
Density of quasiparticle states for a two-dimensional disordered system: Metallic, insulating,
and critical behavior in the class-D thermal quantum Hall effect

A. Mildenberger,1,2 F. Evers,2,3 A. D. Mirlin,2,3,* and J. T. Chalker3,4

1Fakultät für Physik, Universität Karlsruhe, 76128 Karlsruhe, Germany
2Institut für Nanotechnologie, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany

3Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany
4Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

�Received 25 October 2006; revised manuscript received 9 February 2007; published 19 June 2007�

We investigate numerically the quasiparticle density of states ��E� for a two-dimensional, disordered super-
conductor in which both time-reversal and spin-rotation symmetries are broken. As a generic single-particle
description of this class of systems �symmetry class D�, we use the Cho-Fisher version of the network model.
This has three phases: a thermal insulator, a thermal metal, and a quantized thermal Hall conductor. In the
thermal metal, we find a logarithmic divergence in ��E� as E→0, as predicted from sigma model calculations.
Finite-size effects lead to superimposed oscillations, as expected from random-matrix theory. In the thermal
insulator and quantized thermal Hall conductor, we find that ��E� is finite at E=0. At the plateau transition
between these phases, ��E� decreases toward zero as �E� is reduced, in line with the result ��E�
��E�ln�1/ �E�� derived from calculations for Dirac fermions with random mass.
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I. INTRODUCTION

The study of Anderson transitions—disorder-driven tran-
sitions in systems of noninteracting fermions—has a long
history in condensed-matter physics. Symmetry is a guide to
understanding both mesoscopic behavior in each phase and
critical behavior at a transition. According to the symmetry
classification inherited from random-matrix theory, in a con-
ventional situation, three Wigner-Dyson symmetry classes—
orthogonal, unitary and symplectic—can be distinguished,
depending on whether or not the Hamiltonian is invariant
under time reversal and spin rotation �see Refs. 1–5 for re-
views�. Above a lower critical dimension, systems in each
symmetry class can have a transition between insulating and
metallic phases. In addition, in two-dimensional systems
without symmetry under time reversal or parity, a second
type of insulating phase is possible, with edge states and a
quantized Hall conductance, and there can be a plateau tran-
sition between the insulator and the quantized Hall conduc-
tor. Long-distance properties of these systems are described
by nonlinear sigma models. Within this framework, quan-
tized Hall conductors appear if symmetry allows a topologi-
cal term in the sigma model.6

All Anderson transitions in the standard, Wigner-Dyson
symmetry classes are expected to share certain general fea-
tures. One is that the density of states �DoS� is a smooth
function of energy, and hence noncritical at a transition. An-
other is universality, in the sense that, for a given symmetry
and dimensionality, only one type of behavior is expected.

It is now widely appreciated that the range of possibilities
is not exhausted by the Wigner-Dyson classes, and there ex-
ist additional symmetry classes. These additional classes are
distinguished from the standard ones by possessing a
particle-hole symmetry that selects as special one particular
energy E in the spectrum �we take this to be E=0�. More-
over, their density of states may be singular at E=0 and may
have distinct behavior in each phase and at a critical point.

While individual examples of systems from the additional
symmetry classes have been known for many years, as tight-
binding models with two sublattice structure,7–9 within
random-matrix theory,10,11 and as models for
superconductors,12 a full classification scheme was devel-
oped only more recently by Altland and Zirnbauer.13,14 This
scheme includes, in addition to the Wigner-Dyson classes,
systems belonging to two additional types of symmetry class.
One set, the chiral classes, arises in two sublattice systems.
The other set is realized in models for noninteracting quasi-
particles in disordered superconductors based on
Bogoliubov–de Gennes Hamiltonians. The properties of
models belonging to these additional symmetry classes have
been a focus of attention in connection with understanding
low-energy quasiparticle DoS, transport, and localization
properties in dirty superconductors, including those with un-
conventional pairing.13,15–23 Among other features, the addi-
tional symmetry classes allow for versions of the quantum
Hall effect �QHE� in two-dimensional disordered supercon-
ductors with broken time-reversal symmetry. The relevant
quantized conductance in these cases is a thermal or spin
conductance, since quasiparticle number is not conserved by
the Hamiltonian. For superconductors that are invariant un-
der spin rotations, the symmetry is referred to as class C, and
the version of the quantum Hall effect is known as the spin
QHE. Without spin-rotation invariance, the symmetry is
termed class D and one has the thermal QHE. The Hamil-
tonian for a system of the class D has the following block
structure in the particle-hole space:13

