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Semiclassical theory of transport in a random magnetic field
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We present a systematic description of the semiclassical kinetics of two-dimensional fermions in a smoothly
varying inhomogeneous magnetic fieldB(r ). The nature of the transport depends crucially on both the strength

B0 of the random component ofB(r ) and its mean valueB̄. For B̄50, the governing parameter isa5d/R0,
whered is the correlation length of disorder andR0 is the Larmor radius in the fieldB0. While for a!1 the
Drude theory applies, ata@1 most particles drift adiabatically along closed contours and are localized in the
adiabatic approximation. The conductivity is then determined by a special class of trajectories, the ‘‘snake
states,’’ which percolate by scattering at saddle points ofB(r ) where the adiabaticity of their motion breaks

down. The external fieldB̄ also suppresses the diffusion by creating a percolation network of drifting cyclotron
orbits. This kind of percolation is due only to a weak violation of the adiabaticity of the cyclotron rotation,

yielding an exponentially fast drop of the conductivity at largeB̄. In the regimea@1, the crossover between

the snake-state percolation and the percolation of the drift orbits with increasingB̄ has the character of a phase
transition ~localization of the snake states! smeared exponentially weakly by nonadiabatic effects. Theac
conductivity also reflects the dynamical properties of particles moving on the fractal percolation network. In
particular, it has a sharp kink at zero frequency and falls off exponentially at higher frequencies. We also
discuss the nature of the quantum magneto-oscillations. Detailed numerical studies confirm the analytical
findings. The shape of the magnetoresistivity ata;1 is in good agreement with experimental data in the
fractional quantum Hall regime near half filling.@S0163-1829~99!01236-9#
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I. INTRODUCTION

The transport properties of two-dimensional~2D! par-
ticles moving in a spatially random magnetic field~RMF!
B(r ) oriented perpendicularly to the plane have attrac
considerable interest in the last few years. This interes
largely motivated by the relevance of the problem to
composite-fermion~CF! description1,2 of a half-filled Landau
level. Within this approach, the electron liquid in a stro
magnetic field is mapped–by means of a Chern-Sim
gauge transformation – to a fermion gas subject to a w
effective magnetic field. Precisely at half filling, the avera
value of the Chern-Simons gauge field compensates the
fect of the external magnetic field. The RMF appears in t
model after taking static disorder into account: fluctuatio
of the local filling factor induced by the random potential
impurities lead to a local mismatch between the gauge
external magnetic fields. A number of observations3 of
Fermi-surface features near half-filling give strong expe
mental support to the model of the effective magnetic fie
Apart from the composite-particle models involving fic
tious fields, 2D electron systems with a real RMF can
directly realized in semiconductor heterostructures by atta
ing to the latter superconducting4,5 or ferromagnetic6,7 over-
layers.
PRB 600163-1829/99/60~12!/8951~19!/$15.00
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The peculiarity of transport properties of 2D electrons in
random fieldB(r ) shows up most distinctly in systems wit
smoothinhomogeneities. The case of long-range disorde
most important also experimentally – since the compress
state in a half-filled Landau level is observed in hig
mobility samples. In the latter, a large correlation radius
potential fluctuations,d, is determined by a wide ‘‘spacer’
between the electron gas and the doped layer containing
ized impurities. Likewise, inhomogeneities of the RMF cr
ated by the ferromagnetic overlayers in6,7 appear to be fairly
long ranged. The large value of the correlation radiusd ~as
compared to the interelectron distance! allows to describe the
electron kineticsquasiclassically.

It is well known that quantum interference effects m
cause localization of noninteracting particles in an infin
2D system even for arbitrarily weak disorder. This has be
shown to be the case for charged particles in a RMF.8,9 Spe-
cifically, the RMF problem belongs to the unitary universa
ity class, with the localization lengthj growing extremely
fast with the dimensionless conductanceg5sxx /(e2/h),

j}exp~p2g2!. ~1!

These theoretical results are in full agreement with the rec
extensive numerical study.10 According to Eq.~1!, already
8951 ©1999 The American Physical Society
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8952 PRB 60F. EVERS, A. D. MIRLIN, D. G. POLYAKOV, AND P. WÖLFLE
for g*1.5 the localization length is larger than any reaso
able system size, and the quasiclassical approach is
justified.

Let us stress that we consider the situation in which
smooth RMF constitutes the only type of disorder prese
This should be contrasted with the starting point of Ref.
where the main contribution to the resistivity was assume
be given by a short-range random scalar potential, whil
long-range RMF was considered as a small perturbation

The purpose of this paper is to examine the transport
long-range RMF in detail, with particular emphasis on t
conductivity in an external~homogeneous! magnetic field

B̄5^B(r )& and/or at finite frequencyv. We complement the
analytical analysis by numerical simulations. The importan
of the latter is due to the fact that in the most interesting p
of the parameter space the transport is dominated by
phenomenon of percolation, so that only estimates ‘‘by or
of magnitude’’ are available at the analytical level.

In Sec. II, we study the dc conductivity in a long-ran

RMF dB(r ) at zeroB̄. The character of theB̄50 transport is
determined by the parametera5d/R0, where R0
5vF(mc/eB0) is the Larmor radius in the fieldB0 which is
a characteristic amplitude of the fluctuations,vF the Fermi
velocity. At a!1, the classical dynamics is of convention
diffusive nature andsxx;(e2nd/mvF)/a2, wheren is the
particle density. At strong disorder (a@1), the conductivity
is determined by a smallfraction of classical trajectories –
so-called ‘‘snake states’’12,13 – which percolate through th
system by winding around the lines of zeroB(r ) and yield
sxx;(e2nd/mvF)/a1/2(ln a)1/4. The crossover from the 1/a2

to 1/a1/2 behavior ofsxx at a;1 is confirmed by our nu-
merical simulations. Furthermore, the latter allow us to fi
the numerical value ofsxx for the CF problem~for which
a.1/A2 lies in the crossover region!.

In Sec. III, we consider the case of strongB̄. IncreasingB̄
also leads to a suppression of the conventional diffusive
tion and a transition to a percolation regime, even ifa!1.
The physics of this phenomenon is, however, quite dist

from the snake-state percolation. In the limit of largeB̄, the
dynamics of drifting cyclotron orbits is governed by an ad
batic invariant~magnetic flux through one cyclotron orbit!.
In the adiabatic approximation, the particles drift along t
closed magnetic field contours and hence are localized.
only a weaknonadiabaticscattering between drift trajecto
ries that yields a finite conductivity. This localization effe
is similar to the formation of a ‘‘stochastic web’’14,15 in a
slowly varying scalar random potential in the presence of
external homogeneous magnetic field. The conductivity
to the weak nonadiabaticity falls offexponentiallyfast at

large B̄: ln sxx52A(a)(B̄/B0)
2, where the coefficientA(a)

scales asa4/3. Note that the conductivity in the CF problem
(A;1) falls off sharplybeyond asmalldeviation from half-
filling.

The manner in which the conductivity crosses over in
the adiabatic regime is qualitatively different in the cases
weak and strong disorder. Ata@1 @Sec. III E#, the transport

regimes controlled by the snake states~weak B̄) and by the

nonadiabatic dynamics of the cyclotron orbits~strongB̄) are
separated by a sharptransition accompanied by an abrup
-
lly
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change ofsxx . At the critical point, the percolation networ
formed by the extended snake states falls apart into disc
nected clusters, while the nonadiabatic scattering yields o
a slight smearing of the critical singularity.

For a;1, which is the regime relevant to the CF pro
lem, we perform a numerical simulation to calculate t

magnetoresistancerxx(B̄). The obtained curves are in goo
agreement with experimental findings: they show a we

positive magnetoresistance at lowB̄, crossing over to a fall-

off of rxx with increasingB̄. Further, we analyze the quan

tum oscillations ofrxx(B̄) @Sec. III F# and show that, in con-
trast to the conventional Shubnikov-de Haas effect in a sh
range random potential, they start to develop only when
dimensionless conductivitysxx /(e2/h) drops down to a
value of order of unity.

In Sec. IV, we discuss the transport in the RMF at fin
frequencyv. We find strong deviations of the ac conducti
ity from the Drude behavior, especially in the percolati

regime, i.e. whena and/orB̄ is large. At smallv, we find a
nonanalytical(}uvu) contribution tosxx(v), which is deter-
mined by returns of the particle to the same spatial regi

after a time;1/uvu. At higher frequencies and largeB̄, the
ac conductivity takes the formsxx(v)}uvu3/7, sincev itself
starts to determine the width of the percolating ‘‘stochas
web’’ responsible for the conductivity. At still larger fre
quencies theac conductivity starts to drop exponentially re
flecting the ‘‘ballistic’’ motion of drifting orbits~or snake
states! on short scales.

Section V summarizes our findings. The analytical resu
of Secs. II and III were partly presented in the Letter.16

II. DC TRANSPORT IN ZERO MEAN MAGNETIC FIELD

We begin by formulating the model to be studied. W

consider noninteracting particles in the RMFB̄1dB(r ) with

mean B̄ and the correlator̂dB(0)dB(r )&5B0
2f (r ), where

f (0)51. We assume that the functionf (r ) is characterized
by a single spatial scale, which is the correlation length
the RMF. In particular, in the CF model with the electro
densityn equal to the charged impurity densityni we have
B05(\c/e)(kF /A2d) and f (r )5(11r 2/4d2)23/2, where
kF

254pn ~note that the electron gas is fully spin polarize
nearn51/2; we discard the spin degree of freedom throug
out the paper!. In this section we confine ourselves to th

case of zeroB̄. The RMF with zero mean is characterized b
two length scales:d and the cyclotron radiusR0 in the field
B0. Defining the parametera5d/R0, we can distinguish the
weak-RMF regimea!1, where the mean-free pathl @R0
@d, and the regime of strong fluctuationsa@1, where one
should expect drastic deviations from the Drude picture.
will explore these two limiting cases analytically. Howeve
since the value ofa corresponding to the CF problem lies
the crossover region, we will turn to numerical simulatio
in order to getsxx of the CF’s.

A. Weak disorder

We start with the simple case ofa!1. In this limit, the
CF trajectories are only slightly bent on the scale ofd, so that
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PRB 60 8953SEMICLASSICAL THEORY OF TRANSPORT IN A . . .
the Born approximation is valid. Accordingly, for the tran
port scattering time one gets2,17 t tr

21

5vF
21(eB0 /mc)2*0

`dr f (r )52a2vF /d, where the CF effec-
tive massm5\kF /vF is introduced. The Drude conductivit

at zeroB̄, sxx5e2nt tr /m, then reads

sxx5
e2

h

kFd

4a2 , a!1. ~2!

