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Abstract
We generalize the intersection theory of nef toric (Weil) b-divisors on smooth and complete
toric varieties to the case of nef b-divisors on complete varietieswhich are toroidalwith respect
to a snc divisor. As a key ingredient we show the existence of a limit measure, supported on a
balanced rational conical polyhedral space attached to the toroidal embedding, which arises
as a limit of discretemeasures defined via tropical intersection theory on the polyhedral space.
We prove that the intersection theory of nef Cartier b-divisors can be extended continuously
to nef toroidal Weil b-divisors and that their degree can be computed as an integral with
respect to this limit measure. As an application, we show that a Hilbert–Samuel type formula
holds for big and nef toroidal Weil b-divisors.
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Introduction

The theory of b-divisors (where b stands for “birational”) was introduced by Shokurov [34]
in the context of Mori’s minimal model program. Since then b-divisors have appeared in
many contexts. For instance in the work by Fujino [19] on base point free theorems, in
the work of Küronya and Maclean [29] on the Zariski decomposition of divisors, in the
proof of the differentiability of the volumes of divisors by Boucksom, Favre and Jonsson
[9], and in the work of Aluffi on Chow groups of Riemann–Zariski spaces [2]. In [26],
Kaveh and Khovanskii give an isomorphism between the group of Cartier b-divisors and
the Groethendieck group associated to the semigroup of subspaces of rational functions
preserving the top intersection index, and although stated in another language, in [18], Fulton
and Sturmfels give an isomorphism between the Cartier b-Chow group of a toric variety and
the polytope algebra which preserves the intersection product.

Moreover, b-divisors have been associated to dynamical systems in [7] and to psh functions
in [8]. In the last paper, b-divisors whose support is a single point are studied. In particular, a
top intersection product, that can be −∞, among (relatively) nef b-divisors is defined and it
is proved that such top intersection products can be computed by means of aMonge–Ampère
type measure in a valuation space. In [6], this top intersection product is generalized from
the smooth case to case of isolated singularities. In the paper [12], a b-divisor is associated to
the invariant metric on the line bundle of Jacobi forms, and it is shown that such a b-divisor
is integrable, in the sense that its top self intersection product is well defined and finite.
Moreover, it is proved that, considering this b-divisor, one recovers a Chern–Weil formula,
that says that the top self intersection product of the b-divisor is computed as the integral
on an open subset of a power of the first Chern form of the metrized line bundle of Jacobi
forms, and a Hilbert–Samuel formula that states that the asymptotic growth of the dimension
of the space of Jacobi forms is governed by the top self intersection product of the associated
b-divisor. In addition it is shown that in this case the associated b-divisor is toroidal and that
its top self intersection product can be computed using toric methods.
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It is expected that the results of [12] canbe extended to the invariantmetrics on automorphic
line bundles on mixed Shimura varieties, i.e. that the associated b-divisors are toroidal and
their degrees computable using toric techniques. In this spirit, in [14], the first author studied
the theory of toric b-divisors on toric varieties and showed that much of the theory of ordinary
divisors on toric varieties can be extended to the setting of b-divisors.

The aim of the present paper is to study toroidal b-divisors. In particular, we generalize
two results of [8] from the local case to the global toroidal case. Namely, that there is a well
defined top intersection product between (global i.e. not only supported on a single point) nef
b-divisors and that this top intersection product is given by a Monge–Ampère type measure
on a rational polyhedral complex. We moreover prove a Hilbert–Samuel formula for nef and
big toroidal b-divisors and a Brunn–Minkowski type inequality.

We have chosen to restrict ourselves to toroidal b-divisors because they appear naturally
in the applications to mixed Shimura varieties and they are technically simpler than arbitrary
b-divisors.

After the present paper was made public, the preprint [17] appeared. In this preprint a
general theory of intersection of nef b-divisors over countable fields is developed. Since any
toroidal situation can be reduced to a situation defined over a countable field, the existence
of an intersection product for toroidal b-divisors can also be deduced from [17, Theorem 6].
Moreover, since the intersection product defined in [17] and the one introduced here are both
continuous extensions of the usual intersection theory, they agree. We think that the present
paper is still valuable as the technique of proof is different and it gives a very concrete
interpretation of the intersection product in the toroidal case by means of a Monge–Ampère
type measure. It would be interesting to know if, in general, the intersection product of nef
b-divisors can also be interpreted in terms of a Monge–Ampère type measure.

Toroidal b-divisors come in two flavors: Cartier and Weil. We explain this briefly. Let
U ↪→ X be a fixed smooth and complete toroidal embedding without self-intersections of
dimension n over an algebraically closed field k. To (X,U) one can associate naturally a
weakly embedded, smooth conical rational complex Π = Π(X,U) (Proposition 3.22, Defini-
tion 3.35). This is the usual cone complex associated to a simple normal crossings divisor
X \ U endowed with a natural weak embedding.

An important feature of theweakly embbeded conical complexΠ is that it comes equipped
with a balancing condition (Definition 4.4) i.e. it is a tropical cycle. This balancing condition
will play an important role in the definition of the Monge–Ampère measure and in the
strong continuity properties of concave functions on balanceable polyhedral complexes [5,
Section 6].

In general the weakly embedded rational conical complex Π is not useful to compute
arbitrary intersections between toroidal divisors. We need to impose a further condition: that
of being quasi-embedded (Definition 1.10). This condition implies that the algebraicmoving
lemma from algebraic geometry for toroidal divisors is captured by the combinatorics of the
dual complex. Hence it is a necessary condition which permits to relate algebraic intersection
numbers with combinatorial intersection numbers. In the case of characteristic zero this
condition can always be achieved after shrinking U (Proposition 3.39).

Let |Π| denote the support of Π which carries a structure of a conical rational polyhedral
space (Definition 3.2). Let Rsm(Π) be the directed system of all smooth rational conical
subdivisions of Π. This is a directed set under the relation

Π ′′ � Π ′ iff Π ′′ is a smooth rational subdivision of Π ′.

An element Π ′ in Rsm(Π) corresponds to a smooth and complete toroidal embedding U ↪→
XΠ′ together with a proper toroidal birational morphism XΠ′ → X (Theorem 3.33).
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Now, for Π ′ ∈ Rsm(Π), we denote by Div (XΠ′ ,U)
R
the R-vector space of toroidal R-

divisors on XΠ′ , i.e. the group of divisors on XΠ′ supported on the boundary XΠ′ \ U with
real coefficients. For Π ′′ � Π ′ there are linear maps

Div (XΠ′ ,U)
R

π∗

Div (XΠ′′ ,U)
R
.

π∗

Then the spaces of Weil and Cartier toroidal b-divisors are defined as the projective and
injective limits

bDiv(X,U)R := lim←−
Π′∈Rsm(Π)

Div (XΠ′ ,U)
R
,

CbDiv(X,U)R := lim−→
Π′∈Rsm(Π)

Div (XΠ′ ,U)
R
,

respectively, with maps given by proper push-forward of divisors in the first case and pull-
back in the second (Definition 4.15). In other words, a Weil toroidal b-divisor is given by a
net

DDD = (DΠ′)Π′∈Rsm(Π) ,

where for each Π ′ ∈ Rsm (Π), the element DΠ′ is a toroidal R-divisor on XΠ′ , and all
these elements are compatible under push-forward. For Π ′ ∈ R(Π), we say that DΠ′ is
the incarnation of DDD on XΠ′ . On the other hand, a Cartier toroidal b-divisor on (X,U) is
determined by a single Π ′ ∈ R(Π) and a divisor DΠ′ ∈ Div(XΠ′ ,U)R. There is a natural
inclusionCbDiv(X,U)R ⊆ bDiv(X,U)R. Roughly speaking,Cartier b-divisors are b-divisors
that stabilize after a birational map, while Weil b-divisors may keep changing for all blow
ups. To simplify notation, we will usually omit the coefficient ring R from the notation, real
coefficients being always implicit.

As in toric geometry, for any Π ′ ∈ Rsm(Π), we may view toroidal divisors on XΠ′ as
piecewise linear functions on |Π| which are linear on each cone of Π ′. Hence, it is easy to
see that a Cartier toroidal b-divisor corresponds to a real valued piecewise linear function
whose locus of linearity is rational, while a Weil toroidal b-divisor DDD corresponds to a (not
necessarily piecewise linear) conical function

φDDD : |Π| (Q) −→ R,

where |Π|(Q) denotes the set of rational points of |Π|. Note that the only condition required
from the functionφDDD is that it is conical, which shows that the space ofWeil b-divisors is very
wild. Nevertheless, it turns out that if we impose the nefness condition toDDD (Definition 4.26),
then the function φDDD extends to a continuous (weakly concave) function

φDDD : |Π| −→ R,

whose restriction to each cone σ ∈ Π is concave (see Theorem 4.29).
Since Cartier toroidal b-divisors are determined on a concrete birational model, the

intersection theory of divisors gives immediately an intersection theory of Cartier toroidal
b-divisors. The main result of this paper is that the intersection product of nef Cartier toroidal
b-divisors can be extended continuously to nef Weil toroidal b-divisors and that this product
can be computed as the integral of a Monge–Ampère type measure.

Theorem A Let (U,X) be a toroidal embedding defined over an algebraically closed field
k, with X smooth and projective and X \ U the support of an effective snc ample divisor
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B. Assume that the associated weakly embedded conical rational polyhedral space |Π| is
quasi embedded. Then the top intersection product of nef Cartier toroidal b-divisors on
(X,U) can be extended continuously to a top intersection product of nef Weil toroidal b-
divisors on (X,U). Moreover, to a family DDD2, . . . ,DDDn of nef Weil toroidal b-divisors on
(X,U) we associate a Monge–Ampère type measure μDDD2,...,DDDn

, supported on a compact

subset S
| ̂Π| ⊆ |Π|, in such a way that

DDD1 · · ·DDDn =

∫

S|
̂Π|

φDDD1
μDDD2,...,DDDn

.

for any nef Weil toroidal b-divisorDDD1 on X.

If the field has characteristic zero, the set of birational toroidal structures (see Defini-
tion 3.37) forms a directed set (see Remark 4.21) and we can define toroidal b-divisor as an
element of the direct limit with respect to all possible birational toric structures ofX. The next
result means that the extra assumptions of TheoremA can always be achieved after shrinking
U if necessary. It is just a consequence of resolution of singularities and Proposition 3.39.

Theorem B Let X be a smooth and projective variety over a field of characteristic zero. Let
D1, . . . ,Dn be toroidalWeil b-divisors. Then there is a birational toroidal structure (π, ˜X,U)

such that the b-divisors D1, . . . ,Dn are toroidal with respect to π and B := ˜X \ U is the
support of an ample divisor,

In consequence, if the field has characteristic zero, we can apply TheoremA to any family
of toroidal nef b-divisors coming from different birational toroidal structures.

In Theorem A, the subspace S
| ̂Π| ⊆ |Π| and the measure μDDD2,...,DDDn

depend on the choice
of an Euclidean metric, but the integral does not. A more canonical representation can be
obtained using Corollary 3.17 where the top intersection product is computed as an integral
over the lattice unit sphere of Definition 3.14. Finally, note that nowadays, the existence of
the product can also be deduced from [17].

As an application, following [14, Section 5], we define the space of non zero global
sections of a toroidal b-divisorDDD as the space of rational functions f such that b-div(f) +DDD

is effective. Then the volume of aWeil b-divisor is defined in analogy to the volume of divisors
by the asymptotic growth of the spaces of global sections of multiples of the b-divisor and a
Weil b-divisor is called big if it has positive volume. Moreover, to a Weil toroidal b-divisor
DDD we can associate an Okounkov body ΔDDD (Definition 5.6). Then we obtain the following
extension of the Hilbert–Samuel theorem to the b-case (Theorem 5.14).

Theorem C LetDDD be a big and nef Weil toroidal b-divisor on (X,U). Then

vol(DDD) = nWvol(ΔDDD) = DDDn.

As a corollary, we obtain the continuity of the volume function on the space of nef and big
toroidal b-divisors (Corollary 5.16) and aBrunn–Minkowski type inequality (Corollary 5.17).

In Theorem C, the hypothesisDDD toroidal is necessary. In fact, in a forthcoming paper with
R. de Jong and D. Holmes we will show with an example that the volume function is not
continuous even for big and nef b-divisors defined over a countable field and that it does not
necessarily agree with the degree.

One of the key ingredients to prove the two stated theorems is the combinatorial machinery
developed in Sections 1 and 2. The existence of the limit measure μDDD associated to a nef
toroidal b-divisorDDD follows directly from Theorem 2.24 and the existence of the mixed limit
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measure μDDD2,...,DDDn
is a direct consequence of Corollary 2.28. These results are based on the

convex analysis on polyhedral spaces developed by M. Sombra and the authors in [5], that,
in turn, use techniques from [11] and [10].

Another key ingredient is a result in [21] relating tropical and algebraic intersection num-
bers on complete toroidal embeddings (Theorem 4.6).

It is important to note that for the applications to algebraic geometry it is convenient
to work with conical complexes provided with an integral structure. Nevertheless, when
studying convex analysis on polyhedral complexes as in [5], the integral structure plays no
role, only the affine structure does. Moreover, to write down explicit estimates it is handy
to choose a Euclidean structure. Therefore, to study Monge–Ampère measures associated to
nef toroidal b-divisors it is convenient to shift the focus from rational conical complexes to
Euclidean ones.

As has been noted in [12] and [14], a nef toroidal b-divisor encodes the singularities of the
invariant metric on an automorphic line bundle over a mixed Shimura variety of non-compact
type along any toroidal compactification. This article together with the abovementioned ones
lays the ground of a geometric intersection theory with singular metrics, satisfying Chern–
Weil theory and a Hilbert–Samuel formula, to be applied to mixed Shimura varieties of
non-compact type.

The article is organized as follows. In Section 1 we recall the tropical intersection theory
on Euclidean conical polyhedral spaces as in [5]. This is a Euclidean version of the tropical
intersection theory on weakly embedded rational conical polyhedral complexes developed
in [21].

In Section 2 we show the combinatorial version of our main result stated in Theorem A.
For this, we define the space of conical functions on Euclidean conical spaces and introduce
a concavity notion for them. We show that the top intersection product of such concave
functions exists, is finite and is given by the total mass of a week limit of discrete Monge–
Ampère measures. This is done by introducing the notion of the size of a tropical cycle. This
allows us to prove a Chern–Levine–Nirenberg type inequality (Lemma 2.18) from which we
conclude the weak convergence of the discrete measures (Theorem 2.24).

In Section 3, we define quasi-embedded rational conical polyhedral spaces. In short,
these are conical polyhedral spaces endowed with a lattice structure together with a quasi
embedding which is compatible with the lattice structure. Following [21], there is a rational
tropical intersection product on quasi-embedded rational conical spaces. We compare the
rational tropical intersection with the Euclidean one from Section 1 by means of the normal-
ization of cycles. We further show that the total mass of the Monge–Ampère measures from
Section 2.4 are independent of the Euclidean metric and only depend on the integral structure
and on the choice of a smooth subdivision (Corollary 3.17). We then recall the definition of a
toroidal embedding and describe a natural rational conical polyhedral space associated to it
(see [27] or [3] for further details). We describe the proper toroidal birational modifications
of a toroidal embedding which, on the combinatorial side, correspond to subdivisions of
rational conical complexes on this rational conical space. Finally, following [21], we give
a natural weak embedding of this space and we show that by adding boundary components
one can modify the toroidal structure of a toroidal embedding in such a way that this natural
weak embedding becomes a quasi embedding.

In Section 4 we state and prove our main results. We show that nef toroidal b-divisors have
well defined top intersection products (Definitions 4.20 and 4.26 and Theorem 4.32). For this,
we first relate the geometric intersection product of toroidal divisors with the rational tropical
intersection product on quasi-embedded rational conical spaces (Theorem 4.6) (see [21]).
Thenweuse the convergence results of Section2 in order to extend the top intersection product
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to nef toroidal b-divisors. However, note that the Monge–Ampère measures of Section 2 are
defined in a Euclidean setting (no integral structure). Therefore we will use the comparison
in Section 3.2 to relate the rational tropical intersection product with the Euclidean one.

Finally, in Section 5, as an application, we give a Hilbert–Samuel type formula for nef
and big toroidal b-divisors. This relates the degree of a nef toroidal b-divisor both with
the volume of the b-divisor and with the volume of the associated convex Okounkov body
(Definitions 5.3 and 5.6 and Theorem 5.14). As a corollary, we obtain a Brunn–Minkowski
type inequality (Corollary 5.17).

1 Euclidean tropical intersection theory

In this section we recall the tropical intersection theory on Euclidean conical polyhedral
spaces as in [5]. This is an adapted Euclidean version of the tropical intersection theory on
weakly embedded rational conical polyhedral complexes developed in [21].

1.1 Euclidean conical polyhedral spaces

We give the definition of a quasi-embedded conical polyhedral space endowed with a
Euclidean structure. We also discuss morphisms and subdivisions of such spaces.

Definition 1.1 Let X be a topological space. A conical polyhedral structure on X is a pair

Π = ({σα}α∈Λ, {Mα}α∈Λ)

consisting of a finite covering by closed subsets σα ⊆ X and for each σα, a finite dimen-
sional R-vector space Mα of continuous, R-valued functions on σα satisfying the following
conditions. Let Nα := Hom(Mα,R) denote the dual vector space.

(1) For each α ∈ Λ, the evaluation map φα : σα → Nα given by the assignment

v �−→ (u �→ u(v)) (u ∈ Mα),

maps σα homeomorphically to a strictly convex, full-dimensional, polyhedral cone in
Nα.

(2) The preimage under φα of each face of φα (σα) is a cone σα′
for some index α ′ ∈ Λ,

and we have that Mα′
=

{

u|
σα′

∣

∣u ∈ Mα
}

.
(3) The intersection of two cones is a union of common faces.

The following notations will be used.

(1) By abuse of notation we will think of Π as the set of cones {σα}α∈Λ. For every integer
k � 0 we write Π(k) for the set of cones of dimension k.

(2) Given a cone σ ∈ Π, we will write Mσ, Nσ and φσ for the corresponding R-vector
space, dual vector space and evaluationmap, respectively.We denote by 〈 , 〉σ the pairing
induced by the dual vector spaces Mσ and Nσ. We will usually omit the index “σ” from
the pairing.

(3) We will identify a cone σ with its image in Nσ. The linear structure of Nσ induces a
linear structure in σ. Therefore we can talk of linear maps between cones.

(4) If τ is a face of σ we will write τ ≺ σ or σ 
 τ.
(5) We will denote by 0σ the zero for the linear structure of Nσ. Since σ is strictly convex,

the set {0σ} is a face of σ. By abuse of notation we will denote this face also as 0σ.
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(6) By the relative interior of a cone σ, denoted relint(σ) we mean the preimage under φσ

of the interior of the cone φσ (σ) ⊆ Nσ.
(7) Π is called simplicial if every cone φσ(σ) is generated by an R-basis of Nσ.
(8) The space of linear functions onΠ, denoted L(Π) is the space of all continuous functions

on X whose restriction to each cone of Π is linear.

