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Zero-frequency anomaly in quasiclassical ac transport: Memory effects in a two-dimensional
metal with a long-range random potential or random magnetic field
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We study the low-frequency behavior of the ac conductivitys(v) of a two-dimensional fermion gas subject
to a smooth random potential~RP! or random magnetic field~RMF!. We find a nonanalytic}uvu correction to
Res, which corresponds to a 1/t2 long-time tail in the velocity correlation function. This contribution is
induced by return processes neglected in Boltzmann transport theory. The prefactor of thisuvu term is positive
and proportional to (d/ l )2 for the RP, while it is of opposite sign and proportional tod/ l in the weak RMF
case, wherel is the mean free path andd the disorder correlation length. This nonanalytic correction also exists
in the strong RMF regime, when the transport is of a percolating nature. The analytical results are supported
and complemented by numerical simulations.
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I. INTRODUCTION
Within the conventional approach based on the Bo

mann equation, the ac conductivity of a two-dimensio
electron gas~2DEG! is described by the Drude formulas

sD~v!5
s0

12 ivt
, ~1!

s05e2nD, D5
vF

2t

2
, ~2!

wheret is the transport time,n the density of states at th
Fermi level,vF the Fermi velocity, andD the diffusion con-
stant. Equation~1! corresponds to an exponential falloff o
the velocity correlation function in the time representatio

^v~ t !v~0!&5vF
2e2t/t, t.0. ~3!

This exponential behavior of^v(t)v(0)& reflects the Markov-
ian character of the Boltzmann equation description, a
leads to the analytical behavior ofsD(v) at v→0. It has
been known for almost three decades, however, that th
features result from approximations made in the derivat
of the Boltzmann equation, and are not generally shared
the exact solution of the problem. More specifically, it w
shown1 ~see also Ref. 2 for a review and Ref. 3 for numeri
simulations! that in the Lorentz gas model, where a partic
PRB 610163-1829/2000/61~20!/13774~11!/$15.00
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is scattered by randomly located hard discs of radiusa and
density ns , there exists a ‘‘long-time tail’’ of the velocity
correlation function, which has the following form in tw
dimensions in the limitnsa

2!1:

^v~ t !v~0!&52
1

4pnst
2

. ~4!

This leads to a correction to the Drude conductivity, which
nonanalytic atv→0,

D Res~v!5s0

1

8nsl
2 uvut5s0

a

3l
uvut, uvut!1, ~5!

where l 5vFt is the mean free path, and we substitutedl
53/8nsa, an expression valid for the hard disc model. W
will refer to this type of behavior ofs(v) as a ‘‘classical
zero-frequency anomaly.’’ The long-time tail@which is of
the form t2(d12)/2 in d dimensions# can be traced back to
processes of return of a particle to a region of extension; l
around the starting point after moving diffusively during th
time t@t.4 These return processes give rise to no
Markovian kinetics, and are neglected in the Boltzma
equation.

After the discovery of weak localization the research
terest has shifted from the above~purely classical! effects to
13 774 ©2000 The American Physical Society
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quantum corrections to the conductivity. For a noninteract
2D Fermi gas the quantum~weak localization! correction is
given by5

Dswl~v!5s0

1

pkFl
lnuvtu, ~6!

wherekF is the Fermi wave vector. The weak-localizatio
correction is of special interest, in particular, since it is
vergent at zero frequency, indicating a crossover to str
localization. However, for weak disorder,kFl @1, the strong
localization is of purely academic interest, for its observat
would require an exponentially small frequency and te
perature and exponentially large system size.

In recent years, there has been a revival of interes
semiclassical transport properties of 2DEG’s. This is mo
vated by the experimental and technological importance
high-mobility semiconductor heterostructures, where impu
ties are located in a layer separated by a large spacd
;100 nm from the 2DEG plane. The~screened! random po-
tential ~RP! V(r ) produced in the 2DEG plane by the stat
tically distributed charged impurities~densityni) is charac-
terized by the correlation function WV(r2r 8)
5^V(r )V(r 8)&, which has in momentum space the form

W̃V~q!5~p\2/m!2nie
22qd, ~7!

where m is the particle mass. ForkFd@1 ~which is well
satisfied for the high-mobility samples!, the potential varies
smoothly in space, and can be treated in semiclassical te
Such a random potential is different from the Lorentz g
model in an essential way. It is weak everywhere, and sh
close-to-Gaussian fluctuations~since atnid

2@1 potentials
produced by adjacent scatterers strongly overlap!, whereas in
the Lorentz gas the potential is zero outside scatterers
infinite inside scatterers. Therefore, the Lorentz gas res
cannot be directly applied to the 2DEG, and the problem
to be reconsidered for a realistic model of the random po
tial.

Transport in a smoothly varying random magnetic fie
~RMF! is also of major interest. One of the main motivatio
for this comes from the relevance of this problem to t
composite-fermion description of a 2DEG in a strong ma
netic field in the vicinity of half-filling of the lowest Landau
level (n51/2).6 Exactly at n51/2 the composite fermion
move in an effective magnetic fieldB(r ) with zero average
and impurity-induced spatial fluctuations characterized b
correlation functionWB(r2r 8)5^B(r )B(r 8)& of the form

W̃B~q!5~2hc/e!2nie
22qd. ~8!

