapter 3 and the parameters
indicated in section C.2. Panel (a) displays the CPU time needed for each iteration of the
self-consistent loop during the computation of the self-energy. The spikes are produced
due to the greedy algorithm employed in the calculation of the self-energy. For more than
100 iterations, the most e�cient choice for the algorithm is 12 threads. Panel (b) shows
the CPU time needed for the calculation of the chemical potential when Vbias = 0.3 V is
applied across the junction. We �nd again that 12 threads is the most sensible choice with
respect to the optimization of the CPU time.

In Table A.1 we give a benchmark of the total walltime needed for the calculations
in panels (a) and (b) of Fig. A.2. As opposed to Fig. A.2, we see that the wall-time
decreases with the number of threads. This suggests that I/O is the bottleneck in the
self-consistent loop, as the CPU time of the AITRANSS computational time alone does
not always decrease by increasing the number of threads.
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Figure A.1 � Code structure of the AITRANSS extension in which SO has been incorporated. Only
the main modules are shown. Modules in light orange reconstruct the Kohn-Sham Hamiltonian.
The blue modules are used to calculate non-equilibrium physical quantities (magnetization, torque,
transmission and density matrix). The pink modules are employed to obtain the density matrix of
the isolated system.
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Figure A.2 � CPU time represented against the number of iterations for a �xed number of threads.
(a) CPU time needed to compute the real part of the self-energy, using the parameters given in
section C.2 and appendix C. The computation has been done for 8, 12, 16 and 24 threads. The
spikes in the plot are due to the greedy algorithm employed in the computation of the real part
of the self-energy. (b) Sample of CPU time needed to obtain the optimal value of the chemical
potential (in this case, for a bias-voltage Vbias = 0.3 V) considering 8, 12, 16 and 24 threads.



Appendix B
Practical guide for spin-orbit dependent

calculations with FHI-aims and

AITRANSS

In this appendix, we describe the procedure to perform SOT calculations, following
the scheme in Fig. 2.1. In addition to SOT, we also provide the keywords and instructions
to perform self-consistent and non-selfconsistent transmission calculations in the presence
of SO interaction. The calculations generalize the scheme presented in Refs. [49, 71].

B.1 Step 0: Optimization of the molecular junction geometry

The �rst step in the calculation is the optimization of the junction geometry. We refer
the reader to the manual of FHI-aims for further explanations on how to perform this
calculation.

B.2 Step 1: Parametrization of the self-energy

We now specify the keywords needed for the parametrization of the self-energy in the
presence of SO interaction. The calculation is controlled by a shell script together with the
auxiliary code 1 that transforms the density matrix �les from plain text into ELSI-readable
format (a2e_real.x).

This calculation requires two control �les. For the DFT code, we include the standard
(mandatory) keywords as described in the manual as well as

output aitranss

include_spin_orbit

output soc_eigenvectors 1

1. Provided by Victor Wen-zhe Yu from the group of Assoc. Prof. Volker Blum.
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output soc_aitranss

The latter keywords 2 allow for the basis, as well as the real and imaginary parts of the
eigenvectors, to be printed in separate plain text �les. These �les can be directly read by
AITRANSS. The output keyword soc_aitranss has been incorporated to the DFT code
during this PhD work ex profeso.

The transport module AITRANSS has been modi�ed to incorporate SO interaction.
The compulsory �les and basic keywords are the same as for the spinless case (see manual).
We only point out here that the basis, overlap and eigenvector �les must have the following
names:

basis-indices.soc.out

omat.aims.soc

soc.mos.dn.im

soc.mos.dn.re

soc.mos.up.im

soc.mos.up.re

and must be located in the same folder as the tcontrol �le. The name of the �les are
self-explanatory.

The calculation of the self-energy is performed in the transport code. For this purpose,
in addition to the compulsory AITRANSS keywords, the following ones need to be included
in the tcontrol �le:

$ecp off

$densmat_cycle on → �ags to start the self-consistent loop
$densmat → �ags to start the self-consistent loop

charge.dens file=dmat

spin.dens file=smat

$bias 0.0

$dmix value → percentage of mixing parameter for the density matrices
$efsearch → �ags for searching the chemical potential

nelconv value

nclstmo value

maxiter value

$densconv value → density convergence criterium
$ldos off

$transmission off

$ener undefined

$estep undefined

$eend undefined

$eta 1.0d-10

$testing off

$expert on → �ag to calculate self-energy and chemical potential
$fixed_efermi off → �ag to the average chemical potential to �oat
$tcontrol_efermi_update off → �ag to update the Fermin in tcontrol