H = � h �

− �* − hT �, h = h†, � = − �T, �1�

which is determined by the condition H=−�xH
T�x �in addi-

tion to the Hermiticity H=H†�. Alternatively, one can work

in a different basis, defining H̃=g†Hg with g2=�x. In this

basis, the defining condition of class D becomes H̃=−H̃T, so
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that H̃ is purely imaginary. It is the systems with this sym-
metry that are the subject of the present paper.

A striking feature of this class is that symmetry and di-
mensionality alone are insufficient to determine behavior. At
the level of the nonlinear sigma model, the reason is believed
to be that the relevant target space has two disconnected
pieces and that, depending on the choice of underlying mi-
croscopic model, it may or may not be necessary to consider
configurations containing domain walls on which the sigma
model field jumps between the two components.21,24,25 In the
following, we investigate the Cho-Fisher �CF� network
model26 for the thermal QHE. This model is generic in the
sense that it displays all three phases possible in a two-
dimensional class-D system: the metal, the insulator, and the
quantized Hall conductor. By contrast, in a closely related
model—a fermionic version of the ±J random bond Ising
model �RBIM�—the metallic phase is absent.24

The location of the metallic phase and the two localized
phases in the phase diagram of the CF model is indicated in
Fig. 1, together with phase boundaries of two types, corre-
sponding to metal-insulator and plateau transitions, respec-
tively. This phase diagram was obtained in Ref. 23 from
transfer-matrix calculations; let us explain why its structure
may be quite naturally anticipated. In the absence of disorder
�p=0�, the system has a gap around E=0 for all � except for
sin2 �= 1

2 �where the DoS vanishes linearly at zero energy�.
One thus expects that the system remains insulating for weak
disorder �small p�. More carefully, analyzing the edge states
in the both limits of uncoupled plaquettes, sin2 �=0 and
sin2 �=1, one observes that there are two topologically dif-
ferent insulating phases. From symmetry, if there is a direct
transition between these phases, it must occur at sin2 �= 1

2 .
Finally, with increasing p, the disorder creates a substantial
DoS at E=0, and the system may be expected to undergo a
transition into the metallic phase, which generically exists in

two-dimensional systems with spin-orbit coupling.
Two-dimensional systems from class D have attracted

considerable attention recently. The sigma model
analysis16,21 starts from a short-distance description in terms
of a diffusive metal with a smooth DoS that is finite at E
=0. From a renormalization-group �RG� analysis �perturba-
tive in g−1, the inverse dimensionless conductance�, it is
found that the diffusion constant is unrenormalized at leading
order and that the DoS has a logarithmic divergence near
zero energy, which is given in terms of the diffusion constant
D and the mean free path �0 by

��E� = �0 +
1

4�2D
ln

D

�E��0
2 . �2�

An alternative approach to the theory of these systems,
arguably tailored to describe the plateau transition, has been
developed in Ref. 21 by starting from a model of Dirac fer-
mions with random mass and treating this disorder perturba-
tively, in the spirit of the analysis of the Ising model by
Dotsenko and Dotsenko.27 The disorder-free system has a
transition, driven by tuning a uniform mass through zero,
which in the CF model lies at p=0, sin2���=1/2. In the
vicinity of the clean fixed point representing this transition,
the disorder strength gM is marginally irrelevant. This im-
plies for the critical DoS a logarithmic correction term �see
Appendix A� of the form

��E� =
�E�
2�

�1 +
2gM

�
ln

1

�E�� . �3�

Clearly, since this calculation is for a system with weak,
homogeneous disorder, its relevance for behavior in the CF
model with dilute, strong scatterers needs to be tested.

