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Cyclotron resonance in antidot arrays
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We study the dynamical properties of an electron gas scattered by impenetrable antidots in the presence of
a strong magnetic field. We find that the line shape of the cyclotron resonance is very different from the
Lorentzian and is not characterized by the Drude scattering rate. We show that the dissipative dynamical
response of skipping orbits,Sc(v), is broadened on a scale of the cyclotron frequencyvc and has a sharp dip
}uv2vcu. For small antidots,Sc(v) is strongly modulated with a period equal tovc and has sharp square-root
singularities for a series of resonant frequencies. For large antidots,Sc(v) has a hard gap atv,vc between
two sharp peaks, associated, respectively, with edge states and free cyclotron orbits.
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I. INTRODUCTION

Progress in controlled fabrication of semiconduc
nanostructures1 has revived interest in quasiclassical featu
of transport in a two-dimensional electron gas~2DEG!. Since
the Fermi wavelength of electrons in high-mobility heter
structures is usually small compared to the characteristic
tial scale of inhomogeneities, the transport properties of
2DEG retain signatures of the underlying quasiclassical
namics of the particles. In particular, transport in ballis
mesoscopic systems, where electrons are scattered spec
on the boundary of the system, has been investigate
terms of quasiclassical dynamics in considerable detail.2 In
antidot ~AD! arrays, potential barriers around the AD’s c
also be viewed as hard disks of size;10–102 nm that re-
flect electrons specularly. If AD arrays are periodic~for a
review see Refs. 3 and 4!, the quasiclassical character
electron dynamics manifests itself in pronounced geome
cal resonances, which are associated with the periodicity
lead, in particular, to commensurability peaks in the mag
toresistance. On the other hand, random AD arrays~for ex-
perimental work on dc transport see, e.g., Refs. 5–8! repre-
sent a remarkable disordered system in which the statistic
fluctuations of the random potential is strongly non-Gauss
~in contrast to the familiar case of smooth disorder in hig
mobility heterostructures, where the random potential a
given point is a sum of contributions from many impurities!.

On the theoretical side, the recent interest in the quasic
sical dynamics of a 2DEG is to a large extent inspired b
variety of ‘‘non-Boltzmann’’ quasiclassical transport ph
nomena that occur in disordered systems with large-s
inhomogeneities. The term ‘‘non-Boltzmann’’ means th
these phenomena, while being essentially classical, cann
described by the Boltzmann kinetic equation~i.e., the
collision-integral approximation is insufficient!. They are
due to correlations of scattering acts at the points where q
siclassical paths self-intersect, which gives rise to mem
effects, not captured by Boltzmann transport theory. M
noticeably, the non-Markovian kinetics yields a wealth
anomalous magnetotransport phenomena in low m
netic fields,9–11 induces adiabatic localization of electron
in strong fields,12,13 and leads to a peculiar behavior
the magnetoresistivity in the Lorentz model of hard-d
0163-1829/2002/65~12!/125326~8!/$20.00 65 1253
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scatterers.14–16 It is important that the quasiclassical no
Boltzmann corrections dominate over the quantum ones
systems with long-range disorder.

The non-Markovian character of kinetics that leads to
anomalous dc transport manifests itself also in the cyclot
resonance~CR!. In particular, the adiabatic localization12,13

is predicted17 to yield a peculiar shape of the CR line:
narrow peak related to chaotic dynamics of delocalized e
trons on top of an inhomogeneously broadened backgro
coming from adiabatically localized electrons. The lat
contribution dominates for largeB and gives the linewidth
which depends nonmonotonically onB. This intricate picture
should be contrasted with the case of white-noise disor
where the linewidth is given by the scattering rate.18

In this paper, we consider the CR in AD arrays. We de
onstrate that the CR line shape is very much different fr
the Lorentzian suggested by the Drude theory. The pecu
ity of the dynamical response of the AD system is related
two factors which become important with increasingB: the
formation of ‘‘skipping orbits’’ of electrons bound to AD’s
and suppression of scattering for other electrons that do
participate in the process of skipping. We show that the
is not characterized simply by the Drude scattering rate. S
cifically, cyclotron orbits not colliding with AD’s yield an
infinitely sharp CR line, whereas skipping orbits give a co
tribution broadened on a scale of the cyclotron frequen
vc . The skipping-orbit contribution exhibits a remarkab
rich behavior as a function of frequencyv: it has a sharp dip
}uv2vcu at v5vc and, in the case of small AD’s, is
strongly modulated with a period equal tovc . The modula-
tion yields exact zeros of the CR response in a dilute A
array. In addition to the zeros, a series of sharp singulari
is developed in the wings of the CR line. For large AD’s, t
dynamical response has a hard gap atv,vc between two
sharp peaks, associated, respectively, with edge states
free cyclotron orbits.

