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Multifractality at the spin quantum Hall transition
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Statistical properties of critical wave functions at the spin quantum Hall transition are studied both numeri-
cally and analytically~via mapping onto the classical percolation!. It is shown that the indexh characterizing
the decay of wave function correlations is equal to 1/4, at variance with ther 21/2 decay of the diffusion
propagator. The multifractality spectra of eigenfunctions and of two-point conductances are found to be close
to parabolic,Dq.q(12q)/8 andXq.q(32q)/4.
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Disordered two-dimensional electron systems show
markably rich physics which is governed by quantum int
ference effects and depends on the symmetry class to w
the system belongs. Recently, unconventional symm
classes,1 which can be realized ind-wave superconductors
have attracted considerable interest. Particular attention
paid to class C~broken time-reversal invariance!, where a
transition between localized phases with quantized value
the spin Hall conductance takes place.2–4 A network model
describing this spin quantum Hall~SQH! transition was con-
structed in Ref. 2, and critical exponents for the scaling
the localization length were determined numerically. In R
3 a mapping onto a supersymmetric spin chain was p
formed, providing an alternative method for the numeri
study of the critical behavior. Remarkably, some exact a
lytical results for this model have been obtained by mapp
onto the classical percolation problem.4,5 In particular, it was
found that the density of states~DOS! is critical and scales a
r(e);e1/7, while the diffusion propagator P(r ,r 8)
5^GR(r ,r 8)GA(r 8,r )& and the average two-point condu
tance^g(r ,r 8)& fall off as ur2r 8u21/2 at criticality.

Multifractality of wave functionsc(r ) is known to be a
hallmark of the localization transition. It has been exte
sively studied in the context of conventional Anderson a
quantum Hall~QH! transitions withnoncritical DOS ~see,
e.g., Ref. 6 and references therein!, and we remind the reade
of some basic results. Multifractality is characterized by a
of exponentstq[d(q21)1Dq (d is the spatial dimension
ality! describing the scaling of the moments ofuc2(r )u with
the system size,̂uc(r )u2q&}L2d2tq. Anomalous dimensions
Dq distinguish a critical point from the metallic phase a
determine the scale dependence of wave function corr
tions. Among them,D2[2h plays the most prominent role
governing the spatial correlations of the ‘‘intensity’’ucu2:

L2d^uc2~r !c2~r 8!u&;~ ur2r 8u/L !2h. ~1!

Correlations of two different~but close in energy! eigenfunc-
tions and the diffusion propagator possess the same sc
properties,

L2d^uc i
2~r !c j

2~r 8!u&, L2d^c i~r !c j* ~r !c i* ~r 8!c j~r 8!&,

r22P~r ,r 8;v!;~ ur2r 8u/Lv!2h, ~2!
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where v5e i2e j , Lv;(rv)21/d, and ur2r 8u,Lv . The
moments of the two-point conductance show a power-
scaling as well,7,8 ^gq(r ,r 8)&}ur2r 8u2Xq, with another set
of exponentsXq , which are related toDq ~Refs. 9 and 10!:

Xq5H Dq1D12q , q,1/2

2D1/2, q.1/2.
~3!

In two dimensions the multifractal spectraDq andXq play a
key role in the identification of the conformal field theory
the critical point, which led to growing interest in the eige
function statistics at the QH transition.7–11

In this paper, we study, by combining numerical and a
lytical means, the statistical properties of wave functions
the SQH critical point. Our main aim is to calculate exp
nents governing the scaling of^ucu2q&, ^gq&, andP, and to
understand relations between them for the transition w
critical DOS. The Hamiltonian for class C satisfies the sy
metry H* 52syHsy ~with sy the Pauli matrix in the
particle-hole space! and has a block structure

H5S h D

D* 2hTD , h5h†, D5DT. ~4!