A real long-range RMF can also be realized in semicond
tor heterostructures by attaching superconducting7,8 or
ferromagnetic9–11 overlayers or by prepatterning of th
sample~randomly curving the 2DEG layer!.12 The strength
of a RMF can be conveniently characterized13,14by a dimen-
sionless parametera5d/Rc

0 , whereRc
05vFmc/eB0 is the

cyclotron radius in a typical fieldB05A^B2& ~the magnitude
of the RMF fluctuations!. Within the composite-fermion
theory of Ref. 6 this parameter is found to be equal to 1/A2,
if the density of ionized impuritiesni is assumed to be equa
to the electron densityn and if correlations between the im
g
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purity positions are neglected. Experimental data for
magnetoresistivity aroundn51/2 are well described by the
theory,15 with somewhat smallera.0.2–0.35~the deviation
can be presumably attributed to the Coulomb correlation
positions of impurities and other possible features related
technological details of the sample preparation, as well a
approximations in the composite-fermion theory!. We will
concentrate in the main part of this paper on the weak R
case,a!1, when the transport is of conventional diffusiv
nature. The long-time tail in the casea@1 ~snake-state
transport! will be discussed in Sec. III C.

The following historical remark is in order here. After th
initial paper1 by Ernst and Weyland on the Lorentz ga
model, thet2(d12)/2 tail in the velocity correlation function
of a gas of particles scattered by static impurities was d
cussed in a number of publications; see, in particular, R
16 and 17. However, since there appear to be neither a c
derivation nor explicit results for the long-time tail in
smooth RP in the literature, we decided to present this m
terial in a self-contained form~Secs. II A and III A!. In fact,
our Eq. ~16! can be obtained from the mode-coupling fo
malism of Ref. 18; however, the authors of that paper c
centrated on the critical regime of the metal-insulator tran
tion, and did not consider the ac conductivity in th
conducting phase explicitly. As to the RMF problem, whi
constitutes the main focus of the present paper, we are
aware of any treatment of the classical nonanalytic correc
to theac conductivity in the literature.

For later use, here we recall the transport scattering
entering the Drude formulas~1! and~2!, which, in the case of
weak long-range disorder, is found to be19

1

t
5

1

2pm2vF
3E0

`

dq q2W̃V~q! ~RP!, ~9!

1

t
5S e

mcD
2 1

2pvF
E

0

`

dq W̃B~q! ~RMF!. ~10!

Let us note that the Drude result is valid in the quantu
regime as well as in the classical limit. This is not, howev
the case for corrections to the Drude result and we will the
fore consider both a quantum theoretical treatment an
purely classical description, for different parameter range

We recall that the classical description of a quantum p
ticle moving in a RP or RMF characterized by a single sp
tial scale is a good approximation if two conditions are s
isfied: ~i! the quantum-mechanical wavelength of the parti
should be less than the characteristic lengthd of the disorder,
i.e., kFd@1; ~ii ! the particle should move incoherently, i.e
the length over which it is scattered out of its initial quantu
state should be less thand: vFts!d, wherets is the single-
particle lifetime. The latter condition requires the rando
field to be sufficiently strong. We will not address the regim
kFd@1 andvFts@d in this paper. Our choice of models o
disorder is motivated by actual physical realizations and
considerations of calculational feasibility. We will consid
either a long-range RP or RMF governed by Gaussian sta
tics. In the quantum-mechanical calculation, we will assu
the transport scattering rate to be dominated by a white-n
RP.
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As discussed above in the context of the Lorentz gas,
fact that a particle may revisit a given region of a RP/RM
after large timet gives rise to a zero-frequency anomaly
the conductivity. Due to this effect, the velocity correlatio
function acquires a power-law behavior}t22 at long times,
leading to Res(v)}uvu. The strength of this anomaly de
pends on the probability of return into the region over wh
the RP or RMF is correlated, and may thus be expected t
proportional to a power ofd/ l ~the power depends on th
mechanism of scattering!. For a short-range potential,kFd
&1, the role of the effective correlation length is played
the Fermi wavelength. It is worth stressing that the quant
corrections to the conductivity are governed by another
rameter, namely, 1/kFl . It follows that the magnitude of the
classical zero-frequency anomaly for the case of smooth
order kFd@1, which is the limit considered here, may b
much larger than the quantum corrections in a broad
quency range. For composite fermions, the parameterkFd is
as large as 15. The quantum corrections, being proporti
to lnv ~at zero temperature!, then become important only in
the limit of very small ~in fact, exponentially small! fre-
quency. Moreover, as we discuss in Sec. IV, inelastic s
tering at finite temperature destroys the quantum correct
but does not affect the classical correction. Hence the co
tions for the observation of the classical anomaly beco
still more favorable at finiteT. We now turn to a calculation
of the low-frequency correction to the Drude law induced
the return processes.

II. RETURN PROCESSES IN THE QUANTUM-
MECHANICAL DIAGRAM TECHNIQUE

We begin by considering the case in which the lead
contribution to the transport scattering rate is given by
white-noise RP, while an additional weak long-range RP
RMF induces correlations determining the long-time tail.
this situation, a quantum-mechanical treatment of the pr
lem is appropriate. Apart from the theoretical convenien
such a model with two types of disorder is also of expe
mental relevance. Indeed, in essentially all realizations
real RMF ~as opposed to the fictitious RMF in th
composite-fermion model! the transport scattering rate
dominated by a random potential with a relatively short c
relation length~much shorter than that of the RMF!.