B. Dynamics of the snake states

Let us now turn to the strong-RMF regime,a@1, keeping

B̄50. The seemingly innocent assumption about the cha
character of the particle dynamics, which enabled us to r
resent the conductivity in the forme2nt tr /m, is not valid
anymore. Most particles are now out of play since they
caught in cyclotron orbits drifting along the closed lines
constantB(r ) ~‘‘van Alfvén drift’’ !. In the adiabatic limit,
their drift trajectories are periodic and so do not contribute
the conductivity. Still, however largeB0 is, there are classi
cal paths, which are not localized and percolate through
system by meandering around the lines of zeroB(r ). The
conductivity is determined by the particles that move alo
these extended ‘‘snake states’’12 ~Fig. 1!.

Note that there is only one single percolating path on
manifold of theB(r )50 contours; yet, the conductivity i
nonzero since the snake-state trajectories form a bundl
finite width,Rs;d/a1/2 ~see Fig. 1!. The conducting network
is made up of those snake states that can cross over from
critical zero-B line to another. This coupling of two adjace
percolating clusters occurs near the critical saddle point
B(r ), which are nodes of the transport network. The cruc
role of the saddle points is that they break down the adia
ticity of the snake-state dynamics, as we are going to exp
below.

Everywhere except in small regions near the sad
points, the motion along the rapidly oscillating snake-st
trajectories around the zero-B contours conserves the adi
batic invariant~see also Ref. 13!

I'5m R ẏdy. ~3!

FIG. 1. Types of trajectories in a strong random magnetic fie
drifting orbits along nonzeroB contours and snake states nearB
50 lines. Geometry of a snake state is characterized by the a
u (0,u,p) at which the trajectory crosses the zero-field conto
Note that the direction of motion of the snake state withu,uc ~left!
is opposite to that foru.uc ~right!, whereuc.131°. The widthRs

of the bundle of snake state trajectories is also indicated.
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Here,y and ẏ are the distance and the velocity in the dire
tion perpendicular to the zero-B line, and the integral is taken
over one period of the oscillations. The conservation of
quantity I' can be established directly by considering t
evolution of the angleu(x) the snake-state trajectory form
with the line of zero field (y50) at positionx along this line
as a consequence of the smoothly varying gradientb(x)
5u]B(x,y)/]yuy50. The adiabatic invariant is parametrize
as

I'~b,u!54mvF
3/2~2mc/eb!1/2F~u!, ~4!

whereF(u) is a dimensionless function of order unity whic
can be found explicitly:

F~u!5~12cosu!E
0

1

djA~12j4!1cosu~12j2!2. ~5!

Note that I'(b,u) may be written also as (e/c)F(b,u),
whereF is the magnetic flux through the area encircled
the snake-state trajectory and the zero-B line in one oscilla-
tion period. We represent the equationdI' /dx50 in the
form of a scaling relation for the snake-state angle

du

d ln b
5G~u!, G21~u!52

d

du
ln F~u!. ~6!

This equation expresses the adiabatic invariance in term
the fact that, given boundary conditions@u(x0) andb(x0) at
some pointx0#, the angleu at a pointx of the trajectory is
completely determined by the gradientb(x) at the same
point. Equation~5! gives the asymptotic expressions f
G(u)

G~u!.
u

4
, u→0; ~7!

G~u!.2
2

3

1

~p2u!ln
1

p2u

, u→p. ~8!

Equations~6! and ~7! tell us thatu(x) obeys the scaling

u~x1!

u~x2!
5Fb~x1!

b~x2!G
1/4

~9!

in the limit of small harmonic oscillationsu→0. The singu-
larity of G(u) in the opposite limit ofu→p is a precursor of
the bifurcation, which accompanies the break away of
trajectory from the zero-B line atu5p ~see Fig. 2, top!. The
functionsF(u) andG(u) in the whole range ofu are shown
in Figs. 3~a! and 3~b!.

The remarkable point to notice is thatG(u) changes sign
at someu5uc ~which is .131°). More specifically,G(u)
behaves singularly arounduc , as (u2uc)

21, which corre-
sponds to a maximum inF(u) at this point. This behavior of
I'(u) means that the velocity of the snake statesvs(u)
~which is the average ofẋ over one period! must change sign
at u5uc , i.e., the snake state is ‘‘reflected’’ at the pointxc
defined by the equationu(xc)5uc ~Fig. 2, bottom!. Indeed,
as follows from Eq.~4!, the constancy ofI'@u(x)# cannot be
maintained onboth sides of the pointxc . Note also that, in

:

le
.
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8954 PRB 60F. EVERS, A. D. MIRLIN, D. G. POLYAKOV, AND P. WÖLFLE
terms of the time evolution ofu, the change in sign of the
function G(u) at u5uc means that the time derivativeu̇
retains the sign it had before the reflection. In fact, one
show, by solving the problem with constant gradientb ex-
actly, that

vs~u!5vFF8~u!
11 1

2 cos2u
3
2 sinuF~u!1cosuF8~u!

, ~10!

i.e., vs(u) interpolates betweenvs(0)5vF and vs(p)5
2vF and vanishes atu5uc @see Fig. 3~c!#. It is worth noting
that the period of the oscillationsTs(u) increases monotoni
cally with growingu

Ts~u!5
1

mvF
2 S 3

2
1cotu

]

]u D I'~b,u!, ~11!

i.e., Ts(u) is equal to 2p(mc/ebvF)1/2 at u50 and diverges
as 4(mc/ebvF)1/2 ln@1/(p2u)# at u→p. The ‘‘wave-
length’’ of the snake states along the direction of propaga
obviously readsDx5uvsuTs , while the amplitude of the os
cillations in the perpendicular direction is given byDy
52vF(mc/ebvF)1/2 sin(u/2).

C. Snake-state percolation

The adiabatic nature of the snake-state dynamics me
that a typical trajectory is ‘‘trapped’’ between two retu
points x1 and x2 with u(x6)5uc @Fig. 4~a!#. Within the
adiabatic picture, the drift motion in such a trap is periodic
time, as demonstrated in Fig. 4~b!. Hence, unless nonadia
batic corrections are taken into account, these trajectorie
not contribute to the dc conductivity. The nonadiabatic c
rections for a typical trajectory with a slowly varyingu(x)
are exponentially weak, so that the motion remains finite
an exponentially long time scale. Yet, this doesnot mean

FIG. 2. ‘‘Serpentology.’’ Top: transformation of a snake sta
with large u into a drifting orbit with decreasing gradient of th
magnetic field; bottom: reflection of a snake state by a magn
bottle-neck.
n

n

ns

do
-

n

that sxx(a) is exponentially suppressed in the limit of larg
a. The point is that there are rare~but not exponentially rare!
places along the zero-B contours where the adiabatic pictu
fails completely. These are regions where the contours p
near the saddle points ofB(r ).

Consider a snake state that is incident on a saddle p
with the impact parameterr ~Fig. 5!. This means that the
magnetic field at the saddle point isBsp;B0r/d and the
distanceRmin at which the zero-B contour passes the sadd
point isRmin;Adr. At the saddle point, there is an interse
tion of two lines of constantB(r )5Bsp, while two zero-B
lines, along which the snake states can propagate, c
within the distance 2Rmin from each other. Clearly, ifRmin is
small enough, the snake state can change the zero-field
tour. The angleu, which characterizes the type of the snak
state trajectory, is then also changed, i.e., the adiabat

ic

FIG. 3. The functionsF(u) andG(u) determining the adiabatic
dynamics of the snake states according to Eqs.~4!–~6!, and the
snake state velocityvs(u).
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will be broken down upon ‘‘scattering’’ on the saddle poin
To understand the parameters, consider first the caser
50 ~‘‘direct hit’’ !. The snake state propagates then alon
straight line with decreasing gradientb(x);B0x/d, wherex
is measured from the saddle point. According to Eq.~9!,
u(x)}x1/4 decreases when the particle approaches the sa
point, while, as follows from Eq.~11!, the wavelengthDx
diverges asx21/2. The adiabatic picture is valid only as lon
asDx(x) is much smaller than the scale on which the ma
netic field changes, i.e.,Dx(x)!x near the saddle point

FIG. 4. Snake state in a trap.~a! Real-space trajectory of a
particle trapped between two bottle-necks. The scales of thex andy
axes differ by a factor.25: the figure is ‘‘compressed’’ in the
x-direction. The dashed lines show the contours of the cons
magnetic field.~b! Time evolution of thex coordinate. It is seen tha
the drift motion in the trap is almost periodic.

FIG. 5. Geometry of a saddle point.
a

dle

-

which gives the conditionx@xc , wherexc is the character-
istic wavelength of the ‘‘last’’ oscillation before the particl
hits the saddle point. For typical trajectories withu;1 and
Dx;(dR0)1/2 at x;d, this condition fails atx&xc;d/a1/3.
Now, as is clear from Fig. 6, whether the particle will b
scattered to the left of the saddle point or to the right
determined by the initial phase of the snake-state osc
tions. This sensitivity to the phase signals the breakdown
the adiabaticity.

We now turn to the case of finiter. At large enoughr,
the typical snake-state trajectory does not change the zeB
line: the condition is that the angleu(xc), with which the
trajectory comes to the saddle point, be much smaller t
the ratio Rmin /xc . Substituting u(xc);(xc /d)1/4 @see Eq.
~9!#, we getr@d/a5/6. However, the adiabatic invariance
broken at the saddle point in a wider range ofr: the condi-
tion for the curvature of the zero-B line to be large on the
scale of the wavelength isRmin&xc , which gives r&rs ,
where

rs;d/a2/3. ~12!

Within this range, the angleu after the scattering,uout, is
typically of order unity even though the particle is incide
on the saddle point with a smallu ~moreover,uout depends
strongly on the phase of the oscillations of the incomi
trajectory!. As we argue below, the breakdown of the ad
batic invariance atr&rs results in the randomization of th
incident snake states over the outgoing links.

