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Quasiclassical Negative Magnetoresistance of a 2D Electron Gas:
Interplay of Strong Scatterers and Smooth Disorder
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We study the quasiclassical magnetotransport of noninteracting fermions in two dimensions moving in
a random array of strong scatterers (antidots, impurities, or defects) on the background of a smooth ran-
dom potential. We demonstrate that the combination of the two types of disorder induces a novel mecha-
nism leading to a strong negative magnetoresistance, followed by the saturation of the magnetoresistivity
rxx�B� at a value determined solely by the smooth disorder. Experimental relevance to the transport in
semiconductor heterostructures is discussed.
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Magnetotransport in a two-dimensional electron gas
(2DEG) has been the subject of intensive research during
the last two decades. This interest has been motivated by
the progress in preparing high-quality semiconductor het-
erostructures, opening up new areas in both fundamental
physics and applications; see [1] for a review. Within the
quasiclassical approach (valid for not too strong magnetic
fields B), impurity scattering is commonly described by a
collision integral in the Boltzmann equation. This leads,
for an isotropic system, to the B-independent Drude value
of the longitudinal resistivity, rxx�B� � r0 � m�e2net,
where ne is the carrier density, m the effective mass, and
t the transport scattering time.

It has become clear, however, that this description is not
always valid. In particular, in the case of smooth disorder
memory effects induce a strong positive magnetoresistance
(MR) [2] followed by an exponential falloff of rxx�B�
due to adiabatic localization of drifting electrons [3,4]. To
our knowledge, these effects have not been experimentally
observed in the electron transport in low magnetic fields,
since the Shubnikov –de Haas oscillations develop at lower
B. On the other hand, the memory effects do show up in
the composite fermion transport, explaining the peculiar
shape of the MR around half filling of the lowest Landau
level [2,4].

In the present paper we study the quasiclassical MR of
a 2DEG moving in a random array of rare strong scat-
terers (modeled by hard disks) and subject additionally
to a smooth random potential. Apart from the purely
theoretical interest, our work has been motivated by two
types of experimental realizations of this problem. The
first one is random antidot arrays. Experiments on this
kind of structure [5–8] show a strong negative MR which
has not been analyzed theoretically. Less obviously, our
model is relevant to transport in the unstructured high-
mobility 2DEG. To clarify this point, we recall that in
order to increase the 2DEG mobility the donors in cur-
rently fabricated heterostructures are separated by a large
distance d ¿ k21

F (with kF the Fermi wave number) from
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the 2DEG plane. It is usually assumed that these remote
donors constitute the main source of disorder, inducing
small-angle scattering of electrons. It is known, however,
that in samples with a wide spacer �d * 70 nm� large-
angle scattering on residual impurities [9–11] and in-
terface roughness [10] becomes important, limiting the
mobility with further increasing width of the spacer. In
particular, Ref. [10] concludes that about 50% of the resis-
tivity is due to such scattering processes, while Ref. [11]
finds that for samples with very high mobility this value
is as high as 90%.

We thus consider the following two-component model
of disorder: (i) randomly distributed hard-core scatterers
(which we will term “antidots” or “impurities” below) with

density nS and radius a (where n
21�2
S ¿ a ¿ k21

F ), and
(ii) smooth random potential (correlation radius d, momen-
tum relaxation rate t

21
L , transport mean free path lL �

yFtL). The mean free path for the scattering on an-
tidots is l

�0�
S � yFt

�0�
S � 1�2nSa, while the correspond-

ing transport mean free path may be somewhat different,
lS � yFtS � gl

�0�
S with g � 1 (g � 3�4 in the model of

specularly reflecting disks). We will set g � 1 for quali-
tative estimates. We will further assume that tL ¿ tS , so
that the zero-B resistivity r0 is determined by the hard scat-
terers, t21 � t

21
L 1 t

21
S � t

21
S . Finally, we will assume

that the motion in the smooth disorder is not adiabatic,
i.e., has the form of the guiding center diffusion (rather
than drift). The condition for this is d ¿ d, where d is
the guiding center shift after one cyclotron revolution [see
Eq. (2)]. For currently fabricated samples this assumption
is usually satisfied in the whole range of applicability of
the quasiclassical theory.

We start the analysis of the problem by recalling the
results [12,13] for the case when only hard scatterers are
present �tL � `�, known as the Lorentz gas. In this limit
the resistivity rxx�B� reads

rxx�B��r0 � �1 2 e22p�vct
�0�
S �F �vctS� , (1)
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where vc � eB�mc is the cyclotron frequency and
F �x� is a function of order unity with the asymptotics
F �x ø 1� � 1 and F �x ¿ 1� � g. The first factor in
Eq. (1) is nothing else but the fraction of particles moving
in rosettelike trajectories around the impurities and hitting
a new impurity with the mean free time t

�0�
S . The rest of the

particles do not hit scatterers at all. In the sequel, we will
consider only classically strong magnetic fields, vc ¿

vt � 2p�t
�0�
S , where the resistivity (1) shows a 1�B

falloff. Equation (1) is valid below the percolation thresh-
old, vc , vperc � 1.67yFn

1�2
S (note that vperctS �

n
21�2
S a21 ¿ 1). For larger magnetic fields, vc $ vperc,

the resistivity is exactly zero, since the rosettelike families
of cyclotron orbits fail to form an infinite cluster.