The paper is organized as follows. In Sec. II, we derive
exact expression for the CR line shape in the limit of largeB,
which is then analyzed in two essentially different cases
small ~Sec. III! and large~Sec. IV! AD’s. In Sec. V, we
consider moderately strong magnetic fields~moderately in
the sense that skipping orbits bound to different AD’s c
©2002 The American Physical Society26-1
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overlap!. We add remarks bearing on experiments and
role of electron-electron interactions in Sec. VI. Througho
the paper, the analytical calculation is complemented by
results of numerical simulations.

II. LARGE- B LIMIT: INSULATING PHASE

We start by considering the limit of largeB, namely,
nSRc

2!1, wherenS is the concentration of AD’s andRc the
cyclotron radius. We model AD’s by hard disks and assu
that the array of AD’s is dilute, i.e.,nSa2!1, wherea is the
radius of the disks. In this model~known as the Lorentz gas!,
if Rc is smaller than a critical value of the order ofnS

21/2, all
quasiclassical trajectories get localized and the dissipativ
conductivity sxx(v50) vanishes at zero temperatu
exactly.14,15The localization is developed through the form
tion of disconnected clusters of trajectories that do not
tend beyond a finite area. In random AD arrays, the me
insulator transition is ‘‘second order,’’ so that as one go
deeper into the insulating phase with increasingB, the size of
the critical clusters decreases continuously. Eventually,
away from the critical point, fornSRc

2!1, trajectories that
collide with two or more AD’s become very rare. In th
limit, most electrons do not collide with AD’s whatsoev
and give ad-function CR line atv5vc . Most of those that
collide move in skipping orbits around a single AD. It fo
lows that for largeB the dynamical response atvÞvc is
determined by the skipping orbits. Clearly, this conclusion
true both for random and periodic AD arrays.

Let us calculate the dynamical response associated
skipping orbits. Since in the phase space of the Lorentz
there is a well-defined separatrix between free cyclotron
bits and trajectories colliding with AD’s, we write the diss
pative conductivity as a sum of two terms,

Resxx~v!5 1
2 e2r0@pDf~v!1~12p!Dc~v!#, ~1!

where

p5exp~22p/vct0! ~2!

is the probability to close the cyclotron orbit without suffe
ing a collision,t051/2vFnSa the collision time, andr0 the
density of states for free electrons atB50. The symmetrized
functions D f ,c(v)5vF

2@Sf ,c(v)1Sf ,c(2v)#/2 are the
velocity-velocity correlators for free electrons and electro
colliding with AD’s, respectively;vF is the Fermi velocity. In
the above, we have assumed that many Landau levels
occupied, so thatkFRc@1, wherekF is the Fermi wave vec-
tor, and that AD’s are large enough, in the sense thatkFa
@1, which means that AD’s scatter electrons specularly. I
also important to us that under these conditions the den
of states of electrons scattered by AD’s is not affected by
Landau quantization and is given simply by (12p)r0.

The dynamical response to a circularly polarized~CR-
active! perturbation is given bySf ,c(v). For free electrons
we haveSf(v)5pd(v2vc), while for electrons skipping
around an AD
12532
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Sc~v!5E
0

`

dtK cosF ~vc2v!t

12u (
m51

`

Q~ t1Dt2mT!G L
Dt,r

, ~3!

whereQ(t) is the step function and

^ &Dt5
vc

2pE0

T(r )

dDt, ^ & r5
1

2Rca
E

uRc2au

Rc1a

rdr ~4!

denotes averaging over the initial phasevcDt and the dis-
tance r between the centers of the AD and the cyclotr
orbit. The normalization of the integral^ &Dt takes care of the
‘‘exclusion volume’’ free of electrons because of the pre
ence of AD’s. The angle of incidenceu(r ) ~the angle be-
tween the trajectory and the tangent to the surface of the
at the collision point! and the timeT(r ) between two suc-
cessive collisions read

cosu~r !5
r 22Rc

22a2

2Rca
, ~5!

cos
vcT~r !

2
5

a22Rc
22r 2

2Rcr
. ~6!

