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Quasiclassical magnetotransport in a random array of antidots
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We study theoretically the magnetoresistancerxx(B) of a two-dimensional electron gas scattered by a
random ensemble of impenetrable discs in the presence of a long-range correlated random potential. We
believe that this model describes a high-mobility semiconductor heterostructure with a random array of anti-
dots. We show that the interplay of scattering by the two types of disorder generates new behavior ofrxx(B)
which is absent for only one kind of disorder. We demonstrate that even a weak long-range disorder becomes
important with increasingB. In particular, althoughrxx(B) vanishes in the limit of largeB when only one type
of disorder is present, we show that it keeps growing with increasingB in the antidot array in the presence of
smooth disorder. The reversal of the behavior ofrxx(B) is due to a mutual destruction of the quasiclassical
localization induced by a strong magnetic field: specifically, the adiabatic localization in the long-range Gauss-
ian disorder is washed out by the scattering on hard discs, whereas the adiabatic drift and related percolation
of cyclotron orbits destroys the localization in the dilute system of hard discs. For intermediate magnetic fields
in a dilute antidot array, we show the existence of a strong negative magnetoresistance, which leads to a
nonmonotonic dependence ofrxx(B).

DOI: 10.1103/PhysRevB.64.205306 PACS number~s!: 73.43.Qt, 73.63.Kv
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I. INTRODUCTION

In recent years, there has been a revival of interes
quasiclassical transport properties of a two-dimension
electron gas~2DEG!. This has been largely motivated by th
experimental progress in controlled preparation of nanost
tured semiconductor systems1 and, in particular, by the ex
perimental and practical importance of high-mobility hete
structures, in which impurities are separated from the 2D
by a wide spacer. On the theoretical side, much of the re
interest in quasiclassics on the nanometer scale has bee
lated to the realization that the classical dynamics in a dis
dered system is in fact much richer than the idealized Dr
picture suggests. Indeed, as far as ballistic mesoscopic
tems are concerned, electron transport has been studie
terms of quasiclassical dynamics in great detail.2 However,
in diffusive systems with smooth disorder, a quasiclass
treatment of electron kinetics is also appropriate and
been shown to lead to different transport regimes. To
scribe the transport properties of such system, one somet
has to completely abandon theories based on the Boltzm
equation. In Boltzmann transport theory, formulated in ter
of a set of relaxation times, quasiclassics leads to the Dr
results: analytical behavior of the ac conductivitys(v) at
v→0, zero magnetoresistance~MR!, etc. It has been dem
onstrated, however, that quasiclassicalmemory effects, ne-
glected in the conventional Boltzmann approach, yield
wealth of anomalous transport properties of a 2DEG sub
to long-rangedisorder. In particular, non-Markovian kinetic
gives rise to a quasiclassical zero-frequency anomaly~see
Ref. 3 and references therein! in the ac response of a diso
dered 2DEG, associated with return processes in the p
ence of smooth inhomogeneities. Specifically, the retu
induced correction to Res(v) exhibits a kink}uvu. Another
manifestation of non-Markovian kinetics is a strong posit
MR in low magnetic fields,4 which is able to explain5 the
otherwise puzzling positive MR observed near half filling
0163-1829/2001/64~20!/205306~19!/$20.00 64 2053
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the lowest Landau level in the fractional quantum Hall r
gime. The strength of the above anomalies depends on
ratio d/ l , whered is the correlation radius of disorder,l the
mean free path, and grows with increasingd/ l as a power of
this parameter. Since quantum corrections are governed
different small parameter 1/kFl !1, wherekF is the Fermi
wave vector, it is the long-range correlations of disorder w
kFd@1 that reveal the quasiclassical anomalies. The con
tion kFd@1 is typically well satisfied in high-mobility semi
conductor heterostructures.

In this paper, we consider the quasiclassical mag
totransport properties of a 2DEG in a random array of a
dots ~AD!. The transport~dc and far-infrared! properties of
AD arrays, both periodic and random, have been the sub
of many recent experiments, see, e.g., Refs. 6–12 and r
ences therein. In periodic arrays~for a review see Refs. 13
and 14!, interest has been focused on geometric resonan
which are associated with the periodicity and result, in p
ticular, in commensurability peaks in the MR.15–18 On the
other hand, random arrays~see, e.g., Refs. 19,20,12,9,7 an
6! constitute a remarkable disordered system where the A
play the role of hard-wall scatterers. We aim to study the M
in random AD arrays and therefore assume that there e
two types of disorder: AD’s, which we model as impe
etrable hard discs that scatter electrons, and a smooth ran
potential, created in the heterostructures by charged imp
ties behind a spacer. The quasiclassical MR in each of
limits, where only one type of disorder is present, is w
understood by now~see Sec. II!. The purpose of the paper i
to demonstrate that the interplay of the two types of disor
yields interesting physics that is absent in the limiting cas
We will show that, although in the extreme of a strong ma
netic field B→` the dissipative resistivityrxx(B) tends to
zeroin either of the limiting cases, itdivergesin the presence
of both types of disorder. In particular, in the experimenta
relevant situation of relatively weak long-range disorder, i
©2001 The American Physical Society06-1
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when the mean free path at zeroB is determined by scatter
ing on AD’s, the presence of the weak long-range fluct
tions will nonetheless become of crucial importance w
increasingB. It is worth noting that our model can also b
applicable to the description of the MR in an unstructur
2DEG with residual interface impurities playing the role
antidots ~large-angle scattering on residual impurities
known to become important in unstructured samples wit
wide spacer!.21–23

The paper is organized as follows. We give a brief revi
of past work on the quasiclassical MR in Sec. II. In the bo
of the paper, we first consider in Sec. III the MR at a mo
erately strongB, when the collision time for scattering o
AD’s is not affected by the magnetic field. Then, in Sec.
we turn to the limit of strongB, where the collision time is
renormalized as compared to the Drude value and, in
extreme of very largeB, a single act of scattering involve
‘‘skipping’’ of cyclotron orbits along the surface of AD’s
The whole picture turns out to be rather complex and
choose the following logic of presentation. We fix the zeroB
mean free paths for scattering on AD’s and on the long-ra
disorder and for different values of the densityn of AD’s
sweep the magnetic field. In Sec. III we start with the ‘‘h
drodynamic limit’’ of infinite n and then gradually decreas
n. In Sec. IV we first consider a single act of scattering on
AD for large B, then proceed to analyze the strong-B trans-
port in an AD array. We present results of numerical simu
tions in Sec. V and summarize in Sec. VI@where the quali-
tative behavior ofrxx(B) is illustrated in Fig. 13#.

II. OUTLINE OF KNOWN RESULTS: LIMITING CASES

A. Lorentz model

We start by briefly recalling the known results for th
classical Lorentz model in two dimensions~hard discs of
radiusa, randomly placed with a concentrationn; we assume
that na2!1 and kFa@1, so that the mean free pathl S
53/8na). This is a good model for an AD array in a heter
structure. As was pointed out in Refs. 24 and 25, Dru
theory fails completely to describe magnetotransport in
system. In the limitn→`, a→0, with l S held fixed, the
resistivity depends on a single variablel S /Rc , whereRc is
the Larmor radius, and reads,25 in units of the zero-B resis-
tivity r0,

rxx~B!

r0
5FS l S

Rc
D , ~1!

with F(0)51 and F(x@1).9p/8x!1. In Drude theory,
the dissipative resistivity is not affected by a magnetic fi
andF(x)51 for all x. The nontrivial kinetic problem~1! is
in fact fully solvable and the exact expression for the co
ductivity tensor at arbitraryl S /Rc can be found in Refs. 25
and 26~see also Refs. 26 and 27 for numerical simulations
the problem!.

The falloff of rxx}B21 is related to the peculiarity of the
Lorentz model: at finiteB, there are electrons that mov
freely in steady cyclotron orbits and never hit a scatte
those electrons do not contribute torxx and their density
20530
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grows with increasingB. The conductivity is then due to
electrons that experience multiple collisions with a scatte
by moving in ‘‘rosette’’ orbits around it~Fig. 1! until they hit
another scatterer, which results in a diffusive hopping of
‘‘rosette states.’’ At finite concentrationn, the Lorentz model
has a metal-insulator transition24,25at Rc;n21/2: for largerB
the dissipative conductivity is strictly zero, as shown in F
1.

B. Long-range disorder

Now let us recall what is known about MR in the case
a smooth~allowing for a quasiclassical treatment! Gaussian
~in the sense of statistics of fluctuations! random scalar po-
tential. There are two sources of quasiclassical MR~we con-
sider elastic scattering on an isotropic Fermi surface!.

First, note that the MR is strictly zero in Boltzman
theory only in the limit of white-noise disorder, whereas
disorder is correlated on a finite spatial scaled, the collision-
integral approximation allows for a finite MR,28,29 due to a
cyclotron bending of trajectories within this correlation r
dius. This simple effect is governed by the parameterd/Rc
@at smallB it yields Drxx /r0;2(d/Rc)

2].
Second, there is4 MR associated with memory effects an

to calculate this, one has to go beyond the collision-integ
approximation. The memory effects are brought about
correlations of scattering acts at the points where quasic
sical trajectories self-intersect. These effects give the m
contribution toDrxx /r0 at large enoughB, where the gov-
erning parameter isd/d with d being a characteristic shift o
the center of a cyclotron orbit after one revolution. F
Rc /d*1 the shift is~see Ref. 30 and references therein!

d;Rc~Rc / l L!1/2, Rc*d, ~2!

wherel L is the mean free path in the smooth random pot
tial ~experimentally, l L /d;102–103 in high-mobility
samples!. According to Ref. 4,Drxx /r0;(d/d)3&1. The
return-induced contribution becomes much larger than
related to the effect ofB on the collision integral at

FIG. 1. Schematic behavior of the magnetoresistivityrxx(B) as
a function ofl S /pRc in the Lorentz model. Inset: Rosette orbit o
an electron bound to a hard disc~shown by the shaded circle! in a
magnetic field.
6-2
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(d/Rc)
2!d/d, i.e., atRc! l L(d/ l L)2/5. The exact expression

for the MR in the limit (d/Rc)
2!d/d!1 in a heterostructure

with a spacerd is4

Drxx~B!

r0
5

2z~3/2!

p S d

l L
D 3S l L

Rc
D 9/2

. ~3!

This equation is valid with increasing magnetic field up
d/d;1, where Drxx(B)/r0 becomes of order unity. A
higher fields, whend/d!1, the strong positive MR is fol-
lowed by a sharp~exponential! falloff of rxx with growing
B:30

lnS rxx

r0
D;2S d

d D 2/3

, ~4!

which is due to the increasing adiabaticity of the electr
dynamics and the related quasiclassical localization.30,5 The
self-intersection induced MR, given by Eq.~3!, may be con-
sidered as a precursor of the adiabatic localization. In
limit of large B, whenRc /d becomes small,d is given by

d;Rc
2/~dlL!1/2, Rc&d. ~5!

The nonmonotonic behavior~3! and ~4! of the MR in the
case of a purely Gaussian long-range random potentia
illustrated in Fig. 2.