Definition 1.2 Let X be a topological space and Π,Π ′ two conical polyhedral structures on
X. Then Π ′ is a subdivision of Π, denoted by Π ′ � Π, if for every σ ′ ∈ Π ′ there exists
a σ ∈ Π with σ ′ ⊆ σ, the inclusion being a linear map. Two conical structures on X are
equivalent if they admit a common subdivision.

The following follows as in [5, Proposition 2.4].

Proposition 1.3 Let X be a topological space. Then

(1) the relation � is a partial order on the set of conical polyhedral structures on X,
(2) the subdivisions of a given conical polyhedral structure on X form a directed set,
(3) “being equivalent" is an equivalence relation between conical polyhedral structures on

X.

Definition 1.4 A conical polyhedral space X is a topological space equipped with an equiva-
lence class of conical polyhedral structures. A conical polyhedral complex on X is the choice
of a representative of the class of conical polyhedral structures on X.

Definition 1.5 If X is a conical polyhedral space, we let S(X) denote the set of conical
polyhedral complexes on it. By Proposition 1.3, this is a directed set ordered by subdivision.
We further denote by Ssp(X) the subset of all simplicial conical polyhedral complexes on X,
endowed with the induced directed set structure.

We will usually refer to a conical polyhedral space just as a conical space and to a conical
polyhedral complex just as a conical complex.

Definition 1.6 The dimension of a conical space X is defined as as

dim(X) = sup
σ∈Π

dim(Mσ)

for any conical complex Π on X. We say that X has pure dimension n if every cone of Π that
is maximal (with respect to the inclusion) has dimension n. These notions do not depend on
the choice of Π.

The following remark follows from [31, Remark 2.6].

Remark 1.7 Let X be a conical space and let Π be any conical complex on X. The connected
components of X are in one to one correspondence with the zero dimensional cones of Π.
The points belonging to the zero dimensional cones are called vertices of Π. In particular, if
X is connected, then Π has a unique vertex.

Definition 1.8 Let X and X ′ be conical spaces. Given conical complexes Π on X and Π ′ on
X ′, a morphism of conical spaces between Π and Π ′ is a continuous map f : X → X ′ such
that for every cone σ ∈ Π there is σ ′ ∈ Π ′ with f(σ) ⊆ σ ′, and the restriction f|σ : σ → σ ′
is a linear map.

The following definition is the Euclidean version of [21, Definition 2.1].
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Definition 1.9 A weakly embedded conical space is a triple (X,N, ι) where X is a conical
space, N is a finite dimensional R-vector space, and ι : X → N is a map such that there is a
conical complex Π on X for which the restriction of ι to every cone σ of Π is linear. The map
ι is called the weak embedding of X in N. A conical complex Π on the weakly embedded
conical space (X,N, ι) is a conical complex Π on X satisfying the above condition, namely
that ι is linear on each of its cones.

We will usually denote a weakly embedded conical space by the underlying conical space
X and, in this case, we denote the corresponding weak embedding, vector space and dual
vector space by ιX and NX and MX, respectively. Given a conical complex Π on the weakly
embedded conical space X, for every cone σ ∈ Π, we write NX

σ for NX ∩ Span (ιX(σ)) and
MX

σ = Hom
(

NX
σ ,R

)

for its dual.
The following notion is stronger than that of a weakly embedded conical space.

Definition 1.10 A weakly embedded conical space X is said to be quasi-embedded if there
is a conical complex Π on X such that the restriction ιX|σ is injective in each cone σ ∈ Π . In
this case, we identify each vector space Nσ with its image NX

σ in NX. As before, a conical
complex Π on the quasi-embedded conical space X is a conical complex Π on X satisfying
the above condition, namely that ι is linear and injective on each of its cones.

Example 1.11 Let X be a conical space and Π a conical structure on X. We may consider the
space of linear functions L(Π) onΠ. Then the evaluation mapX → Hom (L(Π),R) defines a
canonical quasi-embedding ofX. This quasi-embedding however does not serve our purposes
for the following two reasons. First, it not necessarily balanceable (see Definition 1.22) and
hence we can not use the strong continuity properties of convex and concave functions on
balanceable polyhedral complexes studied in [5]. Second, if the conical space arises from a
geometric object (i.e. a toric variety) it does not necessarily contain enough information to
recover the geometric intersection theory (see Example 3.34) .

The following is a useful property of quasi-embedded conical spaces that is not true in
general for weakly embedded ones.

Lemma 1.12 LetX be a quasi-embedded conical space. Then themap ιX : X → NX is proper.

Proof Let Π be a conical complex on X. Since X is a finite union of closed cones σ ∈ Π,
it is enough to show that ιX|σ is proper. Since X is quasi-embedded, we have that the map
ιX|σ ◦ φσ−1 : Nσ → NX is an injective linear map, hence proper. By definition, the map
φσ : σ → Nσ is proper. Hence ιX|σ = ιX|σ ◦ φσ−1 ◦ φσ is proper. 
�
Definition 1.13 A Euclidean conical space is a quasi-embedded conical space X together
with a Euclidean product on the real vector space NX. Given any conical complex Π on X,
this Euclidean structure induces compatible Euclidean structures in each vector space Nσ

for σ ∈ Π.

Definition 1.14 A morphism of weakly embedded conical spaces consists of a morphism of
conical spaces f : X → X ′ together with a morphism of finite-dimensional R-vector spaces
f ′ : NX → NX′

forming a commutative square with the weak embeddings.

X X ′

NX NX′

f

ιX
f ′

ιX′
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A morphism of quasi-embedded or of Euclidean conical spaces is a morphism of weakly
embedded conical spaces.

1.2 The Euclidean tropical intersection product

Throughout this section X will denote a Euclidean conical space of pure dimension n with
quasi-embedding given by ιX : X → NX. The goal of this section is to define the Euclidean
tropical intersection product betweenEuclidean tropical cycles and piecewise linear functions
on X. This is a Euclidean version of the tropical intersection product given in [21]. For the
interested reader, the articles [4], [18] and [24] constitute a more thorough reference for
tropical intersection theory on globally embedded conical polyhedral complexes with an
integral structure.

We start with some definitions. These are the Euclidean adaptations of [21, Section 3.1].

Definition 1.15 Let k � 1 be an integer and let τ ∈ Π(k − 1) be a cone. For every cone
σ ∈ Π(k) with τ ≺ σ we define the Euclidean normal vector v̂σ/τ of σ relative to τ to be
the unique unitary vector of Nσ that is orthogonal to Nτ and points in the direction of σ. By
abuse of notation v̂σ/τ will also denote its image in NX. If k = 1, we write v̂σ := v̂σ/{0σ}.

Recall that, given a conical complex Π on X, we are denoting by Π both the complex and
its set of cones.

Definition 1.16 A weight on Π is a map

c : Π −→ R.

It is called a k-dimensional weight if c(σ) = 0 for all σ /∈ Π(k). A k-dimensional weight is
called a k-dimensional Euclidean weight onΠ if, for every cone τ ∈ Π(k−1), the Euclidean
balancing condition

∑

σ∈Π(k)
τ≺σ

c (σ) v̂σ/τ = 0 (1.1)

holds true in NX.

The set ofweights onΠ is a real gradedvector spacedenotedbyW∗(Π). Thek-dimensional
Euclidean weights form an abelian group, which is denoted by Ek(Π).

We can now define the pull-back of a Euclidean weight along a subdivision.

Definition 1.17 Let Π ′ be a subdivision of Π with its induced structure of Euclidean conical
complex and denote by f : Π ′ → Π the corresponding morphism of Euclidean conical com-
plexes. Let c ∈ Ek(Π) be a Euclidean weight. Then the pull-back of c by f is the Euclidean
weight

f∗(c)(σ ′) =

{

c(σ) if dim σ = dim σ ′,
0 otherwise,

where σ ′ ∈ Π ′(k) and σ is the minimal cone ofΠ that contains σ ′. This construction defines
a group homomorphism

Ek(Π) −→ Ek(Π
′).

The fact that if c is a Euclidean weight then f∗(c) is also a Euclidean weight can be argued
as in [20, Example 2.11 (4)].
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More generally, Euclidean tropical cycles on the Euclidean conical space X are defined as
direct limits of Euclidean weights over all conical structures on X. Recall that S(X) denotes
the set of all conical complexes onX. It has the structure of a directed set ordered by inclusion.

Definition 1.18 The group of Euclidean tropical k-cycles on X is defined as the direct limit

EZk(X) := lim−→
Π′∈S(X)

Ek

(

Π ′) ,

with maps given by the pull-back maps of Definition 1.17. If c is a k-dimensional Euclidean
weight on a Euclidean conical complex Π in S(X), we denote by [c] its image in EZk(X).

Definition 1.19 The degree of a zero cycle [c] ∈ Z0(X) determined on Π, is defined as

deg([c]) = deg(c) =
∑

v∈Π(0)

c(v).

Definition 1.20 A Euclidean weight is called positive if it has non-negative values. A
Euclidean tropical cycle is called positive if it is represented by a positive Euclidean weight.
The sub-semigroups of positive Euclidean weights on Π and of positive Euclidean tropical
cycles of dimension k on X are denoted by E+

k (Π) and by EZ+
k (X), respectively.

Remark 1.21 It would seem natural to call positive tropical cycles effective in order to mimic
the usual terminology for algebraic cycles. This would be however misleading since, as we
will see later in Sect. 4.2, it is not true that the tropicalization of effective cycles are positive.

We now define the objects where we want to compute top intersection numbers, namely
balanced Euclidean conical spaces.

Definition 1.22 The Euclidean conical space X is said to be balanced if it is provided with
ann-dimensional Euclidean tropical cycle [X] ∈ EZn(X) represented by a Euclidean weight
b ∈ En(Π), for some conical complex Π in S(X), satisfying

b(σ) > 0, ∀σ ∈ Π(n).

In this case, we say that the conical complex Π is balanced.

Remark 1.23 If X is a balanced Euclidean conical space, then its is in particular a balanced
Euclidean polyhedral space in the sense of [5, Definition 3.27]. Thus we have at our disposal
the theory of concave functions on polyhedral spaces developed in that paper. See section
2.1 for a short recap.

We now define piecewise linear functions on the conical space X.

Definition 1.24 A piecewise linear function on X is a function φ : X → R for which there
is a conical complex Π on X such that φ ∈ L(Π). That is, φ is linear on each cone of Π. In
this situation, we say that φ is defined on Π. We denote by PL(X) the real vector space of
piecewise linear functions on X,

Ifφ is defined on Π, for each σ ∈ Π, we denote byφσ a linear function onNX satisfying

φ|σ = φσ ◦ ιX,σ.

By abuse of notation φσ will also denote this linear function restricted to Nσ.
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Remark 1.25 Let Π ′ � Π in S(X) and f : Π ′ → Π the corresponding morphism of conical
complexes. There is a natural pull-back map L(Π) → L(Π ′) given by φ �→ f∗φ := φ ◦ f.
The vector space of piecewise linear functions PL(X) can be seen as the direct limit in the
category of real vector spaces

PL(X) = lim−→
Π∈S(X)

L(Π)

with respect to these pull-back morphisms.

A piecewise linear function on X is always continuous because the restrictions to the
components of a finite closed covering are continuous. Moreover it is conical in the sense
that, for all real λ > 0, φ(λx) = λφ(x).

For any Π ∈ S(X) and k � 1 we now construct a Euclidean tropical intersection product

L(Π) × Ek(Π) −→ Ek−1(Π).

Definition 1.26 Let Π ∈ S(X) be a Euclidean conical complex on X, φ a piecewise linear
function defined onΠ and c ∈ Ek(Π) a k-dimensional Euclidean weight. Then theEuclidean
tropical intersection product is the (k−1)-dimensional Euclidean weightφ ·c : Ek−1(Π) →
R given by

φ · c(τ) :=
∑

σ∈Π(k)
σ�τ

−φσ

(

v̂σ/τ

)

c(σ).

The fact that φ ·c is indeed a Euclidean weight is proven in [5, Proposition 3.19] adapting
the standard proof in tropical geometry.

Wenowsee that this intersection product extends to an intersection product betweenPL(X)
and Euclidean tropical cycles. To this end we see that the Euclidean tropical intersection
product is compatible with the restriction to subdivisions.

Lemma 1.27 Let Π ′ � Π in S(X) and f : Π ′ → Π the corresponding morphism of conical
complexes. Let φ be a piecewise linear function defined on Π and c ∈ Ek(Π) a Euclidean
weight. Then

f∗(φ · c) = f∗φ · f∗c.

Proof This is proved in [5, Proposition 3.12]. 
�
We can now define the intersection product between PL(X) and Euclidean tropical cycles.

Definition 1.28 Let φ ∈ PL(X) be a piecewise linear function on X and let [c] ∈ EZk(X)

be a Euclidean tropical cycle. Let Π ∈ S(X) be any conical complex on X such that φ is
determined on Π and such that [c] is represented by c ∈ Ek(Π). Then the bilinear pairing

PL(X) × EZk(X) −→ EZk−1(X).

given by

φ · [c] := [φ · c]
is well defined by Lemma 1.27. We call this pairing the Euclidean tropical intersection
product as well.

The Euclidean tropical intersection product satisfies the following symmetry property.
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Proposition 1.29 Let φ1 and φ2 be two piecewise linear functions on X and c a Euclidean
tropical cycle. Then

φ1 · (φ2 · c) = φ2 · (φ1 · c).
Proof This is proved in [5, Proposition 3.15]. 
�

We define Euclidean tropical top intersection numbers of piecewise linear functions on X.

Definition 1.30 Assume that X is balanced with balancing condition [X]. Let φ1, . . . ,φn ∈
PL(X). The Euclidean tropical top intersection number 〈φ1 · · ·φn〉 is defined by

〈φ1 · · ·φn〉 := deg (φ1 · · ·φn−1 · (φn · [X])) .
This defines a multilinear map

PL(X) × · · · × PL(X)
︸ ︷︷ ︸

n-times

−→ R.

It is symmetric by Proposition 1.29.

Remark 1.31 In [21], the author works with weakly embedded conical complexes with an
integral structure. As a consequence of working with a weakly embedded conical complex,
only a tropical intersection product between tropical cycles and so called combinatorially
principal piecewise linear functions (which are called Cartier divisors) can be defined. In
our setting, we assume that the complex is quasi-embedded. It follows that every piecewise
linear function is combinatorially principal, hence arbitrary products between piecewise
linear functions and tropical cycles can be defined. As we will see later, the price to pay
for this in the algebro-geometric setting of Section 3.5 is that we will have to modify the
toroidal structure by adding more components at the boundary to be sure that the conical
complex corresponding to a toroidal embedding is quasi-embedded. Moreover, in the study
ofMonge–Ampèremeasures it is more natural to replace the integral structure by a Euclidean
structure.

1.3 Conical functions on Euclidean conical spaces

As before, X denotes a Euclidean conical space of pure dimension n with quasi-embedding
given by ιX : X → NX.

Definition 1.32 Let Π be a conical complex on X. We denote by 1-Π the 1-skeleton of Π.
That is,

1-Π =
⋃

σ∈Π(1)

σ.

A conical function ψ on Π is a function

ψ : 1-Π −→ R.

satisfying ψ(λv) = λψ(v) for all λ � 0. The space of conical functions on Π is denoted by
Conic(Π).

IfΠ ′ � Π in S(X), then there is an inclusion of 1-skeletons j : 1-Π ⊆ 1-Π ′. Let f : Π ′ → Π

be the corresponding morphism of conical complexes, and ψ ′ a conical function on Π ′, then
the push-forward f∗ψ ′ of ψ ′ by f is the conical function on Π given by restriction

f∗ψ ′ = ψ ′|1-Π.
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In other words, f∗ψ ′ = ψ ′ ◦ j, so f∗ is just “to forget” the rays of Π ′ that are not in Π.

Remark 1.33 If φ is a piecewise linear function on Π, then to it one can associate a conical
function which is also denoted by φ by restricting to the 1-skeleton.

The following result follows as in the classical case of fans.

Lemma 1.34 Let Π ∈ S(X) be a conical complex on X. If Π is simplicial then the map

L(Π) −→ Conic(Π)

is an isomorphism.

Proof This amounts to the well known fact that affine functions on a simplex are in bijective
correspondence with tuples of values on the vertices of the simplex. 
�

In view of Lemma 1.34 we can define the push-forward map of piecewise linear functions
on simplicial subdivisions.

Definition 1.35 LetΠ ′′ � Π ′ ∈ S(X)withΠ ′ simplicial. Let f : Π ′′ → Π ′ be the correspond-
ing morphism of conical complexes. Then the push-forward of piecewise linear functions
L(Π ′′) → L(Π ′) is defined as the composition

L(Π ′′) −→ Conic(Π ′′) f∗−−→ Conic(Π ′)
∼=−−→ L(Π ′).

More concretely, if φ is a piecewise linear function on Π ′′ then f∗φ is the unique piecewise
linear function on Π ′ that agrees with φ in the 1-skeleton of Π ′.

We now define the space of conical functions on X and see it as an inverse limit over all
conical complex structures.

Definition 1.36 The space of conical functions on X is the space of all functions φ : X → R

such that φ(λx) = λφ(x) for all x ∈ X and λ ∈ R�0 with the topology of pointwise
convergence.

Remark 1.37 The real vector spaces L(Π) and Conic(Π) are finite dimensional. Hence they
have a canonical topology. It is easy to verify that there are canonical identifications

Conic(X) = lim←−
Π∈S(X)

Conic(Π) = lim←−
Π∈Ssp(X)

L(Π), (1.2)

where the limits are taken in the category of topological vector spaces with respect to the
push-forward maps. The second identification follows from Lemma 1.34 and the fact that
simplicial subdivisions are cofinal.

Given an element ψ ∈ Conic(X), using (1.2), we can write ψ = (ψΠ)Π∈Ssp(X) for
ψΠ ∈ L(Π).

We can extend the Euclidean tropical top intersection number of Definition 1.30 to the
case where there is at most one conical function involved.

Lemma 1.38 Let z ∈ EZk(X) be a Euclidean tropical cycle of dimension k,φ1, . . . ,φk−1 ∈
PL(X) piecewise linear functions on X and ψ = (ψΠ)Π∈Ssp(Π) ∈ Conic(X) a conical
function. Choose a simplicial subdivision Π ∈ Ssp(X) where z can be represented by a
Euclidean weight c and such that all of the φi’s are defined on Π. Then the product

ψΠ · φ1 · · ·φk−1 · c.
is independent of the choice of Π.
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Proof In view of Lemma 1.27 we are reduced to prove the following projection formula. Let
Π ′ � Π be simplicial conical complexes on X and f : Π ′ → Π the corresponding morphism.
Moreover, let c1 ∈ E1(Π) be a Euclidean weight of dimension one on Π and φ a piecewise
linear function on Π ′. Then

f∗(f∗φ · c1) = φ · f∗c1. (1.3)

Again by Lemma 1.27, we have that

f∗(f∗φ · c1) = f∗f∗φ · f∗c1. (1.4)

The piecewise linear function φ − f∗f∗φ satisfies

(φ − f∗f∗φ)|ρ = 0, ∀ρ ∈ Π ′(1),

while the Euclidean weight f∗c1 satisfies

f∗c1(ρ) = 0, ∀ρ ∈ Π ′(1) \ Π(1).