Clearly, adding the long-range disorder will increase the
diffusion constant Dxx and thus, in the limit vctS ¿ 1,
the longitudinal resistivity, by setting free those particles
which are localized in cyclotron orbits not hitting impu-
rities. We will be interested in the case of a sufficiently
strong smooth disorder modifying the result (1) in an es-
sential way. Specifically, we will see below that new
physics emerges in the regime d ¿ a, where

d2 � �d2� � 4pl2
L��vctL�3. (2)

Let us first outline this new physics on a qualitative level.
Naively, one could think that for d ¿ a the resistivity
takes its Drude value. Indeed, let us associate with the par-
ticle trajectory a strip of width 2a surrounding it. The par-
ticle will hit an impurity if the center of the latter is located
within this strip. Clearly, in one cyclotron revolution the
particle “explores” in this way the area 2yFa 3 2p�vc ,
the same as it would explore in the same time for B � 0.
For d ¿ a the area explored in the second revolution will
overlap only weakly with that explored in the first one, so
that one could think that the exploration rate is essentially
the same as for B � 0, leading to the mean time �t

�0�
S

between the collisions, and thus to rxx � r0. This con-
sideration is, however, incorrect, since it neglects memory
effects. Specifically, there is a probability P1 � a�d that
the strip after the first revolution covers again the start-
ing point (in other words, there is typically a small rela-
tive overlap �a�d). In view of the diffusive dynamics
of the guiding center, its rms shift after n revolutions is
dn � d

p
n, so that the return probability decreases with

the number of revolutions as Pn � P1�
p

n. This formula
is valid as long as dn is smaller than the cyclotron radius
Rc � yF�vc, i.e., for n ø vctL�2p; we will see that the
relevant values of n satisfy this condition in view of tL ¿

tS. Therefore, the total return probability P �
PN

n�1 Pn

is determined by the upper cutoff N , so that the mem-
ory effect is much stronger than one might expect, P �
�a�d�N1�2 ¿ a�d. A further indication of the importance
of the memory effects comes from the observation that
Eq. (1) does not match the Drude formula at d � a.
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The cutoff N is given by the number of cyclotron revo-
lutions it takes for the particle to hit the next impurity.
When the memory effect leads only to a small correction
to the Drude value (the condition will be specified below),
the characteristic value of N is N � vct

�0�
S �2p, so that

the total return probability is P � �a�d��vc tS�1�2. This
determines the fraction of the area explored twice, imply-
ing an effective reduction of the exploration rate and thus
a negative correction to the resistivity,

Drxx�r0 � 2�a�d� �vctS�1�2 � 2�vc�v0�2, (3)

where v0 � yF�a2lSlL�21�4 � vperc�lS�lL�1�4 ø vperc.
Note that the sign of MR is opposite to the case of one-
scale smooth disorder [2]: the returns increase the rate
of scattering in [2], whereas they make the time between
collisions with different strong scatterers longer, thus de-
creasing the scattering rate in the present case.

We turn now to a more rigorous and quantitative deriva-
tion. Generalizing the formalism of [2], we start from the
Liouville-Boltzmann equation for the distribution function
g�r, f� of electrons on the Fermi surface,

�L0 1 dL�g�r, f� � cos�f 2 fE� , (4)

L0 � yFn= 1 vc
≠

≠f
2

1
tL

≠2

≠f2 ,

dL � 2
X

i

IRi ,

(5)

where n � �cosf, sinf� is the unit vector determining the
direction of velocity, v � yFn, and fE is the polar angle
of the electric field. The operator L0 describes the motion
in the smooth random potential, while dL corresponds
to the scattering on antidots with (random) positions
Ri. The explicit form of the collision operator IR (for
a hard-wall scatterer) can be found in [14], but we will
not need it. We will only use the following properties of
IR: (i) it is nonzero only within the distance a from the
impurity location R, and (ii) its Fourier-transform Ĩq
satisfies Ĩ0n � �21�nStS �n.