For computer simulations we used the SU~2! network
model.2,5 The dynamics of the wave function defined o
edges of the network is governed by a unitary evolution
eratorU5e2 iH . At each node of the network the scatterin
from two incoming into two outgoing links is described by
matrix S, with S115S125S2252S2151/A2. Each realiza-
tion of the network is characterized by a set of random
32 spin matricesUe associated with all edgese of the net-
work. In view of Eq. ~4!, U satisfies the symmetryU
5syU* sy , implying thatUePSU(2). DiagonalizingU for
a square network of the sizeL3L using advanced spars
matrix packages12 yields eigenfunctionsc i and eigenvalues
e2 i e i, wherei 51,2, . . . ,4L2. In Fig. 1 we display the DOS
for different system sizesL. It is seen that after a prope
rescaling all data collapse onto a single curve, as expecte
criticality. At e@d ~whered;L27/4 is the level spacing a
e50) the DOS scales asr(e);e1/7, in agreement with the
analytical prediction.4 On the other hand, ate;d one ob-
serves an oscillatory structure qualitatively analogous to
behavior found in the random matrix theory for class C.1
©2003 The American Physical Society03-1
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We now concentrate on the statistics of eigenfunctio
with the smallest energies,ueu;d, for which the correlation
lengthje;e24/7 ~Ref. 4! is of the order of the system size. I
Fig. 2 ~inset! we plot the eigenfunction autocorrelation fun
tion @Eq. ~1!#. The result implies a power-law behavior}r 2h

at distances 1!r !L, with an indexh close to 1/4. We also
show the correlation function of two eigenstates neighbor
in energy@the second one in Eq.~2!#. It exhibits a scaling
behavior consistent with the above value ofh but with con-
siderably stronger finite-size effects. On the other hand,
numerics confirms the value 1/2~Ref. 4! of the exponent
governing the decay ofP ~Fig. 2, main panel!. To under-
stand the difference between the two exponents, we turn
to an analytical approach.

Consider a correlation function of two wave functions,

D~e8,e;e1 ,e2!5K (
i j ab

c ia* ~e!c j a~e!c ib~e8!c j b* ~e8!

3d~e12e i !d~e22e j !L , ~5!

wheree and e8 are two different edges of the network an
a,b51,2 are the SU~2! indices. Introducing the Green func
tion G(e8,e;z)5^e8u(12zU)21ue&, we express Eq.~5! as

D~e8,e;e1 ,e2!5~2p!22^Tr@GR~e8,e;ei e1!

2GA~e8,e;ei e1!#@GR~e,e8;ei e2!

2GA~e,e8;ei e2!#&, ~6!

where GR,A are retarded and advanced Green functio
GR,A(e8,e;ei e1)5G(e8,e;ei (e16 i0)). We will calculate Eq.
~6! at zero energy,e1,2→0, but finite level broadening

FIG. 1. Scaling plot of the density of states for system sizeL
516(L),32(h), and 96(s). Dashed and dotted lines indica
power laws~dashed:e1/7, dotted:e2), andd51/2pL7/4 denotes the
level spacing. Inset: same data on a linear scale and the result
random matrix theory~Ref. 1! ~solid curve!.
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6 i0→6 ig. The scaling behavior of correlation function~5!
at e1 ,e2;e can then be obtained by substitutinge for g. We
thus need to calculate

D~e8,e;g!5~2p!22^Tr@G~e8,e;z!2G~e8,e;z21!#

3@G~e,e8;z!2G~e,e8;z21!#&, ~7!

with a realz5e2g,1. To do this, we make use of the ma
ping to the classical percolation, following the approach
Ref. 5. We give only a brief outline of the calculation her
details will be published elsewhere.13 The Green functions in
Eq. ~7! are represented as sums over paths; the resu
expression is to be averaged over SU~2! matricesU f associ-
ated with all network edgesf. The crucial point is that for
each edgef only paths visiting it 0 or two times are to b
taken into account. In Ref. 5 this was proven for the aver
Green function̂ TrG(e,e;z)&. The proof is based on the ob
servation that̂ U f

q&5cq•1, where cq50 for integerqÞ0,
62. We generalize the statement to products of two Gr
functions of the type entering Eq.~7! as well as another
two-point correlation function,

D̃~e8,e;g!5~2p!22^Tr@G~e,e;z!2G~e,e;z21!#

3Tr@G~e8,e8;z!2G~e8,e8;z21!#&, ~8!

m

FIG. 2. Scaling of the two-point conductance with a distancr
between the contacts: average value~empty symbols!, ^g&, and
typical value~filled symbols!, gtyp5exp̂ ln g&, in systems of sizes
L5128(h) and L5196(s). Also shown is scaling of the two-
point Green function, ^uGu2& and uGu typ

2 5exp̂ lnuGu2& (L
5128(n),L5196(L)). The lines correspond to ther 21/2 ~dotted!
andr 23/4 ~dashed! power laws. Deviations from power-law scalin
at large values ofr are due to the finite system size. Inset: Four
transforms of the one- and two-eigenfunction correlation functio
S1(r )5^uc ia