From the explicit description of the product in Definition 1.26 we deduce

(φ − f∗f∗φ) · f∗c1 = 0. (1.5)

Equations (1.5) and (1.4) imply (1.3), which proves the lemma. 
�

Definition 1.39 Let z,φ1, . . . ,φk−1 andψ = (ψΠ)Π∈Ssp(X),Π and c be as in Lemma 1.38.
Then the Euclidean top intersection number of z, φ1, . . . ,φk−1 and ψ is defined by

〈ψ · φ1 · · ·φk−1 · z〉 := deg(ψΠ · φ1 · · ·φk−1 · c).

One of the main motivations of this article is to extend Definition 1.39 to certain cases
where all the functions involved are (not necessarily piecewise linear) conical functions and
not just one of them.

2 Monge–Ampèremeasures

Throughout this section X will denote an n-dimensional balanced Euclidean conical space
with quasi-embedding given by ιX : X → NX and balancing condition [X].

The goal of this section is to prove that given C, an admissible family of concave functions
on X (Definition 2.6), for any C-concave conical function φ on X (Definition 2.12), its top
intersection number exists, is finite, and is given by the integral of φ with respect to a
weak limit of discrete Monge–Ampère measures associated to the elements of the given
admissible family (Corollary 2.26). This is done by introducing the notion of the size of a
Euclidean tropical cycle. This allows us to prove a Chern–Levine–Nirenberg type inequality
(Lemma 2.18) from which we conclude the weak convergence of the discrete measures
(Theorem 2.24).

2.1 Concave functions on balanced conical spaces

For the convenience of the reader, we gather here some definitions and results form [5] but
translated to conical spaces instead of polyhedral ones.
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Definition 2.1 A piecewise linear function φ on X is called strongly concave if it is the
restriction of a concave function on NX. It is called concave if, for every positive Euclidean
tropical cycle w on X, the product φ ·w is positive. It is called weakly concave if the product
with the balancing condition φ · [X] is positive.

By [5, Proposition 4.9], a strongly concave function is concave and a concave function is
weakly concave.

There are also notions of strong concavity, concavity and weak concavity for arbitrary
functions f : X → R which are not necessarily piecewise linear ( [5, Definition 5.5]). These
are based on different notions of convex conbinations of points on polyhedral spaces ( [5,
Definition 5.1].

The main results we will use from [5] are the following:

Theorem 2.2 ([5, Theorem6.2])Letφ be a (not necessarily piecewise linear)weakly concave
function on X. Then φ is continuous.

Theorem 2.3 ([5, Theorem 6.23]) Let (fi)i∈N a sequence of (not necessarily piecewise lin-
ear) weakly concave functions onX such that there exists a dense subsetC ⊆ X and for every
x ∈ C the sequence (fi(x))i∈N has a finite limit. Then the sequence fi converges pointwise
everywhere to a function f : X → R. The function f is weakly concave, hence continuous,
and the convergence is uniform on compacts.

Remark 2.4 After Theorem 2.3, for the purpose of this paper one can think that the space of
weakly concave functions is the closure with respect to uniform convergence on compacts of
the space of piecewise linear weakly concave functions. Then Theorem 2.3 implies that, on
the space of weakly concave functions, pointwise convergence in a dense subset is equivalent
to uniform convergence on compacts.

2.2 C-Concave functions

Let | · | be the Euclidean norm on NX and let

S
X :=

{

v ∈ |Π|
∣

∣

∣ |ιΠ(v)| = 1
}

.

The set SX is compact since it is the inverse image of a compact space under a proper map by
Lemma 1.12. Note that the Euclidean normal vectors v̂σ/τ fromDefinition 1.15 are elements

in S
X.
We can view the space of conical function on X as a space of functions on S

X. In fact S
X

inherits from X a structure of compact polyhedral space. Then PL(X) can be identified with
the space of R-valued piecewise linear functions on S

X, while Conic(X) can be identified
with the space of all R-valued functions on S

X. We will use freely these identifications.
We will denote by C0

(

S
X

)

the space of continuous functions on S
X with the topology of

uniform convergence.

Remark 2.5 By the lattice version of the Stone-Weierstrass Theorem, the subset PL (X) ⊆
C0

(

S
X

)

is dense ([23, Theorem 7.29]).

Definition 2.6 Let C ⊆ PL (X) be a collection of piecewise linear functions onX. We say that
C is an admissible family of concave functions on X if the following properties are satisfied:
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(1) If φ1, . . . ,φr ∈ C, then the Euclidean tropical cycle φ1 · · ·φr · [X] is positive, i.e. if it
belongs to EZ+

n−r(X).
(2) C is a convex cone.
(3) The set C − C is dense in C0

(

S
X

)

.

If C is an admissible family of concave functions on X, an element φ ∈ C will be called
C-concave.

Remark 2.7 By the first condition, every element φ of C is weakly concave in the sense of
Definition 2.1.

Remark 2.8 In Definition 2.6 only conditions 1 and 3 are essential. In fact, if C is a set
satisfying only 1 and 3 then the convex cone generated by C satisfies the three conditions.

Example 2.9 The collection of piecewise linear concave functions on X in the sense of [5,
Definition 4.6] (see Definition 2.1) is an example of an admissible family of piecewise linear
functions on X by [5, Remark 4.36].

Example 2.10 We will see in the next section that if X = |ΠY | comes from the geometry of
a smooth and complete toroidal embedding U ↪→ Y satisfying certain mild hypothesis, then
there is a canonical admissible family C of concave functions on X induced by the collection
of nef toroidal divisors on smooth toroidal modifications of Y.

Remark 2.11 As we will see in Example 4.12, the families in Examples 2.9 and 2.10 may
be different. In fact it is conceivable that there are two toroidal embeddings giving rise to
isomorphic balanced conical spaces but such that the spaces of functions coming from nef
divisors are different. This is the reason why it is useful to be able to choose an admissible
family of concave functions C and to just identify the needed properties instead of choosing
a particular family.

From now on we fix an admissible family C of concave functions on X.

Definition 2.12 The space of C-concave conical functions on X, denoted by Conic (X)C, is
the closure of C in Conic (X) with respect to pointwise convergence.

The following is a key result. Before stating it, recall that for a subset A of a topological
space T , the sequential closure |A|seq of A is the set of all points that are limits of sequences
inA. Then |A|seq ⊆ A, its topological closure. The space T is called a Fréchet-Urysohn space
if, for all A ⊆ T , the condition |A|seq = A holds. A Fréchet-Urysohn space is sequential,
hence the topology of such spaces is determined by the convergent sequences.

Theorem 2.13 The space Conic (X)C of C-concave conical functions on X is contained in
C0(SX). Moreover the topologies induced in this space by the one of Conic (X) and the one
of C0(SX) agree. That is, in Conic (X)C the topology of pointwise convergence and that of
uniform convergence are the same. In particular Conic (X)C is metrizable.

Proof Let (fα)α∈I be a net of piecewise linear functions in C that converge to a conical
function f. Choose a countable dense collection of points x1, x2, . . . of X. Since the topology
of the space of conical functions is that of pointwise convergence, for any i > 0 there is an
αi such that, for all α � αi and all j � i, the condition

|fα(xj) − f(xj)| <
1
i
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is satisfied.Hence the sequence (fαi
)i>0 converges to f in a dense subset ofX. ByRemark 2.7

the functions fαi
are weakly concave. Therefore, by Theorems 2.3 and 2.2 , the sequence

(fαi
)i>0 converges to a weakly concave (hence continuous) function g, that agrees with f

on the points xi, i > 0. Let now y be another point of X. Repeating the argument with the
sequence of points y, x1, x2, . . . , we obtain a new continuous function g1, that agrees with f

in the point y and agrees with g in a dense subset. Hence g(y) = f(y). Since y is arbitrary,
we deduce that f = g. Therefore f is weakly concave and is a continuous conical function.
Moreover, f is the limit of the sequence (fαi

)i>0. We conclude that the space of C-concave
conical functions is Fréchet-Urysohn. Hence the topology is determined by the convergent
sequences. Using again Theorem 2.3 a sequence in Conic (X)C converges if and only if it
converges uniformly in SX. This concludes the proof. 
�

2.3 The size of a Euclidean tropical cycle

We have the following monotonicity lemma which we will use later on.

Lemma 2.14 Letφ1,φ2 be piecewise linear functions onX andΠ ∈ S(X) a conical complex
where they are defined. Assume that φ1(x) � φ2(x) for all x ∈ X. Then for all positive
Euclidean weights c ∈ E+

1 (Π) and every vertex ν of Π, the inequality

(φ1 · c) (ν) � (φ2 · c) (ν)
is satisfied.

Proof We have

(φ1 · c) (ν) =
∑

σ∈Π(1)
ν≺σ

−φ1(v̂σ)c(σ) �
∑

σ∈Π(1)
ν≺σ

−φ2(v̂σ)c(σ) = (φ2 · c) (ν),

as we wanted to show. 
�

To define the size of a positive Euclidean tropical cycle we choose an auxiliary function.

Definition 2.15 Let ϕ0 : NX → R be a concave piecewise linear function satisfying

ϕ0(v) � −‖v‖, (2.1)

writeϕ = ϕ0 ◦ ιX and let z ∈ EZ+
k (X) be a k-dimensional positive Euclidean tropical cycle.

Then the size of z (with respect to ϕ) is defined as

|z|ϕ := deg((ϕ ·)k z) ∈ R.

Remark 2.16

(1) It is clear that such a function ϕ0 exists. For instance to construct one we can choose an
orthonormal basis of NX, denote u1, . . . ,ur the corresponding coordinates, and write

ϕ0(u1, . . . ,ur) = 2rmin(0,u1, . . . ,ur) − (u1 + · · · + ur).

(2) Since ϕ0 is concave on NX, the function ϕ is strongly concave (Definition 2.1). There-
fore, by [5, Proposition 4.9] it is concave. Hence, for every k dimensional positive cycle
z and j � k, the cycle (ϕ·)j · z is positive. In particular the size of z is positive.
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Lemma 2.17 (1) If z ∈ EZ+
0 (X) � R�0 is 0-dimensional, then

|z|ϕ =
∑

ν∈Π(0)

c(ν) ∈ R�0, (2.2)

where Π ∈ S(X) is any conical complex where z is represented by a Euclidean weight c.
(2) Let z ∈ EZ+

1 (X) be a positive 1-dimensional Euclidean tropical cycle and let Π be as
above. Then

|z|ϕ �
∑

τ∈Π(1)

c(τ). (2.3)

Proof The first statement follows directly from the definition. Let ˜Π be a subdivision of Π

such thatϕ is piecewise linear on ˜Π. By the definition ofϕ, for every τ ∈ ˜Π(1), the inequality
ϕ(v̂τ) � −1 is satisfied. Therefore

|z|ϕ = deg(ϕ · z) =
∑

τ∈ ˜Π(1)

−ϕ(v̂τ)c(τ) �
∑

τ∈ ˜Π(1)

c(τ) =
∑

τ∈Π(1)

c(τ).


�
The following estimate is a Chern–Levine–Nirenberg type inequality (see [15, Section 3],

also [16, Theorem2.2]). Both in complex and real pluripotential theory these kind of estimates
play a key role when proving existence of Monge–Ampère measures.

Lemma 2.18 Let z ∈ EZ+
k (X) and φ ∈ PL(X) be a k-dimensional positive Euclidean trop-

ical cycle and a piecewise linear function, respectively. Assume that the Euclidean tropical
intersection product φ · z is a positive Euclidean tropical cycle. Then the inequality

|φ · z|ϕ �
(

sup
v̂∈SX

|φ(v̂)|

)

· |z|ϕ

is satisfied.

Proof Let ˜Π � Π be a subdivision of Π such that ϕ is piecewise linear on ˜Π and such that
the cycle z and the function φ are defined in ˜Π. We define the positive real constant B by

B := sup
τ∈ ˜Π(1)

|φ (v̂τ)| � sup
v̂∈SX

|φ (v̂)| .

Then for every τ ∈ ˜Π(1) we have that

φ(v̂τ) � −B � Bϕ(v̂τ).

Hence, since both φ and Bϕ are piecewise linear on ˜Π, we conclude that

φ � Bϕ.

Therefore, using Lemma 2.14, the positivity of (ϕ ·)k−1
z (Remark 2.16 (2)), and the com-

mutativity of the Euclidean tropical intersection product, we get

|φ · z|ϕ = deg
(

(ϕ ·)k−1
φ · z

)

= deg
(

φ · (ϕ ·)k−1
z
)

� Bdeg
(

(ϕ ·)k z
)

= B|z|ϕ,

as we wanted to show.

�
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2.4 Weak convergence of Monge–Ampèremeasures

Werecall the definition of the total variation norm (see e.g. [1,Definition 4.2.5 andProposition
4.2.5]).

Definition 2.19 Let Y be a locally compact topological space and let M(Y) be the space of
finite Radon measures on Y, i.e. the space of continuous linear forms on the space C0(Y) of
continuous real-valued functions on Y with respect to its weak topology. The total variation
norm ‖ · ‖ on M(Y) is given by

‖μ‖ := sup

⎧

⎨

⎩

∞
∑

i=1

|μ(Ai)|
∣

∣ {Ai}i�1 ⊆ Y measurable, Ai ∩ Aj = ∅, i �= j,
⋃

i�1

Ai = Y

⎫

⎬

⎭

for anyμ ∈ M(Y). In case that Y is compact, the total variation is just the norm of themeasure
as a continuous linear form on C0(Y).

In order to prove the main result of this section (Theorem 2.24), we use the following
version of Prokhorov’s theorem which can be derived from [13, Proposition 8.6.2].

Theorem 2.20 Let Y be a compact metrized space and let M ⊆ M(X) be a family of Radon
measures. The following are equivalent.

(1) Every sequence {μn} ⊆ M contains a weakly convergent subsequence.
(2) The family M has bounded total variation.

Definition 2.21

(1) Let z ∈ EZ1(X) be a 1-dimensional Euclidean tropical cycle and let Π ∈ S(X) such that
z is represented by a Euclidean weight c in E1(Π). We define the discrete measure μz

on S
X by

μz :=
∑

τ∈Π(1)

c(τ) · δv̂τ ,

where δv̂τ denotes the Dirac delta measure supported on v̂τ ∈ S
X. (This does not depend

on the choice of Π.)
(2) Let φ ∈ PL(X). The discrete Monge–Ampère measure μφ on S

X is defined by

μφ := μφn−1·[X]

The total variation of a discrete measure with finite support is given by the sum of the
absolute value of the measures of the points in the support. Therefore, for z and Π as in
Definition 2.21 we have

‖μz‖ =
∑

τ∈Π(1)

|c(τ)|. (2.4)

Remark 2.22 Although defined in a different setting, we note the similarity between the
discretemeasureμφ and theMonge–AmpèremeasureM(g) given in [8, Section 4.2], defined
with respect to a piecewise-affine plurisubharmonic function g (see [8, Proposition 4.9]).

The following proposition is a consequence of Lemma 2.18.
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Proposition 2.23 Let ψ be a C-concave conical function on X, and let (φj)j∈N be a
sequence of C-concave piecewise linear functions converging toψ. Moreover, fix a collection
γ1, . . . ,γn−1−k ∈ C − C for k ∈ {0, . . . ,n − 1}. Then the set

{

μγ1···γn−1−k·φk
j ·[X]

}

of measures on S
X has bounded total variation.

Proof Since, by Theorem 2.13, the convergence

lim
j∈N

φj|SX = ψ|
SX

is uniform and ψ|
SX is a continuous function on a compact set, there exists a positive real

number B such that

sup
j∈N

sup
x∈SX

∣

∣φj(x)
∣

∣ � B.

By assumption, for each � = 1, . . . ,n − 1, there exist elements β0
� and β1

� in C such that
γ� = β0

� − β1
� .

Since there are finitely many, we may choose a positive real number C such that

sup
�,i

sup
x∈SX

∣

∣

∣β
i
�(x)

∣

∣

∣ � C.

Since the involved piecewise linear functions are C-concave, we have that for every j ∈ N

and for every tuple (i1, . . . , in−1−k) ∈ {0, 1}n−1−k, the 1-dimensional Euclidean tropical
cycle

β
i1
1 · · ·βin−1−k

n−1−k · (φj

)k · [X]
is positive.

Fix j ∈ N and let Π ∈ S(X) be a conical complex on Xwhere theφj and the functions γi,
i = 1, . . . ,n− 1− k, are defined. Then, using equation (2.4), Lemma 2.18 and the estimate
(2.3), we get

‖μγ1···γn−1−k·φk
j ·[X]‖ =

∑

τ∈Π(1)

∣

∣

∣γ1 · · ·γn−1−k · φk
j · [X](τ)

∣

∣

∣

=
∑

τ∈Π(1)

∣

∣

∣(β0
1 − β1

1) · · · (β0
n−1−k − β1

n−1−k) · φk
j · [X](τ)

∣

∣

∣

�
∑

{0,1}n−1−k

∑

τ∈Π(1)

β
i1
1 · · ·βin−1−k

n−1−k · φk
j · [X](τ)

�
∑

{0,1}n−1−k

∣

∣

∣β
i1
1 · · ·βin−1−k

n−1−k · φk
j · [X]

∣

∣

∣

ϕ

� 2n−1−k · Cn−1−k · Bk · |[X]|ϕ,

proving the proposition. 
�

The following is the main result of this section. The proof is inspired in the classical proof
of the existence of Monge–Ampère measures of [32, Proposition 3.1].
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Theorem 2.24 Let ψ be a C-concave conical function on X, k ∈ {0, . . . ,n − 1} and
γ1, . . . ,γn−1−k ∈ C − C. We view ψ as a function on S

X. Then the following holds true.

(1) Let (φi)i∈N and (φ ′
j)j∈N be sequences of C-concave piecewise linear functions both

converging to ψ. Assume that

lim
i∈N

μγ1···γn−1−k·φk
i ·[X] = μ, lim

j∈N

μγ1···γn−1−k·φ′k
j ·[X] = ν,

for some Radon measures μ and ν (with respect to the weak-∗ topology). Then

μ = ν.

(2) The map from C to Radon measures on S
X given by

φ �−→ μγ1···γn−1−k·φk·[X] (2.5)

extends to a continuous operator from Conic (X)C to Radon measures on S
X. This oper-

ator is also denoted as in (2.5).

Proof The fact that statement (1) implies statement (2) is a standard consequence of Theo-
rem 2.13, Proposition 2.23 and Theorem 2.20.

We prove the theorem by induction on k. If k = 0 there is nothing to prove. So we can
assume that both statements of the Theorem are true for k− 1. By part (3) of Definition 2.6,
in order to prove that μ = ν, it is enough to prove that μ(η) = ν(η) for η ∈ C − C.

By Proposition 1.29 we have that

μ(η) = lim
i∈N

deg(η · γ1 · · ·γn−1−k · φk
i · [X])

= lim
i∈N

deg(φi · η · γ1 · · ·γn−1−k · φk−1
i · [X])

= lim
i∈N

μ
η·γ1···γn−1−k·φk−1

i ·[Π]
(φi).

