
Exact Relations between Multifractal Exponents at the Anderson Transition

A. D. Mirlin,1,2,* Y. V. Fyodorov,3 A. Mildenberger,4 and F. Evers1,2

1Institut für Nanotechnologie, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
2Institut für Theorie der kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany

3School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
4Fakultät für Physik, Universität Karlsruhe, 76128 Karlsruhe, Germany

(Received 14 March 2006; published 28 July 2006)

Two exact relations between mutlifractal exponents are shown to hold at the critical point of the
Anderson localization transition. The first relation implies a symmetry of the multifractal spectrum linking
the exponents with indices q < 1=2 to those with q > 1=2. The second relation connects the wave-
function multifractality to that of Wigner delay times in a system with a lead attached.

DOI: 10.1103/PhysRevLett.97.046803 PACS numbers: 73.20.Fz, 05.45.Df, 72.15.Rn, 73.43.�f

Anderson localization transitions in disordered elec-
tronic systems (including both the localization-
delocalization transitions and the quantum Hall transitions
between two phases with localized states) represent a
remarkable class of quantum phase transitions. A hallmark
of these transitions is the multifractality (MF) of electronic
wave functions, describing their strong fluctuations at
criticality [1]: the wave functions are characterized by a
whole set of fractal dimensions Dq different from the
spatial dimensionality d. While at present the wave-
function MF is routinely observed only in computer simu-
lations, rapidly developing imaging techniques allow to
hope for its forthcoming experimental observation.

In this Letter we point out two exact relations satisfied
by the multifractal dimensions. The first of these relations
connects exponents with q larger and smaller than 1=2. The
second relation links the multifractal indices for the wave
functions of a closed system to those for the Wigner delay
times characterizing the wave scattering from the same
system via an attached lead.

We begin by considering a relation for the distribution
function of the local density of states (LDOS) �,

 P ��~�� � ~��3P ��~�
�1�: (1)

Here ~� is the LDOS normalized to its average value, ~� �
�=h�i (the normalization factor is not critical and plays no
role for our discussion). Introducing the LDOS moments,
h~�qi �

R
d~�~�qP ��~��, we find that Eq. (1) implies the

relation h~�qi � h~�1�qi. What is of central importance
here is the status of Eq. (1). Specifically, this formula is
exact on the level of the nonlinear � model (NL�M). It
was derived for the first time in Ref. [2] for the case of
systems with broken time-reversal invariance. The reasons
for its general validity were revealed in Ref. [3], and an
explicit derivation for all standard Wigner-Dyson symme-
try classes was provided in Ref. [4].

Clearly, a mapping of a particular microscopic model of
a disordered system (e.g., an electron in a random potential
with certain correlation function) onto the NL�M is not
exact. More specifically, it is approximately valid in the

case of weak disorder and breaks down for strong disorder.
Therefore, the relation (1) has the same status. Never-
theless, we argue that a relation between the anomalous
multifractal exponents �q characterizing the behavior of
the moments h�qi at criticality,

 �q � �1�q; (2)

which follows from (1), is exact.
Before explaining this, we digress with a brief reminder

of the wave-function MF formalism; the reader is referred
to the reviews [1] for a more detailed exposition. The
moments of a wave function (so-called inverse participa-
tion ratios) Pq �

R
ddrj �r�j2q show at criticality an

anomalous scaling with respect to the system size L,

 hPqi � Ldhj �r�j2qi / L��q ; (3)

 �q � Dq�q� 1� � d�q� 1� � �q: (4)

Here �q are anomalous exponents distinguishing a critical
point from a metallic phase. These exponents also govern
the scaling of the moments of LDOS,

 h�qi / L��q : (5)

Equivalently, the MF can be described by so-called singu-
larity spectrum f���, which is the Legendre transform of
�q. Its meaning is as follows: the average measure of a set
of those points r in a sample, where the wave function
behaves as j 2�r�j � L��, scales with L as Lf���.

