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A method is presented employing the density matrix renormalization group to construct exact ground
state (GS) exchange correlation functionals for models of correlated electrons coupled to leads. We apply
it to show that conductance calculations with Kohn-Sham GS density-functional theory can yield
quantitative results in the Coulomb blockade regime. Our study is relevant for ‘‘molecular electronics’’
since it strongly suggests that the well documented discrepancies between theoretical and experimental
transport coefficients originate (mainly) from approximations in GS functionals.
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Running an electrical current through individual mole-
cules and being able to control the current flow by mo-
lecular design is one of the intriguing aspects of molecular
electronics. The interesting behavior of ‘‘molecular de-
vices’’ is typically related to specific properties of the
molecule at hand. For a detailed understanding of experi-
ments on single molecules, e.g., the current voltage char-
acteristics, ab initio calculations for transport properties
are indispensable. The particular challenge of ab initio
calculations for transport quantities is to accurately de-
scribe wave function hybridization with the contacts. To
this end, one needs to treat a sizable part of the contact on
the same footing as the molecule. Sufficient system sizes
are achieved with the current ‘‘standard method’’, which is
a combination of Kohn-Sham (KS) density-functional the-
ory (DFT) calculations and the (self consistent) Landauer
approach [1–3]. At least for larger molecules, comprising a
few hundred electrons, the standard approach appears to be
without computationally feasible alternative, at present.

An exact relation between the linear current density j,
the KS-Kubo-conductivity and the exchange correlation
(XC) functional of time dependent DFT, EXC�r; !�, has
been derived in Ref. [4],
 

j�r; !� �
Z
d3r0�̂S�n0��r; r0; !��Etot�r0; !� � EXC�r0; !��:

(1)

[Etot�r; !� denotes the sum of external and Hartree field,
n0�r� the ground state electron density.] In one dimension
and the dc-limit, j�r; !! 0� � I, so Eq. (1) reduces to I �
gS�Vtot � VXC� introducing the KS-conductance, gS, the
physical voltage Vtot and its XC-shift VXC [4].

Within the framework of Eq. (1), the approximations
underlying virtually all present-days application of the
standard method for conductance calculations can be ana-
lyzed. (i) Dynamical corrections VXC or EXC, are univer-
sally ignored even though EXC�!� is generally important
for the calculation of excitation energies [5]. (ii) The XC

functional, which should be used in quasistatic nonequi-
librium to calculate gs, is replaced by an approximate
ground state functional, usually in a local density approxi-
mation. The quantitative impact of (i) is not known at
present. In contrast, (ii) must be expected to have severe
consequences, since the missing derivative discontinuity in
available XC functionals can artificially boost the DFT
level broadening �DFT observed in the variation of gS
with the gate voltage, Vgate, from its true value � up to
the interaction energy U� �. Thus, an accurate predic-
tion of transport coefficients is extremely difficult. In prac-
tice usually large quantitative deviations, typically an order
of magnitude, plague the comparison between theoretical
and experimental conductances [4,6,7].

The purpose of the present work is twofold. First, we
investigate a model system for a correlated quantum dot,
the M-site interacting resonant level model (IRLM), for
which we can show that the dynamical corrections (i) are in
fact small. We give an argument, why we expect validity of
this result for a broader class of dots including molecules.
This aspect of our work is important good news because it
justifies the neglect of dynamical correlations and hence
the employment of a (relatively simple) single particle
scattering approach to the conductance, which is inherent
to the standard approach.

Second we propose and apply a novel method which is
based on the marriage of DFT with the density matrix
renormalization group (DMRG) technique to achieve our
first goal. The DFT and DMRG approach allows us to
construct numerically exact ground state (GS) functionals
for a broad class of generic model systems of correlated
fermions; its principle has been introduced before by
Gunnarsson and Schönhammer [8] and with an application
to a one-dimensional Hubbard chain by Schönhammer,
Gunnarsson, and Noack [9]. The crucial extension pro-
posed in this Letter is, that our systems are not homoge-
neous leading to spatially varying Kohn-Sham potentials.
Since our leads provide a fermionic bath, the method
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should be generally useful to investigate fundamental prop-
erties of XC potentials that describe correlated electrons
coupled to a thermodynamic bath of free fermions. Here,
we apply it to obtain the exact KS conductance gS for the
IRLM. By comparing to the exact physical conductance,
g � I=Vtot, it is demonstrated that gS gives a highly accu-
rate estimate for position and broadening of transport
resonances even in the Coulomb blockade regime. In this
sense, dynamical corrections VXC, including, e.g., a vis-
cous part [10], are small.