2. soc_eigenvectors provided by Dr. William P. Huhn from the group of Assoc. Prof. Volker Blum.
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$adjust_rsigma on → �ag to adjust the real part of the self-energy (see, i.e. [71])
rfactor value

rguess value

nelcnv value

iterlimit value

$s1r value → initial guess for the real part of the self-energy
$s1i value → imaginary part of the self-energy for the outermost layer
$s2r value → analogue to s1r

$s2i value → analogue to s1i

$s3r value → analogue to s1r

$s3i value → analogue to s1i

$efermi value → initial guess for the Fermi energy

In addition, we have implemented a Zeeman term that can be applied locally to a
given element described in the geometry �le. This e�ect can be achieved using the �ag
$zeeman element value .

B.3 Step 2: Finite bias calculation

After the parametrization of the real part of the self-energy, we can apply a bias voltage
to the system. The calculation requires the �les detailed in section B.2 as well as to include
the following additional �ags in the tcontrol �le

$bias value

$efsearch

nelconv value

nclstmo value

maxiter value

$expert off

$fixed_efermi off

$tcontrol_efermi_update on

$adjust_rsigma off

A calculation at zero-bias is �rst required to �ne-tune the chemical potential, then the
�nite bias calculation proceeds with the �ags detailed above.

B.4 Step 3: Spin density, spin-orbit torque, transmission

function

After convergence of the self-consistent �eld cycle from section B.3, we can pro-
ceed with post-processing to compute di�erent observables at �nite bias employing the
AITRANSS package. We remind the reader that, as a general rule, the standard DFT �les
are required together with the output �les from previous steps. The speci�c �ags for each
available observable are detailed in the next subsections.
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B.4.1 Spin-orbit torque and magnetization

In order to compute the magnetization density and the SOT response for a given
voltage, the following non-mandatory keywords must be speci�ed in the tcontrol �le

$densmat_cycle off

$sot_changedens on

$output_sot on

Note that, as explained in chapter 2, that to prevent spurious contributions at equilib-
rium for observables that have non-zero expectation value only due to the response to the
bias, we must substract the density matrix at zero bias. For this purpose, the code is pre-
pared to provide as an output the density matrix saved in the �les dens.orth.real (real
part of the matrix elements) and dens.orth.imag (imaginary part of the matrix elements).
Similarly, the Kohn-Sham Hamiltonian is also stored (in �les labeled as ham.orth.real

and ham.orth.imag) once the keywords above are employed. For the �nite bias calcula-
tion, we use the updated chemical potentials as well as these �les of the Hamiltonian and
the density matrix.

After the calculation �nishes, the following �les are generated:
� magnetization containing the spin density per atom and spatial direction.
� sot.local.out containing the SOT per atom and spatial direction [see Eq. (1.61)].

B.4.2 Transmission function

As detailed in the main text, we can also perform self-consistent transmission function
calculations at �nite bias in the presence of SO coupling by including the following self-
explanatory �ags in the tcontrol �le

$densmat_cycle off

$transmission_soc on

$ener value

$estep value

$eend value

The result is a plain text �le .dat with the σ, σ′ components of the transmission
function as de�ned in Eq. (1.42).

B.4.3 Current

For a calculation of the electric current at zero-temperature and �nite bias Vbias using
Eq. (1.24), the following keywords are also mandatory:

$output_mag_and_trans on

$ener value

$estep value

$eend value
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where the energy window has to be de�ned taking into account the chemical potential
and the bias voltage.

B.5 Non-self consistent transmission with spin-orbit coupling

As we explained in chapter 2, when the size of the electrodes is large enough, it
is possible to perform non-self-consistent calculations at zero-bias without the need to
include the real part of the self-energy. We have implemented for this thesis also the
possibility to perform this type of one-shot transmission calculations into AITRANSS. For
this purpose, �rst we need to include the non-mandatory keywords in the DFT control
as detailed in section B.2. Second, in the AITRANSS tcontrol �le we must have the
mandatory keywords (see AITRANSS manual) as well as the following input �les:

$basis file=basis-indices.soc.out

$read_omat file=omat.aims.soc

$scfmo file=mos.aims

$self_energy file=self.energy.in

At the time of writing this manual, only an all-electron calculation of the transmission
function is available and we must also include the keyword $ecp off.
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Appendix C
Sample input �les and parameters for

spin-orbit torque calculations

In this appendix, we provide additional parameters not speci�ed through chapter 2
and chapter 3.