Sincer is an integral of motion for orbits skipping around
disk, u(r ) andT(r ) are the same for each collision.

Doing the integrations overt andDt and summing overm
in Eq. ~3!, we get an identically zero response at the cyc
tron frequency for colliding electrons,Sc(vc)[0, and

Sc~v!5
vc

~vc2v!2 K sin2u~r ! (
n52`

`

d@ f v~r !1pn#L
r

~7!

5
vc

2Rca~vc2v!2 (
n

r n sin2u~r n!

u f v8 ~r n!u
~8!

for vÞvc . Here f v(r )5 1
2 (vc2v)T(r )1u(r ) and r n(v)

are roots of the equationf v(r )1pn50. The summation in
Eq. ~8! runs overr n that satisfyuRc2au,r n,Rc1a.

Equation~7! tells us that the dynamical response is due
resonant orbits. There is no broadening of the contribution
each of the orbits and, accordingly, the shape of the CR
is given by the density of states of the resonant orbits. T
meaning of the resonance conditionv5vc12(u1pn)T21

is that the change of the total phase~cyclotron phase1 phase
of the ac field1 scattering phase! should be a multiple of 2p
between two collisions. It is worth noting that, contrary
what one might expect, the resonant orbits are not perio
two-dimensional orbits. The formation of periodic orbits
indeed important for the understanding19,20 of transport
through periodic arrays at weakB, where geometric reso
nances in the dc magnetoresistance19–21 and in the position
of the main CR peak22 in the photoconductivity are observed
However, two-dimensional periodic orbits do not play a
particular role in Eqs.~7! and~8! ~so that their separate trea
6-2
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CYCLOTRON RESONANCE IN ANTIDOT ARRAYS PHYSICAL REVIEW B65 125326
ment is not justified in the calculation of the response
skipping orbits bound to a single AD!. This conclusion
should be contrasted with the theoretical approach of R
22, where it has been suggested that the skipping-orbit
sponse is dominated by peaks atv corresponding to periodic
orbits.

To analyzeSc(v), it is convenient to rewrite Eq.~8! and
the resonance condition in terms of the functiongv(u)
5 f v@r (u)# defined on the interval 0,u,p:

Sc~v!5
vc

2~vc2v!2 (
n

sin3un

ugv8 ~un!u
, ~9!

gv~u!5 1
2 ~vc2v!T~u!1u, ~10!

gv~un!1pn50. ~11!

The time between collisionsT(u) behaves in an essentiall
different way depending on whether the ratioRc /a is larger
or smaller than unity.

III. SMALL ANTIDOTS

Let us first study the caseRc@a by expandingT(u) in
powers ofa/Rc . Combining Eqs.~5! and ~6! we get

T~u!5
2p

vc
2

2a

vF
S sinu2

a

2Rc
sin 2u1••• D , ~12!

with T(0)5T(p)[2p/vc . To find the rootsun at uv
2vcu!vF /a, one can retain only the first~unperturbed!
term in Eq.~12!, which yields, for a givenv, a single solu-
tion un.p(v/vc2@v/vc#) andgv8 (un).1. Here@v/vc# is
the integer part ofv/vc . Substituting these expressions
Eq. ~9! we find

Sc~v!5
vc

2~vc2v!2
sin3

p~v2nvc!

vc
, ~13!

Dc~v!5vF
2

vc
21v2

~vc1v!2
Sc~v! ~14!

for nvc,v,(n11)vc andunu!Rc /a. We thus see that the
CR line exhibits a strong modulation; namely,Sc(v) has
zeros atv5nvc .23 Note that the zeros are exact even
higher-order terms in powers ofa/Rc are taken into account
These zeros correspond to resonant orbits withu→0 andu
→p, which go along the tangent at the point where th
touch the AD. In the vicinity of the zerosSc(v) behaves as
uv2nvcu3 for anynÞ1, including the dc limitn50. At the
point v5vc , Sc(v) vanishes asuv2vcu. The envelope of
the oscillations ~13! falls off with increasing v as (v
2vc)

22, similarly to the conventional Lorentzian.
The total response of the 2DEG scattered by AD’s

small radiusa (Rc /a@1 and uvu!vF /a) is thus a sum of
two parts: a sharp peak associated withSf(v) and a series of
broader peaks given bySc(v), whose width is;vc . The
oscillatory behavior ofDc(v) is shown in Fig. 1. One can
12532
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see that the first two peaks ofDc(v) that occur betweenv
50 andv52vc are much higher than those for largerv. As
a result, the response of skipping orbits withRc /a@1 looks
like a double peak split up atv5vc . Note that the resonan
value of u tends top if one approachesvc from the left
(v→vc20), whereas it tends to 0 if one does so from t
right (v→vc10). Accordingly, the two parts of the doubl
peak for 1,v/vc,3/2 ~where the resonant angles 0,u
,p/2) and 1/2,v/vc,1 ~wherep/2,u,p) differ in the
direction in which the guiding centers of the resonant sk
ping orbits rotate around the AD~see the insets in Fig. 1!.

