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Multifractality and critical fluctuations at the Anderson transition
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Critical fluctuations of wave functions and energy levels at the Anderson transition are studied for the family
of the power-law random banded matrix ensembles. It is shown that the distribution functions of the inverse
participation ratios~IPR! Pq are scale-invariant at the critical point, with a power-law asymptotic tail. The IPR
distribution, the multifractal spectrum, and the level statistics are calculated analytically in the limits of weak
and strong couplings, as well as numerically in the full range of couplings.
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I. INTRODUCTION

As is well known, ind.2 dimensions a disordered ele
tronic system undergoes, with increasing strength of dis
der, a transition from the phase of extended states to tha
localized states~Anderson transition!. Another important re-
alization of the Anderson critical point is the quantum H
plateau transition in a two-dimensional~2D! system in strong
magnetic field. One of the hallmarks of the metal-insula
transition is represented by strong fluctuations of eigenfu
tions. These fluctuations can be characterized by a se
inverse participation ratios~IPR!

Pq5E ddr uc~r !u2q. ~1!

The field theory of the Anderson transition is the mat
nonlinears model, in the replica1 or supersymmetric2 for-
mulation. In 21e dimensions withe!1, the transition takes
place in the weak-coupling regime, allowing for a systema
renormalization-group~RG! treatment, which yields the criti
cal indices in the form of thee expansion. In particular
Wegner3 found in this way that the IPR show at criticality a
anomalous scaling with respect to the system sizeL,

Pq}L2t(q), t~q!5Dq~q21!. ~2!

Equation~2! should be contrasted with the behavior of t
IPR in a good metal~where eigenfunctions are ergodic!, Pq
}L2d(q21), and, on the other hand, in the insulator~localized
eigenfunctions!, Pq}L0.

The scaling~2! characterized by an infinite set of critica
exponentsDq implies that the critical eigenfunction repre
sents a multifractal distribution.4 The notion of a multifractal
structure was first introduced by Mandelbrot5 and was later
found relevant in a variety of physical contexts, such as
energy-dissipating set in turbulence, strange attractors
chaotic dynamical systems, and the growth probability d
tribution in diffusion-limited aggregation; see Ref. 6 for
review. More recently, considerable research interest wa
tracted by the problem of Dirac fermions in a random vec
potential, which allows for an exact calculation of the mu
tifractal spectrum.7–9 The multifractal exponents played a
PRB 620163-1829/2000/62~12!/7920~14!/$15.00
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important role in recent attempts of identification of the co
formal theory describing the quantum Hall plate
transition.10,11

During the past decade, multifractality of critical eige
functions at the Anderson transition has been a subjec
intensive numerical studies; see Refs. 12,13, and refere
therein. Among all the multifractal dimensions,D2 plays the
most prominent role, since it determines the spatial disp
sion of the diffusion coefficient at the mobility edge.14

It should be stressed, however, that Wegner’s result~2!
refers to an ensemble-averaged IPR. On the other hand,
well known that in disordered systems, mesoscopic fluct
tions from one realization of disorder to another may be v
strong. As a result, an average value of some quantity m
not provide sufficient information, and one has to spe
about the corresponding distribution function. This poses
question of the statistics of the IPR’sPq at criticality, which
is a central issue of the present paper.

Let us first remind the reader of the existing analytic
results concerning the IPR fluctuations. While the direct a
lytical study of the Anderson transition in 3D is not feasib
because of the lack of a small parameter, statistics of ene
levels and eigenfunctions in a metallic mesoscopic sam
~dimensionless conductanceg@1) can be studied systemat
cally in the framework of the supersymmetry method; s
Ref. 15 for a review. Within this approach, the IPR fluctu
tions were studied recently.16,17,15 In particular, the 2D ge-
ometry was considered, which, while not being a true And
son transition point, shows many features of criticality,
view of the exponentially large value of the localizatio
length. It was found that the distribution function of the IP
Pq normalized to its average value^Pq& has a scale-invarian
form. In particular, the relative variance of this distributio
~characterizing its relative width! reads

var~Pq!

^Pq&
2

5
Cq2~q21!2

b2g2 , ~3!

where C;1 is a numerical coefficient determined by th
sample shape~and the boundary conditions!, and b51 ~2!
for the case of unbroken~broken! time-reversal symmetry. It
is assumed here that the indexq is not too large,q2!bpg.
These findings motivated the conjecture16 that the IPR distri-
7920 ©2000 The American Physical Society
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bution at criticality has in general a universal form, i.e., th
the distribution functionP(Pq /Pq

typ) is independent of the
sizeL in the limit L→`. HerePq

typ is a typical value of the
IPR, which can be defined, e.g., as a median18 of the distri-
butionP(Pq). Normalization ofPq by its average valuêPq&
~rather than by the typical valuePq

typ) would restrict gener-
ality of the statement; see the discussion below. Practic
speaking, the conjecture of Ref. 16 is that the distribut
function of the IPR logarithm,P(ln Pq), simply shifts along
the x axis with changingL.

The applicability of these results to a generic Anders
transition point has been questioned recently in Ref. 19.
deed, the 2D metal represents only an ‘‘almost critica
point, and the consideration is restricted to the weak diso
limit g@1 ~weak-coupling regime in the field-theoretic
language!, while all the realistic metal-insulator transition
~conventional Anderson transition in 3D, quantum Hall tra
sition, etc.! take place in the regime of strong coupling.
was proposed in Ref. 19~on the basis of numerical simula
tions for the 3D tight-binding model! that the fractal dimen-
sion D2 is not a well-defined quantity, but rather shows u
versal fluctuations characterized by some distribut
function P(D2) of a width of order unity.

To explore the IPR fluctuations~and also the level statis
tics, see below! at criticality in the full range from weak to
strong coupling, we consider the power-law random ban
matrix ~PRBM! ensemble. The model is defined20 as the en-
semble of random HermiteanN3N matricesĤ ~real for b
51 or complex forb52). The matrix elementsHi j are in-
dependently distributed Gaussian variables with zero m
^Hi j &50 and the variance

^uHi j u2&5a2~ u i 2 j u!, ~4!

wherea(r ) is given by

a2~r !5
1

11~r /b!2a
. ~5!

At a51 the model undergoes an Anderson transition fr
the localized (a.1) to the delocalized (a,1) phase. We
concentrate below on the critical valuea51, when a(r )
falls down asa(r )}1/r at r @b. More precisely, we will
study the periodic generalization of Eq.~5!,

a2~r !5F11
1

b2

sin2~pr /N!

~p/N!2 G21

~6!

~an analog of the periodic boundary conditions!, which al-
lows us to get rid of the boundary effects.