C.1 Parameters for �gures in chapter 2

For Figs. 2.4 and 2.5, we employ the following tcontrol �le:

$aims_input on

$coord file=geometry.in

$natoms 42

$basis file=basis-indices.soc.out

$read_omat file=omat.aims.soc

$scfmo file=mos.aims

$nsaos 1440

$ecp off

$lsurc 16

$lsurx 18

$lsury 21

$rsurc 5

$rsurx 7

$rsury 10

$nlayers 2

$densmat_cycle on

$densmat

charge.dens file=dmat

spin.dens file=smat

$nelectr 1820
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$bias 0.0

$dmix 0.01

$efsearch

nelconv 1.0d-7

nclstmo 2

maxiter 15

$densconv 3.0d-4

$output_charges on

$ldos off

$transmission off

$ener undefined

$estep undefined

$eend undefined

$output file=TE.dat

$eta 1.0d-10

$testing off

$expert on

$fixed_efermi off

$tcontrol_efermi_update off

$self_energy file=self.energy.in

$adjust_rsigma on

rfactor 0.90

rguess 0.15

nelcnv 0.10D-04

iterlimit 60

$s1r 0.059708250065321044620

$s1i 0.050000000000000002776

$s2r 0.029854125032660522310

$s2i 0.025000000000000001388

$efermi -0.17455929564032102

$end

For Fig. 2.7, the following DFT parameters have been used:

sc_iter_limit 700

xc pbe

charge 0.0

spin none

relativistic atomic_zora scalar

occupation_type gaussian 0.1

mixer pulay

n_max_pulay 10

charge_mix_param 0.2

density_update_method density_matrix

sc_accuracy_rho 1E-6

sc_accuracy_eev 1E-4

sc_accuracy_etot 1E-7
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For Fig. 2.8, the following parameters were employed:

DFT parameters:
sc_iter_limit 1

postprocess_anyway .true.

elsi_restart read

xc pbe

charge 0.0

spin collinear

default_initial_moment 0.0

relativistic atomic_zora scalar

occupation_type gaussian 0.0001

charge_mix_param 0.01

density_update_method density_matrix

sc_accuracy_rho 1E-6

sc_accuracy_eev 1E-4

sc_accuracy_etot 1E-7

output aitranss

The active part when the self-consistent SOC part is included needs:
include_spin_orbit

output soc_eigenvectors 1

output soc_aitranss

The following parameters are needed in the transport part for the calculations that
include a real part of the self-energy, as well as for the non-equilibrium calculation �nite
bias. In the non self-consistent calculation, the values of the imaginary part were changed
accordingly. We employ the corresponding �ags in the tcontrol for each case, as indicated
in appendix B:

$dmix 0.05

$efsearch

nelconv 1.0d-7

nclstmo 2

maxiter 60

$densconv 3.0d-7

$eta 1.0d-10

$adjust_rsigma off

rfactor 0.90

rguess 0.15

nelcnv 0.10D-05

iterlimit 60

$s1r -0.013903905359006870496

$s1i 0.010000000000000000208
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$efermi -0.161662995638

C.2 Parameters for �gures in chapter 3

In the following we indicate the parameters employed for the calculations of the magneti-
zation and the SOT in chapter 3.

Parameters needed for the calculation of the self-energy:

DFT parameters:
sc_iter_limit 1

postprocess_anyway .true.