The wing of the principal double peak~Fig. 1! exhibits
nontrivial behavior. Asv increases,Sc(v) in intervals be-
tween two adjacent zeros gets more and more asymm
with maxima shifting towards the higher-uvu boundary of the
intervals. Eventually, whenuvu reaches the critical frequenc
vF /a, the behavior ofSc(v) acquires qualitatively new fea
tures. Atuvu.vF /a, gv(u) as a function ofu becomes non-
monotonic, which can be seen from Eqs.~10! and~12!. This
leads to the appearance of multiple rootsun for a givenv ~in
contrast to a single root atuvu,vF /a). Because of the mul-
tiple roots, the zeros inSc(v) disappear foruvu.vF /a,
since the conditionun50 or p now cannot be met for al
roots simultaneously~so that there is a finite number of ze
ros, namely, 2Rc /a zeros atRc@a). Moreover, the non-
monotonic behavior ofgv(u) yields singularities in the line
shape associated with resonant orbits for which the der
tive gv8 (un) vanishes in the denominator of Eq.~9!.

Let us analyze the high-v limit uvu@vF /a. In this
case, one can neglect the last term on the right-hand
of Eq. ~10! and represent the equation forun at n@1 in
the form (va/vF)sinun1p(n2v/vc)50 with gv8 (un)
.(va/vF)cosun . One sees that now for a givenv there are

FIG. 1. Dynamical response of skipping orbits forRc /a@1 and
v!vF /a exhibits oscillatory behavior with a characteristic doub
peak around zero atv5vc . Dashed line:Dc(v) in units ofvF

2/vc

according to Eqs.~13! and~14!. Solid line: numerical simulation for
Rc /a.11.3. The insets illustrate the different sense of rotation
resonant skipping orbits with 1,v/vc,3/2 ~upper panel! and 1/2
,v/vc,1 ~lower panel!.
6-3
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D. G. POLYAKOV, F. EVERS, AND I. V. GORNYI PHYSICAL REVIEW B65 125326
2uvua/pvF@1 roots un . Transforming to the continuou
limit in the summation overun @Eq. ~9!# we obtain a regular
part of Sc(v) for uvu@vF /a:

Sc
reg~v!5

2

3p

vc

v2 . ~15!

The most prominent feature on top of the smoothly vary
background~15! is the appearance atuvu.vF /a of sharp
singularities~‘‘spikes’’ ! in Sc(v). The spikes occur every
time gv8 (u) vanishes for one of the rootsun . Note that the
singularity frequencies coincide forSc(v) and Sc(2v). At
uvu@vF /a, gv(u) reaches maximum atu5umax.p/2
1a/Rc1vF /va, close top/2. It follows that the skipping
orbits that yield the spikes hit the surface of an AD at alm
a right angle, so that the center of the orbits flicks from o
side of the AD to the other after each collision. Expandi
around the maximum and substituting two~almost degener-
ate! rootsun(v) of Eq. ~11! which are close toumax, we find
Sc(v) in the vicinity of the singularities foruvu@vF /a:

Sc
sing~v!5

vc

v2 S vF

2pauvu D
1/2U vc

vn2vU1/2

Q@~vn2v! sgnv#.

~16!

The frequenciesvn for uvu@vF /a andRc@a are given by
vn.vc(n13/2)(11a/pRc). Note that the period of the se
quence of spikes is larger thanvc ~but close tovc at Rc
@a). The behavior ofSc(v) for largeva/vF is illustrated in
Fig. 2. The square-root singularities atv→vn that appear for
v.vF /a ~i.e., forv/vc.Rc /a) are clearly seen. The regio

FIG. 2. Dynamical response of skipping orbits withRc /a@1 in
the tail of the principal double peak~shown in Fig. 1!. The oscil-
lating curve represents the productDc(v)3(v/vc)

2 in units of
vF

2/vc as obtained from the numerical simulation forRc /a.11.3.
The inset magnifies the region nearv/vc5Rc /a, where zeros of
Dc(v) disappear and simultaneously a series of square-root si
larities starts@Eqs.~15! and ~16!#. It also shows the resonant orb
corresponding to the singular frequency.
12532
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of v.vF /a is blown up in the inset to show the sudden st
of the series of singularities whenv becomes larger than
vF /a.