A white-noise RP is characterized by the correlation fu
tion W̃(q)5(2pntw)21, where 1/tw is the corresponding
scattering rate~here we put\51). We keep the notation 1/t
for the scattering rate related to a long-range RP or RM
1/t!1/tw . The diffusion process is described by a sum
the ladder diagrams~a diffuson!,

G~q,v!5
1

2pntw
2

1

Dq22 iv
, ~11!

whereD5vF
2tw/2.

A. Long-range random potential

The contribution to the conductivity induced by retu
processes is given by the sum of the diagrams shown in
1, yielding
e
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Ds5
e2

2pE d2q

~2p!2
SxSxW̃V~q!G~q,v!. ~12!

HereSx are the vertex parts which are represented in Fig
and are given by the expression

Sx5E d2p

~2p!2

px

m
GeF

R ~p!GeF

A ~p!@GeF

R ~p2q!1GeF

A ~p1q!#,

~13!

where GeF

R (p) and GeF

A (p) are the retarded and advance

Green’s functions at the Fermi energyeF .
The behavior of the correctionDs(v) at low v is gov-

erned by small momentaq;(v/D)1/2 in integral ~12!.
Therefore, we can make a small-q expansion of the vertex
part @Eq. ~13!#. Expanding the integrand of Eq.~13! up to
terms linear inq,20 we obtain

Sx~q!52 iqxtw
2 . ~14!

Note that a naive estimate of the linear-in-q term would give
Sx(q);qxeFtw

3 , but the two diagrams of Fig. 2 cancel ea
other in this order, and one has to go to the next orde
1/eFtw . Substituting Eqs.~14!, ~11!, and ~7! into Eq. ~12!,
approximating the correlation functionW̃V(q) for smallq by
its zero-q value, and neglecting thev-independent part, we
find the following v-dependent contribution to the condu
tivity:

Ds~v!5s0

W̃V~0!

4eF
2 l w

2

vtw

ip
ln~ ivtw!, uvutw!1. ~15!

The correction to the real part of the conductivity therefo
has the form

D Res~v!5s0

W̃V~0!

8eF
2 l w

2
uvutw , uvutw!1. ~16!

The condition of validityuvutw!1 given above correspond
to the cased& l w . In the opposite regime,d@ l w , formulas
~15! and ~16! still hold, but the condition of their validity
changes touvu!D/d2. The same is valid for all the formula
for the nonanalytic correction that are given below.

FIG. 1. Contribution to the conductivity due to return process
in the presence of a long-range RP. The thin dashed lines~forming
a diffusion! correspond to a white-noise potential, while the thi
dashed line describes the long-range RP.

FIG. 2. Vertex parts of the diagrams shown in Fig. 1. The wa
line denotes the diffuson.
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We first consider the situation with only the white-noi
potential present, so thatW̃V(q)5W̃V(0). In this case, Eq.
~16! yields

D Res~v!

s0
5

1

2~kFl w!3
uvutw . ~17!

We see that the correction is small as (kFl w)23, i.e., much
smaller than the weak-localization correction~6!, and is
therefore of minor interest. This conclusion changes, ho
ever, when we return to the problem with the long-ran
potential~7! present. Equation~16! then gives

D Res~v!

s0
54p

tw

t S d

l w
D 3

uvutw . ~18!

Now the correction does not contain the quantum small
rameter (kFl w)21, which is replaced by the classical quanti
d/ l w . This prompts the expectation that theuvu anomaly in
s(v) should be essentially a classical phenomenon. We
demonstrate this explicitly in Sec. III by calculatin
DRes(v) in the classical limit, where a long-range RP co
stitutes the only type of disorder in the system. Note that
classical limit requires two conditions to be met:kFd@1 for
all relevant types of scatterers, and alsoW̃V(0)@(\vF)2 ~the
latter condition means smallness of the diffraction smear
of a typical scattering angle; otherwise, it can be rewritten
vFts!d, wherets is the single-particle lifetime!; whereas
Eq. ~18! is obtained in the perturbative~Born! limit W̃V(0)
!(\vF)2 under the condition that the diffusion is due
short-range scatterers. It is also worth mentioning here t
in view of t@tw and vFt@d, correction ~18! is always
small, D Res(v)/s0!1, in the range of its validity@speci-
fied below Eq.~16!#.

B. Long-range random magnetic field

We now consider the same problem but with the lon
range RP replaced by a long-range RMF. Similarly to E
~12!, we have a return-induced correction to the conductiv

Ds5
e2

2p (
ab

E d2q

~2p!2
~Sxa

(1)1Sxa
(2)!~Sxb

(1)1Sxb
(2)!

3^Aa~q!Ab~Àq!&G~q,v!, ~19!

where

^Aa~q!Ab~2q!&5
W̃B~q!

q2
~dab2q̂aq̂b!, q̂a5

qa

uqu
~20!

is the vector potential correlation function. The vertex p
Sxa

(1)1Sxa
(2) is now given by the sum of the three diagram

shown in Fig. 3.
Evaluating the vertex part at smallq, we find that the

diagramsSxa
(1) andSxa

(2) cancel each other in the orderq0, and
the result is of the order ofq2:

Sxa
(1)1Sxa

(2)52
e

mc
q2eFtw

3 dxa . ~21!
-
e

-

ill

-
e

g
s

t,

-
.
y

t

Substituting this expression into Eq.~19! and neglecting an
v-independent part, we find

D Res~v!

s0
52S e

mcD
2W̃B~0!

8vF
2

uvutw , uvutw!1. ~22!