In a straightforward interpretation, the PRBM model d
scribes a 1D sample with random long-range hopping,
hopping amplitude decaying as 1/r a with the distance. Also,
such an ensemble arises as an effective description in a n
ber of physical contexts, such as the quantum Fe
accelerator,21 the delocalization of impurity-induced quas
particle states in a 2Dd-wave superconductor,22 the scatter-
ing by a Coulomb center in an integrable billiard,23 the mo-
tion of two interacting particles in a 1D random potential24

and the quantum chaos in a billiard with a nonanaly
boundary.25 Very recently, a connection between the lev
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statistics of the PRBM model atb@1 and the correlations in
the Luttinger liquid at finite temperature has be
established.26

At a51, the PRBM model was found to be critical for a
arbitrary value ofb; it shows all the key features of th
Anderson critical point, including multifractality of eigen
functions and nontrivial spectral compressibility.20,15,45 The
important property of the ensemble is the existence of
parameterb, which labels the critical point: Eqs.~4! and~6!
define a whole family of critical theories parametrized
b.27 This is in full analogy with the family of the conven
tional Anderson transition critical points parametrized by t
spatial dimensionality 2,d,`. The limit b@1 represents a
‘‘quasimetallic’’ regime, with only weakly fractal wave
functions, close in their statistical properties to those in
metallic sample. It is analogous tod521e with e!1 and
allows for a systematic analytical treatment via the mapp
onto a supermatrixs model and the weak-coupling
expansion.20,15 The opposite limit b!1, which we call
‘‘quasi-insulating,’’ is characterized by very strongly fluctu
ating eigenfunctions and corresponds tod@1, where the
transition takes place in the strong disorder~strong coupling
in the field-theoretic language! regime. As we demonstrat
below, it is also accessible to an analytical treatment us
the RG method introduced by Levitov.28 Let us also note a
similarity with conformal models proposed recently29,11 as
candidate theories of the quantum Hall critical point, whi
are also parametrized by a continuously changing marg
coupling constant.

In this paper, we will combine the analytical study of th
eigenfunction and energy level statistics in the two limitsb
@1 andb!1 with numerical simulations in the full range o
b. The feasibility of the systematic analytical treatment
both regimes, weak-coupling and strong-coupling, as wel
of the numerical simulations in a broad range of couplin
makes the PRBM ensemble a unique laboratory for study
general features of the Anderson transition.

As has been already mentioned, we will study not on
the eigenfunction fluctuations, but also the energy level s
tistics. It has been understood30–32that a scale-invariant leve
statistics is an intrinsic feature of the Anderson critical poi
In particular, the critical level correlations are characteriz
by a nontrivial value of the spectral compressibility 0,x
,1 ~intermediate betweenx50 in a metal andx51 in an
insulator!.30,33,34While the level correlation function itself is
shape-dependent, the value ofx is a fully universal attribute
of the critical theory~like critical indices!.

Supplementing again the analytical study atb@1 andb
!1 by numerical simulations, we are able to calculate
two-level correlation functionR2(s) and the spectral com
pressibility x in the whole range ofb. Our interest in the
critical spectral statistics was additionally motivated by
recent paper,35 where it was argued that the following exa
relation betweenx andD2 holds:

x5
d2D2

2d
. ~7!

According to Eq. ~7!, the spectral compressibility shoul
tend to 1

2 in the limit D2→0 ~very sparse multifractal!, and
not to the Poisson valuex51. The derivation of Eq.~7! is
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7922 PRB 62A. D. MIRLIN AND F. EVERS
based, however, on a certain assumption of the decouplin
the energy level and eigenfunction correlations, which is d
ficult to verify directly. It is important, therefore, to chec
the validity of the result~7!, and such an opportunity is pro
vided by the PRBM model.

The structure of the paper is as follows. Section II
devoted to the IPR statistics and the multifractal spectrum
the PRBM model. In Sec. III, we study the two-level corr
lation function and the spectral compressibility. Section
summarizes our findings. Some of the results of this w
have been presented in a brief form in Ref. 36.

II. MULTIFRACTAL SPECTRUM AND THE IPR
STATISTICS

We find it convenient to organize this section in the fo
lowing way. We begin by formulating in Sec. II A our mai
results concerning the IPR statistics. Then we present
Sec. II B and Sec. II C, the analytical calculations in t
limits of b!1 andb@1, respectively. The numerical simu
lations~which have been performed forb51) fully support
the analytical findings, ascertaining that the approximati
made in the RG treatment are justified. Also, they allow us
explore the intermediate range ofb;1. A discussion of
finite-size effects playing an important role in the analysis
the scaling of the IPR distribution is given in Sec. II D.

A. General considerations and a summary of the results

For further needs we define two sets of fractal expone
characterizing the scaling of the average IPR^Pq& and of the
typical IPRPq

typ , respectively:

^Pq&}N2 t̃(q), t̃~q![D̃q~q21!; ~8!

Pq
typ}N2t(q), t~q![Dq~q21!. ~9!

Note that we considerq.0 only; negativeq are outside the
range of applicability of our analytical methods. As has be
already mentioned,Pq

typ can be defined as a median of th
distribution P(Pq);18 an alternative definition can bePq

typ

5exp̂ ln Pq&. Obviously, information about the IPR distribu
tion functionP(Pq) is needed in order to judge whether th
exponentst̃(q) andt(q) are equal to each other or not. A
we will demonstrate below, in the limit of large system si
N, the distributionP(Pq /Pq

typ) becomes independent ofN.
An important property of this scale-invariant IPR distributio
is its power-law ‘‘tail’’ at largePq ,

P~Pq /Pq
typ!}~Pq /Pq

typ!212xq, Pq@Pq
typ . ~10!

Of course, the far tail of this distribution becomes incre
ingly better developed with increasingN. In other words, the
point where the distribution deviates from its limiting sca
invariant form moves to infinity asN increases.

It is clear that the relation betweent(q) and t̃(q) de-
pends crucially on whether the power-law exponentxq is
smaller or larger than unity. Ifxq.1, the two definitions of
the fractal exponents are identical,t(q)5 t̃(q). This situa-
tion will be shown to occur at not too large values ofq; in
particular,x2.1 at anyb. However, with increasingq the
value ofxq decreases. Once it drops below unity, the aver
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^Pq& starts to be determined by the upper cutoff of t
power-law ‘‘tail,’’ which depends on the system size. As
result, ^Pq& shows scaling with an exponentt̃q different
from tq . In this situation, the average value^Pq& is not
representative and is determined by rare realizations of
order.

The connection betweent̃(q) andt(q) in the regimexq
,1 can be elucidated best via introducing the singula
spectrumf (a), which is the conventional way of analyzin
multifractal distributions.6 To this end, let us note that th
average IPR’ŝ Pq& are ~up to a multiplication byN) the
moments of the distributionP(uc2u) of the eigenfunction in-
tensities. The behavior~8! of the moments corresponds to th
intensity distribution function of the form

P~ uc2u!;
1

uc2u
N211 f (2 lnuc2u/ ln N). ~11!