To conclude the brief overview, it is worth noting that
the limit of weak inhomogeneities the return-induced M
depends in an essential way on the behavior of the diso
under time reversal. In particular, it is strongly enhanced
the case of a random magnetic field.4

III. EFFECT OF CYCLOTRON DRIFT ON TRANSPORT IN
ANTIDOT ARRAYS

A. Parameters of the problem

We now turn to the MR in the presence of both a rand
array of hard discs and long-range Gaussian disorder, w
we characterize by the mean free paths at zero magnetic
l S and l L , respectively. We assume thatl S / l L!1, which de-
scribes a typical experimental situation. As in Sec. II,n will
denote the concentration of AD’s,a their radius,d the corre-
lation length of the smooth random potential,Rc the cyclo-

FIG. 2. Schematic behavior of the magnetoresistivityrxx(B) as
a function ofd/Rc for a Gaussian smooth random potential.
20530
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tron radius, andd the characteristic shift, due to scattering o
the long-range disorder, of the cyclotron orbit after one re
lution. Throughout the paper we assumed/a@1.

We are interested in strong effects in the behavior
rxx(B): for l S / l L!1, these can only occur ifRc / l S&1.
Moreover, for the most part of the paper~namely, with the
exception of Sec. IV A!, we consider magnetic fields whic
are sufficiently strong in the sense thatd/d&1. In this case,
the motion of electrons is characterized by rapid cyclotr
rotation around the guiding center and slow drift of the lat
along equipotential lines of a smooth random potential. M
of these lines are closed, which leads to localization of p
ticles trapped on them. The effect of scattering by AD’s is
induce transitions between equipotential contours and, in
way, allow the localized particles to escape.

B. Hydrodynamic limit

Let us first consider the ‘‘hydrodynamic limit’’ (n→`,
a→0, l S5const). Clearly, in this limit, the effects yielding
the falloff of rxx}B21 @Eq. ~1!# are washed out by infinitesi
mally weak long-range disorder. One might think that th
the Drude formula works andrxx(B)/r0.1 for all B. In fact,
however, this is not true and even a small (l S / l L!1) amount
of smooth disorder becomes a relevant perturbation with
creasingB. Indeed, in the limit of largeB ~namely, ford/d
!1), the problem can be mapped onto that of advecti
diffusion transport,31 i.e., of a Brownian motion with a dif-
fusion coefficientD0 in a spatially random velocity field
v(r ) ~‘‘steady flow’’! with ¹•v50 ~‘‘incompressible fluid’’!.
In this mapping, the fieldv(r ) describes the adiabatic drift o
guiding centers of cyclotron orbits due to long-range inh
mogeneities andD0;Rc

2/tS , wheretS is the momentum re-
laxation time for scattering on AD’s. The result for the effe
tive ~macroscopic! diffusion coefficientD in the advection-
diffusion problem31 is

D;D0~vdd/D0!10/13 ~6!

if vdd*D0 andD5D0 otherwise. Herevd is a characteristic
amplitude of the fluctuations ofv(r ) @see Eqs.~11! and~12!
below#. Hence the conductivity will be strongly enhanced
even a weak long-range disorder providedvdd/D0@1. Since
this parameter is a growing function ofB, the effect of
smooth disorder is amplified by the magnetic field. The r
son is percolation of cyclotron orbits through long-range
homogeneities: the percolation-dominatedD can be written
as a productvdw, wherew!d is a characteristic width of
links of the percolation network. The equationw
;d(D0 /vdd)3/13 in the advection-diffusion problem come
from the condition of connectivity of the networ
w2vd /L(w);D0, where

L~w!;d~d/w!7/3 ~7!

is a typical length of the network link.31 Note that the size
j(w) of the elementary cell of the percolation network@i.e.,
a characteristic end-to-end distance for the link of len
L(w)] scales as31

j~w!;d~d/w!4/3. ~8!
6-3
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Although the advection-diffusion model has becom
popular for the description of transport in the high-B limit ~in
particular, in the quantum Hall regime32,33! we should be
careful to check if the scattering on AD’s can actually
described in this model in terms of the diffusion coefficie
D0. Clearly, this requires thatw be larger than a hopping
length for the diffusion process, which meansw@Rc . While
this condition is satisfied in the extreme of largeB, a non-
trivial transport regime may occur with increasingB in
which D@D0 but w!Rc ~as we will see below, this is the
case if the long-range disorder is not too weak!. In this re-
gime, the main contribution toD comes from electrons tha
move freely along the critical links: the ‘‘ballistic’’ motion
along the percolating path is contrasted with the transve
~across the drift trajectory! diffusion in the advection-
diffusion regime. In other words, the number of collisio
with AD’s during the drift along a critical link of the perco
lation network is now of order unity. As in the advectio
diffusion regime, the number of passages of the network
between two consecutive changes of critical cells is also
order unity. It follows thatw obeys the simple scaling
L(w);vdtS , so that the result forD;vdw is

D;vdd~d/vdtS!3/7, ~9!

which should be compared, as in the advection-diffus
problem, withD0: Eq. ~9! is valid whenD*D0. Note that in
this new regimeD does not contain the hopping lengt
which may be even larger thand.

We are now prepared to calculate the MR. The chao
scattering on the long-range potential crosses over into
adiabatic drift with increasingB at Rc of order

R̃c5d~ l L /d!1/3, ~10!

whered/d becomes of order unity@cf. Eqs.~3! and ~4!#. At
this field, the MR is still weak and transport is complete
determined by scattering on AD’s, whereas at largerB we
can already use the high-field formulas~6! and~9! and write
rxx(B)/r0.D/D0. The characteristic drift velocityvd that
should be substituted into Eqs.~6! and ~9! reads~see, e.g.,
Ref. 30!:

vd5vF

Rc

~dlL!1/2
sS d

Rc
D , ~11!

wherevF is the Fermi velocity and the functions(x) is given
by

s~x!;H x1/2, x!1

1, x@1.
~12!

Which of Eqs.~6! and ~9! should be used depends on t
ratio w/Rc , as explained above. Remarkably, the ratioD/D0
for both Eqs.~6! and ~9! depends only on two variables,x
5d/Rc andvdtS /d5px21s(x), where

p5
l S

AdlL
. ~13!
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eAs a result, the behavior of the MR as a function ofB de-
pends, ata→0, on the single parameterp, so that we can
write

rxx~B!

r0
5 f S d

Rc
,pD . ~14!

Notice that even though we consider the casel S / l L!1, the
parameterp may be large since the long-range disorder
weak, i.e.,d/ l L!1.

At p@1, the MR remains small, i.e.,f (x,p).1, for all
x!p21/3. On the upper boundary of this interval, the perc
lation starts to renormalizeD in accordance with Eq.~9!,
which yields a power-law growth ofrxx(B) with further in-
creasingB:

f ~x,p!;~px3!4/7, p21/3!x!1; ~15!

~px5/2!4/7, 1!x!p3/10. ~16!

The scaling behavior changes between Eqs.~15! and~16! at
x;1 because of the change in the dependence ofvd on B at
Rc /d;1. At still largerB, D obeys Eq.~6!, which gives

f ~x,p!;~px!10/13, p3/10!x. ~17!

Equations~15!–~17! are illustrated in Fig. 3~a!.
At p!1, the range ofx where the enhancement of th

conductivity is described by Eq.~9! shrinks away, so tha
f (x,p).1 for all x!p21 and behaves according to Eq.~17!
at largerx @see Fig. 3~b!#. This establishes the meaning of th
parameterp: if p!1, the Drude regime does not match wi

FIG. 3. Schematic behavior of the magnetoresistivityrxx(B) as
a function of d/Rc in the hydrodynamic limitn→`, a→0, l S

5const for~a! p5 l S /AdlL@1 and~b! p!1. The numbers denote
the exponent of the power-law dependence ofrxx(B).
6-4
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increasingB the advection-diffusion regime~6! directly, but
through the intermediate ‘‘one-hop’’ regime~9!, whereas ifp
is large, this intermediate phase is absent. Equation~17! tells
us thatrxx(B)}B10/13 at B→`. The divergence takes plac
whatever the ratiol S / l L , even if the long-range disorder i
weak and does not play a role atB50. This behavior differs
drastically from that given by either of Eqs.~1! and ~4!.

C. Finite density of antidots

So far, in Eqs.~14!–~17!, the scattering on AD’s has bee
characterized byl S only, through the single parameterp @Eq.
~13!#, which implies the hydrodynamic limitn→`, a→0.
Now we take into account finite-n effects. We begin as be
fore with the case of largep. Additional relevant dimension
less parameters appear, in particular,nRcd. Also, since for a
fixed l S decreasingn means increasinga, the parameterd/a
may become relevant, in which case the scattering on A
will be affected by the magnetic field in an essential way a
the collision time will not be given bytS . We will consider
effects governed by the parameterd/a in Sec. IV. Until then,
let us assume thatd/a is sufficiently large, so that this pa
rameter plays no role for typical electron trajectories.

Clearly, if d/a@1, stable rosette states24,25 are still de-
stroyed by the scattering on the long-range potential.
ively, one could think that scattering on AD’s is then chao
~no trace of the rosette-state dynamics! and Eqs.~14!–~17!
apply. In actual fact, providednRcd!1, multiple collisions
with the same AD do occur even ford/a@1, as we will see
below. At largep, the former condition is satisfied with in
creasingB befored/a gets small. Multiple returns in a dens
AD array become possible because of the adiabatic loca
tion, which develops atd/d&1.

Let us start by considering the drift regime under the c
dition nRcd!1, Rc /d@1. Typical trajectories of guiding
centers are closed loops of size;d, which means that tra
jectories of electrons circling along cyclotron orbits a
bound to within thin rings of width;d and radiusRc . The
area of a strip between the inner and outer radii of the ri
is ;Rcd and, if nRcd!1, in most rings there are no AD’s
Electrons in these rings are adiabatically localized and
not, in the adiabatic approximation, contribute torxx(B) ~we
will consider the possibility of nonadiabatic decay of the
states in Sec. III E!. There are, however, rare rings with
single AD. For electrons in these rings, a typical timet̃S
between collisions with AD’s is much shorter thantS . In-
deed, the number of cyclotron revolutions before returning
the region of sized around the AD is typicallyd/d, while the
probability of hitting the AD during one such sweep
;a/d. It follows that the number of cyclotron revolution
before the electron hits the AD is;d/a, i.e.,

t̃S;Rcd/vFa, ~18!

which givest̃S /tS;nRcd!1.
Now, a single collision with an AD does not lead to

breakaway from the AD. In fact, the electron experienc
multiple collisions with a single AD and each time the cen
of the ring in which the electron is circling hops a distan
20530
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;Rc : one can visualize this process as a random hoppin
the center of the ring on a circle of radiusRc around the AD
~see Fig. 4!. The electron ‘‘sticks’’ to the AD for a time much
longer thant̃S . This somewhat intricate dynamics of ‘‘hop
ping rings’’ reminds one of the evolution of the roset
states:24,25 in effect it is the adiabatic localization in the long
range potential that preserves the character of the ros
state dynamics. A breakup will eventually happen when
electron picks up a very rare ring containing two AD’s~the
existence of such rings in the areaRc3Rc implies thatnRc

2

@1, which we assume in this derivation!. It is straightfor-
ward to check that the number of scatterings on a given
before getting to another one is;1/nRcd@1. Multiplying
the latter byt̃S , we find that the time it takes the electron
change AD’s~separated by a distance;Rc) is ;tS , which
yields the diffusion coefficient of electrons participating
this type of transport;D0, the same as in Drude theor
These electrons, however, represent a small fraction of
total number of electrons, namely;nRcd. Hence the contri-
bution to the macroscopic diffusion coefficient from drift o
bits of a characteristic sized is ;D0nRcd!D0.