Using the explicit form of the correlation function~8!, we
obtain

D Res~v!

s0
52

p

2

d

l
uvutw , ~23!

wherel 5vFt is the mean free path characterizing the RM
We see that the nonanalytic conductivity correction~and cor-
respondingly the long-time tail of the velocity correlatio
function! has the opposite sign as compared to the RP c
@Eq. ~18!#. This is a general feature of the corrections i
duced by a weak long-range RMF, as will be confirmed
Sec. III B by a classical calculation for the case when suc
RMF constitutes the only source of disorder.

III. PURELY LONG-RANGE DISORDER: CLASSICAL
CALCULATION OF THE LONG-TIME TAILS

Having understood the nature of theuvu anomaly at the
level of the quantum-mechanical diagram technique in
particular limit where the transport scattering rate is dom
nated by a white-noise potential, we turn to the case
purely long-range disorder~RP or RMF!. In this situation,
the quantum-mechanical calculation is complicated, an
classical evaluation of the nonanalytic correction is more
propriate; this will also allow us to demonstrate explicit
that the correction is of classical origin. We will employ
formalism similar to the one used in Ref. 21 for a calculati
of the magnetoresistivity. At the quasiclassical level, the f
mion gas is characterized by a distribution functionf (t,r ,f),
wheref is the polar angle of the velocity. The equilibrium
distribution function isf 05u(eF2e), whereu is the step
function. The deviationd f (t,r ,f), from the equilibrium
induced by an ~infinitesimally small! external electric
field Ee2 ivt, has the form d f (t,r ,f)5eEvF(] f 0 /
]e)e2 ivtg(v,r ,f), with g(v,r ,f) obeying the Liouville
equation

~L01dL !g~v,r ,f!5cos~f2fE!, ~24!

L052 iv1vFn¹. ~25!

Here fE is the polar angle of the electric field andn
5(cosf,sinf) the unit vector determining the velocity d

FIG. 3. Vertex parts of diagrams in a random magnetic field
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rection. The termL0 in the Liouville operator corresponds t
the free motion, whiledL describes the disorder~RP or
RMF!. The current density is given by j
52e*@d2p/(2p\)2#vd f , yielding the longitudinal conduc
tivity

s~v!5e2nvF
2E df

2p K cosf
1

L01dL
cosf L . ~26!

Expanding Eq.~26! in dL, averaging over the RP or RMF
~which is implicit in dL), and resumming the series, we o
tain the ac conductivity in the form

s~v!5
s0 /t

2 iv1M
. ~27!

Here M is the self-energy~the so-called memory function!,
which can be conveniently represented within a classical
grammatic technique~similar to the one used in Ref. 17!
~Fig. 4!. To leading order,M is given by the first diagram o
Fig. 4~c!,

M0522E df

2p
cosf K dL

1

L0
dL L cosf, ~28!

reproducing results~9! and ~10! for the transport scattering
rate ~see below! and, correspondingly, the Drude formu
~1!. Corrections to the memory functionM (v), which cor-
respond to the return processes, are evaluated in Secs.
and III B for the cases of RP and RMF, respectively.

A. Long-range random potential

The fluctuating contribution to the Liouville operator du
to the RP is found to be

dLV5dv~r !n¹1@¹dv~r !#n'

]

]f
, ~29!

FIG. 4. Classical diagram technique:~a! Free propagator.~b!
Disorder correlation function.~c! Diagrammatic expansion for th
memory functionM. ~d! First-order diagram for the memory func
tion representing a return process; the wavy line corresponds to
diffusion propagatorPD @Eq. ~31!#. ~e! Second-order diagrams de
scribing return processes, which give the leading contribution to
return-induced correction toM in the random-potential case.
a-

I A

wheren'5 ẑ3n5(2sinf,cosf), and dv(r )5v(r )2vF is
the deviation of the local velocityv(r )5$(2/m)@eF
2V(r )#%1/2 from its average valuevF . The leading-order
contribution~28! to the memory function reads

M052
2i

pF
2E df

2p

d2q

~2p!2
sinf sin~f2fq!

3
q2W̃V~q!

vFq cos~f2fq!2v2 i0
sinf sin~f2fq!,

~30!

reproducing the transport scattering rate defined by Eq.~9!:
M051/t. The first-order diagram describing the return pr
cess is represented in Fig. 4~d!. The corresponding expres
sion is obtained by replacing the free propagator 1/L0 in Eq.
~30! by the diffusion propagator

PD~q,f,f8!5
g~q,f!g~q,f8!

Dq22 iv
,

~31!

g~q,f!.12 iql cos~f2fq!, ql!1.

The replacement yields the return-induced first-order corr
tion to the memory function:

DM15
2

pF
2E df

2p

df8

2p

d2q

~2p!2
sinf sin~f2fq!

3q2W̃V~q!PD~q,f,f8!sinf8 sin~f82fq!.

~32!

Evaluating thev-dependent part of Eq.~32! at vt!1, and
approximating~as in the quantum-mechanical calculatio!

W̃V(q) by its value atq50, we find

DM1~v!

M0
52

W̃V~0!

16eF
2 l 2

vt

ip
ln~ ivt!, ~33!

which gives

DReM1~v!

