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Multifractality at the spin quantum Hall transition
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Statistical properties of critical wave functions at the spin quantum Hall transition are studied both numeri-
cally and analytically(via mapping onto the classical percolatiot is shown that the index characterizing
the decay of wave function correlations is equal to 1/4, at variance wittr thé decay of the diffusion
propagator. The multifractality spectra of eigenfunctions and of two-point conductances are found to be close
to parabolic,A,=q(1—q)/8 andX,=q(3—q)/4.
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Disordered two-dimensional electron systems show rewhere w=¢€—¢j, L,~(pw) ™ and|r—r'|<L,. The
markably rich physics which is governed by quantum inter-moments of the two-point conductance show a power-law
ference effects and depends on the symmetry class to whigtaling as well;® (g9(r,r"))e|r—r’|~*a, with another set
the system belongs. Recently, unconventional symmetrpf exponentsX,, which are related ta, (Refs. 9 and 1P
classes, which can be realized id-wave superconductors,
have attracted considerable interest. Particular attention was Ag+tA 4, <12
paid to class Qbroken time-reversal invariangewhere a Xgq= oA ~1/2
transition between localized phases with quantized values of vz: 9 ‘
the spin Hall conductance takes pl&céA network model  |n two dimensions the multifractal spectig andX, play a
describing this spin quantum HaBQH) transition was con- ey role in the identification of the conformal field theory of
structed in Ref. 2, and critical exponents for the scaling ofthe critical point, which led to growing interest in the eigen-
the localization length were determined numerically. In Ref.fynction statistics at the QH transitidn**

3 a mapping onto a supersymmetric spin chain was per- |n this paper, we study, by combining numerical and ana-
formed, providing an alternative method for the numericaliytical means, the statistical properties of wave functions at
study of the critical behavior. Remarkably, some exact anaghe SQH critical point. Our main aim is to calculate expo-
lytical results for this model have been obtained by mappingents governing the scaling ¢fiy|29), (g%, andIl, and to
onto the classical percolation problémin particular, it was  ynderstand relations between them for the transition with
found that the density of staté®OS) is critical and scales as  critical DOS. The Hamiltonian for class C satisfies the sym-
p(e)~e’, while the diffusion propagatorTI(r,r')  metry H*= —oyHo, (with o, the Pauli matrix in the
=(GRr(r,1")Ga(r",r)) and the average two-point conduc- particle-hole spageand has a block structure

tance(g(r,r')) fall off as [r—r’|~ Y2 at criticality.

Multifractality of wave functionsi(r) is known to be a h A
hallmark of the localization transition. It has been exten- Hz( . T
sively studied in the context of conventional Anderson and AT —h
guantum Hall(QH) transitions withnoncritical DOS (see,
e.g., Ref. 6 and references thepeiand we remind the reader
of some basic results. Multifractality is characterized by a se
of exponentsr,=d(q—1)+A, (d is the spatial dimension-
ality) describing the scaling of the moments|gf(r)| with
the system sizd| y(r)|?9)«L 9~ "a. Anomalous dimensions
A4 distinguish a critical point from the metallic phase and
determine the scale dependence of wave function correl
tions. Among themA,= — 7 plays the most prominent role,
governing the spatial correlations of the “intensity|?:

()

. h=hT, A=AT (4)

For computer simulations we used the (8U network
odel®® The dynamics of the wave function defined on
dges of the network is governed by a unitary evolution op-

eratori/=e" M. At each node of the network the scattering

from two incoming into two outgoing links is described by a

matrix S, with S;;=S;,=S,,= —S,;=1/\/2. Each realiza-

tion of the network is characterized by a set of random 2

&2 spin matricedJ, associated with all edgesof the net-

work. In view of Eq. (4), U satisfies the symmetry/
=oU* o, implying thatU.e SU(2). Diagonalizingl{ for

