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Dimensionality dependence of the wave-function statistics at the Anderson transition
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The statistics of critical wave functions at the Anderson transition in three and four dimensions are studied
numerically. The distribution of the inverse participation rafi#2Rs P, is shown to acquire a scale-invariant
form in the limit of large system size. Multifractality spectra governing the scaling of the ensemble-averaged
IPRs are determined. Conjectures concerning the IPR statistics and the multifractality at the Anderson transi-
tion in a high spatial dimensionality are formulated.

DOI: 10.1103/PhysRevB.66.033109 PACS nunider72.15.Rn, 05.46-a, 05.45.Df, 71.30:h

A disordered electronic system 2 dimensions can be behavior of other quantities was foufamely, an exponen-
driven from the phase of extended states to that of localizetlal vanishing of the diffusion constant and a jump in the
states by increasing the strength of disorder. This transitiorinverse participation ratiogP,) with q=2,3, ... at the mo-
bearing the name of Anderson, is characterized by remarkpility edge. It was, however, shown in Ref. 6 that these
ably rich critical properties. In particular, the eigenfunctionsresults are intimately related to the spatial structure of the
at the critical point show strong fluctuations and represengethe lattice. On this basis, it was argued that although the
multifractal distributions. symmetry-breaking description of the transition in terms of

These fluctgations can bg 'qua'mtitative'ly characterized by, order-parameter functidis of general validity, the pecu-

a set of inverse participation ratios(IPRS, Pq |iar critical behavior found in Ref. 5 is an artifact of the

— [qd 2 ; At -
=/d 'r|z//(r)'| °. Using the renormalléatlon group id=2 Bethe lattice and should take a power-law form for any finite
+ e dimensions ¢<1), Wegner foundthat the ensemble- d<w. Assuming that the critical indices should matchdat

averaged IPRg,P.), show, at criticality, an anomalous scal- , , ) ~
in wi?hr S/\t tQ> th tem site g L~ 70 wher@ —o the Bethe lattice behaviofwhich corresponds ta,
9 espect to the system site(Py) ' =0 for =2 and to the values=< for the conductivity

~ a exponeny, one then concludes that the upper critical dimen-
7= (a=1)d=q(g=1)et+O(e. @ sion isd.== (Ref. 6, also see Ref.)7While available nu-
Equation(1) is written for the case of unbroken time-reversal merical results for the value of®® and for the form of the
symmetry corresponding to the orthogonal ensemble whickritical level statisticin four dimensions are consistent with
we consider in the paper. According to Eq), the fractal this conjecture, its rigorous justification and a systematic
dimension9~3q=~rq/(q— 1) are different from the spatial di- analytical study of the transition for largeare still missing.
mensiond and depend org, manifesting the multifractal To investigate the dimensionality dependence of the criti-
character of the wave-function intensity(r)|2. It is cus- ~ cal statistics of wave functions, we have performed numeri-
tomary to characterize such a distribution by its singularitycal simulations of three-dimension&BD) and 4D tight-
spectrum determined by the Legendre transform?-@f b!nd!ng models wlth penodp boundary conditions and a box
yielding®* distribution of site energies. We have taken valuals
=16.5 for three dimensioh% and W.=35 for four
T(a)=d—(d+ e— a)2/4e+ O(eb). @) dimension%g'llfor. the critical disorder. We have calculated
wave functions with energies close to zero by diagonalizing
In the present paper we study how the wave-function statishe Hamiltonian using efficient numerical packade¥’
tics and, in particular, the multifractality spectrum, evolve Thereby we could average over an ensemble that contained
with increasing spatial dimensionality, when the transitiontypically 10° samples. From every sample 128 wave func-
shifts from the weak-disorder randas ind=2+¢) to the tions with energy close to zero have been taken into account.
strong-disorder one. A numerical study of the Anderson tran- We begin by showing in Fig. 1 the evolution of the dis-
sition in higher-dimensional systems is of special interestribution P(In P,) in three dimensions with the linear size
since no analytical results for the critical behavior in highof the system froni. =8 to 80. It is clearly seen that at large
dimensions are available. In contrast to conventional second- the distribution acquires a scale-independent limiting form
order phase transitions for which the mean-field treatmenand simply shifts along theaxis without changing its shape.
becomes valid above the upper critical dimensignso that  The scale-invariance of the IPR distribution at criticality was
the critical exponents amr@independent fod=d., the usual conjectured in Ref. 14. This conjecture was questioned in
mean-field approach fails in this case. The model has beeRef. 15, where numerical simulations of the IPR distribution
solved on the Bethe latticewhich is believed to correspond in three dimensions were performed, with the conclusion that
to the limit d=<. While for the critical exponent of the the fractal dimensioD, is not a well-defined quantity but
localization length the conventional mean-field valwe rather shows strong fluctuations with a root-mean-square de-
=1/2 was obtained, a very unusual non-power-like criticalviation rmsQ,)~1. In terms of the IPR distribution the
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FIG. 1. IPR distribution in(a) three dimensiongsystem sizes q
L=8,11,16,22,32,44,64, and BGnd (b) four dimensions I
=8,10,12,14, and 16 FIG. 2. The rms deviatiowr, of In P, extrapolated td.— in