By induction hypothesis, the sequence of measures μ
η·γ1···γn−1−k·φk−1

i ·[X]
, i ∈ N, con-

verges to the measure μη·γ1···γn−1−k·ψk−1·[X]. Moreover, by Theorem 2.13 the sequence
of functions φj, j ∈ N, converge uniformly to the continuous function ψ. Therefore, the
double limit

lim
(i,j)∈N×N

μ
η·γ1···γn−1−k·φk−1

i ·[X]
(φj)

exists and agrees with the diagonal limit i = j. Therefore

μ(η) = μη·γ1···γn−1−k·ψk−1·[X](ψ).

Similarly,

ν(η) = μη·γ1···γn−1−k·ψk−1·[X](ψ).

Hence, we get that μ(η) = ν(η). This concludes the proof of the theorem. 
�

Definition 2.25 Letψ be a C-concave conical function on X. The associatedMonge–Ampère
measure is defined by

μψ := μψn−1·[X].

We obtain the following corollary.
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Corollary 2.26 Let ψ be a C-concave conical function on X and let (φi)i∈N be a sequence
of C-concave piecewise linear functions on X converging to ψ. Then the limit

deg(ψ) := lim
i∈N

deg (φn
i · [X])

exists, is finite, and is given by

deg(ψ) =

∫

SX
ψ(u)dμψ.

It is called the degree of the C-concave conical function ψ.

Proposition/Definition 2.27 There is a symmetric map from the space of (n − 1)-tuples of
C-concave conical functions on X to the space of finite measures on S

X, called the mixed
Monge–Ampère measure, and denoted by

(ψi1 , . . . ,ψin−1) �−→ μψi1
,...,ψin−1

,

such that for every natural number � and for every choice of non-negative real numbers
λ1, . . . , λ�, the equality

μλ1ψ1+...+λ�ψ�
=

�
∑

i1,...,in−1=1

λi1 . . . λi�
μψi1

,...,ψin−1

is satisfied for every collection ψ1, . . . ,ψ� of C-concave conical functions on X.

Proof The argument is the same as the one given in the proof of [33, Theorem 5.17]. 
�

The following corollary follows from the definition of themixedMonge–Ampèremeasure
and Corollary 2.26.

Corollary 2.28 Let ψ1, . . . ,ψn be a collection of C-concave conical functions on X, and let
(φi,j)j∈N, i = 1, . . . ,n be sequences of C-concave piecewise linear functions converging
respectively to ψi. Then the limit

deg (ψ1 · · ·ψn) := lim
j

deg
(

φ1,j · · ·φn,j · [X])

exists, is finite and is given by

deg (ψ1 · · ·ψn) =

∫

SX
ψ1(u)dμψ2,...,ψn .

Moreover, for any 1 � i � n, we have integral formulae
∫

SX
ψ1(u)dμψ2,...,ψn =

∫

SX
ψi(u)dμ

ψ1,..., ̂ψi,...,ψn
.

It is called the mixed degree of the C-concave conical functions ψ1, . . . ,ψn.

Remark 2.29 By multilinearity, we can extend the definition of Monge–Ampère measures
and degrees to functions of the space Conic(X)C−Conic(X)C. Then the corollaries 2.26 and
2.28 extend to this setting.
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3 Toroidal embeddings and rational conical polyhedral spaces

In this section, we define quasi-embedded rational conical polyhedral spaces. In short, these
are conical polyhedral spaces endowed with a lattice structure together with a quasi embed-
ding which is compatible with the lattice structire. Following [21], there is a rational tropical
intersection product on quasi-embedded rational conical spaces. We compare the rational
tropical intersection with the Euclidean one from Section 1 by means of the normalization
of cycles. We further show that the total mass of the Monge–Ampère measures from Sec-
tion 2.4 are independent of the Euclidean metric and only depend on the integral structure
and on the choice of a smooth subdivision (Corollary 3.17). We then recall the definition of a
toroidal embedding and describe a natural rational conical polyhedral space associated to it
(see [27] or [3] for further details). We describe the proper toroidal birational modifications
of a toroidal embedding which, on the combinatorial side, correspond to subdivisions of
rational conical complexes on this rational conical space. Finally, following [21], we give
a natural weak embedding of this space and we show that by adding boundary components
one can modify the toroidal structure of a toroidal embedding in such a way that this natural
weak embedding becomes a quasi embedding.

3.1 Rational conical polyhedral spaces

Definition 3.1 Let X be a topological space. A rational conical polyhedral structure on X is
a pair

Π = ({σα}α∈Λ, {Mα}α∈Λ)

consisting of a finite covering by closed subsets σα ⊆ X and for each σα, a finitely generated
Z-moduleMα of continuous, R-valued functions on σα satisfying the following conditions.
Let Nα := Hom(Mα,R) denote the dual lattice.

(1) For each α ∈ Λ, the evaluation map φα : σα → Nα given by the assignment

v �−→ (u �→ u(v)) (u ∈ Mα),

maps σα homeomorphically to a strictly convex, full-dimensional, rational polyhedral
cone in Nα

R
. We call the sets σα cones.

(2) The preimage under φα of each face of φα (σα) is a cone σα′
for some index α ′ ∈ Λ,

and we have that Mα′
=

{

u|
σα′

∣

∣u ∈ Mα
}

.
(3) The intersection of two cones is a union of common faces.

The Z modules Mα give X a so called integral structure.

A subdivision of a rational conical polyhedral structure is defined as in Section 1 but with
the condition that it has to be rational as well. And we say that two rational conical polyhedral
structures are equivalent if they admit a common subdivision.

Definition 3.2 A rational conical polyhedral space X is a topological space equipped with
an equivalence class of rational conical polyhedral structures. A rational conical polyhedral
complex on X is the choice of a representative of the class of rational conical polyhedral
structures on X.

Most of the notations and terminology of Section 1 carry over to the case of rational
conical polyhedral complexes, by taking into account the integral structure.
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(1) Rational conical polyhedral complexes and rational conical polyhedral spaces will be
referred as rational conical complexes and rational conical spaces, respectively.

(2) Given a rational conical space X, the set of all rational conical complexes on X ordered
by inclusion is denoted by R(X). This has the structure of a directed set.

(3) As in Remark 1.7, if X is a rational conical space, then the set of cones of dimension zero
in any rational conical complex onX is in bijection with the set of connected components
of X.

(4) The terminology concerning cones, faces, interior, support and dimension is the same as
in the non-rational case keeping inmind the compatibility between the integral structures.

(5) The notion of a simplicial rational conical complex is the same. However, in the rational
case we also have a notion of smoothness. A rational conical complex is called smooth
if every cone σ ∈ Π is unimodular, i.e. if φσ(σ) is generated by a Z-basis of Nσ.
Clearly, a smooth rational conical complex is automatically simplicial. We denote the
set of simplicial and smooth complexes on a rational conical space X with their directed
set structures by Rsp(X) and Rsm(X), respectively.

(6) The notion of a morphism between rational conical spaces is the same except that we
require the restriction to each cone to be integral.

(7) The notions of weakly-embedded and quasi-embedded rational conical spaces are the
same except that the co-domain of the weak- (respectively quasi-) embedding is an
R-vector spaceNX

R
with an integral structureNX and the restriction of the weak (respec-

tively quasi-) embedding to each cone is required to be integral.

3.2 A bridge between Euclidean and integral structures

Following [21], there is a rational tropical intersection product on quasi-embedded rational
conical spaces. We compare the rational tropical intersection with the Euclidean one from
Section 1 by means of the normalization of cycles.

The following definitions are adapted from [21, Section 3.1] and are small modifications
of standard concepts in tropical geometry. See for instance the articles [4], [18] and [24].

Definition 3.3 LetXbeweakly-embedded rational conical spacewithweak-embeddinggiven
by ιX : X → NX

R
. Let Π be a rational conical complex on X. Let k � 0 be an integer and let

τ ∈ Π(k− 1) be a cone. For every cone σ ∈ Π(k) with τ ≺ σ. We define the lattice normal
vector vσ/τ of σ relative to τ to be the image in the quotientNX

R
/Nτ

R
of the unique generator

of Nσ/Nτ that points in the direction of σ. For every pair of cones σ and τ as before we will
chose a lifting ṽσ/τ ∈ Nσ

R
of vσ/τ. If k = 1, we write vσ := vσ/{0σ} = ṽσ/{0σ}.

Definition 3.4 Let X and Π be as in Definition 3.3. A k-dimensional weight on Π is called a
k-dimensional Minkowski weight on Π if, for every cone τ ∈ Π(k − 1), the relation

∑

σ∈Π(k)
τ≺σ

c (σ) vσ/τ = 0 (3.1)

holds true in NX
R

/Nτ
R
. Equivalently, c satisfies the relation

∑

σ∈Π(k)
τ≺σ

c (σ) ṽσ/τ ∈ Nτ
R
. (3.2)

The k-dimensional Minkowski weights on Π form a real vector subspace, which is denoted
by Mk(Π).
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The condition (3.1) is called the (lattice) balancing condition around τ, while the condition
(1.1) is called the Euclidean balancing condition.

Remark 3.5 Note that the balancing condition (3.1) is defined for any weakly-embedded (not
necessarily quasi-embedded) rational conical space.

The following notions carry over from the Euclidean to the lattice case directly. Consider
X a weakly-embedded rational conical space.

(1) The definition of the pull-back along a subdivision is the same.
(2) The definition of the group of (lattice) tropical cycles is analogous. This group is denoted

by Zk(X).
(3) The definition of balanced rational conical space is the same as in the Euclidean case

only that in the lattice case, we just ask X to be weakly-embedded and not necessarily
quasi-embedded.

(4) The definition of the space PL(X) of piecewise linear functions on X is the same. We
must have in mind that nowwe only allow rational subdivisions although we are working
with real coefficients.

(5) SinceX has a rational structure, we can defineX(Q) as the union of the subsets of rational
points on each rational cone.

(6) The space of conical functions Conic(X) is defined as the space of functions f onX(Q) =

X ∩ ι−1
X (NX

Q
) with real values, satisfying

f(λx) = λf(x), λ ∈ Q�0,

with the topology of pointwise convergence. Then

Conic(X) = lim←−
Π∈Rsm(X)

PL(Π) = lim←−
Π∈Rsp(X)

PL(Π).

A difference with the Euclidean case is that now the limit is taken over a countable set, so
every convergent net of conic functions has a converging subsequence.

Remark 3.6 Assume now that X is quasi-embedded. Let ̂X be the Euclidean conical space
obtained by choosing a metric on NX

R
and forgetting the integral structure. Since we allow

only rational conical complexes Π on X, the set S(̂X) is much bigger than R(X) and hence
the spaces of functions are different. Nevertheless, there is a commutative diagram

PL(X) Conic(X)

PL(̂X) Conic(̂X)

(3.3)

The space PL(̂X) is the space of all piecewise linear functions onX, while PL(X) is the space
of piecewise linear functions whose linearity locus is defined over Q. The space Conic(̂X)
is the space of conical functions on X, while the space Conic(X) is the space of real valued
conical functions on X(Q). The arrows in diagram (3.3) are the obvious ones. In particular
the upward arrow on the right of the diagram sends a conical function on X to its restriction
to X(Q).

The definition of the intersection product in the lattice case is different from the Euclidean
case, because of the difference between Euclidean weights and Minkowski weights. Note
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also that even though Minkowski weights and normal vectors are defined already for weakly
embedded rational conical spaces, in order to define an intersection product in general, we
must ask the space to be quasi-embedded (see Remark 1.31). To avoid confusion between
the Euclidean and lattice intersection product, we will use a different symbol.

Definition 3.7 Let X be a quasi-embedded rational conical space. Let Π ∈ R(X) a rational
conical complex on X. Let φ ∈ L(Π) be a piecewise linear function and c ∈ Mk(Π) a
Minkowski weight. Then the (lattice) tropical intersection product φ�c ∈ Mk−1(Π) is the
Minkowski weight given, for τ ∈ Π(k − 1), by

(φ � c) (τ) :=
∑

σ∈Π(k)
τ≺σ

−φσ

(

ṽσ/τ

)

c(σ) + φτ

⎛

⎜

⎜

⎝

∑

σ∈Π(k)
τ≺σ

c(σ)ṽσ/τ

⎞

⎟

⎟

⎠

.

Note that this is well defined since c ∈ Mk(Π) is a k-dimensional Minkowski weight and
hence

∑

σ∈Π(k)
τ≺σ

c(σ)ṽσ/τ ∈ Nτ
R
.

Moreover, if ṽ ′
σ/τ is another choice of liftings, then wσ/τ := ṽσ/τ − ṽ ′

σ/τ ∈ Nτ
R
and

therefore

∑

σ∈Π(k)
τ≺σ

−φσ

(

wσ/τ

)

c(σ) + φτ

⎛

⎜

⎜

⎝

∑

σ∈Π(k)
τ≺σ

c(σ)wσ/τ

⎞

⎟

⎟

⎠

= 0,

so the intersection product is independent of the choice of liftings.

Lattice tropical cycles will be called just tropical cycles and lattice tropical intersection will
be called tropical intersection.

As in the Euclidean case, the tropical intersection product extends to a bilinear pairing
between piecewise linear functions and tropical cycles.

Definition 3.8 Let X be a quasi-embedded rational conical space. Let z ∈ Zk(X) be a k-
dimensional tropical cycle and let φ ∈ PL(X). Let Π ∈ R(X) be such that z is represented
by a k-dimensional Minkowski weight c ∈ Mk (Π) and such that φ is defined on Π. Then
the tropical intersection product φ � z ∈ Zk−1(Π) given by

φ � z := [φ � c]

is well defined.

Remark 3.9 If X is a balanced quasi-embedded rational conical space, then the definition of
the tropical top intersection numbers is the analogue of the Euclidean case (Definition 1.30)
but using the (lattice) tropical product.

We are now ready to relate Euclidean and lattice structures. As before, we letX be a quasi-
embedded rational conical space and we denote by ̂X the Euclidean conical space induced
by X by forgetting the rational structure and by choosing a Euclidean metric 〈 , 〉 on NX

R
.

Given Π ∈ R(X) we denote by ̂Π the induced Euclidean conical complex on ̂X. Note that if
Π is smooth, then ̂Π is simplicial.
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We introduce the following notation. For Π ∈ R(X) and for a cone σ ∈ Π we let

vol(σ) := vol〈 , 〉(Nσ
R
/Nσ) =

√

det
(〈vi, vj〉

)

i,j

where {v1, . . . , vk} is an integral basis of Nσ. Note that vol(σ) depends on both, the rational
structure and the Euclidean one.

Recall that W∗(Π) denotes the space of weights of Π. We define a map ̂ : W∗(Π) →
W∗(Π) given by

ĉ(σ) := vol(σ)c(σ),

Lemma 3.10 WIth notation as above, if c ∈ Mk(Π) is a k-dimensional Minkowski weight
on Π then ĉ is a Euclidean weight ĉ ∈ Ek(̂Π).

Proof Let τ ∈ Π(k − 1). We have to show that ĉ is a Euclidean weight. For any σ ∈ Π(k)

containing τ let ṽσ/τ ∈ Nσ
R
be a lifting of the lattice normal vector as in Definition 3.3 and

let

ṽσ/τ = vσ,τ + vσ,τ⊥

be an orthogonal decomposition of ṽσ/τ with vσ,τ ∈ Nτ
R
and vσ,τ⊥ orthogonal to Nτ

R
.

The Euclidean normal vector v̂σ/τ of Definition 1.15 is just the normalization of vσ,τ⊥ ,
i.e. we have v̂σ/τ = vσ,τ⊥/‖vσ,τ⊥‖. If {v1, . . . , vk−1} is an integral basis of Nτ, then
{v1, . . . , vk−1, ṽσ/τ} is a basis on Nσ. Therefore,

‖vσ,τ⊥‖ =
vol(σ)
vol(τ)

. (3.4)

We compute
∑

σ∈Π(k)
τ≺σ

ĉ (σ) v̂σ/τ =
∑

σ∈Π(k)
τ≺σ

c (σ) vol(σ)v̂σ/τ

= vol(τ)
∑

σ∈Π(k)
τ≺σ

c (σ) ṽσ,τ⊥

= vol(τ)
∑

σ∈Π(k)
τ≺σ

c (σ)
(

ṽσ/τ − vσ,τ

)

= 0,

In the last equation we have used that, since c is a Minkowski weight then
∑

c(σ)ṽσ/τ

belongs to Nτ, hence agrees with its orthogonal projection to Nτ
R
which is

∑

c(σ)vσ,τ. We
deduce that ĉ is a Euclidean weight. 
�
Definition 3.11 Let X be a quasi-embedded rational conical space. Let Π ∈ R(X) and let
c ∈ Mk(Π)R be a k-dimensional Minkowski weight. Then the Euclidean weight ĉ ∈ Ek(̂Π)

is called the normalization of c. The normalization ẑ of a tropical cycle z ∈ Zk(X) is defined
to be the class [ĉ] ∈ EZk(̂X) of the normalization of any representative Minkowski weight
c ∈ Mk(Π) of z.

Remark 3.12 If c ∈ M0(Π) is 0-dimensional, then ĉ = c.

The following proposition shows the compatibility between the tropical intersection prod-
uct and the Euclidean one, allowing us to replace the integral structure by the Euclidean one
in computations.
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Proposition 3.13 Let X be a quasi-embedded rational conical space and let Π ∈ R(X) be a
rational conical complex on X. Let φ ∈ PL(X) be a piecewise linear function defined on Π

and let c ∈ Mk(Π). Then

φ̂ � c = φ · ĉ.
Hence, also for a k-dimensional Minkowski cycle z ∈ Zk(X) we have

φ̂ � z = φ · ẑ.
Proof Let τ ∈ Π(k − 1). We use the same notation as in the proof of Lemma 3.10. Since c

is a Minkowski weight, we have that
∑

σ∈Π(k)
τ≺σ

c(σ)ṽσ/τ =
∑

σ∈Π(k)
τ≺σ

c(σ)vσ,τ. (3.5)

We compute, using equation (3.4),

φ̂ � c(τ) =

⎛

⎜

⎜

⎝

∑

σ∈Π(k)
τ≺σ

−φσ

(

ṽσ/τ

)

c(σ) + φτ

⎛

⎜

⎜

⎝

∑

σ∈Π(k)
τ≺σ

c(σ)ṽσ/τ

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

· vol(τ)

=

⎛

⎜

⎜

⎝

∑

σ∈Π(k)
τ≺σ

−φσ

(

ṽσ/τ

)

c(σ) + φτ

⎛

⎜

⎜

⎝

∑

σ∈Π(k)
τ≺σ

c(σ)vσ,τ

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

· vol(τ)

=

⎛

⎜

⎜

⎝

∑

σ∈Π(k)
τ≺σ

−c(σ)φσ

(

vσ,τ⊥
)

⎞

⎟

⎟

⎠

· vol(τ)

=
∑

σ∈Π(k)
τ≺σ

−c(σ)vol(σ)φσ

(

vσ,τ⊥
) · ‖vσ,τ⊥‖−1

=
∑

σ∈Π(k)
τ≺σ

−ĉ(σ)φσ

(

v̂σ/τ

)

= φ · ĉ(τ),
hence the first statement of the proposition follows. The second statement clearly follows
from the first. 
�

Let Π be a quasi-embedded smooth rational complex and let ̂Π be the Euclidean one
obtained by choosing a Euclidean metric on N|Π|. Given an admissible family C of concave
functions on |̂Π| and a C-concave conical function ψ on |̂Π| we show that the total mass
of its associated Monge–Ampère measure μψ from Definition 2.25 is independent of the
Euclidean metric and only depends on the integral structure and on the choice of the smooth
subdivision.