The Hamiltonian of theM-site IRLM model reads H �
H eM �H U �HR �H T , with

 H eM � Vgate

X
‘2M

ĉy‘ ĉ‘ �
X

‘;‘�12eM

�t‘ĉ
y
‘ ĉ‘�1 � H:c:�;

(2)

 H U � U
X

‘;‘�12M

�
n̂‘ �

1

2

��
n̂‘�1 �

1

2

�
; (3)

where ĉy‘ (ĉyk ) and ĉ‘ (ĉk) are spinless fermionic creation
and annihilation operators at site ‘ (at momentum k), n̂‘ �
ĉy‘ ĉ‘. Furthermore, HR �

P
k2RL;RR

�kĉ
y
k ĉk and

 H T � �

� X
k2RL

tkĉ
y
k ĉ1 �

X
k2RR

tkĉ
y
k ĉME

�
� H:c: (4)

Indices denote Hilbert spaces of the molecule proper
(nanostructure or quantum dot), M, of the extended mole-
cule, eM and of the left and right electrode reservoirs,
RL, RR. H T denotes the tunneling Hamiltonian describ-
ing the contact between reservoirs and the extended mole-
cule; the interaction on the molecule is modeled by H U.
(U � 2t in all calculations presented.) The indices 1 and
ME denote the first and last site in eM. The general setup
is displayed in Fig. 1. For the single level model the
interaction U extends on the link between the resonant
level and the neighboring lead sites. In all calculations
we have considered the case of a half filled band and
zero temperature, EFermi � 0, T � 0.

We calculate the GS of our model Eq. (2) by means of a
DMRG calculation. DMRG [11,12] is a method that
searches for an optimized subspace of the complete
Hilbert space in which selected many body states can be
described accurately. Notice, that our setup includes the
leads in momentum space representation, HR, which is
nonstandard, but crucial for later transport calculations,
Fig. 1; for details see [13]. In this way we obtain the local
electron density on eM together with the occupation
number of lead levels. Typically, we use more than 1300
states per block and ten finite lattice sweeps.

Next, we briefly explain how an exact DFT may be
constructed generalizing earlier ideas by Gunnarsson and
Schönhammer [8,9]. We define a KS-Hamiltonian H S �
H 0 � VHXC, with H 0 �H eM �HR �HT (free fer-
mions) and an XC potential VHXC �

P
jvjn̂j also including

the Hartree term. Here, nj denotes the particle density. The
sum is over the lattice sites ‘ of eM and the states k of R.
According to theorems by Kohn and Hohenberg [14] and
Kohn and Sham [15] a unique set of coefficients vj specify-
ing the XC kernel exists, such that the KS-particle density
coincides with the exact density of the many body GS. In
practice, we find vj solving a standard optimization prob-
lem, which yields a final relative density mismatch of less
than 10�10 per site.

Within DMRG the linear conductance can be obtained
from evaluating the Kubo-formula [13,16]

 g �
8�e2

h
h�0jĴn1

��H � E0�

��H � E0�
2 � �2�2

Ĵn2
j�0i; (5)

where j�0i is the many body ground state, � is the broad-
ening parameter. Jn is the current density operator at the
bond between site n and n� 1 and E0 denotes the GS
energy. Because of particle number conservation, the dc
conductance is independent of n1, n2. For the details of the
procedure see Refs. [13,16].