In the localized phases, past work suggests several possi-
bilities for the behavior of the DoS near E=0. The simplest
approach is to imagine that the sample can be divided into
independent regions of size set by the localization length and
that the contribution of each region to the DoS can be ob-
tained from random-matrix theory for this symmetry class,13

giving finite ��E� at E=0. Alternatives are suggested by the
fact that the off-critical, disorder-free model ��p=0,sin2���
�0�� has a gap in the DoS around E=0. As has been well
studied in one-dimensional system, rare disorder configura-
tions �termed Griffiths strings� may fill in this gap, generat-
ing a DoS that varies as a positive or negative power of �E�
near E=0.17,18 Behavior of this kind has been found recently
in the network model representation of the RBIM.28

The purpose of this paper is to present numerical studies
of the behavior of the DoS in the CF model. An outline is as
follows. In Sec. II, we describe the model and our numerical
methods. Section III is central for the paper and contains our
main findings. We analyze first �Sec. III A� the low-energy
DoS in the metallic phase �at large p� and confirm the loga-
rithmic divergence, Eq. �2�. As an additional manifestation of
metallic behavior, we find random-matrix-theory �RMT� os-
cillations in the DoS superseding this logarithmic behavior at
lowest energies. At smaller p, one enters a localized phase
�Sec. III B� where neither a logarithmic divergence nor os-
cillations are observed. Instead, the DoS remains finite at
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FIG. 1. Phase diagram of the Cho-Fisher model as obtained in
Ref. 23 from transfer-matrix calculations. The plane is spanned by
the parameters sin2���, the interplaquette tunneling probability, and
p, the concentration of vortex disorder. These control the short-
distance values of the conductivity components �xy and �xx,
respectively.
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zero energy. Finally, in Sec. III C, we turn to the plateau
transition which occurs for low p on the self-dual line
sin2���=1/2 �see Fig. 1�. We find in a wide energy interval
that the behavior of DoS is consistent with the RG result, Eq.
�3�. In Sec. IV, we summarize our findings and discuss di-
rections for future work. A brief description of an alternative
microscopic model and results obtained for it are given in
Appendix B: these results are very close to those for the CF
model, supporting the idea that the latter is generic.

II. MODEL

The CF model26 belongs to the family of network models
first proposed in Ref. 29 for the description of the �conven-
tional� quantum Hall effect. The structure of the network in
the clean limit is shown in Fig. 2. The model describes quan-
tum dynamics of noninteracting particles living on the di-
rected links of a square network. If �as here� the wave func-
tion on a link has one component, the state of the system as
a whole is represented by an N-component vector, where N is
the number of links. The time evolution is characterized by a
N�N unitary matrix U, which in the absence of disorder is
governed by a single parameter, 0���� /2. At every node
of the network, the particle turns right or left with a prob-
ability amplitude ±cos � or ±sin �, respectively. The ampli-
tude signs are shown in Fig. 2 and ensure unitarity of the
evolution operator U.30 Note that each plaquette of the net-
work carries half a flux quantum so that particles pick up a
phase factor � when moving around it.

In the absence of disorder, the parameter � is the same for
all the nodes; then, the network is a fermionic representation
of the clean Ising model and U can be diagonalized by Fou-
rier transform. Near the critical point and for small wave
vectors k, the spectrum has a Dirac form E= �k2+�−2�1/2. The
gap �−1= ��−� /4� vanishes at the critical point �=�c
	� /4 where the DoS is linear in energy: ��E�= �E� /2�.

One can think of the evolution U as being generated by a

Hamiltonian. Taking U=exp�−iH̃�, the symmetry condition

for class D, that H̃ is purely imaginary, implies that U is real.
Hence, within symmetry class D, disorder can be introduced
into the model by allowing for node-to-node variation of the
parameter �. This can be done in a variety of ways. A disor-
der weak in the perturbative sense of Refs. 27 and 21 can be
realized by drawing � for every node from a distribution
with a width 	� that is small compared to the mean value. In
contrast, in the CF model, disorder is introduced as isolated
defects by making the change �→−� or �→�−�, for a
subset of nodes randomly distributed with a concentration p.
This amounts to flipping signs of either both sin � or both
cos � associated with such a node. This procedure can be
viewed as the insertion of two additional half-flux lines into
two plaquettes adjacent to the node and belonging to the
same sublattice, see Fig. 2. Note that the vortex pair appears
with equal probability on the C or S sublattice. It is this
feature that distinguishes the CF model from the RBIM,26,31

which is obtained if all the additional vortices are placed on
the same sublattice.