IV. LARGE ANTIDOTS

We now turn to the caseRc!a. As we will see,Sc(v)
shows completely different behavior in the two limits
large and smallRc /a. The functionT(u) expanded in pow-
ers ofRc /a reads

T~u!5
2~p2u!

vc
1

2Rc

vca
S sinu2

3Rc

4a
sin 2u1••• D ,

~17!

with T(0)[2p/vc and T(p)[0. Clearly, if one sends
Rc /a→0, Sc(v) describes the dynamical response of traje
tories skipping along a straight line~‘‘edge states’’!. Using
Eq. ~17! in this limit, we get 11@ uvu/vc# rootsun5p2(n
11)pvc /uvu with 0<n11<@ uvu/vc#, for which gv8 (un)
5v/vc . Substitution in Eq.~9! yields

Sc~v!5
vc

2

2uvu~vc2v!2 (
n50

[ uvu/vc] 21

sin3
~n11!pvc

uvu
~18!

andDc(v) which is related toSc(v) by Eq. ~14!. Since the
limits v→0 andRc /a→0 do not commute with each othe
one should be careful about the behavior ofSc(v) at v→0.
In fact, Sc(v) for the edge states has ad(v) term in the dc
limit, so that Eq.~18! correctly describes the response of
large AD with Rc /a→0 only atvÞ0 ~see below!.

As follows from Eq.~18!, in a striking difference with the
case of largeRc /a, there appears a gap withSc(v)50 for
0,uvu,vc . No dissipation occurs with increasingv until
uvu exceedsvc . At the edge of the gap,Sc(v) vanishes
linearly as uvu2vc . Also, in contrast to the case of larg
Rc /a, Sc(v) given by Eq.~18! has neither zeros@cf. Eq.
~13!# nor singularities@cf. Eq. ~16!# for uvu.vc . In the limit
of large uvu@vc , replacing the summation in Eq.~18! by
integration leads toSc(v)}v22 which behaves according t
Eq. ~15!.

As mentioned above, in addition to Eq.~18! there is a
d(v) peak inSc(v) for edge states withRc /a→0. To cal-
culate the dynamical response of AD’s of a large but fin
radius, one should take into account terms of higher orde
Rc /a!1 in the expansion~17!, which leads to a broadenin
of the peak in a finite range of frequency, namely, 0,v
,vF /a. This broadening is governed by the rootu21 which
obeys the equation

va

vF
5

sinu21

p2u21
, ~19!

with gv8 (u21)5vc
21(v2vF cosu21 /a), where we retained

only the term linear inRc /a in Eq. ~17!. We see that a solu
tion of Eq. ~19! exists only in the above-mentioned interv
of v. Within this intervalSc(v) reads

u-
6-4



-

ela
s:

s
-

pe
i-

.

g
ld
e

bit
of
.
its
er.

or,

-

s

r

a
in
e;

e
een

-

es

e of
ss-

oot

e

of
er

th
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Sc~v!5
a

2vF

sin3u21

cosu211va/vF
. ~20!

Combining Eqs.~19! and ~20! we obtain the asymptotic be
havior ofSc(v) near the ends of the interval:Sc(v) vanishes
asv3 at v→0 and as (vF /a2v)1/2 at v→vF /a. The total
weight of the peak at smallv is given by *0

vF /advSc(v)
5*0

pdu(2u)21 sin3u.0.485.
The dynamical response of the 2DEG in the case of r

tively large AD’s withRc /a!1 is thus a sum of three peak
two sharp peaks, one centered at low frequencyv;vF /a,
the other at higher frequencyv5vc ~the latter is related to
free cyclotron orbits!, plus a broad peak of width;vc
whose edge coincides withvc . The behavior of the contri-
bution of skipping orbits,Sc(v), is illustrated in Fig. 3.