M0
52pS d

l D
3

uvut ~34!

for the specific form@Eq. ~7!# of the correlatorW̃V .
Now let us show that, in actual fact, the leading contrib

tion to the non-Markovian correction to ReM (v) comes
from second-order processes described by the two diagr
in Fig. 4~e!, whereas that given by Eq.~33! can be neglected
in the first approximation. Specifically, the second-ord
term D ReM2 /M0;(d/ l )2uvut scales with a smaller, a
compared toDM1, power of the parameterd/ l !1, despite
having one more impurity line. This, at first glance, count
intuitive feature is related to the anomalous smallness
DM1 in the otherwise ‘‘regular’’ expansion in powers ofd/ l
~third- and higher-order terms inDM can be shown to be
negligible compared toDM2). We first explain this feature
by using the following power-counting argument. Theuvu
anomaly inDM comes from the integration over smallq of

he

e
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the form *d2q q2/(Dq22 iv), where the numerator of th
integrand tends to zero asq2 at q→0. In Eq.~32!, the factor
of q2 is related to the vanishing of the correlator

E d2rexp~2 iqr !^¹dv~0!¹dv~r !&}q2W̃V~q!

in the limit q→0, since the correlator carries the small m
mentumq, the same as the diffuson, according to Fig. 4~d!.
On the other hand, in second order inW̃V , the large mo-
menta flowing through impurity lines are ‘‘disentangled
from the small momentumq carried by the diffuson. The
leadingq2 term now comes from theO(ql) corrections to
the diffusion propagator given by the factorsg(q,f) in Eq.
~31!. Let us count powers ofl: two factorsg(q,f) yield
q2l 2, whereas one loses onlyl 21 when going to second or
der, which explains the total gain of one power ofl /d as
compared to Eq.~34!.

The expression forDM2 at v→0 obtained from the sum
of the two diagrams in Fig. 4~e! reads@we neglect the depen
dence onq everywhere but inPD(q,f,f8)#

DM25
4i

pF
4E df

2p

df8

2p

d2q

~2p!2

d2k

~2p!2 k4W̃V
2~k!

3cosfA~k,f!PD~q,f,f8!Im A~k,f8!cosf8,

~35!

where

A~k,f!5
]

]f

sin2~f2fk!

vFk cos~f2fk!2 i0

]

]f
. ~36!

We thus obtain

D ReM2~v!

M0
52

uvut
32eF

4E d2k

~2p!2 k2W̃V
2~k!. ~37!

Since

D Res~v!

s0
.2

D ReM ~v!

M0
[

D Rer~v!

r0
, ~38!

wherer(v)5s21(v) is the ac resistivity, we finally obtain
using Eq.~7! for W̃V ,

D Res~v!

s0
5

3p

8 S d

l D
2

uvut, uvut!1. ~39!

The prefactor of theuvu correction to Res(v) is positive, as
in the quantum-mechanical result@Eq. ~18!# and in the Lor-
entz gas formula@Eq. ~5!#. Note that the correction@Eq. ~39!#
matches that for the Lorentz gas@Eq. ~5!# at nsd

2;1, as
expected—since this condition separates two extreme
strongly non-Gaussian~Lorentz gas! and Gaussian@Eq. ~7!#
disorder. On the other hand, the crossover between Eqs.~39!
and ~18! occurs when the two following conditions are fu
filled: kFd;1 andW̃V(0);(\vF)2 @cf. the definition of the
classical limit for Gaussian disorder after Eq.~18!#.
-

of

B. Long-range random magnetic field

The fluctuating contribution to the Liouville operator in
duced by the RMF has the form

dLB5
e

mc
B~r !

]

]f
. ~40!

The lowest-order contribution~28! to the memory function

M0522i S e

mcD
2E df

2p

d2q

~2p!2

3sinf
W̃B~q!

vFq cos~f2fq!2v2 i0
sinf ~41!

again reproduces the corresponding transport scattering
@Eq. ~10!#, M051/t. The first-order correction due to retur
processes@Fig. 4~d!# reads

DM152S e

mcD
2E df

2p

df8

2p

d2q

~2p!2
sinfW̃B~q!

3PD~q,f,f8!sinf8, ~42!

where the factors g(q,f) should be included in
PD(q,f,f8), which gives

D Res~v!

s0
52

D ReM ~v!

M0
52S e

mcD
2 W̃B~0!

8vF
2

uvut.

~43!

Note that, in contrast to the case of RP, the leading con
bution to the return-induced correctionDM in the RMF
comes from the first-order processes. This is because
RMF scattering operatordLB ~in contrast to its RP counter
partdLV) does not involve spatial gradients. Using the RM
correlation function@Eq. ~8!#, we finally obtain

D Res~v!

s0
52

p

2

d

l
uvut52pa2uvut, uvut!1.

~44!

We have found, therefore, in agreement with t
quantum-mechanical result@Eq. ~23!#, a negative sign of the
uvu contribution to the conductivity. Analyzing the calcula
tion, one can trace the difference in sign@as compared to the
Lorentz gas result~5! and the RP results~18! and~39!# back
to the fact that the RMF scattering operator~40! is odd with
respect to time reversal.