elsi_restart read

xc pbe

charge 0.0

spin collinear

default_initial_moment 0.0

relativistic atomic_zora scalar

occupation_type gaussian 0.0001

mixer linear

charge_mix_param 0.01

density_update_method density_matrix

sc_accuracy_rho 1E-6

sc_accuracy_eev 1E-4

sc_accuracy_etot 1E-7

output aitranss

include_spin_orbit

output soc_eigenvectors 1

output soc_aitranss

tcontrol �le for the AITRANSS module

AITRANSS parameters:
$aims_input on

$coord file=geometry.in

$natoms 47

$basis file=basis-indices.soc.out

$read_omat file=omat.aims.soc

$scfmo file=mos.aims

$nsaos 1882

$ecp off

$lsurc 44

$lsurx 47

$lsury 42

$rsurc 6

$rsurx 8
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$rsury 11

$nlayers 1

$densmat_cycle on

$densmat

charge.dens file=dmat

spin.dens file=smat

$nelectr 747

$bias 0.0

$dmix 0.05

$efsearch

nelconv 1.0d-7

nclstmo 2

maxiter 60

$densconv 3.0d-6 (maximal value to obtain SOT)
$eta 1.0d-10

$testing off

$expert on

$adjust_rsigma on

rfactor 0.90

rguess 0.15

nelcnv 0.10D-04

iterlimit 60

$output_charges on

$ldos off

$transmission off

$ener undefined

$estep undefined

$eend undefined

$output file=TE.dat

$zeeman v 0.001837466D+00 (sample value for the Zeeman term)
$s1r 0.04998462981604150784

$s1i 0.050000000000000000021

$efermi -0.135237500000 (Guess for the calculation of the chemical potential)
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Appendix D
Additional calculation details for

ferrocene-based molecular junctions

A part of the material covered in this appendix can be found in the preprint:

M. Camarasa�Gómez†, D. Hernangómez�Pérez†, M. S. Inkpen, G. Lovat, E�Dean Fung,
X. Roy, L. Venkataraman, and F. Evers, Mechanically-tunable quantum interference in
ferrocene-based molecular junctions, chemRxiv.12252059.v1, 2020. [†: equally contribut-
ing authors]. Ref. [125]. Adapted with permission from Nano Letters, submitted for
publication. Unpublished work copyright 2020 American Chemical Society.

In this appendix we provide additional ab initio details to reproduce and explain the
results shown in chapter 4.

D.1 Computational details for ab initio calculations

Our ab initio calculations are carried out with density functional theory as imple-
mented in FHI-aims [34]. We consider the non-empirical generalized gradient-corrected
approximation (PBE) for the exchange-correlation functional [42]. We also incorporate
scalar relativistic corrections to the kinetic energy at the level of the atomic zeroth-order
regular approximation (ZORA) [201]. The Kohn-Sham orbitals were represented using an
optimized all-electron numeric atom-centered basis �tight� computational settings for the
molecule and �light� for the gold atoms of the contacts). The convergence criteria used in
the density functional theory self-consistent cycle for the di�erence in the particle density
are 10−5 electrons/Å3, for total energy 10−6 eV and 10−4 eV, for the sum of Kohn-Sham
eigenvalues.

The relaxed structures for the molecular junctions were obtained using the a two-step
procedure: First, the position of the atoms of the molecule and the tip of the contact were
optimized using the Broyden-Fletcher-Shanno-Goldfarb algorithm [34]. The pyramidal
gold clusters used for this geometry optimization contain up to 11 gold atoms per pyramid.
We also �x the S-Me dihedral angle so that the methyl group lies and the functionalized
phenyl rings are in the same plane. Second, we �x the molecular and tip geometries and
add layers of gold atoms (up to 55 atoms per gold cluster) to the most external planes of
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Figure D.1 � (a) Top view of the 1,1'-Fe optimized geometry. (b) Side view of the 1,1'-Fe optimized
geometry. Phenyl arms here are not constrained to the plane of the Cp π-system. Anchor groups
SMe are neither constrained to the aforementioned plane. (c) Comparison between transmission
curves obtained with geometries in (a) (solid blue line) and (b) (dashed blue line). Both transmis-
sions correspond to the angle shown in (a). The orientation of the dihedral angle determine by the
anchor group and the Au tip does not change qualitatively the transmission. It shifts the position
of the resonances and antiresonances by 250meV away with respect to the Fermi energy.

the electrode tips. This is done in order to ensure the screening of the excess charge in the
transmission function calculations. We considered that the geometries were structurally
relaxed when the force component per atom is below the value of 10−2 eV/Å.

The transmission function is computed using the non-equilibrium Green's function
formalism (NEGF) as implemented in AITRANSS [26, 49]. The self-energy of the reservoirs
was parametrized by the energy-independent spatially local function, Σ(r, r′) = iη(r)δ(r−
r′) with non-zero values only in the subspace associated to the outermost layers of the �nite
cluster. The absorption rate, η(r), is chosen to ensure that the electronic transmission does
not change under small variations of η(r).