Indeed, calculating the moments^uc2qu& with the distribution
function ~11!, one finds

^Pq&5N^uc2qu&;E daN2qa1 f (a), ~12!

where we have introduceda52 lnuc2u/ln N. Evaluation of
the integral by the saddle-point method reproduces the re
~8!, with the exponentt̃(q) related to the singularity spec
trum f (a) via the Legendre transform

t̃~q!5qa2 f ~a!; q5 f 8~a!. ~13!

It is not difficult to see that the conditionxq51 is equivalent
to f (a)50. Indeed, both conditionsxq,1 and f (a),0
characterize the situation when the average value^Pq& is not
representative and is determined by rare realizations of
order. On a more formal level, this can be derived from
formula relatingxq and the fractal exponents, see Eq.~16!
below and Sec. II C.

We further denote the value ofa determined byf (a)
50 asa2 , and the corresponding value ofq asqc ~clearly,
botha2 andqc depend onb). The value oftq in the region
q.qc can be found by observing thatPq

typ can be written in
a form similar to Eq.~12!,

Pq
typ;E

f (a)>0
da N2qa1 f (a). ~14!

The restriction on the integration range removes from c
sideration the rare events of such large values ofucu2 which
can be found only in a small fraction@;Nf (a) with f (a)
,0] of all eigenfunctions. Since forq.qc the saddle point
a,a2 is outside the integration domain, the integral~14! is
determined in this case by the boundarya2 of the integra-
tion range, yielding~see a related discussion in Ref. 8!

t~q!5qa2 , q.qc . ~15!

The value of the power-law-tail indexxq is related to the
fractal exponents as follows:

xqt~q!5 t̃~qxq!. ~16!
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To be precise, we were able to derive Eq.~16! for all q in the
limit b!1, as well as for integer values ofxq51,2, . . . at
arbitraryb. We expect, however, that this relation is gen
ally valid.

According to what has been said above, the curveqc(b)
separates the regions with the two different types of mu
fractal behavior: atq,qc(b) we have xq.1 and t(q)
5 t̃(q), while at q.qc(b) the tail indexxq,1 andt(q) is
different from t̃(q) and given by Eq.~15!. We have calcu-
lated the asymptotic form of the ‘‘phase boundary’’qc(b) in
both limits b@1 andb!1,

qc~b!.H ~2pbb!1/2, b@1

2.4056, b!1.
~17!

Notice thatq52 always belongs to the low-q phase, i.e.,
t(2)5 t̃(2) for all b. For q.qc(b) we find from Eqs.~15!
and ~16! that xq5qc(b)/q, while in the opposite regimeq
,qc(b) the value ofxq is determined by the form of the
function t̃(q). In particular, atb@1 we have

t̃~q![~q21!D̃q.~q21!~12q/2bpb!, ~18!

yielding xq.2bpb/q2 for q,(2bpb)1/2. In the other limit,
b!1, the functiont̃(q) has a somewhat more complicate
form,

t̃~q!.
4b

Ap

G~q21/2!

G~q21!
3H 1, b51

p/2A2, b52,
~19!

and Eq.~16! does not seem to have an analytical solution
xq . However, for the particularly important caseq52, we
find x25 3

2 , while all higher integerq53,4, . . . arealready
above the phase boundaryqc(b!1).2.4.

B. Regimebš1

The quasimetallic regimeb@1 can be studied via the
mapping onto the supermatrixs model.20,15 The s-model
action in momentum space has the form

S@Q#5b StrF2
1

t
E dk

2p
ukuQkQ2k2

ipnv

4
Q0LG ,

~20!

where Qk5( re
ikrQ(r ) and Q(r ) is a 434(b52) or 8

38 (b51) supermatrix field constrained byQ2(r )51 and
belonging to a coset space with the originL5diag(1,21).
Furthermore, Str denotes the supertrace,n is the density of
states given by the Wigner semicircle law

n~E!5
1

2p2b
~4pb2E2!1/2, uEu,2Apb, ~21!

and t!1 is the coupling constant,

1

t
5

p

4
~pn!2b25

b

4
S 12

E2

4pb
D . ~22!
-

i-

r

For a system of finite sizeN with the periodic generalization
~6! of the 1/r decay law ofa(r ), thek integration in Eq.~20!
is replaced by summation in the usual way:

E dk

2p
→

1

N
(

k52pn/N; n50,61,62, . . .
.

The eigenfunction statistics can now be studied via
same methods as for conventional metallic samples.
main difference between the action~6! and that of the diffu-
sive s model is in the replacement of the diffusion opera
(pn/8)Dk2 by (1/t)uku. Consequently, all calculations withi
the weak-coupling expansion of thes model are generalized
to the PRBM case by substitutingP(k)5t/8uku for the dif-
fusion propagatorP(k)51/pnDk2. In particular, calculating
the average IPR̂Pq&, one finds the following result for the
fractal dimensionsD̃q :20,15

D̃q.12q
t

8pb
, q,

4pb

t
. ~23!

Figure 1 shows that this result is in good agreement w
numerical simulations.

Similar to the case of 2D~Ref. 37! or (21e)
dimensions,3 Eq. ~23! describes weak multifractality: the de
viation of the fractal exponents from the ‘‘normal’’ valu
D̃q5d51 ~characteristic for homogenously spread, ‘‘meta
lic’’ wave functions! is proportional to the small parametert.
The Legendre transform oft̃(q)5(q21)D̃q yields the sin-
gularity spectrum~for definiteness, we concentrate on th
band centerE50, wheret54/b)

f ~a!.12
~a02a!2

4~a021!
, a0511

1

2bpb
, ~24!

which crosses thex axis at the point

a2.F12
1

~2bpb!1/2G 2

, ~25!

FIG. 1. Fractal dimensionD2 as a function of the parameterb of
the PRBM ensemble. The data points are the results of the num
cal simulations, while the lines represent theb@1 andb!1 ana-
lytical asymptotics,D25121/pb @Eq. ~23!# and D252b @Eq.
~49!#.
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corresponding toqc(b)5(2bpb)1/2.
In Fig. 2 we confront our analytical findings with da

from numerical simulations. Atb54 the parabola represen
the numerical data well up toq;8. The deviations from the
asymptotic~parabolic! form are much more pronounced
b51. These deviations are a precursor of the crossove
the small-b regime~Sec. II C!, where the parabolic approxi
mation breaks down completely. The sign of the deviatio
~downwards! is consistent with the fact that atb51/2p the
parabolic approximation would predicta250, while we ex-
pect a2.0 for all b, in view of the absence of localize
states.

Now we turn to the IPR fluctuations, which are found
generalizing the results obtained for metallic samples.16,17,15

In particular, the IPR variance is given forq!qc(b) by20

var~Pq!

^Pq&
2

5
2

b2q2~q21!2
1

N2 (
k

P2~k!