Expanding in dL, averaging over the positions Ri of
scatterers, and resumming the series, one finds the Green’s
function of the Liouville operator, ��L0 1 dL�21� �
�L0 1 M�21, where M is the “self-energy” operator. The
resistivity is expressed in terms of M as follows [2]:

rxx � �m�e2ne� �t21
L 1 Mxx� , (6)

where Mxx �
R

�df�p� cosfM cosf. One may use a
diagrammatic technique analogous to that developed for
the Lorentz gas [14,15] to calculate M. The leading
term corresponds to a single scattering process, yielding
M�1� � 2nSĨ0 and thus the Drude contribution, M

�1�
xx �

t
21
S , to the resistivity (6). The next-order contribution

represents the correction induced by the return process,

M�2�
xx � 2nS

Z df

p
cosfIRD�1�IR cosf , (7)
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where D�1� � �L0 1 M�1��21 is the electron propagator
with the leading-order self-energy included.

Since d ¿ a, the propagator D�1��r 2 r0, f,f0� de-
scribing propagation from the point r0, f0 to the point r, f
can be replaced in (7) by D�1��0, f, f0�. Furthermore, we
note that once the particle hits an impurity, its guiding cen-
ter is shifted by an amount of order of Rc. As a result, the
contribution of such trajectories to D�1� can be neglected
and only noncolliding orbits should be taken into account.
Since the motion without collisions is limited by the times
�tS ø tL, the particle will return with almost the same
direction of velocity, i.e., D�1��0, f,f0� will be peaked
at f 	 f0. We can thus approximate D�1��0,f, f0� by
D

�1�
0 d�f 2 f0�, where D

�1�
0 �

R
dfD�1��0,f, f0�. This

quantity is easily found to be

D
�1�
0 �

X̀
n�1

e22pn�vct
�0�
S

�pn�1�2yFd
�

�vct
�0�
S �1�2

�2p�1�2yFd
. (8)

Substituting this in (7) and using that Ĩ0n � 2�1�nStS�n,
we find M�2�

xx � 2�1�nSt
2
S�D�1�

0 . This implies, according
to (6), the negative MR,

Drxx�r0 � M�2�
xx �t21

S � 2v2
c�v2

0 , vc ø v0 ,
(9)

v0 � �2pnS�1�2yF�2glS�lL�1�4, (10)

in agreement with the above qualitative considerations.
This derivation is valid as long as the correction remains

small, i.e., for vc ø v0. For stronger magnetic fields,
when the quantity P defined above becomes large, P ¿ 1,
it acquires the meaning of the number of returns. It should
then be found self-consistently. Specifically, the sum over
n is now cut off at the time t

0
S � PtS , since multiple

returns to the same area lead to a corresponding increase
of the time needed to hit a new impurity. We thus get a
self-consistency equation P � �a�d� �vcPtS�1�2, yielding
a 1�B4 drop of the resistivity,

rxx�r0 � tS�t0
S � 1�P � �v0�vc�4, vc ¿ v0 .

(11)

It remains to analyze the conditions of validity of
Eqs. (9) and (11). First of all, we assumed that the
particle finds a new scatterer by exploring the new area
in the course of the diffusive motion of the guiding
center. There exists, however, another mechanism, namely
that of the rosettelike motion around a scatterer, which
determines the transport in the pure Lorentz gas (lL � `).
Comparing (11) with the Lorentz-gas result rxx�r0 �
2pg2�vctS [see Eq. (1)], we find that the two formulas
match at d � a. The corresponding crossover frequency
is vcross � yF �4pn2

Sl2
Sl21

L �1�3. Second, we assumed
nSR2

c ¿ 1, or, equivalently, vc ø vperc. It is easy to
see that in the opposite limit, nSR2

c ø 1, the resistivity
will be determined by the smooth disorder, with scattering
on antidots giving a small [��vperc�vc�2] correction
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only, so that rxx�B� will have a plateau with the value
rxx�vc ¿ vperc� � m�e2netL.

Comparing the characteristic frequencies, vt , v0,
vcross, and vperc, we conclude that the following three situ-
ations can be distinguished, depending on the strength of
the smooth disorder (Fig. 1): (A) v0 ø vt , or, equiva-
lently, lL�lS ¿ �1�2p2� �nSl2

S�2. In this case the
smooth disorder hardly affects the Lorentz-gas result
(1). (B) vt ø v0 ø vcross ø vperc, or, equivalently,
2.7�nSl2

S�1�2 ø lL�lS ø �1�2p2� �nSl2
S�2. This is an

intermediate situation; the resistivity drops first according
to Eqs. (9) and (11), and then crosses over at vc � vcross
to the Lorentz-gas behavior (1). (C) vt ø v0 ø

vperc ø vcross, or, equivalently, lL�lS ø 2.7�nSl2
S�1�2.

In this case the Lorentz-gas behavior (1) is completely
destroyed, and the results (9), (11) hold in the whole range
of vc below vperc.