Definition 3.14 For each cone σ ∈ Π letΔσ be the simplex spanned by the lattice generators
of the one-dimensional faces of σ. Then the lattice unit sphere S

Π is defined as

S
Π =

⋃

σ∈Π

Δσ ⊆ |Π|.
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There is a homeomorphism h
Π, ̂Π : S

Π → S
| ̂Π| given by the radial projection and a function

nΠ : S
Π → R>0 given by nΠ(x) = ‖ι(x)‖, so that

h
Π, ̂Π(x) =

1
nΠ(x)

x.

Given a measure μ on S
| ̂Π| we define the measure ηΠ(μ) on S

Π by

dηΠ(μ) =
1

nΠ
d(h−1

Π, ̂Π
)∗(μ).

The notation will become clear shortly as we will see that ηΠ(μ) is independent of the
choice of the Euclidean structure.

Lemma 3.15 Let f be a continuous conic function in |Π|. Then
∫

Sπ
f dηΠ(μ) =

∫

S|
̂Π|

f dμ.

Proof Using that f is conic and the definition of the pushforward of a measure we obtain
∫

SΠ
f dηΠ(μ) =

∫

SΠ

1
nΠ

f d(h−1
Π, ̂Π

)∗(μ) =
∫

SΠ
f ◦ h−1

Π, ̂Π
d(h−1

Π, ̂Π
)∗(μ) =

∫

S|
̂Π|

f dμ.


�

Definition 3.16 Consider the admissible family C of concave functions on |̂Π|, the C-concave
conical function ψ on |̂Π| and its associated Monge–Ampère measure μψ. We denote by

ηΠ,ψ := ηΠ

(

μψ

)

the induced Monge–Ampère measure on S
Π defined above. Similarly, for any collection

ψ1, . . . ,ψn−1 of C-concave conical functions, we denote by

ηΠ,ψ1,...,ψn−1 := ηΠ

(

μψ1,...,ψn−1

)

the induced mixed Monge–Ampère measure on S
Π.

Lemma 3.15 and Corollary 2.28 have the following immediate consequence.

Corollary 3.17 Let ψ1, . . . ,ψn be a collection of C-concave conical functions on |Π|. Then
for any i ∈ {1, . . . ,n} themeasure η

Π,ψ1,..., ̂ψi,...,ψn
is independent of the choice of Euclidean

metric and

deg (ψ1 · · ·ψn) =

∫

SΠ
ψi(u)dη

Π,ψ1,..., ̂ψi,...,ψn
.

3.3 The rational conical space attached to a toroidal embedding

Throughout this section kwill denote an algebraically closed field. All of the varieties appear-
ing in this section will be defined over k even if not stated explicitly. We recall the definition
of a toroidal embedding and describe its associated rational conical space. The following
definition is taken from [27, Definition 1, pg. 54].
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Definition 3.18 Let X be an n-dimensional normal, algebraic variety over k and let U be a
smooth Zariski open subset of X. An open immersion U ↪→ X is a toroidal embedding if
for every closed point x ∈ X there exists an n-dimensional torus T, an affine toric variety
Xσ ⊇ T, a point x ′ ∈ Xσ and an isomorphism of k-local algebras

̂OX,x
	−→ ̂OXσ,x′ (3.6)

such that the ideal in ̂OX,x generated by the ideal ofX\U corresponds under this isomorphism
to the ideal in ̂OXσ,x′ generated by the ideal of Xσ \ T. Here, the hat “̂” denotes the
completion of the local ring at a point. Such an isomorphism is called a chart at x and the
pair (Xσ, x ′) is called a local model at x.

If all the irreducible components of the boundary divisor X \ U of a toroidal embedding
are normal, then it is called a toroidal embedding without self intersection.

Definition 3.19 LetU ↪→ Xbe a toroidal embedding (definedoverk)without self intersection
and let {Bi | i ∈ I} be the irreducible components of the boundary divisor B = X \ U. For
every subset J ⊆ I, write BJ :=

⋂

i∈J Bi �= ∅. The strata of the toroidal embedding are
the irreducible components of the sets of the form BJ \

⋃

i/∈J Bi. The strata will be denoted
{Sα}α∈Λ whereΛ is a finite set. Themaximal strata correspond to the irreducible components
of the open set U.

The following lemma is [27, Proposition-Definition 2, pg. 57].

Lemma 3.20 Let notations be as above and consider a subset J ⊆ I such that BJ �= ∅ and
let Sα0 be an irreducible component of BJ \

⋃

i/∈J Bi. Then the following holds true:

(1) BJ is normal.
(2) Sα0 is non-singular.

Moreover, the sets Sα,α ∈ Λ define a stratification ofX, i.e. every point ofX is in exactly one
stratum and the closure of a stratum is a union of strata. Furthermore, if x ∈ X and (Xσ, x ′)
is a local model at x, then the closures Sα of the strata Sα such that x ∈ Sα correspond
formally to the closure of the torus orbits in Xσ containing x ′. In particular, if x ∈ Sα, then
Sα corresponds formally to the torus orbit O(x ′) itself.

The following Proposition/Definition is adapted from [27, Definition 3, pg. 59]. See also
Corollary 1 in page 61 of [27].

Proposition/Definition 3.21 Let notations be as in Definition 3.19. For any non-empty stra-
tum Sα of the toroidal embedding U ↪→ X, the combinatorial open set Star(Sα) ⊆ X is
defined by

Star(Sα) :=
⋃

β : Sα⊆Sβ

Sβ = X \
⋃

γ : Sγ∩Sα=∅
Sγ.

Moreover, let

MSα :=
{

B ∈ Ca-Div (Star (Sα))
∣

∣ supp(B) ⊆ Star (Sα) \ U
}

,

M
Sα
+ :=

{

B ∈ MSα
∣

∣B effective
}

.

ThenMSα is a free abelian group (a lattice) whileM
Sα
+ has the structure of a sub-semigroup.

For each stratum Sα we denote by NSα =
(

MSα
)∨

the dual lattice of MSα and by 〈 , 〉Sα
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the induced pairing. Finally, let

σSα :=
{

v ∈ N
Sα
R

∣

∣ 〈m, v〉Sα � 0, ∀m ∈ M
Sα
+

}

⊆ N
Sα
R

.

Then σSα ⊆ N
Sα
R

is a strongly convex rational polyhedral cone of maximal dimension.

The idea behind Proposition/Definition 3.21 is that given a stratum S, we have produced a
maximal dimensional cone σS in the finite-dimensional real vector space NS

R
which comes

equipped with a canonical lattice NS.
We now see that these cones can be glued together into a rational conical complex. For a

toroidal embeddingU ↪→ Xwithout self intersection, let |Π(X,U)| be the quotient topological
space defined by

∣

∣Π(X,U)

∣

∣ :=
⊔

Sα stratum

σSα/ ∼

where ∼ is the equivalence relation generated by isomorphisms

βα,α′
: σSα 	−→ face of σSα′

whenever Sα ⊆ Star (Sα′). Here, the map βα,α′
is the restriction of the map N

Sα
R

→
N

Sα′
R

defined as the dual of the map M
Sα′
R

→ M
Sα
R

, which in turn is induced by the map
MSα′ → MSα given by restricting divisors from Star (Sα′) to Star (Sα) (see [27, Chapter
II, Section 1]). We have the following proposition.

Proposition 3.22 If U ↪→ X is a toroidal embedding without self intersection, then the pair

Π(X,U) =

(

{

σSα

}

Sα stratum
,
{

MSα

}

Sα stratum

)

defines a rational conical structure on
∣

∣Π(X,U)

∣

∣ in the sense of Definition 3.1. Hence,
∣

∣Π(X,U)

∣

∣ is a rational conical space in the sense of Definition 3.2 with rational conical
structure given by Π(X,U).

Proof The proof can be found in [27, Chapter II, pg. 71]. 
�
The collection of lattices

{

MSα
}

in the above proposition gives the integral structure of
the toroidal embedding.

The following lemma follows from [27, Chapter II, Corollary 1].

Lemma 3.23 Let U ↪→ X be a toroidal embedding without self intersection and let x ∈ X

belonging to a stratum S. If (Xσ, x ′) is a local model at x then

MS � M(T)/
(

M(T) ∩ σ⊥
)

and σS � σ ,

where M(T) refers to the lattice of characters of the torus T ⊆ Xσ and σ⊥ is the set defined
by

σ⊥ := {m ∈ M(T) | 〈m, v〉 = 0, ∀v ∈ σ}.

In particular, the local model (Xσ, x ′) is determined up to isomorphism by the stratum S.

Given a cone σ in Π(X,U), we will denote by Sσ the stratum corresponding to σ and by

Sσ its closure in X.

123



Toroidal b-divisors and Monge–Ampère measures

Example 3.24 Let Σ be a fan in NR for some lattice N and let M := N∨ be its dual lattice.
Furthermore, let XΣ be its associated normal toric variety over k with dense torus T =

Spec(k[M]). Clearly, the inclusion T ↪→ XΣ defines a toroidal embedding. The components
of the boundary divisor B = XΣ \ T are the T-invariant prime divisors Bτ corresponding
to the rays τ ∈ Σ(1), and the strata of X are the T-orbits O(σ) corresponding to the cones
σ ∈ Σ. The combinatorial open sets of XΣ are precisely its T-invariant affine open subsets.

The isomorphism

M/
(

M ∩ σ⊥
)

� MO(σ)

given by the assignment

[m] �−→ div (χm) ,

where χm denotes the character of the torus associated to m ∈ M, induces an identification
of lattices

NO(σ) � Nσ = N ∩ Span(σ)

and of cones

σO(σ) � σ.

Remark 3.25 As in the toric case, the set of rays Π(X,U)(1) of the rational conical com-
plex associated to a toroidal embedding U ↪→ X is in bijection with the set of irreducible
components of the boundary divisor B = X \ U. Indeed for every irreducible component
Bi, the corresponding ray in Π(X,U)(1), which we will denote by τBi

is the linear function

τBi
: MS{i} → Z given bynBi �→ n. Conversely, one can show that any ray τ ∈ Π(X,U)(1)

arises in thisway (see [27, pg. 63]). For any such rayτ, wewill denote byBτ the corresponding
irreducible boundary component.

Before giving a more general class of examples of toroidal embeddings, we recall some
definitions.

Definition 3.26 Let B ⊆ X be a divisor on a smooth variety X. We say that B is a normal
crossing divisor (abbreviated nc) if the following condition holds:

(1) For all x ∈ Xwe can choose local coordinates x1, . . . , xn and natural numbers �1, . . . , �n

such that B =
{
∏

i x
�i
i = 0

}

in a neighborhood of x.

We further say that B is a simple normal crossing divisor (abbreviated snc) if furthermore

(2) Every irreducible component of B is smooth.

We can now give a large class of examples of toroidal varieties.

Example 3.27 Let (X,B) be a pair consisting of a smooth projective variety X of dimension
n together with a snc divisor B ⊆ X. We denote by {Bi}i∈I the irreducible components of
B. Set U := X \ B. Then U ↪→ X is a toroidal embedding. The rational conical complex
associated to the toroidal embedding U ↪→ X is smooth and is constructed by adding a
k-dimensional cone for each subset J ⊆ I with #J = k and each irreducible component of
⋂

j∈J Bj. In particular, the zero dimensional cones correspond to the irreducible components
of X =

⋂

j∈∅ Bj.
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Remark 3.28 It follows from the definition of a toroidal embedding U ↪→ X (without self
intersection) that the boundary X\U is a divisor, however, it may not be snc. It is snc as soon
as X is smooth. Hence, if char(k) = 0, by Hironaka’s resolution of singularities [22], we can
always find an allowable modification of X ′ → X (Definition 3.32) such that the boundary
divisor X ′ \ U is snc.

3.4 Toroidal modifications and subdivisions of rational conical complexes

Recall from the classical theory of toric varieties that given a toric variety XΣ corresponding
to a fan Σ, there is a bijective correspondence between proper birational toric morphisms to
XΣ and subdivisions of the fanΣ. Following [27, Chapter 2, Section 2], a similar phenomenon
occurs in the toroidal case. In this section we describe the proper toroidal birational modifi-
cations of a toroidal embedding which, on the combinatorial side, correspond to subdivisions
of the associated rational conical complex.

Definition 3.29 LetUX1 ↪→ X1 andUX2 ↪→ X2 be two toroidal embeddings and let f : X1 →
X2 be a birationalmorphismmappingUX1 toUX2 . Then f is called toroidal if for every closed
point x1 ∈ X1 there exist local models (Xσ1 , x

′
1) at x1 ∈ X1 and (Xσ2 , x

′
2) at f(x1) ∈ X2,

and a toric morphism g : Xσ1 → Xσ2 , with f(x ′
1) = x ′

2, such that the following diagram
commutes.

̂OX1,x1
̂OXσ1 ,x

′
1

̂OX2,x2
̂OXσ2 ,x

′
2

�

f̂#

�
ĝ#

Here, f̂# and ĝ# are the ring homomorphisms induced by f and g, respectively.

Remark 3.30 The following two properties are satisfied.

(1) The composition of two birational toroidal morphisms is again a birational toroidal
morphism.

(2) A toroidal morphism f : (U1 ↪→ X1) → (U2 ↪→ X2) induces a morphism

f|Π| : |Π(X1,U1)| → |Π(X2,U2)|

of rational conical spaces. The restrictions of f|Π| to the cones of Π(X1,U1) are dual to
pulling back Cartier divisors. From this, we see that f|Π| can also be considered as a
morphism between weakly embedded rational conical spaces by adding to it the data

of the linear map N
|Π(X1,U1)

| → N
|Π(X2,U2)

| dual to the pullback Γ
(

U2,O
×
X2

)

→
Γ

(

U1,O
×
X1

)

.

The following definition is taken from [27, Definition 1, pg. 73].

Definition 3.31 A toroidal birational morphism f : (U ↪→ Y) → (U ↪→ X) between two
toroidal embeddings of the same open subset U is called canonical over X if the following
conditions hold true:

(1) The diagram
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Y X

U

f

is commutative.
(2) For all x1, x2 ∈ X in the same stratum S and for all morphisms

ξ : ÔX,x1 −→ ÔX,x2 (3.7)

which preserve the strata (i.e. if S ⊆ S ′ for some stratum S ′ then ξ takes the ideal of S ′
at x1 to the ideal of S ′ at x2), we have that Spec(ξ) can be lifted to give an isomorphism
Y×XSpec(ÔX,x2) � Y×XSpec(ÔX,x1) preserving the strata, i.e. such that the following
diagram commutes.

Y ×X Spec(ÔX,x2) Y ×X Spec(ÔX,x1)

Spec(ÔX,x2) Spec(ÔX,x1)

�

Spec(ξ)

We can now define the class of toroidal birational morphisms which correspond to subdi-
visions of rational conical complexes. The following is [27, Definition 3, pg. 87].

Definition 3.32 Consider a toroidal birational morphism f : (U ↪→ Y) → (U ↪→ X) forming
a commutative diagram

Y X

U

f

and satisfying the following two conditions:

(1) Y has an open covering {Vi} such that U ⊆ Vi, f(Vi) ⊆ Star(Si) for some stratum Si

of X and Vi is affine and canonical over Star(Si).
(2) Y is normal.

Toroidal embeddings U ↪→ Y as above are called allowable modifications of the toroidal
embedding U ↪→ X.

The following important theorem follows from [27, Theorem 6*, 8*].

Theorem 3.33 Given a toroidal embedding without self intersection U ↪→ X, there is a
bijective correspondence between subdivisions of the rational conical complex ΠX,U and
isomorphism classes of proper allowable modifications of X.

3.5 Weak embeddings and quasi-embeddings

Given a toroidal embedding (U,X) the conical complex Π = Π(X,U) comes equipped with
an obvious quasi-embedding |Π| → Hom (L(Π),R) as in Example 1.11. Nevertheless the
following example shows that this quasi-embedding does not have enough information to
encode the intersection product of toroidal divisors.
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Example 3.34 Let a be a positive integer. The Hirzebruch surface Ha is defined as the pro-
jectivization of O⊕O(a) over P

1. This is the toric variety associated to the two-dimensional
smooth fan defined by the vectors (1, 0), (0, 1), (−1,a) and (0,−1). We then consider the
toroidal (in fact toric) embedding U = G

2
m ⊆ Ha. Then Ha \ U has four components.

Two fibers, the zero section and the infinity section. The quasi-embedding of Example 1.11
embeds the fan in R

4 and does not depend on a. However, the self-intersection number of
the zero section is a, hence this embedding does not have enough information to extract the
self-intersection numbers of the components of the boundary.

Following [21], when the ambient variety is proper, there is a canonical weak embedding
of the rational conical complex associated to a toroidal embedding without self intersection,
that has more information than the obvious quasi-embedding.

Definition 3.35 Let U ↪→ X be a toroidal embedding with X proper and let |Π| = |Π(X,U)|

be the corresponding rational conical space. The groupMU is defined to be the set of classes
of invertible regular functions on the open set U, modulo locally constant functions, i.e.

MU := Γ
(

U,O×
X

)

/Γ
(

U,k×)

.

Since X is proper, this is a torsion free finitely generated abelian group. That is, it is a lattice.

Let NU :=
(

MU
)∨

be its dual lattice. For every stratum S of X we have a morphism of
lattices MU → MS given by

f �−→ div(f)|Star(S).

Dualizing, we get a linear map σS → NU
R
. These maps glue to give a continuous function

ιΠ : |Π| −→ NU
R
,

which is integral linear on the cones ofΠ, i.e. |Π| has structure of a weakly embedded rational
conical space. Moreover, we will see in Remark 4.5 that |Π| is also naturally balanced.

Two of the following examples are taken from [21, Example 2.2].

Example 3.36 (1) Consider the toric setting X = XΣ from Example 3.24, and write Π =

Π(XΣ,T). Here, we have the latticeMT = Γ
(

T,O×
XΣ

)

/k×, which we can identify with

M via the isomorphism M � MT given by the assignment

m �−→ χm.

We see that the image of σO(σ) in NR under the weak embedding ιΠ is precisely σ.
Hence, Π is a weakly embedded rational conical complex, naturally isomorphic to Σ.
Note that in this case, the weak embedding is globally injective. In particular, in the
Example 3.34 we recover the usual embedding in R

2 that depends on a and has enough
information to recover the self-intersection of the boundary components.

(2) For a non-toric example, consider X = P
2 with homogeneous coordinates (x0 : x1 : x2)

but with open part U given by

U = X \ (H1 ∪ H2) ,

where Hi is the hyperplane given by {xi = 0}. This is a toroidal embedding with snc
boundary divisor and we see that the rational conical complex Π = Π(X,U) is naturally
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identified with the non-negative orthant R
2
�0, whose rays R�0(1, 0) and R�0(0, 1) cor-

respond to the divisors H1 and H2, respectively. The lattice M|Π| is generated by x1/x2,
and using that generator to identify M|Π| with Z, we see that the weak embedding ιΠ
sends (1, 0) to 1 and (0, 1) to −1. Note that in this case ιΠ is not a quasi-embedding

since for example the cone R
2
�0 is two-dimensional while N

|Π|
R

has dimension one.