To check the above analytic findings, we have perform
numerical simulations of the classical motion of a particle
a RMF. The results obtained for the memory function22 at
a50.5 are shown in Fig. 5. We find a positiveuvu correction
to the real part of the memory function~or, equivalently,
resistivity!, which corresponds to a negative correction
Res, in agreement with the theoretical result@Eq. ~44!#. The
magnitude of the correction is, however, considera
smaller than Eq.~44! would predict. We attribute this dis
crepancy to the fact that Eq.~44! was derived fora!1 and,
apparently, the numerical value of the coefficient in this fo
mula cannot be trusted fora as large as 0.5.23 Unfortunately,
at smaller values ofa&0.2, the effect becomes so weak th
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13 780 PRB 61WILKE, MIRLIN, POLYAKOV, EVERS, AND WÖLFLE
it is swamped by the statistical noise. A smaller value of
coefficient ata50.5 @as compared to the formula~44!# is
further consistent with the fact that ata*1 the coefficient
changes sign and the correction to the conductivity beco
positive ~see below!. Let us also note that the range of v
lidity of the uvu correction found numerically is in full agree
ment with the theoretical expectation (vt&1). Indeed, as
seen in Fig. 5, the linear increase of Rer(v) holds up to
vt.0.65 where it transforms~rather abruptly! into a falloff
~related to the ballistic motion on time scalest&t).

C. Strong random magnetic field: Long-time tail in transport
on a percolating network

In a strong RMF (a@1) the character of the transpo
changes drastically. In this regime, diffusion takes place
restricted space and is determined by a small fraction
trajectories—so-called ‘‘snake states’’24,25—which wind
around theB(r )50 contours. Since the snake states can
over from oneB(r )50 line to another at saddle points of th
RMF ~where the two contours come sufficiently close
each other!, they propagate effectively on a percolatin
network26,14,15for which such saddle points serve as nod
This network is characterized15 by a typical length of a link,
Ls;da14/9, and a typical distance between two neighbori
saddle points~size of an elementary cell!, js;da8/9. The
different scaling ofLs and js with a is due to the fact tha
the structure of the links of the network is fractal. The n
work is chiral, i.e., the links are directed; each node has
incoming and two outgoing links. Since the snake-state
locity is of the order of the Fermi velocity, a characteris
time of traversal of a link ists;Ls /vF . The quasiclassica
dc conductivity in this regime was calculated in Refs. 14 a
15, the result beings;kFd/a1/2ln1/4a.

In Ref. 15 we argued, on phenomenological grounds,
for such a percolation-type transport problem there should
a nonanalytic contribution to the ac conductivity of the for

D Res~v!

s~0!
;uvuts , uvuts!1. ~45!

FIG. 5. Real part of the ac resistivity in the RMF, witha50.5
normalized to itsv50 value. The dashed line is a guide for the ey
D Rer(v)/r(0)}uvu. The positive prefactor of theuvu correction
to Rer corresponds to a negative prefactor for Res.
e

es

a
f

o

.

-
o
-

d
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e

Below we demonstrate how this result comes about in a
work model due to fluctuations in the geometry of the n
work.

Let us start with a regular square network@Fig. 6~a!# with
all links characterized by the same distancejs between the
end points and by the same ‘‘flight time’’ts . We also as-
sume that the probability of turning in either of two allowe
directions at each node is 1/2. The classical diffusion c
stant is thenD5js

2/4ts . It is straightforward to see that ther
is no memory effect in classical transport on the regular n
work: the velocity correlation function is exactly zero fort
.ts . Let us now study the effect of fluctuations in the ne
work geometry, i.e., in vectors connecting the beginning a
end of individual links. Since to describe such fluctuatio
quantitatively in a real percolating network is hardly po
sible, we consider the following model. We imagine t
regular lattice considered above perturbed by a small frac
nd!1 of ‘‘defects’’ of the type shown in Fig. 6~b! ~a defect
can have any of four possible directions!. We assume the
flight times of all links to be equal~we will discuss the effect
of fluctuations in the flight times later!.

For each lattice sitej, we label adjacent links as (j m),
with m51 and 2 for incoming links andm53 and 4 for
outgoing links. The velocity-velocity correlation function fo
a time t5nts ~with an integern) can be written as

^v~nts!v~0!&5
1

4N (
i j

(
m51,2

(
n53,4

vimvj nPi j @~n21!ts#,

~46!

whereN is the normalization factor~total number of sites!,
Pi j (t) is the probability of moving from a sitei to a sitej in
a timet, andvim5jim /ts is the velocity at the link (im). The
majority of the sitesi andj will give zero contribution to Eq.
~46! after the summation overm andn, since the velocities
of the two outgoing~or two incoming! links are exactly op-
posite to each other for the regular lattice. A nontrivial co
tribution will come from terms with bothi and j lying at a

,

FIG. 6. Chiral network model:~a! Regular network;~b! defect
on the lattice.
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defect. Indeed, consider the term withi 51, j 52 @Fig. 6~b!#.
The corresponding contribution to Eq.~46! is

ndP12~ t2ts!S js

ts
D 2

. ~47!

The probability density in a continuum model for a diffusin
particle to move a distancer in a time t is

P~ t,r !5
1

4pDt
e2r2/4Dt. ~48!

Therefore, the probabilityP12(t) for t@ts is

P12~ t !5
ts

pt F11OS ts

t D G . ~49!

This return process yields a contribution to the velocity c
relation function of the form

ndS js

ts
D 2 ts

pt
}

1

t
.

However, this 1/t contribution is canceled if we take int
account the terms withi 53 and 4 andj 55 and 6 as well.
The total contribution reads

^v~ t !v~0!&5ndS js

ts
D 2FP12~ t2ts!2P15~ t2ts!2P32~ t2ts!

1
1

2
P35~ t2ts!1

1

2
P36~ t2ts!G . ~50!

Since all of the relevant return probabilitiesPi j have the
form of Eq. ~49!, the 1/t terms cancel. It is easy to see th
this cancellation has a general character, i.e., is indepen
of the particular structure of the defect. We thus conclu
that the result is of the next order ints /t:

^v~ t !v~0!&;2ndS js

ts
D 2S ts

t D 2

. ~51!