Having obtained the contribution of typical trajectories
sized, we should take into account that upon hitting an A
the particle may hop onto a drift trajectory of sizej larger
thand. To put it another way, although most trajectories w
j in the intervald!j!(nRc)

21 are adiabatically localized
some of them hit AD’s and mix with the short-scale traje
tories of sized considered above. This mixing increases t
total fraction of delocalized trajectories. To calculate the l
ter, note that the probability densityP(j) for a point to be-
long to a drift trajectory of sizej*d ~we definej as a
characteristic radius of the area to within which the traject
is bounded! scales as

P~j!;d/j2. ~19!

FIG. 4. A cartoon picture of scattering of a cyclotron orbit on
antidot at a!d!d!Rc!(nd)21. The position of the antidot is
shown by a cross at the intersection of the rings~radiusRc , char-
acteristic widthd) which represent the area ‘‘covered’’ by the drif
ing cyclotron orbit. The arrows denote hopping of the guiding ce
ter of the orbit between drift trajectories shown by small loop
ProvidednRc

2@1, the particle will typically break away from the
antidot when it picks up a ring containing one more antidot and
the latter.
6-5
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No critical exponents are involved here. One way to ge
quick proof of this is to realize that, according to percolati
theory, for zero altitude on a relief map of a random lan
scape, the number of contours of radiusj in the areaj3j is
of order unity. It follows that the~integrated over the alti-
tude! fraction of space occupied by contours of size;j is
;Lw/j2;d/j, where we used Eqs.~7! and~8!, which yields
Eq. ~19!. Thus the fraction of trajectories that are delocaliz
due to collisions with AD’s is evaluated by integration

E
d

Rc
dj P~j!min$nRcj,1%;nRcd ln~1/nRcd!, ~20!

which gives merely an additional logarithmic factor. O
sees that the characteristicj&(nRc)

21 are within the limits
of applicability of the derivationj!Rc ~trajectories with
largerj give rise to a percolative contribution torxx consid-
ered in Sec. III B!. Notice that drift trajectories that do no
hit AD’s may be infinitely extended only with zero measu
and thus do not contribute toD. Accordingly,D is evaluated
as a diffusion coefficient of electrons delocalized by the sc
tering on AD’s. Since the relevantj!Rc , the characteristic
hopping length associated with the change of AD’s by th
electrons isRc . The characteristic rate of hopping betwe
two different AD’s is given byn^]S/]t&, where ^]S/]t&
;*dj P(j)@A(j)/ t̃S(j)# is the average rate at which th
area explored by the particle stuck to an AD grows in tim
Here

t̃S~j!;t̃S~d!j/d ~21!

@with t̃S(d) defined in Eq.~18!# is the time the particle re
sides on a trajectory of sizej before being scattered out b
the same AD, andA(j);Rcj is the area probed during thi
time. These expressions fort̃S(j) and A(j) are valid forj
!d(d/a)4/3, whereas at largerj the particle is scattered ou
before it comes full circle around the closed trajectory a
both quantities do not depend onj. We see thatA(j)/ t̃S(j)
does not depend onj and thuŝ ]S/]t&;vFa is determined
by j;d. It follows that the hopping rate does not chan
with the inclusion of long trajectories and is given bytS

21 .
Accordingly, the diffusion coefficient of delocalized particle
is ;D0. We finally get for the macroscopic diffusion coeffi
cient D;D0nRcd ln(1/nRcd), or, for the MR:

rxx~B!

r0
;nRcd ln

1

nRcd
. ~22!

We thus see that, despited/a@1, the resistivity is strongly
suppressed as compared to the Drude result atnRcd!1. We
will return to this regime in Sec. IV E, where we will sho
that the actual condition for Eq.~22! to be valid is d/a
@(nRcd)23/4, whereas at smaller d/a, 1!d/a
!(nRcd)23/4, a slight modification, namely in the logarith
mic factor in Eq.~22!, is necessary.

The falloff of the MR described by Eq.~22! is illustrated
in Fig. 5~a!. Shown here is also the percolative growth
rxx(B) into which the falloff crosses over at sufficient
largeB. As is clear from Fig. 5~a!, in the above derivation we
20530
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implicitly assumed that there exists a range ofB within
which the percolative contribution is smaller than that giv
by Eq. ~22!. Indeed, since the percolative MR grows wi
increasingB ~see Fig. 3!, n should be small enough for th
B21ln B falloff not to be masked by the percolation. Let u
formulate the condition for the existence of the minimum
the dependence ofrxx(B) for p@1. If one neglects~as ev-
erywhere in this section! the nonadiabatic decay of drift tra
jectories, the condition isnd2!p21/3, as can be seen from
Fig. 5~a!. By matching Eqs.~22! and ~15! we find that the
minimum occurs at Rc;Rcm , where d/Rcm
;p24/19@nd2ln(1/nd2p1/3)#7/19. We will show in Sec. III E,
by taking the nonadiabatic decay into account, that the c
dition for the existence of the minimum actually rea
max$nd2,(d/lL)

1/3%!p21/3, which means that Fig. 5~a! cor-
rectly describes the MR if (d/ l L)1/3!nd2.

To conclude this section, note that the interval of valid
of Eq. ~22! shrinks to zero ifRc /d&1 and therefore the
above considerations describe the behavior of the MR o
for nd2!1. According to Fig. 5, for largep the nonmono-
tonic behavior ofrxx(B) develops fornd2!1. In the case of
smallp the picture is similar but the parameterd/a becomes
relevant, which will be considered in Sec. IV.

FIG. 5. Schematic behavior ofrxx(B) as a function ofd/Rc for
intermediate magnetic fields at largep and (d/ l L)1/3!nd2!p21/3

for ~a! d/Rcm!(nd2)1/2 and ~b! d/Rcm@(nd2)1/2. The position of
the minimum of rxx(B) in ~a! is given by d/Rcm

;p24/19@nd2ln(1/nd2p1/3)#7/19. Decreasingn leads to the nonmono
tonic dependence ofrxx(B) ~cf. Fig. 3, wheren→`). The dashed
line in ~b! shows the behavior ofrxx(B) given by Eq.~23!.
6-6
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D. Metal-insulator transition

As noted above, the validity of the derivation of Eq.~22!
requires thatnRc

2@1. This condition appears already in th
Lorentz model: if the opposite inequality is satisfied, the s
tem without long-range inhomogeneities would be insulat
(rxx50). In the presence of long-range disorder, the per
lation mechanism of transport preventsrxx from vanishing
even at smallnRc

2 . However, the parameternRc
2 determines

the interval ofB where the nontrivial mechanism of diffusio
that leads to Eq.~22! is operative, namely 1!nRc

2!Rc /d.
At nRc

2&1, this mechanism is switched off in a manner i
herent in a continuous phase transition by formation of d
connected clusters of trajectories, very much similar to
metal-insulator transition in the Lorentz model.24,25 Hence
the ‘‘short scale’’~as opposed to the percolative! MR @Eq.
~22!# behaves near the transition according to

rxx~B!

r0
5~nd2!1/2 ln

1

nd2 GS Bc2B

Bc
D , ~23!

where G(x);xt vanishes as a power law atx→0 on the
conducting side. The critical pointB5Bc corresponds to the
critical concentration n5nc;Rc

21/2. This behavior of
rxx(B) is shown in Fig. 5~b!. Comparing Figs. 5~a! and 5~b!,
we see that the critical falloff~23! is not masked by the
percolation provided (nd2)1/2!d/Rcm . If this condition is
satisfied, the minimum in the dependence ofrxx(B) occurs
at nRc

2;1.
We conjecture that the exponentt in the functionG(x)

can be found by mapping the problem of percolation of sk
ping cyclotron orbits onto that of percolation of the elect
current through an ensemble of conducting circles of rad
Rc scattered randomly with the densityn ~note that two ro-
sette orbits of radius 2Rc do not mix with each other if the
distance between the centers of the rosettes exceeds 2Rc).
The latter problem belongs to the universality class of a tw
dimensional percolation with a finite threshold, for whic
many critical exponents are known~see, e.g., Ref. 35; it is
worth noting that the percolation of drift trajectories cons
ered above does not belong to this class!. In particular, the
fraction of space occupied by the infinite cluster of co
nected circles vanishes near the threshold as (n2nc)

b with
b.0.14, whereas the conductivity through the infinite clu
ter exhibits a power-law behavior with the critical expone
t;1.2.

E. Nonadiabatic decay

In Sec. III C, we inferred theB21ln B falloff of rxx(B)
@Eq. ~22!# by assuming that the drift picture is applicable
the whole rangenRcd!1. This is legitimate ifnR̃cd@1,
whereR̃c is defined in Eq.~10!. Otherwise the Drude value
of rxx5r0 holds with increasingB up to the field where the
adiabatic dynamics starts and there is an exponentially
crossover betweenrxx5r0 andrxx given by Eq.~22!, which
is governed by the nonadiabatic scattering.

Let Dna be the diffusion coefficient across drift traject
ries due to their nonadiabatic mixing. Since the rate of no
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diabatic transitions depends exponentially on the param
d/d and is therefore locally a wildly fluctuating quantity, w
should be more specific here: we defineDna through a typi-
cal timed2/Dna that it takes to change two typical drift tra
jectories of size;d separated by a distance;d ~for thus
defined diffusion coefficient lnDna scales asd/d, see, e.g.,
Refs. 30 and 5!. If nR̃cd!1, a particle which initially resides
on a ring with no AD will reach a ring containing one in
time

tna;~d2/Dna!/nRcd. ~24!

Then there are two possibilities. Ift̃S!d2/Dna @with t̃S de-
fined by Eq.~18!#, the particle will hit this AD, so that col-
lisions with different AD’s will occur at a rate;tna

21 , which
yields a contribution to the macroscopic diffusion coefficie
D;Rc

2/tna;D0Dnat̃S /d2, i.e.,

D;D0

DnaRc

vFda
. ~25!

Note thatD in this regime is proportional to a product of tw
diffusion coefficients,D0 and Dna . If, by contrast, t̃S
@d2/Dna , the particle will miss this AD and will go on
exploring phase space in a chaotic way, which givesD

5D0. Sinced2/Dna at Rc;R̃c is of the order of the cyclo-
tron frequencyvF /Rc , the crossover between these two r
gimes takes place with increasingB whenRc!R̃c , ~logarith-
mically! deep in the drift regime. Hence, ifnR̃cd!1, the
nonadiabatic decay of drift trajectories stretches the regio
a chaotic diffusion to the point at whichDnat̃S /d2;1,
which occurs at d/Rc only logarithmically larger than
(d/ l L)1/3. At largerB, the resistivity starts to fall off sharply
according to Eq.~25!, until Dnat̃S /d2 becomes of order
nRcd ln(1/nRcd), where this exponential behavior cross
over into the power-law falloff described by Eq.~22!. The
characteristic features in the behavior ofrxx(B) at p@1 as-
sociated with the nonadiabatic decay of drift trajectories
illustrated in Fig. 6 for the range ofB which corresponds to
the falloff of rxx(B) in Figs. 5~a! and ~b!. At the point
d/Rc;(d/ l L)1/3 shown in Fig. 6, the adiabatic localizatio
starts to develop.

