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Dimensionality dependence of the wave-function statistics at the Anderson transition
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The statistics of critical wave functions at the Anderson transition in three and four dimensions are studied
numerically. The distribution of the inverse participation ratios~IPRs! Pq is shown to acquire a scale-invariant
form in the limit of large system size. Multifractality spectra governing the scaling of the ensemble-averaged
IPRs are determined. Conjectures concerning the IPR statistics and the multifractality at the Anderson transi-
tion in a high spatial dimensionality are formulated.
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A disordered electronic system ind.2 dimensions can be
driven from the phase of extended states to that of locali
states by increasing the strength of disorder. This transit
bearing the name of Anderson, is characterized by rem
ably rich critical properties. In particular, the eigenfunctio
at the critical point show strong fluctuations and repres
multifractal distributions.

These fluctuations can be quantitatively characterized
a set of inverse participation ratios~IPRs!, Pq
5*ddr uc(r )u2q. Using the renormalization group ind52
1e dimensions (e!1), Wegner found1 that the ensemble
averaged IPRs,̂Pq&, show, at criticality, an anomalous sca
ing with respect to the system sizeL, ^Pq&}L2 t̃q, where2

t̃q5~q21!d2q~q21!e1O~e4!. ~1!

Equation~1! is written for the case of unbroken time-revers
symmetry corresponding to the orthogonal ensemble wh
we consider in the paper. According to Eq.~1!, the fractal
dimensionsD̃q5 t̃q /(q21) are different from the spatial di
mensiond and depend onq, manifesting the multifracta
character of the wave-function intensityuc(r )u2.3 It is cus-
tomary to characterize such a distribution by its singula
spectrum determined by the Legendre transform oft̃q ,
yielding3,4

f̃ ~a!5d2~d1e2a!2/4e1O~e4!. ~2!

In the present paper we study how the wave-function sta
tics and, in particular, the multifractality spectrum, evol
with increasing spatial dimensionality, when the transiti
shifts from the weak-disorder range~as in d521e! to the
strong-disorder one. A numerical study of the Anderson tr
sition in higher-dimensional systems is of special inter
since no analytical results for the critical behavior in hi
dimensions are available. In contrast to conventional seco
order phase transitions for which the mean-field treatm
becomes valid above the upper critical dimensiondc , so that
the critical exponents ared independent ford>dc , the usual
mean-field approach fails in this case. The model has b
solved on the Bethe lattice,5 which is believed to correspon
to the limit d5`. While for the critical exponent of the
localization length the conventional mean-field valuen
51/2 was obtained, a very unusual non-power-like criti
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behavior of other quantities was found~namely, an exponen
tial vanishing of the diffusion constant and a jump in t
inverse participation ratioŝPq& with q52,3, . . . at the mo-
bility edge!. It was, however, shown in Ref. 6 that the
results are intimately related to the spatial structure of
Bethe lattice. On this basis, it was argued that although
symmetry-breaking description of the transition in terms
an order-parameter function5 is of general validity, the pecu
liar critical behavior found in Ref. 5 is an artifact of th
Bethe lattice and should take a power-law form for any fin
d,`. Assuming that the critical indices should match atd

→` the Bethe lattice behavior~which corresponds tot̃q

50 for q>2 and to the values5` for the conductivity
exponent!, one then concludes that the upper critical dime
sion isdc5` ~Ref. 6, also see Ref. 7!. While available nu-
merical results for the value ofn8,9 and for the form of the
critical level statistics9 in four dimensions are consistent wit
this conjecture, its rigorous justification and a systema
analytical study of the transition for larged are still missing.