While we do not calculate the numerical coefficient in E
~51!,27 we see no reason which would require it to be zero
that we believe that it is generically nonzero. Setting n
nd;1 for a realistic~strongly fluctuating! network results in
a nonanalytic correction to the conductivity of the form
Eq. ~45!. As to the sign of the effect, we have to resort
numerical simulations~see below!.

Let us now consider the effect of fluctuations in flig
time. We return to the regular square lattice~with the lattice
constantjs), but now allow for a variation of the flight time
tm from one link to another. We will show that in this mod
the 1/t2 tail does not exist. Equation~46! for the velocity-
velocity correlation function is now modified as

^v~ t !v~0!&5
1

4Nts
(
i j

(
m51,2

(
n53,4

3K E
0

t im
dtE

0

t j n
dt8vimvj nPi j ~ t2t2t8!L ,

~52!
-

nt
e

.
o

wherevim5jim /tm and ts5^tm&. Since the fluctuations o
the flight times of different links are uncorrelated, a nonze
contribution to Eq.~52! comes only from neighboring sitesi
and j connected by a link going fromj to i @in other words,
one of the links (im) should be identical to one of the link
( j n)#. We thus find

^v~ t !v~0!&5
1

2
nd

js
2

tsH K E0

t1
dtE

0

t2
dt8

1

t1t2

3Pi j ~ t2t2t8!L
t1 ,t2

2K E
0

t1
dtE

0

t1
dt8

1

t1
2 Pi j ~ t2t2t8!L

t1

J .

~53!

ExpandingPi j (t2t2t8).1/p(t2t2t8) in t and t8, we
see that the terms of the 1/t and 1/t2 orders cancel, and the
leading nonvanishing contribution is of the 1/t3 order, so that
the corresponding contribution to Res(v) shows a weak
nonanalyticity}v2lnuvu only. Note that for a nondirected
network, fluctuations of the flight time yield a still weake
nonanalyticity D Res(v)}uvu3, or, equivalently, a 1/t4

long-time tail.28

Since a real percolating network exhibits all possible so
of fluctuations, the fact that we find the 1/t2 tail in the model
with fluctuatingjm’s is sufficient to conclude that such a ta
should be present in the problem of the transport in stro
RMF. In Fig. 7 we show the results of the numerical sim
lations of the problem fora.4. A pronounced dip in the ac
conductivity aroundv50 in the expected range of frequen
cies uvu&1/ts;vF /da14/9 nicely confirms our analytica
conclusions. The sign of the nonanalytic correction cor
sponds to a decrease of Res as uvu→0.

It is worth mentioning that the problem of a random wa
on such a percolating network is a close relative of
advection-diffusion problem in a spatially random veloc

FIG. 7. Real part of the ac conductivity in the RMF ata
54.04. A nonanalytic dip aroundv50 is clearly seen. The low-
frequency increase of the conductivity is restricted to the reg
uvuLs /vF&1 ~whereLs;da14/9 is the length of a link of the per-
colating network!, in agreement with theory.
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field v(r ) ~‘‘steady flow’’! with “•v50 ~‘‘incompressible
liquid’’ ! characterized by the correlation function

E d2rexp~2 iqr !^va~0!vb~r !&5W̃v~q!~dabq22qaqb!.

~54!

This model was studied in a series of papers,29–31 with an
emphasis on the case of long-range correlations, nam
W̃v(q)}q22 for q→0 @which corresponds tôva(0)vb(r )&
}r 22#. In contrast, we have considered a percolation lat
with short-scale distortions@W̃v(q)→const atq→0#. One
can check~see the Appendix! that the advection-diffusion
problem yields at22 tail in this case, in agreement with ou
consideration above.

IV. EFFECT OF INELASTIC SCATTERING

So far our considerations have not included inelastic s
tering processes which change the energy of a particle.
question arises whether the zero-frequency anom
D Res(v) is cut off at low frequenciesv;1/t in , wheret in
is a relaxation time for the inelastic processes. This ques
is studied most conveniently within the Liouville-Boltzman
approach of Sec. III. To this end, we consider the lineariz
distribution functiond f (v,r ,e,f) of particles with energye
and velocity direction specified by the polar anglef, subject
to a smooth RP or RMF and inelastic collision process
obeying the Liouville-Boltzmann equation

~2 iv1v“1dL !d f 2I in~d f !5S, ~55!

with the source termS5evE(] f 0 /]e). Here f 0 is the Fermi
distribution function corresponding to a temperatureT
~which we will assume to be low,T!EF). A simple model
form of the collision integralI in , which respects particle
number conservation, is sufficient for our purposes:

I in~d f !52
1

t in
Fd f ~e,f!1

] f 0

]e E de8E df8

2p
d f ~e8,f8!G .

~56!

~For simplicity we adopt the model of isotropic, energy i
dependent inelastic scattering.!