, , _ a square network of the sizexX L using advanced sparse

L2 2~ (r=r' /L) =7, (D) matrix package? yields eigenfunctionsy; and eigenvalues

. . . : e ¢, wherei=1,2,...,42 In Fig. 1 we display the DOS
Correlations of two differentbut close in energyeigenfunc- for different system size&. It is seen that after a proper

tions and the diffusion propagator possess the same SC"’mr}gscaling all data collapse onto a single curve, as expected at

properties, criticality. At e> 6 (where 6~L~ " is the level spacing at
— 17 H
2d/1 12 2., od , , e=0) the DOS scales gs(e)~ €'/, in agreement with the
L=y (el LX) g (g () gy (r)), analytical predictiorf. On the other hand, at~ & one ob-
serves an oscillatory structure qualitatively analogous to the
p 2AI(r,r";w)~(r=r'|/L,) "7, (2)  behavior found in the random matrix theory for class C.
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FIG. 1. Scaling plot of the density of states for system slzes FIG. 2. Scaling of the two-point conductance with a distance
=16(¢),32(0), and 960). Dashed and dotted lines indicate P€tween the contacts: average valgenpty symbols (g), and
power laws(dashede!’, dotted:€?), and 5= 1/27rL 7 denotes the typical value(filled symbols, g,,=exgIn g}, in sy_stems of sizes
level spacing. Inset: same data on a linear scale and the result froh™ 128(L)) and L=196(0). Also shown is scaling of the two-

. ) 5 A 5
random matrix theoryRef. 1) (solid curve. point Green function, (|G|*) and [Gli,= exp(_InJZG| ) (L
=128(A),L=196(¢)). The lines correspond to the 2 (dotted

We now concentrate on the statistics of eigenfunctions‘?‘ndr_sl4 (dashedl power laws. Deviations from power-law scaling

with the smallest ener ie$e|~ s. for which the correlation at large values of are due to the finite system size. Inset: Fourier
Za7 9 ' : transforms of the one- and two-eigenfunction correlation functions,
lengthé .~ e~ %" (Ref. 4 is of the order of the system size. In

: . . ) . Si(r)={| ¢ (e) yPs(e’ (upper  curves  and r
Fig. 2 (inseh we plot the eigenfunction autocorrelation func- :1<(l//)ra(é|)lz/j ;(g)lzf;(e,))' >z//}*ﬁ(e’)|)orzlower curves for € j~ & asség

tion.[Eq. (1)]. The resullt impligs a power-law behavier ~” =128 (solid), 256 (dashed, and 384(dotted. The dot-dashed line
at distances %r <L, with an index» close to 1/4. We also igicates a power lavg(k) =k~ 74 corresponding t&(r)cr ~ ¥4
show the correlation function of two eigenstates neighboring

in energythe second one in Eq2)]. It exhibits a scaling +i0— *ivy. The scaling behavior of correlation functi¢s)

behavior consistent with the above valuezpbut with con- . -
siderably stronger finite-size effects. On the other hand, ou?t €1, €2~ € ¢an then be obtained by substitutiador y. We

numerics confirms the value 1/Ref. 4 of the exponent thus need to calculate
governing the decay ofl (Fig. 2, main panel To under-
stand the difference between the two exponents, we turn now D(e’,&;y)=(27) XTr[G(e’,e;2)~G(e',e;z )]

to an analytical approach. reoy re,—1
Consider a correlation function of two wave functions, x[G(ee’z)=G(ee’;z)]), ™

with a realz=e~Y<1. To do this, we make use of the map-
D(e',e;eq1,67)= E Ut (e) bio(€) z//iﬁ(e’)w}*ﬁ(e’) ping to the classical percolation, following the approach of
ap Ref. 5. We give only a brief outline of the calculation here;
details will be published elsewhetéThe Green functions in
X 6(e1—€) (€2~ €) ), (5  Eq. (7) are represented as sums over paths; the resulting
expression is to be averaged over(glUmatricesU; associ-

wheree ande’ are two different edges of the network and ated with all network edgek The crucial point is that for

a,B=1,2 are the S(2) indices. Introducing the Green func- ©ach edgé only paths visiting it O or two times are to be
tion G(e’,e;2) =(e'|(1— /)~ }[e), we express Eq5) as taken into account. In Ref. 5 this was proven for the average

Green function TrG(e,e;z)). The proof is based on the ob-

D(e',€;€;,6,)=(2m) (T Gg(e’,e;e'1) servation that(Uf)=c,-1, wherec,=0 for integerq+0,
A , +2. We generalize the statement to products of two Green
—Ga(e',ee' 1) ][Gr(e,e’;e'?2) functions of the type entering Eq7) as well as another