(3) Consider again P
2 with the same homogeneous coordinates, D1 the line x0 = 0 and D2

the conic x20+ x21+ x22 = 0. then D1 ∪D2 is a snc divisor and the corresponding conical
complex consist of two copies of the non-negative orthant glued together by the axes.
The description of the weak embedding is similar to the previous one.

Still, the weak embedding of Definition 3.35 is not enough for our purposes as it only
allows intersecting with the so called combinatorially principal divisors (see Remark 1.31).
In order to have an intersection theory with arbitrary toroidal divisors we need a quasi-
embedding. This can be achieved by modifying the toroidal structure. Before that we need
to compare the combinatorial structures of different toroidal structures.

Definition 3.37 Let X be a k-variety. A birational toroidal structure on X is a smooth proper
modification π : ˜X → X and an snc divisor D on ˜X such that π induces an isomorphism
˜X \ D → X \ π(D).

We say that a birational toroidal structure (π ′, ˜X ′,D ′) dominates a second one (π, ˜X,D)

if there is a factorization

˜X ′ ϕ

π′

˜X

π

X

such that ϕ−1(D) ⊆ D ′.
We say that two birational toroidal structures (π, ˜X,D) and (π ′, ˜X ′,D ′) are equivalent if

there is a third one (π ′′, ˜X ′′,D ′′) dominating both, with mapsϕ andϕ ′ such thatϕ−1(D) =

ϕ′−1(D ′) = D ′′ and ϕ and ϕ ′ are toroidal birational maps .

If (π ′, ˜X ′,D ′) and (π, ˜X,D) are birational toroidal structures on X with π ′ dominating
π through a birational map ϕ. Then ϕ induces a map of weakly embedded rational conical
complexes Π

( ˜X′,D′) → Π
( ˜X,D)

that we now describe.

Write U = ˜X ′ \ D ′ and V = ˜X \ D. Both U and V can be identified with open subsets of
X and after this identification U ⊆ V .

Let Sα be a stratum of the toroidal embedding U ↪→ ˜X ′. Let Sβ be the stratum of V ↪→ ˜X

containing the image of the generic point of Sα. Then there is an open set W ⊂ Star(Sα)

that intersects Sα and such that ϕ(W) ⊂ Star(Sβ). Then we can identify

MSα =
{

B ∈ Ca-Div (W)
∣

∣ supp(B) ⊆ W \ U
}

,

so, there is an induced map ϕ∗ : MSβ → MSα that sends M
Sβ
+ to M

Sα
+ . By duality we

obtain a map NSα → NSβ that sends σSα to SSβ . These maps glue together to give a map

ϕ|Π| : |Π
( ˜X′,U)

| −→ |Π
( ˜X,V)

|.
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Moreover the inclusion U ⊂ V provides a map MV → MU and, by duality, a map NU →
NV that fits in a commutative diagram

|Π
( ˜X′,U)

|
ϕ|Π|

|Π
( ˜X,V)

|

NU NV

providing the map of weakly embedded rational conical complexes. For easy treference we
summarize the result of this discussion in the following proposition.

Proposition 3.38 Let (π ′, ˜X ′,D ′) and (π, ˜X,D) be birational toroidal structures on X with
π ′ dominating π. If U = ˜X \ D and U ′ = ˜X ′ \ D ′, then U ′ ⊂ U and the restriction
morphism Γ(U,O×

X) → Γ(U ′,O×
X) induces a map of weakly embedded rational conical

complexes Π
( ˜X′,D′) → Π

( ˜X,D)
.

The following key proposition says that given a toroidal embedding with a snc boundary
divisor, we can always modify the toroidal structure by a dominating one, in such a way that
the associated weakly embedded rational conical complex becomes quasi-embedded.

Proposition 3.39 Let U ↪→ X be a toroidal embedding with X smooth and projective, such
that the boundary divisor B = X \ U is snc and let |Π| = |Π(X,U)| be its associated weakly
embedded rational conical space. Then there exists a snc divisorB ′ with |B| ⊆ |B ′| so (X,B ′)
dominates (X,B) and such that, writing U ′ = X \B ′, the weakly embedded rational conical
space |Π ′| = |Π(X,U′)| is quasi-embedded, i.e. the restriction of the weak embedding

ι|Π′||σ′ : |σ ′| −→ N
|Π′|
R

to any cone σ ′ ∈ Π ′ is injective.

Proof Recall that n denotes the dimension of X. If n = 1 then B = {p1, . . . ,pk} is a finite
set of points. Choose rational functions fi such that ordpi

(fi) �= 0 and write

B ′ =
⋃

|div(fi)| = {q1, . . . ,qr}

The corresponding polyhedral complex is given by the finite set of rays {τqj
}, such that τqj

is
joined with τqj′ at zero if and only if qj and qj′ are in the same irreducible component. Let

vj denote the primitive vector of τqj
and let xi denote the point of M|Π′| corresponding to

fi. By construction, for each j there is an i such that 〈ι(vj), xi〉 = ordqj
(fi) �= 0. Therefore

ιΠ′(vj) �= 0 and Π ′ is quasi-embedded.
Assume now that n � 2. Write B = B1 ∪ · · · ∪ Br for the decomposition of B into

irreducible components. There is a hypersurface C such that Bi + C is very ample for
i = 1, . . . , r. Moreover we can find hypersurfaces Ai,j,

Bi ∼ Ai,j − C, i = 1, . . . r, j = 1, . . . ,n,

and a second hypersurface C1 �= C such that C1 ∼ C. Here the symbol ∼ means linear
equivalence. Finally by Bertini’s theorem we can assume that all the hypersurfaces C, C1
and Ai,j are different, smooth and irreducible and

B ′ := B ∪ C ∪ C1 ∪
⋃

i,j

Ai,j
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is a snc. Then there are rational functions fi,j and g such that

div(fi,j) = Bi + C − Ai,j

div(g) = C − C1.

As in the statement of the theorem, write U ′ = X \ B ′ and |Π ′| = |Π(X,U′)|. Let xi,j be the

point of M|Π′| corresponding to fi,j and y the point corresponding to g. For an irreducible
component E of B ′, write vE for the primitive generator of the ray corresponding to the the
divisor E. By construction we have

〈vBi
, xk,j〉 = δi,k

〈vAi,j
, xk,�〉 = −δi,kδj,�

〈vBi
,y〉 = 〈vAi,j

,y〉 = 0

〈vC, xk,j〉 = 1

〈vC1 , xk,j〉 = 0

〈vC,y〉 = 1

〈vC1 , xk,j〉 = −1

From the above identities, it follows that any subset ofn vectors contained in {vBi
, vAk,j

, vC,
vC1 } is linearly independent. This implies that theweak embedding ιΠ′ is a quasi-embedding.


�

Remark 3.40 Let U ↪→ X be a toroidal embedding with snc boundary divisor B = X \ U

and X projective. Then, by modifying the toroidal structure in a similar way as we did in the
proof of Proposition 3.39, we may assume that there exists an ample and effective divisor
with support contained in B. Moreover, by adding a small multiple of all components of
B, we may assume that there is an ample R-divisor A with positive multiplicity along all
components of B. This will be useful for the monotone approximation lemma in Section 5.2.

4 Intersection theory of toroidal b-divisors

In this section we fix an algebraically closed field k. The goal of this section is to show that
nef toroidal b-divisors have well defined top intersection products (Definitions 4.20 and 4.26
and Theorem 4.32) and that these intersection products can be computed as the integral of a
function associated to one of the b-divisors with respect to a Monge–Ampère like measure
associated to the remaining b-divisors. The existence of the product is also proved in [17] in
a more general setting.

The idea of the construction is, first, following [21], to relate the geometric intersection
product of toroidal divisorswith the rational tropical intersection product on quasi-embedded
rational conical complexes (Theorem 4.6). Second to use the convergence results of Sect. 2 in
order to extend the top intersection product to nef b-divisors. However, note that the Monge–
Ampère measures of Section 2 are defined in a Euclidean setting (no integral structure).
Therefore we will use the comparison in Sect. 3.2 to relate the rational tropical intersection
product with the Euclidean one.
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4.1 Intersection products of toroidal divisors

LetU ↪→ X be a toroidal embedding withX smooth andB = X\U a snc divisor and such that
the associated weakly embedded conical complex Π = Π(X,U) is quasi-embedded. Recall
that thanks to Proposition 3.39 this can always be achieved by enlarging B. We will give the
definition ofR-toroidal divisors and give a bijection between the set ofR-toroidal divisors on
(X,U) and the set of piecewise linear functions onΠ. Moreover, following [21], we recall the
tropicalization of an algebraic cycle and relate algebraic and tropical intersection numbers.
We end this section by showing that one can compute combinatorially the top intersection
numbers of divisors.

Definition 4.1 Let Div(X)R be the vector space of R-Cartier divisors on X. We define the
subspace Div(X,U)R ⊆ Div(X)R consisting of R-Cartier divisors which are supported on
the boundary B. It is a finite dimensional R-vector space and it is endowed with a canonical
topology. Elements in Div(X,U)R are called R-toroidal Cartier divisors (of (X,U)). From
now on we will only consider R-divisors. Thus to simplify notation, we will omit the coef-
ficient ring R from the notation and call R-toroidal Cartier divisors simply toroidal Cartier
divisors.

Recall from Remark 3.25, that we have a bijective correspondence between the set of rays
of Π and the set of irreducible components of the boundary divisor B. For a ray τ ∈ Π(1)we
denote by Bτ the corresponding component and by vτ = vτ/0τ

the primitive lattice normal
vector spanning the ray τ.

Definition 4.2 Let D ∈ Div(X,U) be a toroidal Cartier divisor on X. The corresponding
piecewise linear function

φD : |Π| −→ R

defined on Π is given by

φD|σ = −D|Star(Sσ) ∈ Mσ = (Nσ)∨,

where, for a cone σ ∈ Π, we denote by Sσ the corresponding stratum of X. Since we are
assuming that the toroidal embedding is smooth, we can give an alternative description going
through conical functions. The function φD is linear on each cone and, for τ ∈ Π(1),

φD(vτ) = −ordBτ(D),

where ordBτ(D) denotes the coefficient of Bτ in D.

By Remark 3.25, any piecewise linear function defined on φ on Π induces a toroidal
Cartier divisor Dφ by setting D|Bτ = −φ(vτ) for any τ ∈ Π(1). These constructions are
clearly inverses of each other. We summarize the above in the following proposition, which
can be seen as a special case of [27, Theorem 9*].

Proposition 4.3 The map

Div(X,U) −→ L(Π) (4.1)

given by the assignment

D �−→ φD

is an isomorphism of finite dimensional real vector spaces.
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Werecall the definition of the tropicalization of an algebraic cycle class onX as is explained
in [21, Section 4.2].

For 0 � k � n we denote by Zk(X) = Zk(X)R the group of algebraic k-cycles on X

with real coefficients. For any C ∈ Zk(X), the assignment

trop(C) : Π(k) −→ R,

given by

σ �−→ deg
(

C · [Sσ
])

,

is a k-dimensional Minkowski weight on Π. Moreover, this Minkowski weight is compatible
with taking refinements and thus the following definition makes sense.

Definition 4.4 Let notations be as above. The map

trop : Zk(X) −→ Zk(|Π|)

given by

C �−→ [trop(C)]

is called the tropicalization map. In particular, if [X] is the fundamental cycle of X, then
trop([X]) is the tropical cycle that is represented by the Minkowski weight in Mn(Π) given
by assigning weight one to all n-dimensional cones of Π. We set

[|Π|] := trop([X]).

In consequence Π(X,U) is canonically a balanced complex.

Remark 4.5 (1) The tropicalization map is well defined even if |Π| is only weakly embedded.
Thus to any toroidal embedding (X,U) with X smooth and B \ U a snc, there is a
canonically associatedbalancedweakly-embedded rational conical complex. The change
of toroidal structure to make it quasi-embedded is needed to be able to intersect arbitrary
Cartier divisors with tropical cycles.

(2) The tropicalization map factors through the group of numerical classes of k-cycles on
X (with real coefficients), which is denoted by Nk(X)R = Nk(X), and hence we get a
well defined tropicalization map

Nk(X) −→ Zk(|Π|)

which we also denote by trop.

The following theorem relates algebraic intersection numbers and tropical intersection
numbers. Recall that the rational conical space |Π| is assumed to be quasi-embedded.

Theorem 4.6 Let D ∈ Div(X,U) be a toroidal divisor. Then for every k-dimensional cycle
class [C] in Nk(X) the following tropical cycle classes agree

trop (D · [C]) = [φD] � trop([C]) ∈ Zk−1(|Π|),

where on the right hand side, the class [φD] is seen as an element in PL(|Π|).

Proof Using Remark 1.31, this follows from [21, Proposition 4.17]. 
�
Hence, in the case of characteristic zero, we can compute top intersection numbers of

arbitrary divisors using the tropical intersection product.
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Corollary 4.7 Let X0 be a proper variety over k and D1, . . . ,Dn ∈ Div(X0) a collection of
divisors on X0. Write B0 = |D1| ∪ · · · ∪ |Dn|. Assume that there exists a proper birational
morphism π : X1 → X0 and B1 a snc divisor of X1 satisfying the following two properties:

(1) π−1(B0) ⊆ B1.
(2) X1 \ B1 ↪→ X1 is a toroidal embedding such that |Π1| := |Π(X1,X1\B1)| is a quasi-

embedded rational conical space.

This assumption is always satisfied if the field has characteristic zero. Then the algebraic
top intersection number deg(D1 · · ·Dn) can be computed tropically on the quasi-embedded,
balanced rational conical complex Π1 as

deg (D1 · · ·Dn) = deg
(

φπ∗D1 � · · · � φπ∗Dn � [|Π1|]
)

.

If we choose aEuclidean norm inN
|Π1|
R

and denote by “̂” themap betweenMinkowski cycles
and Euclidean cycles, then the algebraic top intersection number can also be computed as

deg (D1 · · ·Dn) = deg
(

φπ∗D1 · · · · · φπ∗Dn · [̂|Π1|]
)

.

Proof If the field has characteristic zero, the pair (X1,B1) exists thanks to resolution of
singularities [22], Proposition 3.39 and Theorem 3.33. By Theorem 4.6 and the functoriality
of the intersection product, we get

deg (D1 · · ·Dn) = deg (π∗D1 · · ·π∗Dn) = deg
(

φπ∗D1 � · · · � φπ∗Dn � [|Π1|]
)

,

proving the first statement. By Proposition 3.13 and Remark 3.12, we get

φπ∗D1 � · · · � φπ∗Dn � [|Π1|] = φπ∗D1 · · · · · φπ∗Dn · [̂|Π1|],

which proves the second one. 
�

4.2 Positivity properties of cycles

From now on we assume we have chosen a Euclidean norm on N
|Π|
R

and denote by ̂|Π| the

induced Euclidean conical complex.We also denote by [̂|Π|] the balancing condition obtained
by normalizing [|Π|] = trop([X]).

Since the map “trop” between algebraic cycles on X and Minkowski cycles on |Π| is
neither surjective nor injective, the positivity notions in the algebraic and tropical worlds do
not correspond exactly. Recall that Nk(X) denotes the space of R-cycles of codimension k

up to numerical equivalence. The cone Peffn−k(X) = Peffk(X) of pseudo-effective cycles
is the closure of the cone generated by classes of effective cycles. The dual cone is the cone
of numerically effective cycles

Nefk(X) = {β ∈ Nk(X) | β · α � 0, ∀α ∈ Peffk(X)}

The space of nef toroidal Cartier divisors is denoted by Div+(X,U).
Thefirst relationbetweenpositivity in the algebraic and the tropicalworlds is the following.

Lemma 4.8 (1) Let α ∈ Nefn−k(X), then trop(α) ∈ Zk(|Π|) is a positive cycle. Therefore
̂trop(α) ∈ EZk(

̂|Π|) is also positive.
(2) If D ∈ Div+(X,U) is a nef toroidal Cartier divisor then the corresponding piecewise

linear function φD defined on ̂Π is weakly concave in the sense of Definition 2.1 ( [5,
Definition 4.6]).
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Proof For any cone σ ∈ Π(k),

trop(α)(σ) = α · Sσ � 0,

because α is nef and Sσ is an effective cycle. The second statement follows from the first
and the equality

φD � [Π] = trop(D).


�
We next see several examples that show that the above lemma is almost all we can expect.

Example 4.9 Let X be the blow up of P
2 at a point. Let B be a snc divisor such that the

exceptional divisor E is contained in the support of B and such that the associated complex is
quasi-embedded. Then [E] is an effective cycle but trop([E]) is not positive. So the statement
(1) of the above lemma can not be extended to pseudo-effective cycles.

Example 4.10 Let again X be the blow up of P
2 at a point p. Let r1, r2 be the strict transforms

of two different lines passing through p and �i, i = 1, 2, 3 be the strict transforms of three
general lines on P

2. Put B = �1 ∪ �2 ∪ �3 ∪ r1 ∪ r2. There are rational functions f1, f2 and
g with

div(f1) = �1 − �2, div(f2) = �2 − �3, div(g) = r1 − r2.

This easily implies that the complex associated to the toroidal embedding X \ B ↪→ X is
quasi-embedded. Let E denote again the exceptional divisor. Then trop([E]) � 0 because E

is not contained in B. Nevertheless E is not nef. Therefore the converse of statement (1) is
not true. Put D = �1 − r1. Since D ∼ E, we see that φD is weakly concave but D is not nef.
Therefore the converse of statement (2) does not hold.

Example 4.11 Weput ourselves in the situation ofExample 4.10 and letB ′ = �1∪�2∪�3. Then
the obtained conical complex is still quasi-embedded, but the map trop satisfies trop(±[E]) =

0. Therefore trop(α) � 0 does not even imply that α is effective.

Example 4.12 Let X be an elliptic curve, O the marked point i.e. the neutral element for the
group law, P a non torsion point andQ = −P. PutB = {O,P,Q}. There is a rational function
f on X such that

div(g) = 2O − P − Q.

Therefore the conical complex Π associated to X \ B ↪→ X consists of three rays τO, τP and
τQ with lattice generators vO, vP and vQ. The lattice N|Π| is one dimensional and can be
identified with Z. Then the quasi-embedding is given by

ι(vO) = 2, ι(vP) = ι(vQ) = −1.

For simplicity a Minkowski weight c ∈ M1(Π) will be denoted as a triple of real num-
bers (cO, cP, cQ). The balancing condition [|Π|] is the Minkowski weight (1, 1, 1). The
Minkowski weight (1, 2, 0) is also positive but it does not come from the geometry of X.
Consider the divisor D = −P + 2Q. This is a nef divisor because it has positive degree.
Nevertheless

φD � (1, 2, 0) = −2 < 0.

Hence it is not true that nef divisors always give rise to concave functions in the sense of
Definition 2.1.
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We end this section showing that the set of nef toroidal Cartier divisors in allowable
modifications of X provides an admissible family of concave functions on ̂|Π| in the sense of
Definition 2.6.