D.2 Impact on transmission of the functionalized linker ro-

tations

In section 4.2.2 we have studied the evolution of the transmission under ring rotation
under the constraint that the Cp ring, the functionalized linker and the anchor group all
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lie in the same plane. Here, the impact of removing this constraint is explored. To that
purpose, the following DFT-NEGF calculation is performed: First, the phenyl linkers and
the SMe anchor group are left unconstrained and a geometry optimization of the model
junction following section D.1 is carried out. The resulting geometry is shown in Fig. D.1
(a), (b). In a second step, the transmission function is computed. We show the results in
Fig. D.1 (c) (dashed blue trace). For comparison, the transmission function for the con-
strained 1,1'-Fe model junction with the same rotation angle ϕ, (solid blue curve) is shown.
We �nd that changes in the dihedral angle between the phenyl ring and the SMe anchor
group do not alter qualitatively the shape of the transmission curve. We observe a rigid
shift of the resonances by 250meV with respect to the Fermi energy, and a decrease in the
value of the transmission at the resonances produced by the localized orbitals (HOMO−2
and HOMO−1). However, the interference properties remain unchanged and hence the
constraint used does not alter the conclusions presented regarding interference features of
ferrocene-based molecular junctions.

D.3 Isosurface plots of relevant gas-phase orbitals

We show in Fig. D.2 the Kohn-Sham states where the rotation angle is such that there
is an energy barrier in the energy landscape associated to the �scissor-mode�.

Figure D.2 � HOMO−3, HOMO−2 and HOMO−1 of gas-phase 1,1'-Fe for the rotation angle
ϕ ' 5π/6. The distance between SMe-SMe is minimal. HOMO−3 shows strong overlap between
the anchor groups and the phenyl arms. Reprinted with permission from [125].

In Fig. D.3 we display the relevant orbitals (in gas-phase) used to obtain the phase
shift which enters into the three-level model. This phase-shift directly a�ects the pres-
ence/absence of DQI. Therefore, as we mentioned in chapter 4, we only need to analyze
the gas-phase Kohn-Sham states to determine what type of quantum interference occurs,
without performing a transport calculation.
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Figure D.3 � Isosurface plots of HOMO−3, HOMO and LUMO orbitals of the gas-phase 1,1'-Fe
for several rotation angles ϕ. The phase shift at the linker groups is incorporated as parameter in
the e�ective model in chapter 4. Adapted with permission from [125].
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D.4 Model parametrization

Table D.1 � Numerical data obtained from the ab initio transport calculation and employed in the
e�ective three-level model for the plots in Fig. 4.9.
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Appendix E
Quantum interference in ferrocene

molecular junctions

In this appendix we study the quantum transport properties of ferrocene single-molecule
junctions. We show that mechanically tunable quantum interference is already inherent
to ferrocene moieties due to the hybridization of the d-states of the iron atom with the
π-system of the Cp rings of the molecule in a similar manner as discussed in chapter 4 for
1,1'-Fe.

E.1 Energetics of ring rotations of gas-phase SMe-Fe

As mentioned in section 4.2.2, metallocenes possesses a soft mechanical degree of free-
dom (�scissor mode�) with low conformational energy cost. We explore the energy land-
scape of this degree of freedom in SMe-Fe isolated molecules. Our results are summarized
in Fig. E.1: local maxima correspond to staggered con�gurations; the local minima to
eclipsed con�gurations. The energy barrier between di�erent eclipsed con�gurations de-
pends on the rotation angle, with typical value of ∆ . 20meV. This barrier is ∼ 30% lower
compared to 1,1'-Fe. Furthermore, compared to the energy landscape of isolated 1,1'-Fe,
the impact of the SMe linkers here seems to be larger. Indeed, the energy landscape is
distorted enough so that the global energy minimum occurs for a eclipsed conformation in
which SMe linkers are not inversion-symmetric. Finally, as in 1,1'-Fe, there is still a large
energy barrier produced by the Coulomb interaction between the two thiol anchor groups
(∆ ' 180.0meV), which can be understood as a consequence of repulsion between lone
electron pairs from the SMe anchor groups.