Our numerical analysis centers on the matrix U for a sys-
tem with a torus geometry of size L�L. Since U is unitary,
its L2 eigenvalues eiEj lie on the unit circle, defining the
energies Ej. For a given realization of disorder, we compute
eigenstates in a vicinity of the value E=0, where the special
features of class D reveal themselves. For this purpose, we
use efficient sparse matrix packages.32–34 The procedure is
performed for an ensemble consisting typically of 104 or 105

disorder realizations, and the DoS is obtained as an ensemble
average.

III. RESULTS AND DISCUSSION

A. Thermal metal

Before presenting our results for the metallic phase and
comparing them to the analytical prediction �Eq. �2��, we
briefly recall the theoretical framework within which Eq. �2�
is obtained.16,21 Using the standard procedure, one derives an
effective field theory that has the form of a diffusive super-
symmetric nonlinear sigma model. This theory is valid on
energy scales E�
−1, where 
−1 is the elastic transport scat-
tering rate. For the lowest energies, E�ETh, below the Thou-
less energy ETh �the inverse time of diffusion through the
system�, the theory becomes effectively zero dimensional
and reproduces the random-matrix theory of class D. A
renormalization-group analysis, perturbative in the running
coupling constant f �which is proportional to g−1�, yields

df

d ln �
= − f2, �4�

where � denotes the ultraviolet cutoff. This implies that the
infrared behavior of the system is governed by the perfect-
metal fixed point, f →0. In other words, with increasing sys-
tem size L, the conductance of the metal increases logarith-
mically, g�L�� ln L, and hence diverges in the limit L→�, so
that the perturbative RG is justified. A similar analysis yields

FIG. 2. Network representation of the clean Ising model. The
plaquettes form two sublattices, C and S. The symbols “s” and “c”
denote the amplitudes for left and right turns, ±sin � and ±cos �,
governing the evolution at the network nodes. Adding disorder by
inserting a vortex pair corresponds to flipping the signs of either a
pair of s or a pair of c that are associated with a given node.
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the RG equation for the second coupling constant , whose
bare value is given by the energy E,

d

d ln �
= �2 + f� , �5�

leading to Eq. �2� for the DoS. Comparing Eqs. �4� and �5�,
one sees that the logarithmic increase in the conductance is
driven by the logarithmically divergent density of states,
while the diffusion constant D remains nonsingular to this
order.

We now turn to the results of our numerical simulations.
Figure 3 shows the DoS calculated at the maximal concen-
tration p of flux lines, p=1/2. The data exhibit a logarithmic
increase of the DoS over almost three decades in E for the
larger system size, L=256. We stress that the increase con-
tinues to be of logarithmic form even though the renormal-
ized DoS at small energies becomes much larger than its bare
�large-E� value �0
0.1. This is a signature of the fact that
the RG flow is toward weak coupling, so that the one-loop
result �2� is valid down to arbitrarily low energies in the
thermodynamic limit.

At the smallest energies, we observe pronounced oscilla-
tions in the DoS. These are RMT oscillations due to finite
system size and serve as another indication of the fact that
we are dealing with a metallic phase. To demonstrate the
RMT origin of these oscillations, we replot these parts of
DoS curves, rescaling the energy to the mean level spacing
	L at lowest energy for the corresponding system size. Spe-
cifically, 	L is obtained by numerically solving ��	L�
=1/L2	L, as suggested by Eq. �7� below. The results are
shown in Fig. 4 for six different system sizes. The data col-
lapse on a single curve, which shows that the �renormalized�
level spacing

	L =
1

L2��ETh�
=

1

L2�0�1 + f0 ln�L/�0��
�6�

is indeed the only relevant energy scale in the regime E
�ETh where the RMT is applicable. As further shown in Fig.
4, the curve obtained agrees nicely with the RMT prediction,

��E� =
1

L2	L
�1 +

sin�2�E/	L�
2�E/	L

� , �7�

up to E /	L�1.5–2; for larger energies, the oscillations are
strongly suppressed. This is fully consistent with the expo-
nential vanishing of the RMT oscillations beyond the Thou-
less energy �see, e.g., Ref. 5�. With increasing system size,
the ratio ETh/	L increases �though only logarithmically�, so
that the RMT range includes progressively more oscillation
periods. This tendency is clearly seen in Fig. 4.