To investigate the dimensionality dependence of the c
cal statistics of wave functions, we have performed num
cal simulations of three-dimensional~3D! and 4D tight-
binding models with periodic boundary conditions and a b
distribution of site energies. We have taken valuesWc
516.5 for three dimensions10 and Wc535 for four
dimensions8,9,11 for the critical disorder. We have calculate
wave functions with energies close to zero by diagonaliz
the Hamiltonian using efficient numerical packages.12,13

Thereby we could average over an ensemble that conta
typically 103 samples. From every sample 128 wave fun
tions with energy close to zero have been taken into acco

We begin by showing in Fig. 1 the evolution of the di
tribution P(ln P2) in three dimensions with the linear sizeL
of the system fromL58 to 80. It is clearly seen that at larg
L the distribution acquires a scale-independent limiting fo
and simply shifts along thex axis without changing its shape
The scale-invariance of the IPR distribution at criticality w
conjectured in Ref. 14. This conjecture was questioned
Ref. 15, where numerical simulations of the IPR distributi
in three dimensions were performed, with the conclusion t
the fractal dimensionD2 is not a well-defined quantity bu
rather shows strong fluctuations with a root-mean-square
viation rms(D2);1. In terms of the IPR distribution the
©2002 The American Physical Society09-1
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statement of Ref. 15 would mean that the rms deviations2
[@var(lnP2)#

1/2 scales in the same way as^2 ln P2&}ln L in
the limit of largeL. However, a detailed analytical and n
merical study of the wave-function statistics in a family
critical power-law random banded matrix~PRBM! en-
sembles has shown16 that the IPR distributionP(ln Pq) is
scale invariant, corroborating the conjecture of Ref. 14
was argued that this is a general feature of the Ander
transition, and the conclusion of Ref. 15 was criticized
based on a not sufficiently careful numerical analysis of d
obtained for too small systems. This expectation was s
ported by a very recent numerical study of the 3D Anders
transition,17 where a trend towards saturation of the width
the distributionP(ln P2) with increasing lengthL was found.
Our data@Fig. 1~a!# demonstrate the scale invariance of t
limiting distribution ~implying a left shift without change in
form of the entire curve with increasingL) even more con-
vincingly, since we have reached considerably larger val
of L. The same conclusion can be drawn from the inse
Fig. 2 where the saturation of the rms deviationsq(L) of the
distributionP(ln Pq) at L→` is demonstrated. Qualitativel
similar results are obtained for the IPR distribution in fo
dimensions@Fig. 1~b!#. Though a tendency toward the sat
ration with increasingL is clear in this case as well, the fu
saturation has not been reached, in view of smaller lin
sizes of the system as compared to three dimensions.

To visualize the strength of the IPR fluctuations, in t
main panel of Fig. 2 we show the values of the rms dev
tions sq , which characterize the width of the distributio
functions P(ln Pq), extrapolated toL→`. In d521e di-
mensionssq can be calculated analytically following,14 with
the result

sq
258p2a2e2q2~q21!2, q!qc5~2/e!1/2, ~3!

where a250.00387 for the periodic boundary condition
Hereqc is the value ofq corresponding to the roota2 of the

FIG. 1. IPR distribution in~a! three dimensions~system sizes
L58,11,16,22,32,44,64, and 80! and ~b! four dimensions (L
58,10,12,14, and 16!.
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singularity spectrumf̃ (a), i.e., qc5 f̃ 8(a2) and f̃ (a2)50.
For q@qc the IPR distribution is dominated by its slowl
decaying power-law ‘‘tail,’’

P~Pq /Pq
typ!}~Pq /Pq

typ!212xq, Pq*Pq
typ , ~4!

wherexq5qc /q.16 This yieldssq5q/qc , or in 21e dimen-
sions,

sq5~e/2!1/2q, q@~2/e!1/2. ~5!

In addition to the numerical results for three and four dime
sions, in Fig. 2 we present the result@Eq. ~3!# of the e ex-
pansion ford52.2. Furthermore, we show the small an
large-q analytical asymptotics@Eqs.~3! and ~5!# with e51.
Of course, thee expansion is only justified parametrically fo
e!1. Nevertheless, we see that it still describes very reas
ably the IPR fluctuations at the Anderson transition in th
dimensions.