Note that the hard gap inSc(v) gets narrower but remain
exact at smallRc /a. In fact, the hard gap survives with in
creasingR/a up until Rc becomes equal toa, at which point
the geometry of skipping changes in a qualitative way. S
cifically, at Rc,a skipping orbits propagate in only one d
rection around the AD, whereas forRc.a they propagate in
both. As a result, the hard gap atuvu,vc disappears~trans-
forms into a soft gap}uv2vcu) for Rc.a and simulta-
neously infinitely many singularities pop up atuvu.vc .
With further increasingRc /a, zeros inSc(v) proliferate in
the finite range of frequencyuvu,vF /a, as explained above

V. MODERATELY STRONG B: METALLIC PHASE

The above analysis of the dynamical response of a sin
AD applies directly to the case of a strong magnetic fie
nSRc

2!1. In this limit, a skipping orbit is bound to a singl

FIG. 3. Dynamical response of skipping orbits withRc /a!1
~edge states!. The sharp low-frequency peak is separated from
broad peak atv;vc by a hard gap. The curve forv.vc is Sc(v)
in units of vc

21 calculated according to Eq.~18!. The peak at 0
,v,vF /a is a solution of Eqs.~19! and~20! for Rc /a50.1 ~solid
line! andRc /a50.2 ~dotted line!.
12532
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AD for an infinitely long time. With decreasingB, the scat-
tering processes that involve collisions of a skipping or
with many AD’s become essential and at a critical value
the parameternSRc

2;1 a metal-insulator transition occurs
On the conducting side of the transition, the skipping orb
become delocalized by hopping from one AD to anoth
Deep in the metallic phase, fornSRc

2@1, the characteristic
hopping rate ist0

21 and the dc conductivitysxx(0) is given
by the second term in Eq.~1! with15 Dc(0)5vF

2t(x)/@1
1vc

2t2(x)# parametrized byx5vct0, wheret(`)5t0 and
t(0)53t0/4. At zero B, Boltzmann theory works perfectly
well in the hydrodynamic limit (nS→`, nSa5const), but
due to the factor of 12p in Eq. ~1!, sxx(0) falls off asB23

in the conducting phase, one power ofB faster than in Bolt-
zmann theory. One might think that, apart from this fact
the dynamical response at finiteB will also be similar to that
in the Boltzmann approach. The latter is simply the zeroB
Lorentzian with a shifted frequencyv→v2vc . In fact,
however, the behavior ofSc(v) in the conducting phase i
completely different from the Lorentzian; see below.

While Sc(v) in the dc limit shows the metal-insulato
transition, at largerv the functionSc(v) in the conducting
phase retains, providedvct0@1, the main features of the
single-AD response withRc /a@1 @Eqs.~12!–~16!#. The os-
cillatory behavior of the line shape with sharp dips atv
5nvc remains almost unchanged atvct0@1, since in this
limit skipping orbits experience many collisions with
single AD before they ‘‘change’’ to another one. Clearly,
contrast to Eq.~13!, Sc(v) has no exact zeros any mor
however, the behavior ofSc(v) is modified only in a close
vicinity of the pointsv5nvc . In particular, because of th
broadening of the resonances due to the hopping betw
AD’s, the linear vanishing ofSc(v)}uv2vcu nearv5vc is
cut off at uv2vcu;t0

21. On the other hand, the cubic van
ishing of Sc(v);uvu3/vc

4 matchesSc(0);(vc
2t0)21 in the

dc limit, which establishes the scaleuvu;t0
21(vct0)2/3 on

which the frequency dispersion of the conductivity becom
strong. A linear zero-frequency anomaly24 Sc(v)2Sc(0)
}uvu appears in the metallic phase. Notice that, becaus
the anomalously strong broadening of the CR line, the cro
over to the regimesxx(v)@sxx(0) occurs with increasingv
at much smaller~for vct0@1) frequency than in the Drude
regime, where the characteristic scale isvc .

The hopping between AD’s also cuts off the square-r
singularities~16! @they only survive for isolated AD’s, whose
contribution is suppressed by the factor of exp(24pnSRc

2)#.
Note that the substitutionv→v1 i /t0 in Eq. ~16! is only
correct forvF /a!v!vFRc /a2. For largerv, the effective
collision rate for the resonant orbits is renormalized,t0

21

→ t̃0
21, since after each two collisions with a given AD th

center of the resonant orbit is shifted by a distancedR
;RcvF /av, which is much smaller thana for the large fre-
quencies. It follows thatt̃0 increases withv, t̃0 /t0;a/dR,
so that the singularities are cut off on the smaller scale
t̃0

21. Note that after the collision with another AD the cent
of the orbit is shifted by;Rc(dR/a)1/2, which makes the
orbit nonresonant.

e
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The smearing of the soft gaps around the zeros ofSc(v)
can be clearly seen in the hydrodynamic limitnS→`, a
→0 with nSa held fixed. In this limit, the kinetic problem
allows for an exact solution,15,16 which we reproduce for
convenience in the following form:

Sc~v!5
1

vc2v
ReF12pe22p iv/vc

12p

iS~v!

v2vc2S~v!G ,
~21!

with

S~v!5
1

t0
E

0

p

du sin2u
eiu

12pe2igv(u)
. ~22!