For comparison, we also show in Fig. 3 the low-energy
DoS for p=0.15 and p=0.1; the latter point is close to the
expected boundary of the metallic phase, see Fig. 1. It is seen
that when the system approaches the phase boundary, the
logarithmic increase of the DoS disappears and the RMT
oscillations get damped.

B. Localized phases

Having explored the metallic phase, we now turn to the
phases with localized states. Fixing the interplaquette cou-
pling � at a value somewhat different from sin2���=1/2 and
decreasing the concentration p of vortex defects, we expect
�see Fig. 1� that the system undergoes a transition at a critical
value pc��� �which is of the order �0.1� and enters the in-
sulator or quantum Hall conductor. In both phases, bulk

FIG. 3. Low-energy DoS in the metallic phase. Parameters �up-
per curves�: p=0.5, �=� /4, system sizes L=128 �squares�, and L
=256 �full circles�. The straight dashed line represents the logarith-
mic asymptotics. For lowest energies, the RMT oscillations are
clearly visible; they can be collapsed on a single curve, as shown in
Fig. 4. For comparison, the results for p=0.15 and p=0.1 are also
shown.

FIG. 4. Renormalized DoS at maximal disorder p=0.5 and on
the symmetry line sin2 �=1/2 for different system sizes vs the en-
ergy measured in units of the level spacing 	L. The RMT result, Eq.
�7�, is plotted as a dashed line for comparison. The inset shows the
logarithmic dependence of 1/L2	L on the system size L, consistent
with the data of Fig. 3. A fit of the slope yields �0f0=0.152 corre-
sponding to D=0.33.
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states are localized. Figure 5 demonstrates how this transi-
tion is reflected in the behavior of the DoS. In this figure, we
display the evolution of the DoS at fixed tunneling probabil-
ity sin2 �
0.58 with decreasing defect concentration. The
low-energy singular peak, whose magnitude increases loga-
rithmically with the system size �as studied in Sec. III A�, is
still clearly seen for p=0.13 �see upper inset of Fig. 5� but is
absent once p falls below 0.1 �lower inset of Fig. 5�. Since
this logarithmic singularity was a key signature of the
thermal-metal phase, its absence signals the breakdown of
the metallic behavior and, hence, the emergence of a local-
ized phase.

For the localized phases, our main finding is that the DoS
has a nonzero value at E=0. It is interesting to ask how this
behavior connects with the value ��0�=0 expected from Ref.
21 �see Eq. �3� above� at the plateau transition. Consider the
DoS for � close to the critical value � /4, so that the local-
ization length � is large. The behavior of DoS can then be
understood by using the Dirac-fermion RG presented in Ap-
pendix A. Specifically, for energies that are not too small,
behavior will be the same as at criticality, Eq. �3�. However,
for smallest energies, it is the localization length � �rather
than E� that will terminate the RG process. In this sense, the
role of � is fully analogous to that of finite system size L at
criticality. This implies �see Appendix A� that ��E� saturates
at the value

��E� �
�0

�
�1 + 2

gM

�
ln

�

�0
�1/2

, E � E�, �8�

where �0 is the ultraviolet cutoff length. The energy E� at
which the saturation takes place is

E� �
�0

�
�1 + 2

gM

�
ln

�

�0
�−1/2

. �9�

The low-energy saturation of the DoS in the localized phases
which we observe in our numerical simulations is fully con-
sistent with these analytical predictions.

Before closing this subsection, we comment briefly on the
regions of localized phases where the interplaquette coupling
is very weak �sin2 � close to zero or to unity�. As shown
recently,28 in this situation, the DoS of the RBIM acquires a
nonuniversal power-law singularity, �E�1/z−1 with z�1 asso-
ciated with Griffiths strings.17,18 We expect that the same
mechanism should be operative in the Cho-Fisher model as
well. An analysis of these parts of the phase diagram and of
the expected Griffiths singularities is, however, outside the
scope of the present paper.