Now consider how the particles propagate between s
nonadiabatic saddle points. The saddle points withr&rs are
distributed sparsely along the zero-B trajectories with the
linear density;rs /d2. Therefore, only a small fraction o
the snake states can escape the adiabatic traps on their
between two such saddle points: most trajectories are lo
ized in between. The snake state is not trapped ifu(x),uc
everywhere on its trajectory between the collisions with
saddle points. According to Eq.~9!, this is possible for tra-
jectories with sufficiently smallu. Indeed, consider a snak
state, which has a small angleu!1 in a typical place with
the gradientb;B0 /d. Typically, it will be able to travel a
long distance, by far larger thand, until its angle reaches the
valueuc : this will occur in a fluctuation of the magnetic fiel
with the anomalously high gradientb;B0 /du4. Since the

nt

FIG. 6. Scattering of a snake state at a saddle point. The par
may turn either left or right, depending on the initial conditions.
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8956 PRB 60F. EVERS, A. D. MIRLIN, D. G. POLYAKOV, AND P. WÖLFLE
probability p(b) that the gradient at a given point excee
some valueb is determined by the Gaussian statistics,p(b)
5exp(2b2/^b2&), we find that the state will typically run bal
listically the distance L(u) obeying the equation
L(u)p(B0 /du4)/d;1, which gives L(u);d exp(u28).
Hence, usingL(us)/d;d/rs;a2/3, we conclude that the
states with the anglesu!us , where

us;~ ln a!21/8, ~13!

will typically get through to the saddle point.
We, thus, conclude that the particles withu&us propagate

between saddle points ‘‘ballistically’’ with the longitudina
velocity vs.vF , while others are simply out of play. Now
we turn to construct the overall picture of the snake-st
propagation. The scattering on a saddle point is actual
multistep process. The fact that the angleuout is typically ;1
means that, having collided with a saddle point once,
particle almost inevitably returns back to it with a new ang
of incidenceu8: in effect, the trajectory ‘‘sticks’’ to the
saddle point. However, after many mappingsu→uout→u8,
the multiple reflections establish a stochastic distribution
the angleuout characterizing the outgoing trajectory. Als
after many attempts the particle will go to the left or to t
right with equal probability. This randomization ofuout and
of the direction of motion is clearly seen in the numeric
simulation in Ref. 13. Once the particle picks up the an
uout;us /a1/12, it will move ballistically until it reaches the
next saddle point. Here, the factora21/12 is related to the fact
that the angleu(x) will increase}x1/4 on the scale ofd, so
that the particle must haveuout, which is (xc /d)1/4 times
smaller thanus . At the new saddle point the whole proce
will repeat itself. Since the saddle points are separated by
large distance;d2/rs , the average time it takes the partic
to move to the next saddle point is determined by the ba
tic propagation between them, which requires the timetb
;d2/rsvF;(d/vF)a2/3, not by the multiple attempts to
‘‘break away’’ with largeuout, which end in returns to the
starting point. Indeed, assuming the full randomization
uout, we estimate the number of such attempts, until the p
ticle picks up the angleuout&uout

(c)5a21/12(ln a)21/8 neces-
sary to reach the next saddle-point, asN;1/uout

(c) . According
to what is said above, the initial conditionuout allows the
particle to advance the distance

L~uout!;d3H a21/3uout
24, uout*a21/12

exp@~a1/12uout!
28#, uout&a21/12.

~14!

Therefore, the average ‘‘waiting time’’ the particle spends
the unsuccessful attempts to reach the next saddle poin

tw;NE
uout

(c)
duoutL~uout!/vF;~d/vF!a2/3/ ln a. ~15!

Thus, the total time it takes to get through from one sad
point to another is indeed determined bytb@tw .

D. Conductivity in a strong random magnetic field

Now let us calculate the conductivity ata@1. As was
mentioned at the very beginning, most trajectories do
contribute to sxx since they follow periodic drift orbits.
e
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Next, we turned to consider a special class of the trajecto
– the snake states. However, as we showed above, m
snake states are also localized in the adiabatic traps and
those with angles smaller thanus can propagate along th
lines of zeroB. At this point, we have to be concerned abo
the topology of the zero-B contours. The first thing to notice
is that all the contours are closed except one and this
percolating contour by itself cannot yield a finite conduct
ity. The conductivity is nonetheless finite since the sna
states in fact form a conductingnetworkof finite width. The
nodes of the network arecritical saddle points, where two
adjacent percolating contours come close to each other. N
that most of the saddle points that the particle hits on its w
between the critical ones only connect up small closed lo
and so do not create a connected network. This happens
at the critical saddle points, where the snake states can c
over from one critical zero-B line of length Ls;a14/9d to
another. We use here the results of the percolation the
~for a review see, e.g., Ref. 18!: Ls;d(d/rs)

n11, wheren
54/3 is the critical exponent that controls the size of t
critical clusterjs;d(d/rs)

n, so that the ratio of the length o
the trajectory and the distance from the starting pointLs /js
;d/rs . The characteristic distance between the nodes,
the size of the elementary celljs , is thenda8/9. On length
scales longer thanjs , the particle dynamics can be viewed
fully stochastic. We estimate the macroscopic diffusion c
efficient asD;nsDs , wherens;LsRsus

2/js
2 is the fraction

of particles residing in the delocalized snake-states andDs

;js
23vF /Ls is their diffusion coefficient. Note thatns con-

tains a factorus
2 – since the density of the snake states

determined in the phase space parametrized by both
angleu and real-space coordinate: accordingly, one factorus
comes from the calculation of the fraction of the plane co
ered by the conducting snake states, while the other
scribes their fraction in theu space. We, thus, haveD
;vFRsus

2 and, correspondingly,19

sxx;
e2

h

kFd

a1/2L , L; ln1/4 a, a*1. ~16!

It is worth noting that the percolationenhancesthe conduc-
tivity: by comparison with the Born approximation@Eq. ~2!#,
the conductivity is;a3/2/L times larger~though the local-
ization effects are strong and naively one might have
pected the opposite!. Let us also note thatsxx given by Eq.
~16! is larger by a factor of;a1/2/L than that obtained for
a@1 in Ref. 20 by using an ‘‘eikonal approach.’’ The fau
in Ref. 20 is not with the quasiclassical approximation itse
but with the method of disorder averaging, which negle
the localization of particles and the percolating character
the transport through the snake states.

We now turn to the numerical simulation. To calculate t
conductivity tensor componentssmn we evaluate numeri-
cally the classical current response function,

smn5e2rFE
0

`

dt^vm~0!vn~ t !&, ~17!

whererF5m/2p\2 is the density of states and the average
taken over the disorder realizations and starting points of
trajectory. Typically, evaluation of the conductivities in
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volved averaging over;1034104 trajectories. The numeri
cal results forsxx in Fig. 7 fully confirm the analytical find-
ings above. For smalla, the results are in good agreeme
with the Born approximation formula, Eq.~2!, while at a
;1 a crossover to thea21/2 behavior, Eq.~16!, takes place.
At a51/A2 ~the value relevant to the CF problem atn5ni
and in the absence of impurity correlations! we find sxx
.1.0(e2/h)kFd, which is a factor of;2 larger than the
Born approximation value. This improves the agreem
with the experimentally found CF conductivity~defined as
the inverse of the measured resistivity atn51/2), though the
typical experimental values ofsxx are still larger than the
one we obtain by a factor of;223. This remaining discrep
ancy might be attributed to correlations in the distribution
the charged donors,21 which reduces the effective strength
the random potential and thus reducesa. The resistivity data
in zero external magnetic field~as contrasted to zero effec
tive magnetic field acting on CF’s! indeed indicate that the
model of statistically independent impurity positions over
timates the amount of disorder.22,21 It is also worth noting
here, in view of the controversy about the effective mass

the CF’s,2,23–25 that in the RMF modelsxx at zeroB̄ @Eqs.
~2! and ~16!# does not depend onm ~neglecting the
corrections26 related to the interaction between the CF’s!.

III. DC TRANSPORT IN NONZERO MEAN MAGNETIC
FIELD

We now consider the conductivity at finiteB̄. Let us first

discuss the case ofa;1, when the conductivitys(B̄) can be

parameterized as a function of thesinglevariableB̄/B0. As

shown in the previous section, at smallB̄/B0 we are at the
crossover between the uncorrelated diffusion and the sn

state percolation. Now, atB̄@B0 the particle dynamics is a
slow van Alfvén drift of the cyclotron orbits along the line
of constantdB(r ). It follows that the conductivity is deter
mined by a percolation network of trajectories close to

FIG. 7. dc conductivity atB̄50, as a function of the paramete
a. The dashed and the full lines correspond to the theoretical
ymptotics~2! and~16!, respectively. Statistical errors do not exce
the symbol size.
t

t

f
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f

e-

e

dB(r )50 lines. From the point of view of topology of th

network, the situation is thus similar to that at zeroB̄ and
a@1. What is crucially different, however, is the mechanis

of the percolation. Specifically, at largeB̄ there is no sto-
chastic mixing at the nodes of the percolation network: u

like the snake states atB̄50, the rapidly rotating cyclotron
orbits pass unharmed through the critical saddle points
dB(r ) without crossing over to the adjacent cell. In the hig

B̄ limit, the mixing occurs on the links of the network and
only due to the weak scattering between the drift trajector

In order to calculate the conductivity atB̄@B0, we should
integrate out the fast cyclotron rotation, taking care not
lose the effect of the nonadiabatic mixing. Specifically, w
have to go beyond the standard separation of the fast
slow degrees of freedom, known as the drift approximati
The parameter that governs this separation isd/d, whered is
a characteristic shift of the guiding center after one cyclot
revolution. The drift approximation is represented as a pow
series ind/d!1. In our problem ata;1, this parameter is

the ratioB0 /B̄. Therefore, ifB̄@B0, the adiabatic descrip
tion is good onmicroscopicscales. The key point, howeve
is that the conductivity is strictly zero at the level of the dr
approximation – since the drift orbits are periodic in t
thermodynamic limit. The effects that break the adiaba
invariance and lead to the transitions between the drift or
areexponentiallyweak atd/d!1.

A. Single-impurity scattering

The problem of the scattering between the drift trajec
ries in the static RMF,16 as well as a similar problem for a
random scalar potential, considered recently in Ref. 14,
particular example of the broad class of problems dea
with nonconservation of an adiabatic invariant. Despite
general interest of this problem, any systematic expans
capable of giving the scattering ratebeyondthe exponential
accuracy, has proven to be a tough exercise. To consid
transparent example, we formulated and solved param
cally exactly asingle-scattering problem.27 Specifically, we
introduce a weak homogeneous gradiente of the background
magnetic field and consider the interaction with an ‘‘imp
rity’’ modeled by a spatially localized perturbationdB(r ) of
sized, so that the total field

B~r !5B̄@11e~y/Rc!#1dB~r !, ~18!

whereRc is the cyclotron radius in the fieldB̄. The guiding
center coordinatey averaged over the cyclotron orbit,r
5^y&c , plays the role of an impact parameter. The parti
entering the system atx52` with ^y&c5r i will leave it at
x5` along the trajectory witĥy&c5r i1Dr, whereDr is
the nonadiabatic shift we are interested in. In this sing
impurity scattering problem, the shift is a perfectly we
defined quantity. To first order indB, the exact solution is
given by

Dr5gI , I 5E
2`

`

dt
dB@r0~ t !#

B̄
ẏ0~ t !. ~19!