The conductivity is obtained as

s~v!5e2nvF
2E deS 2

] f 0

]e D E df

2p K cosf
1

L̃0

cosfL ,

~57!

whereL̃052 iv1t in
211vFn“. Expanding indL, averaging

over the long-range disorder and resumming the series,
findss(v) in the form of Eq.~27!. The memory functionM
is now given in lowest order for the cases of RP and RMF
Eqs. ~30! and ~41!, respectively, withv replaced byv
1t in

21 .
In order to calculate the effect of return processes,

needs to know the diffusion propagatorP̃D(q;e,f;e8,f8)
for particles starting with energye and velocity anglef and
returning with energye8 and anglef8. This obeys Eq.~55!
with the source term replaced bySD5d(f2f8)d(e
2e8)(2] f 0 /]e). After averaging overdL, one finds
ly,

e

t-
he
ly

n

d

s,

ne

y

e

P̃D~q;e,f;e8,f8!5S ] f 0

]e Dge~q,f!ge8~q,f8!

Dtq
22 iv

S ] f 0

]e8
D

1~regular terms!, ~58!

whereDt5vF
2t t/2 with t t

215t211t in
21 is the total diffusion

constant including elastic and inelastic scattering proces
and ge(q,f)5@12 iqv(e)t tcos(f2fq)#, with v(e)5(2e/
m)1/2. As expected, the diffusion propagator shows a dif
sion pole even in the presence of inelastic processes, du
particle number conservation. The scattering ‘‘out’’ of pa
ticles with given energye into other energy states is exact
compensated for by a corresponding scattering-in contr
tion.

Let us define the functionDM (e,e8) in the same way as
in Eqs. ~35! and ~42!, with the only changePD(q,f,f8)
→ P̃D(q;e,f;e8,f8). The correction to the memory functio
due to return processes,DM , is then given by

DM5E dede8DM ~e,e8!. ~59!

As a result, expressions~37! and ~39! and ~43! and ~44!
remain valid, provided~i! t and l are replaced by the ful
momentum relaxation timet t and mean free pathl t5vFt t ,
respectively; and~ii ! additional factors of (t t /t)2 and t t /t
are included in Eqs.~39! and ~44!, respectively, which stem
from the explicit factors ofW̃ in the definition ofDM (e,e8).

Thus the classical zero-frequency anomaly is not cut
at finite temperature. This should be contrasted with
quantum zero-frequency anomaly induced by the we
localization and Altshuler-Aronov~interplay of interaction
and disorder! effects. It follows that increasing temperatu
favors the experimental observation of the classical anom

V. CONCLUSIONS

In this paper, we have studied memory effects in the lo
frequency ac conductivity of a 2D fermion gas in a lon
range random potential or random magnetic field. We h
calculated the long-time tail in the velocity correlation fun
tion induced by diffusive returns of a particle, and leading
a nonanalyticuvu behavior of the real part of the conductiv
ity ~zero-frequency anomaly!. While in a random potentia
the uvu contribution is positive~as in the Lorentz gas, Ref. 1!
and is proportional to (d/ l )2, whered/ l !1 is the ratio of the
correlation length to the mean free path, a smooth w
RMF induces a much larger (}d/ l ) correction of opposite
sign. The sign difference can be traced back to the R
scattering being odd with respect to time reversal.

We have also demonstrated how anuvu contribution to
Res(v) arises in the regime of strong random magne
field, where the transport is determined by percolation of
snake states. In this case, spatial fluctuations in the geom
of the percolating network are responsible for the mem
effects.

Our numerical simulations confirm the existence of the
nonanalytic contributions at low frequency, as well as t
unconventional sign of the correction in the weak rand
magnetic field. With increasing strength of the RMF, wh
the system crosses over into the regime of the percola
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transport, the sign of the effect changes.
The experimental observation of the nonanalytic lo

frequency behavior of the ac conductivity of composite f
mions would be of considerable interest. In particular,
predict that theuvu term in Res is negative atn51/2 in the
high-mobility samples~where the strength of the effectiv
RMF is15 a;0.3), but should change sign if the system
driven toward the percolation regime by adding more lon
range scatterers~e.g., antidots32!. A sign change is also found
with increasing effective magnetic field~moving away from
half-filling!, as will be demonstrated analyticall
elsewhere,33 in agreement with our earlier numeric
results.15

ACKNOWLEDGMENTS

We are grateful to D. Khmelnitskii for discussions of th
role of inelastic scattering and to Y. Levinson for attracti
our attention to Ref. 17. This work was supported by S
195 and the Schwerpunktprogramm ‘‘Quanten-Ha
Systeme’’ of the Deutsche Forschungsgemeinschaft, by
TAS Grant No. 97-1342, and by the German-Israeli Foun
tion.

APPENDIX

Consider a particle moving in a diffusive medium with
diffusion coefficientD, subject to a spatially random velocit
field v(r ). Let the velocity field be incompressible (“•v
50) and determined by correlator~54! with a finite W̃v(0).
e

rs

in

e
a
h

o

ta
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-
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e
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-
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-

Assuming the random field to be weak, we can expand
Green’s function

G~r ,r 8!5^r u~2 iv2D¹22“•v!21ur 8&

in v(r ), which yields, for the Fourier transform,

G̃~q!.
1

2 iv1Dq2

1
1

~2 iv1Dq2!2 K ~v•“ !
1

2 iv2D¹2 ~v•“ !L
q

1•••.

Using the correlation function~54! and resumming the se
ries, we thus find

G̃~q!5
1

2 iv1~D1dD !q2 ,

with the following correction to the diffusion coefficient:

dD5
3

2E d2q

~2p!2

q2W̃v~q!

2 iv1Dq2
.2

3

16

W̃v~0!

D2
uvu.

Hence this continuous model predicts at22 tail in the
velocity-velocity correlation function, with a positive coeffi
cient. Note, however, that in a lattice model the sign depe
on the microscopic structure of disorder.
-
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