E.2 Conductance control by ring rotation

In the main text, we have presented a theoretical study of transport properties of single-
molecule metallocene molecular junctions (1,1'-Fe and 1,3-Fe). Fundamental principles
behind the transmission characteristics are expected to be universal for all metallocene
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Figure E.1 � (a) Energy landscape of the SMe-Fe molecule due to rotation of the Cp rings with
the �scissor mode� explained in Chapter 4. The rotation energies are normalized with respect
to the total energy of the relaxed gas-phase SMe-Fe molecule. (b) Selection of the geometries
corresponding to the energies marked in (a) with dashed line. 1© and 3© are in the so-called eclipsed
con�guration, while 2© represents a staggered conformation. 4© points to the situation in which
the distance SMe-SMe is minimal. Similar to what has been presented in chapter 4, the distance
minimization between the anchor groups induces a large energy barrier of ∆3→4 ' 180.0meV due
to lone electron pair repulsion. Transitions between eclipsed and staggered con�gurations (from
1© to 2©) can be produced at room temperature since ∆1→2 ' 18.5meV.
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Figure E.2 � (a) Selection of geometries showing the �scissor mode� rotation for SMe-Fe. ϕ = 0 cor-
responds to the optimized geometry of the molecular junction given by DFT. (b) Two-dimensional
transmission plot of SMe-Fe. The yellow traces correspond to resonances produced by orbitals
which can be identi�ed in single-molecule in gas-phase. The purple regions correspond to areas
where the transmission is strongly suppressed. As it happens for 1,1'-Fe (see chapter 4) the origin
of both regions is di�erent. The sharp purple area is due to DQI, while the broader purple ar-
eas are due to the tunneling between the linker groups SMe. (c) Selection of transmission curves
corresponding to the geometries in (a). These curves are marked in (b) by black vertical dashed
lines.

species with a single central-unit because transport properties depend on the d-orbital
coupling to the Cp π-system already present there. To prove this, we have calculated
the ab initio-based transmission characteristics of SMe-Fe for di�erent rotation angles, ϕ,
between the two Cp rings. Our results are shown in Fig. E.2, a �gure analogous to Fig. 4.5
in chapter 4. The phenomenology observed in Fig. E.2 is the same to that already described
for 1,1'-Fe: broad regions of strongly suppressed transmission due to quantum interference
appear for certain rotation angles together with sharp features corresponding to localized
Fano-type resonances. Observe that compared to Fig. 4.5 (a), the antiresonances produced
by the quantum interferences are not as deep, presumably due of the smaller size of the
molecular junction.

E.3 Impact of the anchor group in the quantum interference

We now investigate the role in the transport properties of the anchor group. To that
purpose, we compare the transmission functions of two ferrocene-based molecular junc-
tions with (i) SMe and (ii) NH2 anchors. The latter, has recently been studied both
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Figure E.3 � (a) Optimized molecular geometries for NH2-Fe (top) and SMe-Fe junctions made
of Au. (b) Transmission curves for the geometries in (a). The change in the anchor group has a
reduced impact in the transmission characteristics, except for small shifts on the molecular energy
levels. Therefore, we expect similar transmission maps for NH2-Fe, as those shown in Fig. E.2.

experimentally and theoretically [140]. These previous DFT-based calculations have sug-
gested substantial sensitivity of the transmission to the binding geometry but no signature
of quantum interference. In Fig. E.3 panel (a), the optimized junction geometries (left,
SMe-Fe; right, NH2-Fe) are shown. We show in panel (b) the transmission characteristics
for both molecular junctions. As expected, we obtain a clear antiresonance dip consequence
of DQI.



Appendix F
The scanning tunneling microscope-based

break junction technique

In this appendix we give a brief introduction to how measurements of the conductance
are obtained with the scanning tunneling microscope-based break junction method. This
technique has been employed to obtained the experimental data shown in this thesis in the
group of L. Venkataraman.

In this thesis, the scanning tunneling microscope-based break junction (STM-BJ)
method [7] has been the experimental method employed to make the molecular junctions
and obtain the conductance measurements. We brie�y introduce here the basic mechanism
of this method. An ensemble of molecules with anchor groups (linkers), one of which will
form the junction bridge, are put in a solution that is dropped onto the substrate (metal-
lic layer) of the STM. The tip of the cantilever approaches the substrate and smashes
the appex onto the substrate. Only afterwards it retracts until it forms a point contact
characterized by a conductance G0, where G0 = 2e2/h is the quantum of conductance.
After that, the tip continues to be retracted and, hopefully, one of the molecules in the
solution will bridge the broken point contact to form a junction. A scheme of how this
technique works is shown in Fig. F.1. The probabilistic nature of the junction formation,
as well as the �uctuating geometries of the molecules bridging the gap from one sample to
another, requires a statistical analysis to extract values for the conductance of the molec-
ular junction. Therefore, typically 1D histograms (see Fig. F.1) are recorded with the
maxima associated to the most probable (optimal) molecular con�gurations. More ellab-
orated 2D-conductance histograms [32] can be obtained by combining the data from the
1D histogram (counts/conductance) with the electrode-electrode displacement recorded in
the experiment to obtain information about the length of the molecular bridge.
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Figure F.1 � (a), (c) and (e) Conductance steps arising from the pull-up mechanism of the STM
tip while forming the molecular junction with bipyridine molecule. Each panel corresponds with
the formation stage indicated in the inset. (b), (d), (f) 1D-histograms of counts recorded for each
process of the molecular junction formation. From [7]. Reprinted with permission from AAAS.