5
1

24b2

q2~q21!2

b2 , ~26!

where thek summation goes over the nonzero harmonick
52p j /N with j 561,62, . . . . Equation~26! is the PRBM
counterpart of formula~3! for 2D metallic systems. The
higher moments of the IPR distribution were studied by P
godin and Altshuler17 ~see also Ref. 15!; generalizing these
results, we find that the irreducible moments~cumulants! of
the order 2<n!2pbb/q2 are given by

^^Pq
n&&

^Pq&
n 5

~n21!!

2
F 2

b
q~q21!Gn 1

Nn(
k

Pn~k!

5~n21!! S q~q21!

2pbb
D n

z~n!, ~27!

wherez(n) is the Riemannz function. Defining in analogy
with17

FIG. 2. Multifractal spectrumf (a) for b51 (h) and b54
(s). The lines indicate the parabolic approximation Eq.~24!. Inset:

exponentt̃(q) (h) andt(q) (j) for b51.
to

s

-

P̃5F Pq

^Pq&
21G 2pbb

q~q21!
, ~28!

we have for the cumulants ofP̃

^P̃&50,

^^P̃n&&5~n21!! z~n![Kn , n52,3, . . . . ~29!

This allows us to restore the corresponding distribution fu
tion:

P~ P̃!5E
2`

` ds

2p
eisP̃expF (

n52

`

Kn

~2 is!n

n!
G

5E
2`

` ds

2p
eis( P̃1C)G~11 is!

5e2 P̃2C exp~2e2 P̃2C!, ~30!

whereC.0.5772 is the Euler constant. The restriction onn
given above~27! implies that Eq.~30! is valid for Pq /^Pq&
21!1.

The similarity with the 2D metallic regime extends also
the asymptotic behavior of the distribution. Specifically,
Pq /^Pq&21;1 the exponential falloff~30! crosses over to a
power-law tail~see Ref. 15 for the discussion of this tail
2D!

P~Pq!;~Pq /^Pq&!212xq. ~31!

To calculatexq , we consider the moments

^Pq
n&5 (

r 1 , . . . ,r n

uc~r 1!u2q
•••uc~r n!u2q. ~32!

For n not too large, the sum is dominated by the main p
of the total configuration space, with all pointsr i lying far
from each other, so that^Pq

n&;^Pq&
n;N2nt(q). In contrast,

for sufficiently largen the integral is dominated by the con
tribution from r 1'r 2'•••'r n , yielding ^Pq

n&;N2 t̃(nq).
Therefore, if

nt~q!5 t̃~nq!, ~33!

we have the marginal situation, which implies thatP(Pq)
}Pq

212n . This completes the derivation of Eq.~16! in the
rangeq,qc(b). Using now Eq.~16! in combination with
Eq. ~23!, we find

xq5
2pbb

q2 , q2,2pbb. ~34!

Note that an analogous consideration in the 2D case yi
xq52pbg/q2, in full agreement with the result of the
optimum-fluctuation method.15

We have therefore presented an explicit calculation of
IPR distribution function atb@1 andq,qc(b). The distri-
bution function is scale-invariant and has the form~30! and
~28! at Pq /^Pq&21!1 and the power-law tail~31! and~34!
at Pq /^Pq&21*1. Figure 3 shows results of the numeric
simulations for the distribution of the IPR’sPq with q52, 4,
and 6 at b54 @the corresponding value ofqc being qc
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FIG. 3. Distribution functionP( P̃q) at q52 (s), 4 (h), and 6 (L) at b54 for systems of sizeN54096. The solid line represents th
analytical result Eq.~30!. The scattering of the data at small values ofP is due to statistical noise.~Number of matrices in the ensemble

428.! Inset: Asymptotic ofP( P̃4). Dashed line indicates power law with exponentx451.7.
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5(8p)1/2.5]. It is seen that atq52 the analytical formula
~30! nicely describes the ‘‘main body’’ of the distribution
with the upward deviations at largeP̃ indicating the cross-
over to the power-law tail~31!. The asymptotic behavio
~31! is outside the reach of our numerical simulations forq

52, however, since the condition of its validityP̃
@2pb/q(q21).12.5 corresponds to very small values
the distribution functionP( P̃)!1025 and its clear resolution
would require a much larger statistical ensemble. The si
tion changes, however, with increasingq ~see the data for
q54 and 6 in Fig. 3!. Equation~30! becomes inapplicable
~since the condition of its validityq!qc is not met anymore!
and the power-law asymptotic behavior~31! becomes clearly
seen. In particular, the inset of Fig. 3 shows the tail forq
54; the extracted value of the indexx4.1.7 is in good
agreement with the prediction of theb@1 theory,x45p/2.

In conclusion of this subsection, we comment on the
tion of the termination of the multifractal spectrum~24!,
which has been discussed in the literature on disorde
Dirac fermions.9 It is important to realize that, in the prese
context, there are two types of such termination, depend
on whether one studiesPq

typ or ^Pq&. In the former case, the
relevant values ofa are those wheref (a)>0, so that the
singularity spectrum f (a) effectively terminates ata2

@which corresponds toq5qc(b).(2pbb)1/2]. For q
.qc(b), t(q) is given by Eq.~15!, so that the fractal expo
nent Dq5qa2 /(q21) saturates asDq→a2 in the limit q
a-

-

d

g

→`. In contrast, if the exponentt̃(q) describing the scaling
of the averagê Pq& is studied, then the behavior~23! con-
tinues up toq'pbb, which corresponds toa50. This type
of termination@which takes place atq parametrically much
larger thanqc(b)] has a physically transparent origin: sinc
a52 lnuc2u/ln N and in view of the wave-function normal
ization, the allowed values ofa are restricted bya>0. More
detailed discussion of the behavior oft̃(q) in the vicinity of
q5pbb ~i.e., the precise form of this termination! is outside
the scope of the present paper.

C. Regimeb™1

In the quasi-insulating caseb!1 the problem can be stud
ied via the renormalization-group method of Levitov.28,38

The idea of the method is as follows. One starts from
diagonal part of the matrixĤ, each eigenstate being loca
ized on a single site. Then one includes into considera
nondiagonal matrix elementsHi j with d( i , j )51, where
d( i , j ) is the distance between the sitesi and j with periodic
boundary conditions taken into account,

d~ i , j !5min$u i 2 j u,N2u i 2 j u%. ~35!

Now one argues that most of these matrix elements are
sentially irrelevant, since their typical value is;b, while the
energy differenceuEi2Ej u is typically of order unity. Only
with a small probability (;b) is uEi2Ej u also of the order of
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b, so that the matrix element mixes strongly the two sta
Following Levitov, we will say that these two states are
resonance. In this case one is led to consider a two-le
problem

Ĥ two-level5S E1 V

V E2
D . ~36!