We return now to the proof of exactness of Eq. (2). The
central argument relies crucially on the universality of
critical properties at the Anderson transition. Specifically,
while the mapping of the original microscopic model onto
the NL�M is at most approximate, one can find another
microscopic model [e.g., N-orbital Wegner model in the
limit N ! 1 [5], which can also be viewed as a model
of a granular metal [6] ] that can be reduced exactly to
the NL�M. The universality implies that the original
microscopic model and the NL�M must flow under
renormalization-group transformations into the same fixed
point in the infrared limit and will thus have the same
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critical exponents [governed by the RG properties in the
vicinity of this fixed point; see, e.g., [7] ]. Therefore, the
relation (2) must hold not only in the NL�M approxima-
tion, but be an intrinsic property of any generic micro-
scopic model, even though the validity of Eq. (1) is in
general only approximate. Remarkably, the universality
allows us to prove an exact relation which does not follow
from any simple scaling considerations.

The moments of the LDOS and of the wave-function
intensity, which we considered above, are properties of a
closed system. An alternative method to study the local
properties is to open the system by attaching a perfectly
coupled single-channel lead at a point r. The system can
then be characterized by the Wigner delay time tW (energy
derivative of the scattering phase shift), whose statistical
properties attracted a lot of research interest in recent
years; see [8,9]. For convenience, we will consider below
the dimensionless delay time ~tW � tW�=2� normalized to
the mean level spacing �. At the Anderson transition point
the corresponding distribution function, PW�~tW�, will re-
flect the criticality of the system [9,10].

To establish a connection between the MF of wave
functions and that of delay times, we recall a relation
between PW and the distribution function P y of normal-
ized wave-function intensities y � Vj 2�r�j (V � Ld is the
system volume),

 P W�~tW� � ~t�3
W P y�~t�1

W �: (6)

This formula was derived in Ref. [9] and has the same
status as Eq. (1): it is exact on the level of the NL�M.
Equation (6) implies a relation between the exponents [9]

 �q � �1�q; (7)

where the indices �q characterize the scaling of moments
of the inverse delay time, ht�qW i / L

��q . Applying the same
argumentation as used above for derivation of Eq. (2), we
conclude that the relation (7) must again be exact for any
generic microscopic model.

The following point should be emphasized here. Strictly
speaking, the moments ht�qW i with q <�3=2 are divergent
for the one-channel scattering problem. To define the ex-
ponent �q for this case one should consider a lead with
several conducting channels. This is analogous to the
coarse-graining procedure for defining the wave-function
exponent �q with negative q discussed below. Equation (7)
holds for such negative q <�3=2 as well, by analytical
continuation.

We turn now to the analysis of consequences and appli-
cations of the derived relations, mainly concentrating on
Eq. (2). First, we rewrite the relation (2) in terms of the
exponents �q,

 �q � �1�q � d�2q� 1�: (8)

Second, performing the Legendre transformation, f��q� �
q�q � �q with �q � d�q=dq, we get

 f�2d� �� � f��� � d� �: (9)

Equation (9) maps the part of the singularity spectrum with
�< d to that with �> d. A particular consequence of this
is that the support of the singularity spectrum f��� (i.e., the
region where it is different from �1) is bounded by the
interval [0; 2d]. The lower boundary, � � 0, is a trivial
consequence of the wave-function normalization; the up-
per boundary, � 	 2d, follows then from our relation (9).

It is worth mentioning that the results for the f���
spectrum, as obtained numerically for the 3d Anderson
transition in a number of works [11,12], are in conflict with
this upper boundary. We believe that this is a consequence
of an incomplete analysis of numerical data in [11,12].
Indeed, it was shown recently [13] that the earlier numerics
on the wave-function MF suffered strongly from the ab-
sence of ensemble averaging and from finite-size effects.
The problems become even more severe for negative mo-
ments, q < 0, corresponding to the large-� part of the
singularity spectrum. This is evident, in particular, from
Fig. 6 of Ref. [12] where a strong drift of large-� part of
f��� (towards our upper boundary � 	 2d � 6) with in-
creasing system size is seen.