Comparing Figs. 5~a!, ~b!, and 6 one can formulate th
condition for the existence of the dip in the dependence
the MR onB for p@1. If nd2@(d/ l L)1/3, the dip exists in the
case ofnd2p1/3!1, as in Figs. 5~a! and ~b!. If, by contrast,
nd2!(d/ l L)1/3, the nonmonotonic behavior inrxx(B) shows
up for dp/ l L!1. Figure 6 illustrates the behavior ofrxx(B)
in the case when the adiabaticity of motion in the long-ran
potential starts with increasingB well before the crossover to
the percolative growth ofrxx(B). This is the case a
(d/ l L)1/3!min$d/Rcm,(nd2)1/2%. It is clear, however, that the
above considerations of the nonadiabatic decay are equ
valid for the case when the opposite inequality is satisfi
The only difference is that, if (d/ l L)1/3@min$d/Rcm,(nd2)1/2%,
the exponential falloff ofrxx(B) crosses over into the perco
lative growth directly, without passing through the interm
diateB21ln B regime.
6-7
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IV. STRONG MAGNETIC FIELD: RENORMALIZATION
OF THE COLLISION TIME

Now let us turn to the extreme of strongB, where the
parameterd/a becomes relevant. As will be shown belo
the effect of smalld/a is twofold. First, the timetS8 between
collisions with two different AD’s for particles drifting along
percolative trajectories~which is tS at large enoughd/a,
how large—see below! gets longer. Second, a typical ho
ping lengthRh across the drift trajectory due to the scatteri
on an AD ~which is Rc at d/a@1) gets smaller. Therefore
before calculating the MR at smalld/a we have to conside
how the elementary scattering acts are modified. Below, S
IV A deals with the scattering timetS8 , Secs. IV B and IV C
with the hopping lengthRh . Section IV D studies the MR for
small d/a.

A. Effective scattering time

Let us start by considering the cased/a!1. To find tS8 ,
notice that atd/a!1 the length of the drift trajectory be
tween collisionsLS;vdtS8 cannot depend ona, i.e., only the
concentrationn matters. In the simplest caseRc!d, the
lengthLS clearly obeys the equation

nLSRc;1, ~26!

which is rewritten as

tS8;tSa/d. ~27!

At Rc@d, however, there are different regimes fortS8 .
Namely, Eq.~27! is valid for tS8 at Rc@d only as long as
LS!d, i.e., when the drift trajectory between two collision
can be approximated as a straight line. IfLS@d, which is the
case atnRcd!1, the trajectory exhibits fractal dimensiona
ity on the scale ofLS . Specifically, the length of the perco

FIG. 6. Schematic representation of the behavior ofrxx(B) at
nd2!(d/ l L)1/3!p21/3!1 for moderately strongB which corre-
spond to the falloff ofrxx(B) in Figs. 5~a! and~b!. The thick dashed
line showsrxx(B) without taking the nonadiabatic decay of dri
trajectories into account. Providednd2!(d/ l L)1/3, the nonadiabatic
transitions stretch the range ofB whererxx(B).r0. Beyond this
range,rxx(B) falls off exponentially with increasingB until this
falloff crosses over into theB21ln B behavior.
20530
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lating trajectoryLS and the distancejS from the starting
point are related to each other byjS;d(LS /d)4/7 @see Eqs.
~7! and ~8!#, i.e.,

jS;d~vdtS8/d!4/7. ~28!

It follows that the cyclotron orbit passes many times throu
the same spatial regions, which increases the timetS8 . Let
first LS@d but jS!Rc @i.e., d!LS!d(Rc /d)7/4]. In this re-
gime,jS @in contrast toLS in Eq. ~26!# is of order (nRc)

21:

njSRc;1, ~29!

which gives

tS8;tS

a

d

1

~nRcd!3/4
. ~30!

Now let jS@Rc . To find tS8 in this limit, one should solve
the following auxiliary problem. Collect all closed equipo
tential contours of size of orderjS@d within the areajS
3jS . They form a ‘‘bundle’’ of width

wS;d~d/vdtS8!3/7;d~d/jS!3/4. ~31!

The characteristic area covered by this bundle isS(wS)
;LSwS!jS

2 . Now enlarge the area by adding all points th
are within a distanceD*wS of the initial bundle. Doing so
we get a new bundle that occupies an areaS(D). The ques-
tion is what is S(D) at D;Rc for jS@Rc@d. Clearly,
S(D);LSD as long asD&d. However, atD@d, the area
should exhibit a scaling behaviorS(D);LSd(D/d)x with a
nontrivial exponentx. To find x, notice that atD;jS we
should haveS(jS);jS

2 . Using the equationLS;d(jS /d)7/4

we thus getx51/4. It follows that the areaS(Rc) scales at
Rc@d as LSd(Rc /d)1/4 @which can be represented a
jS

2(Rc /jS)1/4 to see that most of space within the areajS

3jS is left empty#. Sinced!a, it is clear that if there is an
AD in this area, it will be inevitably hit by the cyclotron
orbit. Therefore the lengthLS obeys the equation

nS~Rc!;1, ~32!

which yieldsLS;(nRc)
21(Rc /d)3/4 and

tS8;tS

a

d S Rc

d D 3/4

. ~33!

We see that Eqs.~30! and ~33! match each other atRc
;n21/2@d. On the other hand, Eqs.~27! and ~33! match at
Rc;d.

The above derivation oftS8 at d/a!1 shows that the in-
crease of the scattering time as compared to the ‘‘Dru
time’’ tS is due to multiple passages of the cyclotron or
through the areaa3a. Clearly, atRc /d!1 no renormaliza-
tion of the scattering time occurs as long asd/a@1. How-
ever, for Rc /d@1 the scattering time is renormalized wit
increasingB already at somed/a@1. Indeed, letd/a@1 and
consider the caseLS@d, jS!Rc . The drifting cyclotron or-
bit experiencesLS /jS@1 returns to the aread3d and each
time it probes the fractiona/d!1 of space within this area
6-8
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One sees that if the product of the two factors (LS /jS)
3(a/d)@1, then the collision time is much larger than th
Drude timetS and obeys Eq.~29!, which yields Eq.~30!.
Therefore it is only whend/a@(nRcd)23/4@1 that tS8
5tS . Similarly, if jS@Rc , Eq. ~33! is valid for all d/a
&(Rc /d)3/4.

Inspection of Eqs.~27!, ~30!, and ~33! shows that the
dependence oftS8/tS on B is parametrized by two param
eters. In addition top @Eq. ~13!#, it is convenient to introduce
the parameter

h5nd2p, ~34!

which can be rewritten asV0d/eFa, whereV0 is a character-
istic amplitude of fluctuations of the long-range potential,eF
the Fermi energy. The meaning of this parameter is tha
describes the position of the crossoverd/a;1 in terms of
the ratiod/Rc . Specifically, ifh!1, the crossover occurs a
d/Rc;h2/3, whereas ifh@1, at d/Rc;h1/2. Note that the
crossover point ath@1 corresponds toRc@a @namely
Rc /a;(dlL /a2)1/4], however largeh is. We thus have

tS8

tS
5hS d

Rc
,p,h D . ~35!

By changingh with p held constant, we change the conce
trationn at a fixed mean free pathl S . In Sec. III B, we have
already studied the limith→`: in that case the scatterin
time is not renormalized, so thattS8/tS51 for all B indepen-
dently ofp. However, Eqs.~27!, ~30!, and~33! tell us that at
any finiteh there exists a magnetic field above whichtS8/tS

starts to grow with increasingB. The function h(x,p,h)
which describes this growth reads

h~x,p,h!

;5
x2h21, x@max$h1/2,1%;

x3/2h21, h2/3!x!min$hp21,1%, p3!h!1;

x9/4p3/4h27/4, max$hp21,h7/9p21/3%!x!h1/2p21/2,

h!min$p,p23/5%;

x3/4h21, max$h4/3,h1/2p21/2%!x!1,

h!min$p,1%.

~36!

The behavior oftS8/tS given by Eqs.~35! and ~36! is
illustrated in Fig. 7. One sees that in the limit of largeB the
collision time grows asB2, whatever the parametersp andh.
If h@1, which corresponds to a sufficiently large concent
tion of AD’s, this B2 growth matches the Drude result d
rectly @curves labeled by~i! in Figs. 7~a! and~b!#. In a more
dilute array of AD’s, there appear intermediate regim
which proliferate ash is decreased@curves~ii !–~iv!#. Note
that the smallerh for a givenp, the sooner the renormaliza
tion of tS8 starts with increasingB.

In Fig. 7~a!, we marked the pointd/Rc;(d/ l L)1/3 which
corresponds to the crossover between the diffusion and
20530
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regimes@smaller and largerd/Rc respectively, see Eq.~10!#.
Equations~35! and ~36! describe the drift regime. Howeve
as illustrated in Fig. 7~a! by the uppermost~dashed! curve, if
the concentrationn is sufficiently low, the collision time is
renormalized already in the diffusive regime. Indeed,
small n, tS8/tS calculated for drifting electrons will be larg
at the crossover point to the diffusive regime. A similar effe
takes place for largep as well@not shown in Fig. 7~b!#. In the
diffusive regime,tS8/tS is still given by Eq.~29!, the only
difference is that now in place of Eq.~28! one should take

jS;d~vFtS8/Rc!
1/2, ~37!

which describes the diffusive motion of the cyclotron orb
Substituting this expression forjS in Eq. ~29! yields

tS8;tS

l L

l S

1

~nRc
2!2 , ~38!

FIG. 7. Schematic behavior oftS8/tS as a function ofd/Rc on a
log-log scale for~a! p!1 and ~b! p@1. The numbers denote th
exponent of the power-law dependence oftS8/tS on B. Different
curves in~a! illustrate how the dependence oftS8/tS on B for a fixed
p is modified in different ranges ofh: ~i! h@1; ~ii ! p!h!1; ~iii !
p3!h!p; ~iv! h!p3. Similarly in ~b!: ~i! h@1; ~ii ! p23/5!h
!1; ~iii ! h!p23/5. The dashed line in~a! shows the behavior of
tS8/tS for h so small that the renormalization oftS8/tS starts with
increasingB already in the diffusive regime~see the text!.
6-9
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i.e., the collision time starts to grow asB4 before entering the
drift regime, as shown in Fig. 7~a! by the dashed line. In the
diffusive regime, rxx(B) is related to tS8 by rxx(B)/r0

;tS /tS8 , which gives

rxx~B!

r0
;

l S

l L
~nRc

2!2. ~39!