three dimensionsX) and four dimensionsstars. The dotted line

o is the analytical resultEqg. (3)] for e=0.2; the full lines represent
statement of Ref. 15 would mean that the rms deviatign Egs. (3) and (5) with e=1. Inset: evolution ofoy with L in three

=[var(InP,)]'? scales in the same way &s'InP,)*InLin  gimensions for selected values 0=0.5,1.5,2,2.5,3,4,5,6. The
the limit of largeL. However, a detailed analytical and nu- eading finite-size correction of all data has the fokm? with y
merical Study of the wave-function statistics in a fam”y of =0.25-0.5 for three dimensions ar}d: 0.1-0.4 in four dimen-
critical power-law random banded matri®®RBM) en-  sions. The numerical error in the extrapolated values gfc) is as
sembles has showhthat the IPR distributiorP(In Py) is large as 10% due to the uncertaintyyin
scale invariant, corroborating the conjecture of Ref. 14. It
was argued that this is a general feature of the Andersosgingularity Spectrun?(a), i_e_,qcznf’(ai) and?(af)zo_
transition, and the conclusion of Ref. 15 was criticized assqr q>q. the IPR distribution is dominated by its slowly
based on a not sufficiently careful numerical analysis of datgjecaying power-law “tail,”
obtained for too small systems. This expectation was sup-
ported by a very recent numerical study of the 3D Anderson P( Pq/P;yP)oc(Pq/P;VP)*lfxq, Py= Ptqyp, (4)
transition!” where a trend towards saturation of the width of S _ _
the distribution”(In P,) with increasing length. was found.  Wherexq=ac/q.” This yieldsoq=q/qc, or in 2+ e dimen-
Our data[Fig. 1(a)] demonstrate the scale invariance of theS'ONs:
limiting distribution (implying a left shift without change in _ 12 12
form of the entire curve with increasirig) even more con- 7q=(el2)d,  a>(2/e)™ ®
vincingly, since we have reached considerably larger valueg addition to the numerical results for three and four dimen-
of L. The same conclusion can be drawn from the inset o&jons, in Fig. 2 we present the res[ifiq. (3)] of the e ex-
Fig. 2 where the saturation of the rms deviatigf{L) of the  pansion ford=2.2. Furthermore, we show the small and
distribution P(In Pq) atL—o is demonstrated. Qualitatively largeq analytical asymptoticfEgs. (3) and (5)] with e=1.
similar results are obtained for the IPR distribution in four Of course, the: expansion is only justified parametrically for
dimensiongFig. 1(b)]. Though a tendency toward the satu- e<1. Nevertheless, we see that it still describes very reason-
ration with increasing- is clear in this case as well, the full aply the IPR fluctuations at the Anderson transition in three
saturation has not been reached, in view of smaller lineagimensions.
sizes of the system as compared to three dimensions. Having demonstrated that the distributions of the IPRs,
To visualize the strength of the IPR fluctuations, in thep  are scale invariant at criticality, so that the fractal di-
main panel of Fig. 2 we show the values of the rms deviamensions are well defined, we are prepared to analyze the
tions o, which characterize the width of the distribution form of the multifractal spectra. We use the numerical pro-

functions P(In Py), extrapolated to.—o. In d=2+€ di-  cedure described in Ref. 18, where it was applied to the

mensionsr, can be calculated analytically followingwith  quantum Hall plateau transition. Specifically, we calculate

the result the ensemble-averaged IRR,) for different system sizes,
extract?q and f(«), and extrapolate to the thermodynamic