C. Plateau transition: sin2 �=1/2

The phase boundary between the insulator and thermal
Hall conductor is the location of the plateau transition. From
the treatment of Ref. 21 �see also Appendix A�, RG flow on
this boundary is toward the clean Ising fixed point. The cor-
responding RG result for the critical DoS is given by Eq. �3�.
To test this prediction, we have studied the evolution of the
DoS on the self-dual line sin2 �=1/2 with decreasing con-
centration p of disorder. Results are shown in Fig. 6. For the
largest two values, p=0.2 and p=0.1, the DoS exhibits a
peak at E=0 whose amplitude increases with L, which is a
hallmark of the metallic phase �Sec. III B�. For the lowest

FIG. 5. DoS near E=0 for disorder values p=0.13, 0.08, 0.04,
and 0.02 and for two system sizes L=64, 128 at fixed interplaquette
coupling sin2���=0.579. The DoS diverges logarithmically as E
→0 in the metallic phase �p=0.13� and remains finite in the local-
ized phase �other values of p�. The results for the lowest impurity
concentration, p=0.02, show an oscillatory feature induced by the
band structure of the clean system, as well as strong scatter in the
data at the lowest energies, which is due to insufficient ensemble
averaging. Upper inset: Low-energy peak at p=0.13; its amplitude
increases with L, in agreement with Sec. III A. Lower inset: Low-
energy DoS at p=0.08. No peak at E→0 is detected; ��E→0� is a
constant independent of L, indicating that the system is in the insu-
lating phase. Statistical noise in the lower inset is more pronounced
than in the upper one due to the smallness of the DoS.

FIG. 6. DoS at low energy on the self-dual line sin2���=0.5 for
disorder concentrations p=0.2 ��, ��, 0.1 ��, ��, and 0.05 ��,
��, where in each case, the first symbol is for L=128 and the
second is for L=256. Inset: ��E� / �E� at p=0.05 on a log-linear
scale. The logarithmic correction is clearly observed in agreement
with Eq. �3�.
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value, p=0.05, this peak is not observed anymore, suggest-
ing that this point belongs to the phase boundary between the
two quantum Hall localized phases, see Fig. 1. Indeed, plot-
ting ��E� / �E� as a function of log E �see the inset to Fig. 6�,
we find a behavior fully consistent with the logarithmic cor-
rection predicted by Eq. �3�. At lowest energies, an oscilla-
tory structure is observed in the DoS curve for p=0.05 in
Fig. 6. This feature is a finite-size effect and is governed by
the few lowest-lying eigenstates which inherit information
on their position in the clean system. With increasing system
size, the energy window for these oscillations shrinks, so that
the DoS acquires a smooth limiting form in the thermody-
namic limit.

We turn now to the analysis of the small-p DoS at asymp-
totically low energies. This requires investigation of system
sizes larger than those used in Fig. 6. We show in Fig. 7 a
log-log plot of the DoS for the disorder concentrations p
=0.08 and p=0.05 �i.e., below the expected position of the
three-critical fixed point, pT=0.1, Fig. 1� and for system
sizes up to L=1024. It is seen that, when oscillations corre-
sponding to the lowest discrete states are discarded, data for
different L nicely combine in a single smooth curve corre-
sponding to the thermodynamic-limit DoS. At moderately
low energy, this curve is well fitted �Eq. �3��. So, up to this
point, the behavior appears to be consistent with the expec-
tation that the RG flow is directed toward the clean Ising
fixed point. However, below E�10−2 �E�10−3� for p
=0.08 �p=0.05�, the DoS saturates. For p=0.08, it shows
even an upturn for E�10−3; curves for p=0.05 suggest a
similar tendency.

We do not have an unambiguous interpretation of these
surprising findings and can only speculate about possible
scenarios.

�i� One possibility is that the position pT of the tricritical
point T is, in fact, not pT
0.1 as was found in Ref. 23 �the
phase diagram is reproduced in our Fig. 1� but rather consid-
erably smaller, pT�0.05. In addition to a conflict with the
data of Ref. 23, it would be quite surprising if such a numeri-
cally small value of pT should arise. Also, it is pretty unex-
pected that after having reached the value of DoS as low as
��10−3 �lower panel of Fig. 7�, the system flows toward the
metallic fixed point.

�ii� A more sophisticated scenario that would allow recon-
ciliation of our results with those of Ref. 23 is that, in fact,
there are two fixed points on the expected quantum Hall
transition line sin2 �=1/2. Namely, in addition to the tricriti-
cal point pT, there is a repulsive fixed point at some pN
� pT. This point would then act as a “flow splitter” which is
similar to the role of the Nishimori point in the RBIM
�hence, the subscript N�.