Here,r0(t) is the unperturbed trajectory fordB50,

s-
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g~e!5vcK ẏ0~ t !E
0

t

dt8ẋ0~ t8!/ ẏ0
2~ t8!L

c

, ~20!

vc5eB̄/mc, and the angular brackets denote averaging o
one cyclotron period. In the limite→0 the constantg→
21. We can further simplify the model by assuming thatdB
is a function ofx only. In this case, the integral in Eq.~19! is
evaluated ate!1 by the saddle-point method to give

Dr52
2vF

B̄
Ae

p
cosS 2

e
2

p

4 D cosw0

3E
2`

`

dt cosvctdBS e

2
vFt2RcD . ~21!

This formula expresses the nonadiabatic shift in terms of
asymptotics of the Fourier transform of the smooth funct
dB(x) – thus demonstrating explicitly the exponential sma
ness ofDr. It shows that the parameter that governs
exponential falloff ofDr is d/d@1, whered5peRc , while
the ratiod/Rc may be arbitrary. Note that the pre-exponent
factor happens to oscillate wildly ase→0. These oscillations
are geometric resonances due to the commensurabilit
two length scalesRc and d. Remarkably, the series of th
resonances is defined by the properties of the unpertu
solution ~‘‘self-commensurability’’! and not by the shape o
the scatterer. This means that the oscillations are dam
with increasing strength of the perturbation27 – since the
resonance condition cannot be met simultaneously ev
where on a strongly perturbed trajectory. Another pecu
feature of the nonadiabatic shift is its sensitivity to the ph
w0 of the cyclotron rotation of the incident electron (Dr
}cosw0).

In the CF problem, a charged impurity located at a d
tanced from the plane occupied by the electron gas crea
the axially symmetric perturbationdB(r )5dB0d3(r 2

1d2)23/2. Because of the branch points atr 56 id in this
expression, the integrand in Eq.~19! will contain the expo-
nentially small factor exp†2(2vc /evF)A@y0(t)2r i #

21d2
‡.

The lengthy general result reduces to

Dr.8pd
dB0

B̄

ARcd

d
cosw0cosS 2

e
2

p

4 DexpS 2
2pd

d D
~22!

at r i50 in the limit d@Rc . Equation~22! reflects the fea-
tures of the nonadiabatic shift discussed above: the expo
tial smallness, the oscillations with changinge, and the os-
cillatory dependence on the phasew0. These results were
confirmed by numerical simulations in Ref. 27. Note that E
~22! implies that the drift trajectory is only slightly perturbe
by dB(r ).

B. Optimum fluctuation

In the transport problem one has to average over an
semble of impurities. What is crucial for the averaging p
cess is that the drift velocity is itself determined by the flu
tuations of the impurity field. The nonlinear problem ge
therefore, much more involved as compared to the sin
scattering model above, but the principal features of
er
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nonadiabatic scattering remain unchanged and the main m
sage can be simply stated: Because of the exponent
strong dependence of the shift on the parameters of
single scatterer, the conductivity is determined byrare
places with an anomalously high rate of nonadiaba
transitions.14,16Accordingly, one can neglect correlations b
tween consecutive transitions from one drift orbit to anoth
and each nonadiabatic shift can be considered independe
Since the nonadiabatic scattering rate increases as the
motion gets faster, the effective scatterers, sparsely dis
uted along the percolating trajectories, are characterized
anomalously sharp changes of the RMF. The problem now
to find the density and the parameters of these scatterer

The nonadiabatic shiftDr5Drx1 iDry ~in complex no-
tation! after one scattering reads

Dr5vFE dteivct1 iw0A~ t !, ~23!

where the smooth functionA(t) varies slowly on the scale o
vc

21 and is given by the following average taken over o
cyclotron period:

A~ t !5^eix(t)&c , x~ t !5
e

mcE0

t

dt8dB@r ~ t8!#. ~24!

The integral that determines the random phasex(t) should
be done on the exact trajectoryr (t). Note that Eq.~23! gives
the nonadiabatic shift both along and across the drift tra
tory. Since only the latter is of interest, one should proj
the result of the integration~23! onto the axis perpendicula
to the direction of the drift of the outgoing particle.

Since the nonadiabatic mixing is determined by the sh
wavelength Fourier harmonics of the perturbation@Eq. ~23!#,
it is the analytical properties of the functionA(t) and, there-
fore, of the correlator̂ dB(0)dB(r )& that are important. In
the CF problem, this correlator has branch points as a fu
tion of r at r 562id. However, in order to calculate th
scattering probability, which is given by Eq.~23!, one has to
find the singularities indB@r (t)# as a function oftime t and
average the result. For a given perturbationdB(r ) this purely
mechanical problem of finding the Fourier asymptotics of
integral along the pathr (t) may be quite complex, but we
can circumvent the difficulties by performing the configur
tional averaging first. As was already mentioned, the eff
tive scatterers are characterized by anomalously large fl
tuations of the drift velocity

vd~s!5vF~Rc/2B!u¹B~s!u, ~25!

wheres is the coordinate along the path. To see this, one
use the exact solution of the single-scattering problem c
sidered above. Let us first assume, for the purpose of il
tration, that the largevd(s) does not change appreciably o
the scale ofd. Equation~22! then tells us that a single impu
rity located on the trajectory that passes through the fluc
tion with largevd yields Dr(vd)}exp(2dvc /vd). One sees
that Dr(vd) grows exponentially with increasingvd . Now,
the linear density of the fluctuations with largevd along the
percolating path is of orderp(vd), where the Gaussian prob
ability that the drift velocity at a given point is larger thanvd
reads
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p~vd!5exp~2vd
2/2^vdx

2 &!;

^vdx
2 &5

3

16
vF

2 S Rc

d D 2S B0

B̄
D 2

. ~26!

Averaging@Dr(vd)#2 with p(vd), we thus get

^@Dr~vd!#2&}exp~2Smin!; Smin53S d2vc
2

2^vdx
2 &

D 1/3

.

The ‘‘optimum’’ drift velocity that determines this average

vd
05^vdx

2 &1/2(4d2vc
2/^vdx

2 &)1/6. As is clear,vd
0@^vdx

2 &1/2 at B̄
@B0. The optimum fluctuations yield the Gaussian behav
of the scattering rate:

Smin5c~B̄/B0!2, B̄/B0@1, ~27!

with the coefficientc5181/3.2.62 ~here we assumeda
51/A2). This simple derivation of the exponential depe
dence of ^@Dr(vd)#2& captures the essential physics a
yields a correct parametric estimate forSmin ; however, it is
not exact in thatvd(s) in the optimum fluctuation is not, in
fact, constant on the scale ofd, and for this reason it does no
give the correct value of the numerical coefficientc in Eq.
~27!. To obtain the asymptotically exact numerical coef
cient in Smin , we have to use the optimum-fluctuatio
method in the whole configurational space. The optim
configuration is characterized by the functionvd(s) and the
shape of the drift trajectory. We write the phase factoreivct

in Eq. ~23! as eiw(s), where we introduce thes dependent
phase

w~s!5vcE
0

s ds8

vd~s8!
, ~28!

and notice that the exponentSmin is determined by the phas
w(s) picked up at the singular point of the perturbati
dB@r (t)# regarded as a function of the longitudinal coord
nates. As can be verified by varying the shape of the traje
tory, the minimum ‘‘action’’Smin is acquired along a straigh
path and the quantity to be calculated is therefore

Smin52 lnK expF ivcE
2 id

id ds

vd~s!G L , ~29!

where the integral should be done along the straight
connecting the pointss52 id and s5 id in the complex
plane of the variables.28 This average determines, with ex
ponential accuracy, the diffusion coefficientD'

}exp(2Smin), which is defined as

D'5 lim
t→`

t21^@Dr~ t !#2&, ~30!

whereDr(t) is the nonadiabatic shift across the percolat
drift trajectory in timet. The exponent can be written as
sum of two terms,Smin5W11W2, where

W15
1

2E d2q

~2p!2
vdxq

0 Gq
21vdx2q

0 ~31!
r

-

-

e

W25 ivcE
2 id

id dx

vdx
0 ~x,0!

,

and

Gq5^vdxvdx&q5S hc2mvF
2

e2B̄2 D 2

nqy
2e22qd ~32!

is the Fourier transform of the drift-velocity correlation fun
tion G(r )5^vdx(0)vdx(r )&. Here,W1 determines the prob
ability for the optimum fluctuationvdx

0 (r ) to occur, whileW2

describes the nonadiabatic scattering on this fluctuation.
variational equationdW/dvdx

0 50 yields

vdx
0 ~r !5 ivcE

2 id

id dx8

@vdx
0 ~x8,0!#2

G~x2x8,y!, ~33!

which is a nonlinear integral equation forvdx
0 (x,0) with x

P(2 id,id). Its solution defines, by means of analytical co
tinuation, the optimum fluctuation on the real axis ofx. Di-
mensional analysis of this equation shows that the solu

has the formvdx
0 (r )5vF(B0 /B̄)G(r /d), whereG is a dimen-

sionless function of order unity, which leads again to E
~27!. To find the exact value ofc, one has to determine th
functionG, which requires solving the integral equation~33!.
We used a variational approach, choosing the trial funct
vdx

0 (r )5kG(r ) with the variational parameterk. This trial
function is the optimal fluctuation for the~slightly different!
problem of finding a large valuevdx

0 (0) at the pointr50 and
should give a good estimate forc. The result isc.2.28,
close to the value found above within the simplified cons
eration neglecting the spatial variation ofvdx on the scale of
d.

C. Magnetotransport at a;1:
Conductivity of the composite fermions atnÞ1/2

We are now prepared to calculate the conductivity atB̄
@B0. Similarly to the case of the snake-state percolation,
nonadiabatic transitions create a conducting network with
elementary cell of sizej;d(d/Rd)4/3 and perimeterL
;jd/Rd , whereRd , the width of the links of the network
composed of the drift trajectories, obeys the equation

Rd
2;D'L/vd . ~34!

This equation is the condition of connectivity of the networ
The conductivity due to the nonadiabatic mixing of the dr
trajectories is thus given by

sxx;
me2

\2 vdRd}
e2

h
kFd expS 2

3

13
SminD . ~35!

The dissipative transport is seen to be strongly suppres

beyond the scaleB̄;B0.29 Let us emphasize that the cros
over to the adiabatic regime occurs in the CF system a

small deviation from half-fillingn51/2: B̄;B0 corresponds
to the shiftun21/2u;1/kFd!1.