As follows from Eq.~38!, the crossover to theB4 behavior
with increasingB occurs at

d/Rc;~nd2!1/2~ l S / l L!1/4. ~40!

Comparing Eq.~40! with (d/ l L)1/3 we conclude that the
crossover to the drift regime takes place at largerB if nd2

!(d/ l L)2/3( l L / l S)1/2. If, however, the concentrationn is high
enough, so that the opposite inequality is met, the region
validity of Eqs.~38! and~39! shrinks away and no renorma
ization of tS occurs in the diffusive regime.

Note a sharp change in the behavior oftS8/tS at the cross-
over between the drift and diffusion regimes@Fig. 7~a!#. The
mismatch is due to the difference in the fractal dimension
ity of extended trajectories in the two regimes: self-avoid
drift trajectories percolate in a superdiffusive way and the
fore explore the area faster. The sharp crossover has the
of an exponential falloff oftS8/tS , governed by rapidly de-
veloping adiabaticity of electron motion. If one compares
times tS8 obtained for the two~diffusion and drift! regimes
close to the crossover pointd/Rc;(d/ l L)1/3, one can see tha
for small n, namely for nd2!(d/ l L)5/7( l L / l S)4/7, the ratio
tS8/tS@1 on both sides. The dashed line in Fig. 7~a! illus-
trates just this case. It is possible, however, thatn falls
into the intermediate range (d/ l L)5/7( l L / l S)4/7!nd2

!(d/ l L)2/3( l L / l S)1/2, in which casetS8 changes with increas
ing B in the following way: it first starts to grow in the
diffusive regime, then, after the crossover into the drift
gime, returns to the unrenormalized valuetS , and only with
further increasingB begins to grow again.

At this point it is worth emphasizing once more tha
while in the diffusion regime all electrons behave in a simi
way andtS8 given by Eq.~38! is characteristic to all elec
trons, upon crossover into the drift regime the electrons fi
themselves divided into different groups, characterized
different collision times~the groups are mixed up only due
slow nonadiabatic dynamics!. Specifically,tS8 in Eq. ~30! is
the collision time for electrons that move along extend
~percolative! drift trajectories. This time is renormalize
even ford@a. On the other hand, electrons that upon cro
over to the drift regime find themselves on typical drift tr
jectories of size;d either do not collide with AD’s at all,
and for them the collision time is infinite~actually, provided
they experience nonadiabatic transitions, the collision tim
finite but exponentially large, as shown in Sec. III E!, or are
characterized by the unrenormalized collision timetS ~at d
@a), as explained in Sec. III C. Hence the renormalizat
of the collision time that we have analyzed in this sect
will affect the percolative contribution to the MR, which w
will study in Sec. IV D. Ford!a, the renormalization oftS
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will strongly affect also the short-scale dynamics of electro
residing on typical trajectories of sized, which will be con-
sidered in Sec. IV E.

Now let us return to the diffusive regime. Clearly, E
~38! is only valid as long asvFtS8! l L , which is rewritten as
nRc

2@1. If the opposite limit,nRc
2!1, is realized with in-

creasingB still in the diffusive regime@which is the case for
a very dilute array of AD’s, namely fornd2!(d/ l L)2/3], in
this limit the scattering on AD’s stops playing any role f
diffusive electrons. The collision time is then given byl L /vF
and

rxx~B!/r05 l S / l L ~41!

does not depend onB, whereastS8/tS keeps growing with
increasingB. Yet, the scattering on AD’s will become re
evant again with further increasingB, once the system
crosses over into the drift regime~where the scattering on
AD’s will prevent the adiabatic localization from complete
suppressing the MR, as explained above!. This behavior cor-
responds to the case when the crossover to the diffusive
gime with decreasingB occurs not in the region ofB9/4 be-
havior, as shown in Fig. 7~a!, but in the B3/4 region. The
overall behavior of the MR in the diffusive regime is illus
trated in Fig. 8. We consider the effect of the renormalizat
of tS for diffusive electrons in detail elsewhere.36

As mentioned above, another effect of smalld/a is a
renormalization of the hopping length for the diffusive d
namics across the drift trajectory due to the scattering
AD’s, which we will consider in more detail below. Sinc
both the effective scattering time and the hopping length
now modified, the shape of the MR is no longer parametriz
by a single parameter. Specifically, we can replacef in Eq.
~14! by a new functiong which is given by

g~x,p!;
tS

tS8
f S x,p

tS8

tS
D , ~42!

in the ‘‘one-hop’’ regime@cf. Eqs. ~15! and ~16!#, while in
the advection-diffusion regime@cf. Eq. ~17!# we now have

FIG. 8. Schematic behavior ofrxx(B) as a function ofd/Rc in
the diffusive regimed/Rc!(d/ l L)1/3. Different curves illustrate the
dependence ofrxx(B) on B in different ranges ofn: ~i! nd2

@(d/ l L)2/3( l L / l S)1/2; ~ii ! (d/ l L)2/3!nd2!(d/ l L)2/3( l L / l S)1/2; ~iii !
nd2!(d/ l L)2/3.
6-10
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g~x,p!;
tS

tS8
S Rh

Rc
D 6/13

f S x,p
tS8

tS
D . ~43!

A crossover between the two regimes occurs atvdtS8
;L(Rh), whereL(w) is defined in Eq.~7!. The ratiotS8/tS is
given by Eqs.~35! and ~36!. The ratioRh /Rc will be calcu-
lated in Secs. IV B and IV C.

B. Skipping orbits

In Sec. IV A, we derived general expressions for the p
colative MR for smalld/a in terms oftS8 andRh and calcu-
lated the effective scattering timetS8 . Let us now evaluate
Rh . The scattering problem for a cyclotron orbit that collid
with a hard disc is nontrivial atd/a!1. To begin with, no-
tice that atd/a!1 the drifting cyclotron orbit first hits the
disc boundary at a small angleu1!1 ~see Fig. 9!. A simple
geometric consideration yields a characteristicu1 for a par-
ticle incident on the disc with a drift-shift vectord ~i.e., with
a drift velocity dvF/2pRc):

u1;S 2
d•e

a D 1/2S Rc1a

Rc
D 1/2

, ~44!

wheree is the unit vector normal to the surface of the disc
the point of the collision. One sees that the angle of in
dence vanishes when we letd→0, so that the skipping cy
clotron orbit in effect starts to ‘‘roll over’’ the disc. Clearly, i
it were not for the drift during the rollover, the collisio
angleu would be conserved, being the same each time
particle returns to the disc after one cyclotron revolutio
Therefore, although the drift is slow, in the sense that
typical hopping length for the guiding center after one co
sion ;Rcu@d, it is because of the drift during the skippin
process that the particle eventually breaks away from
AD. The lengthRh is then understood as a shift of the gui
ing center at the point of the breakaway with respect to
equipotential contour along which it was drifting right befo
the first hit.

FIG. 9. Geometry of scattering of a skipping cyclotron orbit
an antidot:u is the angle of incidence,f the polar angle of the
point at which the collision occurs,c the incremental increase o
the anglef between two consecutive collisions.
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Sinced/a!1, we can treat the drift during the rollove
perturbatively. The system of equations that describe
skipping in the absence of drift is given by

fn115fn1c~un!; ~45!

un115un , ~46!

wherefn is the polar angle~along the surface of the disc!
defining the point of thenth collision,un the collision angle,
see Fig. 9. The functionc(u) obeys the equationRcsin(u
2c/2)5a sin(c/2), which reduces to the linear relation

c~u!5
2Rc

Rc1a
u ~47!

in the limit of smallu. Equation~46! saysu is the integral of
motion for the skipping process without drift. In the presen
of drift, un acquires ann-dependent correctionDun5un11
2un . To first order ind the correction reads

Dun.2
Rc1a

Rca

dne~fn!

un
, ~48!

where dn is the drift shift between thenth and (n11)st
collisions,e(fn) the unit vector perpendicular to the surfa
of the disc at the point of thenth collision. Transforming to
the continuous limit we get the differential equation

]u2

]f
52

2

c~u!

Rc1a

Rca
d~f!e~f!, ~49!

whose solution, after substitutingc(u) from Eq. ~47!, yields

u3~f!5u3~f i !2
3

2a S Rc1a

Rc
D 2E

f i

f

df8d~f8!e~f8!.

~50!

The functiond(f) in Eqs.~49! and~50! gives the drift shift
for the cyclotron orbit whose guiding center is a distan
Rc1a from the center of the disc in the direction specifi
by the anglef. In fact, the integration in Eq.~50! runs along
the guiding-center trajectory during the rollover, which is t
contourr5Rc1a, wherer is the radius vector counted from
the center of the disc. Note that the integral term in Eq.~50!
is bounded from above by;d/a at Rc@a and by da/Rc

2

;a/(dlL)1/2 otherwise. In both limits the maximum value o
u!1, which justifies the linearization~47! and our using of
the term ‘‘rollover.’’

If we takef i in Eq. ~50! equal to the polar angle at whic
the cyclotron orbit hits the disc for the first time, thenu(f i)
should be put to zero in the continuous approximation. W
the same accuracy the anglef f at which the breakaway oc
curs satisfies the conditionu(f f)50. According to Eq.~50!,
we can recast the latter condition as

E
f i

f f
df d~f!e~f!50. ~51!

This equation yieldsf f as a function off i and, conse-
quently, enables us to determine the shiftRh . Let us intro-
6-11
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duce an effective random potentialV(r) as the average o
the real potential over the cyclotron orbit with the guidin
center at the pointr @at Rc!d the two potentials almos
coincide, but atRc@d a typical amplitude of fluctuations o
the effective potentialV(r) with the same correlation radiu
d is obviously;(Rc /d)1/2 times smaller#. The drift occurs
along equipotential lines ofV(r). Since the shiftd(r)
}¹V(r)3ez , whereez is the unit vector along the magnet
field, Eq. ~51! is rewritten as

E
f i

f f
df~¹V3ez!•e~f!50, ~52!

which, for the integration along the arcr5Rc1a, finally
gives

V~r,f f !2V~r,f i !50. ~53!

We thus see that in the limit of smalld/a the cyclotron orbit,
having skipped along the surface of the hard disc, bre
away on the equipotential contour with the sameV as it had
before hitting the disc, i.e.,

Rh50 ~54!

in the continuous approximation. Note that for the drift in
homogeneous electric field, whend(r)5const, this result
follows straightforwardly from symmetry of the scatterin
problem. What Eq.~53! tells us is that, remarkably,Rh van-
ishes in the case of varyingV(r) as well.

Let us compare the above picture with a familiar exam
of adiabaticity of scattering on a smooth inhomogene
V(r): in that case, the vanishing ofRh simply means that the
guiding center drifts along a locally perturbed equipoten
line of V(r). Naively, one might think that a collision with
the disc destroys the adiabaticity since the impenetrable
disc makes a part of the equipotential line ofV(r) inacces-
sible. However, as follows from Eq.~53!, the skipping of the
cyclotron orbit around the disc goes on adiabatically, p
vided d/a is infinitesimally small, and the resultRh50 still
holds.