For vc . vperc the resistivity shows in all the cases
a plateau, as explained above. [For curve B on Fig. 1
the saturation value rxx�r0 � 0.1�v�B�

0 �vperc�4 � 1023

is too small to be seen on the scale of the figure.] On the
side of strong magnetic fields this plateau will be modi-
fied either by entering into the adiabatic regime (preceded
by the positive MR studied in [2]) at d � d, meaning
vc � vad � yF �4p�d2lL�1�3 (its implications for the
present problem will be considered elsewhere [16]) or by
the development of Shubnikov –de Haas oscillations.

It is worth mentioning that while we used the condition
tL ¿ tS for the derivation of our main results, a pro-
nounced negative MR will also be observed for tL � tS

(which seems to be frequently the relevant situation
for high-mobility structures [10]). In this case there is
a crossover from rxx�0� � �m�e2ne� �t21

L 1 t
21
S � to

rxx�vc ¿ vperc� � m�e2netL which takes place around
vc � vperc (note that v0 � vperc for tL � tS).

We have performed numerical simulations of the MR by
fixing parameters of the Lorentz gas (vperc�vt � 5.3) and
the correlation length of the smooth disorder (d�a � 2.5)

ωτ    ω0

(B)
    ω0

(C)
    ωperc    ωcross

(B) ωc

0

1

ρ xx
/ρ

0,
 1

/τ
L=

0

A

B

C

FIG. 1. Magnetoresistivity at fixed tS and different tL: curve
A—Lorentz gas (tL � `); curves B and C with t

�B�
L . t

�C�
L

correspond to regimes B and C, respectively (see text). The
dotted lines denote the asymptotics (9).
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FIG. 2. Magnetoresistivity at fixed tS and different tL from
numerical simulations; tL�tS � ` (Lorentz gas, �), 111 (�),
70 (�), 37 (�). Inset: v0 determined from the fit to Eq. (9);
the full line corresponds to the analytical result (10).

and changing the strength of the latter. The results (Fig. 2)
are in good agreement with the analytical predictions. It is
seen that a very weak smooth disorder (giving negligible
contribution to r0� affects crucially the MR. Some devia-
tions in the values of v0 from Eq. (10) (see inset) can be
attributed to the conditions vt ø v0 ø vperc, vad being
met only marginally in our simulations.

Finally, let us estimate the characteristic values of B
for existing experiments. Typical parameters in the experi-
ments [7] on the antidot arrays were ne � 5 3 1011 cm22,
nS � �0.6 mm�22, lS � 1.3 mm, lL � 16 mm. This im-
plies the following values for the characteristic magnetic
fields [in the obvious notations Bt � �mc�e�vt , etc.]:
Bt � 0.5 T, B0 � Bperc � 0.3 T. We see that the condi-
tion of a dilute antidot array assumed above, Bt ø Bperc,
is not met. Clearly, the above formulas are not then
valid quantitatively. On the qualitative level, we can con-
clude that there should be a strong falloff of rxx around
B 	 0.3 4 0.5 T, in agreement with experimental results
[7]. A similar negative MR was observed in other experi-
ments with disordered antidot arrays [5,6,8].

We turn now to unstructured high-mobility samples. Us-
ing the parameters of [11] (ne � 2 3 1011 cm22, mobility
m � 107 cm2�V ? s), we find the mean free path l �
80 mm. Let us assume, following the conclusion of [11],
that the zero-field mobility is determined by background
impurities (i.e., l � lS), while lL � 10lS . Using the typi-
cal volume concentration of the residual impurities [10],
n

�3D�
S � 2.5 3 107 cm23, and the value of the Bohr radius

in GaAs, aB � 10 nm, we estimate the sheet density of
strong scatterers as nS � aBn

�3D�
S � �2 mm�22. With

these parameters, we find Bt � 5 mT, B0 � Bperc �
60 mT. The condition of the diluted array of scatterers,
Bt ø Bperc, is now well satisfied. Since B0 � Bperc, the
Lorentz-gas behavior (1) is fully destroyed [the case (C)
in our classification], and the negative MR is determined
by the interplay of smooth disorder and strong scatterers,
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as described above. Note that though parametrically
B0 ø Bperc for lL ¿ lS, in practice their values are very
close, since B0�Bperc � �10lS�lL�1�4. The predicted nega-
tive MR may be used for the experimental determination
of the ratio lL�lS. Strong negative MR has been observed
in very-high-mobility samples [11,17], in qualitative
agreement with our theory. A more detailed experimental
check of our predictions would be desirable.

In conclusion, we have studied the quasiclassical mag-
netotransport of a 2DEG with smooth disorder and rare
strong scatterers. Interplay of these two types of disor-
der leads to a novel mechanism of strong negative MR;
the latter is shown to saturate with increasing B at a value
determined solely by smooth disorder. The results are rele-
vant to experiments on transport in dilute antidot arrays, as
well as in high-mobility heterostructures with background
impurities or interface imperfections.
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