Calculation of the conductivity tensor components atB̄
&B0 cannot be done analytically ata;1. We have per-
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formed extensive numerical simulations to study the ove
shape of the magnetoresistivity. The results fora50.2, 0.35,
and 0.5 are shown in Fig. 8, in comparison with experimen
data on the magnetoresistivity in the vicinity ofn51/2 from
Refs. 25, 30, and 31. We recall, that although a simple mo
of uncorrelated impurities with the concentrationni5n gives
a51/A2, the actual value ofa may be somewhat smalle
because of impurity correlations. As is seen, the experim
tal curves are reasonably close to the numerical data
a;0.2540.35. The numerical results show a positive ma

netoresistance atB̄&B0, which is followed at largerB̄ by a
falloff in agreement with the analytical prediction~27!. Both
these features are clearly observed in the experiment. B
agreement between the theory and the experiment is ha
possible, taking into account the difference between the
perimental data obtained by different groups and on differ
~though nominally very close! samples. Sufficiently far from
half-filling the experimental curves start to show magn
tooscillations, which have not been included in the class
model above. We will discuss the issue of the magnetoos
lations below.

D. Magnetotransport at weak disorder, a!1

We now turn to consider the case of weak disordera

!1. The Gaussian behavior of the conductivity at largeB̄ is
in fact a general property of the nonadiabatic transport in
RMF. We can use the same optimum fluctuation method
for the CF system above to get

Smin5c~2a2!2/3~B̄/B0!2, B̄/B0@a21. ~36!

FIG. 8. Magnetoresistivity ata50.2, 0.35, and 0.5; the cyclo
tron frequency in the scaling of thex axis refers to the externa

magnetic field,vc5eB̄/mc. The full, dashed, and dotted lines sho
the experimental magnetoresistivity aroundn51/2 according to the
data of Refs. 30, 31, and 25, respectively~in this casevc refers to

the effective magnetic fieldB̄5B22hcn/e). The sample param
eters~carrier densityn, undoped spacer widthd and zero-field mo-
bility m) are n51.5331011 cm22, d580 nm, m5
53106 cm2/V s, ~Ref. 30!, n50.8631011 cm22, d580 nm, m5
10.53106 cm2/V s ~Ref. 31!, n51.3131011 cm22, d5120 nm, m
53.53106 cm2/V s ~Ref. 25!.
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This result is valid ifB̄ is large enough; namely, it require
that the shift of the guiding center in the field of the optimu
fluctuation after one cyclotron revolution,d, and the Larmor
radius Rc be both smaller thand. The condition Rc!d

breaks down with decreasingB̄ at B̄/B0;a21. Provideda
!1, the exponent~36! taken at the crossover point is larg
which means thatd!d and we are still deep in the adiabat

regime. Next we consider the regimeB̄/B0,a21. What

changes at smallerB̄ is that the drift velocity of the guiding
center at pointr is now determined by an effective RM
dBeff(r ), the amplitude of which is smaller thanB0 because
of the averaging of the fluctuations over the large cyclotr
radius. We definedBeff(r ) by writing the general expressio

for the drift velocity to first order indB/B̄ in the form

vd~r !52
e

mcE0

2pdw

2p
@dB~r1Rw!3Rw#

~37!

5vF

Rc

2B̄2
@¹dBeff~r !3B̄#,

whereRw5Rc(cosw,sinw) andw is the phase of the cyclo
tron rotation around the pointr . Stokes’ theorem then yield

dBeff~r !5
1

pRc
2E

R<Rc

d2RdB~r1R!. ~38!

Equation~38! tells us thatdBeff is given by the magnetic flux
through the cyclotron orbit, so that the drift occurs along t
lines of constantflux ~not the lines of constant magnetic fie
averaged along the orbit!. If dB(r ) is a smoothly varying
function on the scale ofRc , dBeff(r ) coincides withdB(r ),
otherwise the averaging leads to a strong suppression o
fluctuations ofdBeff(r ). More specifically, atRc@d the field
dBeff(r ) is characterized by two spatial scales: it has a sh
range component whose correlation radius remains of o
d – its characteristic amplitude is

B0
eff;B0~d/Rc!

3/2 ~39!

– and a long-range component which has a larger amplit
;B0d/Rc but fluctuates on the much longer scale ofRc .
Since the drift velocity is given by the gradient ofdBeff(r ), it
is the short-range fluctuations that determinevd(r ). Applying
the optimum fluctuation method, we now have

Smin;a1/3B̄/B0 , a21/3&B̄/B0&a21. ~40!

At B̄/B0;a21/3 the factore2Smin becomes of order unity and

at smallerB̄ the adiabatic invariance does not hold anymo
Let us briefly discuss the deviations from the Drude b

havior at low-magnetic fieldsB̄ in the case of weak disorde
(a!1). The Drude theory predicts zero magnetoresistan
Drxx /rxx50. Bending of the cyclotron trajectories on th
scale of d leads to a small negative contribution to th
magnetoresistance:16,20

Drxx

rxx
52

3

2
a2S B̄

B0
D 2

ln minH 1

a2 ,
B0

aB̄
J . ~41!
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However, our numerical results demonstrate a pronoun

positive magnetoresistance in the rangeB̄/B0&a21/3, so that

the resistivity shows a maximum atB̄/B0;a21/3 before it
starts to drop exponentially according to Eqs.~35!, ~36!, and
~40!. This positive magnetoresistance remains for alla be-
low ;0.5, see Figs. 8 and 9, and is strikingly similar to t
experimentally observed positive magnetoresistance of c
posite fermions nearn51/2. A detailed theoretical analysi
of this positive magnetoresistance~which is determined by
returns of a particle to a vicinity of the starting point! will be
given elsewhere.32

E. Magnetotransport at strong disorder, a@1:

Localization of the snake states atB̄>B̄c

Let us address now the finite-B̄ transport in the opposite
limit of strong disordera@1. The asymptotics~36! remains

unmodified at sufficiently largeB̄, namely, atB̄@B0 /a1/2,

where Rc!Rs . At smaller B̄, the trajectories close to th
zero-dB lines become localized in the adiabatic traps@Sec.
II # and start to transform into the snake states. A new fea
is thus the appearance of a competing mechanism of
conduction – the snake-state percolation. Indeed, the sn
state trajectories are tied to the lines ofB(r )50, where

B(r )5B̄1dB(r ) is the total field. On the other hand, th
percolating trajectories are those that follow the lines

dB(r )50, independent ofB̄. At large B̄@B0 /a1/2, the per-
colating and snake-state trajectories are therefore sepa
in space: the snake states are closed orbits localized
inside the elementary cells of the conducting network. No

at B̄&B0 /a1/2, the nonadiabatic scattering is due to tw
mechanisms: the exponentially weak nonadiabatic cor
tions to the dynamics of the snake-state angleu and the
breakdown of the adiabaticity of the snake states at
saddle points. The latter mechanism leads to the formatio
percolation clusters. Thus, there exists a well-defined va

FIG. 9. Magnetoresistivity ata50.2, 0.35, 0.5, 1.5, and 4. Th
dashed lines show the critical fieldBc , at which the exponentia
falloff begins fora*1; see Eq.~42!.
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of B̄5B̄c below which the snake states form a continuo
network and can percolate through the entire system.

critical field B̄c is of the order ofB0rs /d, i.e.,

B̄c;B0a22/3, ~42!

which is the characteristic amplitude of the magnetic field
the critical saddle points. It is worth stressing that there i
clear separation of the adiabatic and snake-state regimes
nonadiabatic scattering within the finite clusters only leads
an exponentially narrow uncertainty in the position of t
critical point. If one neglects this nonadiabatic smearing
the transition, the conductivity can be expressed as

sxx5
e2

h

kFd

a1/2LFS B̄

B̄c
D , ~43!

whereF(x) is a dimensionless function, such thatF(0);1

and F(x>1)50, andsxx at zeroB̄ coincides with that in
Eq. ~16!. The magnetoresistivity fora51.5 and a54 is
shown on a logarithmic scale in Fig. 9~for completeness, we
also included the data for smaller values ofa, which have
been already displayed in Fig. 8!. We see that the resistivity
indeed shows an exponential falloff beyond a characteri
field consistent with Eq.~42!.

To find the critical behavior ofsxx}(B̄c2B̄) t near B̄c ,
we formulate an auxiliary percolation problem in more co
ventional terms. Consider equipotential contours in a rand
potential with a characteristic amplitudeV0 and the correla-
tion lengthd and pick up all contours within the energy ban
(2D,D), whereD!V0. These contours form a percolatio
network, the size of the elementary cell of which isj(D)
;d(V0 /D)4/3. The characteristic width of the links of th
network is of orderdD/V0. This is a standard percolatio
problem. Now, let us shift the energy band corresponding
the percolation network: namely, we introduce a paramete«
and consider all contours within the band (2D1«,D1«).
Clearly, the system undergoes a percolation transition a«
56D. In this new percolation problem, the lengthj(D)
plays a role of the elementary scale, so that the character
radius of the percolation cluster is now

j~D,«!;j~D,0!~D/uD2«u!4/3

~for positive«). Next, let particles propagate along the eq
potential contours ‘‘ballistically.’’ As we know already from
Secs. II and III, the conductivitys of such a network scale
as the typical width of the conducting linksd(D2«)/V0, i.e.,
s}(D2«). Assuming that our original problem can b
mapped onto the problem above, we will get the critical e
ponent for the conductivity of the snake-state networkt51,
i.e., F(x);12x at x→1.

F. Magneto-oscillations

Until now, we have dealt with the transport properties
classical particles. The classical description is justified b
the large value of the parameterkFd@1: first, this parameter
enabled us to calculate the conductivity by examining
microscopic dynamics in terms of classicaltrajectories; sec-
ond, it guaranteed the existence of a wide range of the fie
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B0 and B̄ in which the thus-calculated conductivitysxx

@e2/h @cf. Eqs.~2! and ~16!#. It is the latter condition that
allowed us to neglect the quantum interference of multi
scattered waves and related localization effects. In this
tion, we discuss the small quantum oscillations ofsxx as a

function of B̄, which are conventionally termed th
Shubnikov-de Haas~SdH! effect. We argue that the physica
picture of the magneto-oscillations in the smooth RMF~and,
in fact, in the limit of a long ranged random potential
well! is rather peculiar from the conventional point of view

We first recall the standard results for the case of a r
dom scalar potential with a sufficiently short correlati
length. Within the usual approach,33,34 the magnetooscilla-
tions of sxx are related to those of the total density of sta
rF : sxx

osc/sxx}rF
osc/rF , wheresxx

osc andrF
osc denote the oscil-

lating parts ofsxx andrF . The damping of the oscillation
in low fields is described in terms of the single-particle
laxation timets ~also termed sometimes the quantum rela
ation time!,35–38,17which is equal to the transport mean-fre
time t tr for the white-noise random potential and
;t tr /(kFd)2 for the random potential with correlatio
lengthd*kF

21 . Specifically, the exponent of the Dingle fa
tor exp(2SSdH) is SSdH5p/vcts , so that atvcts;1 the
oscillations of both the density of states at the Fermi le
and the conductivity become strong. We note that this cro
over to the strong oscillations occurs in the case of sh
range disorder atsxx /(e2/h);kFl (ts /t tr)

2@1, assuming
that the ratiot tr /ts is not too large. With further increasin

B̄, atvcts@1, the density of states exhibits a series of pea
well separated from each other, so that in the centers of
valleys between the peaks the quantum localization star
develop rapidly, which leads in turn to the appearance
quantum plateaus in the Hall conductivity. The full Ha

quantization takes place, however, at much largerB̄, when
the value of the conductivity in the center of the peak dro
to a value;e2/h. Therefore, in the short-range random p
tential, there exists a parametrically broad region betw
the appearance of the SdH oscillations and the fully de
oped quantum Hall effect.