Having demonstrated that the distributions of the IPR
Pq , are scale invariant at criticality, so that the fractal d
mensions are well defined, we are prepared to analyze
form of the multifractal spectra. We use the numerical p
cedure described in Ref. 18, where it was applied to
quantum Hall plateau transition. Specifically, we calcula
the ensemble-averaged IPR^Pq& for different system sizesL,
extract t̃q and f̃ (a), and extrapolate to the thermodynam
limit L→` in order to eliminate the finite-size correction
We refer the reader to Ref. 18 for more details of the pro
dure, and for a discussion of its advantages as comp
to the box-counting calculations performed in earlier pub
cations.

FIG. 2. The rms deviationsq of ln Pq extrapolated toL→` in
three dimensions (3) and four dimensions~stars!. The dotted line
is the analytical result@Eq. ~3!# for e50.2; the full lines represen
Eqs. ~3! and ~5! with e51. Inset: evolution ofsq with L in three
dimensions for selected values ofq50.5,1.5,2,2.5,3,4,5,6. The
leading finite-size correction of all data has the formL2y with y
50.25–0.5 for three dimensions andy50.1–0.4 in four dimen-
sions. The numerical error in the extrapolated values ofsq(`) is as
large as 10% due to the uncertainty iny.
9-2
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The obtained results forf̃ (a) in three and four dimen-
sions are shown in Fig. 3. To illustrate the evolution of t
spectrum in the whole range fromd52 to 4, the analytical
results@Eq. ~2!# for 21e dimensions withe50.2 and 0.01
are also shown. In Fig. 4 the corresponding results for
fractal dimensionsD̃(q) are presented. We see that with i
creasing dimensionality the singularity spectrumf̃ (a) broad-
ens. This is not surprising: with increasingd the transition
moves further in the region of strong disorder, implyin
stronger multifractality. What is much less obvious is that
the rangea&2 the f̃ (a) curve shifts to the left with increas
ing d. This corresponds to the fact that the fractal expone

FIG. 3. Singularity spectrumf̃ (a) in three dimensions~dashed!
and four dimensions~full line!. To illustrate the evolution of the
spectrum fromd52 to 4, analytical results ford521e are shown
for e50.2 ~dotted line! ande50.01 ~dot-dashed line!. Inset: com-
parison betweenf̃ (a) for three dimensions and Eq.~2! with e51
~solid line!.

FIG. 4. Fractal dimensionsD̃q in three dimensions~dashed line!
and four dimensions~full line!. Analytical results ford521e with
e50.2 ~dotted line! ande50.01 ~dot-dashed line! are also shown.
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D̃q with q*1 decrease with increasingd. In particular, for

the exponentD̃2 determining the spatial dispersion of th
diffusion coefficient at criticality we findD̃251.360.05 in
three dimensions andD̃250.960.15 in four dimensions.19

It is worth mentioning that thee expansion@Eq. ~2!# with
e51 describes the 3D spectrum remarkably well~though
with detectable deviations; see the inset of Fig. 3!. In par-
ticular, the position of the maximum,a054.0360.05, is
very close to its valuea05d1e implied by Eq. ~2!. As
expected, in four dimensions the deviations from the pa
bolic shape are much more pronounced anda056.560.2
differs noticeably from 6.

The obtained value ofD̃251.360.05 in three dimensions
is considerably smaller than what was found in the ear
numerical studies20 where values in the range 1.4–1.8 we
reported. The reasons for this are as follows. In the ear
works the spectrumf (a) of individual eigenstates was stud
ied via the box-counting procedure. While in the limitL
→` the spectrumf (a) defined in this way should reproduc
the part of thef̃ (a) curve lying above thex axis, for a finite
L the finite-size effects affectf (a) strongly, especially in the
region close to the zeroa2 of f̃ (a). As a result, such a
method not only fails to yield the exponentsD̃q with q.qc
but also leads to very large errors in determination ofDq
with q smaller than but close toqc . In particular, in three and
four dimensions we find thatqc is close to 2, explaining large
errors in earlier results forq52 in three dimensions. As to
the 4D case, we are not aware of any previous studies of
wave-function statistics at the Anderson transition.