The conductance g—as in fact any dynamical correlator
at T � 0—can be calculated evaluating proper GS matrix
elements of certain known many body operators, see, e.g.,
Eq. (5). Therefore, the general principles of DFT apply and
functionals exists, parameterized by � (or frequency !,
times t, t0 etc.), which allow us to calculate such correlators
from the GS density n0 alone. The functional, which would
yield the exact conductance g�n0� is not known. An ap-
proximate expression for g yielding the exact KS conduc-
tance gS is obtained from Eq. (5) using the KS ground state
with KS single particle energies �p, the corresponding
eigenstates for evaluating the matrix elements J0p and
H !H S

 gS �
8�e2

h

X
p;q

J0pJq0���p � �q�

���p � �q�2 � �2�2
f��q��1� f��p��: (6)

f��� denotes the Fermi-Dirac occupation numbers.
We begin the report of our numerical results with the

single level model (numerical parameters: t0 � 0:1). This
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FIG. 1 (color online). Schematic representation of the calcula-
tional setup. Filled circles indicate the extended molecule, eM.
Gate voltage, Vgate, is applied to the molecule (dot), M, only.
Interacting sites are coupled by fat line links. Link labels indicate
hopping amplitudes in the leads t, on the molecule tdot and near
the contacts t0 and tk. (t � 1, tdot � 0:5 in all calculations
presented.) RL, RR denotes the reservoirs, here in k-space
representation. Upper panel: single site resonance level model.
Lower panel: five site model.
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model enjoys a particle-hole symmetry, so that the single
transport resonance is pinned to the band center, E � 0.
Figure 2 shows the conductance, g�Vgate�, calculated ana-
lytically by Boulat and Saleur [17], the corresponding
DMRG result and the Kohn-Sham conductance gS.
Comparison to the noninteracting limit (U � 0) exhibits
a strong (280%) interaction driven enhancement of the
resonance width, � � 0:116, compared to the noninteract-
ing case � � 4t02 � 0:04. DFT with exact XC, gS, is able
to reproduce this renormalization effect with accuracy
better than 10%, �DFT � 0:106.

We now turn to the five site case, which affords four
additional single levels that are not pinned to zero energy.
Since now resonances experience an occupation dependent
and interaction driven shift (‘‘Coulomb blockade’’) with a
corresponding change of the resonance width, this model
can serve to investigate the DFT handling of such renor-
malization phenomena. Figure 3 displays the g�Vgate� and
gS�Vgate� conductance. Since particle-hole symmetry im-
plies invariance under Vgate $ �Vgate, only the positive
branch is shown. The first resonance at nonzero energy
signalizes the transition, where the electron number
NM�Vgate� of the molecular dot changes between two and
one, see Fig. 3. This happens at Vgate 	U� �, where �
denotes the single particle level spacing. This expectation
is roughly consistent with the numerical value 1.8 obtained
from Fig. 3; for details see [16].

Figure 3 clearly shows that the DFT calculation per-
fectly well captures the position of the transport reso-
nances. In addition, also the broadening of the resonance
peaks is described reasonably well. Similar to the single
level case, for the center peak width 10% deviations have
to be accounted for. In contrast, a logarithmic plotting is
required in order to make the relative deviations visible for

the broadening of the shifted peaks. Remarkably, near
resonances the variation of the conductivity is described
over more than 3 orders of magnitude with deviations of a
few percent or less.

In Fig. 4 we show the evolution of the local on site
Hartree exchange correlation potential vHXC with increas-
ing gate voltage. The overall behavior is complicated, and
a detailed discussion has to be relegated to Ref. [18]. Here,
we can only briefly comment on two crucial aspects. First,
vHXC partially compensates Vgate for repulsive voltages in-
between two resonances, keeping NM integer cf. Fig. 3.
Second, at the resonance, Vgate 
 1:855, the center peak of
Fig. 4 rapidly decays. Thus, the double well structure in the
full effective potential vHXC � Vgate that was appropriate
for two repulsive particles NM � 2, transmutes into a
single well hosting the lone particle, NM � 1.