In the case of a white-noise RMF the situation is differe
The short-range fluctuations of the magnetic field are acc
panied by long-range fluctuations of the random vect
potential. As a result, the single-particle relaxation rate n
diverges due to the strong small-angle scattering.8,17 The di-
vergence is cut off by the characteristic length scale in
problem, which is the cyclotron radius. As a consequen
the damping factorSSdH takes a different form,SSdH

54pEF /vc
2t tr54psxx /(e2/h).17 It follows that at SSdH

;1, where the oscillations become observable,sxx;e2/h.
This is, therefore, a marginal case: the SdH oscillations

come appreciable in the same region ofB̄ where the quantum
localization effects get strong.

Now, let us consider the limit of the long-range RMF.
this case, the oscillations of the total density of states
damped exponentially strongly in the whole region where
classical conductivity is*e2/h, and are thus of no impor
tance. However, the crucial thing to notice is that the os
lations of sxx and of the total density of statesrF are no
longer directly related to each other. Indeed, as shown ab
y
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sxx is determined with growingB̄ by a progressively smalle
fraction of the total number of trajectories. In the adiaba
limit, only trajectories close to the zero-dB contours contrib-
ute tosxx . It follows that the oscillations ofsxx are associ-
ated with the oscillations of the density of these conduct
statesonly. In particular, this means that the SdH effect a
the magnetooscillations of thermodynamic quantities~de
Haas-van Alfve´n effect! will be characterized by completel
different damping factors.

We now turn to the Dingle factor forsxx . Quite gener-
ally, the SdH effect is due to the quantum interference of t
waves propagating along quasiclassical trajectories for wh
the number of cyclotron revolutions is different by6N for
theNth harmonic of the oscillations.39,40,17The Dingle factor
for the first ~and most prominent! harmonic withN51 can
therefore be represented as

exp~2SSdH!cosc5K (
a

Ga cosFaL , ~44!

wherea labels trajectories in a given realization of disorde
Ga is the weight with which the trajectorya contributes to
sxx , (aGa51, Fa is the phase that is acquired by a partic
moving along the trajectory after one cyclotron revolution,c
is the phase of the SdH oscillations, and^ & denotes en-
semble averaging. In general, the phase factor cosF should
be averaged both overdifferent trajectories and alongone
trajectory. However, in the limit of smooth disorder, the a
tion Fa , which is the dimensionless magnetic flux throu
the cyclotron orbit, is the adiabaticinvariant characterizing
the trajectory. A subtle point here is that the van Alfve´n drift
occurs along the lines of constant fluxF – not the lines of
constant fieldB @see Eq.~38!#. At first glance, this difference
might seem to be irrelevant in the case of long-range R
with d@Rc . In fact, however, it is of crucial importance fo
the calculation of the amplitude of the oscillations. Let
illustrate this point by first derivingS along the following
line of argument. We know already that the extended traj
tories form a percolating network along the contours of z
dB(r ). Since the width of the links of the conducting ne
work is much smaller~in fact, as shown above, exponential
smaller! than Rc , it is a good approximation to place th
guiding center on the contour of zerodB(r ), calculate the
RMF flux dF through the cyclotron orbit, and averageeidF

over different positions of the guiding center on the zero-dB
line. This would give a contribution to the Dingle-factor e
ponent SSdH5^(dF)2&/2;(eB0 /\c)2(Rc

2/d)4.16 In fact,
however, the actual trajectory of the guiding center
slightly shifted from the contour of zerodB(r ) – by an
amount that exactly cancels the above contribution toSSdH –
since it is the flux that is the adiabatic invariant. It follow
that the average over the flux should be done only overdif-
ferent trajectories:Fa in Eq. ~44! is, in the adiabatic limit,
constant for a givena.

Having established the conservation of the fluxFa along
the trajectory we can rewrite Eq.~44! in the following form

exp~2SSdH!cosc5E dFG~F!cosF, ~45!
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whereG(F)5^(aGad(F2Fa)& is understood as the en
semble average takenacrossa link of the conducting net-
work. The functiong(F) is represented as a narrow peak
width DF centered atF052p(mvF

2/2\vc). The dimension-
less magnetic fluxDF can be expressed in terms of th
width Rd @Eq. ~34!# of the link of the conducting network by
DF;(e/\c)DBRc

2 , whereDB;B0Rd /d is the characteris-
tic change of the RMF across the link. We, thus, see that
broadeningDF is related to the conductivity of the networ
@Eq. ~35!# and obeys the equation

sxx;
e2

h
DF. ~46!

This rather remarkable result implies that the Dingle fac
e2S is a function of the single variableg5sxx /(e2/h):

exp@2SSdH~g!#5E
2`

`

dxQ~x!cos~2pgx!. ~47!

Here, we have expressedG(F)5(2pg)21Q@(F
2F0)/2pg# in terms of the parameterless functionQ(x),
which falls off at uxu;1 and is normalized according t
*dxQ(x)51. According to Eq.~47!, the Dingle factor is
represented as the Fourier transform of the smooth func
Q(x). It is worth noting that Eq.~47! can be interpreted als
in terms of the local Landau levels. In the language of
quasiclassical quantization, the contributionGN of the Nth
Landau level to the conductivitysxx5(NGN falls off be-
yond the band of widthDN;g@1 aroundN5mvF

2/2\vc ,
where the number of effectively conducting Landau levels
determined by the change of the flux across the link,DN
5DF/2p. Represented in terms ofDN, Eq. ~46! takes the
familiar form: the conductivity is of the order ofe2/h times
the number of the conducting channels in the effective n
work. Applying Poisson’s formula to the sum(NGN we
again arrive at Eq.~47!.

Hence, the SdH oscillations due to the oscillations of
density of states of the ‘‘conducting’’ particles become o
servable atg;1. However, as has been already mention
there exists another effect that leads to the appearance o
magnetooscillations: the quantum localization. According
the scaling theory of the quantum Hall effect,41

SQHE~g!52pg, g@1, ~48!

irrespective of any microscopic details, in particular, t
value ofa. Equations~47! and~48! tell us that both types o
oscillations become observable atg;1. To decide which
oscillations are stronger, one should calculate the Fou
asymptotics~47!. This requires knowing the precise shape
the functionQ(x). It appears that in the case of the perco
tion networkQ(x) can be obtained only by means of a n
merical simulation. Here, we restrict ourselves to conclud
that the number of oscillations observed scales in the
problem aspc;kFd/ ln1/2(kFd). Since

g}kFd exp@2~pc /p!2#,

wherep5EF /\vc , the oscillations disappear extremely fa

with increasingp ~i.e., decreasingB̄). These findings are in
agreement with experimental observations. The typical nu
f

e

r

n

e

s

t-

e
-
,

the
o

er
f
-

g
F

t

-

ber of oscillations observed in the best samples withkFd
;15 is pc5729. The oscillations start indeed to develop
g.1, as shown in Fig. 10, where the experimental data
Ref. 25 are represented in terms of the CF conductivity.

nally, the damping of oscillations with decreasingB̄ is ex-
tremely fast, so that the Dingle plot is strongly nonlinear.24,25

To summarize, in contrast to the text-book example o
short-range potential, the damping of the magnetooscillati
in a smooth RMF has the form lnsxx

osc.2S(g); i.e., the
Dingle factor is a function of the dimensionless conductiv
only @hereS(g)5min$SSdH,SQHE%#. The explicit form of the
function S(g) warrants further study.

IV. AC TRANSPORT

The frequency-dependent dissipative conductivity
volves the Fourier transform of the retarded velocity-veloc
correlator:sxx(v)5e2rF^uvxuv

2 &, where

^uvxuv
2 &5ReE

0

`

dteivt^vx~0!vx~ t !&. ~49!

In the quasiclassical limit, which we consider here, the in
gral over t is understood as the integral along a classi
trajectory, characterized by the velocityv(t), while ^ & de-
notes the averaging over the trajectories. The averag
taken over all trajectories of electrons at the Fermi lev

However, as discussed above, if the magnetic field, eitheB̄
or B0, is strong enough, most trajectories do not make
significant contribution to the dc conductivity and the tran
port is governed by the percolation of a small portion of th
total number. In this section, we turn to the ac conductivi
We will show that changing the frequency, one effective
probes the motion on the percolating network on differe
spatial scales. This results in a strong non-Drude freque
dispersion of the conductivity.

A. ac conductivity at a;1, B̄@B0:
application to the composite fermions aroundn51/2

We start with the ac conductivity ata;1 in a strong

external fieldB̄@B0 ~which is relevant to the CF problem a

FIG. 10. Composite-fermion conductivitysxx as a function of
the effective magnetic field extracted from the data of Ref. 25. T
magneto-oscillations start to develop when the conductivity~in
units of e2/h) drops down to a value;1.
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sufficiently strong deviation fromn51/2, Dn@1/kFd). Our
analysis in Sec. III relies on the characterization of the el

tron dynamics atB̄@B0 by three degrees of freedom wit
different frequency scales: the fast cyclotron rotation,
slow drift, and the still slower nonadiabatic diffusion acro
the drift trajectories. It is the slowest degree of freedom,
nonadiabatic diffusion, that yields unbounded~extended!
paths. Let us first consider the contribution to the veloci
velocity correlator~49! which comes from these extende
trajectories,̂ vx(0)vx(t)&ext. Following the approach devel
oped in Sec. III, we parametrize it as a function of two va
ables

^vx~0!vx~ t !&ext5vd
2 d

j
FvS vdt

d
,
vdt

L D , ~50!

wherevd5(3/8)1/2vFRcB0 /dB̄ is the r.m.s. drift velocity,j
}Rd

2n and L}Rd
2n21 are the characteristic size and perim

eter of the elementary cell of the percolation network, a
n54/3. The factord/j gives the partial density of the pe
colating states~i.e., the portion of the areaj3j occupied by
the trajectories of sizej, LRd /j2;d/j). At d/vd!t
!L/vd , the scaling function exhibits a power-law behavi
Fv(t,0);t2x reflecting the fractal dimensionality of th
links of the network. The exponentx can be found by equat
ing ^vx(0)vx(t)&extt and the effective diffusion coefficien
j2(t)/t, wherej(t);d@L(t)/d#n/(n11) andL(t);vdt, which
yields x52/(n11)56/7. The network model we have use
is justified by the conditionx,1 ~the Harris criterion,n
.1), so that the integral overt in Eq. ~49! at v50 is deter-
mined byt;L/vd . We, thus, have

^vx~0!vx~ t !&ext;vd
2 d

j S d

vdt D
x

,
d

vd
&t&

L

vd
. ~51!