2 (e)c ib
2 (e8)u& ~upper curves! and S2(r )

5^c ia* (e)c j a(e)c ib(e8)c j b* (e8)& ~lower curves! for e i , j;d andL
5128 ~solid!, 256 ~dashed!, and 384~dotted!. The dot-dashed line
indicates a power lawS(k)}k27/4 corresponding toS(r )}r 21/4.
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corresponding to thêuc i
2(e)c j

2(e8)u& correlator, in the fol-
lowing way. Classifying the paths according to the numbe
times they return to a linkf, we obtain expressions of th
type (q1 ,q251

` ^TrU f
q1AUf

q2B&xq11q2 with A,BPSU(2) and

xPR. Averaging overU f now yields two terms, proportiona
to cq11q2

and cq12q2
, respectively. While the first one i

nonzero only forq11q252 traversals of the link, as re
quired, the second one seems to spoil the proof. Howe
summing overq1 at fixed q11q2, we find that such terms
cancel in view of(qcq5c221c01c2521/2111(21/2)
50. Having established that only paths visiting each link
or two times are to be considered, we can express, in ana
with Ref. 5, correlation functions~7! and ~8! in terms of
sums over paths representing hulls in the percolation p
lem. In particular, we get for the products of Green functio
entering Eq.~7!,

^TrG~e8,e;z!G~e,e8;z!&5^TrG~e8,e;z21!G~e,e8;z21!&

522(
N

P~e8,e;N!z2N, ~9!

^TrG~e8,e;z!G~e,e8;z21!&522(
N

P1~e8,e;N!z2N,

~10!

whereP(e8,e;N) and P1(e8,e;N) are probabilities that the
edgese and e8 belong to the same loop of the lengthN
~respectively with the lengthN of the part corresponding to
the motion frome to e8). At z51 both Eqs.~9! and ~10!
reduce to22 times the probabilityP(e8,e) that e and e8
belong to the same loop, which is identical~up to the sign! to
the expression for the average conductance^g(e8,e)& at e
50 obtained in Ref. 5.

The fractal dimension of the percolation hulls is 7/414

implying15 that P andP1 scale as

P~r ,N!,P1~r ,N!;N28/7r 21/4, r &N4/7, ~11!

and fall off exponentially fast atr @N4/7 (r is the distance
betweene ande8). This yields for the correlation function
in Eqs. ~9! and ~10! ~which we abbreviate aŝGRGR&,
^GAGA&, ^GRGA&),

^GRGR&5^GAGA&.^GRGA&;r 21/2,

r !jg[g24/7, ~12!

in full agreement with the scaling argument of Ref. 4 a
with our numerics. However, when we substitute Eqs.~9!
and ~10! in Eq. ~7!, these leading order terms cancel sin
(N@P(r ,N)2P1(r ,N)#50. The result is nonzero due to th
factors z2N only, implying that relevantN are now N
;g21, so that ^(GR2GA)(GR2GA)& scales differently
compared to Eq.~12!:

D~e8,e;g!5
1

p2 (
N

@P~r ,N!2P1~r ,N!#~12e22Ng!

;P~r ,g21!g21;~jgr !21/4, r &jg . ~13!
04130
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Now using definition~5! of D and the DOS scaling,r(e)
;e1/7;je

21/4, we find, for r &je ,

L4^c ia* ~e!c j a~e!c ib~e8!c j b* ~e8!&;~r /je!
21/4. ~14!

The same scaling behavior is obtained for the correlat
function ^uc ia

2 (e)c j b
2 (e8)u&.13 We thus conclude thath

51/4, consistent with our above numerical results. To sh
more light on the difference in scaling between^GG& ~or
^g&) @Eq. ~12!#, andD @Eq. ~13!#, it is instructive to reverse
the logic and to ask how Eq.~12! can be obtained from
wave-function correlations~13! and ~14!. It is straightfor-
ward to expresŝGG& throughD in the form of an integral
over e1,2 with corresponding energy denominators~disper-
sion relation!. The integral is then dominated bye1,2
;e(r ), where e(r ) is defined by je(r );r ~i.e. e(r )
;r 27/4). This yields^GG&;D@r ;e(r )#;r 21/2 @we used Eq.
~13! in the last step#, in agreement with Eq.~12!. Therefore,
^GG& ~or ^g&) is determined by wave functions with ene
gies e(r ), which transformsje

21/4 in Eq. ~13! into an addi-
tional factorr 21/4. We will come back to this argument be
low to obtain an analogous relation for higher moments.