The corresponding eigenfunctions and eigenenergies are

c (1)5S cosu

sinu D , c (2)5S 2sinu

cosu D , ~37!

E65
E11E2

2
6uVuA11t2, ~38!

where

tanu52t1A11t2, ~39!

t5
v

2V
, v5E12E2 . ~40!

In the next RG step the matrix elementsHi j with d( i , j )
52 are taken into account, then those withd( i , j )53, and so
forth until d( i , j )5N/2. Each time a resonance is encou
tered, the Hamiltonian is reexpressed in terms of the n
states. Since the probability of a resonance at a distanr
5d( i , j ) is ;b/r , the typical scaler 2 at which a resonance
state formed at a scaler 1 will again be in resonance satisfie

ln
r 2

r 1

;
1

b
, ~41!

so thatr 2 is much larger thanr 1. Therefore, when consider
ing the resonant two-level system at the scaler 2, one can
treat ther 1 resonance state as pointlike. Furthermore, it
easy to see that the Gaussian statistics of the matrix elem
coupling the states on the scaler 2 is not affected by the
transformation to the new basis induced by ther 1 resonance.

Now we consider the evolution of the IPR distributio
with the distancer; we will denote the corresponding distr
bution function asf (Pq ,r ). When a resonance occurs, tw
states with IPR’sPq

(1) and Pq
(2) are replaced by two new

states with the IPR’s,

Pq
(1)5Pq

(1)cos2qu1Pq
(2)sin2qu,

Pq
(2)5Pq

(1)sin2qu1Pq
(2)cos2qu. ~42!

We thus have for real matrices (b51)

]

]r
f ~Pq ,r !

52nE
2`

`

dvE
2`

`

dV
1

A2p

r̃

b
e2V2r̃ 2/2b2

3S 2 f ~Pq ,r !1E dPq
(1)dPq

(2)f ~Pq
(1) ,r ! f ~Pq

(2) ,r !
s.

el

-
w

s
nt

d~Pq2Pq
(1)cos2qu2Pq

(2)sin2qu! D , ~43!

wheren5(1/A2p)e2E2/2 is the density of states and

r̃ 5
N

p
sin

pr

N
. ~44!

The difference betweenr̃ and r is irrelevant for the presen
calculation, since ther integral will be of a logarithmic na-
ture and thus dominated byr !N. However, this difference is
important for the calculation of the level correlation functio
below ~Sec. III!. Transforming the integration measure a
cording to

dv52Vdt, dt52
1

2 sin2u cos2u
du, ~45!

calculating theV integral, and specializing on the band ce
ter (E50) for definiteness, we reduce the evolution equat
~43! to the form

]

] ln r
f ~Pq ,r !

5
2b

p
E

0

p/2 du

sin2ucos2u

3S 2 f ~Pq ,r !1E dPq
(1)dPq

(2)f ~Pq
(1) ,r ! f ~Pq

(2) ,r !

3d~Pq2Pq
(1)cos2qu2Pq

(2)sin2qu! D . ~46!

Equation~46! is a kind of kinetic equation~in the fictitious
time t5b ln r), with the two terms in the large parenthes
describing the scattering-out and scattering-in processes
spectively.

Figure 4 shows the results of the numerical integration
Eq. ~46! for q52 with the initial condition f (P2)5d(P2
21) at t50. It is seen that at sufficiently larget the distri-
bution of lnP2 acquires a limiting form, shifting witht with-

FIG. 4. Flow of the distribution of lnP2 calculated from the
kinetic equation~46! at t5b ln r51.2, . . . ,1.7~from right to left!.
The oscillations near lnP2521.5 are numerical artifacts due t
rounding errors.
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out changing its shape. This conclusion of scale invaria
of the IPR distribution will be corroborated below by an
lytical arguments.

Turning to the theoretical analysis, we consider first
average valuê Pq&. Multiplying Eq. ~46! by Pq and then
integrating overPq , we get the evolution equation for^Pq&,

]^Pq&

] ln r
522bT̃~q!^Pq&, ~47!

with

T̃~q!5
1

p
E

0

p/2 du

sin2u cos2u
~12cos2qu2sin2qu!

5
2

Ap

G~q21/2!

G~q21!

5
1

22q23

G~2q21!

G~q!G~q21!
. ~48!

We assumed here thatq. 1
2 , which is the condition of the

existence of the integral in Eq.~48!. For smallerq the reso-
nance approximation breaks down. Integrating Eq.~47! from
r 51 to r;N, we find the multifractal behavior̂ Pq&
;N2 t̃(q) with the exponents

t̃~q!52bT̃~q!. ~49!

The functionT̃(q) is shown in Fig. 5. Its asymptotics are

T̃~q!.2
1

p~q21/2!
, q→1/2; ~50!

T̃~q!.
2

Ap
q1/2, q@1. ~51!

We see that the fractal exponents are proportional to
small parambeterb. This is characteristic of wave function

FIG. 5. Universal functionT̃(q) characterizing the exponent

t̃(q) via t̃(q)52bT̃(q) at b!1. Dashed line indicates the pol
position. Inset: Legendre transformF(A) describing the multifrac-
tal spectrum viaf (a)52bF(a/2b).
e

e

e

that are very small, typically, with rare and strong pea
~resonances!. In the limit b→0 the fractal exponents tend to
their insulator valuet̃(q)50.

Legendre transformation of Eq.~49! produces thef (a)
spectrum of the form

f ~a!52bF~A!, A5a/2b, ~52!

whereF(A) is the Legendre transform ofT̃(q). The function
F(A) is shown in the inset of Fig. 5; its asymptotics are

F~A!.2
1

pA
, A→0; ~53!

F~A!.
A

2
, A→`. ~54!

Furthermore, it changes sign atA2.0.5104, corresponding
to qc.2.4056. These analytical findings are fully supporte
by numerical simulations as can be seen from Fig. 6.

We return now to the IPR distribution function. The sca
invariance of the limiting distribution has been already dem
onstrated via the numerical solution of Eq.~46!; see Fig. 4.
To show this also analytically, we make the ansatz

f ~Pq ,r !5r t(q) f 0~Pqr t(q)!. ~55!

Equation~55! is just the statement ofr independence of the
limiting distribution P(Pq /Pq

typ), with Pq
typ scaling asPq

typ

}r 2t(q). Substituting Eq.~55! into Eq.~46!, we get the equa-
tion

t~q!@ f 0~ P̃q!1 P̃qf 08~ P̃q!#

5
2b

p
E

0

p/2 du

sin2u cos2u

3S 2 f 0( P̃q)1E dP̃q
~1!dP̃q

~2! f 0( P̃q
~1!) f 0( P̃q

~2!)

3d~ P̃q2 P̃q
(1)cos2qu2 P̃q

(2)sin2qu!D . ~56!