Appendix G
Theoretical calculation details for silane,

imidazole and metallocene-based

molecular junctions
A part of the material covered in this appendix has been published in:

H. Li†, T. A. Su†, M. Camarasa�Gómez†, D. Hernangómez�Pérez, S. E. Henn, V. Pokorný,
C. D. Caniglia, M. S. Inkpen, R. Korytár, M. L. Steigerwald, C. Nuckolls, F. Evers, and L.
Venkataraman, Silver makes better electrical contacts to thiol-terminated silanes than gold,
Angew. Chem. Int. Ed. 56, 14145 (2017) [†: equally contributing authors]. Copyright
c© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. The material is reused with
permission (Ref. [147], covered in Sec. G.1).

T. Fu, S. Smith, M. Camarasa�Gómez, X. Yu, J. Xue, C. Nuckolls, F. Evers, L. Venkatara-
man, and S. Wei Enhanced coupling through π-stacking in imidazole-based molecular junc-
tions, Chem. Sci. 10, 9998-10002 (2019) - Published by The Royal Society of Chemistry.
Copyright CC BY-NC 3.0 (Ref. [147], covered in Sec. G.2).

The appendix also contains unpublished material of the manuscript in preparation:

M. S. Inkpen, G. Lovat, M. Camarasa�Gómez, D. Hernangómez�Pérez, F. Evers, X. Roy,
and L. Venkataraman, Metallocene-electrode contacts in single-molecule junctions (Ref.
[149], covered in Sec. G.3).

In this appendix we provide the technical computational details for the results shown
in chapter 5.

G.1 Silane-based molecular junctions

G.1.1 Computational details

Our DFT-based quantum transport calculations are performed using the DFT im-
plementation of FHI-aims [34]. We use an all-electron localized basis set (tier1 - �light�
settings, which are equivalent to double-ζ quality) with convergence criteria for the dif-
ference in the ground state total energy (10−6 eV), particle density (10−5/Å3) and forces
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(10−4 eV/Å). As exchange-correlation functional, we employ PBE [42] and include (i)
scalar relativistic corrections to the kinetic energy at the ZORA (zeroth order regular ap-
proximation) level and (ii) spectral e�ects of SO interaction included non-self-consistently
[55]. In order to obtain the optimized geometries for the transport calculations, we �rst �nd
the geometry of the molecular wire from a gas-phase relaxation. Then, we simultaneously
optimize the position of the tip of the electrodes (up to 11 atoms) and the molecular atoms.
In every geometry optimization we use the enhanced Broyden-Fletcher-Shanno-Goldfarb
algorithm, until the residual forces per atom are below the threshold value of 10−2 eV/Å.
Afterwards, we �x the resultant geometry and new layers are added to the external planes
of the electrodes to ensure the proper screening of the excess charge in the transport cal-
culations. The electrodes contain 37 atoms and are cut from a (111) face-centered crystal
with interatomic distance of 2.88 Å (for Au) and 2.89 Å (for Ag). Transport calculations
are performed non-selfconsistently with the package AITRANSS [26, 49], which implements
the standard non-equilibrium Green's function method as detailed in section 1.2.

G.1.2 Relevant scattering states involved in charge transport

We show in this section the isosurface plots of the scattering states producing the
relevant transport resonances in the transmission plots from Fig. 5.3. We depict the
HOMO and LUMO-based orbitals for Au and Ag contacts, both with thiol and amine
linkers.