Now, to calculate the frequency-dependent correction to
dc conductivity atv&vd /L, we need to know the behavio
of the correlator~50! at t@L/vd . If the diffusion over the
percolation network were completely uncorrelated,Fv would
decay exponentially with increasingt. We will argue below
that in factFv falls off as a power law

Fv~t,t8!;2~t8/t!x/t82, t@t8@1.

For the correlator~50! this gives

^vx~0!vx~ t !&ext;2
dj

t2 , t*
L

vd
. ~52!

This long-time tail in the correlation function is similar to th
one found in the Lorentz gas~noninteracting classical par
ticles scattered by a random array of hard discs!.42 We will
study the long-time correlations microscopically for the re
istic case of a weak long-range disorder elsewhere;32 here,
we introduce a simple phenomenological model suitable
the qualitative description of the percolation network.

Consider the diffusion equation with an inhomogeneo
diffusion coefficient D(r ). The diffusion current is then
given byD(r )¹n(r ,t), wheren is the concentration of par
ticles. The diffusion propagatornvq in (v,q) space obeys
the equation
-

e

e

-

-

d

e

-

r

s

2 ivnvq1E d2q8

~2p!2
~qq8!Dq2q8nvq851. ~53!

We now writeD(r )5D1dD(r ), whereD is the mean value
of D(r ), expand the propagator in powers ofdD, and aver-
age Eq. ~53! over the fluctuations with the correlato
^dD(0)dD(r )&5LD2g(r ), whereg(r ) is a dimensionless
function of order unity, which falls off on the scale ofd0.
The use of the diffusion equation implies that the correlat
radiusd0@ l , wherel is the mean-free path. To first order i
L we have for the correction to the average diffusion pro
gator

dnvq5LD2Dvq
2 E d2q8

~2p!2
gq2q8 ~qq8!2Dvq8 , ~54!

whereDvq5(2 iv1Dq2)21. From Eq.~54! we deduce the
v dependent correction to the conductivitydsxx(v)
5e2r v2 lim

q→0
q22 Re dnvq :

dsxx~v!

sxx
52

L

2 E d2q

~2p!2
gq

Dq2

2 iv1Dq2 , ~55!

i.e.,dsxx(v)/sxx.Lg0uvu/16D at smallv @we drop here an
v independent term indsxx(v)#, which implies at22 long-
time tail in the velocity-velocity correlator in Eq.~49!.

On the percolation network, the size of the effective sc
terers and the effective mean free path are both of the o
of j, i.e., d0; l;j. Furthermore, strong fluctuations of th
geometry of the percolating cluster imply thatL;1. We
expect that the 1/t2 tail, the existence of which has bee
demonstrated above in the phenomenological model w
d0@ l and L!1, will not disappear if we setd0; l and L
;1. Substituting these estimates into Eq.~55! we get

dsxx~v!

sxx
;

uvuL
vd

, uvu&
vd

L
, ~56!

which corresponds to Eq.~52!.43 We recall that the charac
teristic scaleL entering Eq.~56! is given by

L;dFme2vdd

sxx\
2 G 7/3

}d expS 7

13
SminD . ~57!

It is worth noting that theclassical kinetic correlations
compete with the quantum ones and win, unless the
quency is exponentially small. Specifically, as is well know
the quantum localization effects in 2D lead to at21 tail in
the correlator~49! and, correspondingly, to a lnuvu correction
to the conductivity. This quantum correction is of spec
interest because of its divergence forv→0, in the thermo-
dynamic limit. The classical correction, proportional touvu,
does not diverge, but it is also interesting, both theoretica
and experimentally, since it isnonanalytical in v and is
much larger than the quantum one even at very lowv. The
point is that the localization correction is a series in pow
of the small parameter 1/kFl , wherekF is the Fermi wave
vector, while the relevant parameter for the classical corr
tions isd/ l , whered is the correlation radius of disorder. I
the disorder is long-ranged (kFd@1), the classical correc
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tions are dominant in a wide range ofv. We will discuss the
classical corrections in more detail elsewhere.32

Note thatsxx(v) behaves nonanalytically at half-filling
also in theintegerquantum Hall regime. At the integer quan
tum Hall transition, the frequency-dependent correct
dsxx;uvuy/2 is related to corrections to scaling. The leadi
irrelevant scaling exponenty at the quantum phase transitio
was found numerically to be equal to 0.3860.04 and 0.35
60.05 in Refs. 44 and 45, respectively. In Ref. 46,y was
argued to be equal toh, whereh.0.4 ~Refs. 47,44! is the
critical exponent of eigenfunction correlations. However,
a long-range random potential there exists a class
nonanalytic termdsxx;uvuycl/2 with ycl.2,48 which domi-
natesdsxx(v) in a wide range of frequencies.

Coming back to Eq.~56!, we see that the frequency
dependent correction becomes strong atv;vd /L. We now
turn to higher frequencies. The scaling form~51! implies that
the contribution tosxx(v) from the extended trajectories be
haves asv211x at v@vd /L, i.e., it slowly decreases a
v21/7 with increasing frequency. Let us show that the e
tended trajectories do not determine the conductivity a
more and the main contribution tosxx(v) comes now from
localized drift trajectories. We will show that in factsxx(v)
growswith v. We neglect the weak nonadiabatic scatter
between the closed drift trajectories and represent
velocity-velocity correlator~49! for the periodic drift orbits
in the form

^uvxuv
2 & loc5pv2K U E

0

Tdt

T
x~ t !eivtU2(

n
dS v2

2pn

T D L .

~58!

Here, r (t) is a closed trajectory with the periodT and the
angular brackets denote the average over bothT and the
shape of the trajectory at givenT. The average is determine
by trajectories withT;v21, their perimeter and size ar
Lv;vd /v and jv;d(Lv /d)n/(n11), respectively. The par
tial density of states corresponding to these trajectorie
;rFd/jv

@see the paragraph after Eq.~50!#. The estimate for
the correlator~58! thus reads

^uvxuv
2 & loc;v2jv

2 3d/jv3uvu21, ~59!

where the factord/jv stands for the partial density of state
and the last factorv21 comes from the averaging of the del
functions in Eq.~58!. This yields theac conductivity of the
form

sxx~v!;e2rFvdRv , ~60!

whereRv;d(d/jv)1/n}uvu3/7 is the characteristic width o
the links of the conducting network. We get49

sxx~v!;sxx~0!S uvuL
vd

D 3/7

,
vd

L
&uvu&

vd

d
. ~61!

Equations~56! and~61! describe the behavior of the con
ductivity at v&vd /d. At still higher frequencies,sxx(v) is
determined by the velocity-velocity correlations in the cro
over region between the ‘‘ballistic’’ drift on the spatial sca
much smaller thand and the ‘‘diffusive’’ motion over the
fractal network on larger scales. At the crossover,
n

al

-
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-

e

velocity-velocity correlator can be parametrized
^vx(0)vx(t)&5vd

2f v(vdt/d), wheref v(t) is a dimensionless
function of order unity@cf. Eq. ~50!#. Note that it is not
sufficient atv@vd /d to know the behavior of the correlato
at t;v21. Since the conductivity is expressed in terms
the high-frequency Fourier component of^vx(0)vx(t)&,
which is an even function oft, sxx will fall off exponentially
with increasingv ~until v reaches the low-frequency win
of the cyclotron resonance!. Therefore, to get the asymptoti
behavior ofsxx(v), we need to know the analytical prope
ties of the correlator as a function oft, i.e., the exact shape o
the function f v(t), which requires a numerical simulation
We expect, however, that the functionf v(t) has a simple
analytical structure with singular points at Imt;61, which
yields the exponential falloff of the form

ln sxx;2uvud/vd . ~62!

This exponential decay ofsxx is limited from the side of
large frequencies by the disorder-broadened cyclotron re

nance, which dominatessxx(v) at v;vc5eB̄/mc.
The arguments of the last paragraph concerning the ex

nential falloff at largev are also applicable to theac con-

ductivity in zero~or low! B̄, with the only substitution of the
Fermi velocityvF for the drift velocityvd . In contrast to the
Drude ~white-noise disorder! case, where the velocity
velocity correlation function has a cusp att50 leading to the
slow 1/v2 decrease ofsxx(v), in the case of smooth disor
der ^vx(0)vx(t)& is an analytic function oft at t50, which
implies an exponential decay ofsxx(v) at v@vF /d.

Figure 11 shows the results of the numerical calculat
of the ac conductivity for a50.35. Significant deviations
from the Drude theory fit are seen, which become stron

with increasing external magnetic fieldB̄. For zero~or low!

B̄ the results are still relatively close to the Drude theo
except in the tail~for v@vF /d), where the conductivity
starts to drop exponentially~see inset!, in qualitative agree-
ment with the theoretical expectation@Eq. ~62!#. In the inter-

mediate fieldsB̄ ~see the curves corresponding tovcd/vF
50.2 and 0.37! the nonanalytic dip~56! aroundv50 gets
clearly observed. Finally, in a large magnetic field, the sha
of the ac conductivity is completely different: it increase
nonanalytically at smallv in agreement with Eq.~61!, see
Fig. 12, and then drops exponentially in a higher frequen
range in agreement with Eq.~62!, see Fig. 13; at still higher
frequencies, the cyclotron resonance~smeared by disorder! is
observed. It becomes difficult to resolve reliably the lead
nonanalytic correctiondsxx}uvu at v→0 in high magnetic
fields, since it is shifted to the very lowv range and is
masked by the statistical noise present in the numerical d
Note that in Figs. 12 and 13 we used the frequency sc
vd /d, which is a natural scale in the regime of high-magne
field. The value ofa in Fig. 11 is approximately the one
appropriate for the CF system. Therefore, this figure rep
sents our prediction for theac conductivity of the CF’s at

half filling ( B̄50) and away from it (B̄Þ0).
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B. ac conductivity at a@1, B̄50

Let us now consider the frequency dispersion of

snake-state percolation (a@1, B̄50). Since the mechanism
of the percolation was of no importance in the derivation
Eq. ~56!, we get

dsxx~v!

sxx
;

uvuLs

vF
, uvu&

vF

Ls
~63!