Let us discuss now what our findings imply for the hig
d behavior of the critical wave-function statistics. First of a
we note that our numerical observation thatD̃q with q*1
decreases with increasing dimensionality confirms
above-mentioned expectation that they should tend to zer
the limit d→`. In view of this, an analogy with the PRBM
ensemble with the parameterb!1 is very instructive. This
ensemble can be considered as describing a 1D chain
random long-range hopping whose rms amplitude isb/r ,
wherer is the distance. The model is critical for arbitrary
,b,`, and can be studied analytically in both limitsb
@1 andb!1. The latter case is relevant to the issue un
discussion, and we remind the reader of the key resu16

concerning the wave-function statistics atb!1. ~The case
b@1 is to a large extent analogous to the Anderson transi
in 21e, dimensions withe!1.! Specifically, the scale-
invariant critical distributionP(Pq /Pq

typ) becomesb inde-

pendent in the limitb!1. Furthermore, the exponentst̃q
with q.1/2 are proportional tob in the small-b limit:

t̃q52bT̃q , T̃q52G~q21/2!/p1/2G~q21!. ~6!

Correspondingly, the singularity spectrumf̃ (a) acquires, for
a!1, the form

f̃ ~a!52bF̃~a/2b!, ~7!
9-3
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where F̃(A) is the Legendre transform ofT̃(q), with the
asymptoticsF(A).21/pA as A→0 andF(A).A/2 asA

→`. The smallness of the fractal exponents,t̃q!1, reflects
a very sparse structure of the eigenstates formed by re
nances~spikes! with a hierarchy of distances between them
r 1!r 2! . . . , such that lnri11 /ri;1/b.16

After this reminder we return to the Anderson transition
high dimensionality. The smallness of the fractal exponen
D̃q!1 at d@1 implies, in close similarity to the PRBM
model, that the corresponding critical eigenstates hav
resonance structure with a hierarchy of scales lnri11 /ri
;1/bd and with a dimensionality-dependent parameterbd
satisfyingbd→0 asd→`. ~In contrast to the PRBM model
where the emergence of resonances was due to direct l
range hopping processes, now it should be determined
interference of all possible paths connecting two sites o
d-dimensional lattice.! The sparse resonance structure of t
eigenstates allows us to use the analogy with the PR
model and to make the following conjectures.~i! The scale-
invariant distributionP(Pq /Pq

typ) for q.1/2 becomes essen
tially d independent atd@1. ~ii ! The fractal exponents atd
@1 and forq.1/2 take the formt̃q(d)52bdT̃q , i.e., they
depend ond only through the overall factorbd ~satisfying
bd→0 asd→`). Correspondingly, the singularity spectrum
scales at larged as f̃ (a)52bdF̃(a/2bd). Though we are
fully aware of the speculative character of these conjectu
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at the present stage, we expect that they will stimulate fur
numerical and analytical work, which should finally resol
the question posed by the Anderson transition in highd.

In conclusion, we have studied the statistics of critic
wave functions at the Anderson transition in three and f
dimensions. The distribution of the inverse participation ra
Pq was demonstrated to acquire a scale-invariant form in
limit of large system size. As a convenient measure of
strength of the IPR fluctuations, we have evaluated the
deviationsq of ln Pq and found a result matching well ana
lytical predictions for 21e dimensions withe!1. Calculat-
ing the ensemble-averaged IPR values,^Pq&, we have deter-
mined the spectrum of fractal dimensionst̃q[D̃q(q21) and
the singularity spectrumf̃ (a) characterizing the multifracta
properties of the wave functions. In particular, we ha
found D̃251.360.05 in three dimensions andD̃250.9
60.15 in four dimensions. More generally, our results in
cate that the dimensionsD̃q with q*1 decrease with increas
ing spatial dimensionalityd. On this basis, we have formu
lated two conjectures concerning the wave function statis
at criticality in the large-d limit.
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