Figure G.1 � (a) Molecular orbitals producing HOMO and LUMO resonances for the molecular
junction with NH2-Si4-NH2 and Au contacts. (b) Molecular orbitals producing HOMO and LUMO
resonances for the molecular junction with NH2-Si4-NH2 and Ag contacts. (c) Molecular orbitals
producing HOMO and LUMO resonances for the molecular junction with SH-Si7-SH and Au con-
tacts. (d) Molecular orbitals producing HOMO and LUMO resonances for the molecular junction
with SH-Si7-SH and Ag contacts.
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G.2 Imidazole-based molecular junctions

G.2.1 Computational details

Our DFT calculations shown in section 5.3 use the Kohn-Sham formulation imple-
mented in the package FHI-aims [34, 202]. The convergence criteria used were 10−6 eV
for the di�erence in the ground state total energy, 10−5 electrons/Å3 for the particle den-
sity, 10−3 eV for the sum of the eigenenergies and 10−2 eV/Å for the residual force per
atom and direction. The exchange-correlation functional employed was PBE [42] and the
transmission function was calculated using non equilibrium Green's function technique as
implemented in AITRANSS [26, 49] 1.2. The electrodes of the molecular junction were
modeled by pyramidal clusters of 55 atoms, with closest interatomic distance of 2.88 Å and
cut from a face-centered crystal grown in the (111) direction. For the DFT calculations we
used the FHI-aims �light� quality of the basis set (roughly equivalent to double-ζ quality).
To determine if this basis set quality was enough, we checked for the im-4-im and im-1
dimer junctions that the transmissions functions were una�ected by using the FHI-aims
�tight� settings on the lighter atoms (H, C, N, and O). For the geometry optimizations, the
set of im-N-im molecules were fully relaxed in anti conformation gas phase con�guration
using the enhanced Broyden-Fletcher-Shanno-Goldfarb algorithm, until the residual forces
per atom are below the threshold value of 10−2 eV/Å. We �nd the optimized contact angle
between the gold atom of the pyramidal apex by a subsequent fully relaxation with a sin-
gle Au atom of the complex Auapex-im-N-im-Auapex. Subsequently, additional gold layers
are added to build up the full gold electrodes and the quantum transport calculations are
performed.

G.3 Metallocene-based linkers in single-molecule junctions

G.3.1 Experimental two-dimensional conductance-displacement histogram

of 1,1'-M metallocenes

Figure G.2 � Two-dimensional conductance-displacement length histograms of the corresponding
1,1'-Fe (a), 1,1'-Ru (b) and 1,1'-Os (c) molecular junctions. The blue islands indicate the dis-
placement where a larger number of counts have been collected. The red areas correspond to the
minimal amount of counts are obtained. Experimental data obtained in Prof. L. Venkataraman's
group. Adapted with permission.



138 Appendix G. Theoretical calculation details for silane, . . .

G.3.2 Computational details

Our theory calculations are done using DFT with the all-electron implementation in
FHI-aims package [34] and the computation of the transmission function is done using
our home-made AITRANSS code [26, 49], in which we use the Kohn-Sham states from
the DFT together with the non-equilibrium Green's functions formalism. The self-energy
is energy independent and included following an empirical model as in chapters 1. The
transmission is calculated at Vbias = 0 since all the experiments are performed in the linear
response regime.

We use as exchange-correlation functional PBE [42]. We also include scalar relativis-
tic corrections to the kinetic energy at the level of the zeroth-order regular approximation
(ZORA) of all atoms. The basis set employed is equivalent to double-zeta plus polarization
for the molecular atoms and double-zeta for metallic heavy atoms of the leads. The elec-
trodes are modeled as pyramidal clusters with (111) direction growth. The clusters include
a total amount of 55 atoms, in 6 layers, with closest interatomic distance 2.88Å to ensure
the screening of the electric charge at the boundaries of the metallic cluster. The ground
state state is obtained by imposing the following convergence criteria: 10−5 electrons/Å3 for
the di�erence in the particle density, 10−6 eV for the di�erence in the total energy and 10−3

eV for the sum of the eigenvalues of the Kohn-Sham orbitals. The geometry optimization
in order to get the ground state is obtained using the Broyden-Fletcher-Shanno-Goldfarb
algorithm [34]. The relaxation of the molecular junction is achieved when the absolute
value of the components of the residual force per atom is below 10−2 eV/Å. In order to op-
timize the geometry we proceed as follows: �rst we realize an optimization of the molecule
in gas phase and then we add and relax the electrode to get the right contact angle.
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