~we substituted herevF for vd as the effective drift velocity
of the snake states andLs;da14/9 for the perimeter of the
elementary cell of the conducting network!. The correction
becomes strong atuvu;vF /Ls . At largerv, the conductivity
is determined by the snake states that are bounded to
closed zero-B contours of size much smaller thanjs . Spe-
cifically, the main contribution tosxx(v) now comes from
the trajectories of the lengthLv;vF /v. We estimate their
contribution atuvu*vF /Ls as

sxx~v!;e2
rRsLvus

2

jv
2 jv

2 v;sxx~0!, ~64!

vF

Ls
&uvu&

vFrs

d2 ,

wherejv;d(Lv /d)n/(n11). The first factor gives the densit
of states for the snake-state orbits with the periods lar
thanv21, while the last factor is the effective diffusion co
efficient on the time scale of orderv21. We see thatv

FIG. 11. ac conductivity ata50.35 and for different values o

the magnetic fieldB̄. The number near each curve indicates t

value of the cyclotron frequencyvc5eB̄/mc in units of vF /d; to

convert these values intoB̄/B0, one has to multiply them by 1/a.
The result of Drude theory is also shown~dotted lines!. The statis-
tical noise in the data atvcd/vF51.22 is due to fluctuations of the

local cyclotron frequency. Inset: the low-B̄ data (vcd/vF50.01) on
a logarithmic scale.
e

f

he

er

cancels out in this expression andsxx(v) turns out to be of
ordersxx(0) @Eq. ~16!#. We putuvu;vFrs /d2;vF /da2/3 as
the upper limit for the frequency range where Eq.~64! is
valid: strictly speaking, the decrease ofLv at higheruvu is
accompanied with a growth of the phase volume of the sn
states that participate in theac transport by escaping th
adiabatic traps. This means that the angleu which should be
substituted forus , Eq. ~13!, now increases withuvu as
L v

21/2, whereL v; ln1/4(vF /uvud). It follows that

sxx~v!;sxx~0!
L
Lv

,
vFrs

d2 &uvu&
vF

d
, ~65!

i.e., the conductivity grows with increasingv ~but extremely
slowly!, until uvu becomes of the order ofvF /d.

FIG. 12. Low-frequency behavior of the ac conductivi
dsxx(v)5sxx(v)2sxx(0) in strong magnetic field fora54.04,

B̄/B051.00 ~which corresponds tovcd/vF54.04). The straight
line corresponds to the theoretical predictiondsxx}uvu3/7, see Eq.
~61!. The same nonanalytic behavior ofsxx(v) in the low-v range

in strong magnetic fieldB̄ takes place for smalla and is in particu-
lar seen in Fig. 13 fora50.2.

FIG. 13. ac conductivity ata50.2 and strong magnetic field

B̄/B054.38 ~which corresponds tovcd/vF50.88), shows the ex-
ponential falloff ~62! in the intermediate range of frequencies. T
dotted line corresponds to lnsxx522.2uvud/vd .
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Note that, in the derivation of Eqs.~64! and ~65!, we
restricted ourselves to the snake states and were not
cerned about the contribution of the drift trajectories, wh
requires comment. Indeed, one might think that the ar
ments that led to the power-law behavior ofsxx(v) in Eq.
~61! could be used here as well. However, there is a n

feature that makes the percolation at largea and zeroB̄

distinct from that ata;1 and largeB̄. Namely, now there is
no characteristic drift velocityvd, which is the same for al
trajectories. Specifically,vd at largea depends on the typica
distanceR between the drift trajectory and the zero-B con-
tour. We parametrizevd(R) as

vd~R!5vFFsS R
Rs

D , ~66!

where Fs(0);1 and Fs(x);2x22 at x@1. The slowing
down of the drift with increasingR is related to the linear
growth of the magnetic field as one moves away from
line B50. Equation~60! tells us that the contribution to th
ac conductivity of trajectories separated by the distanceR
from the zero-dB lines scales asvd(R)R}R 21, i.e., it de-
creaseswith R. It follows that the drift orbits that surround
the snake-state trajectories do not contribute tosxx(v) even
at largev.50

Thus, the overall picture in the snake-state percolat
regime is as follows:sxx(v) exhibits a narrow dip around
v50, increasing linearly with growingv; this increase is
saturated atv;vF /Ls where thev-dependent correction be
comes strong; finally, on the~parametrically larger! scale of
v;vF /d, sxx(v) starts to fall off exponentially.51 The latter

regime is similar to that at largeB̄ @see the paragraph afte
Eq. ~61!#.

We finally comment on the casea;1, B̄50 relevant to
the CF problem. In this caseLs;d, so that the range o
applicability of Eqs.~64! and ~65! shrinks away and theac
conductivity becomes a function of the single variab
vd/vF :

sxx~v!;sxx~0!FvS vd

vF
D , ~67!

whereFv(x)2Fv(0);uxu at uxu&1 andFv(x) falls off ex-
ponentially at largerx (ln Fv;2uxu). We have already dis
cussed the exponential behavior at largev in the considered

regimea;1, B̄50 in the end of Sec. IV A; it is clearly see
in Figs. 11 and 14. As to the nonanalytic dip at smallv, our
numerical simulations indicate that it is almost unobserva
at the values ofa describing the CF conductivity (a&0.7) at

B̄50. Apparently, the corresponding numerical coefficie
gets very small for such values ofa. With increasing either

a ~Fig. 14! or B̄ ~Fig. 11! the nonanalytic structure get
resolved very clearly.

In Fig. 14, we show theac conductivity at relatively large
a54.04 in comparison with that ata50.5. Thea54.04
curve is strikingly different from the Drude behavior an
shows the features discussed above: the nonanalytic incr
in the smallv region, followed by a rapid decay consiste
with the theoretically predicted exponential falloff. At sti
n-
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w

e

n

le

t

ase

higher frequencies a broad distribution of cyclotron res
nances in the local~random! magnetic field is observed. A
hump at vd/vF.1.7 marks the onset of this regime an
corresponds to the characteristic snake state frequencv
;a1/2(vF /d). To see the exponential falloff in a broade
frequency range more clearly, one would have to consi
larger values ofa.

V. CONCLUSIONS

We have presented a detailed analytical and numer
study of the conductivity of a 2D fermion gas in a smoo
random magnetic field, in the whole range of the parame

a ~strength of the random field!, B̄ ~mean magnetic field!,
andv ~frequency!. While special emphasis has been put
the application of our results to the composite-fermion d
scription of the half-filled Landau level, they may be equa
relevant to the electron transport in a real random magn
field. Below, we summarize the main findings.

~1! At zero magnetic fieldB̄, thedc transport has a totally
different character in the regimes of weak (a!1) and strong
(a@1) disorder. While in the former casesxx}1/a2 @Eq.
~2!# is correctly given by the Born approximation, in th
latter the conductivity is determined by the percolation
snake states yieldingsxx}1/a1/2 ~up to a negligibly weak
logarithmic correction!, see Eq.~16!. Numerical simulations
confirm these analytical findings and allow us to findsxx in
the crossover regiona;1, see Fig. 7.

~2! In strong mean magnetic fieldB̄ the particle motion
takes the form of an adiabatic drift of the cyclotron orbits.
nonzero value ofsxx in this regime is entirely due to expo
nentially weak nonadiabatic scattering processes. As a c
sequence, the conductivity falls off exponentially,2 ln sxx

}B̄2, see Eqs.~27!, ~35!, and~36!. @At a!1, an intermediate

regime appears,2 ln sxx}B̄, see Eq.~40!.# The numerical
simulations have allowed us to find the shape of the mag

toresistance in a wide range ofB̄ for the values ofa ranging

from 0.2 to 5, see Fig. 9. The magnetoresistancerxx(B̄)

FIG. 14. ac conductivity in zeroB̄ at a50.5 anda54.04. The
scaling of they axis is different for the two curves, as indicated b
the arrows. Inset: nonanalytic dip aroundv50 @Eq. ~63!# at a
54.04.
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shows a sharp falloff at largeB̄ in agreement with the ana
lytical results. Furthermore, ata&0.5 this falloff is preceded
by a positive magnetoresistance in the intermediate rang

B̄. The whole shape ofrxx(B̄) at a;0.35 ~as well as its
absolute value! is surprisingly similar to the experimenta
magnetoresistivity in the fractional quantum Hall effe
aroundn51/2 ~Fig. 8!.

~3! In contrast to the case of a short-range random po
tial, the quantum magnetooscillations of the conductiv

start to develop in the range of the magnetic fieldB̄ where
the dimensionless conductivityg5sxx /(e2/h) drops to a
value ;1, in agreement with experiment~Fig. 10!. These
oscillations are not related to those of the total density
states~which are damped much more strongly!, but are de-
termined by the oscillations of the density of states of
particles moving on the percolating network, as well as
the quantum localization effects.

~4! The ac conductivity also shows distinct features
lated to the deviations of the particle kinetics from the b
havior following from the Boltzmann equation. While ata

!1 andB̄50 theac conductivitysxx(v) is relatively close
to the Drude form~except in the tail, where it drops expo

nentially!, at largea and/orB̄ the shape ofsxx(v) becomes
totally different. Specifically, it shows nonanalytic behavi
in the low-frequency range, see Eqs.~56!, ~61!, and~63! and
of

l
t

en-
ty

of

he
by

e-
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r

Figs. 11–14, related to the long-time tails in the veloci
velocity correlation function and reflecting the strongly no
Boltzmann character of the transport in the percolating
gime. At higher frequencies,sxx(v) starts to drop
exponentially~which reflects the ‘‘ballistic’’ dynamics of the
snake states or drifting orbits on short spatial scales!, until it
reaches the low-frequency wing of the disorder-broade
cyclotron resonance peak, see Eq.~62! and Fig. 13. Theac
conductivity ata50.35 ~which is in the range ofa relevant
to the composite-fermion problem! and different values of

the mean magnetic fieldB̄ shown in Fig. 11 clearly demon
strates the anomalies which we expect to be observed in
ac transport aroundn51/2.
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