Let us analyze the implication of our relation for the
weak-coupling expansion of the critical exponents in 2� �
dimensions (where MF is weak). Since Eq. (2) is exact, it
should hold in all orders of the � expansion. The known
results for the � expansion of �q up to 4-loop order [14] do
satisfy this property. In particular, the result for the or-
thogonal symmetry class reads

 �q�q�1�q���
��3�

4
q�q�1�
q�q�1��1��4�O��5�:

(10)

It is indeed seen that �q depends on q via the combination
q�1� q� only, in agreement with the relation (2).

In view of its exactness, Eq. (2) holds also at strong-
coupling Anderson critical points, in particular, at the
quantum Hall transition. Clearly, the parabolic MF spec-
trum, �q � �	=2�q�1� q� suggested by recent analytical
proposals and numerical work [see [13] and references
therein; 	 ’ 0:524] does satisfy the relation (2) [15].

As a further application of Eq. (2), we consider the
model of power-law random banded matrices (PRBM),
hjHijj

2i � �1� ji� jj2=b2��1. This model (that describes
a 1d system with long-range 1=r random hopping) defines
a family of critical theories parametrized by 0< b<1
and allows to study the evolution of the critical system
from the weak- to the strong-MF regime with decreasing b
[16,17]. In the last few years, it has attracted considerable
interest as a model of the Anderson critical point [18].
While for b� 1 (weak MF) the PRBM model can be
approximately mapped to the NL�M, for small b (strong
MF) this mapping is not applicable, and the multifractal
spectrum was analyzed in [17] by a different method.

Since we have a line of fixed points now, the simple uni-
versality argument (as above) is not sufficient. Never-
theless, our statement about the exactness of Eqs. (2) and
(7) remains valid for the PRBM model. Indeed, we can
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construct a ‘‘granular’’ generalization of the model with
N � 1 states at each site of the 1d lattice and with hopping
matrix elements between all states decaying with distance
r as �~b=N�r�1. Changing the overall prefactor ~b in the
hopping amplitude will yield a family of critical models
that should flow in the infrared limit to the same line of
fixed points as the family of PRBM models. In this way, the
PRBM model with an arbitrary value of b can be associated
with an N-orbital model with some ~b that will have the
same critical properties. Since the latter model can be
mapped to the NL�M, we can again derive the relations
(2) and (7) for the critical exponents.

We have verified the validity of the relation (2) by a
numerical simulation of the PRBM model. The exponents
�q were extracted from the scaling of the inverse partici-
pation ratios hPqi for system sizes L in the range from 512
to 4096. The number of disorder realizations was ranging
from 2
 105 for L � 512 to 1000 for L � 4096. It should
be stressed that evaluation of negative moments requires
special care, since the inverse participation ratio, as defined
in Eq. (3), is divergent because of zeros of the wave
function. These zeros, related to oscillations of the wave
function on the scale of the wave length, have nothing to do
with multifractal properties characterizing smooth enve-
lopes of wave functions. To find �q with negative q, we
have first smoothed j 2j by averaging over blocks of the
size m � 16, and then applied Eq. (3). This makes finite-
size effects (and thus numerical errors in �q) for q < 0
considerably more pronounced than for q > 0.

The results of the numerical simulations for the PRBM
ensemble with several values of b, spanning the whole
interval from the weak-MF to strong-MF regime, are
shown in Figs. 1 and 2. The data in Fig. 1 nicely confirm
the symmetry relation (2). A small difference between �q

and �1�q can be considered as a measure of the numerical
accuracy of evaluation of the exponents. As discussed
above, the errors are mainly due to moments with negative
q. In Fig. 2 the same numerical data are presented in the

form of the singularity spectrum f���. To demonstrate that
the data support very well the relation (9), we also show the
function f�2� �� � �� 1.