112 3 limit L—o in order to eliminate the finite-size corrections.
' We refer the reader to Ref. 18 for more details of the proce-
dure, and for a discussion of its advantages as compared
where a,=0.00387 for the periodic boundary conditions. to the box-counting calculations performed in earlier publi-
Hereq, is the value ofj corresponding to the roet_ of the  cations.

oi=8m%a,e%0%(q—1)%,  q<q.=(2le)
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FIG. 3. Singularity spectrumi(«) in three dimensiongdashed
and four dimensiongfull line). To illustrate the evolution of the
spectrum frond=2 to 4, analytical results fod=2+ e are shown
for e=0.2 (dotteg ling and e=0.01 (dot-dashed line Inset: com-
parison betweetfi(«) for three dimensions and E¢R) with e=1
(solid line).

The obtained results f0~f(a) in three and four dimen-

sions are shown in Fig. 3. To illustrate the evolution of the

spectrum in the whole range frod=2 to 4, the analytical
results[Eq. (2)] for 2+ e dimensions withe=0.2 and 0.01

are also shown. In Fig. 4 the corresponding results for th(—{,-

fractal dimension®(q) are presented. We see that with in-
creasing dimensionality the singularity spectréife) broad-
ens. This is not surprising: with increasiuigthe transition
moves further in the region of strong disorder, implying

stronger multifractality. What is much less obvious is that ingecreases  with

the rangew=2 thef(a) curve shifts to the left with increas-
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ﬁq with g=1 decrease with increasirdy In particular, for

the exponenD, determining the spatial dispersion of the
diffusion coefficient at criticality we find,=1.3+0.05 in

three dimensions anB®,=0.9+0.15 in four dimension¥’

It is worth mentioning that the expansion[Eq. (2)] with
e=1 describes the 3D spectrum remarkably wgiough
with detectable deviations; see the inset of Fiy. |8 par-
ticular, the position of the maximumgy=4.03+0.05, is
very close to its valuexy=d+ e implied by Eqg. (2). As
expected, in four dimensions the deviations from the para-
bolic shape are much more pronounced ang-6.5+0.2
differs noticeably from 6.

The obtained value db,=1.3+0.05 in three dimensions
is considerably smaller than what was found in the earlier
numerical studie€d where values in the range 1.4—1.8 were
reported. The reasons for this are as follows. In the earlier
works the spectrunfi(«) of individual eigenstates was stud-
ied via the box-counting procedure. While in the linhit
— the spectrunf(a) defined in this way should reproduce
the part of thef («) curve lying above the axis, for a finite
L the finite-size effects affed{«) strongly, especially in the
region close to the zerar_ of f(a). As a result, such a

method not only fails to yield the exponerﬁ:s1 with q>q.
but also leads to very large errors in determinationDgf
with g smaller than but close . . In particular, in three and
four dimensions we find thaf; is close to 2, explaining large
errors in earlier results foy=2 in three dimensions. As to
he 4D case, we are not aware of any previous studies of the
wave-function statistics at the Anderson transition.