FIG. 6. Multifractal spectrumf (a) for b50.25 (L) and b

50.1 (n). Inset: exponentt̃(q). Dashed and dotted lines indicate
the analytical results Eqs.~52! and ~49!.
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The fact that the scaler has dropped out from Eq.~56!
implies the consistency of the ansatz~55! for the fixed-point
distribution. To demonstrate the significance of this sta
ment, we make a more general ansatz for the limiting dis
bution,

f ~Pq ,r !5
1

Pqs~r !
g0S ln~Pqr t(q)!

s~r !
D , ~57!

which allows for a change of the width of the distribution
ln Pq with r, characterized by a functions(r ) @note thats(r )
is defined up to a constant factor, which can be absorbed
the definition of the functiong0]. At s(r )51 this reduces to
our earlier ansatz~45!, while at s(r )5 ln r we get the form
proposed in Ref. 19. Substituting Eq.~57! in Eq. ~46!, we
find that ther dependence drops out of the resulting equat
for g0 if and only if s(r )5const. This means an inconsi
tency of the ansatz~57! with a nonconstants(r ) and, in
particular, excludes the possibility of a universal distributi
of fractal exponents@s(r )5 ln r# advocated in Ref. 19.

We turn now to the power-law tail of this scale-invaria
distribution,f 0( P̃q); P̃q

2xq21. In order to calculate the inde

xq , we consider Eq.~56! in the limit P̃q@1. It is easy to see
that the integral*dP̃q

(1)dP̃q
(2)
••• in the right-hand side of

Eq. ~56! is dominated by the regionP̃q
(1); P̃q , P̃q

(2);1 ~or

vice versa!, the contribution of the regionP̃q
(1); P̃q

(2); P̃q

being suppressed by an additional factor ofP̃q
2xq . Further-

more, whenP̃q
(1); P̃q and P̃q

(2);1, we can neglectP̃q
(2) in

the argument of thed function. The integrals overP̃q
(1) and

P̃q
(2) then become trivial, and Eq.~56! reduces to

t~q!xq5
2b

p
E

0

p/2 du

sin2u cos2u
~12sin2qxqu2cos2qxqu!.

~58!

Comparing this with Eqs.~48! and ~49!, we see that the
right-hand side of Eq.~58! is nothing butt̃(qxq), so that Eq.
~58! can be rewritten in the form~16!.

We analyze now Eq.~16! in the regimesq,qc and q

.qc . In the caseq,qc we expectxq.1 andt(q)5 t̃(q).
The latter statement can be directly proven by applying
operation*dP̃qP̃q••• to Eq.~56!. @Clearly, this proof breaks
down for q.qc because of the divergence of the integ
*dP̃qP̃qf 0( P̃q).# Graphical interpretation of Eq.~16! for q
,qc is shown in Fig. 7; its solutionxq.1 decreases with
increasingq, reaching unity atq5qc , as expected. For th
most frequently studied caseq52 ~‘‘conventional’’ IPR! we
find x25 3

2 . As to the q.qc regime, we have thent(q)
5qa2 , and the solution of Eq.~16! has a very simple form

xq5
qc

q
, q.qc . ~59!

Let us remind the reader that up to now we considered
this subsection the ensemble of real matrices (b51). How-
ever, all the above considerations are also applicable to
caseb52, with a minor modification. Specifically, the mea
sure of theV integration in Eq.~43! should be modified:
-
i-

to

n

e

l

in

he

E
2`

`

dV
r̃

bA2p
e2V2r̃ 2/2b2

•••→E
0

`

dV V
2r̃ 2

b2
e2V2r̃ 2/b2

•••.

~60!

This leads, after theV integration, to the replacement ofb by
(p/2A2)b. With this substitution, all results of this subse
tion remain valid forb52.

D. Finite-size effects in the scaling of the IPR distribution

Since in reality one always has to deal with systems o
finite size, the understanding of finite-size effects is imp
tant for an accurate interpretation of numerical data. In Fig
we show the evolution of the distributionP(ln P2) with N for
three values ofb, representative of the small-b, the large-b,
and the crossover regimes.

In the caseb!1, the evolution of the IPR distribution
with N is governed by the ‘‘time’’t5b ln N, so thatt@1 is
the condition of the proximity to the fixed point. Therefor
at smallb one needs exponentially large values ofN in order
to reach the limiting distribution.@Note that this is not true
for the averagêPq&, the evolution of which is governed b
Eq. ~47!, implying a much weaker conditionN@1 for the
scaling regime.# The logarithmically slow approach to th
limiting distribution is clearly seen in Figs. 8~c! and 9.

At b@1 the convergence to the fixed-point distribution
much faster@Fig. 8~b!#. In this regime the condition for the
scaling of the IPR distribution isN1/2/b@1, as can be seen
by comparing the relative magnitude of the IPR fluctuatio
at the critical point, @var(P2)#1/2/^P2&.0.41/b @see Eq.
~26!#, with that in the Gaussian orthogonal ensemb
@var(P2)#1/2/^P2&.1.64/N1/2. Extrapolating the numerically
found values of the relative variance to 1/N50, we find good
agreement with the theoretical prediction~see Fig. 10!. Note
a qualitative difference in the approach to the fixed-po
distribution at small and largeb: while atb!1 the height of
the distributionP(ln P2) decreases withN, approaching the
limiting value from above, the behavior is opposite atb@1.

Extrapolating the small-b and large-b results to the cross
over rangeb;1, we find simply the conditionN@1 for the
proximity to the fixed-point distribution. Therefore, in th
crossover regimeb;1 the limiting distribution can be
reached most easily. This is precisely what we observe in
numerical simulations. Figure 8~a!, representing the evolu

FIG. 7. Graphical interpretation of Eq.~16! for q,qc .
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tion of the IPR distribution atb51, demonstrates the almo
perfect scale invariance of the distribution with only ve
small deviations~less than 3%) over a range of system siz
from N5256•••4096.

Let us also comment on other types of ‘‘finite-size e
fects’’ that appear in numerical simulations. Numerically,
is impossible to perform an average at precisely a gi
value of the energy. Instead, one averages over an en
intervalDE that one would like to choose as big as possi
in order to improve statistics. On the other hand, it is cl
that DE should not be too big in order to avoid mixing o

FIG. 8. Evolution of the distributionP(ln P2) for ~a! b51, ~b!
b54, and~c! b50.1 with the system sizeN @from left to right: N
54096,2048,1024,512(256)].

FIG. 9. Maximum value ofP(ln P2) for b50.1 as a function of
the system size. Extrapolation to 1/lnN50 yieldsPmax(`).0.51.
s

n
rgy
e
r

different critical theories. In our simulations we have chos
DE to be about 10% of the bandwidth. This value is s
small enough, the corresponding variation of the density
statesn(E) being of the order of 1%.