Taking this idea further, we could imagine that the tricriti-
cal point T also has a counterpart in the RBIM, namely, the
zero-temperature transition point from the ferromagnetic
phase into the spin glass. Furthermore, it is possible that the
metallic phase of the CF model connects to the spin-glass
line of RBIM that exists at zero temperature for sufficiently
strong disorder.

�iii� Another nontrivial possibility is that the RG treatment
of the theory of Dirac fermions with Gaussian random mass
is, in fact, insufficient, and some effects—possibly of non-
perturbative origin—eventually drive the system away from
the clean Ising fixed point.

In order to decide which of these scenarios take place,
further work �analytical as well as numerical� is apparently
needed. We will return to possible directions of future re-
search in Sec. IV.

IV. CONCLUSIONS

In summary, we have presented a numerical investigation
of the density of states ��E� in the Cho-Fisher network
model. The model is a generic two-dimensional representa-
tive of the symmetry class D describing disordered supercon-
ductors with broken spin-rotation and time-reversal invari-
ances and shows the thermal quantum Hall effect. At a
sufficiently large concentration p of defects, the DoS has a
logarithmic divergence as E→0 with superimposed random-
matrix-theory oscillations, in agreement with analytical pre-
dictions for the thermal-metal phase, given in Eqs. �2� and
�7�. Reducing p, we find a transition into localized phases
�insulator and quantized Hall conductor� with ��E� finite at
E=0.

At the plateau transition between these phases, the DoS
tends to vanish as E→0 in agreement with the behavior
��E���E�ln�1/ �E�� derived from the theory for Dirac fermi-
ons with random mass, Eq. �3�. However, at lowest E, this
behavior breaks down, and DoS saturates and even shows an
upturn. We do not have an unambiguous explanation for this
behavior; more work is needed in order to understand better

FIG. 7. Evolution of the DoS at low energies with increasing
system size. DoS obtained by binning the 16 lowest-lying eigenval-
ues calculated for each network operator out of an ensemble of
typically 104 disorder realizations. The steplike structures in the
DoS is a remnant of the band structure of the clean lattice and their
effect gradually diminishes with L increasing. Bold dashed lines
show a fit to Eq. �3�, ��E� / �E�=c1 ln�E0 /E�. Upper panel: p=0.08,
L=16,32,64,128,256,512,1024, c1=0.524, E0=0.433. The posi-
tion of the sharp minimum occurring at small system sizes, L
=16,32, indicates the mean level spacing in these samples. Lower
panel: p=0.05, L=128,256,512,1024, c1=0.1875, E0=2.865.
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the properties of the system at the quantum Hall transition
line. We imagine an analysis of a phase diagram of a wider
family of class-D models, see Ref. 35. One can also study the
dependence of results on the microscopic model in numerical
simulations. In particular, a possible generalization of the
Cho-Fisher model is presented in Appendix B. Further, one
should study different observables that are more susceptible
to the critical behavior and would give additional informa-
tion about the system at the expected critical line. In particu-
lar, an analysis of the wave-function statistics is expected to
be useful in this respect.36
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APPENDIX A: RENORMALIZATION GROUP FOR DIRAC
FERMIONS WITH RANDOM MASS

In this Appendix, we sketch the RG analysis of the DoS of
Dirac fermions with random mass, leading to Eq. �3� at criti-
cality and Eq. �8� away from the critical line. Our presenta-
tion largely follows Ref. 21 though we depart from that work
at the end. The Hamiltonian has the form

H = − i�x�x − i�y�y + m�r��z, �A1�

where �� are Pauli matrices. It satisfies the Hermiticity H
=H† and the class-D symmetry, H=−�xH