—GA(e,e’;eiGZ)]), ©6) two-point correlation function,

where Gg o are retarded and advanced Green functions, D(e’ e:y)=(2m) XTI G(ee;2)—G(e,e;z 1]

Gra(e',e;e)=G(e',e;e'1=9). We will calculate Eq.
(6) at zero energye; ,—0, but finite level broadening, XTI G(e',e';2)—G(e',e’;z7Y)]), (8)
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corresponding to th¢|y7(e)7(e')|) correlator, in the fol- 00
lowing way. Classifying the paths according to the number of
times they return to a link, we obtain expressions of the
type 23 o - (TFU{*AUPB)xU7% with A,BeSU(2) and < -08 |
x e R. Averaging ovelJ; now yields two terms, proportional

0 Cg,+q, and Cq,—qy respectively. While the first one is

nonzero only forq;+q,=2 traversals of the link, as re- -1.6
quired, the second one seems to spoil the proof. However,

summing over, at fixedq;+q,, we find that such terms _ c) ' o
cancel in view of2Cq=C_ 5+ Co+Co=—1/2+ 1+ (—1/2) § 02r M T
=0. Having established that only paths visiting each link 0 ¥ = I _
or two times are to be considered, we can express, in analog) ‘Zé 0131 ﬁ e 5
with Ref. 5, correlation function$7) and (8) in terms of RS == il = 015 .7 /,—ElliﬁzﬁI 1
sums over paths representing hulls in the percolation prob- b) 2 _)_:—_:‘_’____WWQ
lem. In particular, we get for the products of Green functions 912 ————2——F——, 00 01 o0z 03
entering Eq.(7), q 1MnL
(TrG(e',e;2)G(e,e’;2))=(TrG(e’,e;z 1)G(e,e’;z7 1)) FIG. 3. (8 Anomalous dimension\, extrapolated from en-
sembles with system sizds=16-384. The dashed lin@lmost
_ _22 P(e’,e;N)ZZN, (9) indistinguishgblﬁe_ is _the paraboIaAq=q(.1fq)/8. (p) Aqla(l
N —q) overq highlighting weak nonparabolicityc) Multifractal ex-

ponentsay(L) = — (| | %In[¢/|H*HIn L with g=0 (O), 1 (O),
and 2 (¢), and extrapolation to an infinite system si@ashed
(TrG(e',&;2)G(ee;z H)y=—2>, Py(e’,e;N)Z?N, lines: ay—2=0.137-0.003, 2-a;=0.130:0.003, and (2
N (10 —a,)/3=0.125-0.001. The arrow indicates the valyg2=1/8 of

these quantities for a parabolic spectrum.
whereP(e’,e;N) andPi(e’,e;N) are probabilities that the
edgese and e’ belong to the same loop of the length  Now using definition(5) of D and the DOS scalingy(e)
(respectively with the lengtll of the part corresponding to ~ ¥~ &Y, we find, forr=¢&,,
the motion frome to e'). At z=1 both Egs.(9) and (10
reduce to—2 times the probabilityP(e’,e) thate and e’ LYyt (@) ia(e) tige ) ylg(e))~(r/E) M. (14
belong to the same loop, which is identi¢ap to the sighto

the expression for the average conductafgée’,e)) at e The same scaling behavior is obtained for the correlation

: 2 2 ’ 13
—0 obtained in Ref. 5. fimctlon <|z/{ia(e)¢//j§(e )|)."> We thus ponclude thaty
The fractal dimension of the percolation hulls is 774, =1/4, consistent with our above numerical results. To shed
implying'® that P and P, scale as more light on the difference in scaling betweé@G) (or