Furthermore, the sizeS of the matrix ensemble ove
which the average was taken is an important paramete
the simulations. Typical values we have used areN5256,
S530 000; N5512, S510 000; N51024, S55000; N
52048, S51000; N54096, S5100. In some cases, like
for the two-level correlation functionR2(s) or the full IPR
distribution function, the ensemble has to be much larger
these cases, we give the numbers explicitly in the figure c
tion.

III. LEVEL STATISTICS

The two-level correlation function is defined in the usu
way,

R2~v!5
1

^n~E!&2 ^n~E1v/2!n~E2v/2!&, ~61!

wheren(E)5N21 Tr d(E2Ĥ) is the fluctuating density of
states. At the critical pointR2(v) acquires a scale-invarian
form @if considered as a function ofs5v/D, the frequency
normalized to the mean level spacingD51/N^n(E)&]. 30–32

The distinct feature of the critical level statistics is a no
trivial value of the spectral compressibility 0,x,1 charac-
terizing the linear behavior of the variance of the numb
n(E) of levels in an energy windowE,30,33,34

var@n~E!#5x^n~E!&, ^n~E!&[
E
D

@1. ~62!

The compressibilityx can be expressed through the co
nected partR2

(c)(s)5R2(s)21 of the critical level correla-
tion function as follows:

x5E
2`

`

ds R2
(c)~s!. ~63!

FIG. 10. Variance ofP2 in the limit of large system sizesN for
b5100 (s), b58 (h), andb54 (L). The filled symbols denote
the theoretical result~26! valid at 1!b!AN, the solid line indi-
cates the RMT limit,b@AN, where@var(P2)#1/2/^P2&'1.64/AN.
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7930 PRB 62A. D. MIRLIN AND F. EVERS
Recently, it was argued in Ref. 35 that Eq.~7! constitutes
an exact relation between the spectral compressibilityx and
the fractal dimensionD2. The derivation of Eq.~7! in Ref. 35
is based on Dyson’s idea of Brownian motion through
ensemble of Hamiltonians combined with some assump
of the decoupling of the energy level and wave-function c
relations previously proposed in Ref. 39. While this deco
pling has been proven to work up to three-loop order in
1/g expansion in 2D,39 its applicability in the strong-
coupling regime remained in the status of a conjecture.
PRBM model allows us to check the validity of the relatio
~7!. Similarly to the IPR distribution function, the level co
relation function can be calculated analytically in the tw
limits b@1 andb!1 and numerically in the full range ofb.

In the b@1 regime, the two-level correlation function
obtained by an appropriate generalization of the earlier fi
ings for the diffusive samples;40,41the results can be found i
Refs. 20, 42, and 15. In particular, considering for simplic
the b52 ensemble at the band center, the level correla
function has the form

R2
(c)~s!5d~s!2

sin2~ps!

~ps!2

~ps/4b!2

sinh2~ps/4b!
. ~64!

The correlation function~64! follows the RMT result
R2

(c)(s)5d(s)2sin2(ps)/(ps)2 up to the scales;b ~playing
the role of the Thouless energy here!, and then begins to
decay exponentially. The spectral compressibility atb@1 is
given by20,15

x.
1

2pbb
, b@1. ~65!

Comparing this with Eq.~23!, one finds20 that the formula
~7! is indeed satisfied to leading order in 1/b.

We now turn to the opposite limitb!1. The evolution
equation forR2(v,r ) can be written down in analogy with
Eq. ~43!:

]R2~v,r !

]r
5

2

N
E

2`

`

dtE
2`

`

dV
1

A2p

r̃

b
e2V2r̃ 2/2b2

2uVu

3@d~v22VA11t2!2d~v22Vt!#. ~66!

Equation~66! should be integrated overr from r 50 to N/2
with the boundary conditionR2(v,0)51; the result
R2(v,N/2) will then give the desired level correlation fun
tion. Evaluating theV integral in Eq.~66! and changing the
variables toz52r /N andx52V/v, we get ats5v/D.0

R2
(c)~s!5211E

0

1

dz
s

pb
sin

pz

2
E

0

1 dx

A12x2

3expS 2
s2x2

4pb2 sin2
pz

2
D . ~67!

After some algebra, we find the level correlation function
be given by
e
n
-
-
e

e

-

n

R2
(c)~s!5d~s!2erfcS usu

2Apb
D , ~68!

where erfc(x)5(2/Ap)*x
` exp(2t2)dt is the error function

and we have included thed(s) contribution due to the self-
correlation of the energy levels. Substitution of Eq.~68! in
Eq. ~63! yields the spectral compressibility

x.124b, b!1. ~69!

We see, therefore, that in the limit of smallb the level repul-
sion is efficient in a narrow regionusu&b only, and the spec-
tral compressibility tends to the Poisson valuex51. The
physical reason for the reduced range of the level repulsio
quite transparent. Consider two states nearby in energy s
rated by a typical distancer;N in the coordinate space. I
their energy differences&b, two such states will form a
resonance pair, so that their levels will repel. On the ot
hand, ifs@b, these two states will not be in resonance, th
wave functions remain weakly overlapping, and the le
repulsion between them will be inefficient.

Hence, formula~7!, which would predictx→ 1
2 at b→0,

is violated. Similar violation of Eq.~7! is indicated by nu-
merical data for the tight-binding model in dimensionsd
>4.43 Most likely it is never an exact relation, but rather a
approximation valid in the weak-multifractality limit only
Strictly speaking, our results do not rule out the possibil
that Eq.~7! is exact atb exceeding a certain valuebc and
breaks down atb,bc . However, we do not see a physic
reason for such a qualitative change being induced by
variation ofb.

These results are fully supported by our numerical data
particular, Fig. 11 represents the level correlation funct
R2(s) at b50.1 showing a nice agreement with Eq.~68!.
Note that the finite-size effects in the level correlation fun
tion at b!1 are much weaker than in the IPR distributio
~Sec. II D!. Indeed, the only assumption~besidesb!1) used
in the derivation of the evolution equation~66! is N@1, and
then Eq.~68! is obtained without any further approximation
Therefore, in contrast to the IPR statistics, which reaches
fixed-point form at exponentially largeN ~the condition be-

FIG. 11. Two-level correlation functionR2(s) for two system
sizesN5256 (s) andN5512 (h) at b50.1. The solid line indi-
cates the theoretical result~68!. NumberS of matrices in the en-
semble:N5256, S53 440 512; N5512, S51 418 688.
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FIG. 12. Variance of the number of levels^dn2& in a fixed energy interval as a function of the energy width of the interval parametr
by the mean level number^n& it contains. Traces correspond tob51 ~opens: N54096, filled:N52048),b50.25 ~openh: N54096,
filled: N52048), andb50.05~openL: N54096,L with dot: N51024, filled:N5512). Statistical errors are typically of the order of th
symbol size. The dashed line indicates the analytical prediction Eq.~69!, for b50.05.
-

e
io

f t

ly
ing b ln N@1), the level statistics acquires theN-invariant
form already atN@1, see Figs. 11 and 12. Atb@1, the
fixed-point condition isN@b2 ~the same as for the IPR dis
tribution, see Sec. II D!.