Lemma 4.13 Let U ↪→ X be a toroidal embedding with X smooth, B = X \ U a snc divisor
such that Π(X,U) is quasi-embedded and there is an ample divisor with support contained
in B. Then the set C of piecewise linear functions on |Π| given by

C =
{

φD

∣

∣D ∈ Div+(X ′,U), π : X ′ → X allowable modification
}

forms an admissible family of concave functions on ̂|Π| in the sense of Definition 2.6.

Proof We have to show that C satisfies the three properties given in Definition 2.6. To show
property (1), let D1, . . . ,Dr be nef Cartier toroidal divisors on the allowable modifications
XΠ1 , . . . ,XΠr , respectively. Let Π ′ be a smooth common refinement of Π1, . . . ,Πr and
denote by πi : XΠ′ → XΠi

the corresponding allowable modification. Then, by Theorem
4.6 and Proposition 3.13, we get

deg(φD1 · · ·φDr · [̂|Π|]) = deg (π∗
1 [D1] · · ·π∗

r[Dr] · [XΠ′ ]) � 0,

where the last inequality uses the fact that the pullback of a nef divisor under a proper map
is nef and Kleiman’s criterion for nefness.

Property (2) is clear.
To prove (3) we first recall that the set of piecewise linear functions on |Π| with rational

slopes is dense in the set of continuous conical functions on |Π| with the topology of uniform
convergence on compacts. Thus it is enough to show that any piecewise linear function on
|Π| with rational slopes belongs to C − C.

A piecewise linear function φ with rational slopes on |Π| defines a Cartier toroidal divisor
Dφ on an allowable modification X ′ of X. Since we are assuming that there is an ample
divisor on X whose support is contained in the boundary divisor B, there is an allowable
modification π : X ′′ → X ′ and an ample toroidal divisor A on X ′′. We can choose an integer
r > 0 such that C = π∗Dφ + rA is also ample. Therefore

φ = φC − φrA, φC,φrA ∈ C,

completing the proof. 
�

4.3 Toroidal b-divisors

We give the definition of Cartier and Weil toroidal b-divisors on a toroidal embedding.
Extending the bijection between toroidal divisors and linear functions (Proposition 4.3), we
give a bijection between Cartier (respectively Weil) toroidal b-divisors and piecewise linear
(respectively conical) functions on a conical rational polyhedral space. Moreover, extending
the results in Section 4.1 we show that the top intersection product of Cartier toroidal b-
divisors can be computed tropically on the rational conical space.

We start by recalling the definition of Cartier and Weil b-divisors on a variety over k.

Definition 4.14 Let X be a variety over k. Then B(X) is the category of proper birational
modifications π : Xπ → X. The spaces of Cartier and Weil b-divisors on X are defined
respectively as

CbDiv(X) := lim−→
π∈B(X)

Div (Xπ)R ,
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bDiv(X) := lim←−
π∈B(X)

WDiv (Xπ)R ,

where the direct limit is defined by using the pullback of Cartier divisors and the inverse
limit by using the push-forward of Weil divisors. Both limits are taken in the category of
topological vector spaces.

We will write Cartier and Weil b-divisors in bold notation DDD to distinguish them from
classical divisors denoted by D. Given a toroidal embedding (X,U) the definition of toroidal
b-divisors is similar but restricting to allowable modifications.

Definition 4.15 Let (X,U) be a toroidal embedding with associated rational conical complex
Π = Π(X,U). Then the spaces of toroidal Cartier and Weil b-divisors on (X,U) are defined
as

CbDiv(X,U) := lim−→
Π′∈Rsm(Π)

Div (XΠ′ ,U)
R
,

bDiv(X,U) := lim←−
Π′∈Rsm(Π)

Div (XΠ′ ,U)
R
,

where the direct limit is defined by using the pullback of toroidal divisors and the inverse
limit by using the push-forward of toroidal divisors. Both limits are taken in the category of
topological vector spaces. Note that the XΠ′ ’s are smooth hence we may identify Cartier and
Weil toroidal divisors. More generally, if (π, ˜X,D) is a birational toroidal structure, we have
at our disposal the groups CbDiv(˜X,U) and bDiv(˜X,U).

We make the following remarks.

Remark 4.16 (1) If (X,U) is a toroidal embedding with rational conical complex Π, we can
view a Weil toroidal b-divisorDDD ∈ bDiv(X,U) as a family

DDD = (DΠ′)Π′∈Rsm(Π) ,

where for each Π ′ ∈ Rsm(Π), we have that DΠ′ ∈ Div(XΠ′ ,U), and these elements are
compatible under push-forward. A similar description is true for generalWeil b-divisors.

(2) Similarly, we can view a Cartier toroidal b-divisorDDD ∈ CbDiv(X,U) as a Weil toroidal
b-divisor

EEE = (EΠ′)Π′∈Rsm(Π) ,

for which there is a model X
˜Π
for some ˜Π ∈ Rsm(Π) such that for every other model

XΠ′′ with Π ′′ � ˜Π in Rsm(Π), the incarnation EΠ′′ is the pull-back of E
˜Π
on X

˜Π
.

Hence, we have the inclusion

CbDiv(X,U) ⊆ bDiv(X,U),

and we may refer to a Weil toroidal b-divisor just as a toroidal b-divisor.
(3) A net (ZZZi)i∈I converges to a b-divisor ZZZ in bDiv(X,U) if and only if for each Π ′ ∈

Rsm(Π) we have that
(

Zi,Π′
)

i∈I
converges to ZΠ′ coefficient-wise.

(4) By the following Proposition 4.17 we have that the spaces bDiv(X,U) and CbDiv(X,U)

agree with the spaces of piecewise linear and conical functions on |Π|, respectively.

However, they are different from the ones on ̂|Π|, because the allowed subdivisions are
different (see Remark 3.6).
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We have the following combinatorial characterization of toroidal b-divisors. Recall that
|Π|(Q) denotes the set of points of |Π| with rational coordinates in any cone of Π.

Proposition 4.17 Let (X,U) be a toroidal embedding with associated rational conical
complex Π. The mapDDD �→ φDDD from Proposition 4.3 can be extended continuously to home-
omorphisms

CbDiv(X,U) � PL (|Π|)

and

bDiv(X,U) � Conic (|Π|)

between toroidal b-divisors on (X,U) and functions on |Π|. In particular, the space
bDiv(X,U) is homeomorphic to the space of conical functions |Π|(Q) → Rwith the topology
of pointwise convergence.

Proof This follows from the definition of conical functions on a rational conical complex
(Remark 3.6) and Proposition 4.3. 
�
Lemma 4.18 Let (π, ˜X,D) be a birational toroidal structure on X with U = ˜X \ D and
(π ′, ˜X ′,D ′) a second birational toroidal structure on X dominating π and U ′ = ˜X ′ \ D ′,
then there is a canonical commutative diagram

CbDiv(˜X,U) bDiv(˜X,U)

CbDiv(˜X ′,U ′) bDiv(˜X ′,U ′).

with all the arrows monomorphisms.

Proof Let Π and Π ′) be the quasi-embedded polyhedral complexes corresponding to π and
π ′, respectively. Since π ′ dominates π, by Proposition 3.38 there is a map r : |Π| → |Π| ′ of
weakly embedded rational conical spaces. Then the diagram in the statement of the lemma
is by Proposition 4.17 the translation of the diagram

PL(|Π|)

r∗

Conic(|Π|)

r∗

PL(|Π ′|) Conic(|Π ′|)

The injectivity of the vertical arrows is a consequence of the map r being surjective. 
�
Remark 4.19 If (π ′, ˜X ′,D ′) is a equivalent to (π, ˜X,D) thenwe have an equality of b-divisors

CbDiv(˜X,U) = CbDiv(˜X ′,U ′), bDiv(˜X,U) = bDiv(˜X ′,U ′).

Definition 4.20 ACartier (resp.Weil) toroidal b-divisor onX is a Cartier (resp.Weil) toroidal
b-divisor in a birational toroidal structure. Two toroidal b-divisors are equivalent if there is
a birrational toroidal structure dominating the structures of definition of both divisors such
that the pullback of both divisors agree. The sets of equivalence classes of toroidal b-divisors
will be denoted as

bDiv(X)tor and CbDiv(X)tor,

respectively.
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Remark 4.21 If the field k is of characteristic zero, by resolution of singularities, the set of
birational toroidal structures is a directed set. In this case we can define toroidal b-divisors
as

bDiv(X)tor := lim−→
( ˜X,U,π)

bDiv(˜X,U) and CbDiv(X)tor := lim−→
( ˜X,U,π)

CbDiv(˜X,U),

with the limit taken in the category of topological vector spaces, so it has more structure.
By contrast, in positive characteristic it is not clear that the sum of two toroidal divisors
with respect to different toroidal structures is again toroidal. In particular, when in positive
characteristic, we will work with a fixed toroidal structure.

Remark 4.22 Again if the field has characteristic zero, every Cartier b-divisor is toroidal so
we can identify CbDiv(X)tor with CbDiv(X). By contrast, for Weil divisors, being toroidal
can be thought as a kind of finiteness condition.

Proposition 3.39 has the following consequence.

Lemma 4.23 Let DDD be a toroidal b-divisor on X. If the field k has characteristic zero, then
there is a birational toroidal structure (π, ˜X,D) with U = ˜X \ D such that the weakly
embedded rational polyhedral complex Π

˜X,U is quasi-embedded, DDD ∈ bDiv(˜X,U) and

there is an ample divisor on ˜X with support contained in D.

As in the case of functions, one can define the top intersection product of a collection of
toroidal b-divisors when there is at most one Weil b-divisor involved (all the other must be
Cartier).

Definition 4.24 Let DDD1, . . . ,DDDn be toroidal b-divisors on X and assume that at most one of
the DDDi’s is not Cartier. Assume furthermore that there exists a birational toroidal structure
(π, ˜X,D) with U = ˜X \ D such that for all i, DDDi ∈ bDiv(˜X,U) and that Π = Π

˜X,U
is quasi embedded. If the field has characteristic zero, by Lemma 4.23 this assumption is
always satisfied. Without lost of generality, let DDD1 be the one that may be non Cartier. Let
Π ′ ∈ Rsm(Π) such that all of the DDDi’s for i = 2, . . . ,n are determined on ˜XΠ′ . The top
intersection product 〈DDD1 · · ·DDDn〉 is defined by

〈DDD1 · · ·DDDn〉 := deg(D1,Π′ · D2,Π′ · · ·Dn,Π′).

By the projection formula in algebraic geometry, this product is independent of the choice
of birational toroidal structure satisfying the assumptions and of the common refinement Π ′.

Remark 4.25 It follows from Corollary 4.7 that, in the case of characteristic zero, the top
intersection product of a collection of Cartier b-divisors and a toroidal Weil b-divisor can be
computed tropically. In the arbitrary characteristic case we have to assume furthermore that
they are toroidal with respect to the same birational toroidal structure.

4.4 Top intersection product of nef toroidalWeil b-divisors

We start by recalling the definition of nef b-divisors.

Definition 4.26 Let X be a smooth variety over k. A Cartier b-divisor EEE ∈ CbDiv(X) is said
to be nef if Eπ ∈ Div(Xπ) is nef for some (hence any) determination Eπ ofEEE. The set of nef
toroidal Cartier b-divisors forms a cone in CbDiv(X), denoted by CbDiv+(X). The cone of
nef Weil b-divisors is the closure in bDiv(X) of CbDiv+(X). It is denoted by bDiv+(X).
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We now fix temporarily a toroidal embeddingU ↪→ Xwith B = X\U such that B is a snc
divisor,Π = Π(X,U) is quasi-embedded and there is an ample divisor with support contained
in B. Recall that this can always be achieved if char(k) = 0. Choose a Euclidean metric on

N
|Π|
R

and denote by ̂|Π| the induced Euclidean conical space.
Nef toroidal Cartier b-divisors on (X,U) are defined as

CbDiv+(X,U) = CbDiv(X,U) ∩ CbDiv+(X)

and nef toroidal Weil b-divisors on (X,U), denoted by bDiv+(X,U), are the closure of
CbDiv+(X,U) in bDiv(X,U).

Remark 4.27 By Proposition 4.17 and Remark 3.6 the inclusion between Cartier and Weil
b-divisors CbDiv(X,U) ↪→ bDiv(X,U) can be factored as

CbDiv (X,U) = PL(|Π|) → PL
(

̂|Π|
)

→ Conic
(

̂|Π|
)

→ Conic(|Π|) = bDiv (X,U) .

By Lemma 4.13 the image of CbDiv+ (X,U) in PL
(

̂|Π|
)

forms an admissible family

of concave functions. By Theorem 2.13 the elements in the closure of CbDiv+ (X,U) in

Conic
(

̂|Π|
)

are continuous functions. Since a continuous function is determined by its val-

ues on a dense subset and the topologies on Conic
(

̂|Π|
)

and Conic(|Π|) are both that of

pointwise convergence, we deduce that the closure of CbDiv+ (X,U) in Conic
(

̂|Π|
)

is nat-

urally homeomorphic to its closure in Conic(|Π|). The last one can be identified with the
cone bDiv+(X,U). Therefore, in order to work with nef toroidal Weil b-divisors, there is no

difference between working on |Π| or in ̂|Π|.

Remark 4.28 A consequence of the preceding remark and Theorem 2.13 is that the closure
of CbDiv+(X,U) in bDiv(X,U) agrees with its sequential closure. It follows that if DDD ∈
bDiv+(X,U), then there is a sequence (DDDi)i∈N of nef toroidal Cartier b-divisors converging
toDDD. Moreover, when we viewDDD and theDDDi as functions on |Π|, the convergence is uniform
on compacts.

From now on we fix C = image of CbDiv+(X,U) in PL
(

̂|Π|
)

as the admissible family

of concave functions.
The following theorem describes nef toroidal b-divisors combinatorially. In view of

Remark 4.27, it is a direct consequence of Theorem 2.13.

Theorem 4.29 LetDDD be a nef toroidal b-divisor on X. Then the corresponding function φDDD

on |Π|(Q) of Proposition 4.17 extends to a continuous function on |Π|, which we denote

also by φDDD. The function φDDD defines a C-concave conical function on S
̂|Π| in the sense of

Definition 2.12.

Since we can view toroidal Cartier b-divisors as toroidalWeil b-divisor, there is a potential
ambiguity when we say that a toroidal Cartier b-divisor is nef. Lemma 4.31 below shows
that this potential ambiguity is not a real ambiguity in the toroidal case. It is also proved in
more generality in [17, Corollary 4], the method of proof however is very different. Before
stating it we make the following remark.

Remark 4.30 Let Π ′′ ∈ Rsm (Π) and let D be a nef toroidal divisor on XΠ′′ . Then for
any Π ′ � Π ′′ in Rsm (Π) we have that D � π∗π∗D, where π : XΠ′′ → XΠ′ denotes
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the corresponding proper birational morphism. Indeed, the divisor D − π∗π∗D is π-nef
(i.e. has non-negative intersection with every curve contracted by π) and is π-exceptional.
Hence, from the well-known Negativity Lemma (see e.g. [28, Lemma 3.39]), it follows that
D − π∗π∗D � 0.

Lemma 4.31 LetDDD be a nef Weil toroidal b-divisor and assume thatDDD is Cartier. ThenDDD is
a nef toroidal Cartier b-divisor in the sense of Definition 4.26.

Proof Let Π ′ ∈ Rsm (Π) be such that DDD is determined on XΠ′ . We have to show that DΠ′
is nef on XΠ′ . For this, let C ⊆ XΠ′ be an irreducible curve. It suffices to show that the
intersection product DΠ′ · C is non-negative.

Let
{

B ′
i

∣

∣ i ∈ I ′} be the irreducible components of the boundary divisor B ′ = XΠ′ \ U

and for any subset J ′ ⊆ I ′, denote by BJ′ the boundary intersection
⋂

j∈J′ Bj (in particular,
B∅ = XΠ′ ). Let K ′ ⊆ I ′ such that BK′ is the minimal boundary intersection containing C.

If codim (BK′) � 2, we can find a subdivisionΠ ′′ � Π ′ inRsm (Π) and a curve C̃ ⊆ XΠ′′
such that the following two conditions are satisfied:

(1) π∗C̃ = aC for some natural number a > 0.
(2) Denoting by

{

B ′′
i

∣

∣ i ∈ I ′′} the irreducible components of the boundary divisor B ′′ =
XΠ′′ \ U, the minimal boundary intersection BK′′ containing C̃ (for some subset K ′′ �
I ′′) satisfies that codim (BK′′) = 1.

Ifπ∗C̃DΠ′ ·C̃ � 0, then using the projection formula, we get thatDΠ′ ·π∗C̃ = DΠ′ ·C � 0.
Hence, replacing Π ′ by Π ′′, we may assume that BK′ has codimension � 1.

Let {DDDi}i∈N
be a sequence of nef toroidal Cartier b-divisors converging to DDD. We view

them as toroidal Weil b-divisors. In particular, on XΠ′ , we have that

Di,Π′ −−→
i∈N

DΠ′

component-wise, and by continuity of the intersection product,

Di,Π′ · C −−→
i∈N

DΠ′ · C. (4.2)

Now, for each i ∈ N, let Πi ∈ Rsm (Π) be a determination ofDDDi. We may assume that Πi �
Π ′. Also, we let πi : XΠi

→ XΠ′ denote the corresponding proper birational morphism.
Let Ci be the strict transform of the curve C under πi. Note that this is well defined by the
assumption that the minimal boundary intersection that contains C has codimension less or
equal than one.

Using the projection formula, we compute

Di,Π′ · C = Di,Π′ · πi∗Ci

= π∗
iDi,Π′ · Ci

= π∗
iπi∗Di,Πi

· Ci

=
(

π∗
iπi∗Di,Πi

− Di,Πi

) · Ci + Di,Πi
· Ci

� 0.

Indeed, the first summand is non-negative since it follows from Remark 4.30 that both the
termsπ∗

iπi∗Di,Πi
−Di,Πi

andCi are effective and intersect properly. The second summand
is non-negative since Di,Πi

is nef and Ci is effective.
By (4.2), DΠ′ · C is a limit of non-negative real numbers. Hence it is itself non-negative.

This concludes the proof. 
�
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The next is the main result of this paper.

Theorem 4.32 The restriction of the top intersection product of toroidal Cartier b-divisors
(Definition 4.24) to nef toroidal Cartier b-divisors

(CbDiv+(X,U))n −→ R

can be extended continuously to a symmetric multilinear intersection product of nef toroidal
Weil b-divisors

(bDiv+(X,U))n −→ R.

IfDDD1, . . . ,DDDn is a collection of nef toroidal Weil b-divisors on X, then their top intersection
product is given by

〈DDD1 · · ·DDDn〉 =
∫

S
̂|Π|

φDDD1
(u)dμDDD2,...,DDDn

,

where μDDD2,...,DDDn
denotes the mixed Monge–Ampère measure induced by the collection of

C-concave conical functions φDDD2
, . . . ,φDDDn

on S
̂|Π| from Definition 2.27.

Proof The proof is just putting together everythingwe have done up to now. Every nef toroidal
Cartier b-divisor DDD on X defines a piecewise linear function φDDD on ̂|Π| (Proposition 4.17).