We will now demonstrate the high utility of Eq. (2) by
applying it for the analytical evaluation of exponents with
q < 1=2 in the ‘‘non-NL�M’’ limit, b� 1. As was found
in [17], the multifractal exponents in this regime are given
for q > 1=2 by

 �q ’ 2bT�q�; T�q� �
2����
�
p

��q� 1=2�

��q� 1�
; (11)

with T�q� having the asymptotics T�q� ’ �1=��q� 1
2� as

q! 1=2 and T�q� ’ �2=
����
�
p
�q1=2 at q� 1. In terms of the

singularity spectrum f���, this means

 f��� ’ 2bF��=2b�; (12)

where F�A� is the Legendre transform of T�q� with

 F�A� ’
�
�1=�A; A! 0;
A=2; A! 1:

(13)

Equation (11) was derived in [17] by a real-space
renormalization-group method valid for q > 1=2. The re-
lation (2) allows us now to find the multifractality spectrum
for q < 1=2. When translated to f��� language, Eq. (9),
this yields the singularity spectrum for �> 1,

 f��� ’ 2bF
�
2� �

2b

�
� �� 1

’

�
�=2; 2� �� 2b;
1� 4b2

��2��� ; 2� �� 2b: (14)

In Fig. 3 we show the MF spectrum of the PRBM model for
b � 0:1. The dashed curve yields the �< 1 behavior,
Eq. (12), while the full line is the �> 1 result, Eq. (14).

In the limit b! 0 the MF reaches its extreme form (for
the PRBM model the effective spatial dimensionality d �
1; we keep d below for generality)

 �q �
�

0; q � 1=2;
d�2q� 1�; q 	 1=2;

(15)

or, in terms of the singularity spectrum,

−3 −2 −1 0 1 2 3 4
q

−3

−2

−1

0

∆ q,
 ∆

1−
q

b=4

b=1

b=0.3

b=0.1

FIG. 1. Multifractal exponents �q for the PRBM model with
b � 4, 1, 0.3, 0.1. The symmetry (2) with respect to the point
q � 1=2 is evident. A small difference between �q (full line)
and �1�q (dashed line) is due to numerical errors.
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b=
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b=
0.
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FIG. 2. The data of Fig. 1 in terms of the singularity spectrum
f���. Dashed lines represent f�2� �� � �� 1, demonstrating
the validity of Eq. (9).

PRL 97, 046803 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
28 JULY 2006

046803-3



 f��� �
�
�=2; 0 	 � 	 2d;
�1; otherwise:

(16)

The following remark is in order here. The earlier analy-
sis [2,19] of the statistics of critical wave functions on the
Bethe lattice and in large dimensionality d allows us to
conjecture that in the limit d! 1 the multifractal spec-
trum at the Anderson transition acquires the same extreme
form (15) and (16). We stress, however, that this is only a
hypothesis waiting for a more rigorous verification.

The second relation we claim to be exact, Eq. (7), is also
supported by numerical results obtained for the PRBM
model. Specifically, the numerical data [10] for the scaling
of the delay time moments confirm [in combination with
the results of Ref. [17] on the wave-function MF] the
validity of Eq. (7) even in the small-b limit where the
mapping of the PRBM to the NL�M fails.

As a final remark, we note that the notion of MF was
recently extended to the surface of a critical system [20].
While boundary multifractal exponents are different from
their bulk counterparts, the relations (2) and (7) remain
valid also for surface MF. Indeed, it is not difficult to check
that the derivation of the relations for the distribution
functions, (1) and (6), retain its validity independently on
the position of the observation point r. The MF of delay
times for a lead attached to the boundary has in fact been
studied numerically in the PRBM model in Ref. [10]; an
analysis of the surface MF of wave functions and the
verification of the relation (7) at the boundary of this
system will be presented elsewhere.

To summarize, we have demonstrated that two exact
relations, Eqs. (2) and (7), hold for multifractal exponents
at the critical point of the Anderson transition. We have
applied the first of these relations to the multifractality
spectrum of the PRBM model and verified its validity by
numerical simulations. A further analysis of implications
of these relations is of considerable interest. Another di-
rection is to study whether these relations, derived here for

three Wigner-Dyson classes, have some analogues for un-
conventional symmetry classes [21].
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FIG. 3. Singularity spectrum for the PRBM model with b �
0:1. Dashed line: �< 1 behavior, Eq. (12); full line: �> 1
result, Eq. (14), following from the relation (9); circles: numeri-
cal data. Some mismatch between the slopes of the two curves at
� � 1 is related to the fact that the formula (12) is valid to the
leading order in b� 1.
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