To find numerically the spectral compressibilityx, we
plot the level number variance var@n(E)# versus the averag
^n(E)& ~Fig. 12!. The data show an extended plateau reg
in var@n(E)#/^n(E)&, determiningx. The upper bound for
this region is set by the matrix sizeN, while the lower bound
is ;b @the value of the upper limit at which the integral~63!
saturates#. We see that the data traces are independent o
system sizeN ~with exception of the large-^n& cutoff deter-
mined by N) within the statistical errors. The numerical
obtained spectral compressibility in the broad range ofb is
shown in Fig. 13; in the large-b and small-b regions it agrees
well with the corresponding analytical asymptotics.

The above calculation is easily modified to theb52 case,
by replacing the measure of theV integration in Eq.~66!
according to Eq.~60!. Performing theV integral, we now get

R2
(c)~s!5211E

0

1

dz
s2

pb2 sin2
pz

2
E

0

1

du

3expF2~12u2!
s2

2pb2 sin2
pz

2
G , ~70!
n

he

which yields the result

R2
(c)~s!5d~s!2expS 2

s2

2pb2D . ~71!

The spectral compressibility is thus equal to

FIG. 13. Spectral compressibilityx as a function ofb: crossover
from the ‘‘quasimetallic’’ (b@1) to the ‘‘quasi-insulating’’ (b
!1) behavior. The lines indicate the analytical results forb@1 and
b!1, Eqs.~65! and ~69!.
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x.12pA2b. ~72!

Again we see that the region of level repulsion shrinks in
limit b→0, with the compressibility approaching the Poiss
valuex51.

It is worth mentioning that the above results for the ca
b52 can also be obtained by exploiting the relation42,15 be-
tween the PRBM model and a random matrix ensemble
troduced by Moshe, Neuberger, and Shapiro.44 This map-
ping, which becomes exact in both limitsb!1 and b@1,
relates the level statistics~but not the eigenfunction statis
tics! of the two ensembles. On the other hand, the level c
relation function of the ensemble of Mosheet al. can be
calculated exactly in the caseb52 and is in fact identical to
the density correlation function of a 1D noninteracting Fer
gas at a finite temperature.44 Applying the results of Ref. 44
one obtains for theb52 PRBM ensemble precisely the re
sults ~64! and ~65! at b@1 ~Refs. 42 and 15! and ~71! and
~72! at b!1.15

IV. CONCLUSIONS

In this paper, we have presented a detailed study of
statistics of eigenfunctions and energy levels in the family
the critical PRBM models. We have obtained analytical
sults for the IPR distribution function, the multifractal spe
trum, and the level correlation function in the two limits
weak and strong multifractality (b@1 andb!1), by using
the supersymmetry approach15 and the resonanc
renormalization-group method,28,38respectively. The analyti-
cal results are fully supported by numerical simulatio
which also have allowed us to explore the crossover reg
(b;1).

Our main findings can be summarized as follows.
~i! The distribution function of the IPR~normalized to its

typical value Pq
typ) is scale-invariant in the limit of large

system sizeN. In other words, the distribution function of th
IPR logarithm,P(ln Pq), shifts along thex axis with increas-
ing N, without changing its form and width. Atb@1 and at
not too largeq!(2pbb)1/2, the ‘‘body’’ of the distribution
is found to have a simple analytical form~30!. In the oppo-
site limit b!1 the distribution function is given by the solu
tion of the integro-differential equation~56!.

~ii ! The scaling of Pq
typ with the system size,Pq

typ

}N2Dq(q21), defines the fractal exponentDq , which is a
nonfluctuating quantity, in contrast to Ref. 19.

~iii ! The scale-invariant distributionP(z[Pq /Pq
typ) has a

power-law tail}z212xq. At sufficiently largeq.qc(b) one
finds xq,1, and the average valuêPq&}N2D̃q(q21) be-
comes nonrepresentative and scales with a different expo
D̃qÞDq . The ‘‘phase boundary’’ separating the regimes
xq.1 (D̃q5Dq) and xq,1 (D̃qÞDq) has the asymptotics
qc5(2pbb)1/2 at b@1 andqc.2.41 atb!1.

~iv! The singularity spectrumf (a) obtained fromt̃(q)
e

e

e

-

r-

i

e
f
-

,
n

ent
f

[D̃q(q21) via the Legendre transformation has a close-
parabolic form ~24! in the weak-multifractality regimeb
@1 and is given by Eqs.~52!–~54! in the opposite limitb
!1. The pointa2 of the singularity spectrum determined b
the condition f (a2)50 corresponds to the IPR sel
averaging boundaryqc given above.

~v! The critical spectral statistics shows a crossover fr
a ‘‘quasimetallic’’ ~close-to-RMT! behavior~64! at b@1 to
a ‘‘quasi-insulating’’ ~close-to-Poisson! one, Eqs.~68! and
~71!, at b!1. In particular, the spectral compressibili
changes from 0 to 1, thus violating the relation~7! ~argued to
be exact in Ref. 35! in the strong-multifractality regime.

~vi! Finally, we note that the precise form of both the IP
distribution and the level correlation function depends on
behavior of the hopping amplitudea(r ) of the PRBM model
at distances of the order of the system size,r;N. This is
analogous to the dependence of these distributions on
sample shape and the boundary conditions in the crit
point of the Anderson transition ind dimensions.46 We have
used the form~6! of a(r ) playing a role of the periodic
boundary conditions for PRBM. On the other hand, the cr
cal exponentsDq , D̃q , and xq , as well as the singularity
spectrumf (a) and the spectral compressibilityx, are inde-
pendent of this choice and determined solely by the relev
critical theory.

Using the analogy discussed in the Introduction, we
pect that these results are qualitatively valid also for the c
ventional Anderson transition ind dimensions, withd52
1e and d@1 playing the role of the weak- and strong
coupling limits, respectively. However, a fair amount of an
lytical and numerical work is still needed to verify this co
jecture. In fact, recent~partly unpublished as yet! numerical
results on the critical level statistics ind54,5,6 ~Ref. 43!
suggest that the critical statistics tend to the Poisson li
~with the spectral compressibilityx→1) as d→`, in full
agreement with our results for the PRBM ensemble. On
other hand, the only available numerical study of the IP
distribution at criticality in 3D~Ref. 19! led the authors to
the conclusion of strong~scale-invariant! fluctuations of the
fractal dimensionD2, in stark contrast with our findings. W
believe that the reason is in too small system sizes and a
sufficiently careful analysis of the numerical data in Ref. 1
Clearly, additional work in this direction is needed. Analy
cal study of statistical properties of the wave functions a
energy levels at criticality in thed@1 limit also remains a
challenge for future research.
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