The family of piecewise linear functions on ̂|Π| obtained in this way forms an admissible

familyC-concave functions on ̂|Π| (Lemma 4.13). The space of nef toroidalWeil b-divisors on

(X,U) is homeomorphic to the space of C-concave conical functions on ̂|Π| (Proposition 4.17
and Remark 4.27). Thus the result is a direct consequence of Corollary 2.28. 
�
Remark 4.33 Let DDD1, . . . ,DDDn be a collection of nef toroidal Weil b-divisors on (X,U). By
Remark 4.28 there are sequences (DDDj,k)k∈N, j = 1, . . . ,n of nef toroidal Cartier b-divisors
on (X,U) converging to them. Then, for each j, the sequence of functions (φDDDj,k

)k∈N

converges uniformly on compacts to φDDDj
. Moreover

〈DDD1 · · ·DDDn〉 = lim
k→∞

〈DDD1,k · · ·DDDn,k〉. (4.3)

One has to be careful that the continuity condition (4.3) is only true when the sequences
(DDDj,k)k∈N consist of nef toroidal Cartier b-divisors. Namely, one can construct sequences
of toroidal Cartier b-divisors (DDD ′

j,k)k∈N such that, for each j, the sequence of functions
(φDDDj,k

)k∈N converges uniformly on compacts to φDDDj
and nevertheless the continuity con-

dition (4.3) does not hold.

Remark 4.34 Since the intersection product is multilinear (for the semigroup law of
bDiv+(X,U)), it can be extended by multilinearity to the space

bDiv+(X,U) − bDiv+(X,U)

of toroidal Weil b-divisors that are differences of nef ones.

Remark 4.35 The subspace S
| ̂Π| ⊆ |Π| and the measure μDDD2,...,DDDn

depend on the choice
of the Euclidean metric, but the integral does not. A more canonical representation can be
obtained using Corollary 3.17

〈DDD1 · · ·DDDn〉 =
∫

SΠ
φDDD1

(u)dηΠ,φDDD2
,...,φDDDn

,

where S
Π is the lattice unit sphere of Definition 3.14.
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For the remainder of the section we assume that k is of characteristic zero and work
without the choice of a fixed toroidal structure.

Definition 4.36 The set of nef toroidal b-divisors is defined as the union over all toroidal
structures of X

bDiv+(X)tor =
⋃

(π, ˜X,D)

bDiv+(˜X, ˜X \ D).

Theorem 4.37 Let k be a field of characteristic zero, and X a variety over k of dimension n.
Then the intersection product

(CbDiv+(X))n → R

can be extended to an intersection product

(bDiv+(X)tor)n → R.

Moreover this intersection product can be computed tropically as the integral of a function
with respect to a Monge-Ampère like measure. This extension is characterized uniquely by
the following continuity property. LetDDD1, . . . ,DDDn be nef toroidal b-divisors. and for each i,
let (DDDi,j)j�0 be a sequence of nef Cartier b-divisors converging toDDDi. Assume that theDDDi,j
are toroidal with respect to the same birational toroidal structure. Then

〈DDD1, . . . ,DDDn〉 = lim
j→∞

〈DDD1,j, . . . ,DDDn,j〉 (4.4)

Proof Since the intersection product is invariant by change of groundfield,we can assume that
k is algebraically closed.LetDDD1, . . . ,DDDn benef toroidal b-divisors. Sincek is of characteristic
zero, using resolution of singularities, there is a birational toroidal structure (π, ˜X,D) with
U = ˜X \ D such that

DDDi ∈ bDiv+(˜X,U), i = 1, . . . ,n.

By Proposition 3.39 we can assume furthermore that Π = Π
( ˜X,U)

is quasi-embedded and

that there is an ample divisor on ˜X with support contained in D. Then by Theorem 4.32 and
Remark 4.35 the intersection 〈DDD1, . . . ,DDDn〉 is well defined and there is a measure μ on S

Π

such that

〈DDD1, . . . ,DDDn〉 =
∫

SΠ
φDDD1

dμ.


�
Remark 4.38 Nowadays the existence and the continuity of the intersection product in Theo-
rem 4.37 can be deduced also from [17] where an intersection product of general b-divisors
over a countable field is defined. Since the product defined in [17] is continuous, it agrees
with the product defined here. In particular the continuity property (4.4) holds without the
assumption that all Cartier b-divisors are toroidal with respect to the same toroidal structure.

5 Applications

Let U ↪→ X be a toroidal embedding as at the beginning of Section 4.1. That is, we assume
that X is smooth, B = X \ U is a snc divisor, that there is an effective ample divisor A with
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support B and that the corresponding rational conical space |Π| is quasi-embedded. Recall
that, after Definition 4.1, by divisor we mean divisor with R coefficients.

A toroidal b-divisor on (X,U) is big if it has enough global sections (Definition 5.11). In
this section, as an application of our results, we show a Hilbert–Samuel type formula for nef
and big toroidal b-divisors on X relating the degree of a nef toroidal b-divisor both with its
volume and with the volume of the associated convex Okounkov body (Definitions 5.3 and
5.6 and Theorem 5.14). As a corollary, we obtain the continuity of the volume function on
the space of nef and big b-divisors (Corollary 5.16) and a Brunn–Minkowski type inequality
(Corollary 5.17).

5.1 Volumes and convex Okounkov bodies of toroidal b-divisors

We start with the definition of the space of global sections of a toroidal b-divisor.

Definition 5.1 Let F = k(X) be the field of rational functions of X. Then for any toroidal
b-divisorDDD = (DΠ′)Π′∈Rsm(Π) on (X,U) one defines the space of global sections ofDDD by

H0 (X,DDD) = {f ∈ F× |b-div(f) +DDD � 0} ∪ {0} ⊆ F,

where b-div(f) is the (Cartier) b-divisor on (X,U) induced by a rational function by setting

b-div(f) =
(

divXΠ′ (f)
)

Π′∈Rsm(Π)
, .

Remark 5.2 (1) We have that H0 (XΣ,DDD) is an intersection of finite-dimensional vector
spaces

H0(X,DDD) =
⋂

Π′∈Rsm(Π)

H0 (XΠ′ ,DΠ′) .

(2) We have a well defined map

H0 (X,DDD) × H0 (X,EEE) −→ H0 (X,DDD +EEE)

for any toroidal b-divisorsDDD and EEE on (X,U).

Definition 5.3 LetDDD be a toroidal b-divisor. The volume ofDDD is defined by

vol(DDD) := lim sup
�→∞

h0 (X, �DDD)

�n/nW
,

where h0 (X, �DDD) denotes the dimension of the space H0 (X, �DDD).

We now associate a convex Okounkov body toDDD.

Definition 5.4 Let DDD be a toroidal b-divisor on (X,U). We define the b-divisorial algebra
R(X,U)(DDD) associated toDDD by

R(X,U)(DDD) :=
⊕

k�0

H0 (X,kDDD) tk.

This is a graded sub-k-algebra of F[t].
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One of the fundamental problems of algebraic geometry is the question about finite gen-
eration of divisorial algebras. It is clear that, in general, the b-divisorial algebra associated
to a toroidal b-divisor is not finitely generated. However, the next proposition shows that it
satisfies the weaker condition of being of almost integral type, which nevertheless, following
[25], allows us to associate a convex Okounkov body to it.

Recall that a graded subalgebra R ⊆ F[t] is of integral type if it is a finitely generated
k-algebra and is a finite module over the algebra generated by R1, while it is of almost
integral type if it is contained in a graded subalgebra of integral type R ⊆ A ⊆ F[t] (see [25,
Section 2.3]).

Proposition 5.5 Let DDD be a toroidal b-divisor on (X,U). Then the b-divisorial algebra
R(X,U)(DDD) ⊆ F[t] is of almost integral type.

Proof We clearly have

R(X,U)(DDD) ⊆ RXΠ′ (DΠ′),

for anyΠ ′ ∈ R(|Π|), and the latter is an algebra of almost integral type by [25, Theorem 3.7].

�

We now briefly sketch the construction of the Okounkov body associated to R(X,U)(DDD).
For more details we refer to [25] and [30]. The choice of a (generic, infinitesimal) flag on X

determines a valuation ν : F \ {0} → Z
n that can be extended to a valuation νt : F[t] \ {0} →

Z
n × Z.
The semigroup S(DDD) ⊆ Z

n × Z is defined as the image of R(X,U)(DDD) by the valuation
vt. Then, for any integer � � 0, the equality h0(X, �DDD) = # (S(DDD) ∩ (Zn × {�})) holds.
Moreover, S(DDD) satisfies the conditions (2.3–2.5) of [30]. One then defines the coneC(DDD) =

convhull(S(DDD) ∪ {0}) ⊆ R
n × R. This is a strictly convex cone.

Definition 5.6 Let DDD be a toroidal b-divisor on (X,U). The Okounkov body ΔDDD ⊆ R
n is

defined to be the slice of C(DDD) at height 1, i.e.

ΔDDD := C(DDD) ∩ (Rn × {1}) .

It is a convex body (see [25, Theorem 2.30]).

Okounkov bodies have been useful to study geometric properties of divisors in terms of
convex geometry. In particular, in the study of volumes of divisors. We will see that this
extends to toroidal b-divisors. The following is a classical result.

Lemma 5.7 LetDDD be a nef toroidal Cartier b-divisor on (X,U). Then

vol(DDD) = nWvol(ΔDDD) = DDDn. (5.1)

Proof Let Π ′ ∈ Rsm(Π) be such thatDDD is determined on XΠ′ . Then the result follows from
the well known case of nef Cartier divisors

vol(DDD) = vol(DΠ′) = Dn
Π′ = DDDn

combined with

vol(DΠ′) = nWvol(ΔDDD).


�
In the next section we extend Equation 5.1 to nef and big Weil toroidal b-divisors on

(X,U).
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5.2 A Hilbert–Samuel formula

We start with two monotonicity lemmas for nef toroidal b-divisors. These play a key role.

Lemma 5.8 Let DDD = (DΠ′)Π′∈Rsm(Π) be a nef toroidal b-divisor on (X,U). Let Π ′′ � Π ′

be subdivisions in Rsm(Π). Then

DΠ′′ � π∗DΠ′ ,

where π : XΠ′′ → XΠ′ is the corresponding proper birational morphism. In particular, we
get the following inclusion of spaces

H0 (XΠ′′ ,DΠ′′) ⊆ H0 (XΠ′ ,DΠ′) .

Proof Note that this is not a direct consequence of Remark 4.30 because the fact that DDD is
nef does not imply that Dπ′′ is nef so a small argument is needed. Suppose first that DDD is
a Cartier b-divisor and let ˜Π ∈ Rsm(Π) be a determination of DDD. In particular, we have that
D

˜Π
is nef. Let Π ′′ � Π ′ be subdivisions in Rsm(Π). Let Π ′′′ be a common refinement of

Π ′′ and ˜Π and consider the following commutative diagram.

XΠ′′′

X
˜Π

XΠ′′

XΠ′

γ α

β

π

Since the pullback of a nef divisor is again nef, DΠ′′′ = γ∗D
˜Π
is nef.

By Remark 4.30, DΠ′′′ � β∗β∗DΠ′′′ and we conclude that

DΠ′′ = α∗DΠ′′′ � α∗β∗β∗DΠ′′′ = α∗β∗DΠ′ = π∗DΠ′

In the general case, choose a sequence {DDDi}i∈N
of nef Cartier b-divisors converging toDDD.

Then, by what was shown above, for each i ∈ N we have that

Di,Π′′ � π∗Di,Π′ .

Hence, taking limits at both sides we deduce

DΠ′′ = lim
i∈N

(Di,Π′′) � lim
i∈N

π∗(Di,Π′) = π∗DΠ′

as we wanted to show. 
�

The following is a monotone approximation lemma for nef toroidal b-divisors. Recall that
we are assuming that there is an effective ample divisor A whose support is B. Since A is
effective and the support of A is the whole B we deduce that φA is strictly negative in each
ray of Π \ {0}. Since it is linear on each cone of Π, then the function φA|

S
̂|Π| is strictly

negative.

Lemma 5.9 Let DDD be a nef toroidal b-divisor on (X,U). Then there is a sequence of nef
Cartier b-divisors (DDDi)i∈N on (X,U) such that the following two properties are satisfied.

(1) The sequence (DDDi)i∈N converges toDDD.
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(2) if i > j, thenDDDj � DDDi.

Proof Let
{

DDD ′
j

}

j∈J
be a sequence of nef Cartier toroidal b-divisors converging to DDD. By

Theorem 2.13 the convergence

φDDD′
i
|
S

̂|Π| −−−→
i→∞

φDDD|
S

̂|Π|

is uniform. Let

α := inf
x∈S

̂|Π|

−φA(x) > 0 , β := sup
x∈S

̂|Π|

−φA(x) � α > 0,

and for each i ∈ N, let

δi := sup
x∈S

̂|Π|

∣

∣

∣φDDD′
i
(x) − φDDD(x)

∣

∣

∣ .

We know that

δi −−−→
i→∞

0.

Now, choose a subsequence {ik}k∈N
such that

δik
� 1

2k(k + 1)

and let

DDDk := DDD ′
ik

+
1

αk
AAA

for k ∈ N, whereAAA denotes the Cartier b-divisor induced by A. Then

(

φDDDk
− φDDDk+1

)

∣

∣

∣

S
̂|Π|

=

(

φDDD′
ik

− φDDD′
ik+1

+

(

1
αk

−
1

α(k + 1)

)

φAAA

)

∣

∣

∣

S
̂|Π|

� 1
k(k + 1)

−

(

1
αk(k + 1)

)

α

= 0.

Hence,DDDk −DDDk+1 � 0 and thusDDDk � DDDk+1.
Moreover, we have

∣

∣φDDDk
− φDDD

∣

∣ =

∣

∣

∣

∣

φDDD′
ik

+
1

αk
φAAA − φDDD

∣

∣

∣

∣

�
∣

∣

∣φDDD′
ik

− φDDD

∣

∣

∣ +
1

αk
|φAAA|

� 1
2k(k + 1)

+
1

αk
β −−−−→

k→∞

0.

Hence, we get that

DDDk −−−−→
k→∞

DDD.

This concludes the proof. 
�
Remark 5.10 The above approximation lemma is also shown in a more general context in
[17, Theorem 5].
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Now, recall that a divisor on an algebraic variety is said to be big if it has strictly positive
volume. We define big toroidal b-divisors analogously.

Definition 5.11 A toroidal b-divisor DDD on (X,U) is said to be big if it has positive volume,
i.e. if vol(DDD) > 0.

Remark 5.12 If a toroidal b-divisorDDD = (DΠ′)Π′∈Rsm(Π) on (X,U) is big and nef, then by
the monotonicity property of Lemma 5.8, it follows that DΠ′ is big for all Π ′ ∈ Rsm(Π).
Moreover, if {DDDi}i∈N is a non-increasing sequence of nef Cartier b-divisors on (X,U) con-
verging toDDD, then, for all i ∈ N,DDDi has to be big as well.

We have the following lemma.

Lemma 5.13 LetDDD be a nef and big b-divisor on (X,U) and let {DDDi}i∈N
be a non-increasing

sequence of big and nef Cartier b-divisors on (X,U) converging toDDD (which exists by Lemma
5.9). Then

vol(DDD) = lim
i→∞

vol(DDDi).

Proof By Theorem 2.13 and by the monotonocity assumption, we have that the convergence

φDDDi
−−−→
i→∞

φDDD

is non-decreasing and uniform on S
̂|Π|. Let

α := inf
x∈S

̂|Π|

−φA(x) > 0

as in the proof of Lemma 5.9. For each i let

ai :=
2 sup

x∈S
̂|Π|

(

φDDD − φDDDi

)

α
.

We have that

ai −−−→
i→∞

0 (5.2)

and for each i, the sequence of inequalities

φDDDi
− aiφA � φDDDi

+ aiα

= φDDDi
+

2 sup
x∈S

̂|Π|

(

φDDD − φDDDi

)

α
α

= φDDDi
+ 2 sup

x∈S
̂|Π|

(

φDDD − φDDDi

)

� φDDD

is satisfied. Hence, we get that

vol(DDDi) � vol(DDD) � vol(DDDi − aiA) (5.3)

for each i. Now, set ω := DDD0 + A. Then ω is a big and nef Cartier b-divisor. Moreover, by
the monotonicity of the sequence, we have thatω � DDDi for all i. Thus, by [9, Corollary 3.4],
we obtain

vol(DDDi − aiA) � DDDn
i − nai(DDD

n−1
i A) − Ca2

i , (5.4)
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where C is a constant depending only on ω. Since the DDDi’s are nef Cartier b-divisors, we
know that vol(DDDi) = DDDn

i . Therefore, taking limits in (5.3) and (5.4), we get that

lim inf
i

vol(DDDi) � vol(DDD) � lim sup
i

(

vol(DDDi) − nai(DDD
n−1
i A) − Ca2

i

)

.

Now, since
(

DDDn−1
i A

)

is bounded, using (5.2), we have that limi

(

nai(DDD
n−1
i A) − Ca2

i

)

=

0. We conclude that

lim inf
i

vol(DDDi) � vol(DDD) � lim sup
i

vol(DDDi),

as we wanted to show. 
�
As a consequence, we get the following Hilbert–Samuel type formula.

Theorem 5.14 LetDDD be a big and nef toroidal b-divisor on (X,U). Then

vol(DDD) = nWvol(ΔDDD) = DDDn.

Proof Write DDD = limi→∞
DDDi as a non-increasing limit of Cartier big and nef toroidal

b-divisors on (X,U). Then, by Lemma 5.13, it follows that

vol(DDD) = lim
i→∞

vol (DDDi) = lim
i→∞

DDDn
i = DDDn. (5.5)

On the other hand, consider the semigroup S(DDD) used in the construction of the Okounkov
body ΔDDD (see discussion preceeding Definition 5.6) and set

S(DDD)� = S(DDD) ∩ (Zn × {�})

for any integer number � > 0. By [30, Proposition 2.1], we have that

lim
�→∞

#S(DDD)�
�n/nW

= volRn (ΔDDD) .

This implies that

vol(DDD) = lim sup
�

h0(X, �DDD)

�/nW
= lim sup

�

#S(DDD)�
�/nW

= lim
�→∞

#S(DDD)�
�/nW

= volRn (ΔDDD) ,

as we wanted to show. 
�
Remark 5.15 As we will show in a forthcoming paper with D. Holmes and R. de Jong The-
orem 5.14 is not true if we drop the condition of being toroidal.

We obtain the following two corollaries.

Corollary 5.16 The function vol is continuous on the space of big and nef toroidal b-divisors
on (X,U).

Proof By Theorem 5.14 the volume function agrees with the degree function on the space of
big and nef toroidal b-divisors on (X,U). By Theorem 4.32, it is continuous. 
�

The following is a Brunn–Minkowski type inequality.

Corollary 5.17 Let DDD and FFF be two nef and big toroidal b-divisors on (X,U). Then the
following Brunn–Minkowski type inequality holds true.

(DDDn)1/n + (FFFn)1/n � ((DDD + FFF)n)1/n.
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Proof Consider the associated Okounkov bodies ΔDDD and ΔFFF, respectively. Then, using The-
orem 5.14, the inequality follows from a standard result in convex geometry about volumes
of convex sets (see e.g. [33]). 
�

Remark 5.18 As in the last part of Section 4.4, we may assume that k is of characteristic zero
and state all of the above results without the choice of a fixed toroidal structure.
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