C. Nonadiabatic skipping

The zero result forRh was obtained in Sec. IV B by treat
ing the drift during the rollover perturbatively, to first orde
in d/a, and by taking the continuous limit. To findRh , we
should now relax this approximation. Before doing so, it
worthwhile to recall howRh behaves for scattering on
smooth inhomogeneity. In that problem, it is known that ta
ing higher gradient terms into account does not lead t
finite Rh and, in fact, the problem of findingRh does not
allow for any perturbative solution that could be expanded
powers of the parameterd/d!1, whered is a characteristic
size of the inhomogeneity. Specifically, for a smooth inh
mogeneity,Rh is exponentially small atd/d!1 ~see, e.g.,
Ref. 34 for a solution of the scattering problem and ref
ences therein!. As we have shown above, the case of a h
disc placed in a smoothly varying environment is similar
that the scattering is also almost adiabatic atd/a!1. A ques-
tion then arises if the nonadiabatic scattering that leads
20530
ks

e
y

l

rd

-

-
a

n

-

-
d

a

finite Rh is also exponentially suppressed. The answer is
since there is an important difference between the two ca
Namely, the approximation within which the skipping of th
cyclotron orbit can be considered as a continuous adiab
process@Eq. ~49!# fails completely near the pointsf5f i and
f5f f . Indeed, near these points dynamics of the collis
angleu(f) is nonadiabatic sinceu is close to zero, so tha
Dun is of orderun itself and the expansion~48! is not valid
any more. A finite shiftRh is therefore due to the discretene
and incommensurability of the skipping along the sha
boundary of the hard disc. It is given by the elementa
~associated with a single collision! hopping length of the
guiding center nearf5f i , f , which is Rh1;(Rc1a)c(u1).
Substitutingu1 from Eq. ~44! we finally get for a character
istic amplitude of the shift

Rh1;RcS d

a

Rc1a

Rc
D 1/2

. ~55!

We see that, in contrast to the case of a smooth inhomo
neity, Rh1 scales as a power ofd, namelyRh1}d1/2. Note
also that the characteristic scaled, on which the smoothV(r)
changes, appears in Eq.~55! only through the drift shiftd.

Equation~55! describes a single scattering in which th
particle breaks away from the disc along an equipoten
with V almost equal to that of the equipotential along whi
it is incident on the disc. Using Eq.~55!, dynamics of skip-
ping orbits in the limit Rc!d can be understood quit
straightforwardly. Since in this limit the drift is almost ho
mogeneous in the course of skipping, for a givenV there is
typically only one equipotential line that crosses the guidin
center trajectory during the rollover. Accordingly, if it wer
not for the small shift~55!, the particle would simply con-
tinue to drift after the rollover along the same equipoten
line. The picture becomes far more complicated at largeRc
@d since in that case there are many equipotential lines w
the sameV that intersect the guiding-center trajectory corr
sponding to the rollover.

Let Rc@d. In this limit, one should distinguish two re
gimes according to whether the typical hopping length a
one collisionRh1;Rc(d/a)1/2 @Eq. ~55!# is larger or smaller
than d. Consider first the caseRh1!d, i.e., let d!Rc
!d(a/d)1/2. The characteristic number of equipotential lin
with the sameV that cross the circle of radiusr5Rc1a
around the disc~which is the guiding center trajectory in th
course of skipping! is of orderRc /d@1. Clearly, the direc-
tion of drift ~to or away from the surface of the disc! alter-
nates during the skipping. It follows that the particle whi
started skipping will break away along the equipotential li
that is the first to cross the guiding-center trajectory cor
sponding to the skipping. Yet, since the equipotential lin
are closed loops~typically of sized), the particle will come
full circle and return to the disc~see Fig. 10!. Then the pro-
cess will repeat itself with other equipotential lines along t
surface of the disc. We have assumed, however, that the
ticle is incident on the disc along a percolating extend
trajectory. Therefore the multiple returns will stop when t
particle picks up this trajectory.
6-12
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Let us evaluate the total shiftRhS with which the particle
will finally break away. Elementary shifts for the repeatin
collisions are uncorrelated with each other, so that

RhS
2 ;Rh1

2 RcF E
d

Rc
dL L W~L!G21

, ~56!

whereW(L) is the probability density for the drift trajector
that broke away from the disc to hit it again, i.e., to cross
arc r5Rc1a, for the first time after the breakaway at
distanceL from the starting point. It is instructive to map th
problem of findingW(L) onto a more conventional one b
noting that the power-law scaling ofW(L) describes how a
deposition rate for particles emitted by a point source a
moving in two dimensions in the presence of an absorb
line falls off with increasing distanceL along this line. If the
particles would experience an uncorrelated diffusion with
elementary step;d, then it is straightforward to see, b
solving the diffusion equation with the absorbing bounda
that W(L);d/L2. In fact, one can show, by introducing
scale-dependent diffusion coefficient which describes
drift, that this result holds for the drifting particles as we
i.e.,W(L) andP(j) @Eq. ~19!# have the same scaling beha
ior. Hence the integral in Eq.~56! logarithmically diverges
and the typical number of collisions before the final brea
away isRc /d ln(Rc /d). It follows that

RhS;RcFda Rc

d ln~Rc /d!G
1/2

. ~57!

FIG. 10. Schematic picture of scattering of a cyclotron orbit
an antidot atd!a, Rc@d andRhS!wS . The thick solid line with
arrows is the guiding-center trajectory. The dashed lines are e
potential contours which cannot be accessed by the guiding ce
The small shaded circle in the center of the figure shows the ant
The thin circle of radiusRc1a around it is the boundary of the are
impenetrable for the guiding center. The parts of the guiding-ce
trajectory that coincide with this boundary correspond to skipp
of the cyclotron orbit, which alternate with parts corresponding
drift. The drift occurs between each breakaway from the antidot
consecutive return to it.
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Clearly, the necessary condition for the above derivation
RhS to be valid is RhS!d!Rc , which meansd!Rc
!d(a/d)1/3ln1/3(a/d). It is worthwhile to mention that if
Rc!d(a/d)1/3 the characteristic hopping length for the ski
ping cyclotron orbitRccmax!d. Herecmax;(d/a)1/3 is the
maximum scattering angle for a single-run skipping atRc
@a @see Eqs.~47! and ~50!#.

Now let Rh1 be still smaller thand but let RhS@d, i.e.,
consider the intervald(a/d)1/3ln1/3(a/d)!Rc!d(a/d)1/2.
An essential difference appears in this regime: the shift
cumulated through multiple breakaways and returns exce
d before the rollover is finished. At this point it is wort
recalling that the elementary shifts for each breakaway
accompanied by changes ofV corresponding to drift trajec-
tories. Accordingly, when the accumulated shift gets lar
than d, the initial and current values ofV become uncorre-
lated with each other. It is evident that we should treat t
case separately, since now one cannot identifyRhS given by
Eq. ~57! with a shift with which the particle has finally bro
ken away never to return. This conclusion becomes e
clearer when not onlyRhS but alsoRh1 @Eq. ~55!# is larger
than d, i.e., when Rc@d(a/d)1/2. In the latter case, the
memory about the initial value ofV is lost already after one
collision.

The picture emerging in the limitRhS@d signals that one
should also fine tune the derivation of Eqs.~55! and ~57!.
Namely, these equations should be supplemented with
condition under which the problem of findingRh can in fact
be formulated as the scattering problem for asingle disc.
Indeed, for a single disc, one actually cannot specify w
which accuracy the particle should hit the vicinity of th
percolating trajectory so as to be able to break away from
disc. To answer this question, we need to consider a sca
ing problem fortwo discs. Specifically, consider two disc
separated by a typical distanceLS;vdtS8 measured along the
percolating trajectory~Fig. 11!. The two discs are connecte
by a bundle of drift trajectories of widthwS @Eq. ~31!#. One
sees that the particle will break away from one disc and
through to the other after a single rollover only

i-
er.
t.

er
g

d

FIG. 11. Schematic picture of scattering of a cyclotron orbit
antidots atd!a, Rc!d andRh1@wS . The line with arrows shows
the guiding-center trajectory. The thicker line is the trajectory t
takes the particle from one antidot to another~two of which are
shown by shaded circles!. Until the guiding center picks up this
trajectory the particle is stuck to an antidot and keeps colliding w
it, by making long drift excursions between the collisions. ForRc

@d, the scattering process can be visualized as a ‘‘combination
Figs. 10 and 11.
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max$Rh1,RhS% is within this width. If this condition is not
satisfied, the cyclotron orbit will keep going around the d
until it happens that its guiding center hits the strip of wid
wS at the same time whenu vanishes. It follows that atRc
!d the shift is given by Eq.~55! only if Rh1!wS . If, how-
ever, Rh1@wS , it takes typicallyNr;Rh1 /wS revolutions
around the disc before the particle breaks away and

Rh;wS ~58!

in this limit. Similarly, atRc@d the shiftRh is given by Eq.
~57! only if RhS!wS ; otherwise,Rh;wS ~the picture can be
visualized as a ‘‘combination’’ of Figs. 10,11!. For Rc@d,
the number of revolutions around the discNr , necessary for
the simultaneous tuning ofV and u corresponding to the
breakaway, is different in three different regimes. Name
Nr;RhS /wS for wS!RhS!d, independently of the ratio
Rh1 /wS . With increasingRhS , if RhS@d, we have Nr
;d/wS as long asRh1!d, and Nr;Rh1 /wS otherwise. In
particular, one sees that ifRhS@d, it always takes many
revolutions before the breakaway occurs and the shiftRh is
always determined bywS .

D. Percolation in a dilute antidot array

In Sec. IV C, we discussed scattering of a drifting cyc
tron orbit on a single AD atd/a!1. Consider now the MR a
d/a!1. Let us start with the limit of a small concentration
AD’s n→0. As outlined in Sec. II B, in the absence of AD
the conductivity at largeB is only due to the exponentially
weak nonadiabatic scattering on long-range disorder. Le
neglect this additional contribution torxx(B) and calculate
the contribution that is due to the scattering on very rare h
discs. We thus seek a term inrxx(B) which is proportional to
a power ofn at smalln. Let Rc!d. Since atn→0 the bundle
of drift trajectories that connect two discs becomes infinite
mally narrow@wS}n3/7 at n→0 according to Eqs.~27! and
~31!#, the particle sticks to a disc for a long timetst until it
picks up a trajectory that is extended enough to take i
another disc. The number of the unsuccessful attempt
break away from the disc is given byNr;Rh1 /wS@1. To
evaluatetst , notice that the sticking time is determined by
slow drift along the closed loops that repeatedly return
particle back to the disc, not by the fast skipping in betwe
However, most of the attempts end up in quick returns to
vicinity of the point of the first collision and so give only
small contribution totst . We estimatetst as

tst;E
wS

Rh1dw

wS

L~w!

vd
, ~59!

whereL(w) is given by Eq.~7!. The integral is determined
by w;wS , which yieldstst;tS8 . We thus see that the effec
tive scattering time between collisions with different discs
given by the drift time between the discs. Accordingly, t
total distance passed by the particle in the multiple rollov
is typically of orderLS . In fact, this conclusion holds for th
caseRc@d as well. The only difference is that at largeRc the
particle experiences multiple breakaways and returns on
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scale of a single rollover. However,tst does not renormalize
the characteristic time between collisions with differe
discs, which is given bytS8 , similarly to the caseRc!d.