Heregv(u) is given by Eq.~10! with T(u)52p/vc , since
in the hydrodynamic limitRc /a→`. Sending vct0→`
~i.e., p→1) generates a pole on the real axis ofu in the
integrand of the self-energy~22!, which yields S(v)
5(p/2t0)sin2ueiu with u5p(v/vc2@v/vc#). The latter are
precisely theu ’s defining the resonant orbits in Eq.~13!.
Using the above expression forS(v) at vct0→` in Eq.
~21! indeed yields our Eq.~13!, derived for the insulating
phase. Clearly, no singularities@Eq. ~16!# occur in the hydro-
dynamic limit. Note that the metal-insulator transition tak
place in a dilute AD array atRc /a@1. Therefore, provided
vct0@1 ~which is the conventional condition for a deve
oped CR resonance!, Sc(v) is in fact described by Eq.~13!
not only in the metallic phase but also in the critical regi
of the metal-insulator transition, except for a very close
cinity of the zeros ofSc(v).

In Fig. 4, we show results of our numerical simulation
ac transport in a very dilute AD array withnSa2.0.62
31023, which corresponds to the mean free pathl S
53/8nSa.600a, tuned through the metal-insulator trans
tion by changing magnetic field. The upper curve cor
sponds to the smallestB, with l S /Rc.2.12. One sees tha
contrary to what one would expect from the conventio
Boltzmann theory, although the dc valuesxx(0) is only ;6
times smaller than that at zeroB, a very narrow peak atv
5vc is developed, associated with free cyclotron orbits.
B increases, this peak acquires more weight, while remain
very sharp. Next, in striking contrast to Boltzmann theo
the oscillations ofsxx(v), related to skipping orbits, becom
more and more pronounced with growingB. The double-
peak structure around the linear gap nearv5vc is clearly
seen, as are deep minima atv equal to multiples ofvc . For
large l S /Rc , the numerically obtained behavior ofsxx(v) is
in a good agreement with Eqs.~1!, ~13!, and~14!.

As follows from the comparison of Eqs.~13!, ~21!, and
~22!, the dissipation atvÞvc for finite vct0 is due to reso-
nant orbits~11! broadened by the hopping between differe
AD’s. It is interesting to note that there appear two kinds
resonant behavior of the dynamical response in the met
phase: first, the last factor in Eq.~21! resembles a resonanc
at v.vc broadened by ImS; on the other hand, the broad
ening itself is due to resonant orbits, for which the denom
nator in Eq.~22! is close to zero.
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VI. DISCUSSION

In the above, we have calculated the quasiclassical
namical conductivity of an AD array, completely neglectin
electron-electron interactions inside the 2DEG. At zeroB, in
the case of Coulomb interaction in a normal metal, this i
well-controlled approximation governed by the large para
eterskFaB and kFl S , whereaB is the Bohr radius~and a
characteristic screening length at zeroB). At nonzeroB, the
situation appears to be much less trivial. Although in th
paper we do not provide any treatment of the combined
fect of the interactions and disorder on the CR line, a f
comments are in order.

First, the Landau quantization enhances the role of
interaction. In particular, for weakB, the ground state of a
disorder-free 2DEG is known25,26 to spontaneously brea
translational symmetry in a partially filled~i.e., highest oc-
cupied! Landau level. It is electrons from this level and tho
from the highest fully occupied level that are excited in t
CR at zero temperature. On the other hand, the CR at
wave vector in a one-component system of particles wit
parabolic dispersion without external inhomogeneities is
sensitive to the electron-electron interaction~Kohn’s
theorem27!. Hence, it is only because of the combined effe
of disorder and interactions that the latter can affect the
line shape~e.g., Refs. 28 and 29 and references therein!. At
present, it is unclear what the resulting line shape of
dynamical response is for the system studied in Refs. 25
26 ~see also Refs. 30–32! in the presence of disorder. How