Let us discuss now what our findings imply for the high-
d behavior of the critical wave-function statistics. First of all,
we note that our numerical observation thﬁg with q=1

increasing dimensionality confirms the
above-mentioned expectation that they should tend to zero in

ing d. This corresponds to the fact that the fractal exponentghe |imit d— . In view of this, an analogy with the PRBM

4 T T

~

q

FIG. 4. Fractal dimensiorﬁq in three dimension&ashed ling
and four dimensiongull line). Analytical results fod=2+ € with
€=0.2 (dotted ling and e=0.01 (dot-dashed lingare also shown.

ensemble with the parametbr1 is very instructive. This
ensemble can be considered as describing a 1D chain with
random long-range hopping whose rms amplitudebiis,
wherer is the distance. The model is critical for arbitrary 0
<b<, and can be studied analytically in both limits
>1 andb<1. The latter case is relevant to the issue under
discussion, and we remind the reader of the key reSults
concerning the wave-function statistics la&1. (The case
b>1 is to a large extent analogous to the Anderson transition
in 2+¢€, dimensions withe<1.) Specifically, the scale-
invariant critical distributionP(Pq/P;yp) becomesb inde-

pendent in the limitb<1. Furthermore, the exponen~t§
with q>1/2 are proportional td in the smallb limit:

Tq=2bT,, T,=20(q-1/2)/7"T(q—1). (6)

Correspondingly, the singularity spectrt?l(ru) acquires, for
a<1, the form

T(a)=2bF(al2b), 7
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where F(A) is the Legendre transform oF(q), with the  atthe present stage, we expect that they will stimulate further
asymptoticsF (A)= — 1/mA asA—0 andF(A)=A/2 asA  numerical and analytical work, which should finally resolve

~ the question posed by the Anderson transition in kdgh
— . The smallness of the fractal exponentg<1, reflects In conclusion, we have studied the statistics of critical

a very Spf”‘kfse S.tr#Ctur:.e of tﬁe il%(_anstates gormed b% '®SQave functions at the Anderson transition in three and four
nances(spikeg with a hierarchy of distances between them, gimensions. The distribution of the inverse participation ratio

16
ri<rp<...,such thatIm,/ri~1/b. ... Pgwas demonstrated to acquire a scale-invariant form in the
After this reminder we return to the Anderson transition in|imit of large system size. As a convenient measure of the

high dimensionality. The smaliness of the fractal exponentsgyrength of the IPR fluctuations, we have evaluated the rms
Dy<1 atd>1 implies, in close similarity to the PRBM deviationo of In P, and found a result matching well ana-
model, that the corresponding critical eigenstates have Btical predictions for 2+ e dimensions withe<1. Calculat-
resonance structure with a hierarchy of scales; Jiri  ing the ensemble-averaged IPR valug,), we have deter-

~1/by and with a dimensionality-dependent parameigr  ined the spectrum of fractal dimensiéhsﬁq(q—l) and

Svahtlsrfylphgbdrnorasg—m% (rln ccr)1ntrr]ast t(\?vthe dPR?M driT;odte:, the singularity spectruri(a) characterizing the multifractal
ere the emergence of resonances was due to direct 1o roperties of the wave functions. In particular, we have

range hopping processes, now it should be determined ~ ) , , -
interference of all possible paths connecting two sites on £Und D;=1.3+0.05 in three dimensions an®,=0.9
d-dimensional lattice. The sparse resonance structure of the™ 0-15 in four dimensions. More generally, our results indi-
eigenstates allows us to use the analogy with the PRBMate that the dimensiors, with =1 decrease with increas-
model and to make the following conjecturéd.The scale- ing spatial dimensionality. On this basis, we have formu-
invariant distribution(P,, /pg’p) for g>1/2 becomes essen- Iateq '.[\NO. Co_njectures con_ce_rning the wave function statistics
tially d independent ai>1. (ii) The fractal exponents @  at criticality in the larged limit.

>1 and forg>1/2 take the formry(d)=2bqT,, i.e., they It is a pleasure to acknowledge help with the implemen-
depend ond only through the overall factoby (satisfying  tation and usage of thé/atson Sparse Matrix Packagg A.
by—0 asd—c). Correspondingly, the singularity spectrum Gupta and M. Krauss. This work was supported by the
scales at largal as f(a)=2byF(a/2by). Though we are SFB195 and the Schwerpunktprogramm “Quanten-Hall-
fully aware of the speculative character of these conjectureSysteme” der Deutschen Forschungsgemeinschatt.
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