We are now in a position to calculate the AD-induc
contribution to the MR in the limit of smalln. According to
the picture above, the scattering on a given AD is over wh
the particle hits another AD separated by a distancejS

;d(vdtS8/d)4/7, and the characteristic time between two sc
terings istS8 . As long as we neglect the nonadiabatic corre
tions to the drift in the long-range potential, there is a cle
separation between localized and extended drift trajector
Only a small fraction of trajectories get delocalized by mea
of collisions with AD’s, namely;wSLS /jS

2!1. The diffu-
sion coefficient of particles residing on these trajectories
;vdjS

2/LS . We thus see that the macroscopic diffusion c
efficient is given by Eq.~9! with a rescaled scattering tim
tS→tS8 , which yields the MR obeying Eq.~42!.

It is worth noting that the dynamics of particles is esse
tially different atn→` ~Sec. III B! andn→0, despite being
described by similar equations. In the former case, there
strong exchange, caused by collisions with AD’s and go
erned by a detailed balance of scattering processes, betw
the stream of fast particles which follow the links of th
percolation network and the reservoir of ‘‘quasilocalize
particles which stick for a long time to within the critica
cells of the network. By contrast, atn→0 there is no such
exchange and the drift trajectories within the cells of t
percolation network are strictly localized. However, in bo
cases the MR is determined by the fast particles mov
along the links of the percolation network, which is why
does not matter if the particles moving inside the critic
cells are localized or not. Put another way, although the t
number of delocalized particles decreases atn→0, this effect
is compensated by more frequent crossings, due to collis
with AD’s, of the percolative drift trajectory by particles tha
remain delocalized.

Substituting Eqs.~27! and ~33! into Eq. ~42! we get

rxx~B!

r0
;p4/7h3/7S d

Rc
D 39/28

~60!

for Rc@d and

rxx~B!

r0
;p4/7h3/7S d

Rc
D 4/7

~61!

in the opposite limit. According to Eqs.~60! and ~61!, rxx
}n3/7 at n→0.

One sees from Eq.~61! that rxx taken in the limitn→0
behaves at largeB asB4/7. As compared to Eq.~17!, which
describes the asymptotic behavior in the hydrodynamic
gimen→` and givesrxx}B10/13, the divergence ofrxx with
increasingB is weakened, but is still present. However, ne
ther of the two limiting cases~17! and ~61! describes the
asymptotics of the MR forB→` at a given finiten, which
we discuss below.

Let us turn to the percolative MR in a denser array
AD’s. Increasingn yields wider links of the percolation net
6-14
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work, so that eventuallywS becomes larger than the eleme
tary shift max$Rh1,RhS% ~Sec. IV C!. This transport regime is
described by the advection-diffusion Eq.~17! modified ac-
cording to Eq.~43!. Using Eqs.~55! and ~57! for Rh1 and
RhS , and Eqs.~27! and ~33! for tS8 in Eq. ~43! gives

rxx~B!

r0
;p10/13h6/13S d

Rc
D 1/52

ln23/13S Rc

d D ~62!

for Rc@d and

rxx~B!

r0
;p10/13h6/13S Rc

d D 2/13S Rc1a

Rc
D 3/13

~63!

for Rc!d.
The condition at which the ‘‘one-hop’’ percolation@Eqs.

~60! and ~61!# crosses over with increasingB into the
advection-diffusion regime@Eqs. ~62! and ~63!# is given by
somewhat cumbersome formulas: the crossover occur
d/Rc;(p6h)3/125ln221/125(p6h) for p6h!1, at d/Rc
;(p6h)1/22 for 1!(p6h)1/22!d/a, and at d/Rc
;(p6h)1/15(a/d)7/15 for (p6h)1/22@d/a.

Equation~63! tells us that the asymptotics of the MR
B→` is rxx}B1/13, i.e., the MR diverges as a power law
the limit of largeB. However, this divergence is so weak th
from a practical point of view it is indistinguishable from
saturation ofrxx(B). Nonetheless, it is a remarkable fact th
in the extremeB→` the MR in the presence of both AD’
and a long-range potential does not go to zero, in contras
Eqs. ~1! and ~4!, which predict vanishing ofrxx when only
one type of disorder is present.

E. Rosette orbits in the presence of weak drift

In Sec. IV D, we considered the percolative contributi
to the MR at smalld/a. Now we proceed to the ‘‘short
scale’’ contribution associated with rosette states~Secs. II A
and III C!. Let us analyze how the Lorentz gas behavior
restored with decreasing strength of the smooth disor
Since we deal with the casea/d!1, the Lorentz model limit
is achieved for a very weak long-range potential, such tha
Rc / l S;1, when the falloff~1! starts, the scattering on th
long-range potential is already strongly adiabatic. The c
dition of adiabaticity atRc / ł S;1 andl S /d@1 translates into
l L /d@( l S /d)3. As we will see below, the condition of th
Lorentz gas falloffrx(B)}B21 not being dominated by the
contribution of ‘‘hopping rings’’~Sec. III C! is much stron-
ger, namely

l L /d@~ l S /d!3~d/a!4. ~64!

The solution of the scattering problem for a single disc
Sec. IV B shows that atd/a!1 there is a well-defined sepa
ratrix umax!1 for the angle of incidenceu in the phase
space (u,f), which divides skipping cyclotron orbits into
two groups, delocalized and localized. Namely, trajector
that will finally break away from the disc belong to the pa
of the phase space withu,umax, whereas the regionu
.umax is filled with those that will never escape. In oth
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words, almost the whole phase space is filled with bou
states. According to Eq.~50!, the critical angle

umax;~d/a!1/3@~Rc1a!/Rc#
2/3. ~65!

Indeed, a drifting cyclotron orbit that is incident on the di
both hits it for the first time and finally breaks away atu
&u1 @Eq. ~44!#, while reaching a maximumu, which de-
pends on the incident parameter but does not exceedumax
given by Eq.~65!, during a rollover in between.

Let us show that a particle which starts with someu
.umax will not be able to break away. What is important
us is that in order to break away the particle has to decre
u down tou;u1. Suppose this might happen and the parti
has escaped. Then we could consider a complementary
tering problem by reversing time and sending the parti
that has broken away back to the disc. However, we kn
from Sec. IV B that for this scattering problemu will never
exceedumax. Hence we come to a contradiction whic
shows that the initial assumption about the possibility o
breakaway cannot be realized. We thus see that trajecto
that started to skip along the disc withu.umax can never
cross the boundaryu5umax and so will remain bound to the
disc. The fact that there exist bound states for magneti
electrons interacting with a single hard disc in the case o
homogeneous in-plane electric field was observed in the
merical simulation.37

The existence of the separatrixumax means that the con
tribution torxx(B) of rosette states withu.umax is given by

rxx~B!/r0;Rc / l S ~66!

for all d/a!1 @cf. Eq. ~1!#.
Let us now compare two terms inrxx(B) that are associ-

ated with the short-scale diffusion at finited/a. One, de-
scribed by Eq.~22!, is due to the hopping of ‘‘rings’’ intro-
duced in Sec. III C. The other, given by Eq.~66!, is due to
the hopping of rosette states. Note a similarity between
two mechanisms of transport: in both cases a particle in
acts with a disc many times before changing to another d
The comparison shows that the concentration of partic
participating in the hopping-ring transport is much larg
than that of rosette states. It is clear, however, that if we s
d→0, the hopping rings should not contribute torxx(B),
which will be given by Eq.~1!. It follows that there should
exist yet another, intermediate regime of hopping, associa
with the evolution of the hopping-ring transport with d
creasingd/a. To describe the latter, notice first of all that E
~22! stops to be valid already at somed/a@1. Indeed, the
logarithmic factor in Eq.~22! is associated with the drif
along closed loops of sizej&(nRc)

21. Therefore the deri-
vation of Eq. ~22! in fact implies that the time it takes to
come full circle along the longest loop of sizej;(nRc)

21 is
smaller thant̃S(j) @Eq. ~21!# for this j, which yields the
condition d/a*(nRcd)23/4@1. Note that this is the sam
condition at which the effective scattering time ford!jS
!Rc in Sec. IV A is not renormalized by the parameterd/a
and is given bytS @cf. Eq. ~30!#. At smaller d/a, in the
6-15
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interval 1!d/a!(nRcd)23/4, only j in the range 1&j/d
&(d/a)4/3 contribute torxx , which gives

rxx~B!/r0;nRcd ln~d/a!. ~67!

This equation is valid with decreasingd/a down tod/a;1.
At still smaller d/a, the particle is scattered out by the sam
AD after passing a distance of orderd. Accordingly, the char-
acteristic time between changes of AD’s in this regime
creases due to the slowing down of the drift astSa/d. It
follows that ford/a!1,

rxx~B!/r0;nRcd d/a. ~68!

Equations~68! and~66! match each other atd;a2/d and
we conclude that the regimes~67! and ~68!, intermediate
between those described by Eqs.~22! and ~66!, occur in the
interval a/d!d/a!(nRcd)23/4. By requiring that d at
Rc / l S;1 is much smaller thana2/d we arrive at the condi-
tion ~64!. The overall behavior ofrxx(B) for the case of very
weak long-range disorder is obtained by adding the sh
scale contribution, described by Eqs.~22! and~66!–~68!, and
the percolative contribution analyzed in Sec. IV D. Th
leads to nonmonotonic behavior of the MR, such thatrxx(B)
first falls off with increasingB and then crosses over into th
percolative growth.

V. NUMERICAL SIMULATION

We have solved numerically the classical equation of m
tion for a charged particle in a random array of hard discs
the presence of smooth disorder. In the numerical simulat
the latter is characterized by the correlator

^V~r !V~0!&}
1

@11~r /d!2#3/2
~69!

with the ratiod/a.21.5. The concentrationn of the isolated
scatterers has been chosen such that they make an impo
contribution to the resistance at zero magnetic field. Spe
cally, pnd2.6.2 andl / l S.0.58, wherel is the total mean
free path andl S53/8na.

In Fig. 12 we present the MR data for our model syste
Since the characteristic values of the magnetic field~given in
the figure caption in terms of the parameterd/Rc) are rather
close to each other, it has not been possible to unamb
ously separate different regimes. Yet, the nonmonotonic
havior of rxx(B), predicted by the theoretical analysis,
clearly seen. Note that the size of the error bars atd/Rc*5
denotes only the statistical uncertainty. In addition to
latter, there is a systematic uncertainty originating from
very slow guiding-center motion in the large-B limit, which
makes it difficult to observe the true diffusion consta
However, the size of the systematic uncertainty is sufficien
small as compared to the structure of the nonmonotonic
pendence ofrxx(B).
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VI. SUMMARY

In summary, we have discussed a rich set of mag
totransport phenomena which take place in a random
semble of antidots in the presence of long-range fluctuati
of a random potential. We believe that the model studied
the paper adequately describes an antidot array in semi
ductor heterostructures with a wide spacer for not too highB,
when quantum effects~Shubnikov–de Haas oscillations! are
still weak. We show that even weak long-range disord
yields a wealth of pronounced effects in the behavior of
magnetoresistancerxx(B) in the antidot array. Essentially
these effects are associated with a magnetic-field indu
localization of electrons which develops when only one ty
of disorder is present. As a result of the localization,rxx(B)
vanishes in the limit of largeB both in an idealized antido
system without long-range disorder and in a system w
smooth inhomogeneities without antidots. Conceptually,
most striking result of our work is that the interplay of tw
types of disorder does not simply modify the localization;
fact, it destroys the localization, so thatrxx(B) even diverges
in the limit B→`. The divergence takes place despite
strong falloff ofrxx(B) that occurs in intermediate magnet
fields in the case when one of the types of disorder is su
ciently strong as compared to the other.