(9)) [Eq. (12)], andD [Eq. (13)], it is instructive to reverse
P(r,N),Py(r,N)~N"87 14 <N47, (11)  the logic and to ask how Eq12) can be obtained from
wave-function correlation$13) and (14). It is straightfor-
and fall off exponentially fast at>N*" (r is the distance ward to expres¢GG) throughD in the form of an integral
betweene and e,). This y|e|dS for the correlation functions over €; , with Corresponding energy denominatc{[ﬁsper-
in Egs. (9) and (10) (which we abbreviate a¢GrGg).  sion relation. The integral is then dominated by, ,
(GaGa)s (GrGA)), ~e(r), where (r) is defined by £~r (e «r)
_ ~r~ %), This yields(GG)~D[r;e(r)]~r ~“[we used Eq.
(GRGR)=(GAGA)=(GrGa)~T 2, (13) in the last ste])<in aéreement with Eq(12). Therefore,
(GG) (or(g)) is determined by wave functions with ener-
gies (r), which transformst, ¥*in Eq. (13) into an addi-
in full agreement with the scaling argument of Ref. 4 andtional factorr ~*4 We will come back to this argument be-
with our numerics. However, when we substitute E. low to obtain an analogous relation for higher moments.
and (10) in Eq. (7), these leading order terms cancel since In order to study the whole multifractal spectruxy, we
SNLP(r,N)—P(r,N)]=0. The result is nonzero due to the return to numerical simulations. Our procedure based on the
factors z2N only, implying that relevantN are now N  evaluation of ensemble averaged momefitg?|) and ex-
~vy71, so that ((GR—G,)(Gr—G,)) scales differently trapolation toL —co was described in detail in Ref. 10. The
compared to Eq(12): results forz, are shown in Fig. @). The obtained spectrum
is parabolic with a high accuracy. A parabolic spectrum is
uniquely determined by, A,=7q(1—q)/2; the above re-
sult »=1/4 thus implies

r<é=y", (12

1
D(e',&;7)= 77 2 [P(LN) = Py(r,N)J(1-e™?")

~P(r,y Yy t~(g,n) "M r=g,. (13 Aq=0q(1-q)/8. (15)
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However, we find clear deviations from the parabolic lawing function ofg. Therefore, Eq(17) will hold only for the
[Eqg. (15)], as shown in Fig. @). One could ask whether moments(g) with q=<gq., whereq.=3/2 is the maximum
these are not an artifact of uncontrollable finite-size correcof Eq. (17), while for higher q the exponent saturates,
tions to scaling. We observe, however, an almost perfecKq=q,=Xq,=9/16 (these moments are determined by the
scaling for all the moments, vyielding, in particulap  probability to findg~1). Equation(17) corresponds to a
=0.252+0.002, in a very good agreement with the exactnormal distribution of Irg (at r>1) with the average
value »=1/4. On the other hand, we firéh standard nota- (Ing(r))=—2Inr and the variance vAn g(r)]=3Inr. These
tions, ay=drq/dq) ap—2=0.137-0.003 and 2 «; arguments are fully confirmed by the results of the numerical
=0.130+0.003 [Fig. 3(c)], while both these quantities Simulations shown in Fig. 2.

would be equal top/2, should the parabolic lafEq. (15)] It remains an open question whether the muItifracta} ex-
be exact. This makes us believe that the spectrum is onlponentsd, andXg can be computed by the conformal field
approximately parabolic, in contrast to exact parabolicitytheory method8:™1*~**Note that our results do not confirm

found for the QH transition? the proposal of Ref. 16, where the valug=1/2 was ob-
Finally, we turn to the statistics of two-point conduc- t&ined. Apparently, t_hizaindicates that the theory considered
_ lizina th : in Ref. 16 and obta|r_1 from a particular network model _
tances. Generalizing the above argument, we obtain with fine-tuned couplings, does not belong to the SQH uni-
([TrG(e’,e)G(e,e’)]%) versality class. _ N _
To summarize, we have studied, by combining numerical
~p2q(e(r))L4q<|z,//§‘l*(e) z//ig(e’)|)|€1 2~€(r)~rfxq, and analytical methods, the wave function statistics at the

. ) ] . ~ SQH transition. In particular, we have shown, using a map-
with an indexX,, related toAq and to the scaling dimension ping to classical percolation, that the indgx — A, [defined

x,, of the DOS(defined byp(€)~¢_**) as follows(see also by Eq.(1)] is equal to 1/4, at variance with the 2 scaling
Ref. 16; of the diffusion propagatofl =(GrG,). The multifractal
spectra of wave functionsi(;) and two-point conductances

Xq=20%,+24,. (16) (Xg) are given with a good accuracy by E¢$5) and(17),
Usingx,= 1/4 and Eq(15) for A, we find but show detectable deviations from parabolicity.
X4=q(3—q)/a. (17) Discussions and correspondence with J.T. Chalker, I.
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