In order to study the whole multifractal spectrumDq , we
return to numerical simulations. Our procedure based on
evaluation of ensemble averaged moments^uc2qu& and ex-
trapolation toL→` was described in detail in Ref. 10. Th
results fortq are shown in Fig. 3~a!. The obtained spectrum
is parabolic with a high accuracy. A parabolic spectrum
uniquely determined byh, Dq5hq(12q)/2; the above re-
sult h51/4 thus implies

Dq.q~12q!/8. ~15!

FIG. 3. ~a! Anomalous dimensionDq extrapolated from en-
sembles with system sizesL516–384. The dashed line~almost
indistinguishable! is the parabolaDq5q(12q)/8. ~b! Dq /q(1
2q) over q highlighting weak nonparabolicity.~c! Multifractal ex-
ponentsaq(L)52^ucu2qlnucu2&/^ucu2q&ln L with q50 (s), 1 (h),
and 2 (L), and extrapolation to an infinite system size~dashed
lines!: a02250.13760.003, 22a150.13060.003, and (2
2a2)/350.12560.001. The arrow indicates the valueh/251/8 of
these quantities for a parabolic spectrum.
3-3
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However, we find clear deviations from the parabolic la
@Eq. ~15!#, as shown in Fig. 3~b!. One could ask whethe
these are not an artifact of uncontrollable finite-size corr
tions to scaling. We observe, however, an almost per
scaling for all the moments, yielding, in particular,h
50.25260.002, in a very good agreement with the exa
valueh51/4. On the other hand, we find~in standard nota-
tions, aq5dtq /dq) a02250.13760.003 and 22a1
50.13060.003 @Fig. 3~c!#, while both these quantitie
would be equal toh/2, should the parabolic law@Eq. ~15!#
be exact. This makes us believe that the spectrum is o
approximately parabolic, in contrast to exact parabolic
found for the QH transition.10

Finally, we turn to the statistics of two-point condu
tances. Generalizing the above argument, we obtain

^@TrG~e8,e!G~e,e8!#q&

;r2q~e~r !!L4q^uce1

2q~e!ce2

2q~e8!u&ue1,2;e(r );r 2Xq,

with an indexXq related toDq and to the scaling dimensio
xr of the DOS~defined byr(e);je

2xr) as follows~see also
Ref. 16!;

Xq52qxr12Dq . ~16!

Using xr51/4 and Eq.~15! for Dq , we find

Xq.q~32q!/4. ~17!

The same scaling is expected to hold for the two-point c
ductance,̂ gq&;r 2Xq. However, sinceg is bounded from
above,g<2, the exponent for̂gq& should be a nondecreas

*Also at Petersburg Nuclear Physics Institute, 188350 St. Pe
burg, Russia.
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ing function ofq. Therefore, Eq.~17! will hold only for the
momentŝ gq& with q<qc , whereqc.3/2 is the maximum
of Eq. ~17!, while for higher q the exponent saturates
Xq>qc

5Xqc
.9/16 ~these moments are determined by t

probability to find g;1). Equation~17! corresponds to a
normal distribution of lng ~at r @1) with the average
^ ln g(r)&.23

4ln r and the variance var@ ln g(r)#.1
2ln r. These

arguments are fully confirmed by the results of the numer
simulations shown in Fig. 2.

It remains an open question whether the multifractal
ponentsDq andXq can be computed by the conformal fie
theory methods.8,11,16–19Note that our results do not confirm
the proposal of Ref. 16, where the valueh51/2 was ob-
tained. Apparently, this indicates that the theory conside
in Ref. 16 and obtained18 from a particular network mode
with fine-tuned couplings, does not belong to the SQH u
versality class.

To summarize, we have studied, by combining numeri
and analytical methods, the wave function statistics at
SQH transition. In particular, we have shown, using a m
ping to classical percolation, that the indexh[2D2 @defined
by Eq. ~1!# is equal to 1/4, at variance with ther 21/2 scaling
of the diffusion propagatorP5^GRGA&. The multifractal
spectra of wave functions (Dq) and two-point conductance
(Xq) are given with a good accuracy by Eqs.~15! and ~17!,
but show detectable deviations from parabolicity.
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