Piecing together all the numerous regimes we arrive a
rather complex overall picture, due to the interplay of seve
distinctly different mechanisms of the MR. Let us list the
mechanisms. Some of them are closely related to the me
nisms of the MR characteristic to the limiting cases
strongly non-Gaussian or purely Gaussian disorder. Spe
cally, we have:

~i! Memory effects operative in the case of strongly no
Gaussian disorder~Lorentz gas, or any other system of ra
strong scatterers, without long-range inhomogeneitie!.
These effects lead to a strongnegativeMR ~see Sec. II A!. In
the limit of largeB the system is insulating.

~ii ! Memory effects in smooth Gaussian disorder. In th
case, the memory effects give rise to a strongpositiveMR,

FIG. 12. Magnetoresistivityrxx(B) in units of (h/e2)/kFl S ~spin
included! as a function ofd/Rc for a model system specified in th
text. Characteristic values ofd/Rc are: Rc / l S51 at d/Rc.0.25;
d/d51 at d/Rc.1.8; nRcd51 at d/Rc.1.9; pnRc

251 at d/Rc

.2.5; d/2a51 at d/Rc.7.1.
6-16
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for which, however, the ratiorxx(B)/r0 cannot be parametri
cally much larger than 1, since after having reached a m
mum value of order 1 it starts to fall off with increasingB,
thus yielding a strongnegativeMR ~see Sec. II B!. In the
limit of large B the system is insulating.

In the presence of a long-range random potential,
mechanism~i! of the MR is destroyed by the diffusive mo
tion of electrons scattered by the long-range disorder. No
theless, as we have demonstrated in the paper, it is rein
nated in the form of hopping rings~Sec. III C! once the
diffusive motion in the long-range disorder turns into t
drift with increasingB. In this different form, this kind of a
negative contribution to the MR is developed at much lar
B as compared to the pure Lorentz-gas system. On the o
hand, the mechanism~b! is destroyed by scattering on ha
scatterers, which checks the negative MR associated with
adiabaticity of drift in the long-range potential~Sec. III E!.

A nontrivial point to notice in our results is that, in add
tion to the above, there are memory effects that are spe
to the inhomogeneous system with two types of disord
These are:

~iii ! ‘‘Diffusion-controlled percolation.’’ As we have
shown in the paper, scattering by short-range inhomoge
ities not just destroys the adiabaticity of motion in a smo
random potential, thus checking the strong negative MR
fact, it reverses the sign of the MR by giving rise to aposi-
tive MR which keeps growing with increasingB ~Sec. III B!.
This positive MR is a peculiar feature of percolation of dr
trajectories with superimposed diffusive dynamics across
drift lines.

~iv! Renormalization, by long-range disorder, of the c
lision time for hard scatterers. We have demonstrated tha
a system where the hard scatterers give the main contribu
to the scattering rate at zeroB, a weak smooth disorder ca
drastically suppress the scattering rate with increasingB
~Sec. IV A!. The effect takes place for any type of dynami
of scattering by the long-range potential, both for diffusi
and drift. The increase of the collision time translates into
negativeMR.

The overall behavior of the MR is illustrated in Fig. 1
Different curves correspond to differentn for given l S , l L ,
and d. The characteristic fieldBad marks the diffusion-drift
crossover. Figure 13 describes the case of not too weak l
range disorder; specifically, it is assumed thatRc / l S!1 at
B;Bad , which meansl L /d!( l S /d)3.

Having listed the main mechanisms of the MR, let us n
summarize our main results. We analyze a ‘‘hydrodynam
model’’ of the chaotic antidot array, i.e., tiny antidots sc
tered with a high densityn→` in a smoothly varying ran-
dom potential~Sec. III B!. At largeB, rxx(B) turns out to be
a growing power-law function of the magnetic field. W
identified several different regimes of the behavior ofrxx(B)
@Eqs. ~14!–~17!#, depending on the parameterl S /AdlL,
where l S and l L are the mean free paths for scattering
antidots and long-range disorder with a correlation lengthd,
respectively. In the limitB→`, the hydrodynamic mode
universally predictsrxx(B)}B10/13 @Eq. ~17!#. The physics of
this divergence is a percolation of drifting cyclotron orb
limited by scattering on antidots.
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Relaxing the conditions of the hydrodynamic model, w
calculaterxx(B) in an antidot array of high but finite densit
n ~Sec. III C!. We show that diffusing cyclotron orbits exhib
intricate dynamics by sticking for a long time to a sing
antidot. This leads to a power-law falloff ofrxx(B) in an
intermediate range ofB, namelyrxx(B)}B21ln B @Eq. ~22!#.
The small parameter that governs the physics of this tra
port regime isnRcd, whereRc is the cyclotron radius. With
further increasingB, this mechanism of diffusion is switche
off abruptly, in a critical manner@Eq. ~23!#.

If the long-range disorder is not too weak, we show th
the Drude regime and theB21ln B falloff are connected via
an exponentially fast decrease ofrxx(B) in a narrow range of
the magnetic field, which is a trace of the adiabatic locali
tion in smooth disorder~Sec. III E!. In this regime,rxx(B) is
determined by the interplay of nonadiabatic transitions a
scattering on antidots@Eq. ~25!#.

We calculate the scattering timetS8(B) between collisions
with antidots for extended electron trajectories~Sec. IV A!,
see Eqs.~27!, ~30!, ~33!, and ~38!. At large B, tS8 becomes
longer than the Drude time. The smallern, the earliertS8
starts to grow with increasingB. In a very dilute AD array
the renormalization oftS8 starts already in the diffusive re
gime and leads to a falloff ofrxx(B)}B24 @Eq. ~39!#.

FIG. 13. Schematic behavior of the magnetoresistivityrxx(B)
on a log-log scale for different values of the concentration of a
dots n: n( i ).n( i i ).•••.n(v), keeping all other parameter
( l S ,l L ,d) fixed. Only one characteristic fieldBad is shown, at
which the crossover between diffusive dynamics and adiabatic
in the long-range potential takes place. Different curves illustr
different mechanisms of the magnetoresistance:~i! the magnetore-
sistance is positive owing to the ‘‘diffusion-controlled percolation
~ii ! due to the adiabatic localization, the concentration of condu
ing electrons decreases asB21ln B before the percolation become
effective, which yields a negative magnetoresistancerxx(B)
}B21ln B for intermediateB; ~iii ! an exponentially sharp falloff of
rxx(B) at B;Bad ~shown as a vertical jump! separates the diffusive
and drift regimes;~iv! because of the memory effects, the collisio
time for scattering by antidots is increased as compared to
Drude value already in the diffusive regime (B!Bad), which leads
to the negative magnetoresistancerxx(B)}B24 for smallB; ~v! for
intermediateB, the scattering on antidots stops playing any role a
rxx(B) is saturated at a value determined by the long-range diso
only, whereas at larger fields the diffusion-controlled percolat
gives rise to a positive magnetoresistance.
6-17
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We solve a scattering problem for a drifting cyclotro
orbit colliding with an antidot at smalld/a ~Sec. IV B!. We
study dynamics of cyclotron orbits skipping along the s
face of the hard disc and show that the skipping goes
almost adiabatically, which results in a strong suppression
transitions between different drift trajectories@Eq. ~53!#.

We analyze complex dynamics of skipping cyclotron o
bits interacting with an antidot when the ratioRc /d is large,
which includes multiple breakaways from the antidot a
multiple returns to it, accompanied by drift along closed t
jectories in between~Sec. IV C!. We discuss the accumulate
effect of these multiple collisions with a single antidot
terms of the scattering shiftRh(B) of the guiding center of
the cyclotron orbit after it finally escapes@Eq. ~57!#. We also
calculate the shift in the limit of a smoothly varying enviro
ment @Eq. ~55!#.

We calculate the percolative magnetoresistance in the
tidot array in the limit of smalld/a ~Sec. IV D!. A variety of
different regimes supersede each other with increasingB, all
of which are characterized by a power-law behavior
rxx(B) @Eqs.~60!–~63!#. The asymptotic behavior ofrxx(B)
in the limit B→` is rxx(B)}B1/13 @Eq. ~63!#, which from a
practical point of view to all intents and purposes is indist
rs
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guishable from a saturation of the magnetoresistance.
behavior is in sharp contrast to the localization that wo
develop in the antidot array in the absence of long-ra
disorder.

We discuss dynamics of cyclotron orbits which stick to
single antidot for a long time before hopping to another o
~similar to theB21ln B regime in Sec. III C! in the case of a
very weak long-range disorder~Sec. IV E!. Taking this limit
eventually restores theB21 behavior ofrxx(B) characteristic
to the Lorentz gas.

We present results of numerical simulations~Sec. V!. The
numerical data qualitatively confirm the predictions of t
theory.

ACKNOWLEDGMENTS

We thank M. Heiblum, J. Smet, and V. Umansky f
stimulating discussions. We are grateful to D. Weiss for
tracting our attention to Ref. 12. This work was supported
SFB 195 and the Schwerpunktprogramm ‘‘Quanten-H
Systeme’’ of the Deutsche Forschungsgemeinschaft, by
TAS Grant Nos. 97-1342 and 99-1705, and by the Germ
Israeli Foundation.
r

.

z-

tan-

.

si-
ev.

-

and

t 1

tt.

v.

0

.

*Also at A.F. Ioffe Physico-Technical Institute, 194021 St. Pete
burg, Russia.

†Also at Petersburg Nuclear Physics Institute, 188350 St. Pe
burg, Russia.
1D.K. Ferry and S.M. Goodnick,Transport in Nanostructures

~Cambridge University, Cambridge, United Kingdom, 1997!.
2C.W.J. Beenakker and H. van Houten, inSolid State Physics,

edited by H. Ehrenreich and D. Turnbull~Academic, San Diego,
1991!, Vol. 44.

3J. Wilke, A.D. Mirlin, D.G. Polyakov, F. Evers, and P. Wo¨lfle,
Phys. Rev. B61, 13 774~2000!.

4A.D. Mirlin, J. Wilke, F. Evers, D.G. Polyakov, and P. Wo¨lfle,
Phys. Rev. Lett.83, 2801~1999!.

5F. Evers, A.D. Mirlin, D.G. Polyakov, and P. Wo¨lfle, Phys. Rev. B
60, 8951~1999!.

6O. Yevtushenko, G. Lu¨tjering, D. Weiss, and K. Richter, Phys
Rev. Lett.84, 542 ~2000!.
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