The predictive power of conductance calculations with
ground state DFT may seem surprising at first sight be-
cause VXC is neglected albeit it is very well known that the
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FIG. 2 (color online). Linear conductance over the gate volt-
age for the IRLM model with t0 � 0:1. Comparison of conduc-
tance as calculated with three methods: exact analytical result (*,
Friedel sum rule [17] and n0 from DMRG), DMRG (+) and
corresponding using the effective DFT Hamiltonian (�). The
line through the DMRG data is a guide to the eyes and the
Lorentzian is the noninteracting result as reference. DMRG half
width: � � 0:116� 0:001; DFT: 0:106� 0:002; noninteracting
system, �U�0 � 0:04.

FIG. 3 (color online). Comparison of the exact conductance
(+, dotted line as a guide) and the ground state DFT approxima-
tion (�, dashed line) for a five site system (t0 � 0:2, tdot � 0:5,
U � 2:0). For comparison the conductance of the noninteracting
system (U � 0) is shown as well (long dashed line). The solid
line indicates the particle number NM�Vgate� of the molecule.
The resonances of g are situated at Vgate � 0, 1.854, and 2.779
with resonance widths of � � 0:026, 0.015, and 0.0033.
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FIG. 4 (color online). Potential vHXC
‘ on sites ‘ of eM corre-

sponding to conductance data shown in previous Fig. 3 at Vgate �

0:2, 0.005, 1.5, 1.85, 1.86, 2.5, 2.8 (labeling center site, x � 6,
from top to bottom).
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bare KS-response yields incorrect excitation energies,
which are shifted to proper values in TDDFT only by
including dynamical correlations [19]. A closely related
fact is that the bare KS-spectral function, AS�!;Vgate � 0�
exhibits excitation peaks at frequencies ! of the order of
�, and not U. The point that we wish to make here is that
for correlated electron systems the dependence of AS on its
arguments ! and Vgate is quite different. The linear trans-
port probes AS only in the vicinity of zero frequency. The
evolution of AS�! � 0; Vgate� with gate voltage is closely
tied to the particle number and therefore can be physically
meaningful and give quantitative results even if dynamical
corrections are ignored.

We elaborate on this issue and give two reasons why in
fact the good performance of gS is not entirely unexpected.
(i) We are concerned with isolated resonances �
 �, U
which is a situation typical of the relatively small mole-
cules that one deals with in the field of Molecular
Electronics. These resonances occur precisely at the de-
generacy point, where the N and N � 1 particle states of
the molecular dot coincide in energy, so that the particle
number is half integer N � 1=2. Since the exact DFT
monitors the true particle number on the dot, the degener-
acy point of the KS-occupation and hence the KS-transport
resonance coincide with the true value. (ii) It is much less
obvious, why also the resonance width � should be given
very accurately, and in fact there is no reason to believe that
this is always the case. However, under fairly general
assumptions, one may argue that the width =� of the
transition in NM�Vgate� gives a very good estimate for the
width � of the transport resonance. Indeed, consider a
molecular dot invariant under exchange of left and right
reservoirs (symmetric coupling). Then the single particle
lifetime proper, =��1, of molecular excitations also ap-
pears as a transport rate � 
 =�, since the escape rates
into the left and right leads, �L and �R, simply coincide
with =�=2. Therefore ��1 sets the (only) time scale for
relaxation processes and hence it should also describe the
width of transport resonances.

In summary, we have presented a method for performing
exact DFT calculations for correlated electron systems
coupled to external fermionic reservoirs. The approach is
based on the DMRG. It has been used in order to calculate
ground state Kohn-Sham conductances for the IRLM,
which can be compared to exact results obtained with
DMRG. We find that DFT calculations can describe posi-
tions and broadenings of transport resonances with a very
good accuracy. It is thus suggested that the Kohn-Sham
particles feel an effective voltage drop which does not
deviate strongly from the physical voltage. In other words,
dynamical corrections should be relatively small as long as
vertex corrections can be ignored. This result is of particu-
lar importance for the field of Molecular Electronics.
Namely, it nourishes hopes that conductance calculations

based on the standard method should give much more
quantitative results, once more accurate ground state func-
tionals are available, so that a full time evolution of wave
packets utilizing time dependent DFT may be evaded.
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