FIG. 4. Dynamical conductivity Resxx(v) as a function of
v/vc in units of the zero-B zero-v value s0 in a dilute antidot
array as obtained by the numerical simulation. The transport m
free path at zeroB is l S.600a. Different curves correspond to
different B. The ratio of l S /Rc changes from 2.12 for the uppe
curve to 4.24, to 14.14, up to 28.28 for the lower curve. Even
the relatively weak field withl S /Rc52.12 a very sharp peak atv
5vc is clearly seen. With increasingB, the broad double peak
aroundv5vc gets more pronounced, as does the oscillatory beh
ior of sxx(v) for higherv. For largel S /Rc528.28, the numerically
obtained Resxx(v) agrees well with Eqs.~1!, ~13!, and~14!.
6-6
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ever, since electrons skipping around hard-wall AD’s do
experience the Landau quantization~in this sense disorder is
strong for them!, we expect that their dynamical respon
has only weak interaction corrections~for kFaB@1 and
kFRc@1). On the experimental side, the CR of strongly co
related particles has been investigated in the high-B limit
~e.g., Refs. 33–36 and references therein!, but not for the
translational-symmetry-broken state25,26 in weaker magnetic
fields.

Second, because of electron-electron interactions,
quantity that is directly measured in far-infrared~e.g., Ref.
37! or microwave~e.g., Refs. 38–40! experiments may be
related to the conductivity in a complex way. In the pap
we have provided explicit results for the conductivity: mo
specifically, forSc(v)}Resxx(v)1Im sxy(v). We expect
only small interaction corrections toSc(v). It is important,
however, that the conductivity expresses the current as a
sponse to the total~screened! electric field. As such, it is
given by the irreducible, with respect to the Coulomb int
action, density-density response functionK(q,q8,v). On the
other hand, in contrast to dc measurements, what is pro
directly in the ac transmission experiments is a respons
the external field. The latter is given, in an operator form,
the reducible polarizatione21K, where e is the dielectric
function. Put differently, the dissipated power is measured
units of the intensity of the incident wave. Since the me
sured absorption is increased near zeros ofe, i.e., on reso-
nance with plasma oscillations, the dynamical response
2DEG calculated in the paper is in general masked in
absorption experiments by the excitation of magnetop
mons ~for optical experiments with magnetoplasmo
see Refs. 37,41–44,22, and 45–47!. The measured
quantity appears to depend in an essential way on the ex
mental setup~which may be very different; cf. Refs. 39,38
and 40!.

Let us mention one more point related to edge magne
plasmons in AD arrays, i.e., a soft mode of plasma osci
tions localized near the sharp edges of AD’s~Refs. 48 and
49; for experiments see Refs. 41–44,22, and 45–47!. It is
often asserted that there is an intimate connection betw
rs

ls

e

-

,
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the collective edge excitations and skipping orbits. In fa
this notion may be very misleading. Indeed, the width of
strip around an AD in which the skipping orbits propaga
along the edge is 2Rc . However, the current in the edg
magnetoplasmon mode decays, in general, on a diffe
scale: e.g., atv!vc and Rc@aB this scale is given49 by
Rc

2/aB@Rc . Hence, the main contribution to the edge ma
netoplasmon current may come from electrons that do no
all collide with the AD. Since the frequency dependence
the dissipative response of the skipping orbits and that of
edge magnetoplasmons belong to different ranges ofv, it
appears to be quite possible that they can be measured
rately in transmission experiments.

In conclusion, we have seen that the dynamical cond
tivity of electrons scattered on impenetrable AD’s in t
presence of a magnetic field reveals strong memory effec
the electron dynamics, associated with skipping orbits bo
to AD’s. These lead to the CR line shape which is not at
characterized by the Drude scattering rate. The contribu
of the skipping orbitsSc(v) is broadened on a scale of th
cyclotron frequencyvc and vanishes atvc in a nonanalytical
way asuv2vcu. Apart from these two features,Sc(v) ex-
hibits different behavior depending on the ratio of the cyc
tron radiusRc and the AD radiusa. At large Rc /a, Sc(v)
oscillates with a periodvc up to v5vcRc /a and shows a
series of square-root spikes for largerv. At small Rc /a,
Sc(v) has a hard gap between two sharp peaks locate
v;vcRc /a and v5vc . We hope that these results wi
stimulate further experimental work on the ac conductivity
AD arrays.
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