T�x. The mass m�r�
is a Gaussian random variable, with

m�r�m�r��� = 2gM	�r − r�� . �A2�

Introducing the field-theoretical representation, performing
the disorder averaging, and carrying out the RG analysis �see
Ref. 21�, one gets in one-loop order the scaling equations for
renormalization of the disorder strength gM and the energy E,

dgM

d ln �
= −

2gM
2

�
, �A3�

dE

d ln �
= �1 +

gM

�
�E . �A4�

Here, � is the ultraviolet cutoff. The model is originally de-
fined with a microscopic cutoff �0 �lattice spacing�, so that
E	E��0� and gM 	gM��0�. Our aim is to analyze the DoS,
��E�	��E��0� ,gM��0� ,�0�. Integrating these equations, one
gets

gM
−1��� = gM

−1��0� +
2

�
ln

�

�0
, �A5�

E��� = E��0�
�

�0
�1 +

2gM��0�
�

ln
�

�0
�1/2

, �A6�

yielding

��E���,gM���,�� = ��E��0�,gM��0�,�0�

�
�

�0
�1 +

2gM��0�
�

ln
�

�0
�−1/2

.

�A7�

There are two ways in which the renormalization can termi-
nate: �i� E��� reaches the bandwidth ��1� or �ii� � reaches
the system size L. In the first case, we use the fact that for
large E���, the DoS is essentially unaffected by disorder,
��E����
�E���� /2�, yielding Eq. �3� of the main text for
�E��E0, where E0 is given by Eq. �A9�. In the second case,
we get after renormalization a system with just few degrees
of freedom �ultraviolet cutoff of the order of the system size
L� and a small energy E�L��1. Since the DoS is finite at
E=0 in the random-matrix theory of class D, we find that

��E� �
�0

L
�1 + 2

gM

�
ln

L

�0
�1/2

, E � E0. �A8�

Comparing Eqs. �3� and �A9�, we find that the energy E0 at
which the behavior �3� saturates in a finite system, crossing
over into Eq. �A8�, is

E0 �
�0

L
�1 + 2

gM

�
ln

L

�0
�−1/2

. �A9�

Up to now, we considered a system exactly at criticality �
�=� /4 in the network model�. Moving slightly off critical-
ity, we enter the localized phase, with a localization length
���. Since the states in different localization volumes are
essentially independent, the localization length will play the
same role as the system size L in Eqs. �3� and �A9�. Substi-
tuting � for L, we obtain Eqs. �8� and �9� of the main text.

FIG. 8. DoS near E=0 on the self-dual line �0=� /4 for the
CDM with plaquette coupling parameter � continuously distributed
within the window ��. Evolution from metallic to critical behavior
is clearly observed with decreasing disorder strength. The four data
curves �from top to bottom� are for ��=1.0 ���, 0.8 ���, 0.6 ���,
and 0.4 ��� with system size L=128. Inset: ��E� / �E� on the log-
linear scale �see inset of Fig. 6�.
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APPENDIX B: CONTINUOUS-DISORDER MODEL

The CF model can be defined as a network model with the
following distribution of plaquette couplings:

P��� = �1 − p�	�� − �0� +
p

2
	�� + �0� +

p

2
	�� + �0 − �� .

�B1�

It is natural to expect that properties will be qualitatively the
same for any model with a generic distribution P���. A pre-
cise definition of the word “generic” is far from trivial in the
present case. In particular, we know that the distribution

P��� = �1 − p�	�� − �0� + p	�� + �0� �B2�

corresponds to RBIM which does not possess a metallic
phase and thus is not generic.

In order to test the expectation of �restricted� universality,
we define a continuous-disorder model �CDM�, with a
Gaussian distribution for the angle �. The center �0 of the

distribution determines the breaking of the symmetry be-
tween the C and S plaquettes and thus governs the plateau
transition. The width �� determines the strength of disorder
and therefore replaces the parameter p of the Cho-Fisher
model.

In Fig. 8, we show the evolution of DoS on the self-dual
line, �0=� /4, with disorder strength decreasing from ��
=1.0 to 0.4. We see that the behavior is very similar to that in
the Cho-Fisher model, Fig. 6: we observe a transition from a
metal �divergent DoS� to the critical region. Furthermore, the
families of the curves look essentially identical in both cases.
We interpret this as a confirmation of the generic character of
the Cho-Fisher model.

We have not studied the behavior of DoS at weak disorder
for lowest energies �where we observed a surprising upturn
in the case of Cho-Fisher model�, relegating a detailed inves-
tigation of this problem to future work,36 where not only
spectral properties but also those of wave functions will be
analyzed.

*Also at Petersburg Nuclear Physics Institute, 188300 St. Peters-
burg, Russia.
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